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Abstract 

 

Alongside deploying weapons and sensors what makes a warship distinct is 

survivability, being the measure that enables a warship to survive in a militarily hostile 

environment. The rising cost of warship procurement, coupled with declining defence 

budgets, has led to a reduction in the number of ships in most western navies. 

Moreover, cost cutting is often aimed at aspects which may be difficult to quantify, such 

as survivability, and can lead to potentially inadequate designs. Innovation in both the 

design process and the design of individual ships is, therefore, necessary, especially at 

the crucial early design stages. Computer technology can be utilised to exploit 

architecturally orientated preliminary design approaches which can address innovation 

early in the ship design process and in issues such as survivability. A number of 

survivability assessment tools currently exist; however, most fail to integrate all 

survivability constituents (i.e. susceptibility, vulnerability and recoverability), in that 

they are unable to balance between the component aspects of survivability. Some are 

qualitative, therefore less than ideal for requirement specification, others are aimed 

towards the detailed design stages where implementing changes is heavily constrained 

or even impractical. 

Since a ship’s survivability is dependent on layout, the approach adopted in this 

research takes advantage of an architecturally orientated ship design approach 

applicable to early stage design. Such a method is proposed and demonstrated on five 

combatant (including a trimaran configuration) and two auxiliary ship design studies. 

The proposed method combines various tools used by UCL and the UK Ministry of 

Defence, as well as a new approach for recoverability assessment and, therefore, tackles 

difficulties currently associated with the latter (e.g.: lack of data, human performance 

and time dependence) by using weighted performance measures. 

An overall approach for survivability assessment has been applied across the 

range of designs produced and conclusions drawn on their relative merits for overall 

survivability. The approach and implications of the integration of survivability 

assessment in the preliminary ship design stages, as well as the identification of major 

survivability design drivers, are discussed. Through the identification of problematic 

topics, areas for further research are suggested. It is envisaged that this research will 

assist in developing the design process of what are, according to Captain C. Graham, 

USN, “the most complex, diverse and highly integrated of any engineering systems” 

produced today on a regular basis. 
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Nomenclature 

 
3D:  Three-dimensional. 
AAW:  Anti-air Warfare. 
ADMS: Area-defence Missile System. 
AE:  Air Engineer. 
AMR:  Auxiliary Machinery Room. 
AMV:  Advanced Marine Vehicle. 
ANEP:  Allied Naval Engineering Publication. 
ANSWER: UK MOD ASW simulation software. 
AOR:  Auxiliary Oiler Replenishment. 
ASM:  Anti-ship Missile. 
ASuW:  Anti-surface Warfare. 
ASW:  Anti-submarine Warfare. 
ASyW: Asymmetric warfare. 
ATU:  Air Treatment Unit. 
AVCAT: Aviation Carrier Turbine fuel. 
B:  Ship’s maximum beam on design waterline. 
BDCS: Battle Damage Control System. 
BGFRS: Board of Governors of the Federal Reserve System, Washington, D.C.,  

USA. 
BMT:  British Maritime Technology Defence Services Ltd., Bath, UK. 
BN:  Bayesian Network. 
CAD:  Computer Aided Design. 
CADMID: Concept, Assessment, Demonstration, Manufacture, In-service and  

Disposal. 
CASD: Computer Aided Ship Design. 
CB:  Block Coefficient. A measure of the fullness of the underwater volume  

of a vessel. 
CBR:  Chemical, Biological and Radiological. 
CCTV: Closed-circuit Television. 
Cdr.:  Commander. 
CER:  Cost Estimating Relationship. 
CFD:  Computational Fluid Dynamics. 
CHENG: Chief Engineer, USN. 
CIWS: Close-in Weapon System. 
CM:  Midship Coefficient. A measure of the fullness of midships of a vessel. 
CNGF: Common New Generation Frigate. Anglo-French-Italian programme of  

the 1990s. 
CO:  Commanding Officer. 
Comms.: Communications. 
CP:  Prismatic Coefficient. A measure of the distribution of the underwater  

volume of a vessel. 
CPO:  Chief Petty Officer. 
CPS:  Collective Protection System. 
CSEE: Combat Systems Effectiveness Exercise. Defensive systems (hard-kill) 

effectiveness estimation method used by UCL as part of its MSc in 
Naval Architecture course. 

CV:  Aircraft Carrier. 
CVF:  Aircraft Carrier, Future (Queen Elizabeth Class). 
CVS:  Aircraft Carrier, ASW (Invincible Class). 
CW:  Waterplane Coefficient. A measure of the fullness of the waterplane of a  
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vessel. 
CWP:  Chilled Water Plant. 
DBB: Design Building Block. Designation used in the UCL DRC DBB design 

approach. 
DC:  Damage Control. 
DCA:  Damage Control Assistant. 
DCFF: Damage Control and Firefighting. 
DD 21: Destroyer for the 21st century (Zumwalt Class Destroyer). 
Dieso:  Diesel fuel, general purpose. 
DINCS: Distributed Intelligent Networked Control System. 
DRC:  Design Research Centre, Marine Research Group, Department of  

Mechanical Engineering, UCL, London, UK. 
Dstl:  Defence Science and Technology Laboratory, MOD, Salisbury, UK. 
EB-FSRS: Fire Safety Ranking System. 
ECCM: Electronic Counter-counter Measures. 
ECM:  Electronic Countermeasure. 
EMCON: Electronic Emission Control. 
EMP:  Electro-magnetic Pulse. 
Eqpt:  Equipment. 
ESM:  Electronic Support Measures. 
EW:  Electronic Warfare. 
EVI:  Evacuability Index. Passenger evacuation model. 
FFDC: Firefighting and Damage Control. 
FOC:  First of Class. Term used in UK naval ship procurement. 
FP:  Fire Pump. 
FPP:  Fixed Pitch Propeller. 
FRP:  Fire and Repair Party. 
FRPP:  Fire and Repair Party Post. 
GA:  General Arrangement. 
Genset: Engine-generator. 
GMt:  Transverse Metacentric Height. A measure of stability. 
GNP:  Gross National Product. The value of goods and services produced  

within a country during one year. 
GPEOD: General Purpose Electro Optical Device. 
GPS:  Global Positioning System. 
GRC:  QinetiQ Graphics Research Corporation Ltd., Gosport, UK. 
GT:  Gas Turbine. 
GZ curve: Righting lever curve of a vessel experiencing a heeling force. A measure  

of stability. 
h:  Height of SR/MFR above sea level. 
Helo:  Helicopter. 
HF:  Human Factor. 
HMS:  Her/His Majesty’s Ship. 
HPAC: High Pressure Air Compressor. 
HPM:  Human Performance Matrix. 
HQ:  Headquarters. 
HTS:  High-temperature Superconducting. 
HVAC: Heating, Ventilation, and Air Conditioning. 
HVME: UK MOD software monitoring platforms self-noise. 
IFEP:  Integrated Full Electric Propulsion. 
IMO:  International Maritime Organization. 
IPMS:  Integrated Platform Management System. 
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IR:  Infra-red. 
IRST:  Infra-red Search and Track. 
JR:  Junior Rate. 
JSS:  Joint Support Ship. 
L:  Ship’s length between perpendiculars. 
LCC:  Life Cycle Cost. 
LCR:  Local Control Room. 
LCS:  Littoral Combat Ship. 
LCU:  Local Control Unit. 
LPCR: Local Power and Control Room. 
LPD:  Landing Platform Dock. 
LPH:  Landing Platform Helicopter. 
Lt.:  Lieutenant. 
Lt. Cdr.: Lieutenant Commander. 
MARS: Military Afloat Reach and Sustainability ships. Designation of UK  

auxiliary programme in procurement since 2010. 
MASS: Multi Ammunition Soft-kill System. 
MBB:  Master Building Block. Designation used in the UCL DRC DBB design  

approach. 
MCR:  Machinery Control Room. 
MDO:  Marine Diesel Oil. 
MEO:  Marine Engineering Officer. 
MFR:  Multi-function Radar. 
MESM: Marine Engineer, Submarines. 
MICA: Missile d’Interception et de Combat Aérien (Interception and Aerial 

Combat Missile). 
MISSION: Maritime Integrated Survivability Simulation. An event simulation tool  

designed to simulate a maritime mission used by the UK MOD. 
MMR:  Main Machinery Room. 
MOD:  Ministry of Defence, UK. 
MOT:  Ministry of Transport, NZ. 
MOTISS: Measure of Total Integrated System Survivability. 
MSc:  Master of Science. 
NAAFI: Navy, Army and Air Force Institutes. 
NATO: North Atlantic Treaty Organisation. 
NBC:  Nuclear, Biological, and Chemical. 
NBCD: Nuclear, Biological, and Chemical Defence. 
NBCDO: Nuclear, Biological, and Chemical Defence Officer. 
NES:  Naval Engineering Standards. 
ODIN:  UK MOD torpedo activation simulation software. 
ONS:  Office for National Statistics, UK Statistics Authority, Cardiff, UK. 
OOVR: Operationally Oriented Vulnerability Requirement. 
PAAMS: Principal Anti Air Missile System. 
P(di):  Probability of the ship being detected and identified. 
P(h):  Probability of the ship being hit by at least one ASM. 
P(k):  Probability of kill. 
P(l):  Probability that the ASM locks on the ship. 
P(susc.): P(di) × P(l) × P(h). 
PDMS: Point-defence Missile System. 
PM:  Performance Measure. 
PMS:  Platform Management System. 
PN:  Portuguese Navy. 
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PO:  Petty Officer. 
PREVENT:  Preliminary Vulnerability Evaluation of Enemy Threats. A vulnerability  

assessment software for concept stage ship designs developed by BMT 
Defence Services. 

RAM:  Radar-absorbent Material. 
RAS:  Replenishment at Sea. 
RASco: Replenishment at Sea control room. 
RCN:  Royal Canadian Navy. 
RCS:  Radar Cross Section. 
REVS: Rapid Evaluation of Vulnerability of Ships. A vulnerability assessment 

code for abovewater threats used by the UK MOD during the 1990s. 
RFA:  Royal Fleet Auxiliary. 
RN:  Royal Navy. 
RNN:  Royal Netherlands Navy. 
RPI:  Retail Price Index. A measure of inflation published by the ONS. 
Rtd.:  Retired. 
S

5
:  Speed, Seakeeping, Stability, Strength and Style. Descriptive ship design  

term due to Brown and Andrews (1980). 
SAM:  Surface-to-air Missile. 
SCC:  Ship Control Centre. 
SeaRAM: Rolling Airframe Missile. 
SINGRAR: Sistema Integrado para a Gestão de Prioridades de Reparação e 

Afectação de Recursos (Integrated System for Repair Priority 
Management and Resource Assignment). 

SIREX: UK MOD IR signature prediction software. 
SOLAS: Safety of Life at Sea. An IMO international maritime safety treaty. 
SPECTRE: UK MOD RCS prediction software. 
SRD:  System Requirement Document. Generic document used in UK defence  

procurement. 
SR:  Senior Rate. 
SR:  Surveillance Radar. 
SSTDS: Surface Ship Torpedo Defence System. 
SSVUL: Surface Ship Vulnerability Assessment. A vulnerability assessment code  

for underwater threats used by the UK MOD during the 1990s. 
SUBCON: Submarine Concept. An implementation of the architecturally orientated  

DBB approach to preliminary submarine design. 
SURFCON: Surface Ship Concept. An implementation of the architecturally  

orientated DBB approach to preliminary ship design. 
SURVIVE: Surface and Underwater Ship Visual Vulnerability Evaluation. A  

Vulnerability (and recoverability) assessment code developed by QinetiQ 
and used by the UK MOD. 

SWATH: Small Waterplane Area Twin Hull. 
SYLVER: Système de Lancement Vertical (Vertical Launching Systems). 
TEU:  Twenty-foot Equivalent Unit. A unit of cargo capacity. 
ThreeDim: UK MOD AAW and ASuW simulation software. 
TLC:  Through Life Cost. 
TMSS: Total Mine Simulation System. An UK MOD mine activation simulation  

Software. 
UCL:  University College London, London, UK. 
UPC:  Unit Procurement/Production Cost. 
URD:  User Requirement Document. Generic document used in UK defence  

procurement. 
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USN:  United States Navy. 
USS:  United States Ship. 
VCG:  Vertical Centre of Gravity. 
VLS:  Vertical Launching Systems. 
VL:  Vertical Launch. 
VR:  Virtual Reality. 
WA:  Warfare Aviation. 
WEO:  Weapon Engineering Officer. 
WE:  Weapon Engineer. 
WESM: Weapon Engineer, Submarines. 
WLC:  Whole Life Cost. 
wrt:  With respect to. 
WT:  Watertight. 
WTD:  Watertight Door. 
WWII: World War 2. 
XO:  Executive Officer. 
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Chapter 1: Introduction 

 

1.1 Preamble 

 

 Survivability is defined by NATO as “the capability of a weapon system to 

continue to carry out its designated mission(s) in a combat environment” (NATO 

2003a), where in the current case the ‘weapon system’ signifies a naval ship. 

Survivability is generally considered to encompass three constituents, susceptibility, 

vulnerability and recoverability (Said 1995). Susceptibility is the measure of a ship 

being detected, identified, targeted and hit; vulnerability addresses the damage caused 

by the incident; while recoverability the extent to which capability can be recovered and 

the time needed to recover it. Each of the three constituents is highly dependent 

(amongst other factors) on the ship configuration which in turn is produced during the 

crucial early ship design stages. However, the driving issues in preliminary ship design 

have traditionally been powering, stability, strength and seakeeping (Brown and 

Andrews 1980). Therefore, survivability related issues have been investigated in detail 

during the later design stages but have been heavily constrained by the major design 

features fixed beforehand. In addition, the lack of an integrated survivability assessment 

and quantification method which can be utilised during the early design stages, 

combined with rising warship procurement costs can make attractive the option of cost 

cutting in this complex and highly critical topic, despite resulting in inadequate ship 

designs due to inappropriate levels of survivability. 

 This thesis investigates and describes an approach to ship design which produces 

an integrated survivability assessment. It focuses on integrating survivability assessment 

(with emphasis on the least mature aspect of recoverability) in preliminary ship design 

and exploits the architecturally orientated Design Building Block approach to 

preliminary ship design. This approach, developed by Andrews (1984; 1986) and 

demonstrated in (Andrews and Dicks 1997) integrates architectural description with the 

traditional numerical synthesis. It was initially implemented for submarines through the 

SUBCON implementation (Andrews et al 1996) and subsequently for surface ships 

through GRC’s SURFCON implementation in Paramarine (Munoz and Forrest 2002), 

described in (Andrews and Pawling 2003). The use of architecturally orientated design 

approaches enables the assessment of survivability at the earliest design stages, which 

are characterised by the expenditure of minimum design resources while having a large 

impact on the final solution in terms of vessel configuration and cost. 
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The feasibility of such an approach to ship survivability is illustrated through the 

development of various ship designs, including combatants and auxiliary ships adopting 

both conventional and unconventional hullform configurations. These designs have 

been analysed using tools such as Paramarine CASD and various survivability 

assessment techniques. 

 

1.2 Research Scope and Aim 

 

 The research on survivability assessment outlined in this thesis focuses on the 

divergent and creative preliminary stages of the ship design process where a large 

variety of alternative ship designs should be investigated by the designers and the 

designs are still able to be modified relatively easily. This research does not address 

aspects which are addressed in the contract design and detailed design stages, where 

high levels of design definition are necessary. 

 The thesis focuses on the application of survivability assessment methods on 

surface warships (including both combatants and auxiliaries) in order to investigate 

battle damage. This research has applicability on all types of surface warships of both 

conventional and novel configurations and could also be of relevance to subsurface 

naval vessels. It is envisaged that the research will encourage innovative ship design 

and increase the confidence of the designer by proposing an assessment and 

quantification method of what is an important aspect of naval ship design. 

 The thesis initially investigates the importance and advantages of preliminary 

ship design and the full integration of architectural considerations in the preliminary 

ship design process. This is done in order to justify the application of survivability 

assessment techniques in the early ship design stages. Current survivability assessment 

techniques and their applicability to integrate total survivability assessment in the 

preliminary design process have been examined. This is followed by the proposition of 

an integrated survivability assessment approach in preliminary ship design, which is 

then demonstrated on a variety of concept ship design studies. This also allows the 

investigation of principal survivability drivers in a given design. 

 The approach adopted for this research was primarily characterised by the 

combination of various bespoke computer tools for survivability assessment and the 

development of numerous design studies. Due to the information sensitivity 

characterising the area of naval ship survivability the developed designs draw on the 

UCL Naval Architecture database (UCL 2010a; UCL 2010b) which is unclassified but 
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essentially representative of UK MOD design practice. In addition, classified tools, as 

well as classified data for weapon systems and ship designs, were not utilised. This 

research is primarily concentrated at seagoing naval combatants but variations in size, 

configuration novelty and role have been investigated to test out the robustness of the 

proposed method of survivability assessment in preliminary ship design. 

 The overall aim of the thesis is summarised as: 

To propose an integrated survivability assessment approach and demonstrate it on a 

range of ship types and hullform configurations. The ship designs used throughout the 

research need to have a level of definition appropriate to preliminary stage design. The 

principal drivers for survivability and their cost-effective incorporation in ship design 

need to be explored. In addition, the advantages of using an architecturally orientated 

preliminary ship design approach, in conjunction with the proposed survivability 

assessment method, should be investigated. It is argued that such preliminary design 

approaches can bring survivability performance issues into appropriate consideration in 

the earliest design stages. 

 

1.3 Structure of the Thesis 

 

 The thesis is composed of eight main chapters accompanied by separate 

appendices providing additional material relevant to the main chapters. 

 This chapter provides a brief introduction to the research topic as well as the 

scope and aim. 

 The second and third chapters outline the background for the research work. 

Chapter 2, focusing on ship design issues, is split into three main sections. The first 

gives an introduction to ship design, mainly focusing on preliminary warship design. It 

describes the evolution of the preliminary warship design process through the latter part 

of the twentieth century to date and how it has been affected and enhanced by the 

extraordinary developments in computer based tools and methods. The second section 

focuses on the importance of ship cost estimating during the early design stages as a 

measure against which survivability measures can be assessed. The final section 

outlines the main conclusions of this chapter. 

The third chapter focuses on naval ship survivability and is split into four parts. 

In the first two parts, survivability and its relevance are defined in detail and current 

threats faced by navies are examined. The third part gives a detailed account of current 

survivability assessment techniques and their implications in ship design. The final part 
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provides the main conclusions of this chapter while identifying the gaps in current 

survivability assessment approaches. Thus an indication as to the way forward is given. 

 The fourth chapter addresses the gaps identified in survivability assessment 

essentially through a detailed description of the proposed survivability assessment 

method. This chapter consists of four main sections. The first two sections focus on the 

susceptibility and vulnerability assessment parts of the method, each of which are met 

by current established techniques the applicability of which has been proven at 

preliminary stage ship design. The third and largest section describes the development, 

reasoning behind and applicability of the new recoverability assessment approach. The 

development of a new recoverability assessment approach was necessary due to the 

limitations of current approaches, which are mentioned in Chapter 3. Finally, the fourth 

section describes how the three elements of survivability assessment can be combined 

into the proposed total survivability assessment approach. 

 The fifth chapter describes the application of the proposed method to seven ship 

design studies. This chapter is separated into three main parts. The first part gives a 

detailed account of the three frigate variant design studies conducted, the second 

describes the corvette and destroyer design studies developed and the final part explores 

the two replenishment ships which were designed. The choice of ship design is justified 

and the design procedure, as well as the main characteristics and features of the ship 

designs are explained, focusing mainly in features relevant to survivability performance. 

The sixth chapter presents the results from the application of the method 

described in Chapter 4 to the selected ship design studies detailed in Chapter 5. Results 

of all survivability constituents for all ship designs are presented, including various 

sensitivity studies. In addition, cost estimations are presented from a ship costing study 

undertaken in order to explore the cost-effective incorporation of the principal features 

of survivability in the ship designs undertaken. 

 The discussion in the seventh chapter analyses the results (Chapter 6) of 

applying the proposed survivability assessment approach in Chapter 4 to the ship design 

studies in Chapter 5. It is argued that the major survivability drivers for the various ship 

designs have been identified and validate the proposed method. In addition the 

discussion considers whether the proposed approach in Chapter 4 addresses the gaps 

identified in the research background outlined in Chapters 2 and 3. Finally, 

consideration is given as to whether the research aims in Chapter 1 were met and 

suitable ways forward for this on-going research are suggested. 
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 The eighth and final chapter summarises the major conclusions that have 

resulted from the research work. 
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Chapter 2: Ship Design Issues 

 

This chapter, consisting of three main sections, provides the ship design related 

background and context for the research. The first section outlines the nature of ship 

design and developments in preliminary ship design approaches through the latter part 

of the twentieth century to date. It specifically focuses on and gives an adequate 

explanation of the importance of preliminary ship design and the utility of 

architecturally orientated processes, such as the Design Building Block approach to 

preliminary ship design. Such design approaches are crucial with regards to the 

proposed survivability assessment approach. The second section focuses on ship costing 

during the preliminary ship design process which could assist in the cost effective 

incorporation of the principal survivability drivers. The final section provides the main 

conclusions of the research review related to issues concerning ship design by 

highlighting the importance of architecturally orientated preliminary ship design 

approaches. 

 

2.1 Ship Design 

 

2.1.1 Background to Naval Ship Design and Procurement 

 

A warship design project is initiated to meet a need (operational, new major 

equipment) (Andrews 1987; Brown 1993) which is set by the customer either in the 

form of a high-level URD or a lower-level SRD (MOD 2001). After a baseline design is 

developed, the initial requirement is produced based on operational research and 

dialogue with designers on what is achievable (Andrews 1992). Achieving a realistic 

and affordable requirement is of vital importance (Heather 1990; Crow 2001) as the 

design process and the end result are largely based on the designer’s interpretation of 

the often crude requirements (Andrews 1986; Brown 1986a). Correct interpretation of 

the requirements can also lead to cost saving (Andrews and Brown 1982; Crow 2001).  

Naval ships have moved from aiming to design the technically best to the cost 

effective and finally to the current cash limited ship (Brown 1986a) as a result of the 

growth in Unit Procurement Cost (UPC) (approximately 9% per annum (Gates 2005)), 

although it should be recognised that this is only about 20% of the Through Life Cost 

(TLC) (Andrews and Brown 1982; Brown and Tupper 1989). This real cost increase is 

attributed to increased capability (which has to be balanced with safety, supportability 
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and sustainability (Knight 2012a; Knight 2012b)), greater complexity and higher 

standards (Brown and Andrews 1980; Brown and Tupper 1989). Coupled with 

declining defence budgets post-cold war (Andrews and Hall 1995) this has led to a 

decrease in the number of warships for most navies (Andrews and Brown 1982; Brown 

and Tupper 1989) despite no reduction in commitments (Collins and Ward 2012), 

leading to the aforementioned requirement of greater capability per ship (Jones and 

Kimber 2012) and greater reliability (Manley 2012). A number of ways to reduce cost, 

which have all affected the design process, have been suggested, such as adoption of 

commercial standards for naval ships (Brown and Andrews 1980; Rattenbury 2004) 

(especially for non-combatants such as auxiliary ships (Cooper et al 2007)), open 

system architecture (Vasilakos et al 2000), flexibility through modularity/cellularity 

(Brown and Andrews 1980; Jones and Kimber 2012) (which, however could lead to a 

heavier ship (Gates and Rusling 1982)), restricting the number of roles intended for a 

new ship design (Brown and Andrews 1980; Collins and Ward 2012), technical 

innovation (Andrews and Brown 1982) and complement reduction (Brown and 

Andrews 1980; Collins and Ward 2012). It should be noted that cost cutting is usually 

focused on UPC rather than TLC (Brown and Andrews 1980) and contentious areas 

such as resistance to damage which can be difficult to quantify (Brown 1986a).  

 

2.1.2 Introduction to Ship Design 

 

Many attempts to describe ship design have been made. Gale (2003) defined it 

as “the activity involved in producing the drawings, specifications and other data 

needed to construct an object (ship)”, emphasising both the scientific and artistic nature 

of design (Gale 2003; Gates 2005). This approach is in agreement with Andrews (1986) 

remark that ship design cannot be described as a purely scientific/engineering field as it 

involves the arrangement of spaces and equipment, giving it an architectural element. 

Andrews (1981) also states that what differentiates design from other human activities 

is synthesis (“putting the pieces together in a new way” (Jones 1970)), therefore again 

stressing the fundamental creative aspect of design (Gale 2003) which is growing in 

importance given the increased information currently available to naval architects due to 

technology advances (Jasionowski 2012). Archer (1979) took a further step and 

classified design as a separate culture to humanities and sciences, (Figure 1 of (Archer 

1979)). It is therefore understandable that the personal characteristics of the designer 

largely influence the ship design process (Andrews 1986; Gale 2003). 
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According to Rawson and Tupper (2001) ship design is the raison d'être of naval 

architecture. Ship design is an iterative process, where evolving the requirement and 

designer judgments are part of the process to arrive to a solution (Gale 2003; Gates 

2005). This iterative process has been illustrated by the design spiral (Andrews 1986; 

Rawson and Tupper 2001) which is frequently used by naval architects to depict the 

ship design process. The first design spiral was produced by Evans (1959) and since 

then a large number of design spirals have been produced (a chronological set is shown 

in (Andrews et al 2009)). A typical design spiral attempts to show the way in which a 

naval architect deals with each topic in sequence and iteratively, until an optimum 

solution is reached (Evans 1959; Gale 2003). However, such a representation of the 

design process has been criticised by a number of authors. Design spirals depict ship 

design as a set of sequential processes (Watson 1998; Gale 2003), rather it is 

characterised as looping, nonlinear and discontinuous, therefore not as simplistic as a 

spiral (Brown 1986a; Andrews et al 2012b); spirals look at steps and not the design 

process itself (Andrews 1998); spirals are not ship type dependant (Watson 1998). 

Warships have been cited as “the most complex, diverse and highly integrated of 

any engineering systems” produced today on a regular basis (Graham 1982) for a 

variety of reasons. For example, they are designed for multiple roles (Brown 1986a; 

Brown and Tupper 1989), it is difficult to quantify many aspects of their performance 

(Brown and Tupper 1989), they are distinctively large and complex (Andrews et al 

1997), they operate in a hostile environment (Gates 2005), they must provide a 

hospitable environment for the crew (Gates 2005) and they consist of a number of high 

risk areas (Heather 1990). Heather (1990) suggested that the main high risk areas in 

warship design are: development of complex weapon items and software (which are 

often delivered late or fail to perform), bottom-up weight estimates for novel designs, 

auxiliary power generation requirements and layout of key spaces. The extent of design 

complication and risk increases with degree of novelty. Andrews (1986) categorised 

different types of design processes based on ship novelty: type-ship variation, evolution, 

historical, synthesis, radical configuration (e.g. SWATH), radical technology (requiring 

prototypes). A designer has to address a variety of often conflicting aims, always under 

a tight budget (Brown and Tupper 1989) and almost always without the assurance of a 

prototype (due to size and complexity, cost, and time factors) (Andrews 2011) which 

further complicates the task. 
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The phases of the warship design process, gradually moving from ship-level to 

system-level (Heather 1990), can be summarised as follows for UK MOD practice 

(Andrews 1992) (for commercial practice refer to (Watson and Gilfillan 1976)): 

1. Concept; 

2. Feasibility; 

3. Design Definition; 

4. Build Contract Definition; 

5. Detailed Ship Design. 

The first phase, where the designer attempts to understand the customers’ needs and 

convert them into a technical solution (Brown 1986a; Gale 2003), has been further 

broken down for major programmes into: concept exploration, concept studies and 

concept design (Andrews 1993; Andrews et al 2012a). In the concept phase, the 

designer explores a number of alternatives and selects the most promising in terms of 

size, cost and capability (Brown 1986a; Andrews and Pawling 2007). The time and 

resources spent during concept or preliminary design are only a fraction of those spent 

during the entire project (Andrews 1987). However, most major decisions are taken and 

trade off studies carried out early in the design process and will determine the final 

solution (Brown and Andrews 1980; Andrews and Pawling 2009), therefore, 

committing the largest part of the future costs (Andrews 2011). The cost of applying 

corrections to a problematic design at the later design stages, or even construction stages 

is disproportionally high (Goossens 1992), and costs can only be reduced by 

withdrawing equipment rather than considering alternative designs (Andrews and 

Brown 1982). (Although Knight (2012a; 2012b) commented that in some cases 

regarding certain shipyards “the onerous change process imposes more effort to modify 

a 3D model than making the change directly on the inbuilt product”). The importance of 

concept design is enhanced by the fact that realistically novelty can only be introduced 

here (Brown 1986a). It is clear that the early stages of design are the most critical, and 

this can be summarised by “the often quoted truism that 90% of the major design 

decisions have been made when less than 10% of the design effort has been expended” 

(Andrews et al 2006). 

