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Abstract 
We present, in this paper, a framework supporting a formal verification of concurrent 
UML models using the Maude language. We consider both static and dynamic 
features of concurrent object-oriented systems. We focus on UML class, state and 
communication diagrams. The formal and object-oriented language Maude, based 
on rewriting logic, supports formal specification and programming of concurrent 
systems, as well as model checking. The major motivations of this work are: (1) 
translating concurrent UML diagrams into a Maude formal specification and (2) 
applying model checking to the generated specifications. The approach is illustrated 
using a concrete case study.  

1 INTRODUCTION 

UML (Unified Modeling Language) is a language for specifying, visualizing and 
constructing the artifacts of software systems [OMG05]. Nowadays, it is considered 
as the standard for object-oriented modeling. UML allows modeling various aspects 
of complex systems. However, UML models can present some ambiguities and 
inconsistencies as mentionned in several papers [Bruel00, Jean-Pierre05, Barnett04, 
Taibi03, Gallardo02]. UML suffers, in fact, from a lack of formal semantics 
[Astesiano98, Reggio04, Taibi03]. This weakness can lead to inconsistencies within 
the developed models. Using formal methods, particularly in the case of complex 
systems, presents notable advantages [Bruel00, Gallardo02, Taibi03, Meseguer03, 
Bowen03], like a simpler design without ambiguities, as well as a more complete 
documentation [Bowen03, Taibi03]. 

Concurrent programming is a powerful paradigm where activities can be 
executed concurrently [Garcia02, Gomaa00]. However, this way of programming has 
its specific problems. Concurrent threads executing on the same resources can lead to 
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unwanted and unexpected situations. For example, deadlocks, livelocks or data 
inconsistencies may occur [Garcia02, Gallardo02]. In [Wegner90], Wegner describes 
the general concept of active objects. Contrary to usual objects, which are activated 
when receiving a message, active objects may be already executing when receiving a 
message. Therefore, these objects have at their disposal a message queue. Wegner 
also discusses the concepts of internal and external concurrency [Wegner90]. When 
discussing external concurrency, we mean two active objects executing on the same 
resource. Those active objects can have a single thread, therefore sequential. A quasi 
concurrent active object is an object for which the internal behavior shows concurrent 
features. Finally, a fully internal concurrent active object has several threads of 
execution. In this paper, we mainly focus on external concurrency, as two objects 
attempt to access the same resource. 

Furthermore, Model Checking is a type of formal methods using a usually 
abstract model of a system to determine whether a series of properties are satisfied 
about that system [Chan98a, Chan98b, Cho99, Gallardo02, Merz00, Merz01, Lam04]. 
According to Gallardo & al. [Gallardo02], Model Checking is one of the most useful 
results of research in formal methods to increase the quality of software. A model 
checker is an automatic tool that compares two descriptions of the behavior of a 
system, one being considered as the requirement and the other the actual design 
[Gallardo02]. The main usefulness of such a technique is the fact that the automatic 
tool, upon encountering an error state, returns a counterexample illustrating the path 
taken to reach that state [Gallardo02, Merz00, Merz01, Lam04]. However, Model 
Checking suffers from a major problem, known as the state space explosion problem 
[Gallardo02]. Since a model checker confirms the validity of a given property by an 
exhaustive analysis of all execution paths, the state space can become very big very 
soon. Several solutions to this were proposed, for example symbolic model checking, 
abstraction, or on-the-fly analysis [Merz00, Wahl03]. 

In this paper, we present a formal framework supporting: (1) the translation of 
UML diagrams into a formal specification based on the Maude language and (2) the 
verification of some LTL properties using Maude’s integrated model checker. We 
consider both static and dynamic features of concurrent object-oriented systems. We 
focus, in particular, on UML class, state and communication diagrams jointly. The 
approach is organized in four major steps. The first step consists of describing both 
static and dynamic features of an object-oriented system using UML class diagram 
(static structure), state (individual behavior of objects) and communication diagrams 
(collective behavior in terms of dynamic interactions between objects). The second 
step corresponds to an inter-diagrams validation process. The third step consists of 
automatically generating a Maude description from the considered UML diagrams. 
The fourth step consists of verifying some LTL properties using Maude’s model 
checker [Eker02, Meseguer03, Clavel05]. We focus, in this paper, on applying Maude 
model checking techniques to concurrent UML diagrams. The translation process has 
been addressed in a previous paper [Mokhati06], but was subject of an extension to 
consider the particularities of concurrent object-oriented systems for both internal and 
external concurrency. 

The remainder of the paper is organized as follows: In Section 2, we give a brief 
overview of related work. Section 3 briefly presents the UML diagrams we consider. 
Section 4 gives an overview of rewriting logic and Maude. We present, in Section 5, 
the main phases of the translation process and illustrate it using a concrete case study 
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in Section 6. Section 7 presents how Maude’s model checker can be used to verify 
LTL properties. Finally, we give a conclusion and some future work directions in 
Section 8. 

2 RELATED WORK  

Funes & al. [Funes02] have formalized UML class diagrams using the formal 
specification language RSL (RAISE Specification Language). Using the same 
language, Meng & al. [Meng04] presented a formalization for state diagrams. 
Furthermore, Favre [Favre05] has proposed a translation process for class and 
package diagrams in the NEREUS language, based on the MDA (Model Driven 
Architecture) methodology. The obtained NEREUS specification is transformed into 
an object-oriented code (Eiffel language). Joao & al. [Araujo00] proposed a 
generation process to obtain Object-Z specifications from UML communication 
diagrams. In the same context, other UML diagrams have been considered [Dong00, 
MacColl99]. On the other hand, Paige and Brooke presented in [Paige04] a pragmatic 
approach integrating the object-oriented methodology BON (an alternative to UML) 
and the Object-Z language. Their approach was implemented using the BON-CASE 
tool [Paige02]. This tool supports formal specifications through pre-conditions, post-
conditions and class invariants, whether for reasoning or for formal analysis 
[Paige02]. The majority of these papers have focused on translating to a formal 
specification only one feature of object-oriented systems, whether static or dynamic. 