 

2.1.3 Traditional Preliminary Ship Design 

 

 Traditionally, naval architects have focused on the areas of speed, seakeeping, 

stability and strength, otherwise known as S4 (Brown and Andrews 1980). These were 
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regarded as the driving issues in preliminary ship design; in contrast, style related issues 

were examined at later stages (Andrews 1984) (contributing towards the relative 

formalisation and maturity in disciplines such as marine hydrodynamics and marine 

structures compared to marine design (Andrews 2012)). In general, the process was 

perceived as one with discreet sequential steps and feedbacks, similar to design spirals 

(Andrews and Dicks 1997; Andrews et al 2006); this sequential process is depicted in 

Figure 2.1. 

 

 

Figure 2.1: A Summary Representation of Current Sequential Synthesis (Andrews 

1986) 

 

Initial sizing (or generative process), relied extensively on existing ship data and 

scaling ratios to get first estimates of weight and space requirements and costs (Brown 

and Andrews 1980) before the first iteration commenced (Andrews 1981; Cooper et al 

2007). Figure 2.2 illustrates a simplified initial sizing process showing the assumptions 

and sources for each step.  
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Figure 2.2: A Simplified Model of Initial Ship Sizing (Andrews 1986) 
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Initial sizing was followed by parametric/form selection and finally the 

development of the ship’s layout was considered (Andrews 1986). This traditional 

preliminary design process limited the use of computers to the first two numerically 

based steps, initial sizing and parametric selection (Andrews et al 2006). 

 This process has been criticised for various reasons as it does not represent a 

fully integrated design process, limiting creativity and innovation. The fact that the 

process is essentially sequential means that the layout/architecture of the design (the last 

step in the sequence) has to be developed within a predefined hullform (Andrews 1981; 

Andrews et al 2006) therefore limiting the designers creative input (Andrews 1986). 

Issues such as bulkhead locations are governed by damage stability and structural 

continuity requirements (Brown 1987) further constraining the architectural evolution 

(Andrews 2003). Topics such as crewing, ship operations, personnel evolutions can 

only be examined at later stages in the design process (within the constraints previously 

observed) where alterations to the design are lengthy and costly (Andrews et al 2008). 

Another area of risk characterising the traditional approach is that, since the initial 

sizing step is purely numerical it relies on the availability of existing ship data (Gates 

2005; UCL 2010a; UCL 2010b) and the ability of the designer to produce pragmatic 

scaling ratios (Cooper et al 2007). Add to this, the parametric selection stage is 

disconnected from the architecturally driven aspects of a ship (Andrews 1986). Andrews 

(1986) concludes that traditional synthesis is progressive, not comprehensive or 

integrative and comments that, given the forward momentum in design development, 

the feedback loops in Figure 2.1 are optimistic, thereby limiting the iterative nature of 

preliminary ship design to just getting a numeric balance rather than for exploration of 

the design space. 

 It is worth noting that, traditionally ships and their components are described by 

means of a weight breakdown (Garzke and Kerr 1985; MOD 2010). The UK MOD 

(2010) convention for warship weight groups, similar to that used in the UCL MSc Ship 

Design Project (UCL 2010a) is as follows: hull and superstructure, propulsion, 

electrical, control and communication, ancillary systems, outfit and furnishings, 

armament and variable load. This type of ship description, although offering the 

prospect of comparing a new ship design to existing ships (Andrews and Dicks 1997) 

has a number of limitations. It is mainly aimed towards the ship construction industry 

(Garzke and Kerr 1985; Andrews and Pawling 2009), thus discouraging 

novel/unconventional concepts (Andrews and Dicks 1997) and it is not appropriate in 
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investigating the overall effect on the ship of adding or removing a certain capability 

(Andrews and Dicks 1997) 

 It is evident that insisting on the traditional approach to preliminary ship design 

inhibits innovation and evolution, which means most new designs are based closely on 

existing ships (Andrews 1981). However, with the rapid development in computer 

graphics over recent years (radically altering design processes (Andrews 2011)) it is 

possible to generate a fully integrative ship design synthesis, where architectural factors 

can influence major decision making from the start of the process (Andrews 1986; 

Andrews et al 2006). Innovation in both ship designs and the design process itself is 

seen to be the way of meeting the challenge of increased capability with decreasing 

resources (Brown 1993).  

 

2.1.4 Architecturally Orientated Preliminary Ship Design 

 

 The architecture of a warship is an area often disregarded by naval architects in 

favour of topics such as hydrodynamics and structures (Brown 1993; Andrews et al 

2006). However, Brown (1987) defined a warship as an “assembly of multifunctional 

interacting spaces located within an envelope set by hydrodynamic and other 

considerations, partition arrangement governed by structural continuity and containment 

of damage, more than onshore buildings” thereby placing architecture at the centre of 

the equation. Andrews (1986) took a further step by suggesting that certain ship types 

should be designed by arranging the layout such as to optimise the ship’s primary 

function, followed by wrapping an efficient hullform around this layout. This is 

enhanced by the fact that most warship types are rarely driven by hydrodynamic or 

structural aspects (Brown 1987), especially during the early design stages (Chalmers 

1993a). The importance of a ship’s architecture is highlighted by the fact that it affects 

vital features such as operational effectiveness, survivability, economy, crew efficiency 

and comfort and ease of production (Andrews and Brown 1982; Brown 1987) and all 

that in its highly constrained, dynamic environment (Brown 1993). However it is 

difficult to evaluate the effectiveness of a particular layout due to the multiple and 

conflicting requirements that exist for warships and the interactive nature of ship 

architecture (e.g.: upperdeck arrangement is affected by the machinery disposition via 

uptakes and downtakes) (Andrews and Brown 1982; Brown 1993). The above led 

Purvis (1974) to the conclusion that warships are not weight or space limited, but 

architecture limited. 
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 Since warships are predominantly architecturally driven, it has been suggested 

that a configurationally orientated preliminary design process would reveal design 

drivers and risk areas (Andrews 2003). Also, this would increase the scope for creativity 

and enable the designer to contribute in the divergent and imaginative early stage design 

process; therefore, leading to innovative solutions (Andrews 1981) and better deal with 

complexity (Andrews 2003). In addition, the adoption of such a preliminary design 

process could lead to an increase in the number of alternatives considered, aiding 

decision making at the crucial early design stages, therefore decreasing the risk of errors 

in expensive and infrequent projects and assisting trade-offs and cost estimation 

(Andrews 1986). By integrating the three traditional stages of the design process, i.e. 

initial sizing, parametric selection and development of the general arrangement, a more 

complete solution will be presented (Andrews 2003). Since the hullform will not be set 

during the layout evolution stage (Andrews 1986) the dimensions of the ship can be 

treated as flexible and dependant on an efficient architecture (Andrews et al 2006), 

rather than assuming that an increase in ship size is always penalising, as is the case 

with numeric sizing (Andrews 1981) such as shown in Figure 2.2. By positioning 

warship architecture at the centre of the preliminary design process, certain design 

features and interactions can then be explored, which were not possible with the 

traditional one-dimensional numerically based design process (Andrews 1981; Andrews 

et al 2012a). For example, a designer can better integrate the combat system (Andrews 

1992) and take into account issues such as zoning, vulnerability, modularity, access 

philosophy, habitability and space margins (Andrews 1986). This leads to the 

conclusion that design options can be compared on the basis of operational performance 

rather than merely cost (Andrews 1986), although questions have been raised as to how 

to evaluate characteristics such as survivability and habitability (Garzke and Kerr 1985). 

Finally, an early configurational representation of a design would enhance the dialogue 

between the parties involved, particularly with the requirements owner (Gale 2003). 

 However, space is not only dependant on principal dimensions but also on 

location and shape (Brown 1987). Therefore, in order to successfully implement a new 

fully integrated, more creative and flexible architecturally driven design philosophy, it 

is essential to take advantage of powerful CAD (Andrews 1981). During recent decades, 

developments in computer techniques were rapid and impressive, revolutionising the 

early ship design process (Munoz and Forrest 2002; Andrews 2011). This has led 

designers to be able to produce a large number of alternative designs in a relatively 

short time with less errors, reducing costs, (Gale 2003) and explore and assess the 
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alternative layout arrangements, confidently making important decisions even at the 

earliest stages of the design process (Crow 2001). When such CAD tools are combined 

with numerical/analytical naval architectural tools, a fuller integration in the preliminary 

design phase can be achieved (Andrews 2003). The designer can carry out a variety of 

tasks which were usually carried out at later design stages (Cooper et al 2007), such as 

estimating cost and weight (Andrews and Brown 1982), assessing vulnerability and 

structural continuity (Andrews 1993; Crow 2001), investigating personnel and freight 

flow (using simulation techniques) (Andrews and Pawling 2009) and investigating 

congested areas by 3D modelling (Gale 2003). Pegg et al (2012) discuss the challenges 

related to integrating the various early ship design simulation tools now available in a 

single design and simulation environment; in particular they examine strength, 

hydrodynamic, shock and blast, signatures, operational and cathodic protection 

simulation models. Such techniques could partially address Garzke and Kerr’s (1985) 

remark on the difficulty of evaluating and optimising certain ship characteristics. It has 

also been suggested that advances in computer techniques have decreased the need for 

physical mock-ups (Gale 2003) which are expensive and time consuming to build and 

modify. It is then clear that the impressive software developments of the last years have 

made preliminary design more creative and innovative (Andrews and Pawling 2003), 

producing designs which are more complete and descriptive, therefore aiding decision 

making (Andrews 1993), when the design is still sufficiently flexible to more easily 

apply changes (Andrews et al 2008). 

 Andrews’ (1981) proposal to integrate ship architecture with the traditional 

numerical techniques was followed by the demonstration of ‘creative synthesis’ 

(Andrews 1984) which was presented in a paper entitled ‘An Integrated Approach to 

Ship Synthesis’ (Andrews 1986). A hull form generator was used to produce a frigate 

hull and output deck plans on which compartments were positioned. After auditing, 

space and weight data were extracted and reiterated. This way, the initial sizing step was 

not carried out in the traditional purely numerical manner, but it was incorporated with 

layout considerations (“disposition of the principal spaces”), therefore producing a 

much more comprehensive solution. Figure 2.3 shows a revised initial sizing process, 

which this time takes into account spatial factors, while Figure 2.4 is a description of 

fully integrated design synthesis in contrast to the sequential traditional synthesis shown 

in Figure 2.1. 
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Figure 2.3: A Schematic Modification of the above Initial Ship Synthesis with Spatial 

Totals which are Laid Out Graphically before Reiterating (Andrews 1986) 

 



41 
 

 

Figure 2.4: A Summary Representation of a more ‘Holistic’ Approach to a Fully 

Integrated Ship Synthesis (Andrews 1986) 

 

However, the initial hullform and, therefore, deck plans, had to be developed 

under default hull coefficient values due to the limited capabilities of computers during 

the 1980s (Andrews 1986), restricting the demonstration of applicability of the method 

only to frigates and leaving out unconventional hullforms (Andrews 1998). From this 

work, a new approach, namely the Design Building Block approach (Andrews and 

Dicks 1997) was developed and implemented, taking advantage of the impressive CAD 

developments previously described, first for submarines (Andrews et al 1996) and later 

for surface ships (Andrews and Pawling 2003). This is discussed further in Section 

2.1.5. 

 In order to appropriately position a ship’s principal compartments and build up 

its architecture, Andrews (1984; 1986) proposed the method of ‘circles of influence’. 

Figure 2.5 shows how this method could be used in order to accomplish full integrated 

synthesis and come up with a three dimensional representation of a frigate, around 

which an efficient hullform could be wrapped (Andrews 1986; Andrews 2003). 
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Figure 2.5: Circles of Influence leading to Full Synthesis (Andrews 1986) 
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There are many obvious compartment relations around which ‘circles of 

influence’ could be built, such as dining spaces should be close to stores and in a 

position with low vertical accelerations (Brown 1987). Also, some compartments are 

more important or constrained than others (such as machinery spaces, Operations Room 

and accommodation spaces (Andrews 1986)) so they should occupy central roles in the 

‘circles of influence’. An efficient layout, locating related spaces adjacently, would also 

lead to minimising the extent of main passageways (Brown 1986a). Further work on 

‘circles of influence’ and more detailed diagrams were produced by Dicks (2000). 

 It was previously mentioned that the weight breakdown description of traditional 

ships led to numerous limitations. Therefore, it was suggested that this was another area 

for reconsideration in order to achieve more creative ship design. The broad objectives 

of a warship have been determined as: ‘to float, to move, to fight’ (Brown and Tupper 

1989), and these three categories “represent a ship in material and cost terms” (Andrews 

1987). Therefore, it would make sense to apply a functional breakdown using these 

three groups (Float, Move, Fight) at top level with the addition of an Infrastructure 

group as argued by Andrews et al (1996). Many advantages of a functional descriptive 

breakdown have been reported: the impact of adding or removing a particular capability 

on the whole ship could be assessed  (Andrews 2003) (therefore leading to more cost-

effective solutions and improving communication with the customer (Garzke and Kerr 

1985)); new ship designs would no longer be solely based on assumptions from existing 

ships and thus would encourage innovation (Andrews 2003); a more meaningful cost 

description of the ship could be achieved (Andrews and Pawling 2003) (if resources 

devoted to Infrastructure are not taken into account, Fight accounts for approximately 

70% of the UPC of a typical combatant, followed by Move and Float (Andrews and 

Brown 1982)). 

 

2.1.5 The Design Building Block Approach to Preliminary Ship Design 

 

It was previously mentioned that the research carried out during the 1980s 

concerning full integration of ship synthesis (Andrews 1986) led to the DBB approach, 

which is described in (Andrews and Dicks 1997). Since then, numerous types of ships 

have been designed using this approach to preliminary ship design, the work being 

carried out in the UCL DRC which was established in 2000 as part of the Marine 

Research Group of UCL (http://www.ucl.ac.uk/mecheng/research/marine). This CAD 
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focused group makes use of the GRC’s (QinetiQ 2012) Paramarine Preliminary Ship 

Design Software in order to investigate innovative preliminary design. 

The basic idea behind the DBB approach is for the designer to separate the 

ship’s functions and sub-functions into discrete elements (Design Building Blocks) and 

position them appropriately, putting architectural factors in the centre of the process, in 

contrast to the traditional sequential design process (Andrews and Dicks 1997). This 

method allows a more thorough exploration of alternative designs to meet the particular 

requirement, as well as encouraging novel solutions (Andrews and Pawling 2009). This 

is because it is not type ship based and removes the limitations of the traditional 

numerical sizing process, which leads to conventional configurations (Andrews and 

Dicks 1997). An outline of the DBB approach is given by Andrews and Dicks (1997) 

and Andrews and Pawling (2003) (see Figure 2.6):- 

- “A need for a new conceptual design is conceived and an idea of the likely 

design style to meet that broad requirement is suggested; 

- Drawing on novel ideas or historical data a series of building blocks are defined 

in a computer system. Each building block contains geometric and technical 

attributes regarding the functions of that building block; 

- A design space is generated and the Design Building Blocks are configured as 

desired or required within the design space; 

- Overall naval architectural balance and principal performance aspects of the 

design are investigated using simple and flexible algorithms and, if necessary, 

using analysis programs external to the main system; 

- The configuration is then manipulated until the designer is satisfied; 

- Decomposition of the Design Building Blocks to greater levels of detail is 

undertaken, as necessary to increase confidence in the design solution.” 
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Figure 2.6: Building Block Design approach applied to Surface Ships (Andrews and 

Dicks 1997) 

 

The DBB approach is characterised as: ‘open/glass box’, allowing the designer 

to input their experience and creativity, therefore, increasing their contribution and 

responsibility (Andrews 2006); ‘soft’, so that the process can be updated and improves 

(e.g. changing algorithms); and it allows margins (see Appendix 1) to be appropriately 

assessed in the course of the process rather than using historical values at global or just 

main weight and space group level (Andrews and Dicks 1997).  

The DBB design phases are summarised in Figure 2.7. 

 

 

Figure 2.7: Building Block Design Steps (Andrews and Dicks 1997) 
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As the design is evolved, the level of detail increases and at each stage the 

design is assessed in order to result to an appropriately balanced ship (Andrews and 

Pawling 2003). This is done by the design tool reporting the design state to the designer 

(after auditing the configuration to check if it is balanced in weight, space, stability and 

powering). The designer then has to judge what changes are needed to achieve a 

necessary level of balance (Andrews and Pawling 2003).  

Since this is an architecturally orientated approach, changes can be implemented 

to the ship configuration at the early stages of design, thereby giving the ship designer 

the opportunity to investigate many aspects of the design while its configuration is still 

amenable to change (Andrews and Pawling 2006b). Such aspects include: distributed 

system details, margin philosophy, access, combat system integration (Andrews 1998), 

human factors, ‘-ilities’ (Andrews and Pawling 2009), topside design (Andrews and 

Dicks 1997), through life costing, health and safety issues, environmental issues 

(Andrews and Pawling 2009). Many can be considered while also accounting for the 

traditional naval architectural areas of powering, hydrodynamics and structures 

(Andrews and Pawling 2006b). Therefore, a more detailed yet adjustable description of 

the design is possible at the earliest stages of design where potential conflicts can be 

addressed and decisions made (e.g. structural continuity (Andrews and Dicks 1997), 

weight and space balance, powering and stability performance, personnel flow 

(Andrews 2004)). It is worth noting that Andrews and Dicks (1997) designed to the 

same requirement a frigate following both the conventional and the DBB process. The 

DBB approach designed ship met all the requirements whereas the conventionally 

designed one did not. This example showed that further iterations were needed after the 

end of a conventional preliminary design, which were very likely to lead to a larger ship 

downstream with resultant programme consequences. 

 The above procedure to preliminary ship design was developed and 

implemented following the rapid developments in computer capability, initially for 

submarines (through the SUBCON implementation (Andrews et al 1996)) and 

subsequently for surface ships through GRC’s SURFCON implementation (Munoz and 

Forrest 2002). By implementing the DBB approach through the SURFCON module in 

Paramarine, the DBB approach is now a well-established commercial preliminary ship 

design module (Andrews and Pawling 2003). This way, SURFCON can draw on all the 

naval architectural analytical tools (such as stability, powering, seakeeping, 

vulnerability, manoeuvring and structural analysis) available in Paramarine (Andrews 

and Pawling 2003). Consequently, a fully integrated preliminary design process, 
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architecturally centred and combined with traditional naval architectural numerical 

analysis techniques to achieve balance (Andrews et al 2008) is now possible through 

SURFCON and has been shown to be applicable to a wide range of conventional and 

unconventional ships (Andrews and Pawling 2003). The three dimensional nature of 

SURFCON can be used to adequately investigate for naval vessels those configuration 

related factors previously mentioned, as well as other issues, such as design for 

production, adaptability, sustainability, ease of access and spatial margins. 

In SURFCON, each DBB is a placeholder (folder) representing a particular 

function and containing all relevant information, e.g.: numerical, constraint, parametric, 

geometric and descriptive data (Andrews and Pawling 2003). As the design evolves, 

Paramarine uses the above data to update the graphical display and perform the relevant 

calculations. The cumulative characteristics of each DBB listed above are brought 

together in a Master Building Block (MBB) which provides the numerical description 

of the design. The MBB contains data such as the overall ship requirements, ship 

characteristics and overall margins. These characteristics are constantly being audited 

by Paramarine’s analytical tools and the designer then uses the data given to judge what 

steps are necessary to achieve balance. A screenshot of Paramarine is reproduced in 

Figure 2.8. 

 

 

 
Figure 2.8: SURFCON Representation Showing the Three Panes for Tree Structure, 

Graphics (Design Building Blocks) and Tabular Interfaces, with the Results of Stability 

and Resistance Analyses Also Visible (Andrews and Pawling 2008) 
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 In view of the fact that one of the central elements of the DBB approach is to 

separate the ship’s functions, it is only natural for SURFCON to describe a ship by 

means of the functional breakdown described in Section 2.1.4 (i.e. Float, Move, Fight, 

Infrastructure) (Andrews and Pawling 2003). The four top level groups gradually lead to 

lower level, more detailed groups. It has been recognised that the Fight and Move 

groups tend to drive a design to a great extent, whereas Float and Infrastructure are 

largely dependent groups (Andrews and Dicks 1997). This is because of the directly 

defined requirements and constrained nature of the Fight and Move groups. However, 

advancements such as IFEP and VLS could increase the adaptability of the two design 

driving groups (Andrews and Dicks 1997). 

 Since its conception and realisation through SURFCON, the DBB approach has 

been used for a range of projects in UCL, such as a trimaran Littoral Combat Ship 

(LCS) (Andrews and Pawling 2006a), a Joint Support Ship (JSS) (Andrews and Pawling 

2007), personnel flow simulation (Andrews 2006; Andrews et al 2008), implications of 

all electric ships on their configuration (Andrews et al 2004), and several others listed in 

(Andrews and Pawling 2006b; Andrews and Pawling 2009). For the ship design 

projects, the DBB’s were sized using the algorithms provided in the UCL MSc Ship 

Design Exercise (UCL 2010a; UCL 2010b). This UCL work has proved the 

applicability of the approach and realised its advantages, which are outlined in the 

above references. These are seen to be: identifying design drivers and interactions; 

producing believable concepts for unconventional designs; rapidly producing and 

comparing alternative designs; exploring different configurations; assessing designs in a 

variety of ways at the early design stages; identifying areas of uncertainty; and 

providing increased confidence for concept development. 

 Appendix 2 is a summary of the literature regarding the major design drivers of 

various presently common naval ship types. Combatants, with both conventional and 

unconventional hull configurations, and replenishment ships are investigated. 

 

2.2 Ship Costing 

 

 It is well established that ship costing is a vital part of the (concept) ship design 

process (UCL 2010b) with optimal cost effectiveness being a key objective of ship 

designers (Rawson 1973). Cost estimates are required in order for governments to 

justify and allocate funding and project management teams “to avoid budget overruns 

and its consequences” (Rudius 2012; Gerdemann et al 2012). Dirksen (1996) observed 
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that defence inflation over the last century has been as much as 9% above inflation. This 

has occurred due to military competition and the associated requirement for increased 

capability (Dirksen 1996) which has been realised by the technological developments 

(accompanied by increased complexity and maintenance) in weapons and other 

equipment (Rawson 1973). Since defence inflation in recent decades for Western 

Powers has not been complemented by a corresponding increase in defence budgets (as 

a percentage of GNP), the only two realistic solutions have been to reduce vessel 

numbers or design smaller and cheaper warships; further cost reductions would imply 

reduce capability per ship (Dirksen 1996). This is because, as Dirksen (1996) advised, 

warship capabilities are set by various characteristics in terms of speed, seakeeping, 

structure, stability, style and stealth, which are the major cost drivers. Carreyette (1977), 

from a merchant ship stance, included further variables, such as managerial, financial, 

political and temporal variables, which impact on ship cost. However, Knight (2012a; 

2012b) separated warship cost into costs associated with people (design, project 

management and procurement, construction/fabrication/integration) and equipment 

(major equipment and steel, commodity items). His definition focuses solely on the 

UPC. NATO (2009) identified that Whole Life Cost (WLC) (or Life Cycle Cost (LCC)) 

estimation is critical, being one of the criteria (along with operational need and 

government constraints) assisting the decision making process regarding cost 

effectiveness and choice between alternatives. 

NATO (2003b) defined LCC as representing “all the costs that will be borne 

during the life of a System (Main System and Support System) to acquire, operate, 

support it and eventually dispose of it”. In addition, Rawson (1973) suggested that 

project LCC should:- 

- “Expose the costs known to be significant; 

- Retain relevance to the elements of effectiveness; 

- Be forecastable; 

- Embrace the whole system affected by the project.” 

UCL (2010a; 2010b) for MSc level ship design studies, considers warship WLC as 

being the sum of FOC costs, UPC, TLC and disposal costs, for an entire class. FOC 

costs include office setup, design, drawings and recruitment costs and administrative 

costs (UCL 2010b). UPC is the individual ship (including its weapons, machinery and 

maritime equipment) construction cost (i.e. material, labour costs and overheads for 

shipbuilding) (Dirksen 1996; UCL 2010b). TLC adds on the costs to run each ship 

through its operational life (i.e. daily operating costs plus maintenance costs) (UCL 
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2010b). Rawson (1973) identified the main TLC drivers as complement, operations and 

maintenance and repair. Complement costs include basic pay, earning related national 

income contributions, pensions and gratuities, additional special service pay and 

training costs for trade and rank; operations costs include fuel (the consumption of 

which is a function of the operating profile and propulsion and electric power 

generation configuration) and spares and consumables (e.g.: propulsion equipment, 

auxiliaries, ordnance, paint and NBCD equipment); maintenance and repair costs 

include docking and refits (Dirksen 1996). The above definitions are illustrated in 

Figure 2.9. 

 

 

 

 

Figure 2.9: Unit Procurement Cost, Through Life Cost and Whole Life Cost 

Breakdown (UCL 2010b) 

 

An alternative LCC breakdown is presented in Figure 2.10. It includes typical 

cost percentages of each LCC element. 
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SSI: Shipbuilders Supplied Items 

ASI: Admiralty Supplied Items 

 

Figure 2.10: Breakdown of Warship Cost and Typical Example of the Breakdown in 

Life Cycle Cost for a Warship (Brown and Andrews 1980) 

 

Dirksen (1996) updated an illustration presented in (Brown and Andrews 1980), 

giving typical cost percentages of each UPC element. This is shown in Figure 2.11. 

 

 

Figure 2.11: Typical Warship UPC Breakdowns (Dirksen 1996) 
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Finally, Rawson (1973) illustrated the (undiscounted) LCC of a typical frigate, 

built at a procurement cost of £12M in 1971 prices. This is reproduced below. 

 

 

Figure 2.12: Life Costs of a 3,000 Tonne frigate (Rawson 1973) 

 

 Traditionally, more attention has been paid to UPC, rather than TLC and WLC. 

The main reasons being the greater political significance of UPC (due to its short term 

impact) (Dirksen 1996; UCL 2010a), the larger uncertainties involved in TLC 

estimation (since future costs, spanning across multiple decades, have to be considered), 

the greater effort required for TLC analysis and the ability to postpone TLC elements, 

through for example, reduced operation (Dirksen 1996). However, it is agreed that only 

through the investigation of the WLC would the cost of ownership be realistically 

assessed (Dirksen 1996; UCL 2010a). Moreover, selection between alternative designs 

would be more efficient through WLC consideration (where UPC increases could be 

accepted provided related TLC reductions could be demonstrated) (Dirksen 1996) and 

through the mere consideration of minimising UPC, difficulties in the maintenance and 

modernisation of the ship can result (Rawson 1973).  

 NATO (2009) defined the LCCing as “the discipline or process of collecting, 

interpreting and analysing data and applying quantitative tools and techniques to predict 

the future resources that will be required in any life cycle stage of a system of interest”. 

It is generally agreed that such an approach should be carried out throughout the 

operational life of a system (NATO 2009). However, it is also established that “the 

greatest opportunity to reduce life cycle costs usually occurs during the early stages of a 

programme” (NATO 2009) (i.e. the concept design stage) since “by the time that that a 

warship has been designed most of its upkeep characteristics and therefore its life costs 

have irrecoverably been committed” (Rawson 1973). This is summarised in illustrations 

found in (Andrews 1993; NATO 2009), the latter of which is replicated below. 
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Figure 2.13: The Greatest Opportunity to Reduce Life Cycle Costs Usually Occurs 

During the Early Stages of a Programme (NATO 2009) 

 

The application of LCC estimation techniques early in the design process would 

enable the investigation of trade-offs (UCL 2010a), the effect of varying the principal 

characteristics while the design is still flexible (Carreyette 1977), the evaluation of 

alternative solutions, the evaluation of cost reduction opportunities, the evaluation of 

areas of financial risk and uncertainty (NATO 2009). For example, Havron et al (2012) 

presented a case study where the propulsion system of the RN MARS Tanker was 

selected taking WLC into consideration, which identified that major drivers are fuel 

consumption and maintenance costs. 

 Being data driven, the methods used to assess the WLC of a system largely 

depend on the availability and quality of data (NATO 2009). An illustration reproduced 

in Figure 2.14 shows various cost estimating methods and their applicability throughout 

the programme life cycle. Further detail on these and other methods can be found in 

(NATO 2007). 

 

 

Figure 2.14: Cost Estimating Methods (NATO 2009) 
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Dirksen (1996) identified two broad costing techniques, bottom-up approaches 

(which “require estimates of labour hours and materials for each element and sub-

element of work which are then accumulated to obtain the total cost estimate” and are 

used at later design stages) and top-down or parametric approaches (which “use 

historical data from previous designs to estimate costs of new projects” and are used 

during the early design stages with less product definition). NATO (2009) lists the 

following techniques as relevant during the concept stage: Bayesian, parametric, 

analogous, expert opinion and rule of thumb techniques. Of these, parametric costing 

methods are most widely utilised during the concept ship design stages; with a 

definition of such techniques suggested by NATO (2007) as: “the parametric method 

estimates costs based upon various characteristics or measurable attributes of the 

system, hardware and software being estimated. It depends upon the existence of a 

causal relationship between system costs and these parameters. Such relationships, 

known as CERs (Cost Estimating Relationships), are typically estimated from historical 

data using statistical techniques. If such a relationship can be established, the CER will 

capture the relationship in mathematical terms relating cost as the dependent variable to 

one or more independent variables. Examples would be estimating costs as a function of 

such parameters as equipment weight, vehicle payload or maximum speed, number of 

units to be produced or number of software lines of code to be written. The CER 

describes how a product’s physical, performance and programmatic characteristics 

affect its cost and schedule”. Similar definitions have been given by Gerdemann et al 

(2012) and UCL (2010a). Advantages of parametric costing methods include the output 

of sensible estimates despite the many unknowns (including systems and equipment) 

and limited information at that design stage (UCL 2010a; NATO 2007) and the ability 

to perform rapid sensitivity analysis (Gerdemann et al 2012). Disadvantages are seen to 

be the inability to capture and reflect low level design variations and the large amount 

of data required to derive the complex relationships (NATO 2007; Gerdemann et al 

2012). Other parametric costing methods have been published. Carreyette (1977) 

proposed a parametric method based on historic data for assessing merchant ship initial 

build cost in the early design stages and investigating how changes in dimensions, 

weights, powering and carrying capacity might affect this cost. UCL (2010a; 2010b) 

describes a parametric method (largely based on the work done by Dirksen (1996)) for 

the estimation of WLC and all of its elements during the preliminary ship design stage, 

mainly applicable to naval ships. For UPC estimation, cost data are generally calculated 

through cost/tonne relationships for both material and labour (UCL 2010b). This costing 
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model has been used during various projects, including by Bradbeer and Andrews 

(2012a). 

 Presentation of costing data is also a vital area of LCCing, in order to realise the 

full advantages presented by chosen methods since they have significant impact on 

decision making and selection of alternative designs. Two common graphical 

presentations are reproduced in Figure 2.15. 

 

 

 

Figure 2.15: Example of a Baseline Life Cycle Cost Spend Profile (left) and a Life 

Cycle Cost Allocation (right) (NATO 2009) 

 

A similar spend profile was used by Rawson (1973), reproduced in Figure 2.12. 

 The relationship between the level of assumptions required for the cost 

estimation of a project and the project life cycle stage is illustrated in Figure 2.16. 

 

 

Figure 2.16: The Relationship Between Data Maturity and Level of Assumptions to be 

Applied (NATO 2009) 
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It is evident that numerous assumptions have to be made when conducting 

costing analysis (often by means of parametric techniques) during the early design 

stages, given limited design definition. This then leads to the conclusion that LCCing is 

far from being an exact science (NATO 2009). Necessary assumptions include:- 

- FOC costs as a proportion of UPC (Dirksen 1996; UCL 2010a); 

- Shipyard selection (Dirksen 1996); 

- Material and labour costs (UCL 2010b; Gerdemann et al 2012) (noting that 

shipbuilding remains labour intensive compared to most other heavy engineering 

(Usher and Dorey 1982)); 

- Shipyard purchasing overhead factors (Dirksen 1996; Gerdemann et al 2012); 

- Learning curves (UCL 2010b; Collins and Ward 2012) (however two warships 

of same class are rarely identical leading to difficulties in establishing 

appropriate learning curves (Usher and Dorey 1982)); 

- Degree of modularity (UCL 2010b; Gougoulidis 2012); 

- Extent of external sub-contractor involvement (Dirksen 1996; UCL 2010b); 

- When estimating UPC, factors such as the variance of wages are usually not 

considered, leading to the assumption that the ship is constructed in a day 

(Carreyette 1977); 

- Inflation and discounting factors (making future cost predictions questionable) 

(Dirksen 1996; UCL 2010b); 

- Fuel inflation (which could affect support, reliability, availability and 

maintainability of future vessels) (UCL 2010b; Collins and Ward 2012); 

- Frequency of refits (especially extent of update and effect of obsolescence) 

(UCL 2010b); 

- Cost margins for design and industrial uncertainty (Dirksen 1996; UCL 2010a). 

When this extensive list of assumptions is coupled with the difficulties associated with 

obtaining (often limited) appropriate historical cost data (Dirksen 1996; Rudius 2012) 

and the reluctance of parties to publish data that they perceive as confidential 

(Carreyette 1977) in order to derive the parametric relationships, ship costing during the 

preliminary design stage presents a major challenge. Especially since the quality of the 

cost estimates depends on the quality of this data (Gerdemann et al 2012). In addition, 

many variables (such as labour and material costs) are influenced by factors out of the 

shipbuilders (and ship operators) control, such as inflation, interest rates and relative 

currency strengths (Usher and Dorey 1982). All of the above factors generate large 



57 
 

uncertainties in cost estimates. These uncertainties should be quantified in order to 

assess project cost risk (Rudius 2012). 

 Despite these problems, ship costing during the early design phases has always 

been essential, the more so given the increased defence inflation without a 

commensurate increase in defence budgets. Such costing techniques would enable the 

investigation of factors such as quality vs. quantity, personnel reduction, innovative 

design, adoption of commercial standards and life extension programmes (Dirksen 

1996). 

 

2.3 Conclusions on Ship Design Issues 

 

 The recent developments in warship costs accompanied by the declining defence 

budgets can be countered through innovation in the ship design process and in 

individual ship’s design evolutions. Innovations are best explored in the early design 

stages, where the resources expended are relatively minimal, but most major decisions 

are taken. Recent progress in computer technology can be utilised to explore such 

innovations. Since most modern warships are architecturally constrained, practitioners 

have used computers to develop architecturally orientated preliminary design methods 

(e.g.: the UCL DBB approach). This has aided early stage decision making, increased 

designer confidence, eased the identification of design drivers and risks and provided 

the ability to compare alternative designs regarding their operational performance. All 

these can be investigated while ship configuration is still amenable to change and leads 

to increasing the detailing of early stage ship designs. 

Cost cutting is mainly aimed towards aspects which are difficult to quantify, 

such as survivability. This could lead to unfeasible designs given the increased 

complexity of modern naval operations, mainly focused in littoral waters, where a wide 

range of threats are possible. A number of survivability assessment tools currently exist 

and are outlined in the next chapter. 
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Chapter 3: Background to Survivability 

 

This chapter, consisting of four main sections, provides the survivability related 

background and context for the research. The first two sections of this chapter outline 

survivability by giving detailed definitions, highlighting the importance of survivability 

in naval ship design and operations and summarising current threats faced by navies. 

The third section, comprising the bulk of this chapter, identifies and details current 

survivability assessment techniques and their applicability in preliminary naval ship 

design. The final section provides the main conclusions of the research review related to 

survivability. The gaps in current survivability assessment techniques are identified, as 

is the importance of combining such methods with architecturally orientated design 

approaches in the preliminary ship design process. Thus an indication as to the way 

forward is given. 

 

3.1 Introduction to Survivability 

 

 NATO has adopted the following survivability definitions (NATO 2003a):- 

- “Survivability is the capability of a weapon system to continue to carry out its 

designated mission(s) in a combat environment. Survivability is a function of 

both susceptibility and vulnerability. 

- Susceptibility is the combination of factors that determine the probability of hit 

by a given threat (such factors include the susceptibility to detection, 

classification, targeting, attack, being hit, …). 

- Vulnerability is the extent of degradation of a system after having been 

subjected to combat threat(s), that is, the degree of mission impairment as a 

result of sustaining finite levels of damage caused by weapon hits.” 

The above is summarised in Figure 3.1. 
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Figure 3.1: Survivability is a Subject, Which Depends on the Interrelation of Many 

Subjects. Not Only Design but Also Operational Effects Can play an Important Role in 

Ship Survivability (NATO 2003a) 

 

However, the above definitions refer to a weapon system rather than a ship and 

fail to consider recoverability separately from vulnerability (as is often the case with 

many authors). For this reason, an extensive list of definitions (including illustrations) 

of survivability and its constituents, from several authors, is given in Appendix 3. 

 It is a commonly accepted fact that the main operational difference between 

commercial and naval ships is that the latter will be deliberately placed in harm’s way 

and should therefore be able to survive much harsher conditions than those normally 
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imposed by the marine environment. In order to survive such conditions, the inherent 

survivability due to a ship’s construction needs to be complemented by additional 

survivability features (Belcher 2008). These requirements (such as signature 

management and structural design) constitute the main distinction between commercial 

and naval ship design. Such requirements not only increase the complexity of naval 

ships (Hudson et al 1996) but are also difficult to quantify (Cooper et al 2007). 

Since the collection and analysis of wartime data is one of the most important 

methods of studying ship behaviour due to conflict, there are a number of published 

documents which present such data and statistics, mainly from WWII, but also from the 

Falklands and Persian Gulf conflicts for both naval (Korotkin 1960; Brown and Brown 

1986; Brown 1997; Barton 2009; Manley 2012) and commercial ships (Ling 1985). 

There have been a number of recent incidents (e.g.: USS Belknap – 1975, near fatal 

damage in collision with CV-67; Falklands Conflict – 1982 where six RN ships sunk 

and twelve damaged; USS Stark – 1986, struck by two Exocets in the Persian Gulf) 

which have raised questions about modern combatant survivability (Carter 1988; 

Manley 2012). This perceived vulnerability of modern warships can be attributed to a 

number of causes. For example, the lack of armour of modern combatants (when 

compared to their WWII equivalents) and the increase in complicated and sensitive 

sensors and electronic equipment (shift from enhanced armour to sensor capability), the 

increasing diversity of threats faced by such ships, the reduced manning levels, 

(Papanikolaou and Boulougouris 1998), the declining defence budgets leading to 

smaller fleets (Robb et al 2010) and the adoption of commercial standards and 

equipment in warships (Martin 1998; Rattenbury 2004). The above have led 

Papanikolaou and Boulougouris (1998) to stress the need for a new naval ship design 

philosophy aiming at enhanced survivability. 

 The need for a new design philosophy is further justified by the fact that the 

successful incorporation of survivability design features is one of the prime aims of the 

designer (Brown and Tupper 1989) and influences the combat system effectiveness of 

the overall warship to a great extent (Sajdak and Karni 2006). The recognised 

importance of survivability in recent years has led to the inclusion of the subject in ship 

rules (such as the Rules for Classification and Construction of Germanischer Lloyd 

(Petersen 2006)) and the publication of several documents together with the 

implementation of survivability management strategies by major navies, in order to 

guide designers (Said 1995; Reese et al 1998; Robb et al 2010). However, such 
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documents usually invoke feature-based rather than performance based specifications 

for survivability. 

 The absence of performance based specifications and the difficulties in 

quantifying overall survivability means that survivability features are harder to justify, 

therefore presenting a seemingly attractive area for cost cutting (Brown 1986b; Reese et 

al 1998). Thornton et al (2007) have also criticised the way in which survivability is 

costed and incorporated. They suggests that in many cases (e.g.: shock protection) it is 

the existence of a laid down level of survivability and not the level of protection 

required that has then caused the increase in cost. Aspects in the ship capability, such as 

defensive weapons, electronic warfare, TLC and manning are usually not taken into 

account in the cost of survivability (Thornton et al 2007). Martin (2007) argues that 

many survivability features serve more than one role, and therefore their contribution to 

assessing their impact on the cost of survivability is difficult. Also, survivability 

features such as reducing radar susceptible microgeometry by placing equipment behind 

bulwarks or below decks leads to cost benefits by better protecting the equipment and 

easier maintenance (Friedman 1991; Thornton et al 2007). Knight (2012a; 2012b) 

remarked that “of all the drivers in the design of warships, it is survivability which is 

often quoted as having the greatest impact upon the cost”; however, he also concluded 

that “simple survivability measures can be implemented cost effectively” and that 

omission of certain such measures “may have no effect on cost or may indeed have the 

opposite effect”. In addition, the UK National Warship Survivability Committee (2008) 

concluded that since there is not a good understanding regarding the cost of 

survivability, these costs have traditionally been (possibly wrongly after experience 

from the Type 45 Destroyer procurement process) assumed to be unrealistically high. 

Another limitation of the current procurement process is that procuring warships on the 

basis of functional requirements and therefore, seemingly to pass risk to industry, which 

may not have a good understanding of survivability, will probably lead to increased 

UPC (since industry deals with risk by applying contingency costs) and to degrade 

capability (Thornton et al 2007; National Warship Survivability Committee 2008). The 

National Warship Survivability Committee (2008) recommended that the MOD should 

“retain the risk associated with survivability requirements” and that the MOD and the 

warship prime contractor should attempt to better understand survivability related costs 

and explore alternative survivability procurement processes. 

 It is increasingly acknowledged that the required survivability level should be 

specified during the development of the operational requirements (Phillips 1998) with 
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survivability analysis commencing at the early design stages (Randles 2009). However, 

rather than the traditional feature based specification, the requirements should be set in 

terms of specific threats and outcomes defined by the customer, given validated analysis 

tools (Reese et al 1998; Doerry 2007). This would make survivability an integral part of 

the design process (Ball and Calvano 1994) and therefore assist in achieving a balance 

between the three survivability components and other design features (Brown 1990; 

Phillips 1998). Also, by setting operationally orientated requirements, the operator 

could be better informed about the capabilities of the ship (Reese et al 1998). 

 Balancing ship features across the three survivability components is seen to be 

of vital importance (Turner et al 2006; Harney 2010). After all, it is extremely 

impractical to design an insusceptible or invulnerable ship (MOD 2001). Logically, it 

could be argued that such a balance should not only be sought in a single ship design, 

but also across the fleet (MOD 2001; Harney 2010). It is argued that by considering the 

three together a more cost effective solution will be obtained (Sajdak and Karni 2006; 

Thornton et al 2006). In order to exploit these perceived advantages, a new separate 

design discipline, Total Ship Survivability, was developed in the early 1990s by the 

USN (Said 1995). 

 Robb et al (2010) investigated the cost of various survivability features for a 

5,000te surface combatant. As is the case with most design features, survivability 

features are much cheaper if considered and implemented at the earliest design stages; if 

left for the later stages they are not only more expensive, but sometimes impossible to 

add on (Brown 1986b; Robb et al 2010). Early consideration also allows a more 

effective integration of such elements with other ship systems (Belcher 2008; Said 

1995). In addition, survivability has an impact on initial sizing (Andrews 1987) and 

layout determination (Brown 1993; Andrews et al 2004), therefore further justifying the 

need to consider it at early stages. 

Various commonly accepted survivability enhancement design rules, relevant to 

the early ship design stages, have been established from past experience and from 

survivability analyses. These include: 

- Reducing microgeometry, shaping the hull, superstructure and certain 

equipment, and avoiding certain shapes for RCS reduction; 

- Cooling the exhaust by mixing it with cooler ambient air and hiding or masking 

hot metal parts for IR signature reduction; 
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- Mounting engines high up in the ship, avoiding underwater exhausts and 

eliminating gearboxes (through the adoption of IFEP) for noise signature 

reduction; 

- Including degaussing systems (and non-magnetic materials) for magnetic 

signature reduction; 

- Incorporating layered defence systems including soft-kill and hard-kill; 

- Hardening through the inclusion of shock resistant mounts (which also reduce 

the noise signature); 

- Adding armour to selected systems and critical compartments; 

- Locating critical equipment and compartments low in the ship to protect from 

abovewater weapons; 

- Protecting critical spaces by placing them inboard, shielded by less critical 

spaces or side passageways; 

- Employing concentration, separation and duplication of systems; 

- Increasing the number of WT blast, fire and smoke resistant bulkheads and 

doors for damage containment as well as improved damage stability; 

- Separating the ship into semiautonomous zones; 

- Including sufficient damage detection and suppression equipment and systems 

(e.g.: NBCD stores and firepumps); 

- Adopting a suitable access philosophy for improved crew evolutions; 

- Providing with adequate spare parts to repair damage. 

The above survivability reduction features, in addition to other such features more 

relevant to the later design stages, are described in greater detail in Appendix 4. 

Moreover, the above characteristics were largely incorporated in the ship design studies 

carried out during this research, reported in Chapter 5. 

 

3.2 Threats 

 

 The threat faced by warships has traditionally been considered to continually 

increase in magnitude, variety and complexity (Brown and Tupper 1989). The main 

reason for this is the rapid improvements in weapon technology (Barnett 1998). 

Warships are threatened by air, surface and underwater weapons with multiple 

sophisticated guidance methods (Papanikolaou and Boulougouris 1998). This is 

enhanced by the recent shift of maritime operations from blue water to green water 

(Surko 1994; Harney 2010). 
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While operating in blue waters, submarines (torpedoes and missiles), aircrafts 

(bombs and missiles) and surface ships (missiles and guns) constituted the main threats, 

operating in the littoral, warships may encounter all of the above as well as coastal guns, 

mines, fighter aircraft, attack helicopters and small patrol boats (Barnett 1998). In 

addition, operations closer to the shoreline decrease reaction times (Barnett 1998; 

Harney 2010), which (when coupled with the degraded performance of ship sensors in 

such environments (Braid et al 2009)) may lead to unsophisticated weapons prevailing 

against more sophisticated and expensive ones, therefore increasing susceptibility and 

vulnerability (Barnett 1998; Phillips 1998). The trend towards littoral operations has led 

to the development of a new type of warship, the LCS, with high speed and adaptability 

as its main characteristics, to exploit rapid reaction and reduce exposure to threats 

(Andrews and Pawling 2006a). 

Asymmetric threats are also present close to the shorelines; such threats are 

characterised by their short range (where stealth does not play an important role) and 

short duration (where weapon system recoverability is of secondary importance) 

(Belcher 2008). 

 However, naval ships are not only threatened by enemy and terrorist actions but 

also accidental threats such as fire, collision and grounding (Brown 1986b). During the 

late 80s, approximately ten large and medium fires occurred every year in RN ships, 

half of which started in machinery rooms therefore leading to significant damage to 

expensive equipment. Other potential accidents include collisions and groundings which 

could lead to sinking (Brown 1986b).  

Threat types are generally categorised in two groups, abovewater (e.g.: missiles, 

bombs, shells and bullets) and underwater (e.g.: torpedoes, mines and depth charges) 

(Begg et al 1990). It is also useful to categorise each threat in terms of their effects, e.g.: 

flooding, fire, magazine explosion, structural failure, shock, impact, blast (Brown 

1986b). These are discussed in greater detail in Appendix 4.2. 

Modern combatants face a variety of threats, ranging from massive missile 

attacks to terrorist attacks with unsophisticated weapons (Dicker 1986) leading to a 

layered defence strategy (Brown 1997). It is clear that such ships should be designed 

against a number of threat scenarios, where adversary, weapon type, delivery method 

and weapon effects should be clearly identified (Belcher 2008). Figure 3.2 summarises 

some of the major threats and weapon effects encountered by naval ships.  
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Figure 3.2: Anti-shipping Threat Weapons and Effects (Said 1995) 

 

 Appendix 4 is a summary of the literature regarding each of the three 

survivability constituents and how they affect ship design and current naval operations. 

 

3.3 Survivability Assessment 

 

3.3.1 Introduction 

 

 “Survivability assessment is the systematic description, delineation, 

quantification, and statistical characterisation of the survivability of a ship” (NATO 

2003a). In the past, the evaluation of most ship characteristics including survivability 

was difficult (Garzke and Kerr 1985). In recent decades (following on from the 

Falklands conflict), considerable progress has been made regarding survivability 

assessment methods; techniques such as simulation and virtual demonstrators are seen 

to potentially have a large impact in future ship design (Papanikolaou and Boulougouris 

1998). Various current survivability assessment methods can be used to audit a design, 

suggest improvements, improve communication between designers, builders and 

operators and justify survivability enhancement measures (Heywood and Lear 2006; 

Robb et al 2010). Turner et al (2006) and Randles (2009) suggest that survivability 

assessment should not merely be an audit function, but should be carried out from the 

outset of the design process. By integrating such techniques in the design process 

survivability assessment becomes another input in this iterative process (MOD 2001; 

Holmberg and Kotiranta 2012) (see Figure 3.3). 
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Figure 3.3: Traditional Design Spiral and the New Approach With Fully Integrated 

Survivability Assessment (Holmberg and Kotiranta 2012) 

 

Effective use of survivability assessment methods would enable designers to 

find a balance between the contributing components of survivability, assess weight and 

cost implications (Brown and Tupper 1989) and assess the comparison of different, 

competing, ship designs (Brown 1987). It has been suggested that survivability goals for 

individual ships should be established and met, therefore, departing from traditional 

rule-based ship design (Martin 1998). This has been made possible due to recent 

computer developments and it was identified during the early 1990s that requirements 

concerning percentages of remaining capability following specific threats would soon 

be definable (Brown 1993). High level Survivability statements could be included in the 

URD and detailed requirements (e.g. vulnerability probabilities after a given incident), 

in the SRD (MOD 2001). Therefore, scenarios, required survivability levels and 

survivability level definitions would need to be clearly identified. However, including 

survivability in the requirements of a naval ship introduces further constraints 

(Boulougouris and Papanikolaou 2004) to what is already a very complicated process 

(Papanikolaou and Boulougouris 1998). To deal with this Papanikolaou and 

Boulougouris (1998; 2004) regard the existence of methodologies quantifying the 

survivability of a ship early in the design process essential. Robb et al (2010), in Figures 

10 and 11 of their publication, show the difficulty and indicate associated likely costs of 

implementing survivability measures throughout a ship’s lifecycle.  
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Confirmation that a ship has met its (measurable) survivability requirements 

could include (MOD 2001): 

- “Analysis of the design (e.g.: using quantitative methodologies); 

- Material state assessment (e.g.: survey of completed vessel); 

- Trials (e.g.: FOC shock trials, signature measurements).” 

However, none is that definitive for what is a complex aspect of a complex system of 

systems. 

 

3.3.2 Susceptibility Assessment 

 

A number of susceptibility assessment methods currently exist in order to 

simulate the large variety of threats faced by modern naval ships. In addition, they can 

be used throughout the ship design process given that susceptibility enhancement 

techniques are largely independent of the level of design detail (and can be added even 

after construction through, for example, RAM, infrared signature suppression devices 

and low emission paints (Boulougouris and Papanikolaou 2012)); therefore, such tools 

specifically aimed at preliminary design are unnecessary. However, most susceptibility 

assessment tools rely on classified information (such as weapon performance data) and 

therefore, such tools (and their mechanisms) are not readily available to the public. A 

limited amount of information on current tools is presented below. 

Numerical models and computer programmes are used to estimate complex 

shape RCS (Foxwell 1990a). MOD signature estimation software include SPECTRE 

(for RCS prediction), ODIN and TMSS (for torpedo and mine activation respectively), 

SIREX (for IR signature prediction) and HVME (used to monitor platforms self-noise 

and take reduction measures) (Turner et al 2006; Martin 2007). Similar software can be 

used in order to produce lengthwise hit probability distribution, since hit location 

depends on the ship characteristics (signatures) and threat characteristics (homing 

method) (Boulougouris and Papanikolaou 2004). Turner et al (2006) accounted for the 

combination of SPECTRE with SURVIVE (a vulnerability assessment tool which will 

be described further on) to give likely ASM hit locations, and presented a case study 

involving a Leander class frigate. Similarly, SIREX can be employed when considering 

threats with IR homing devices (Martin 2007). However, factors such as environmental 

conditions, ship motions and manoeuvring and variations in weapon performance even 

out the hit probability distribution, making such methods questionable in general 

vulnerability analysis (MOD 2001). An alternative would be to assume a basic 



68 
 

mathematical distribution, such as a linear or normal distribution, thereby connecting 

susceptibility to vulnerability (Boulougouris and Papanikolaou 2012) and 

recoverability. Furthermore, Liwang et al (2012) presented a probabilistic risk 

assessment method combined with numerical simulation for an example transit of a 

naval ship through a minefield. Simulated parameters with corresponding statistical data 

included environmental factors, threat, ship and sensor characteristics and organisation 

and decision making (Liwang et al 2012). 

Defensive systems (hard-kill) effectiveness can be estimated through the CSEE 

which is utilised by UCL as part of its MSc in Naval Architecture course (McDonald 

2010). The CSEE is able to calculate probabilities of layered defence success against 

missile attack scenarios; however it is very simplified and relies on various 

assumptions. Budgets, scenarios and unclassified weapons data (such as range, 

maximum burst time for CIWS, firing rates, reaction times, kill assessment times, 

velocities and single shot kill probabilities) are given in order to determine reaction 

times and success probabilities (McDonald 2010). Furthermore, MOD uses the 

ThreeDim code for hard-kill performance which relies on data from signature models, 

sensor models and weapon system performance models (Thornton et al 2006). Since the 

1980s a Monte-Carlo simulation package for the engagement of ASMs by defensive 

missile systems had been developed for MOD use (Adams 1988). 

 Barnett (1998) attempted to assess susceptibility through an operational risk 

management method. Different scenarios and hazards (weapons) were identified and 

applied to various ships at different time periods. The hazards were assessed in terms of 

likelihood and consequence and placed in a matrix to convert them to risks (see Figure 

3.4). 

 

 

Figure 3.4: The Process of Placing the Hazards Within the Matrix Converts Them Into 

Risks (Barnett 1998) 
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However, the drawback of this method compared to the ones detailed above is 

its purely qualitative nature. 

 

3.3.3 Vulnerability Assessment 

 

Extensive development of vulnerability assessment methods has been carried out 

during the last decades in order to assess designs (Begg et al 1990) against different 

weapons and appraise probabilities of preserving capability (Brown and Tupper 1989). 

Nowadays, multiple vulnerability assessment models have been developed; Figure 3.5 

lists various software used by a range of navies. 

 

 

Figure 3.5: Vulnerability Assessment Models by Navy (Ashe et al 2006) 

 

During the 1990s, the main vulnerability assessment tools employed by the 

MOD were the REVS code for abovewater threats and the SSVUL code for underwater 

attack (Tozer 1993; Turner et al 2006). REVS included algorithms to model primary 

weapon effects (blast, fragmentation, kinetic) caused by missiles and shells. The ship 

was described by a geometrical model including system and equipment distribution; the 

ship’s systems were modelled by dependency tree diagrams; and the weapons were 

described by means of warhead mass, velocity, direction, fusing and fragment detail 

(Tozer 1993). This system definition method allowed the breakdown of top level 

functions (Float, Move and Fight) into more detailed systems such as full power, 

minimum power, AAW and ASW (Schofield 2006). Hit grids were then superimposed 

on the geometrical model, compartments affected, and by what level, were established, 

and through system fault trees, vulnerability probabilities were obtained. Typically 200-

300 compartments with 600-800 equipment items were modelled per ship (Tozer 1993). 

Figure 3.6 shows examples of Tozer’s (1993) output. 
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Representation of a 

REVS model. 

 

System functionality 

and equipment 

dependency. 

 

Representation of a 

REVS model with 

weapon hit grid 

superimposed. 

 

REVS prediction 

blast damage. 

 

REVS prediction of 

AAW system 

vulnerability to a 

missile attack (all 

failure mechanisms). 

Figure 3.6: REVS Vulnerability Assessment Code (Tozer 1993) 
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SSVUL operated under similar principles, but different weapon effect 

algorithms were used to model under water weapons, such as torpedoes and mines 

causing shock and whipping. Damage probabilities were then calculated through the 

Monte-Carlo technique (Tozer 1993). 

During the late 1990s, REVS and SSVUL were combined into QinetiQ’s 

SURVIVE software (Martin 1998; Turner et al 2006). SURVIVE is currently the 

principal vulnerability assessment code of the UK MOD simulating above and 

underwater weapons and their effects (such as kinetic energy, blast, fragmentation, 

shaped charge jets, shock, hull girder whipping) using a single ship model. It can 

simulate cumulative damage caused by multiple hits and can model novel hullforms, 

such as trimarans (Martin 1998). The ship’s structural features, its systems and the 

weapon threats are defined in a similar manner to its predecessors. Probabilities of 

retaining a particular system/capability for a given weapon threat constitute the final 

output. The algorithms used to predict the various weapon effects have been validated 

through small and full scale tests (Schofield et al 2012). Typical SURVIVE equipment 

layout views are shown in Figure 3.7, Figure 3.8 and Figure 3.9. 