In the same context, other approaches have considered jointly class diagrams to 
describe static aspects of object-oriented systems and state diagrams to describe their 
dynamic aspects (individual behavior of objects). We can cite, among others, the U2B 
tool [Snook04]. U2B is a script file for Rational Rose that allows the conversion to the 
B language the Rational Rose model composed of class and state diagrams. However, 
the collective behavior of objects, in terms of dynamic interactions between objects, is 
not considered. Furthermore, H. Ledang & al. have developed the ArgoUML+B tool 
[Ledang03, Tigris02]. Of course, those proposals have considerably forwarded the 
domain by integrating static and dynamic features of object-oriented systems and their 
translation into formal specifications. However, the dynamic features considered in 
those papers, jointly to the static features, are only related to the individual behavior 
of objects. The collective behavior is not addressed. 

Model checking issues are nowadays a very active research domain. Several tools 
are offered to assist developers in such a task. Some of those tools also support the 
formal verification of concurrent systems. SPIN is one of the most renowned model 
checkers available. It has been used in several works. In [Merz01, Merz00], SPIN has 
been used to model check state machines and collaborations together, and more 
particularly concurrent state machines using concurrent regions of a superstate. Their 
approach consists of verifying that the collective behavior of the objects specified by 
the collaboration diagram can be satisfied by a set of state-transition diagrams. The 
authors developed a tool called HUGO which compares the state charts descriptions 
defined in PROMELA, the input language of SPIN, to textual representations of 
collaborations. HUGO then uses SPIN to complete its verifications. This approach, 
however, does not integrate the structural aspects of the system. In [Canals03], the 
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authors present a tool, called NEPTUNE, which contains a module, called Checker, 
supporting the verification of UML models including some properties expressed using 
the OCL language. Furthermore, the tool BON-CASE [Paige02, Paige04] contains a 
reasoning engine which allows the verification of different properties, which is 
comparable to NEPTUNE. In [Chan98a, Chan98b], the authors used the RSML 
language (which is an alternative to UML to represent state charts) to formalize the 
TCAS II program (avionics anti collision software). They then use the SMV model 
checker to verify that their system accomplishes its tasks correctly. They also present 
a number of ways to reduce the state space explosion problem to acceptable levels. 
Their approach is one of symbolic model checking. Cho & al. [Cho99] propose the 
use of APromela, an extension of the Promela language designed to abstract actors, to 
apply model checking to concurrent systems using the SPIN model checker. Their 
approach proposes to translate APromela notations to Promela instead of building an 
entirely new tool. Lam & al. [Lam04, Lam05] propose to use the NuSMV model 
checker to perform model checking on concurrent systems formalized using π-
Calculus. π-Calculus is a process algebra specifically designed to specify concurrent 
systems in which processes communicate through channels. The authors propose to 
translate π-Calculus notations, based on the Labelled Transition System (LTS), to 
Kripke structures notations on which is based the NuSMV input language. However 
interesting, this approach only focuses on the individual behavior of objects by 
verifying only formalized state transition diagrams. All these approaches mainly focus 
on verifying one or two aspects of object-oriented systems using model checking, 
namely the structural aspects and / or the individual behavior of objects. Only the 
approach proposed by Merz & al. [Merz01] considered the collective behavior of 
objects while leaving out the structural aspects. 

We present, in this paper, a more global approach that allows the generation of a 
Maude formal specification integrating both static and dynamic (individual and 
collective) features of object-oriented systems. We use UML class diagrams to 
represent static features of an object-oriented system, and state and communication 
diagrams (respectively individual and collective behavior) to represent its dynamic 
features. We also focus on some aspects of concurrent object-oriented systems 
(external concurrency). The formal and object-oriented language Maude, based on 
rewriting logic, supports the formal specification and programming of concurrent 
systems [Meseguer92, Clavel99, McCombs03, Eker02, Meseguer03, Clavel05]. It 
also offers a model checking environment. Maude is a multi paradigm language 
[Meseguer03, Clavel05] that supports the semantics of concurrency (intra and inter-
objects). Furthermore, the Maude language is supported by a tool, which allows 
validating the generated formal descriptions through simulation, as we will illustrate it 
in the next sections. Maude also integrates a model checker supporting the verification 
of Linear Temporal Logic (LTL) properties [Eker02, Meseguer03, Clavel05]. The 
Maude environment is still not very used. We wished to explore its possibilities in 
both formal specification and model checking aspects of concurrent UML diagrams. 
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3 UML DIAGRAMS 

Class Diagram 

UML class diagrams express the static structure of a system in terms of classes and 
relationships between classes. Classes are essentially organized through aggregation, 
inheritance or association relationships [Muller00, OMG05]. 

State Diagram  

UML state diagrams [Muller00, OMG05] describe, using finite state machines, the 
life cycle of objects. Different types of event are defined by UML. We will focus only 
on the events of the “Call” type. State Diagrams can also be concurrent in nature 
[Börger00, Börger03, Schmidt99]. In fact, a composite state can have several 
orthogonal regions, each active at the same time that the composite state is active. 
This form of State Diagram models the internal concurrency of a class and models 
how several subtasks can be executed concurrently in the execution of a more global 
task accomplished by a class. Each orthogonal region of a composite state is seperated 
by a dashed line. Entry in each of these regions is done through the use of an initial 
state or through a fork structure (which then in turn requires a join structure when 
leaving the composite state). 

Communication Diagram 

UML Communication diagrams [OMG05], known as Collaboration diagrams in 
previous versions of UML [Booch98, Muller00] describe how a set of objects 
collaborate to accomplish a specific task. They emphasize the dynamic interactions 
between those objects (message exchanges) as well as their synchronization. A 
message sent can be so in two different manners: synchronous or asynchronous. The 
messages sent between two classes can be sequential (with messages of the same level 
having a sequence number incremented, for example 1, 2, 3, …), concurrent (two 
concurrent messages will have the same sequence number, differentiated only by an 
added name, for example 1a and 1b), or they can be both at the same time. The 
concept of synchronization between messages is accomplished using the “/” symbol. 
A synchronization point is used to note the necessity of the completion of a particular 
message before the execution of another can begin, for example. 