 

 

Figure 3.7: SURVIVE Equipment Layout (Turner et al 2006) 

 

 

Figure 3.8: SURVIVE Type 23 Frigate Model in External and Transparent Views 

(Schofield 2006) 
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Figure 3.9: Systems Onboard a Frigate Concept (QinetiQ 2005a) 

 

As previously discussed, vulnerability assessment has usually been carried out at 

the detailed design stages, as an audit function, and design corrections (such as altering 

bulkhead positions to improve blast response) were often too expensive to be 

implemented.  Furthermore, the designer lacked confidence regarding the achievement 

of vulnerability reduction levels until the final design stages (Heywood and Lear 2006). 

Therefore, the need for software able to carry out such analysis at all design stages, 

including preliminary design, was identified (Pugh 2006). 

The PREVENT software, developed by BMT Defence Services, is designed for 

use at concept stage, with limited ship definition (Heywood and Lear 2006; Jones and 

Kimber 2012). PREVENT models the effects of various abovewater and underwater 

weapons (such as blast, fragments and shock). The ship’s structure is modelled and 

system components are located throughout the vessel; the ship is visualised in two-

dimensional slices and the systems are, again, defined by means of tree structures. 

Figure 3.10 shows the vulnerability of the propulsion power generation system, for a 

separated layout (the percentages represent the vulnerability of the system when hit at 

that cell). 
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Figure 3.10: Example of the PREVENT Tool (Heywood and Lear 2006) 

 

A version of SURVIVE, specifically aimed at early design stages, SURVIVE 

Lite, has also been developed (Pugh 2006; Turner et al 2006). Unlike PREVENT, 

SURVIVE Lite does not model the ship in two-dimensional slices, but in three 

dimensions, identically to SURVIVE. SURVIVE Lite inputs include the ships main 

structure and top level systems (e.g.: propulsion, steering and weapon systems), while 

lower level systems such as chilled water and high pressure air are neglected. 

Furthermore, weapon information does not have to be detailed; for example, generic 

fragmentation patterns are sufficient. Weapon hit locations are provided in the form of 

three-dimensional underwater or two-dimensional abovewater grid positions. The 

development of SURVIVE Lite, being fully compatible with SURVIVE, has allowed 

vulnerability to be managed throughout the design process (Pugh 2006). See Figure 

3.11 and Figure 3.12 for a sample attack grid and SURVIVE Lite analysis output. 

 

 

Figure 3.11: Sample Concept Attack Configuration (Pugh 2006) 
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Figure 3.12: SURVIVE Lite Rapid Analysis Output (Pugh 2006) 

 

There have been efforts to link SURVIVE Lite to concept design tools such as 

SURFCON (Section 2.1.5) in order to avoid the need and lengthy procedure of 

remodelling the design; however, such links are still at an immature stage (Coote 2010). 

Increasing levels of design detail also increase vulnerability estimation accuracy 

(Reese et al 1998) (increased detail leads to additional modes of failure). In addition, 

Coote (2010) reported the difficulties in simulating the zoning effects of concept level 

ship designs in vulnerability assessment tools aimed at such designs, due to the 

incomplete system models. Van Oers et al (2012) criticise the neglecting of detailed 

system architectures and the routing of connections in concept stage design and present 

a method which automatically produces alternative ship system routings, given the main 

component positions, which can be incorporated in vulnerability assessment software. 

The above problem can also be addressed by the utilisation of vulnerability margins 

(MOD 2001; Pugh 2006), saving computation time on the generation of connection 

routings, which will possibly be altered as the design evolves. Furthermore, it is easier 

and cheaper to implement vulnerability reduction measures on connectivity items rather 

than altering system layout later in the design process (Heywood and Lear 2006). 

 Further to the above tools, methods of estimating specific areas of naval ship 

vulnerability have been published. For example, Ren et al (2008) presented a method to 

estimate the residual strength of a damaged warship; Bradbeer and Andrews (2012a; 

2012b) presented a comparative simulation study on the underwater shock response of 

different structural styles. However, the clear disadvantage of such methods is the fact 

that they focus on a very specific part of the problem, neglecting, for example, system 

vulnerability. 
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3.3.4 Recoverability Assessment 

 

Most assessment methods consider primary weapon effects (e.g.: equipment 

damage due to blast and shock), rather than secondary, time dependant effects such as 

fire and flood (Brown and Tupper 1989). Modelling and measuring recoverability 

performance is considerably more demanding, not only due to the dynamic nature, but 

also due to the critical reliance on human performance that is out of the designer’s 

control (Brown and Tupper 1989; Thornton et al 2006). Boulougouris and Papanikolaou 

(2012) defined recoverability as “mainly an operational aspect relying mainly on the 

sufficient training of the crew although it may still pose several requirements to the 

designer”. Knight (2012a; 2012b) described recoverability as a “critical balance 

between systems and features implemented by the designers, and damage control 

practices and procedure implemented by the ships staff”. Databases on fire spread, 

flooding and crew actions are weak, limiting modelling capability, therefore, further 

research is seen to be required (Reese et al 1998). Methods such as the Delphi Method, 

which relies on expert advice, could be employed when sparse data is available 

(Harmathy 1982). Jones and Kimber’s (2012) comment describing a concept design that 

“the level of design information produced did not support a recoverability assessment” 

thus implied that a greater level of design definition was required than that appropriate 

for preliminary designs. The MOD (2001) suggests that an interim solution would be to 

incorporate recoverability by modelling the vulnerability of the whole DC system, 

without, however, considering progressive damage. It is generally agreed that 

recoverability analysis is still at its infancy (Thornton et al 2006; Schofield et al 2012) 

in contrast to vulnerability analysis. 

The majority of the literature concerning secondary effects focuses on the 

hazards of fires. Not only is it the most frequent hazard on ships (Azzi et al 2011), 

information can also be read across from buildings and infrastructure. A number of 

references concerning the spread of fire from compartments have been published, e.g.: 

(Thomas 1967; Walton and Thomas 1995), which present both statistical and physical 

models. Some literature on flooding has also been published, such as Jasionowski et al 

(2007) who propose a quantitative measure for ship vulnerability to flooding. However, 

fire and flood modelling techniques only assess a specific part of recoverability and 

therefore, cannot be considered as total recoverability tools. In addition, it is 

questionable if such tools (especially fire modelling techniques) are applicable to the 

preliminary ship design stages with a low level of design definition (where material 
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types, locations of doors and portholes and detailed access arrangements are not yet 

detailed). 

Safety and risk analysis techniques have been used to evaluate the characteristics 

of infrastructure, and could relatively straightforwardly be applied to naval ships. 

However, they would be limited in assisting the designer (possibly as a checklist) as to 

what safety features (e.g. fire mitigation systems, DC equipment) to include in the ship. 

Relying on expert judgment these techniques are subjective, qualitative and fail to 

evaluate recoverability as a whole. Furthermore, they fail to investigate how the layout 

of a ship would affect its recoverability. Some examples are given below. 

Chow (2002) proposed a 15-point EB-FSRS for assessing the fire safety 

provisions in high-rise buildings. The proposed ranking system is reproduced in Figure 

3.13. 

 

 

BD:     Buildings Department 

FRC:   Fire Resistance Construction 

FSI:     Fire Services Installation 

FLD:   Fire Load Density 

Figure 3.13: Proposed EB-FSRS for Old High-rise Buildings (Chow 2002) 
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The EB-FSRS was proposed to quantify how far the fire safety provisions in 

existing buildings deviate from recent fire codes (based on their score) and to design 

suitable fire safety management schemes for individual buildings (Chow 2002).  

Harms-Ringdahl (2003) developed the method of Safety Function Analysis in 

order to model, evaluate and propose improvements to safety characteristics at industrial 

installations. Safety functions were defined as functions that can reduce the probability 

and/or consequences of accidents and other unwanted events in a system. The method 

consists of hazard identification, safety function analysis (based on expert judgment) 

and examination of results (Harms-Ringdahl 2003).  

 Developments in computer technology led to simulation software for fire spread, 

flooding, personnel flow and DC training, which are subject to the limitations 

mentioned above (i.e. they are specialised in a very specific part of recoverability and 

are not particularly suitable for designs with a low level definition of detail). A further 

limitation of simulations is the relatively lengthy computation times required for 

accurate results. Some current simulation techniques are summarised below. 

A fire simulation tool example is the LUCIFER software, which was specifically 

developed for the French nuclear powered aircraft carrier (Le Garsmeur and d’Anselme 

1998). In addition, Patil and Kar (2012) describe the use of the fire simulation software, 

Fire Dynamic Simulator, in order to examine the smoke effects on alternative escape 

routes in passenger ships. Moreover, Gillespie (2004) combined the same fire 

simulation tool with the SURFCON concept design tool (see Section 2.1.5) in an 

attempt to study smoke, heat and fire progression in a naval ship defined at a 

preliminary design stage level of detail. However, items such as doors, hatches, interior 

accommodation passageways and HVAC/cable routings, normally not modelled in the 

early ship design stages, had to be included. 

 An example of ship personnel flow simulation software is MaritimeEXODUS. A 

collaborative project was carried out between UCL and the University of Greenwich in 

an attempt to use the software, in conjunction with Paramarine, to assess HF 

performance of naval ship design. A number of references regarding the project have 

been published, such as (Andrews et al 2008; Casarosa 2011; Deere 2012). In order to 

evaluate a ship layout using the two above software, a number of evaluation scenarios 

and Performance Measures (PMs) were developed. PMs helped in simplifying and 

collecting the relevant information for HF performance assessment. PM scores were 

normalised to allow meaningful comparison, and weighted according to their 

importance. A combination of a particular evaluation scenario and a set of PMs resulted 
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in a HPM, used to compare the human performance capabilities of competing vessels. 

Alternatively, a specific standard could be defined in order to evaluate a ship against 

that standard rather than comparing it to a competing design. Figure 3.14 lists various 

PMs. 

 

 

Figure 3.14: Example List of Performance Measures (Deere et al 2009) 

 

Similarities between this method and fire ranking system methods exist; 

however, a major difference is that rather than relying on expert opinion, scenario 

simulation output results were used as PMs. However, weightings are likely to be based 

on expert opinion and therefore need to be sensitivity tested. The project was aimed at 

preliminary stage ship design, nevertheless, personnel movement studies require 

additional design detail, such as connectivity between spaces, which are not normally 

modelled at this stage (Andrews and Pawling 2009). 

 Azzi et al (2011) examines the integration of fire simulation (Fire Dynamic 

Simulator software) and evacuation modelling (EVI evacuation model) in order to 

assess passenger ship safety performance during fire scenarios. Vassalos (2012) also 

combined EVI with fire growth software. In addition, he describes a flooding 

survivability analysis case study of the cruise ship ‘Project Genesis’ using evacuation 

and dynamic flooding simulation software such as PROTEUS3. The ship model used 
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(Figure 3.15) consisted of 717 compartments and 1,160 openings, clearly suggesting 

that the amount of detail required is not relevant in concept stage design.  

 

 

Figure 3.15: Flooding Analysis Model for Project Genesis (Vassalos 2012) 

 

FIREPROOF was a project funded by the European Commission aimed at 

developing a risk-based design framework for on-board fire safety (Fireproof 2013; 

Mermiris et al 2012). The method includes probabilistic models for ignition, numerical 

(CFD) models for the growth and impact of fires, evacuation simulation methods and 

probabilistic descriptions of the reliability and effectiveness of fire detection and 

suppression systems. Mermeris et al (2012) comment that the use of CFD and 

evacuation simulations are necessary when historical data and analytical tools are not 

available, leading to “a cumbersome process considering the substantial number of 

simulations and the extended processing  time that is needed for deriving the necessary 

fatality rates”. Figure 3.16 shows the level of detail necessary for fire and evacuation 

analysis. 

 

 

Figure 3.16: Generic Drawings for Fire Analysis (Left) and Preparation for Fire and 

Evacuation Simulation (Right) (Mermiris et al 2012) 
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The aim of the above work is to develop tools to examine safety performance of 

ships against fire and flooding which account for 90% of mercantile ship serious 

accidents (Mermeris et al 2012), especially ones incorporating innovative layouts, for 

which current prescriptive rule-based design is inadequate (Azzi et al 2011; Vassalos 

2012). 

 Simulation programmes are also used by various navies for DC training 

purposes. For example, the DC-Train tool is the current USN DC simulator, capable of 

modelling a wide range of scenarios, including fire, flood, smoke, equipment failures 

and personnel modelling (Grois et al 1998; Bulitko and Wilkins 1999). DC is 

exceptionally challenging and stressful and since real-life training is impractical, such 

simulators (which are also installed on board for afloat training) are aimed at improving 

crew performance. However, such DC simulation techniques are only effective on ship 

designs with full design definition, if not already constructed. Moreover, the plethora of 

probable DC scenarios would overcomplicate a DC simulation tool, therefore, 

questioning its relevance in early stage ship design. An example scenario, aimed at 

mercantile ships, was developed by Garre et al (2010) who compared an integrated 

bridge layout to a traditional one, by modelling a ship-to-ship collision. Nevertheless, it 

is accepted that such simulation methods can assess human performance. 

The use of VR technology for DC simulation has been recognised as an 

important future development since the 1990s (Mayfield and Morrissey 1998). Fire, 

smoke and flood scenarios could be incorporated in VR using CFD, and other relevant 

models. In addition, through three-dimensional walkthrough, the effect of damage on 

compartment appearance and smoke on reduced visibility can be demonstrated. During 

design VR techniques can be used to assist survivability related decisions and during 

crew familiarisation of the ship, to look at DC approaches (Mayfield and Morrissey 

1998). 

UK MOD has considered extending survivability modelling to include 

recoverability, with work being carried out to include this aspect into the SURVIVE 

software (Bain 2006; Turner et al 2006). The software’s algorithms have been updated 

to model secondary damage effects (such as fire and flood); the starting point is the 

output of SURVIVE’s vulnerability analysis, which is then passed on to modules 

modelling crew numbers, movements, locations and skills, DCFF procedures and 

equipment layout and availability, post-damage automatic system reconfiguration and 

spares and external assistance, all of which have been included in the software (QinetiQ 

2005a; Bain 2006). The software is relevant for use on various infrastructures (QinetiQ 
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2005b; Schofield 2006); however, it is limited to models with a level of detail not 

associated to preliminary stage design. Figure 3.17 depicts the node network (for crew 

movements) within SURVIVE, Figure 3.18 shows locations of DCFF equipment and 

Figure 3.19 and Figure 3.20 illustrate SURVIVE views of equipment, systems and 

functions pre and post-damage respectively. 

 

 

Figure 3.17: Node Network Within SURVIVE (Bain 2006) 

 

 

Figure 3.18: SURVIVE view showing locations of DCFF equipment (Bain 2006) 
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Figure 3.19: Equipment Systems and Functions Pre-damage (Bain 2006) 

 

 

Figure 3.20: Equipment Systems and Functions Post-damage (Bain 2006) 
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SURVIVE’s fire and smoke spread modelling module is relatively complex and 

includes heat release rates, compartment and plate temperatures and smoke densities 

over time (Sharp 2011), therefore, requiring a lengthy setup procedure. In order to 

counter this, fast and simple ‘Fast Fire’ algorithms were included in SURVIVE Lite, 

requiring greatly reduced design detail. The algorithms do not rely on fluid dynamic 

models or crew tracking information, but function by considering the initial size of the 

fire, the position of zone boundaries and the presence of fixed fire fighting systems. Fast 

Fire methods have been developed for small, medium and large fires; it is assumed that 

for ignitions after ship hits by weapons with warheads less than 30kg, the small fire 

algorithm should be used, and for larger warheads, the medium fire algorithm (Sharp 

2011). Although this level of simulation would be appropriate for concept stage designs, 

the accuracy of the results is uncertain, given the disregarding of numerous variables. In 

addition, the fast fire method cannot simulate fire spread; it simply outputs the 

vulnerability percentage of an item given that it was exposed to a fire. 

Departing from detailed simulations of specific events, Kang et al (2012) 

proposed an early design ship safety assessment model for mercantile ships, consisting 

of hierarchical elements such as function (e.g.: manoeuvrability), system (e.g.: 

propulsion, steering and navigation) and sub-system (e.g.: engines, navigation radars 

and steering control panels, with more sub-systems being included at later design 

stages). By mapping the location of the above items, assuming several damage 

scenarios to various sections of the ship and assuming flooding times of these sections 

versus the time required to stop flooding, the ship safety is assessed (Kang et al 2012). 

The above process could be applied to naval ships by including the various fight 

capabilities as functions, using vulnerability assessment software to identify the 

damaged sub-systems after a given encounter and using equipment repair times to 

assess the recoverability of the ship functions. It also has the advantage of accounting 

for the ship architecture; however, further development would be required to account 

for factors such as access to damaged areas. 

 

3.3.5 Total Survivability Assessment 

 

Work has been carried out in order to integrate the three survivability 

constituents and obtain a single, meaningful, estimation of warship survivability. When 

defining survivability quantification, Ball and Calvano (1994) presented the relationship 

of various probability measures shown in Figure 3.21. 
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Figure 3.21: The Relationship of Various Measures of Probability (Ball and Calvano 

1994) 

 

The following relationship was adopted: 

 

Ps = 1 – (Ph*Pk/h) (1) 

 

Ps: Probability of ship survivability; 

Ph: Probability of ship susceptibility; 

Pk/h: Probability of ship vulnerability (including recoverability considerations). 

Beyond proposing an approach to survivability on this basis, Ball and Calvano (1994) 

did not present any detail on how this should be populated. In addition, recoverability 

was neglected. 

 Sajdak and Karni (2006) presented a derivation of fundamental statistics 

regarding integrated survivability measurement. They identified the following three 

steps:- 

- Susceptibility analysis: signature analysis for threat detection, tracking, targeting 

and homing in examination, and assessment of countermeasures, environmental 

conditions and tactics to get probability that the threat will impact the ship. 

- System vulnerability analysis: examination of damage mechanisms, residual 

strength, system functionality after damage. 
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- System recoverability analysis: assessment of systems’ ability to regain (through 

reconfiguration, repair and replacement) lost capability. 

The standard survivability equation such as that by Ball and Calvano (1994) was 

criticised since statistical independence between the three constituents is assumed and 

time is not well defined (Sajdak and Karni 2006; Thornton et al 2006). A relationship in 

the form of: 

 

 P[survivability] = f(susceptibility, vulnerability, recoverability) (2) 

 

was suggested, eventually leading to the derivation of the MOTISS equation presented 

by Sajdak and Karni (2006). However, as before, no detail on how this equation should 

be populated was presented. 

Papanikolaou and Boulougouris (1998) introduced a method aiming to transform 

current deterministic standards into rational probabilistic approach criteria for naval and 

commercial ship damage stability. Performance analysis was based on a sequence 

including detection (function of threat sensors, range, signatures and environmental 

conditions), classification, target acquisition, launch of attack, ships response to jam, 

deceive or destroy enemy weapon. Probability of hit at a specific location was 

calculated, followed by probable damages and damage extent given a hit at that location 

and finally, probability of ship’s survival given the hit point and extent. The developed 

survivability performance analysis flowchart is reproduced in Figure 3.22.  

 

 

LEP: Linear Error Probability. 

Figure 3.22: Survivability Performance Analysis Flowchart (Papanikolaou and 

Boulougouris 1998) 

 

Boulougouris and Papanikolaou (2004) subsequently developed a damage 

stability optimisation method, using genetic algorithms as the optimisation process, for 

early ship design; outputs included survivability index, weight, shaft line length and 
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mobility. Successively, numerical simulation tools in order to examine the ship’s 

behaviour after flooding were incorporated (Boulougouris and Papanikolaou 2012). 

However, the above methods are limited to survivability against damage stability and do 

not look at, for example, system survivability. 

Richards et al (2008) looked at the survivability assessment of aerospace 

platforms. They proposed six susceptibility and eleven vulnerability design principles 

(Figure 3.23) which assist in the concept generation of survivable systems. 

 

 

Figure 3.23: Baseline Set of Survivability Design Principles (Richards et al 2008) 

 

Systems are analysed by mapping survivability features into the design principal 

categories to produce matrices giving a qualitative survivability description. The authors 

recognised that the next step would be to provide a quantitative implementation of the 

design principles through simulation in order to compare the survivability performance 

of competing designs (Richards et al 2008). 

In an effort to integrate all survivability constituents, the MOD has produced the 

MISSION programme (White and Allwood 2011; Parry 2012; Parry and White 2012). 

Schofield et al (2012) defined MISSION as a discreet event Monte-Carlo model of a 

maritime mission. Apart from modelling the survivability elements and their 

interactions (by incorporating software previously mentioned, such as ThreeDim (AAW 
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and ASuW), ANSWER and ODIN (ASW and torpedoes) and TMSS (mine warfare) for 

susceptibility; and SURVIVE for vulnerability and recoverability), MISSION has the 

ability of modelling the mission objectives, the ships within the context of and the 

interdependencies within the blue force and the threat environment (i.e. red force). This 

is because it operates on a maritime mission level with given task groups, objectives and 

attacks over a period of time, therefore, being able to be used as a war-gamming tool 

(Thornton et al 2006; Martin 2007). In fact, the main output of MISSION is the 

Probability of Mission Success (White and Allwood 2011; Parry 2012; Parry and White 

2012). The framework of the programme is given by Thornton et al (2006) and 

reproduced in Figure 3.24. 

 

 

Figure 3.24: Top-level View of Survivability Analysis (including feedback loops as 

green arrows) (Thornton et al 2006) 

 

MISSION can thus be summarised as “an event simulation tool designed to 

simulate a maritime mission” (White and Allwood 2011; Parry 2012; Parry and White 

2012) as opposed to a tool designed to integrate survivability assessment in the 

preliminary ship design process; also, being relatively complex, it requires a large 

number of input detail. Further information on MISSION is presented in Section 7.6.7. 

 

3.3.6 Survivability Requirement Specification 

 

Recent developments in survivability assessment methods have led many to 

believe that performance-based, rather than prescriptive, feature-based, requirements 

could be set for a ship design project. In addition, survivability assessment should 
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commence during the early ship design stages in order to influence the ship layout 

(Randles 2009). Since the early 1990s it was identified that, theoretically, it would be 

possible to specify in the requirements, statements in the form of probability of 

retaining a specific percentage of a given capability after a specified threat encounter 

(Brown 1990). The specified threat scenario is shown in Figure 3.25. 

 

 

Figure 3.25: The Scenario Expressed in Tasks and Threat (NATO 2003a) 

 

It was also clear that recoverability related requirements were the most complex 

to set (Reese et al 1998). This departure from the traditional approach and the move 

towards survivability requirements was clear during the CNGF project. The CNGF, 

which was assessed on REVS and SSVUL, was the first concept ship that included 

specific vulnerability targets, on major systems (Martin 1998). Percentage system 

vulnerability targets were also set for recent RN designs (the Type 45 Destroyer, Queen 

Elizabeth Class Aircraft Carrier (Thornton et al 2007) and Type 26 Frigate (Schofield et 
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al 2012)). For these projects SURVIVE was used throughout the design development to 

assess vulnerability and optimise reduction measures (Thornton et al 2007; Schofield et 

al 2012). Similarly, RCS targets were set and SPECTRE was used to confirm that they 

had been met (Thornton et al 2007). The significance of such assessment methods 

becomes clear when considering that full prototypes are not possible for ships, therefore 

requirements and targets must be met from the start (Thornton et al 2007). Similar 

vulnerability performance requirements were first implemented in the USN during the 

development of what was then the DD 21 (Reese et al 1998). Reese et al (1998) 

presented a possible format (replicated in Figure 3.26) for probabilistic Operationally 

Oriented Vulnerability Requirement (OOVR) specification. 

 

 

Figure 3.26: Probabilistic Approach to Specifying OOVRs for a Surface Ship (Reese et 

al 1998) 

 

Furthermore, the MOD (2001) suggested that vulnerability requirements should 

be in the form of function versus threat weapon tables, such as the one reproduced in 

Figure 3.27, containing required minimum probabilities. 
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Figure 3.27: Example Threat / Function Table (MOD 2001) 

 

3.4 Conclusions on Background to Survivability 

 

A number of survivability assessment tools currently exist; however, most are 

either aimed at a single survivability constituent (or even at a specific aspect of a single 

survivability constituent), being unable to balance between survivability reduction 

features (e.g.: SPECTRE and SURVIVE) and/or are qualitative therefore inadequate for 

quantifying requirement specification (e.g.: safety and risk analysis) and/or are aimed 

towards detailed designs where implementing changes is impractical (e.g.: personnel 

flow and fire simulation tools), as outlined in Section 3.3.  

Therefore, the need for a simple and rapid method for fully integrating and 

quantifying naval ship survivability has been identified. Since survivability is layout 

sensitive, it is proposed that the method should take advantage of architecturally 

orientated ship design processes, integrating survivability in the iterative design process. 

It should also be applied to early stage designs where there is minimum detail, which is 

amenable to change. The proposed method will combine a number of tools used by 

UCL and the MOD, as well as a new approach to quantify recoverability. This approach 

will attempt to overcome the difficulties of recoverability modelling (such as the lack of 

data, human performance and time dependence) by using weighted performance 

measures. The quantification of a certain aspect of warship performance would also 

simplify the design of “the most complex, diverse and highly integrated of any 

engineering systems” produced today (Graham 1982). 
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Chapter 4: Survivability Assessment Method Development 

 

 This chapter gives a detailed description of the survivability assessment method 

that was developed. It includes a combination of various existing and new tools. A 

summary of the proposed method was published by Piperakis et al (2012), which is 

reproduced in Appendix 5. This chapter outlines the assessment of each of the three 

linked survivability aspects in turn – with particular emphasis on the last 

(recoverability) before the overall survivability assessment method is outlined in 

Section 4.4. 

 

4.1 Susceptibility Assessment 

 

 It is evident that a number of susceptibility (and vulnerability) assessment 

methods currently exist. Moreover, susceptibility assessment techniques can be used 

throughout the ship design process. Therefore, the development of a new susceptibility 

assessment method was judged unnecessary. However, before deciding on which 

susceptibility tools to utilise, a representative threat scenario should be developed. In 

order for the survivability assessment method to be valid, it should work with a range of 

different scenarios. However, in order to demonstrate the proposed approach, it was 

decided that a clear single threat scenario should be adopted. The scenario selected was 

that of a naval ship being attacked by radar homing (at 15GHz), sea-skimming ASMs. 

The above scenario is demonstrated in Figure 4.1. 

 

 

Figure 4.1: Threat Scenario (McDonald 2010) 

 

The ship being attacked would attempt to defend itself using both its soft-kill 

systems (chaff decoys) and hard-kill systems (CIWS, PDMS, ADMS). These are the 

main defence strategies against ASMs as described by (Longworth 1983). This threat 
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scenario was selected as ASMs are seen to be a principal threat faced by modern 

warships (Longworth 1983; Surko 1994). In addition, since the survivability assessment 

method would have to function with a variety of threat scenarios, it is thought that the 

above scenario can relatively easily be altered in order to represent different attack 

situations. 

Three probabilities were calculated for the susceptibility part of the survivability 

assessment method. The probability of the ship being detected and identified, P(di), the 

probability that the missile locks on the ship, P(l), and the probability of the ship being 

hit by at least one ASM, P(h). These probabilities correspond to the four necessary steps 

in order for a ship to avoid being hit, as identified by Belcher (2008), and spelt out in 

Appendix 4.1. It was decided that P(di) would be taken to be unity for simplification 

purposes, given that it depends more on operational circumstances rather than the ship 

design itself, on which this method focuses. 

In order to calculate P(l), it was decided to utilise the SPECTRE software (the 

current UK MOD RCS prediction tool (Turner et al 2006; Martin 2007), described in 

Section 3.3.2) and easy access to SPECTRE was provided by the sponsor of this 

research, UK MOD Dstl (https://www.dstl.gov.uk/). The ship designs to which the 

method was applied were sent to Dstl, who then ran them on SPECTRE in order to 

obtain RCS results. Given that if the RCS of the decoys launched by the ship (soft-kill) 

is equal to that of the ship, there is a 50% chance of the ASM locking onto the ship 

(Papanikolaou and Boulougouris 1998), P(l) values were obtained by assuming a 

simplistic (and unclassified) linear relationship (see Figure 4.2). 

 

 

Figure 4.2: Relationship Between the Probability That the Missile Locks on the Ship, 

P(l), Against the Ratio of (Ship RCS)/(Chaff RCS) 
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Namely, 

 

If (RCS ship) < (2×RCS chaff), P(l) = 0.5×((RCS ship)÷(RCS chaff)), (3) 

 

If (RCS ship) ≥ (2×RCS chaff), P(l) = 1          (4)

  

While the chaff RCS should normally exceed that of the vessel being defended, it was 

assumed that all ship designs studied employed the same decoys. The chaff RCS was 

assumed to be 2,000m2 between 10-20GHz (Friedman 2006), although even higher 

values were given in that reference and by Cherming (2006; 2011). The average ship 

RCS, around 360o, at an elevation of 0o and frequency of 15GHz was used in the P(l) 

equations (Equations 3 and 4). This was done as the threat selected is sea-skimming and 

a specific orientation of the ship to the threat was not assumed, therefore avoiding 

unnecessary complexities in the threat scenario. However, SPECTRE is capable of 

outputting ship RCS data at different elevation angles and specific azimuth angles. 

P(h) was then calculated through the CSEE method (McDonald 2010). The 

CSEE, operated by UCL as part of its MSc in Naval Architecture course, has been used 

to estimate defensive system (hard-kill) effectiveness of an LPD against threat 

scenarios. As discussed in Section 3.3.2, the CSEE is able to calculate probabilities of 

layered defence success against missile attack scenarios; however it is relatively simple 

and relies on various assumptions. Unclassified but representative weapons data (such 

as range, maximum burst time for CIWS, firing rates, reaction times, kill assessment 

times, velocities and single shot kill probabilities) are specified to determine combat 

system reaction times and success probabilities (McDonald 2010). McDonald (2010) 

also gives other key assumptions:- 

- Ship movement/manoeuvring ignored; 

- 100% reliable/available systems; 

- Constant (i.e.: range, RCS, speed, manoeuvrability, environment independent) 

kill probabilities (of incoming missile by a given defensive system) assumed; 

- Investigates single ships rather than task groups; 

- Incoming missile profiles are given; 

- Environmental conditions are ignored; 

- Constant missile velocities assumed (a typical defensive missile velocity profile 

is likely to follow something similar to that illustrated in Figure 4.3). 
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Figure 4.3: Typical Missile Velocity V. Time Profile (Adams 1988) 

 

Given the above data and assumptions, event (combat system reaction) timelines 

can be generated, in order to calculate P(h). In addition, although the tool was originally 

intended for LPD type ships, it can easily be applied to other naval ships, such as 

combatants. The final susceptibility results were obtained by multiplying P(di), P(l) and 

P(h) for each ship design investigated. This product gives the probability that a ship was 

successfully detected, identified, targeted and hit by an adversary. This probability 

could be normalised with respect to the corresponding value for a baseline ship design, 

or used as an absolute value. 

 It is important to note that, as discussed in Section 3.3.2, the factors affecting the 

lengthwise hit probability on a ship are not limited to ship and threat characteristics. 

Factors such as environmental conditions, ship motions and manoeuvring and variations 

in weapon performance play an important role. Therefore, using RCS prediction 

software to obtain lengthwise hit probabilities is questionable (MOD 2001). 

Consequently, the lengthwise hit probability distribution was assumed to follow a 

normal distribution with a mean equal to half of the ship’s overall length and a standard 

deviation equal to a sixth of the ship’s overall length. This type of lengthwise 

distribution was advised by the Maritime Integrated Survivability team (part of the 

Maritime Systems Engineering Group in Naval Systems Department) of Dstl, who also 

use it in their own susceptibility analyses (in the MISSION programme) (Thornton et al 

2012). 

 

4.2 Vulnerability Assessment 

 

 As with susceptibility assessment, various vulnerability assessment tools 

currently exist, aimed at both concept and subsequent design stages. It was therefore 

decided that the development of a new vulnerability assessment tool was not necessary. 

Adding vulnerability reduction features on a warship is highly sensitive (in terms of 
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design difficulty, time and cost) to the level of design detail. Since the developed 

survivability assessment method is aimed at preliminary ship design, it was decided that 

QinetiQ’s SURVIVE Lite (Pugh 2006; Turner et al 2006) software, outlined in Section 

3.3.3, was appropriate for these studies. This also had the advantage that SURVIVE Lite 

is currently the principal concept stage vulnerability assessment code of the UK MOD 

and can simulate a large variety of threat types, including ASMs which are examined. 

It was decided that a limited amount of major ship systems/capabilities should 

be initially modelled; more specifically the Move and Fight related systems of the 

functional breakdown described in Sections 2.1.4 and 2.1.5. However, before deciding 

on those systems, the ship types on which the method would be applied to had to be 

determined. It was concluded that the method would first be applied on combatants, 

focusing particularly on frigate type ships, as they are the most common type of warship 

for most navies with blue water aspirations (Andrews et al 2004). Consequently, the 

systems of the ships to be investigated were:- 

- Move system; 

- Medium calibre naval gun system; 

- ASM system; 

- Aft SAM system; 

- Fwd SAM system; 

- Helicopter system. 

Furthermore it was decided that the survivability assessment method should also 

be applied to replenishment ship designs. For this ship type, discussions with Dstl staff 

led to the decision that the following major systems/capabilities would be investigated 

(Thornton and Day 2012):- 

- Move system; 

- Ability to RAS AVCAT; 

- Ability to RAS dieso; 

- Ability to RAS dry stores; 

- Ability to RAS ordnance; 

- Aviation support; 

- CIWS. 

As noted in Section 3.3.3, in preliminary design only major system components 

are considered, while items such as cables and pipes connecting system components are 

yet to be specified beyond gross weight. SURVIVE Lite is intended of operating at this 
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level of definition. System tree diagrams and system architecture illustrations from 

SURVIVE Lite are shown in Appendix 7. 

It was decided that SURVIVE Lite’s ASM hit grids (described in Section 3.3.3) 

should be separately applied to each WT section of each ship (for both port and 

starboard sides, and then averaged), as depicted in Figure 4.4 which illustrates Frigate 

Variant 1, detailed in Section 5.1.1. Vulnerability results (i.e. percentage vulnerabilities 

of the modelled equipment, compartments and systems) were obtained for a hit at each 

WT section. These results were multiplied by the probability that the given WT section 

was hit (computed through the lengthwise hit probability distribution described in 

Section 4.1). (The sum of the probabilities that each WT section of a ship design is hit is 

equal to 1, i.e. it is given that the ship is definitely hit (susceptibility = 1) which is a 

requirement for vulnerability analysis). Finally, by taking the sum of these results, the 

total system vulnerability for each system was obtained. 

 

 

Figure 4.4: SURVIVE Lite Hit Grid (Frigate Variant 1, port side attack) 

 

In order to keep the number of simulations and data processing to a reasonable 

minimum amount, only broadside attacks at an elevation of 0o were simulated. 

However, SURVIVE Lite is capable of modelling missile hits at various azimuth and 

elevation angles. 

The major ship systems modelled, listed above, do not have equal significance 

to one another and are highly dependent on the operational scenario undertaken by the 

ship. Therefore, weighting schemes had to be applied to the modelled systems. For the 

combatant designs, the weighting scheme adopted was that advised by Portuguese Navy 

officer, 1st Lt. Pedro Fonseca (2011) who was an UCL MSc student at the time and had 

been a frigate damage control officer in his recent seagoing appointment. The proposed 

weighting scheme is in accordance with the warship objective hierarchy ‘to float, to 

move, to fight’ (Brown and Tupper 1989) and is shown in Table 4.1. Specifically, the 
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Float group was allocated the maximum weighting of ten (this will be further detailed in 

Section 4.3.4 and Table 4.7), the Move group was allocated a weighting of nine, and the 

sum of the weightings of the systems in the Fight group was eight. Subsequently 

sensitivity testing on this weighting scheme was carried out and is presented in Section 

6.4.1. The values of all weighting schemes applied throughout this project were between 

0-10, zero corresponding to an insignificant entity, while ten, to one of maximum 

importance. 

 

Table 4.1: Combatant System Weighting Scheme 

MOVE Move system 9 = 9 

 

 

FIGHT 

Medium calibre naval gun system 2  

 

 

 

= 8 

ASM system 2 

Aft SAM system 1 

Fwd SAM system 1 

Helicopter system 2 

 

For the replenishment ship designs, the weighting scheme was advised by RN 

officer (rtd.), Lt. Cdr. Tim Day (2012) who had been a CVS NBCD officer, and was the 

Dstl Maritime Integrated Survivability Team Leader at the time. The proposed 

weighting scheme is shown in Table 4.2. From Table 4.2 (and Table 4.9 in Section 

4.3.4) it is evident that the ‘to float, to move, to fight’ hierarchy was not utilised by Lt. 

Cdr. Day for the allocation of the system weightings (as was for the combatants by 1st 

Lt. Fonseca). On this occasion, the allocation was based on the hierarchy of capabilities 

for a replenishment ship as perceived by Lt. Cdr. Day. 

 

Table 4.2: Replenishment Ship System Weighting Scheme 

MOVE Move system 10 = 10 

 

 

FIGHT 

Ability to RAS AVCAT 10  

 

 

 

 

= 39 

Ability to RAS dieso 10 

Ability to RAS dry stores 6 

Ability to RAS ordnance 8 

Aviation support 2 

CIWS 3 
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The final vulnerability results were obtained by normalising the individual 

modelled system vulnerabilities with respect to the corresponding system vulnerabilities 

of a baseline ship design. The above weighting schemes were applied to these 

normalised values, and the sum taken. This procedure led to a single figure for a ship’s 

vulnerability, similarly to the ship’s susceptibility (as outlined in Section 4.1). However, 

unlike susceptibility, this single value has no meaning (and cannot even be derived) 

unless a ship design is compared to at least one, or more, other ship designs. Therefore 

this procedure is strictly comparative and does not output an absolute vulnerability 

value; rather, it outputs a vulnerability value which has been normalised with respect to 

a baseline ship design. However, the individual ship system vulnerabilities are absolute 

vulnerabilities before normalising against other systems and weighting. 

In addition to the move system and major Fight systems and their components, 

ATU and ventilation compartments, firepumps, NBCD stores, FRP section bases, 

workshops, naval stores, spare gear stores and HQ1 and HQ2 were also modelled in 

SURVIVE Lite. These items were modelled in order to obtain vulnerability data of 

components necessary for recoverability, which was then used in the recoverability 

section of the proposed approach (see Section 4.3). 

Finally, the Fast Fire algorithm of SURVIVE Lite (Sharp 2011), which is 

relevant to preliminary stage ship design, was employed in order to determine further 

system and component damage due to secondary weapon effects. Although it was 

suggested that the medium fire algorithm should be used for warheads above 30kg 

(Sharp 2011), the Maritime Integrated Survivability team of Dstl suggested using the 

small fire algorithm (Thornton et al 2011). Damage due to flooding was not considered 

since only abovewater threats were examined, although SURVIVE Lite has the 

capability to model flooding damage to systems and components, and, therefore, the 

proposed approach could easily include modelling underwater threats. 

 

4.3 Recoverability Assessment 

 

 As is evident from Section 3.3.4 modelling recoverability is the most demanding 

area of survivability assessment for a number of reasons such as the limited ability to 

model secondary damage and crew actions, the inadequate data available and the 

difficulty of incorporating crew readiness and skill levels. A number of recoverability 

assessment techniques exist, however, many, such as safety and risk analysis methods, 

are qualitative. Thus, they are not quantifiable but rather are subjective since they 
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usually rely on expert judgment and, furthermore, do not take specific ship architectural 

features into account and so are considered to be of limited design use. They could 

possibly, however, be useful when deciding on what DC equipment to have on board 

and what procedures to follow. Numerous other methods are focused on a particular 

aspect of recoverability, such as fire spread or DC crew evolutions/personnel 

movement. This means that they rely on simulations and are therefore more appropriate 

to relatively detailed ship definitions. A tool aimed specifically to preliminary ship 

designs does not seem to exist; neither does one which specifically investigates how 

ship configuration/layout/architecture would affect overall naval ship recoverability 

(since recoverability is seen to be more heavily reliant on operational/human factors 

rather than design factors). For these reasons, it was decided that a new recoverability 

assessment method should be developed, to investigate such issues at early stage design. 

By applying the proposed recoverability method to early stage design, where 

there is minimum detail, changes in ship layout could be relatively easily investigated. It 

was decided that simulations were probably not appropriate for the level of ship 

definition in the ship design studies produced. However, assessment of recoverability 

requires temporal metrics, such as the time taken to repair systems, which could be 

obtained from simulation. An alternative analytical method was thus required to 

generate this data. It was determined that the new recoverability assessment approach 

would work on the basis of developing a number of Performance Measures (PMs) 

together with an appropriate weighting scheme which might overcome the difficulties in 

recoverability modelling (e.g.: lack of data, human performance and time dependence). 

The PM method was inspired by work such as (Chow 2002) and (Casarosa 2011) (see 

Figure 3.13 and Figure 3.14). PMs relevant to recoverability were derived from existing 

work, such as the two references above and other literature on naval ship recoverability 

(see Appendix 4.3), as well as from interviewing 1st Lt. Fonseca, knowledgeable in the 

area of (frigate) damage control. Values for those PMs were obtained using the 

Paramarine and SURVIVE Lite tools. 

 

4.3.1 Category 1 Performance Measures 

 

The PMs developed were split into three categories. As before, the weighting 

schemes of all PMs were derived with the assistance of 1st Lt. Fonseca (2011) for the 

combatant design studies, and Lt. Cdr. (rtd.) Day (2012) for the AOR design studies, to 

ensure consistency. The three PM categories and their associated weighting schemes are 
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presented in Table 4.3, Table 4.4 and Table 4.5. Sensitivity testing on this weighting 

scheme was carried out and is presented in Section 6.6.1. Note that the larger the value 

of a specific PM is, the worst its performance and that some PMs have units while 

others are dimensionless. 

The first category, which is detailed in Table 4.3, consists of PMs related to 

immediate effects on DCFF, upon which the Float objective at the top of the warship 

hierarchy depends. 

 

Table 4.3: Immediate DCFF Performance Measures (Category 1) 

 
PM Software 

Weighting 

Combatant AOR 

1.1 Average distance between FRPP and 

damaged WT section (m) 

Paramarine 
7 4 

1.2 Average number of WTD operated per FRP Paramarine 4 4 

1.3 Number of internal decks in damaged WT 

section 

Paramarine 
6 5 

1.4 Average total width of alternative 

passageways (inverse) (m) 

Paramarine 
7 2 

1.5 ATU and Ventilation (of damaged zone) 

(man-hours) 

SURVIVE Lite 
8 9 

1.6 Firepump (of damaged zone) (man-hours) SURVIVE Lite 2 1 

1.7 Overall firepump system (man-hours/no of 

equipment) 

SURVIVE Lite 
8 10 

1.8 NBCD stores - aft FRP section base SURVIVE Lite 1 1 

1.9 NBCD stores - fwd FRP section base SURVIVE Lite 1 1 

1.10 Remaining NBCD stores SURVIVE Lite 2 1 

1.11 Power (of damaged zone) (man-hours) SURVIVE Lite 2 1 

1.12 Overall power system  (man-hours/no of 

equipment) 

SURVIVE Lite 
8 10 

1.13 SCC (HQ1) (man-hours) SURVIVE Lite 6 6 

1.14 Bridge (HQ2) (man-hours) SURVIVE Lite 2 4 

1.15 Ops. Room (man-hours) SURVIVE Lite 6 10 

1.16 Aft FRPP SURVIVE Lite 10 5 

1.17 Fwd FRPP SURVIVE Lite 10 5 
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PMs 1.1-1.4 in Table 4.3 are related to the ease of access of the damaged part of 

the ship from the FRP section bases, i.e. they are human factor PMs. Values for those 

PMs were taken directly from the CAD software used for the ship design studies, 

Paramarine. PMs 1.1 and 1.2 are directly related to the time needed to reach the 

damaged WT section of the ship. For PM 1.4, which can be interpreted as the number of 

alternative routes between the FRP section bases and the damaged portion of the ship, 

the inverse is taken, in order to remain consistent with the point made above, i.e. the 

larger the value of a specific PM, the worst its performance in survivability terms. The 

term ‘average’ is contained in the description of PMs 1.1, 1.2 and 1.3 (Table 4.3) as it 

was decided that each ship design would include two FRP section bases; therefore, the 

corresponding values for the two bases were averaged. PM 1.3 is related to the ease of 

(vertical) access and personnel evolutions within the damaged section in order to deal 

with the damage and remove casualties. In addition, the larger the number of decks in 

the hit WT section, the greater extent of a resultant fire. 

Values for the remaining PMs in Table 4.3 (as well as the ones in Table 4.4 and 

Table 4.5), all of which have the indication ‘SURVIVE Lite’ in the software column, 

were obtained by means of the following procedure: First, the output from the 

SURVIVE Lite models indicated if the specified item had been affected by a specific 

hit. All unaffected items were given a value of zero. The affected items, i.e. all items 

with vulnerability greater that 0% (with the exception of PMs 1.8-1.10 and 1.16-1.17) 

were given a PM value based on the assumed number of man-hours to repair that 

specific equipment. Values for the number of man-hours necessary to repair each 

equipment item are detailed in Section 4.3.5. PMs 1.8-1.10 (stores) and 1.16-1.17 

(humans) were assumed to be unrecoverable and were, therefore, given a value of 0 if 

unaffected by a hit, and 1 if affected. Although SURVIVE Lite was used to indicate 

what equipment items had been affected by a given threat, no vulnerability percentages 

were used in the recoverability assessment method. This is because, in order to carry out 

recoverability assessment, vulnerability (and susceptibility) needed to be taken as unity. 

Therefore, even if SURVIVE Lite outputted a vulnerability value of 0.1% for a specific 

item, it was assumed that, for recoverability assessment purposes, that item had been 

definitively hit, i.e. vulnerability = 1. 

PMs 1.5-1.7 are related to the propagation and suppression of fire and smoke 

after a ship has been damaged. PM 1.5 looks at the state of the ventilation system of a 

ship after attack, upon which smoke spread and containment are heavily reliant. The 

indication ‘of damaged zone’ is included in the description of PM 1.5, as it was decided 
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that each zone of each ship designed should have an independent non-cross-connected 

ventilation system. Therefore, the smoke hazards in a particular zone of the ship should 

be directly dependent on the state of the ventilation system of that zone after attack. 

PMs 1.6 and 1.7 examine the state of the fire fighting systems of a ship after attack. As 

with the ventilation system, each zone of each ship designed had an independent 

firemain system, however, the firemain systems were assumed to be cross-connected. 

This justifies the existence of two PMs for fire suppression, one for the damaged zone 

and one for the overall ship. Although a firemain system contains a number of 

connectivity items (in addition to the actual firepumps) those were not modelled due to 

the level of design detail in the concept ship design studies. As explained previously, 

this is a common simplification step in survivability analysis of concept stage ship 

designs (see Section 3.3.3). Therefore, the whole firemain system of a ship was 

represented exclusively by its firepumps. In PM 1.7, the number of man-hours required 

to repair the affected firepumps was divided by the total number of firepumps in that 

ship design. Thus, the more firepumps there are on the ship (increasing redundancy), the 

smaller the value of the PM. This was done as the firepumps were assumed to be cross-

connected in parallel rather than in series, i.e. if one firepump is out of action, the ship’s 

whole firemain system remains operational. 

PMs 1.8-1.10 are related to the manual equipment necessary for DCFF, and their 

performance reflects on the state of the NBCD stores after a given attack. Again it was 

decided that each zone of each ship designed should have independent NBCD stores. 

Given that usually there are two FRP section bases on a modern combatant (Figure 

A36), the FRP section bases and the NBCD stores, in the zones where the FRP section 

bases were located, would be positioned appropriately (PMs 1.8 and 1.9). A separate 

PM for the remaining NBCD stores was created (PM 10). Note that for PM 1.10, the 

number of remaining NBCD stores affected by a given hit was divided by the total 

number of remaining NBCD stores to take redundancy into account (as with PM 1.7). 

PMs 1.11 and 1.12 are related to the state of the power generating system of a 

ship after attack. Power is not only required for the ship to attempt to carry on its 

mission even if hit, but also to operate many of the DCFF equipment necessary to deal 

with the internal battle. In addition, complications in the power generation and 

distribution system could lead to hazardous situations while fire fighting. These two 

PMs function in an identical manner to PMs 1.6 and 1.7 respectively, as described 

above. 
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PMs 1.13-1.15 are related to command, control and communication during the 

DCFF process. PM 1.13 is related to the state of the SCC (with which HQ1 is usually 

collocated) after a given attack. Similarly, PM 1.14 is related to the state of the Bridge 

(with which HQ2 is usually collocated) and PM 1.15 to the state of the Operations 

Room, after a given attack. The importance of these three compartments is highlighted 

in Appendix 4.3: in RN ships, overall DC responsibility and priority setting belongs to 

the CO, who is usually at the Operations Room or bridge (Clements and Kneebone 

1985). He is in direct communication with the NBCDO (usually the MEO) located at 

HQ1, and the WEO located in the Operations Room. The NBCDOs responsibilities 

include DC co-ordination (damage state information, resource availability and 

allocation, containment and restoration actions), while the WEOs respectively is combat 

system availability (Clements and Kneebone 1985). In addition to DC, the MEOs 

responsibilities include propulsion and power. The CO, therefore, has to manage and 

balance the internal and external battles. 

Finally, PMs 1.16 and 1.17 are related to the state of the FRPs after a specified 

attack. The FRPs are responsible for dealing with the secondary effects immediately 

following a hit, and containing the damage. Each ship was assumed to include two 

FRPs, as previously indicated, split forward and aft. More FRPs could relatively easily 

be incorporated by increasing the number of PMs. This would be relevant in ship types 

such as LPDs, LPHs and CVs. 

Since the Category 1 PMs (Table 4.3) relate to the immediate actions/effects of 

an ASM hit, secondary damage effects (i.e. fire damage in this case) were not accounted 

for. 

 

4.3.2 Category 2 Performance Measures 

 

The second category of PMs, given in Table 4.4 together with the associated 

weighting scheme, relates to the items necessary for major system recovery (i.e. 

recovery support), once the secondary effects have been dealt with; whereby, ‘major 

system recovery’ refers to the modelled systems listed in Section 4.2 and Table 4.1 and 

Table 4.2. 
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Table 4.4: Major System Recovery Performance Measures (Category 2) 

 
PM Software 

Weighting 

Combatant AOR 

2.1 Aft workshops (man-hours) SURVIVE Lite 3 5 

2.2 Fwd workshops (man-hours) SURVIVE Lite 3 5 

2.3 Naval stores SURVIVE Lite 1 2 

2.4 Aft spare gear stores SURVIVE Lite 7 5 

2.5 Fwd spare gear stores SURVIVE Lite 7 5 

2.6 SCC (updated value) (man-hours) SURVIVE Lite 6 9 

2.7 Ops. Room (updated value) (man-hours) SURVIVE Lite 7 8 

  

 Values for the above PMs would be obtained in an identical manner as the PMs 

in Table 4.3, with the indication ‘SURVIVE Lite’, under the Software column. That is 

to say, PM 2.3-2.5 (stores) were assumed to be unrecoverable, therefore, given a value 

of 0 if unaffected by a specific hit, and a value of 1 if affected. The remaining PMs were 

valued in terms of man-hours to repair that compartment (if affected) after a given 

attack (Section 4.3.5). Again, SURVIVE Lite was used to indicate which compartments 

have been affected by a specific missile attack. 

 PMs 2.1 and 2.2 attempt to characterize the state of a ship’s workshops after an 

attack. Workshops might be necessary in order to repair major equipment, especially 

ones related to the power generating system of a naval ship, although it is accepted that 

most repair work is currently conducted on site. It was assumed that the ships to be 

designed would include split forward and aft integrated workshops; hence the two 

workshops related PMs (although, this could easily be altered in order to accommodate 

a different number of workshops). 

 PMs 2.3-2.5 are related to the state of the ship’s naval and spare gear stores after 

a given attack. These stores contain equipment, spare parts and raw material which may 

be necessary in order to repair and put back into action an affected major ship system. It 

was assumed that the ships to be designed would include a single naval store and split 

forward and aft spare gear stores, although, once again, this arrangement could be 

altered. 

Finally, PMs 2.6 and 2.7 relate to the condition of the SCC (and, hence, HQ1) 

and the Operations Room after a given attack. As clarified in Section 4.3.1 these two 

compartments are necessary for command, control and communication purposes. The 

NBCDO positioned in the SCC is responsible, amongst other tasks, for coordinating 
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restoration efforts of the major systems damaged after the attack and the proper 

operation of the power and propulsion systems. 

This category of PMs includes fire effects. (Therefore, PMs 2.6 and 2.7 are 

‘updated value’ of PMs 1.13 and 1.15, including secondary effects, as indicated at the 

description of the PMs in Table 4.4). Fire effects are included since these PMs ‘relate to 

the items necessary for major system recovery, after secondary effects have been dealt 

with’. Since no fire spread simulation techniques were incorporated, it was assumed that 

all equipment and compartments (only) within the hit WT section would be affected by 

the resulting fire. Therefore, for Category 2 PM analysis, all items within the hit WT 

section, in addition to all other items affected by the missile hit (outputted by SURVIVE 

Lite) were assumed to be affected. 

 

4.3.3 Category 3 Performance Measures 

 

The third and final PM group (Category 3) is listed in Table 4.5, together with 

the associated weighting scheme. This category includes PMs relevant to the recovery 

of the specific major systems modelled, listed in Section 4.2 (Table 4.1 and Table 4.2). 

The Category 3 PMs were applied to all of those major systems, in a manner that is 

described in Section 4.3.4. 
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Table 4.5: Individual Major System Recovery Performance Measures (Category 3) 

 
PM Software 

Weighting 

Combatant AOR 

3.1 Minimum man-hours for system to 

be functioning 

SURVIVE Lite 
10 10 

3.2 Number of man-hours for system to 

be 100% 

SURVIVE Lite 
3 5 

3.3 Access measure from naval stores SURVIVE Lite and 

Paramarine 
1 2 

3.4 Access measure from aft spare gear 

stores 

SURVIVE Lite and 

Paramarine 
3 5 

3.5 Access measure from aft 

workshops 

SURVIVE Lite and 

Paramarine 
2 5 

3.6 Access measure from fwd spare 

gear stores 

SURVIVE Lite and 

Paramarine 
3 5 

3.7 Access measure from fwd 

workshop 

SURVIVE Lite and 

Paramarine 
2 5 

3.8 Equipment in damaged section 

measure 

SURVIVE Lite and 

Paramarine 
8 10 

 

 PMs 3.1 and 3.2 attempt to give a description of the severity of damage to a 

major system of a ship after a specific incident and the time needed to restore it. The 

score of PM 3.1 would be equal to the total number of man-hours required to repair all 

damaged equipment items of a specific major system which are in series (tree diagrams 

of all major system modelled can be found in Appendix 7). Thus, this PM, by taking 

equipment redundancy into consideration, describes the minimum time needed to get an 

affected major system back into action. On the other hand, the value of PM 3.2 is equal 

to the total number of man-hours required to repair every single equipment item of an 

affected major system, whether in series or in parallel. This can be illustrated by 

considering the simplified system tree diagram below. 
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Figure 4.5: Simplified Major Ship System Tree Diagram 

 

Consider that, after a particular incident, all equipment items of System 1 have 

been affected, putting System 1 out of action. The value of PM 3.1 would be equal to 

the sum of the number of man-hours needed to repair eqpt 1, eqpt 3 and either eqpt 2.1 

or eqpt 2.2 (whichever is less); while the value of PM 3.2 would be the number of man-

hours required to repair all four damaged equipment items, therefore, not taking 

redundancy into account. PM 3.2 increases in importance when follow-up attacks are 

expected. 

 PMs 3.3-3.8 endeavour to reflect on the difficulty in accessing equipment which 

has been damaged after a specific attack and, therefore, the effort required to repair 

them. The significance of such factors is clear when considering that most of the repair 

work will generally be carried out on site. The above access measures are then 

quantified by multiplying the criticality of affected equipment items by the number of 

man-hours needed to repair that equipment item having been affected by the specific hit 

(as revealed by SURVIVE Lite). Criticality, in this context, is defined as: 

 

 Criticality = 1 ÷ (number of equipment items (of a 

                                                         specific major system) in parallel) (5) 

 

For example, if there are four propellers in a ship, all providing the same capability, 

each has a criticality of ¼. Alternatively, when considering System 1 in Table 4.5, eqpt 

1 and eqpt 3 each have a criticality of 1, whilst eqpt 2.1 and eqpt 2.2 have a criticality of 

½. This was done in order to denote the diminishing importance of a specific equipment 

item should there be an increasing number of equipment items that can carry out the 

same functions (i.e. redundancy/duplication) and thus, the value of the PM is 

proportionately decreased to commensurate with the damaged equipment’s associated 

redundancy level. However, PMs 3.3-3.7 were only applied to damaged equipment 

requiring personnel to cross the damaged WT section in order to get access from the 
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corresponding store/workshop. In addition PM 3.8 was obtained by multiplying the 

criticality (Equation 5) by the number of man-hours needed to repair each equipment 

item which was affected by the given hit and was located in the damaged WT section in 

question. Hence the software column of Table 4.5 indicates ‘SURVIVE Lite and 

Paramarine’, as Paramarine was required to locate the affected equipment items. For 

example, suppose that System 1 (Figure 4.5) was laid out as illustrated in Figure 4.6 in a 

typical frigate and all naval and spare gear stores and workshops are co-located at the 

compartment shown in green.  