4 REWRITING LOGIC AND MAUDE 

Rewriting Logic 

Rewriting logic, having a sound and complete semantics, was introduced by Meseguer 
[Meseguer92]. It allows describing concurrent systems [Meseguer03, McCombs03, 
Eker02, Clavel05]. This logic unifies all the formal models that express concurrency 
[Meseguer90]. The rewriting rules are of the form R : [t] → [t’] if C, which indicates 
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that, according to rule R, term t becomes t’ if a certain condition C is verified. 
Condition C is optional, so rules can be of the unconditional form. 

Maude 

Maude is a specification and programming language based on rewriting logic 
[Meseguer92, Clavel99, Clavel05, McCombs03]. Three types of modules are defined 
in Maude. Functional modules allow defining data types and their functions. System 
modules allow defining the dynamic behavior of a system. This type of module 
augments the functional modules by introducing rewriting rules. Finally, object-
oriented modules, which can be reduced to system modules, offer a more appropriate 
syntax to describe the basic entities of the object paradigm. Subsection Model 
checking and Maude of Section 7 will deal more specifically on how Maude can be 
used for model checking. Fig. 1 shows a small Maude program. 

 
1.  sort Configuration . 
2.  sort Object . 
3.  sort Msg . 
4.  subsort Object < Configuration . 
5.  subsort Msg < Configuration . 
6.  op null : -> Configuration . 
7.  op_ _ : Configuration Configuration -> Configuration 
    [assoc comm id : null] . 

Fig. 1. Short program in Maude 

The example shown in Fig. 1 gives the definition of three types: Configuration, Object 
and Msg (those two last being subtypes of Configuration). In the case where there is 
no floating messages or live objects, the global configuration of the system is empty. 
The construction of a new configuration, in terms of other configurations, is done with 
the operation given on line 7. This operation satisfies the structural laws of 
associability and commutability and possesses a neutral element called null. 

5 TRANSLATING UML DIAGRAMS INTO MAUDE  

The adopted translation process consists of systematically deriving a Maude formal 
specification from an analysis of the UML class, state and communication diagrams. 
Fig. 2 presents the steps of the translation process we elaborated in [Mokhati06]. The 
diagrams go through a first verification step to make sure, for example, that each 
message sent to a destination object in the communication diagram exists in the state 
diagram and that it is accessible. During the translation process of the considered 
UML diagrams, several Maude modules are generated. Fig. 3 shows those modules. 
Please note that modules in bold are object-oriented modules, while all others are 
system modules. As for programming purposes, all object-oriented notations will be 
reduced to its system form. 
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Fig. 2. Overview of the Translation Process 

 

 
 

Fig. 3. Generated modules 

The functional module METHOD (see Fig. 4) contains all the types used to describe a 
method. Types Parameter and ParameterList are generic. They describe the type of 
parameters a method uses. Furthermore, ResultType and Void describe the type of the 
result returned by the method. ResultType is generic, and Void is a particular case of 
ResultType. The operation (_,_) is a constructor for the parameter list of a function.  

 
fmod METHOD is 
  sorts  ParamaterList ResultType Paramater Void . 
  subsort Paramater < ParamaterList . 
  subsort Void < ResultType . 
  op EmptyParamaterList : -> ParamaterList . 
  op _,_  : Paramater ParamaterList -> ParamaterList . 
endfm 

Fig. 4. The METHOD module 

We associate to each state diagram a functional module for which the name is the 
concatenation of the class’ name and the string ‘STATEVALUES’. The functional 
module IDENTIFICATION is generated to describe the identification mechanism of 
the objects of the communication diagram. For each class of the class diagram, we 
associate an object-oriented module bearing the same name as the class, while 
adopting a generic form for the classes (Fig. 5). In the case where one of such a class 
is in relation to other classes in the class diagram, the module associated to it must 
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import all the other modules associated to those classes. The class is declared in a 
module with an attribute called State and for which its type is declared in the 
corresponding functional module. This attribute is automatically added to all classes 
to model its objects’ state. It has for objective to explicitely note the objects’ state. In 
the case of an aggregation class, an identification list of all the aggregated classes 
must also be present as attribute to the class. The generic form of classes also shows 
an open attribute list and a regional states list, which is explained further on. 

 
class ClassName | State : ClassNameStateValues [, RegSubstateAtt]   
[, ComponentList] [, AttributeList] . 
 

Fig. 5. Generic form adopted for the classes, with optional regional substates for concurrent composite states, an 
optional component list and an opened list of attributes 

The modules in which are declared the classes also contain the declaration of the 
class’ methods. Each of the functions are declared using the generic form shown in 
Fig. 6. ParameterList and ResultType were introduced in the METHOD module (Fig. 
4). 

 
op FunctionName : ParamaterList -> ResultType . 
 

Fig. 6. Form adopted for the methods 

The translation process was mainly developed for traditional sequential programs. 
However, concurrent systems require slight modifications to the adopted process. 
Since Concurrent Object-Oriented Systems (COOS) are based on objects, the basic 
structure remains the same and so does the general translation process. The main 
element in which more attention is required when translating external concurrency is 
the fact that two (ore more) objects are active (executing) at the same time. Therefore, 
rewriting rules must be produced accordingly in the COMMUNICATION module. 
See below for further details on this module. As for internal concurrency, the best 
option is to model the class with more State attributes, one for each of the orthogonal 
regions of its concurrent composite state. For example, a class that has a concurrent 
composite state with 2 orthogonal regions, aside from the main State attribute 
described above, there will be two more. This also means that the ‘STATEVALUES’ 
module for that class will also define two new sorts with their respective values, in the 
same manner defined earlier. We also introduce an Inactive value for those “regional” 
substates for when the object is not in its concurrent composite state. All the while an 
orthogonal region is active within a concurrent composite state, the object remains in 
this composite state, and only the “regional” states’ values vary. When all the 
orthogonal regions have completed their execution, the object can now leave its 
concurrent composite state. Then, all “regional” states are put in their Inactive state. 

The object-oriented module COMMUNICATION is the principal one generated 
by our approach. It imports all the other modules. In it, we extend all the other object-
oriented modules by describing the behavior of the different objects involved in the 
communication diagram using rewriting rules. Each message exchanged between two 
objects of the communication diagram is translated in the form of a ComingMsg (Fig. 
7). 
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op ComingMsg :  ResultType Receiver -> Msg  . 

Fig. 7. Form adopted for the messages 
 

With this message, we specify two things. On the first hand, we identify the 
destination object (Receiver) and, on the other hand, the result type of the operation to 
be executed. In fact, each sending of a message in the communication diagram 
corresponds to a Call Event, launching a transition in the state diagram of the 
destination object. This transition is described in this module whether by an 
unconditional rewriting rule in the case where the sending of the message is not linked 
to a condition or by a conditional rewriting rule otherwise. To implement the concept 
of Synchronization Point of the messages sent within a communication diagram, we 
introduce a new message called IsAccomplished (see Fig. 8). The rewriting rule that 
implements a transition corresponding to the sending of a message on which depends 
other messages must generate a number of IsAccomplished messages equal to the 
number of messages to be sent. To better illustrate the use of the IsAccomplished 
synchronization message, consider the ProducerSleep message of Fig. 11, where it is 
required that message Put be completed for it to be executed. 

 
op IsAccomplished : ResultType Receiver -> Msg 

Fig. 8. Form of the synchronisation message 
 

The IsAccomplished message does not represent a message sent between two objects 
in the communication diagram. It must be interpreted as an indication that the sending 
of the message is terminated. As mentionned previously, we focused in this paper on 
external concurrecy. The considered example will not show any internal concurrency. 
However, internal concurrency has been considered in our work in others case studies 
(not adressed in this paper). 

6 CASE STUDY 

Presentation  

To illustrate our approach, we present a simple, yet concrete case study. In the present 
section, only the translation of the example’s UML models to Maude formal 
specifications is introduced. The formal verification of the models using Model 
Checking techniques is addressed in the next section. 

 

 
Fig. 9. Class Diagram of the system 
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The example we chose to illustrate our approach is a simple concurrent object-
oriented system. It is based on the classic Producer – Consumer problem. Our 
example is an adaptation between the examples presented in [Gomaa00] and 
[Meseguer03]. Fig. 9 presents the UML Class Diagram associated to this system. Our 
system is then composed of 3 classes. The first class, called Producer, is designed to 
have objects generating integer elements (the Produce function) as information to 
transmit (through the PutItem function). The class has also a ProducerSleep method 
that puts an object into a suspended state while the memory buffer is unavailable to 
receive new information. The Consumer class is designed to have objects that will be 
getting information from a memory buffer through its GetItem function and use that 
information in some manner with the Consume function. This class also possesses a 
ConsumerSleep function that, similarly to class Producer, puts the objects of that 
class into a suspended mode while the buffer has no new information to transmit. The 
last class, Buffer, is the memory buffer of the system. It has an ItemB attribute, which 
is the memory buffer in itself, and is of size 1. 

Therefore, the Buffer can contain only one integer information at a given time. 
Functions Put and Get are used respectively to collect information coming from a 
Producer object, and transmit that information to a Consumer object. The public 
attribute Semaphore will be used for coordination purposes between the Consumer 
and the Producer of the system. It will take only values 0 or 1, interpreted as follows: 
when Semaphore == 1, the memory buffer is free and can be used by either a 
Producer object to put a new element, or by a Consumer object to get an existing 
element. When Semaphore == 0, the memory buffer is already used by an object and 
is locked, preventing any other object the possibility of using the shared resource. 
Figure 10 presents the corresponding State-Transition Diagrams. Diagram (10.a) is 
associated to the Producer class, where the transition associated to a procedure call of 
the PutItem function is guarded by a condition on the Buffer object’s Semaphore 
attribute. The GetItem procedure call transition of Diagram (10.b) associated to a 
Consumer object is similar. Finally, diagram (10.c) is associated to a Buffer object. 

The system we consider in our example present concurrent aspects since objects 
of classes Producer and Consumer can attempt to access the Buffer object at the same 
time. Each object of those two classes will then have its own process within the 
system and are considered as Active Objects. 

 
Fig. 10. State-Transition Diagrams for classes (a) Producer, (b) Consumer and (c) Buffer 
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In the communication diagram of Fig. 11, we observe a Producer object attempting to 
write information in a Buffer object’s memory and at the same time a Consumer 
object attempts to read the information contained in the Buffer object. Since the 
PutItem and GetItem functions of classes Producer and Consumer respectively are 
guarded with the use of Buffer’s Semaphore attribute, simultaneous reading and 
writing on the shared resource Buffer is not allowed.  
 