 

 

Figure 4.6: Example Architecture of Simplified Major Ship System 1 

 

In this case, given an ASM hit at the WT section shown (and supposing that all 

four equipment items of System 1 have been affected by the hit), the values of PMs 3.3-

3.7 would be identical and equal to the criticality of eqpt 3 (i.e. 1, as previously 

explained) multiplied by the number of man hours needed to repair that equipment item. 

The value of PM 3.8 would be equal to the criticality of eqpt 2.2 (i.e. ½) multiplied by 

the number of man-hours required to repair that equipment item. Although eqpt 1 and 

eqpt 2.1 have also been damaged by the incident, access to them is assumed 

unobstructed, and, therefore, they do not contribute to those, access related, PMs. If 

there were more damaged equipment items of System 1 forward of the hit WT section 

in Figure 4.6, the values of PMs 3.3-3.7 would be the sum of the products of each item’s 

criticality and repair time. Likewise for PM 3.8, should there been more System 1 

equipment items inside the damaged WT section. 

 Secondary (fire) damage effects were included in PM Category 3 analysis in the 

same manner to that for such effects being accounted for in PM Category 2 analysis 

(Section 4.3.2). 
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4.3.4 Recoverability Performance Measures Matrix 

 

As mentioned in Section 4.2, SURVIVE Lite was run separately to simulate an 

ASM hit at each WT section of each ship designed, as illustrated in Figure 4.4. 

Therefore, values for all 32 PMs were obtained for a given hit at each WT section. PM 

matrices, such as the one shown in Table 4.6 (for a combatant) were then completed to 

analyse the recoverability of each ship design studied. This procedure is now explained 

in more detail. 
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 Firstly, from columns 1 and 2 it can be observed that the Category 3 PMs were 

applied to all of the (six in the combatant case) major systems modelled. This is because 

those PMs are related to the recovery of the specific major systems modelled (see Table 

4.1 and Table 4.2). The weightings in column 3 are the weightings of each individual 

PM and are detailed in Table 4.3, Table 4.4 and Table 4.5. 

Columns 4, 6, 8… represent all of the WT section of each ship design analysed. 

In the cells of these columns, the values of the corresponding PMs (from column 2) 

were entered, (following the procedure detailed in Sections 4.3.1 to 4.3.3) giving values 

for all PMs for a separate hit at each WT section of each ship. The values of each PM at 

each WT section attack scenario were then multiplied by the probability that that WT 

section was hit, and the results entered in the cells of columns 5, 7, 9…. The probability 

that a WT section was hit was computed through the lengthwise hit probability 

distribution described in Section 4.1, where the sum of the probabilities that each WT 

section of a ship design is hit was equalled to unity, i.e. it was assumed that the ship is 

definitely hit (susceptibility = 1) which (together with vulnerability = 1) are 

requirements for the conduction of recoverability analysis. Thus, it can be said that each 

PM was weighted, not only by the importance of that PM (column 3) but also by the 

likelihood of hit at a specific location on the ship affecting that PM. In addition, this 

enabled the comparison of the recoverability performance of ship designs with differing 

numbers of WT bulkheads. 

The next step (column 11) was to compute the sum of columns 5, 7, 9… along 

the entire length of the ship being analysed. Thus, summing the products of the value of 

each PM at each WT section attack scenario and the probability that that WT section 

has been hit, which gave the total ship value of each of the 32 PMs developed. In 

column 12, these total PM values were normalised with respect to the corresponding 

values of a baseline ship design, and in column 13, the normalised PM values were 

weighted given the weightings in column 3 (Table 4.3, Table 4.4 and Table 4.5). 

The sum of the normalised and weighted PM values was then computed for each 

PM Category (column 14). For Category 3 PMs, a separate sum was produced for each 

of the major systems modelled, as shown in Table 4.6. These group sums were then 

once again normalised with respect to the corresponding values of the same baseline 

ship (column 15). Finally, these normalised group sums were weighted (column 17) 

with the group weightings (column 16), shown in Table 4.7 for the case of a combatant. 

As before, this weighting scheme was derived with the assistance of 1st Lt. Fonseca. 
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Table 4.7: Recoverability Weighting Scheme for a Combatant 

Group Description PM cat. Group Weighting  

FLOAT Cat. 1 PMs 10       = 10 

Recovery support  Cat. 2 PMs 2  

MOVE Move system 

Cat. 3 PMs 

9 = 9 

FIGHT 

Naval gun system 2  

 

 

 

= 8 

ASM system 2 

Aft SAM system 1 

Fwd SAM system 1 

Helicopter system 2 

 

The weightings used for each PM category is in accordance with the warship 

objective hierarchy ‘to float, to move, to fight’. For this reason, Category 1, which 

consists of PMs related to immediate effects on DCFF, upon which the Float objective 

at the top of the warship hierarchy depends, was given the highest weighting. This was 

followed by the repair and recovery of the Move and then the Fight related major 

systems, (Category 3 PMs) which followed in weighting significance. In order to 

maintain consistency, the weighting scheme adopted for the move and fight groups was 

identical to that used in the vulnerability assessment element of the proposed approach 

(Section 4.2), listed in Table 4.1. Finally, it is worth mentioning that Category 2, 

consisting of PMs supporting system recovery, was considered separately from the three 

main warship objectives as it was seen to have an impact on all three. It is difficult to 

quantify the magnitude of this impact; however, an indication can be given by the 

(subjective) weightings that were assigned to this PM Category by various naval 

officers during the sensitivity tests (see Sections 6.4.1 and 6.6.1) 

 After obtaining all of the entries of column 17 in Table 4.6, the final step was to 

calculate the sum of these entries, thereby evaluating the total recoverability 

performance score of a particular ship design. This procedure led to a single figure for a 

ship design’s recoverability performance (similarly to the ship’s susceptibility 

performance, Section 4.1, and vulnerability performance Section 4.2). However, unlike 

susceptibility (but corresponding to vulnerability performance, Section 4.2), this single 

value has no meaning (and cannot even be derived) unless a ship design is compared to 

at least one other ship design. Therefore, as explained in Section 4.2, this procedure is 

strictly comparative and does not output an absolute recoverability performance value; 
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rather, it outputs a recoverability performance value normalised with respect to a 

baseline ship design. 

 A PM matrix for a replenishment ship design is shown in Table 4.8 with the 

major systems modelled, already listed in Section 4.2 and Table 4.2. Furthermore, the 

group weightings (column 16 of Table 4.8) are also shown in Table 4.9. Note that the 

recoverability weighting scheme of a replenishment ship design was derived with the 

assistance of Lt. Cdr. (rtd.) Day; hence the dissimilar weighting scheme philosophy 

when compared to the recoverability weighting scheme of a combatant (Table 4.7), 

which was derived by a different officer serving in a different navy and for a ship with a 

different role. As in the combatant case, in order to maintain consistency, the weighting 

scheme of the Move and Fight groups is identical to that used in the vulnerability 

assessment element of the method (Section 4.2), listed in Table 4.2. Finally, the 

headings of columns 12 and 15 were changed from ‘normalised with respect to 

baseline’ to ‘normalised with respect to worst performing’. The logic behind this is 

explained in Section 7.2.4. 
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Table 4.9: Recoverability Weighting Scheme for a Replenishment Ship 

Group Description PM cat. Group Weighting  

FLOAT Cat. 1 PMs 10       = 10 

Recovery support  Cat. 2 PMs 3  

MOVE Move system 

Cat. 3 PMs 

10 = 10 

FIGHT 

Ability to RAS AVCAT 10  

 

 

 

 

= 39 

Ability to RAS dieso 10 

Ability to RAS dry stores 6 

Ability to RAS ordnance 8 

Aviation support 2 

CIWS 3 

 

4.3.5 Equipment Categorisation and Repair Data 

 

 The majority of the recoverability PMs, (i.e. PMs 1.5-1.17 in Table 4.3, and all 

PMs in Table 4.4 and Table 4.5, which are related to specific equipment/compartments), 

were given values based on the assumed number of man-hours to repair a specific 

equipment or compartment if damaged after a given incident. It is axiomatic that, had an 

equipment/compartment not been affected by a specific attack, the corresponding PM 

would be given a value of zero. Man-hour data for the repair of various equipment 

categories (shown in Table 4.10) were provided by Dstl (Thornton 2011). In addition, 

they are the same values as were employed by QinetiQ in SURVIVE’s recently 

developed recoverability module, with the exception of the 12th category. The fact that 

humans (i.e. personnel) and stores were assumed to be unrecoverable if affected by a 

hit, led the necessity for this 12th repair category. This category applied to PMs 1.8-1.10, 

1.16, 1.17 in Table 4.3 and 2.3-2.5 in Table 4.4, which, as explained in Section 4.3.1, 

were given a value of zero if unaffected and one if affected by a specific attack 

modelled. 
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Table 4.10: Equipment Repair Categories 

 Category Repair time (hrs.) Crew Man-hours 

1 Heavy engineering 4 4 16 

2 Light engineering 2 2 4 

3 Heavy electrical 1 2 2 

4 Light electrical 0.5 1 0.5 

5 Large pumps 5 3 15 

6 Small pumps 4 2 8 

7 Radar aerials 0.5 2 1 

8 Fluid tanks 0.5 2 1 

9 Aircraft 1.5 2 3 

10 Rudder/propeller 3 4 12 

11 Intake/exhaust 1 1 1 

12 Humans and stores infinite infinite infinite 

 

The data in Table 4.10 is remarkably simplified, since there are only 12 repair 

categories covering a very broad spectrum of equipment types, with different 

requirements, from different manufacturers, built under different standards. In addition, 

no reference to severity of damage was made. It is considered that more detailed and 

accurate data should be used, however, repair times are largely based on factors which 

cannot be easily quantified, such as crew skills. Another point worth noting is the fact 

that the categories in Table 4.10 are different to the equipment categories used by 

SURVIVE Lite for vulnerability assessment (QinetiQ 2011b), although both sets were 

developed by the same company and are used in the same software, SURVIVE. 

Table 4.11 details the repair category to which each of the equipment items and 

compartments relevant to Category 1 and 2 PM analysis (PMs 1.5-1.17 in Table 4.3 and 

2.1-2.7 in Table 4.4) was assumed to belong. Also listed are the corresponding 

SURVIVE Lite categories (i.e. the category to which each item was assumed to belong 

when building the SURVIVE Lite ship models for vulnerability assessment). The 

vulnerability and recoverability categorisation of all equipment items and compartments 

from which are comprised the major ship systems modelled (and which were used for 

Category 3 PM analysis in Section 4.3.3), is given in Appendix 6. Moreover, system 

tree diagrams are included in Appendix 7.  
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Table 4.11: Equipment Categorisation 

Relevant PMs 
Equipment / 

compartment 

SURVIVE Lite 

(vulnerability) 

category 

Repair (recoverability) 

category 

1.5. ATU & ventilation 
Light engineering / 

(silo/magazine) 
Light engineering 

1.6, 1.7. Fire pump Pump Small pumps 

1.8, 1.9, 1.10, 

2.3, 2.4, 2.5. 
Stores 

Light engineering / 

(silo/magazine) 
Humans and sores 

1.11, 1.12. Auxiliary engine Diesel generator Heavy engineering 

1.11, 1.12. Cruise engine Diesel generator Heavy engineering 

1.11, 1.12. Genset Diesel generator Heavy engineering 

1.11, 1.12. Boost engine Gas turbine Heavy engineering 

1.11, 1.12. Alternator Gas turbine Heavy engineering 

1.11, 1.12. Intake/exhaust Uptake / down takes Intake/exhaust 

1.13, 2.6. SCC Control console Light electrical×5 

1.14. Bridge Control console Light electrical×7 

1.15, 2.7. Operations Room Control console Light electrical×12 

1.16, 1.17. Humans Human Humans and sores 

2.1, 2.2. Workshops 
Light engineering / 

(silo/magazine) 
Light engineering 

 

 The vulnerability equipment category of power generating equipment is related 

to the power and propulsion systems selected for the ship design studies to which the 

method was applied, detailed in Chapter 5. Furthermore, for the replenishment ship 

designs it was decided not to include boost propulsion prime movers. It is observed that 

the repair categories for the SCC, bridge and Operations Room compartments result in a 

multiplication of the number of man-hours applicable to the light electrical repair 

category (i.e. ½ man-hour, Table 4.10) and 5, 7 and 12 respectively. This arose since it 

was decided that these compartments of the ship designs would contain 5, 7 and 12 

control consoles respectively, and the time needed to repair each, if each were damaged, 

would have been the time given in the light electrical repair category in Table 4.11. 
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4.4 Total Survivability Assessment 

 

 The next step, after finalising the susceptibility and vulnerability assessment 

approaches and developing a new, architecturally-driven recoverability assessment 

approach, was to combine the three constituents in order to create a total survivability 

assessment approach. However, as mentioned in Section 3.3.5, it has been argued that 

the three survivability constituents are not statistically independent (Sajdak and Karni 

2006; Thornton et al 2006). Therefore, relationships such as Equation 1 in Section 3.3.5, 

where survivability is assumed to be directly proportional to the product of its three 

constituents are not thought to be valid. Sajdak and Karni (2006) suggested that total 

survivability should be a function of its three constituents (Equation 2), rather than the 

product. For the above reasons, and after studying work done by Vasudevan and 

Rusling (2007) on the development of a ship design tool based on multi-objective 

optimisation using genetic algorithms, it was decided that the output results of the three 

survivability constituent assessment methods detailed above were considered separately 

and combined (for visualisation and comparison purposes) in the form of star plots (or 

triangle plots in the current case, as only three variables are presently being compared). 

An advantage of this type of presentation of the results is that further spokes, such as 

cost, displacement and power can be added; a limitation, however, is that it can only 

depict characteristics that are currently amenable to quantification (Vasudevan and 

Rusling 2007). There is also the issue of how the diagram would be interpreted, with 

regards to the significance of the enclosed area. Visualisation and comparison methods 

are an area for further development. Each star plot presented by Vasudevan and Rusling 

(2007) represents a single ship design, and each spoke within each star represents a 

design parameter. A sample of star plots, as a form of results visualisation, from 

Vasudevan and Rusling’s (2007) research is shown in Figure 4.7. 

 

 

Figure 4.7: A Sample of Star Plots From (Vasudevan and Rusling 2007) 
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It was also decided to examine the applicability of PM matrices, such as Table 

4.6, for total survivability assessment. This was done by multiplying the percentage 

values of total ship susceptibility, and vulnerability of each equipment/compartment, 

with each PM. Therefore, unlike the approach adopted in Section 4.3, susceptibility and 

vulnerability were not assumed to be equal to unity. More specifically, all PMs which 

were derived from the Paramarine ship models (i.e., PMs 1.1-1.4, Table 4.3) and those 

PMs related to stores and humans (i.e., PMs 1.8-1.10, 1.16 and 1.17, Table 4.3; PMs 

2.3-2.5, Table 4.4) were not only multiplied by susceptibility values of the 

corresponding WT section (as described in Section 4.3.4), but also by the total ship 

susceptibility percentage. For the remaining Category 1 and 2 PMs, values of which 

were based on repair man-hour data (i.e., PMs 1.5-1.7 and 1.11-1.15, Table 4.3; PMs 

2.1, 2.2, 2.6 and 2.7, Table 4.4), the number of man-hours to repair the relevant item 

were multiplied not only by the susceptibility of the hit WT section (as described in 

Section 4.3.4), but also by the total ship susceptibility and the vulnerability of that item, 

given a hit in that WT section. 

Similarly, for Category 3 PM analysis, Table 4.5, the procedure summarised in 

Section 4.3.3 was followed, however, on this occasion, vulnerability data of the relevant 

equipment/compartments were multiplied by the number of man-hours required to 

repair them in order to obtain the value of each PM for each major system. These PM 

values were then multiplied by the total ship susceptibility, as well as that of the WT 

section in question. Regarding all PMs which account for secondary effects (i.e. 

Category 2 and 3 PMs), the additional vulnerability due to fire effects was included in 

the PM scoring procedure by using the output of SURVIVE Lite’s Fast Fire method 

(Sharp 2011) (see Section 3.3.4). The reason why store and personnel related PMs were 

only multiplied by susceptibility data (without involving vulnerability) was that since 

the time for these items to recover was assumed to be infinite (Table 4.10), 

multiplication of the recovery time by the items’ vulnerability resulted in an infinite 

solution. Therefore, once again, the PMs were given a value of zero if the item remained 

unaffected and unity if it were affected by a given hit. This was then multiplied by the 

total ship susceptibility and the WT section susceptibility, as explained above.  

This proposed procedure involves multiplications of susceptibility, vulnerability 

and recoverability data, which is questionable. However, it was decided to carry out this 

process on several ship designs (see Section 6.7) for comparison purposes, and examine 

emergent advantages and disadvantages which are summarised in Section 7.4.2. 
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Chapter 5: Ship Design Studies 

 

 This chapter gives a description of the ship designs to which the survivability 

assessment method was applied. In total, seven designs were developed. Five were 

combatant type ships and included three frigate variants (one of which adopted a 

trimaran hullform), a corvette and a destroyer. The remaining two design studies were 

AOR type ships with varying internal and external configuration. 

As mentioned in Section 2.1.4, survivability is largely dependent on ship 

architecture. Moreover, the recoverability assessment method developed was aimed at 

looking specifically at how ship layout affects recovery from attack damage. It was 

therefore decided that the ship designs on which the survivability method should be 

applied would be designed by means of an architecturally orientated preliminary ship 

design approach. Further advantages when using a configurationally orientated 

preliminary design process were discussed in Section 2.1.4. It was concluded that the 

Design Building Block approach to preliminary ship design, through its SURFCON 

implementation in the Paramarine CASD software (Section 2.1.5), which has been 

extensively used and proven by the Design Research Centre of the Marine Research 

Group of the Department of Mechanical Engineering at UCL 

(http://www.ucl.ac.uk/mecheng/research/marine), would be the most appropriate 

architecturally orientated preliminary design approach to utilise. The above procedure to 

preliminary ship design was described in (Andrews and Pawling 2003). The method of 

‘circles of influence’ proposed by Andrews (1984; 1986) in order to appropriately 

position a ship’s principal compartments and build up its architecture, Figure 2.5, was 

extensively used, through specific detailed frigate related ‘circles of influence’ diagrams 

which were published by Dicks (2000). 

All ship studies designed in this investigation were designed and sized according 

to the procedures, data and parametric relationships available for the ship design 

projects in the MSc in Naval Architecture at UCL (UCL 2010a, UCL 2010b) and other 

references such as (UCL 2006a; UCL 2006b; Saunders 2008; IAI 2009; Wartsila 2010; 

Vestdavit 2012). In addition all studies were designed with the intent of maximising 

survivability based on relevant literature summarised in Appendix 4. For example, 

concentration and separation of duplicated systems was incorporated and all 

superstructure sides were designed with a 7o tumblehome. 

 GAs of all ships designed are included in Appendix 8. 
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5.1 Frigate Design Studies 

 

Frigate type ships are the most common, blue water capable, type of warship, 

providing a point of reference for most new developments in naval ship design. Three 

general purpose, general ocean going sea control frigates were designed, all of which 

were fitted with an identical weapon fit, listed in Table 5.1. The same table conveys the 

main payload equipment corresponding to the major Fight systems which were assessed 

in the vulnerability and recoverability methods described above. However, it should be 

noted that each Fight system includes further items such as sensors, control rooms and 

power generation units (full system diagrams are shown in Appendix 7). 

 

Table 5.1: Frigate Payload 

Payload Equipment FIGHT Systems 

1 × BAE Systems 155mm gun Medium calibre naval gun system 

2 × 4 Harpoon launchers ASM system 

4 × MBDA MICA PDMS with 32 MICA missiles 

(4 x 8 round VL launchers) 
Aft/fwd SAM system 

1 × Lynx (Kestrel) Helicopter + hangar and single 

spot flight deck for EH-101Merlin 
Helicopter system 

2 × MSI Seahawk 30mm 

2 × Triple barrel torpedo tubes 

4 × Rheinmetall MASS Decoy Launchers 

1 × Surface Ship Torpedo Defence System 

2 × Navigation radars 

1 × Single Face SR STAR Surveillance Radar 

1 × General Purpose Electro Optical Device 

2 × Thales Sirius IRST 

1 × Raytheon AN/SLQ-32(V)3 Shipboard ESM/ 

ECM System 

1 × Spherion hull mounted sonar 

1 × Small ship communications system (1 × 

communications mast + 2 × whip antennae) 

1 × Generic Satellite Communications System 

with 2 antennae 

25 Embarked forces 

Other payload (certain sensors are 

part of the major Fight systems 

above; for full system tree 

diagrams see Appendix 7) 



122 
 

 

In addition, all three frigates had the same performance requirements, listed in 

Table 5.2. 

 

Table 5.2: Frigate Performance Requirements Adopted for Design Studies 

Maximum speed 30kts 

Endurance 7,000nm at 15kts 

Stores 30 days 

Stability 
Defence Standard 02-109 (NES 109) intact and damage criteria 

assessment (MOD 2000) 

Zoning 4 zones with maximum independence 

 

 A summary of the principal particulars of the three frigate variants is given in 

Table 5.3, with GAs in Appendix 8. Note that Variant 3 adopted a trimaran 

configuration. 

 

Table 5.3: Principal Particulars of the Frigate Variants Investigated 

Variant 1 

Dimensions 
 
Hullform Parameters 
Displacement 
Maximum Speed 
Range 
Power Plant 
 
Accommodation 

132.2m (125.8m) × 16.1m (15.2m) × 9.7m (deep draught 4.0m); deep trim 0.6m, light trim 
0.8m 
CB: 0.487, CP: 0.596, CM: 0.818, CW: 0.755, Circular M: 8.1 
3,890te deep, 3,270te light 
30.5kts 
7,100nm at 15kts, 6,000nm at 18kts 
1 × 31MW GT (boost), 2 × 2.94MW diesels (cruise), 2 × 2.69MW diesels (auxiliary) 
driving two FPPs on 20MW HTS motors  
11 officers, 137 ratings, 25 embarked forces 

Variant 2 

Dimensions 
 
Hullform Parameters 
Displacement 
Maximum Speed 
Range 
Power Plant 
 
Accommodation 

125.2m (119.0m) × 16.1m (15.3m) × 12.1m (deep draught 4.4m); deep trim 0.4m, light 
trim 0.4m 
CB: 0.487, CP: 0.596, CM: 0.816, CW: 0.761, Circular M: 7.6 
4,060te deep, 3,450te light 
30.4kts 
7,000nm at 15kts, 5,900nm at 18kts 
1 × 31MW GT (boost), 2 × 5.22MW diesels (cruise), 2 × 2.69MW diesels (auxiliary) 
driving two FPPs on 21MW HTS motors  
11 officers, 141 ratings, 25 embarked forces 

Variant 3 

Dimensions 
 
 
Hullform Parameters 
 
Displacement 
Maximum Speed 
Range 
Power Plant 
 
Accommodation 

Overall: 150.3m × 29.2m × 12.3m (deep draught 5.2m); deep trim 0.6m, light trim 0.9m 
Main hull: 150.3m (144.2m) × 11.6m (10.4m) × 12.3m (deep draught 5.2m) 
Side hulls: 51.2m (42.4m) × 3.7m (1.7m) × 9.2m (deep draught 2.7m) 
Main hull: CB: 0.532, CP: 0.638, CM: 0.834, CW: 0.831, Cir. M: 9.0 
Side hulls: CB: 0.138, CP: 0.669, CM: 0.207, CW: 0.678, Cir. M: 11.3 
4,330te deep (4,230te + 2 × 50te), 3,820te light 
31.3kts 
7,000nm at 15kts, 5,900nm at 18kts 
1 × 31MW GT (boost), 2 × 2.94MW diesels (cruise), 2 × 2.69MW diesels (auxiliary) 
driving one FPP on a 37MW HTS motor and one pump-jet on a 3.5MW HTS motor 
12 officers, 152 ratings, 25 embarked forces 
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 The complements and accommodation requirements of the frigate design studies 

(breakdowns of which are given in Appendix 9.1) were sized based on current 

combatants’ complement/displacement densities calculated from sources such as 

Saunders (2008). 

 

5.1.1 Baseline Frigate 

 

 The baseline frigate (Frigate Variant 1), shown in Figure 5.1, is a typical modern 

frigate with a one passing deck hull and a continuous superstructure out to ship’s side. 

 

 

Figure 5.1: Frigate Variant 1 Ship Design Study 

 

It has previously been argued (Section 2.1.4) that a functional breakdown of a 

naval ship is more relevant to a weight breakdown, which is the current practice. The 

broad objectives of a warship have been determined as: ‘to float, to move, to fight’ 

(Brown and Tupper 1989). Therefore, the functional breakdown should be expressed in 

terms of these three groups (Float, Move, Fight) plus the addition of an Infrastructure 

group as argued by Andrews et al (1996). This functional breakdown was used when 

designing the ships, as illustrated in Figure 5.2 for Frigate Variant 1. 
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Float

 

Move 

 

Fight 

 

Infrastructure 

 

Figure 5.2: Frigate Variant 1 Top Level Functional Breakdown 

 

Furthermore, Frigate Variant 1 is described with respect to its top level weight 

breakdown in Table A8 of Appendix 9.2, and the margin philosophy adopted for this 

design is summarised in Appendix 9.3. 

 The hull of the baseline design is based on that of the Type 22 Frigate and was 

generated using the Quickhull object of Paramarine. The lines plan is shown in Figure 

5.3. 
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Figure 5.3: Frigate Variant 1 Lines Plan 

 

The propulsive powering requirements were computed using the inbuilt 

Paramarine powering module (see Appendix 9.4). The machinery that was selected 

consisted of:- 

- 2 × 2.94MW Wartsila 9L26 diesel gensets (cruise); 

- 1 × 31MW Rolls-Royce MT30 marine gas turbine, electrical drive (boost); 

- 2 × 2.69MW Wartsila 16V200 diesel gensets (auxiliary). 

The above machinery, driving two FPPs on 20MW HTS motors. Figure 5.4 illustrates 

the arrangement of the selected machinery, auxiliary machinery shown in green 

(Infrastructure functional group), and main machinery in yellow (move functional 

group). This is closely related to the move major system, which was modelled in the 

vulnerability and recoverability assessment approach, without, however, including 

steering control units and rudders. Whole major system architecture and tree diagrams 

are included in Appendix 7. 

 

 

 

Figure 5.4: Frigate Variant 1 Power and Propulsion Arrangement 
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It is clear that the adoption of IFEP has led to the opportunity of widely 

separating the power generation units (which are in parallel) across the length of the 

frigate, which leads to significant vulnerability reduction, as summarised in Appendix 

4.2. However, this led to the unconventional forward Wartsila 16V200 exhaust 

arrangement, extending through No 2 Deck until it merges with the gas turbine exhaust 

since no superstructure is located above this genset. Another vulnerability reduction 

feature is the fact that short propeller shafts are possible (although this has led to a 

relatively large declination angle). Removal routes for all engines were taken into 

account through the inclusion of soft patches in the passageways and compartments 

above each engine. 

 The hydrostatics of the baseline frigate were also computed using the inbuilt 

Paramarine module. Intact stability was assessed against Defence Standard 02-109 

(NES 109) Stability Standards for Surface Ships (MOD 2000) until all criteria were 

passed. Damage stability (of both deep and light conditions) was assessed against 

Defence Standard 02-109 (NES 109) damage criteria assessment (MOD 2000). 

Hydrostatics data are given in Appendix 9.5. 

 It should be mentioned that seakeeping, structural and manoeuvring analysis 

were not carried out due to the preliminary nature of the design. 

 Figure 5.5 displays the twelve WT bulkheads (and thirteen WT sections) which 

are comprised in the hull of the baseline frigate. It should be noted that the bulkhead 

locations were set by taking into account zoning, structural, layout and damage stability 

related factors. In order to maintain structural continuity, bulkheads were located at the 

forward and aft superstructure ends, after cut-up, masts, 155mm gun and at every 

location where there is a step in the superstructure. 

 

 

Figure 5.5: Frigate Variant 1 WT Bulkhead Arrangements 

 

The three bulkheads shown in red in Figure 5.5 constitute the main zone 

boundaries. From aft to forward, each zone consisted of 3, 2, 3 and 5 WT sections 

respectively. Each of the four zones contains independent power generation units, CWP, 
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HPAC, FP, ATU and ventilation, NBCD stores, and airlocks for access to and from the 

citadel/weather, as shown in Figure 5.6. 