 
Fig. 11. Communication Diagram of the System 

Application of the Translation Process  

In this section, we illustrate the application of the translation process (Section 5) to the 
example described above. We focus here on the translation to Maude notations.  Three 
Maude functional modules are introduced to describe the state values of each class 
present in the system. Those three modules are named PRODUCER-STATEVALUES, 
CONSUMER-STATEVALUES and BUFFER-STATEVALUES, respectively for classes 
Producer, Consumer and Buffer. For space limitation reasons, only one of those 
modules is shown here, namely PRODUCER-STATEVALUES (Fig. 12). 

 
fmod PRODUCER-STATEVALUES is 
  sort ProducerStateValues . 
  ops Producing ProducerWaiting : -> ProducerStateValues .      
endfm 

Fig. 12. Module PRODUCER-STATEVALUES 

 
A module IDENTIFICATION (Fig. 13) imports the predefined CONFIGURATION 
module. This module contains the definition of types Poid, Coid and Boid which 
describe the identification mechanism of the objects P, C and B, instance of classes 
Producer, Consumer and Buffer respectively. 

 
fmod  IDENTIFICATION  is 
  including CONFIGURATION . 
  sorts Poid Coid Boid Receiver .   
  subsort Poid Coid Boid < Oid . 
  subsort Receiver  < Poid Coid Boid .   
endfm 

Fig. 13. Module IDENTIFICATION 
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Knowing that the system we study has 3 classes (Producer, Consumer and Buffer), 
three object-oriented modules are generated by our approach, respectively named 
PRODUCER, CONSUMER and BUFFER, which will introduce each of the classes 
and their respective methods. For space limitation reasons, only one of those modules 
is given, namely the object-oriented module PRODUCER in Fig. 14. The Producer 
class is defined with 2 attributes, StateP will contain information about the current 
state of the object (for which the possible values are given in module PRODUCER-
STATEVALUES of Fig. 12), and an attribute ItemP that will contain the produced 
item that the Producer object will transmit to the Buffer. The class has 3 methods. The 
first is named Produce and is the method that will create an item of information 
destined to be transmitted to the Buffer. The second method is called PutItem and is 
the actual method that will transmit the information to the Buffer object by a method 
call. The last method is called ProducerSleep, and has for objective to put the 
Producer object into a suspended mode when the transmission to the Buffer object is 
completed. Finally, the NoItemP operator is actually a new possible value for integer 
variables, and will represent the fact that the ItemP attribute of a Producer object 
contains no value. 

 

mod PRODUCER is 
  protecting METHOD PRODUCER-STATEVALUES INT . 
  sort Producer . 
  subsort Producer < Cid . 
  *** Class and Attributes 
  op Producer : -> Producer . 
  op StateP :_ : ProducerStateValues -> Attribute . 
  op ItemP :_ : Int -> Attribute . 
  *** Methods 
  op Produce : ParameterList -> Void . 
  op PutItem : ParameterList -> Void . 
  op ProducerSleep : ParameterList -> Void . 
  op NoItemP : -> Int . 
endm 

Fig. 14. Module PRODUCER 

Module COMMUNICATION is the primary module generated. It contains rewriting 
rules modeling the behavior of the system concerning the realization of a specific task 
given in the communication diagram of Fig. 11. Specifically, the task consists on a 
concurrent get and put access to a memory Buffer by two active objects. Fig. 15 shows 
part of the COMMUNICATION module. As specified earlier, the module imports all 
the other modules defined namely IDENTIFICATION, PRODUCER, CONSUMER 
and BUFFER. 
 

mod COMMUNICATION is 
  protecting IDENTIFICATION PRODUCER CONSUMER BUFFER . 
  subsort Int < Parameter . 
  *** Utility Messages ********************************* 
  op ComingMsg : Event Receiver -> Msg . 
  op IsAccomplished : Event Receiver -> Msg . 
  *** Variables **************************************** 
  var P : Poid .   var sema : Nat . 
  var C : Coid .   var item : Int .     var B : Boid . 
  *** Producer's behavior ****************************** 
  crl [ProduceItem]:  ComingMsg(Produce( EmptyParameterList), P) 
        < P : Producer | StateP : ProducerWaiting, ItemP : item > 
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 < B : Buffer | StateB : Empty, ItemB : NoItemB, Semaphore : sema > 
 => 
   < P : Producer | StateP : Producing, ItemP : 5 > 
 < B : Buffer | StateB : Empty, ItemB : NoItemB, Semaphore : sema > 
   IsAccomplished( Produce( EmptyParameterList), P) 
   ComingMsg( Put( 5 ), B) if item == NoItemP . 
  crl [PutItem]: ComingMsg( Put( 5 ), B) 
   IsAccomplished( Produce( EmptyParameterList), P) 
   < P : Producer | StateP : Producing, ItemP : 5 > 
   < B : Buffer | StateB : Empty, ItemB : NoItemB, Semaphore : sema > 
 => 
    < P : Producer | StateP : Producing, ItemP : NoItemP > 
    < B : Buffer | StateB : Full, ItemB : 5, Semaphore : 0 > 
    ComingMsg( ProducerSleep( EmptyParameterList ), P)  
    IsAccomplished( Put( 5 ), B) if sema == 1 . 
... emdm 

Fig. 15. Part of the COMMUNICATION module 

The part of the module shown in Fig. 15 concerns more closely the behavior of 
objects of the Producer class. Maude being particularly developed for the modeling of 
concurrent systems (as stated in Section 4), it is therefore appropriate for the modeling 
of active objects like we have in the system we consider. Two rewriting rules are 
shown in Fig. 15.  Rule ’ProduceItem’ shows the behavior of such an object when it 
receives a ‘Produce’ message to start producing integer element to transmit to the 
Buffer object. This method then generates an integer element and places it in the 
ItemP attribute. For the execution to take place, the ItemP attribute must not already 
contain an element (condition of the translation rule). A IsAccomplished message is 
generated to allow the execution of the second rewriting rule. The second rule, 
‘PutItem’ is actually intended to model the execution of the PutItem method. This 
method uses the Put function of a Buffer object to transmit the integer element to the 
shared memory, while insuring this resource is not already used by another object 
(guard condition). A IsAccomplished message is also generated so that the third rule 
can be executed (‘ProducerSleep’), effectively putting the Producer object into its 
ProducerWaiting state. The Producer object then waits until the shared memory of 
Buffer is once again available to receive new information. See Fig. 11 for further 
information. 