 

Machinery Room Arrangement 

 

ATU and Ventilation Arrangement 

 

NBCD Stores 

 

Airlocks 

 

Figure 5.6: Frigate Variant 1 Zoning Philosophy 

 

Each zones power generation unit, CWP, HPAC and FP is located in its 

machinery room. MMR2, in which the Rolls-Royce MT30 marine gas turbine is located 

(Figure 5.4), extends along the length of two adjacent WT sections since, due to the 

GTs size, its alternator was placed in a separate WT section from of the engine. ATU 

and ventilation compartments are located close to areas requiring such services, such as 

machinery rooms and living spaces (Appendix 8). Moreover, they are located at a 

reasonable distance from the waterline. NBCD stores are located in proximity to the 

airlocks. Airlocks 1 and 4 lead to the aft and forward mooring spaces respectively, 
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airlock 2 leads to the hangar and airlock 3 leads the forward weather deck. In addition, 

airlocks 1 and 3 are positioned adjacent to cleansing/decontamination stations. 

 It was also attempted to distribute the major Fight systems (which were 

modelled in the vulnerability and the recoverability assessment method) in accordance 

to the zonal arrangements. Each zone contained the main equipment items of at least 

one of the five major Fight systems (medium calibre naval gun system, ASM system, 

aft SAM system, forward SAM system and helicopter system). This not only led to the 

specialisation of each zone in a specific type of warfare/operations, but also assisted in 

the concentration of items in series of a particular system, therefore decreasing the 

systems vulnerability (Appendix 4.2). This is clearly illustrated in Figure 5.7. 

 

 

Figure 5.7: Frigate Variant 1 Major Fight System Arrangement 

 

Due to the conventional nature of the baseline frigate, it was relatively easy to 

achieve the zonal distribution of the major Fight systems. Only the sonobuoy store of 

the helicopter system (the forward-most compartment of that system) was not managed 

to be located in the same zone as the remaining equipment and compartments of that 

system. However, it is important to point out that Figure 5.7 illustrates only the 

equipment items that are solely related to each of the major Fight systems. Items such as 

sensors, power generation units and centralised command and control (e.g.: Operations 

Room) spaces are not included. Whole major system architecture and tree diagrams are 

included in Appendix 7. 

 Being a conventional modern frigate, it was decided that the access philosophy 

adopted for the baseline would be that used in similar existing warships. The hull 

consisted of 4 decks, one of which, No 2 Deck or the DC deck, was a passing deck. The 

DC deck contained a centreline passageway and each WT section included two vertical 

accesses, one at either side of the centreline passageway and at the forward and aft end 

of each WT section respectively. This is summarised in Figure 5.8 below, and detailed 

in the GA, Appendix 8. 

 



129 
 

DC Deck Access 

 

DC Deck Access and Vertical Access 

  

Figure 5.8: Frigate Variant 1 Access Philosophy 

 

 It is of significance to examine the location of the compartments and equipment 

related to each of the recoverability related PMs (Sections 4.3.1, 4.3.2 and 4.3.3). Some 

of the elements, e.g.: access, WTD (each WT bulkheads has one on the DC deck), ATU 

and ventilation and NBCD stores have been separately examined. However it would be 

useful to study the entirety of each PM Category. Figure 5.9 illustrates the distribution 

of compartments and equipment related to Category 1 PM analysis. 

 

 

Figure 5.9: Frigate Variant 1 Category 1 PM Elements 
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PM 1.1 will be calculated along the centreline DC passageway and PM 1.4 

would be based on the width of the passageway, given that there are no alternative 

routes. In addition, the number of internal decks in each WT section is clear from Figure 

5.9 and the value of PM 1.2 is equal to the number of WT bulkheads crossed by each 

FRP. The two FRP section bases are positioned conveniently to a NBCD store. 

Furthermore, each FRP section base is situated at a WT section bordering a main zone 

boundary, for quicker access to the adjacent zone. This way, it can be said that each of 

the two FRPs are responsible for 2 zones. Note that the firepumps have been collocated 

with the power generation units in Figure 5.9, since they are both positioned in the 

machinery rooms, as previously stated. The Operations Room is located deep in the hull 

(No 3 Deck as in the Type 23 Frigate (Manley 2012)) in order to decrease vulnerability 

to abovewater attacks; although this could lead to an increase in underwater incidents. 

The SCC is situated at a distance from the Operations Room so that, in case of an 

emergency, it could be utilised as a secondary Operations Room. Finally, the bridge and 

the Operations Room are located at the same WT section in order to improve access and 

communication between the two spaces in which the CO is mostly stationed. All other 

elements are located with respect to the zoning arrangements as described above. 

 Similarly, Figure 5.10 depicts the arrangement of Category 2 PM analysis (as 

well as access measure of Category 3 PMs) related elements.  

 

 

Figure 5.10: Frigate Variant 1 Category 2 PM Elements 

 

Note the proximity of the aft and forward workshops with the aft and forward 

spare gear stores respectively, one of the many relationships obtained from the ‘circles 

of influence’ diagrams presented by Dicks (2000). In addition, the two groups of 

workshops and spare gears stores were separated as much as reasonably possible, and 

are located convenient to the machinery rooms for easier and quicker access. The choice 

of location of the naval stores was principally based on factors such as trim and 

available (void) space since it is not involved in any complicated architectural 
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relationships. Category 3 PM analysis involves all of the components of each major ship 

system; system architecture illustrations are included in Appendix 7. 

 

5.1.2 Frigate Variants 

 

The baseline frigate (Frigate Variant 1) was intended to represent a typical 

conventional modern frigate type ship. The following two frigate variants would 

therefore depart from the conventional style of the baseline. Frigate Variant 2, Figure 

5.11, is characterised by the adoption of a deeper, two passing deck hull and a minimal 

superstructure, and was influenced by the work done by Begg et al (1990). A similar 

variant was designed by Percival (2010). 

 

 

Figure 5.11: Frigate Variant 2 Ship Design Study 

 

The choice of these features were aimed at the exploration of survivability 

related advantages of such configurations, such as improved DC due to the second 

passing deck, therefore providing unrestricted access over the length of the ship on two 

decks (Begg et al 1990), and lower RCS due to the small superstructure (Begg et al 

1990). In addition, this feature also allowed the location of the flight deck close to 

amidships, which presents some operational advantages, since the optimum location for 

aviation facilities is at amidships where motions are kept to a minimum and the 

helicopters operational effectiveness is enhanced (Lloyd and Hanson 1985; Brown 

1991) (see Appendix 2). 

 For the third and final variant, Frigate Variant 3, Figure 5.12, a trimaran 

configuration was selected, therefore, departing even more from the style of modern 

conventional frigates. 
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Figure 5.12: Frigate Variant 3 Ship Design Study 

 

The intention was to investigate the possible advantages of this unconventional 

hull type. Since trimarans in the naval domain are relatively recent (with only one 

warship design currently in service, the USN’s Independence Class LCS (Naval War 

College 2002)) various UCL designed trimaran warships as well as the UCL ship design 

procedure for trimarans (UCL 2010a) were investigated in order to overcome the 

problems associated with the lack of data. As observed in Figure 5.12 and Appendix 8, 

the trimarans superstructure is relatively minimal (due to the large internal volume of 

the box structure) and was split into two structurally separate blocks, one slightly aft 

and one slightly forward of amidships. Another interesting feature was that, due to the 

requirement of a 3.5m minimum air gap to the underside of the box structure (arising 

from requirements to minimise slamming), as well as due to the narrow beam of the 

main hull which made the incorporation of the main machinery and systems 

challenging, a fifth deck (which however was not a ‘through-deck’) was included in this 

ship design study. 

 Figure 5.13 and Figure 5.14 describe the two frigate variants in terms of the 

‘Float, Move, Fight, Infrastructure’ top level functional breakdown, similar to Figure 

5.2 for the baseline frigate design. 
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Figure 5.13: Frigate Variant 2 Top Level Functional Breakdown 
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Figure 5.14: Frigate Variant 3 Top Level Functional Breakdown 
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A number of observations can be made with regards to those two frigate 

variants. For example, the relatively small superstructures of both ship designs have 

made possible the location of their flight decks close to amidships. However, they have 

also decreased the distance between sensors (possibly causing interference problems 

and increasing vulnerability), caused a concentration of the fight functional group at 

amidships to a greater extent than the baseline frigate (which could lead to increased 

vulnerability) and introduced difficulties in the arrangement of exhausts and intakes. 

Also noticeable is that the Infrastructure functional group of the trimaran is largely 

concentrated in No 2 Deck, i.e. in the box structure (to a much greater extent than 

Frigate Variants 1 and 2). This arises from the very large overall beam of the trimaran 

and has simplified the architectural design of this frigate by easing the achievement of 

the architectural relationships of the ‘circles of influence’. Furthermore, it has 

minimised the need for a large superstructure or an extra passing deck.  

Frigate Variants 2 and 3 are described in terms of their top level weight 

breakdowns in Table A9 and Table A10 of Appendix 9.2 (similar to Table A8 for the 

baseline frigate design). In addition, the margin philosophy adopted is discussed in 

Appendix 9.3. 

 From the functional breakdown comparison above and the weight breakdown 

comparison in Appendix 9.2 between these three designs, it is evident that radically 

different conclusions can be drawn by investigating a functional (therefore, 

architectural) or a weight breakdown of a ship design. In Sections 2.1.3 and 2.1.4, the 

fact that novel hullform configuration, such as trimarans, are not encouraged when 

merely examining the weight breakdown of a ship design was pointed out (Andrews and 

Dicks 1997; Andrews and Pawling 2009), and has been observed from the three designs 

produced for this survivability investigation. It follows that a new ship design must be 

described architecturally, in terms of its functional breakdown, and also (traditionally) 

in terms of its weight breakdown, in order for one to be able to justify the selected 

design. 

 Similar to the baseline frigate, the hull of Frigate Variant 2 (Figure 5.15) is also 

based on that of the Type 22 Frigate and was generated using the Quickhull object of 

Paramarine. 
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Figure 5.15: Frigate Variant 2 Lines Plan 

 

Furthermore, the propulsive powering requirements for Frigate Variant 2 were 

computed in the same manner as for Frigate Variant 1 (see Appendix 9.4). The 

machinery selected consisted of:- 

- 2 × 5.22MW Wartsila 16V26 diesel gensets (cruise); 

- 1 × 31MW Rolls-Royce MT30 marine gas turbine, electrical drive (boost); 

- 2 × 2.69MW Wartsila 16V200 diesel gensets (auxiliary). 

The above machinery driving two FPPs on 21MW HTS motors. The arrangement of the 

above Move related machinery is portrayed in Figure 5.16. 

 

 

 

Figure 5.16: Frigate Variant 2 Power and Propulsion Arrangement 

 

The above arrangement is almost identical to that of Frigate Variant 1 (Figure 

5.4), therefore, presenting the same conclusions regarding the reduced vulnerability due 

to the widely separated power generation units and the short, but declined, propeller 
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shafts (arising from the adoption of IFEP). The wide separation of the engines has once 

again led to the unconventional forward Wartsila 16V200 exhaust arrangement, due to 

the absence of superstructure above it. Unlike in the baseline frigate, the forward 

auxiliary exhaust has to extend through two decks (rather than one), before merging 

with the gas turbine exhaust, due to the deeper, 5-deck, hull of Frigate Variant 2. 

However, the only major difference is the fact that, due to the minimal superstructure of 

Frigate Variant 2, superstructure is absent above the aft auxiliary and both cruise 

gensets. This has led to the implementation of side exhausts for these three engines. The 

side exhausts are located starboard, just aft of the flight deck, consequently, should not 

interfere with helicopter operations. Moreover, since these particular engines exhaust 

closer to the waterline, the ships IR signature would also decrease (Dicker 1986; 

Afanasieff and Mabry 1994), as mentioned in Appendix 4.1. However, this could 

introduce problems related to the insertion of seawater through the exhausts; in addition, 

exhaust stains on the hull would make the ship more visible and would require more 

maintenance. As with the baseline design, removal routes for all engines were taken into 

account through the inclusion of soft patches in the passageways and compartments 

above each engine. 

 The trimaran hull of Frigate Variant 3, the lines plan of which is shown in 

Figure 5.17, was generated by use of a UCL developed algorithm. 

 

Main hull 

 

Side hulls 

 

Figure 5.17: Frigate Variant 3 Lines Plan 
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The propulsive powering requirements were computed using a UCL developed 

program based on the Holtrop & Mennen method (see Appendix 9.4). The machinery 

that was selected consisted of:- 

- 2 × 2.94MW Warstila 9L26 diesel gensets (cruise); 

- 1 × 31MW Rolls-Royce MT30 marine gas turbine, electrical drive (boost); 

- 2 × 2.69MW Wartsila 16V200 diesel gensets (auxiliary). 

A major difference in the power and propulsion system between Frigate Variant 3 and 

the first two variants is that, due to the narrow main hull, a double shaft (therefore, two 

motor) arrangement could not be facilitated. However, containing merely a single shaft 

was deemed unacceptable for survivability and availability reasons. Furthermore, the 

side hulls, being even narrower, restricted access and impeded the addition of large 

equipment items, such as of secondary propulsive units, in them. It was, in fact, decided 

to keep the space inside the side hulls void, not only for the reasons mentioned above, 

but also so that one side hull can be ballasted, if the other is damaged (Andrews and 

Zhang 1995; Andrews and Pawling 2008) as summarised in Appendix 2.2.  Therefore, it 

was concluded that a secondary propulsive unit, and more specifically a pump-jet 

(Schottel 2010a), would be included in the forward end of the ship design. The 

machinery listed above, therefore, drove a single FPP on a 37MW HTS motor and a 

single Schottel SPJ 520 Pump-Jet on a 3.5MW HTS motor. Figure 5.18 illustrates the 

arrangement of the above machinery for the trimaran frigate variant. 

 

 

 

Figure 5.18: Frigate Variant 3 Power and Propulsion Arrangement 
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The power and propulsion arrangement of Frigate Variant 3 presents the most 

dissimilarities compared to the first two frigate design variants, although still benefiting 

from the widely separated power generation units and relatively short (but declined) 

shaft, therefore, reducing vulnerability, due to the IFEP system. The most noticeable 

difference is the separate forward and aft propulsive units. The large separation of the 

two parallel units should have a profound effect on the vulnerability of the move major 

system. Another main differences between the trimaran and the other two designs is that 

the two Wartsila 9L26 cruise gensets had to be moved one compartment forward, 

therefore, closer to amidships, adjacent to the WT sections containing the gas turbine 

boost engine. This is because, the narrow main hull beam of the trimaran only permitted 

the placement of the two relatively large engines at an amidships compartment due to 

volumetric constraints towards the extremities of the main hull. In addition the 37MW 

HTS motor (the largest motor used in all of the three design variants) could not fit in the 

aft auxiliary machinery compartment (where the aft Wartsila 16V200 was located) 

which was the practice in the first two variants, again due to the limited volume towards 

the ends of the trimarans main hull. The motor was thus moved one WT section 

forward, therefore, increasing the shaft length, but decreasing its declination angle 

value. The overall effect was to concentrate machinery at the amidships part of the ship 

to a greater extent than in the monohull designs. It could be argued that this 

arrangement increased the vulnerability of the power and propulsion related equipment 

(which are in parallel) of the trimaran, but the protection provided by the side hulls to 

attacks from torpedoes and missiles (Andrews and Zhang 1995; Andrews and Pawling 

2008) should more than cancel this effect. 

It is of interest to briefly describe the exhaust arrangements of Frigate Variant 3. 

This ship has the largest overall length (Table 5.3), therefore, the most WT bulkheads 

implying larger zones. Due to the longer zones, the forward Wartsila 16V200 auxiliary 

genset was placed at a large distance from the GT. Again, there is no superstructure 

above the forward auxiliary engine, however, the large distance from the gas turbine 

inhibits the combination of the exhausts of the two engines (which was the principle 

followed during the design of the first two variants) due to the large number of bulkhead 

penetrations required. This led to the solution of an underwater exhaust arrangement. 

The effects of this were to decrease vulnerability of the auxiliary genset (at least to 

abovewater threats) due to its smaller footprint and to reduce the IR signature of the 

ship by eliminating the exhaust plume (Heather 1990; Foxwell 1990a). However, 

underwater exhausts worsen the acoustic signature of ships (Heather 1990) and raise 
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back pressure and corrosion related issues (Dicker 1986; Belcher 2008) as was 

summarised in Appendix 4.1. Other noteworthy aspects of the exhaust arrangements are 

that the cruise engines exhaust to the side of the main hull (between the main and the 

side hulls), and the aft auxiliary engine exhausts at the aft end (also due to the absence 

of superstructure above it). As in Frigate Variant 2, this arrangement should decrease 

the IR signature of the ship due to the close to waterline exhaust (Dicker 1986; 

Afanasieff and Mabry 1994) and the shielding effect of the side hulls regarding the 

cruise engines exhausts. However, it could introduce problems related to the insertion of 

seawater through the exhausts and would increase maintenance requirements due to 

exhaust stains on the hull. Nevertheless, a unique advantage of a trimaran is the ability 

of the side hulls to conceal the exhaust stains, therefore, not affecting the visual 

signature and reducing the need for maintenance. The aft auxiliary exhaust is located 

starboard, well aft of the flight deck, and the cruise engines exhaust plumes are shielded 

by the box structure, therefore, not interfering with helicopter operations. Removal 

routes for all engines were taken into account through the inclusion of soft patches in 

the passageways and compartments above each engine, as was done for the first two 

variants. 

 Similarly to the baseline frigate, the hydrostatics of Frigate Variants 2 and 3 

were computed using the inbuilt Paramarine module. Intact stability was assessed 

against Defence Standard 02-109 (NES 109) Stability Standards for Surface Ships 

(MOD 2000) until all criteria were passed. Damage stability (of both deep and light 

conditions) was assessed against Defence Standard 02-109 (NES 109) damage criteria 

assessment (MOD 2000). Hydrostatics data are given in Appendix 9.5. 

 The WT bulkhead arrangements of Frigate Variants 2 and 3 are visible in Figure 

5.19 and Figure 5.20.  

 

 

Figure 5.19: Frigate Variant 2 WT Bulkhead Arrangements 
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Figure 5.20: Frigate Variant 3 WT Bulkhead Arrangements 

 

The bulkhead locations were decided upon using the same criteria as for the 

baseline frigate. Frigate Variant 2 included the same number of WT bulkheads as the 

baseline (twelve bulkheads, thirteen WT sections), while the longer hull of Frigate 

Variant 3 contained thirteen WT bulkheads and fourteen WT sections. 

 In order to maintain consistency, all frigate variants had the same number of 

zones, i.e. four. The red bulkheads in Figure 5.19 and Figure 5.20 represent the zone 

boundaries. Frigate Variant 2 is identical to the baseline in that, from aft to forward, 

each zone contains 3, 2, 3 and 5 WT sections. The zones of the trimaran frigate on the 

other hand comprise of 3, 3, 3 and 5 WT sections respectively. Each of the four zones 

contains independent power generation units, CWP, HPAC, FP and ATU and 

ventilation. Due to the relatively small superstructure length of Frigate Variant 2 it 

proved difficult (and unreasonable since the superstructure in its totality is in the same 

zone) to include airlocks and NBCD stores in all four zones, so they were only fitted in 

three zones. Oppositely, Frigate Variant 3 included NBCD stores and airlocks for access 

to and from the citadel/weather in all zones, similarly to Frigate Variant 1. This is 

clearly shown in Figure 5.21 and Figure 5.22. 
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Machinery Room Arrangement 

 

ATU and Ventilation Arrangement 

 

NBCD Stores 

 

Airlocks 

 

Figure 5.21: Frigate Variant 2 Zoning Philosophy 

 

From above, it is evident that the arrangement of the MMRs and AMRs (which 

contain each zones power generation unit, CWP, HPAC and FP) is identical to that of 

the baseline frigate (Figure 5.6). MMR2 extends along the length of two adjacent WT 

sections in order to accommodate the engine and alternator of the large Rolls-Royce 

MT30 marine gas turbine (Figure 5.16); as in the baseline the alternator was placed in a 

separate WT section from of the engine due to size limitations. Another similarity to the 

baseline design is the placement of ATU and ventilation compartments close to spaces 

such as machinery rooms and living spaces (Appendix 8), and NBCD stores in 

proximity to the airlocks. However, NBCD store 1 is situated one WT section forward 

of airlock 1. This arrangement was chosen since the location of the ASM launchers 
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(which will be examined later in this section) did not allow enough space for both 

compartments (Appendix 8). Furthermore, since each FRP section base is situated at a 

WT section bordering a main zone boundary as previously mentioned, and each section 

base should be adjacent to a NBCD store, the location of NBCD store 1 is convenient in 

that positioning the aft FRP section base adjacent to it (as will be later observed) meets 

both requirements. Airlock 1 leads above the aft mooring space, airlock 4 leads inside 

the forward mooring space, airlock 2 leads both to the hangar and the flight deck while 

airlock 3 leads to the forward weather deck. From Figure 5.21 it becomes observable 

why it was illogical to include an airlock (and NBCD store) in the second from aft zone 

given that the entire superstructure was in the third zone. Airlocks 1 and 3 are 

positioned adjacent to cleansing/decontamination stations. 

 

Machinery Room Arrangement 

 

ATU and Ventilation Arrangement 

 

NBCD Stores 

 

Airlocks 

 

Figure 5.22: Frigate Variant 3 Zoning Philosophy 
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In Frigate Variant 3 the two main machinery rooms are adjacent due to the space 

constraints of the narrow main hull beam mentioned above. However, the separation 

between the two auxiliary machinery rooms (containing smaller engines, therefore, able 

to be located at the ships extremities) and main machinery rooms has increased due to 

the presence of more WT sections in the longer trimaran and therefore, compensates for 

the increased vulnerability of the concentrated MMRs. As with the two other frigate 

variants, MMR2, in which the Rolls-Royce MT30 marine gas turbine is located (Figure 

5.18), extends along the length of two adjacent WT sections, one containing the engine 

and the other the alternator. Moreover, each machinery room is three decks deep (as 

opposed to the two deck depth of the equivalent compartments in the first two variants) 

in order to accommodate all machinery and equipment (such as power generation units, 

CWP, HPAC and FP) in the narrow hull (and in order to meet the 3.5m minimum air 

gap to the underside of the box structure requirement (Appendix 2.2). For the location 

of ATU and ventilation, a similar philosophy to that for the first two variants was used. 

This led to the positioning of ATU and ventilation 2 and 3 in adjacent WT sections. 

Although this gives an impression of increased vulnerability, it is important to note that 

the separation between the two spaces in the y direction is relatively large, due to them 

being placed at the port and starboard side respectively of the wide box structure 

connecting the three hulls (Appendix 8). However, ATU and ventilation spaces are 

assumed to not be cross-connected, but independent for each zone, as mentioned in 

Section 4.3.1 and PM 1.5, Table 4.3, therefore, their separation distances are of minor 

importance. A similar philosophy has also been used in the adjacency of NBCD stores 

and airlocks. The main point to note is that in the trimaran frigate variant NBCD store 4 

and airlock 4 are separated by two WT bulkheads. This is because each FRP section 

base should be located adjacent to a NBCD store and a main zone boundary, and it was 

decided to locate the forward section base next to NBCD store 4. NBCD store 3 could 

also have been moved forward, by just 1 WT section, to meet the adjacency 

requirements. However, since one of the two cleansing and decontamination stations 

was located next to airlock 3 (the other being at airlock 1), it was decided that the 

location of its corresponding NBCD store was a higher priority. Airlock 1 leads above 

the aft mooring spaces, airlock 2 leads to the hangar and flight deck, airlock 3 leads to 

the forward weather deck and airlock 4 leads inside the forward mooring spaces. 

 Figure 5.23 and Figure 5.24 illustrate the arrangement of the main equipment 

items that are related to each of the major Fight systems which were modelled in the 

vulnerability and the recoverability assessment method, for Frigate Variants 2 and 3. As 
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in Figure 5.7 for Frigate Variant 1, items solely related to each Fight system are shown, 

therefore, neglecting items such as sensors, power generation units and centralised 

command and control spaces. 

 

 

Figure 5.23: Frigate Variant 2 Major Fight System Arrangement 

 

It is clear that for Frigate Variant 2 the distribution of the major Fight systems in 

accordance to the zoning arrangements has not been achieved to the same level as in the 

baseline. This is mainly due to the disruptions caused by the large footprint of the 

helicopter system, in combination with the small superstructure which is entirely in the 

same zone. The hangar, sonobuoy store and all helicopter maintenance and store spaces 

are inevitably located in the superstructure (including a below decks hangar with a lift 

arrangement was not considered due to cost implications). The superstructure, being in 

its entirety in the same zone, dictates that all other spaces (flight deck, magazine, 

weapon lift and AVCAT tank) have to be located in a separate, adjacent, zone. 

Therefore, the helicopter system extends over two adjacent zones, forcing the ASM 

system and aft SAM system to be located at the same aft-most zone. Moreover, the 

positioning of the harpoon launchers below decks, (Appendix 8) (to not obstruct 

helicopter operations) has led to the removal of a large portion of No 2 Deck, possibly 

leading to structural problems. The arrangement of the forward SAM system and 

medium calibre naval gun system is identical to that of the baseline, since the forward 

parts of both variants are largely similar. Another difficulty arising from the small 

superstructure configuration is the fact that the hangar (located on the port side 

(Appendix 8)) extends through a WT bulwark, therefore, removing approximately half 

of that WT bulwark above No 2 Deck. This could also lead to structural deficiencies. In 

addition, the positioning of the hangar amidships complicates the arrangement of 

uptakes and downtakes. Despite the above problems and although the specialisation of 

each zone in a specific type of warfare/operations has not satisfactorily been achieved, 

approximately the same level of concentration of equipment in series has been attained 

as in the baseline (see Figure 5.7). 
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Figure 5.24: Frigate Variant 3 Major Fight System Arrangement 

 

Frigate Variant 3 is the ship design that is capable of linking the major Fight 

system arrangements and the zoning arrangements to the greatest extent, despite that 

fact that it also incorporates a relatively small superstructure. This can easily be 

understood by the fact that the trimaran is the longest and widest (in terms of overall 

beam) of the three variants, therefore, allowing for a better distribution of systems. For 

example, the larger size of the second from aft zone has permitted the location of all 

helicopter system related equipment items in the same zone (with the exception of the 

aft part of the flight deck which extends over the adjacent zone, Appendix 8). (It is of 

interest that in Frigate Variants 1 and 3, the helicopter system is contained in a three 

WT section zone, while in the second variant in a two WT section zone, leading to the 

problems stated above). Additionally, the large overall beam has made possible the 

arrangement of the Harpoon launchers in a port-starboard, rather than forward-aft, 

arrangement, something unfeasible in the monohull variants, Appendix 8. The benefits 

of increased length are also observed through the separation distance between the 

medium calibre naval gun system and forward SAM system, which were located in 

adjacent WT sections in the first two variants. Thus, the trimaran configuration has 

allowed the specialisation of each zone in a specific type of warfare/operations, and 

assisted in the concentration of items in series of a particular system, therefore 

decreasing the systems vulnerability. The above remarks highlight the importance of 

increased ship length (and beam) on weapon system (upperdeck) arrangements and once 

again, the solutions presented by the trimaran configuration to the complications 

relevant in the layout of a combatant are unmistakeable. 

 A major modification between the three frigate design studies was the access 

philosophy adopted for each one. The hull of Frigate Variant 2 consisted of 5 decks, two 

of which, No 2 and No 3 Decks, were access decks. Each access deck contained a 

centreline passageway identical to the one in the baseline. In addition, similarly to the 

baseline, each WT section included two vertical accesses, one at either side of the 
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centreline passageway and at the forward and aft end of each WT section respectively. 

These arrangements are depicted in Figure 5.25, and detailed in the GA, Appendix 8. 

 

DC Decks Access 

 

DC Decks Access and Vertical Access 

  

Figure 5.25: Frigate Variant 2 Access Philosophy 

 

It is of interest to observe that the aft end of the passageway on No 3 Deck ends 

one WT section forward of the aft mooring space due to the location of the of the 

harpoon launchers (Figure 5.23). 

Conversely, the trimaran variant contained two side passageways on the DC 

deck (No 2 Deck) in the box structure which converge to a centreline passageway in the 

forward section of the hull. Two side passageways were included as it would have been 

problematic to achieve satisfactory access between spaces with a single passageway for 

a design with such a large beam. Although the hull did include a fifth deck, this was not 

a passing deck. Each WT section included two vertical accesses, one adjacent to each of 

the two side passageways and at the forward and aft end of each WT section 

respectively. Once the side passageways converged, the vertical access arrangements 

were identical to those of the first two variants. This is illustrated in Figure 5.26 and 

detailed in the GA, Appendix 8. 
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DC Deck Access 

 

DC Deck Access and Vertical Access 

  

Figure 5.26: Frigate Variant 3 Access Philosophy 

 

An interesting feature of the above access arrangements is the fact that the two 

side passageways are cross-connected in every WT section. This improves 

communication and personnel flow, however, occupies a considerable amount of space. 