Validation of the Generated Description  

Concerning the verification of the developed models, rewriting logic and Maude are 
very versatile with simulations, since it allows the selection of a personalized initial 
configuration from which to start the simulation. It is very useful when attempting to 
verify part of a system while not compromising the rest of it. The first verification we 
attempt is started from the initial configuration shown in Fig. 16. This configuration is 
composed of two objects, P and B of classes Producer and Buffer respectively, both 
containing no item. We also have a Produce message sent to P. The results of this 
verification are given in Fig. 17. 
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   < P : Producer | StateP : ProducerWaiting, ItemP : NoItemP > 
   < B : Buffer | StateB : Empty, ItemB : NoItemB, Semaphore : 1 > 
   ComingMsg( Produce( EmptyParameterList ), P ) 

Fig. 16. Initial configuration 

The results (Fig. 17) can be interpreted as follows. Following the execution of 
message Produce, object P has produced an integer element, here 5, and transmitted it 
to the shared memory of a Buffer object. P is then in its ProducerWaiting state and 
awaits the next time B is available and in its Empty state. Finding a new ComingMsg 
to produce a new item is correct knowing that the classic Producer – Consumer 
problem is a perpetual process that goes on until stopped. 

 
   ComingMsg( Produce( EmptyParameterList ), P ) 
   < P : Producer | StateP : ProducerWaiting, ItemP : NoItemP > 
   < B : Buffer | StateB : Full, ItemB : 5, Semaphore : 1 > 

 

Fig. 17. Result of the unlimited rewriting of the initial configuration of Fig. 16 

We will now attempt to verify the behavior of a Consumer object. To perform this 
verificaiton, the initial configuration of Fig. 18 is used, and the results are given in 
Fig. 19. This initial configuration is composed of a C object and a ComingMsg to try 
and get an element available from the Buffer. The initial configuration also shows a B 
object of the Buffer class, already contaniting an element (here, 5). Its StateB attribute 
is set to Full, and Semaphore to 1 to signify B is not currently used by another thread. 
 
  ComingMsg( Get( 5 ), B ) 
  < C : Consumer | StateC : ConsumerWaiting, ItemC : NoItemC > 
  < B : Buffer | StateB : Full, ItemB : 5, Semaphore : 1 > . 

 

Fig. 18. An initial configuration 

The results of the rewriting of Fig. 18’s initial configuration can be interjpreted as 
follows. C, after getting and consuming an element of information from Buffer is in its 
ConsumerWaiting state, awaiting a new integer information available in the Buffer. B 
is now Empty, since the information it contained was taken by C, and the system 
generates a new ComingMsg destined to C to try and get new information from the 
Buffer, conforming to the perpetual execution untill stopped idea. Having verified the 
behavior of objects of the Producer and Consumer classes respectively, we can now 
proceed on to the verificaiton of the behavior of the entire system altogether. 

 
  ComingMsg( Get( 5 ), B ) 
  < B : Buffer | StateB : Empty, ItemB : NoItemB, Semaphore : 1 >  
  < C : Consumer | StateC : ConsumerWaiting, ItemC : NoItemC > 

 

Fig. 19. Result of the unlimited rewriting of the initial configuration of Fig. 18 
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Fig. 20. Part of the developed code 

 

Fig. 20 shows part of the Maude code we developed. It shows, on the first hand, 
rewriting rules ‘PutItem’ and ‘ProducerSleep’ that model part of the behavior of the 
Producer objects and, on the second hand, one rewriting command issued to the 
Maude environment. This simulation is started from an initial configuration where we 
have three different objects, P, C and B, respectively of classes Producer, Consumer 
and Buffer, in their initial states, as well as incoming messages Produce and Get as 
shown in the communication diagram of Fig. 11. The number of rewriting steps is 
limited to 6 since the system is modelled as an infinite loop, and is therefore not 
terminating. 

 

 
 

Fig. 21. Results of the rewriting of Fig. 20 
 

Fig. 21 shows the results of this rewriting command. The limited rewriting grants us 
the possibility of visualizing that the system behaves properly. As we can see, the 
system eventually returns to its actual initial state, which is exactly what it should do 
according to the classic Producer – Consumer problem. 
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7 APPLYING MODEL CHECKING 

In our opinion, the verification of the collective behavior of a group of objects that are 
collaborating to accomplish a specific task begins with the verification of the 
individual behavior of the objects. We propose, in what follows, an incremental 
process for the definition and verification of properties to be verified within our 
system. The properties we propose are defined in LTL. The next subsection exposes 
the generic process to use Maude’s model checker. We then propose 4 properties 
relevant to the individual behavior of objects P, C and B, instances of classes 
Producer, Consumer and Buffer respectively. The following subsection proposes 3 
properties related to the collective behavior of those same objects. The final 
subsection describes the adopted process to verify the proposed properties. 

Model Checking and Maude 

As was illustrated in Section 6, an object-oriented system can be described with 
relative ease using the Maude language. With the help of a single rewriting rule, we 
can express many things: the consumption of floating messages, the sending of new 
messages, the destruction of objects, the creation of new objects, as well as state 
changes. However, Maude offers another important tool in the verification of a 
system: it has an integrated model checker that verifies LTL properties in the system 
under development [Clavel05, Eker02, MacColl99, Meseguer90, Meseguer92, 
Meseguer03]. However, using that model checker implies the use of a technique, 
which we introduce briefly in this subsection. We then use it to perform more 
advanced verifications on our example. Maude supports model checking with LTL 
properties mainly for its simplicity and the well defined decision procedures it offers 
[Clavel05, McCombs03]. Fig. 22 illustrates the defined LTL operators. Other 
operators exist, but can be derived from those primary operators. 

 
fmod LTL is ...  *** defined LTL operators 
 op _->_ : Formula Formula -> Formula .        *** implication 
 op _<->_ : Formula Formula -> Formula .       *** equivalence 
 op <>_ : Formula -> Formula .                 *** eventually 
 op []_ : Formula -> Formula .                 *** always 
 op _W_ : Formula Formula -> Formula .         *** unless 
 op _|->_ : Formula Formula -> Formula .       *** leads-to 
 op _=>_ : Formula Formula -> Formula .        *** strong 
implication 
 op _<=>_ : Formula Formula -> Formula .       *** strong 
equivalence 
... endfm 
 

Fig. 22. A module in Maude implementing the operators of LTL logic 
 

For the definition of LTL properties, we need an operator to determine the result, True 
or False, of a property in a certain system state. For that, the |= operator is introduced 
in the predefined SATISFACTION module (Fig. 23).  
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fmod SATISFACTION is 
 protecting LTL . 
 sort State . 
 op _|=_ : State Formula ~> Bool . 
endfm 

Fig. 23. The SATISFACTION module 

It is then possible to define diverse system properties in a new module that imports 
both the SATISFACTION module and the module or modules defining the system to 
be studied. Fig. 24 shows the M-PREDS module, in which predicates about the system 
are defined. Those predicates will be used to later define LTL properties about the 
system. Also note that M symbolizes a module in which the studied system is 
modelled.  

 
mod M-PREDS is 
  protecting M . 
  including SATISFACTION . 
  subsort Configuration < State . 
  ... endm 

Fig. 24. The M-PREDS module 
 

The next step in the model checking process of Maude consists on the definition of a 
final module called M-CHECK in which all the elements are bound together for the 
verification. We also introduce all the initial configurations used in the verification 
process in this module. Figure 25 shows the M-CHECK module. 

 
mod M-CHECK is 
  including M-PREDS . 
  including MODEL-CHECKER . 
  including LTL-SIMPLIFIER . 
  ... endm 

Fig. 25. The M-CHECK module 

The final step consists on launching the verification calls into the Maude system using 
the modelCheck function of module MODEL-CHECKER. (Fig. 26). 

 
fmod MODEL-CHECKER is 
  including SATISFACTION .  ... 
  op counterexample : TransitionList TransitionList -> 
     ModelCheckResult [ctor] . 
  op modelCheck : State Formula ~> ModelCheckResult .  
  ... endfm 

Fig. 26. The MODEL-CHECKER module 

To give a small overview of a typical model checking call using Maude, Fig. 27 
shows the generic form used to launch a verification. In this call, initial_state 
represents an initial configuration of the system where the verification should start, 
and LTL_property expresses a desirable or non desirable requirement that the system 
should verify. This LTL property is the one that is getting verified with this call. 

 



 
APPLYING MODEL CHECKING TO CONCURRENT UML MODELS 

 
 
 

76 JOURNAL OF OBJECT TECHNOLOGY VOL. 7, NO. 1 

modelCheck( initial_state, LTL_property) . 

Fig. 27. A typical model checking call 

Properties Related to the Individual Behavior of Objects 

In this section, we propose 4 properties related to the individual behavior of objects P 
and C. Properties 1 and 2 concern the behavior of P, and properties 3 and 4 are 
relevant to the behavior of C. 

• Property 1: [] PutingItem("P") 
Starting the verification from initial configuration initial1 (see Fig. 28), this 
property expresses that the Producer is always in its critical section, namely 
transmitting its information to the Buffer. [] is the Always temporal operator. 
This property specifies that P is always in its critical section and not leaving it 
and represents a non desirable characteristic. 

• Property 2: ~ [] ProducerSleeping("P") 
Starting the verification from initial configuration initial1 (see Fig. 28), this 
property verifies that the Producer object is not always in its ProducerWaiting 
state. ~ is the Not temporal operator. The Producer not always in its waiting 
state is a desirable characteristics since it insures that it eventually does 
accomplish the task it was assigned. 

• Property 3 : [] GetingItem("C") 
Starting the verification from initial configuration initial1 (see Fig. 28), this 
property expresses that the Consumer is always in its critical section, namely 
getting information from the Buffer. This property specifies that C is always in 
its critical section and not leaving it and represents a non desirable 
characteristic. 

• Property 4: ~ [] ConsumerSleeping("C") 
Starting the verification from initial configuration initial1 (see Fig. 28), this 
property verifies that the Consumer object is not always in its 
ConsumerWaiting state. The Consumer not always in its waiting state is a 
desirable characteristics since it insures that it eventually does accomplish the 
task it was assigned. 

Properties Related to the Collective Behavior  

In the previous section, we introduced properties of the individual behavior of objects 
P and C. We now introduce 3 other properties to verify the collective behavior of 
those same objects. 

• Property 5: [] ~(PutingItem("P") /\ GetingItem("C")) 
Starting the verification from the initial configuration initial1 (see Fig. 28), 
this property verifies that mutual exclusion is satisfied. Namely, this means 
that it is not possible to find both the Producer and Consumer in their critical 
section (respectively transmitting and getting information) at the same time. 

• Property 6: [] <> ( PutingItem("P") -> ConsumerSleeping("C")) 
Starting the verification from the initial configuration initial1 (see Fig. 28), 
this property is infinitely often true: when the Producer is transmitting 
information to the Buffer, the Consumer is in its ConsumerWaiting state. <> is 
the Eventually temporal operator. This property insures the correct behavior of 
objects when transmitting information to the Buffer. 
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• Property 7: [] <> ( GetingItem("C") -> ProducerSleeping("P")) 
This property is the counterpart of Property 6. Starting the verification from 
the initial configuration initial1 (see Fig. 28), this property is infinitely often 
true: when the Consumer is getting information from the Buffer, the Producer 
is in its ProducerWaiting state. This property insures the correct behavior of 
objects when transmitting information to the Buffer. 
 

Fig. 27 presents a part of the COMMUNICATION-PREDICATES module, in which 
we define the predicates relative to the Producer - Consumer system we are studying. 
We define, in this module, the necessary operators that we used in the definition of the 
properties that we wish to verify. We limit the shown predicates to the ones relative to 
the class Producer. Lines 1 and 2 show respectively the predicate associated to the 
Producing state of class Producer and the one associated to the ProducerSleep state. 
The predicates relevant to the other class are omitted since they are very similar to the 
ones presented here. 

 
mod COMMUNICATION-PREDICATES is 
  protecting COMMUNICATION .  including SATISFACTION . 
  subsort Configuration < State .     var Cf : Configuration . 
  ops PutingItem ProducerSleeping : Poid -> Prop . 
  ops GetingItem ConsumerSleeping : Coid -> Prop . 
    eq  < "P" : Producer | StateP : Producing, ItemP : 5 > 
    < "B" : Buffer | StateB : Empty, ItemB : NoItemB, Semaphore : 1 > 
    Cf |= PutingItem ("P") = true .     *** 1 
  eq < "P" : Producer | StateP : ProducerWaiting, ItemP : NoItemP >  
    Cf |= ProducerSleeping("P") = true .    *** 2 
... endm 

Fig. 27. The COMMUNICATION-PREDICATES module 

Properties Verification 

As mentioned previously, the Maude environment has an integrated model checker, in 
the form of the modelCheck function of module MODEL-CHECKER. Fig. 28 shows 
the module COMMUNICATION-CHECK in which is defined the initial configuration 
used: initial1. It is the same initial configuration used for the simulation of the entire 
system in Subsection Validation of the Generated Descriptions of Section 6. 
 

mod COMMUNICATION-CHECK is 
 including COMMUNICATION-PREDICATES MODEL-CHECKER LTL-SIMPLIFIER . 
 op initial1 : -> Configuration . 
 eq initial1 = ComingMsg(Produce( EmptyParameterList), "P") 
               ComingMsg( Get(5), "B") 
  < "P" : Producer | StateP : ProducerWaiting, ItemP : NoItemP > 
  < "C" : Consumer | StateC : ConsumerWaiting, ItemC : NoItemC > 
  < "B" : Buffer | StateB : Empty, ItemB : NoItemB, Semaphore : 1 
> . 
endm 

Fig. 28. The COMMUNICATION-CHECK module describing the initial state used 

All the necessary elements to proceed to the verification are now defined. Fig. 29 
shows the calls to the modelCheck function of Maude, seven in all, one for each of the 
properties that were defined previously. Fig. 30 shows part of the results obtained 
with Maude. Maude evaluated all the properties in less than a second. Table 1 shows a 
summary of the results of the evaluation of the 7 properties. They are as follows: on 
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the 7 properties evaluated, 5 have a positive result (True) meaning that those 
properties are verified within our system. Two of the properties, however, show a 
Counterexample result, meaning that they were not verified, and the Counterexample 
shows the exact path the Maude modelCheck algorithm took to reach the error state. 
The two properties showing a negative result are relevant to the individual behavior of 
objects, one for Producer and one for Consumer. 
 

 
 

Fig. 29. Model Checking calls 
 

Property Result 
1 Counterexample 
2 True 
3 Counterexample 
4 True 
5 True 
6 True 
7 True 

Table 1: Results of the evaluation of the properties 
 

The results can be interpreted as follows. Let us firstly consider the results relevant to 
the individual behavior of objects. For object P of the Producer class, for which 2 
properties were defined to verify its behavior (properties 1 and 2), the results confirm 
that the object behaves correctly. In fact, Property 1, aimed at verifying if the object 
was always in its critical section of transmitting information to the Buffer, the result 
obtained is a Counterexample. However, obtaining a negative result actually means 
the system does not allow the Producer to eternally be in its critical section, which is 
the intended behavior. The second property, defined to verify the possibility of the 
Producer not being in its ProducerSleeping state forever returned a positive result 
(True). This property being verified means the system does not allow this situation. 
The properties concerning the behavior of the Consumer are very similar in nature to 
the ones relevant to the Producer. Properties 3 and 4 are then analogous to Properties 
1 and 2. Property 3 attempted to verify if the system allowed the Consumer to be in its 
critical section (getting information from the Buffer) forever. The result was a 
Counterexample, meaning that such a situation was not possible. Property 4, on its 
part, attempted to verify that the system did not allow the Consumer to be locked in its 
ConsumerWaiting state. Because this property was defined using the combination ~ [] 
combination of temporal operators and that the result was True, this characteristic is 
not allowed by the system. 
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Finally, the three last properties, relevant to the collective behavior of objects P, 
C and B, were all evaluated to True, meaning they all have been verified. Property 5 
was intended to verify if the system allowed for P and C to be in their respective 
critical section at the same time. The positive result knowing that the ~ temporal 
operator was used proves that this situation is impossible within our system (mutual 
exclusion is then satisfied). Properties 6 and 7 were used to insure that it is infinitely 
often true that while one thread is in its critical section, the other is not. Property 6 
verified that if a Producer object is in active mode, the Consumer object is sleeping, 
while Property 7 verified the counterpart (namely if a Consumer object is in active 
mode, the Producer object is sleeping). Those two properties were both evaluated to 
True. 
 

 
 

Fig. 30. Part of the results of the Model Checking calls of Fig. 29 
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8 CONCLUSIONS AND FUTURE WORK 

The translation of UML diagrams in formal languages has been addressed in 
numerous papers. Several tools helping the translation process have been developed. 
However, the majority of those approaches did not consider the collective behavior of 
objects. In this paper, we proposed a generic approach that allows the translation of 
static aspects (described by UML class diagram) and dynamic aspects (described by 
UML state and communication diagrams) of object-oriented systems into a Maude 
formal specification. More particularly, we applied the translation process we 
developed in [Mokhati06] to a concurrent object-oriented system. Such a specification 
integrates both static and dynamic features of the described system. However, our 
approach is limited to basic state and communication diagrams, modelling the most 
common features. The Maude language is supported by a tool, which allowed us to 
validate the generated code by simulation. Moreover, Maude offers a model checker 
in its environment, which uses Linear Temporal Logic (LTL) to verify properties 
among the models developed [Eker02, Meseguer03, Clavel05]. We defined some LTL 
properties about our system and used Maude’s model checker to verify them. It is to 
be noted that the example used is small and simple and is aimded to test the notations 
we developed. The properties we defined included inherent problems known to 
concurrent systems, such as deadlocks. Among future directions to this work, we plan 
on testing the approach on larger scale examples and integrating other UML diagrams. 
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