Therefore, the access arrangements of the trimaran are not as efficient as those of a 

monohull (for which access between spaces is relatively easy, given the comparatively 

small beam) and contribute to the increased gross volume compared to its monohull 

equivalents. Nonetheless, side passageways do present certain advantages (described in 

Appendix 4.2), such as providing some protection to sensitive compartments and 

equipment located in between them (Begg et al 1990; Harney 2010) and providing a 

means of incorporating redundancy and separation of services by running pipes and 

cables along the side passageways (Brown 1987; Afanasieff and Mabry 1994) . 

 As with Frigate Variant 1 it is of interest to examine the location of all 

compartments and equipment relevant to the recoverability related PMs in Sections 

4.3.1, 4.3.2 and 4.3.3. Figure 5.27 and Figure 5.28 below illustrate the distribution of 

compartments and equipment related to Category 1 PM analysis. 
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Figure 5.27: Frigate Variant 2 Category 1 PM Elements 

 

The arrangement of the relevant compartments in Frigate Variant 2 is similar to 

that in the baseline. The site of the (collocated) power generation units and firepumps is 

identical to the corresponding arrangement in the baseline frigate designs, as is the 

location of the Operations Room, bridge and SCC. Once again, the Operations Room is 

located deep in the hull (No 4 Deck) in order to decrease vulnerability to abovewater 

attacks (although this could lead to an increase in underwater incidents) and the bridge 

and the Operations Room are located at the same WT section in order to improve access 

and communication between the two spaces. In addition the SCC is located at a distance 

from the Operations Room in order to permit its use as a secondary Operations Room in 

emergency. The location of the FRP section bases has already been briefly mentioned. 

They are both situated adjacent to an NBCD store and a main zone boundary. However, 

due to the absence of an NBCD store in one of the zones, the location of the aft FRP 

section base is slightly less efficient than that of the baseline in that it is situated 

relatively far aft. Though, this might be compensated by the fact that, being a shorter 

ship, DC crews would travel shorter distances to reach the affected areas of the ship 

(PM 1.2) and would have a larger choice of alternative routes (PM 1.4) given the second 

access deck. All other elements are located with respect to the zoning arrangements as 

described above. 

 

 

Figure 5.28: Frigate Variant 3 Category 1 PM Elements 
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The main noticeable difference between the trimaran frigate variant and the 

other two ship designs, regarding compartments and equipment items related to 

Category 1 PM analysis, is the location of the Operations Room. Although it is again 

positioned deep in the hull (No 4 Deck) for protection from abovewater attacks, it is not 

located at the same WT section as the bridge as was the case with the first two variants. 

This is clearly due to the arrangement of the machinery (previously detailed) forcing the 

Operations Room one WT section forward of the bridge. As a general conclusion it can 

be said that the architectural design of a trimaran, although simpler (than a monohull) in 

the box structure and upperdeck, is more challenging under the DC deck, due to the 

comparatively narrow beam of the three hulls. Another aspect of the trimaran is that, for 

the FRP section bases to meet both adjacency (with a NBCD store and main zone 

boundary) requirements, they are less efficiently positioned than in the baseline, since 

they are located closer to the extremities of the hull. This arises from constraints caused 

by the relatively small, amidships, superstructure which contains two of the ships 

airlocks (Figure 5.22) to which the other two NBCD stores should be in proximity. The 

inefficient FRP section base locations are worsened by fact that DC crews would travel 

longer distances to reach the affected areas of the ship (PM 1.2) due to the ship’s length 

(although having a larger choice of alternative routes (PM 1.4) given the two side 

passageways might have a balancing effect). All other elements are located using a 

similar reasoning as for the first two variants and with respect to the zoning 

arrangements described above. 

 Figure 5.29 and Figure 5.30 illustrate the distribution of compartments and 

equipment related to Category 2 (and Category 3) PM analysis. 

 

 

Figure 5.29: Frigate Variant 2 Category 2 PM Elements 
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Figure 5.30: Frigate Variant 3 Category 2 PM Elements 

 

The arrangement of these spaces in Frigate Variants 2 and 3 are almost identical 

to that of the baseline design. Workshops have been located conveniently to their 

corresponding spare gear stores and to the machinery compartments. The two groups of 

workshops and spare gear stores have been separated as much as possible, with the 

longer trimaran variant presenting clear advantages in that regard. Naval stores have 

been located by taking into account trim and available space. A feature of interest is the 

distribution of the trimarans naval stores in two decks due to insufficient space; another 

effect of the narrow main hull beam of a trimaran configuration. Category 3 PM 

analysis, in addition to the above compartments, involves all of the components of each 

major ship system; system architecture illustrations are included in Appendix 7. 

 

5.2 Corvette and Destroyer Design Studies 

 

It was decided that it would be beneficial to apply the survivability assessment 

method discussed in Chapter 4 to combatants of different sizes to investigate how ship 

size affects survivability. An obstacle associated with comparative studies is the careful 

variation of only one variable at a time. It was therefore decided that the hull 

configuration would be constant (i.e. all ships compared would be monohulls) as would 

be the major move and Fight systems modelled; only ship size would vary. A further 

two combatant design studies were carried out, one smaller combatant (corvette) and 

one larger combatant (destroyer). The two above additional combatant design studies 

were compared to the baseline frigate by applying the survivability assessment method 

outlined in Chapter 4. However, it is clear that combatants of different sizes/types 

contain different combat systems, number of zones and performance capabilities (i.e. 

“interconnected variables” (Bradbeer and Andrews 2012b)). This limitation was 

observed by Bradbeer and Andrews (2012b) who concluded that “the best that can be 

achieved is to design … which are equivalent against one metric and accept that some 

variables cannot be fixed”, therefore, the designs “can only be considered equivalent in 
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limited sense”. This led to the conclusion that in order for the design studies to be 

realistic, certain lower level variations (all connected to the high level variable of ship 

size) would have to be incorporated. Therefore, the way in which each aspect of 

survivability is affected by ship size (including varying zoning) and level of combat 

system and ship performance capabilities (appropriate to the ship type) was 

investigated. 

Two additional general purpose, general ocean going sea control combatants 

were designed. Table 5.4 below lists the payload of the three combatants.  

 

Table 5.4: Corvette, Frigate Variant 1 and Destroyer Payload 

Corvette Payload 

Equipment 

Frigate Variant 1 

Payload Equipment 

Destroyer Payload 

Equipment 

FIGHT 

Systems 

1 × Oto Melara 76mm 
Naval Gun System 

1 × BAE Systems 155mm gun 
Medium 
calibre naval 
gun system 

2 × 4 Harpoon launchers ASM system 

4 × MBDA MICA PDMS with 32 MICA 
missiles (4 x 8 round VL launchers) 

6 × PAAMS ADMS 
with 48 Aster missiles 
(SYLVER A50 VLS: 
3 x 8 Aster-15 and 3 x 
8 Aster-30) 

Aft/fwd 
SAM system 

1 × Lynx (Kestrel) 
Helicopter + hangar 
and single spot flight 
deck for Lynx 

1 × Lynx (Kestrel) 
Helicopter + hangar 
and single spot flight 
deck for EH-
101Merlin 

1 × EH-101Merlin 
Helicopter + hangar 
and single spot flight 
deck for EH-
101Merlin 

Helicopter 
system 

2 × MSI Seahawk 30mm 

Other 
payload 
(certain 
sensors are 
part of the 
major Fight 
systems 
above; for 
full system 
tree diagrams 
see 
Appendix 7) 

- 
4 × Oto Melara 
12.7mm 

- 2 × Phalanx CIWS 

2 × Triple barrel torpedo tubes 

4 × Rheinmetall MASS Decoy Launchers 

1 × Surface Ship Torpedo Defence System 

2 × Navigation radars 

1 × Single Face SR STAR Surveillance Radar 2 × MFR Spectar 

1 × General Purpose Electro Optical Device 

2 × Thales Sirius IRST 

1 × Raytheon AN/SLQ-32(V)3 Shipboard ESM/ ECM System 

1 × Spherion hull mounted sonar 

1 × Small ship communications system (1 × 
communications mast + 2 × whip antennae) 

1 × Medium ship 
communications 
system (1 × 
communications mast 
+ 4 × whip antennae) 

1 × Generic Satellite Communications System with 2 antennae 

- 25 Embarked forces 50 Embarked forces 
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The table above conveys the main payload equipment corresponding to the 

major Fight systems which were assessed in the vulnerability and recoverability 

methods described in Chapter 4. The differences in the combat systems, appropriate to 

the ship type, are highlighted. (Each Fight system includes further items such as 

sensors, control rooms and power generation units; full system diagrams are shown in 

Appendix 7). 

The performance requirements of the three combatants are detailed in Table 5.5. 

The variations in issues such as zoning and ship performance capabilities appropriate to 

the ship size and type are visible. 

 

Table 5.5: Corvette, Frigate Variant 1 and Destroyer Performance Requirements 

Adopted for Design Studies 

 Corvette  Frigate Variant 1 Destroyer  

Maximum speed 30kts 

Endurance 3,000nm at 15kt 7,000nm at 15kts 8,000nm at 15kts 

Stores 10 days 30 days 45 days 

Stability 
Defence Standard 02-109 (NES 109) intact and damage criteria 

assessment (MOD 2000) 

Zoning 

2 zones with 

maximum 

independence 

4 zones with 

maximum 

independence 

5 zones with 

maximum 

independence 

 

In addition, increased accommodation standards from the Corvette to the 

Destroyer will be adopted due to the increasing range and stores endurances, implying a 

longer time for the crew spent at sea. 

A summary of the principal particulars of the three combatants is included in 

Figure 5.31, with GAs in Appendix 8. 

 

 

 

 

 

 

 



153 
 

Figure 5.31: Principal Particulars of the Corvette, Frigate Variant 1 and Destroyer 

Investigated 

Corvette 

Dimensions 

 

Hullform Param. 

Displacement 

Maximum Speed 

Range 

Power Plant 

 

 

Accommodation 

90.7m (84.5m) × 13.7m (12.2m) × 8.5m (deep draught 3.9m); deep 

trim 0.5m, light trim 0.5m 

CB: 0.451, CP: 0.615, CM: 0.733, CW: 0.745, Circular M: 7.0 

1,830te deep, 1,640te light 

29.7kts 

3,000nm at 15kts, 2,500nm at 18kts 

1 × 24.05MW GT (boost), 2 × 1.2MW diesels (cruise), 2 × 1.2MW 

diesels (auxiliary) driving one FPP on a 25.5MW HTS motor and 

one pump-jet on a 1MW HTS motor 

10 officers, 64 ratings 

Frigate Variant 1 

Dimensions 

 

Hullform Param. 

Displacement 

Maximum Speed 

Range 

Power Plant 

 

Accommodation 

132.2m (125.8m) × 16.1m (15.2m) × 9.7m (deep draught 4.0m); 

deep trim 0.6m, light trim 0.8m 

CB: 0.487, CP: 0.596, CM: 0.818, CW: 0.755, Circular M: 8.1 

3,890te deep, 3,270te light 

30.5kts 

7,100nm at 15kts, 6,000nm at 18kts 

1 × 31MW GT (boost), 2 × 2.94MW diesels (cruise), 2 × 2.69MW 

diesels (auxiliary) driving two FPPs on 20MW HTS motors  

11 officers, 137 ratings, 25 embarked forces 

Destroyer 

Dimensions 

 

Hullform Param. 

Displacement 

Maximum Speed 

Range 

Power Plant 

 

Accommodation 

154.0m (147.5m) × 18.9m (17.7m) × 12.4m (deep draught 4.7m); 

deep trim 0.6m, light trim 0.9m 

CB: 0.489, CP: 0.592, CM: 0.825, CW: 0.757, Circular M: 8.1 

6,250te deep, 5,120te light 

29.7kts 

8,000nm at 15kts, 7,200nm at 18kts 

1 × 31MW GT (boost), 2 × 4.08MW diesels (cruise), 2 × 5.44MW 

diesels (auxiliary) driving two FPPs on 20MW HTS motors 

22 officers, 151 ratings, 50 embarked forces 
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 Correspondingly to the three frigate variants described in Section 5.1, the 

complements and accommodation requirements of the Corvette and Destroyer designs 

were sized based on complement/displacement ratios of similar ships. Complement 

breakdowns are detailed in Appendix 9.1. 

 The two additional combatants represent a typical modern corvette and destroyer 

respectively, each with a one passing deck hull. The Destroyer (Figure 5.33) includes 

the typical five deck hull and a continuous superstructure out to ship’s side, while the 

superstructure of the Corvette (Figure 5.32) is split into two structurally separate blocks 

and its hull consists of four decks. Since the UCL MSc Ship Design Procedure (UCL 

2010a) is aimed primarily at frigate type ships, existing UCL design studies of corvettes 

and destroyers were investigated. 

 

 

Figure 5.32: Corvette Ship Design Study 

 

 

Figure 5.33: Destroyer Ship Design Study 

 

 The two additional combatants are described in terms of their top level ‘Float, 

Move, Fight, Infrastructure’ functional breakdown in Figure 5.34 and Figure 5.35. 
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Float 

 
Move 

 
Fight 

 
Infrastructure 

 
Figure 5.34: Corvette Top Level Functional Breakdown 

 

Float 

 
Move 

 
Fight 

 
Infrastructure 

 
Figure 5.35: Destroyer Top Level Functional Breakdown 

 



156 
 

Since the baseline frigate and the Corvette and Destroyer designs shown above 

all represent typical modern combatants, they present many similarities in the 

arrangement of the four top level functional groups. The main observation worth 

mentioning is the lack of fight related compartments in the lower deck (No 4 Deck) of 

the Corvette hull (Figure 5.34) with the exception of its AVCAT tanks. All other 

combatants contain magazines in their lower decks. This was not possible for the 

Corvette since machinery compartments, stores and liquids occupied the entire length of 

the lower deck due to the ships short overall length. Priority is given to these heavy 

compartments for stability considerations (Begg et al 1990; Heather 1990), as 

mentioned in Appendix 4.2. Magazines were, therefore, forced towards the higher decks 

of this ship design. Although this would improve reloading and stowing operations, it 

would also increase the vulnerability of the magazines, especially to threats such as fire, 

which could have devastating overall effects. Another effect of the Corvettes short 

length, noticeable in the illustrations above, is the decreased separation distances 

between sensors (which could result to problems similar to the ones possible, due to the 

small superstructures, in Frigate Variants 2 and 3, such as interference issues and 

increased vulnerability) and machinery compartments. Additionally, it is clear that 

moving from the smallest combatant to the largest, the footprint of the distribution of 

the Infrastructure functional group in the z axis (i.e. depth) increases, purely because of 

the increasing number of decks in the comfortable amidships area of the hull and 

superstructure. A final observation is the existence of different numbers of machinery 

compartments in each combatant. This is directly related to the zoning philosophy of 

each design study. 

The Corvette and Destroyer designs are described in terms of their top level 

weight breakdowns in Table A11 and Table A12 of Appendix 9.2. The margin 

philosophy adopted is discussed in Appendix 9.3. 

The hulls of both additional combatants were generated in an identical manner 

to that of Frigate Variants 1 and 2, i.e. the Quickhull object of Paramarine was used to 

scale a Type 22 Frigate based hull. The lines plans of the Corvette and Destroyer 

designs are illustrated in Figure 5.36 and Figure 5.37 respectively. The small L/B ratio 

and large transom beam of the Corvette design (typical in many corvettes), primarily in 

order to achieve good stability and adequate internal volume, is clearly visible. 
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Figure 5.36: Corvette Lines Plan 

 

 

Figure 5.37: Destroyer Lines Plan 

 

 The propulsive powering requirements for the Corvette were computed using the 

inbuilt Paramarine powering module (see Appendix 9.4). The machinery that was 

selected consisted of:- 

- 2 × 1.2MW Warstila 6L20 diesel gensets (cruise); 

- 1 × 24.05MW General Electric LM2500 marine gas turbine, electrical drive 

(boost); 

- 2 × 1.2MW Wartsila 6L20 diesel gensets (auxiliary). 

Similarly to the trimaran frigate variant, the small beam of the Corvette obstructed the 

use of a double shaft arrangement. Since a single shaft was unacceptable for 

survivability and availability reasons, a secondary forward propulsive unit, consisting of 

a motor and pump-jet arrangement (Schottel 2010a), was fitted. Therefore, the Corvettes 

machinery drives a single FPP propeller on a 25.5MW HTS motor and a single Schottel 

SPJ 220 Pump-Jet on a 1MW HTS motor. Figure 5.38 illustrates the arrangement of the 

above machinery, auxiliary machinery shown in green (Infrastructure functional group), 

and main machinery in yellow (move functional group). As previously noted, this is 

closely related to the move major system, which was modelled in the vulnerability and 

recoverability assessment approach. Whole major system architecture and tree diagrams 

are included in Appendix 7. 
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Figure 5.38: Corvette Power and Propulsion Arrangement 

 

A number of dissimilarities are observed between the power and propulsion of 

the Corvette and the baseline frigate, such as the placement of both auxiliary engines in 

the same compartment. This was done due to constraints imposed by the short length of 

the Corvette as well as the fact that, having a two zone requirement (Table 5.5), a 

minimum of two machinery compartments (as opposed to the four of the frigate 

variants) was acceptable. Despite the decreased number of machinery compartments, 

the relative footprint of the power and propulsion arrangement is larger than that in the 

baseline frigate, indicative of the tight arrangement inflicted by the short overall length. 

Another noticeable difference is the split forward and aft propulsive units, similar to the 

trimaran arrangement (Figure 5.18), which should strongly impact on the vulnerability 

of the move system. Furthermore, as with all frigate variants, superstructure above the 

forward-most engines is absent. An underwater exhaust arrangement of the forward 

cruise engines (similar to the trimaran) was preferred over the linkage of their exhaust 

with that of the gas turbine. This was the preferred option as it was evaluated inefficient 

to extend the exhaust of the (two) cruise engines through the relatively short (2.7m, as 

opposed to the baselines 3m, deck head height) and unique through deck of the 

Corvette, through which connectivity items (such as pipes and cables) usually traverse. 

The implications of underwater exhausts were previously discussed (Appendix 4.1) and 

include a reduction in the ships IR signature (Heather 1990; Foxwell 1990a), the 

worsening of the ships acoustic signature (Heather 1990) and the danger of confronting 

back pressure and corrosion related issues (Dicker 1986; Belcher 2008). In addition, the 



159 
 

gas turbine exhausts through the forward mast (see Appendix 8) and the two auxiliary 

engines exhaust at the forward starboard corner of the aft superstructure, therefore, not 

interfering with helicopter operations. The main similarity between the power and 

propulsion arrangements of the Corvette and baseline frigate is the reduction in 

vulnerability due to the wide separation of the (parallel) power generation units 

(Appendix 4.2) and the relatively short (but declined) shaft, arising from the IFEP 

system selected. However, the choice of this style of arrangement, in combination with 

the short hull of the Corvette, has led to the positioning of the two cruise engines quite 

far forward which could raise issues with their operation under high pitch motions. 

Removal routes for all engines were taken into account through the inclusion of soft 

patches in the passageways and compartments above each engine. 

 The propulsive power requirements of the Destroyer were also estimated 

through the inbuilt Paramarine module (see Appendix 9.4). The machinery selected 

consisted of:- 

- 2 × 4.08MW Wartsila 12V26 diesel gensets (cruise); 

- 1 × 31MW Rolls-Royce MT30 marine gas turbine, electrical drive (boost); 

- 2 × 5.22MW Wartsila 16V26 diesel gensets (auxiliary). 

The above machinery driving two FPPs on 21MW HTS motors. The arrangement of the 

main (yellow) and auxiliary (green) machinery described above is illustrated in Figure 

5.39. 

 

 

 

Figure 5.39: Destroyer Power and Propulsion Arrangement 
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The power and propulsion arrangements of the Destroyer and the baseline 

frigates present many similarities. The main difference is the fact that all power 

generation units are located in separate machinery compartments. This was done in 

order to match the number of engines to the number of zones, since both ship designs 

included five engines, but the Destroyer had a five zone requirement as oppose to the 

four zones of the frigate design. This has led to a better distribution of the (parallel) 

engines along the ship’s length and should, therefore, decrease vulnerability of the 

move system. It is evident that the lengthwise distribution of engines was only possible 

due to the adoption of an IFEP system, as was the use of relatively small shafts. 

However, similarly to the Corvette design, despite the greater length of the Destroyer, 

the increased separation requirements of the power generation units have led to the 

placement of the forward Wartsila 12V26 engine relatively far forward, therefore, 

possible arising concerns with the engines operation under high pitch motions. Another 

difference between the two ship deigns is the underwater exhaust of the forward cruise 

engine, the implications of which have been discussed above and in Appendix 4.1. The 

uptakes of the aft auxiliary and aft cruise engines merge and exhaust through the aft 

mast, as do the uptakes of the gas turbine and the forward auxiliary engine, in the 

forward mast; this is clearer in the GA, Appendix 8. Identically with all ship design 

studies, removal routes for all engines were taken into account through the inclusion of 

soft patches in the passageways and compartments above each engine. 

 The hydrostatics of the Corvette and Destroyer designs were computed using the 

inbuilt Paramarine module. As in the frigate variants, intact stability was assessed 

against Defence Standard 02-109 (NES 109) Stability Standards for Surface Ships 

(MOD 2000) until all criteria were passed. Damage stability (of both deep and light 

conditions) was assessed against Defence Standard 02-109 (NES 109) damage criteria 

assessment (MOD 2000). Hydrostatics data are given in Appendix 9.5. 

 The transverse subdivisions of the Corvette and the Destroyer designs are 

illustrated in Figure 5.40 and Figure 5.41, with the WT bulkheads constituting the main 

zone boundaries shown in red. 
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Figure 5.40: Corvette WT Bulkhead Arrangements 

 

 

Figure 5.41: Destroyer WT Bulkhead Arrangements 

 

As with the frigate variant designs, bulkheads locations were dictated through 

zoning, structural, layout and damage stability considerations. For structural continuity, 

bulkheads were positioned at the forward and aft superstructure ends, masts, medium 

calibre naval gun and at every location where there is a step in the superstructure. Note 

that in the Corvette design a bulkhead was not included at the after cut-up because of 

the inability of the hull generator to produce a realistic hull, had the after cut-up been 

shifted further forward. However, the selected arrangement, with the after cut-up half 

way between two bulkheads is acceptable and frequently occurring. The Corvette design 

contained eight WT bulkheads (and nine WT sections), four less than the baseline 

frigate; the Destroyer design contained thirteen bulkheads (and fourteen WT sections), 

two more than the baseline frigate. 

 The Corvette encompassed two zones (the aft zone including 5 WT sections and 

the forward zone, 4) and the Destroyer contained five zones (with 3, 2, 3, 2 and 4 WT 

sections respectively). The zone boundary of the Corvette is slightly forward of 

amidships in order for the whole gas turbine (engine and alternator) to be contained in 

the same zone. Each of the zones contains independent power generation units, CWP, 

HPAC, FP, ATU and ventilation, NBCD stores and airlocks for access to and from the 

citadel/weather, as shown in Figure 5.42 and Figure 5.43. 
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Machinery Room Arrangement 

 

ATU and Ventilation Arrangement 

 

NBCD Stores 

 

Airlocks 

 

Figure 5.42: Corvette Zoning Philosophy 

 

A number of differences between the Corvette and baseline frigate zoning 

arrangements arise due to halving the number of zones. For example the Corvette is the 

only ship design to contain only one auxiliary machinery room. Since the requirement 

was that each zone should have an independent power generation unit, two machinery 

compartments would be sufficient for this ship design study. However, since the two 

auxiliary gensets, two cruise gensets and the gas turbine could not fit inside two such 

compartments, a total of three machinery rooms were included, two main and one 

auxiliary. Consequently, the Corvette was the only design to include more than one 

machinery room in one of its zones (aft zone includes two) and more than two engines 

in one of its zones (aft zone contains two diesels and one gas turbine). This possibly 

suggests that a three zone philosophy was more suitable and efficient for the above 

design. As in all other design studies, the gas turbine, although smaller than the Rolls-

Royce MT30 used in the frigates, was split between two WT sections due to its large 

size, Figure 5.38. The AMR and MMR2 each encompassed a CWP, HPAC and FP in 
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order to meet the zonal requirement with a maximum separation distance between the 

equipment. Due to the size of the aft zone, which houses three of the five engines and 

the living spaces of the bulk of the crew, it was decided to split its ATU and ventilation 

compartments into two units, aft and at amidships. Therefore the aft zone contained ⅔ 

of the ships ATU and ventilation capacity, again encouraging a three zone philosophy. 

Each zone contained an airlock, located conveniently to an NBCD store. Airlock 1 led 

to the aft mooring space and airlock 2 to the forward part of the weather deck; both 

airlocks were adjacent to cleansing and decontamination stations for access to the 

weather. 

 

Machinery Room Arrangement 

 

ATU and Ventilation Arrangement 

 

NBCD Stores 

 

Airlocks 

 

Figure 5.43: Destroyer Zoning Philosophy 

 

The Destroyer includes one more of each of the replicated (in accordance to the 

zoning philosophy) equipment items compared to the baseline frigate design (due to the 

presence of an added zone), apart from power generation units. As observed in Figure 
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5.4 and Figure 5.39, both ship designs include five engines, the only difference being 

that the Destroyer contains each engine in a different machinery compartment (and 

zone), therefore, achieving the maximum number of zones possible for the given 

configuration and requirement. Consequently, the main difference between the baseline 

frigate and the Destroyer designs in this regard is the presence of an extra machinery 

room in the Destroyer, each room containing one engine, CWP, HPAC and FP. Once 

again, MMR2 has been extended along two WT sections to accommodate (in separate 

WT sections) the alternator and engine of the large gas turbine. Note that a portion of 

MMR2 is three decks deep due to the adequate volume provided by the large 5-deck 

hull of the Destroyer. The ATU and ventilation units are located in proximity to the 

living spaces and engine rooms, reasonably above the waterline. The airlocks are 

situated close to the NBCD stores, as in all previous design studies. Airlock 1 leads to 

the aft mooring space, airlock 2 to the hangar, airlock 3 above the amidships section of 

the superstructure, airlock 4 to the forward section of the weather deck and airlock 5 to 

the forward mooring space. Cleansing and decontamination stations are located adjacent 

to airlocks 1 and 4. 

 Figure 5.44 and Figure 5.45 illustrate the arrangement of the main equipment of 

the major Fight systems which were modelled in the survivability assessment method. 

As before, items solely related to each Fight system are shown, therefore, neglecting 

sensors, power generation units and centralised command and control. (For full system 

tree diagrams and architectures see Appendix 7). 

 

 

Figure 5.44: Corvette Major Fight System Arrangement 

 

It is obvious that in the case of the Corvette it was not realistically possible to 

link the arrangement of the five major Fight systems to the zoning philosophy, due to 

the presence of only two zones. However, each system (the items of which are in series) 

was attempted to be concentrated as much as possible in a particular area of the ship to 

decrease vulnerability. That is evident from Figure 5.44, as is the overlapping of certain 

Fight systems (to a much greater extent than in the frigate variants) due to the tight 
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arrangements imposed by the short hull. This verifies the strong link between ship 

length and weapons and sensors (upperdeck) layout (Andrews and Brown 1982; Brown 

1987) identified in Appendix 2 and in the description of the major Fight system 

arrangement of the trimaran, Figure 5.24. 

 

 

Figure 5.45: Destroyer Major Fight System Arrangement 

 

The Destroyer, on the other hand, is the only ship design study to have achieved 

full linkage between the distribution of the main equipment of the major Fight systems 

and the zoning arrangement. This was possible due to the equal number of Fight 

systems and zones (once again implying that the maximum number of zones for the 

given configuration and requirement has been reached) and the large overall ship length, 

allowing for a comfortable upperdeck layout. From Figure 5.45 it is clear that none of 

the footprints of any Fight system overlap with another one and all main equipment of 

all Fight systems are within the same zone, therefore achieving the specialisation of 

each zone with a particular type of warfare/operations. 

 The Corvette design study included 4 decks in its hull, with a conventional 

centreline passageway on the DC deck (No 2 Deck), common in such ship types. In 

addition, each WTs section included two vertical accesses, one at either side of the 

centreline passageway and at the forward and aft end of each WT section respectively. 

Therefore, identical access arrangements were observed as for the baseline frigate, the 

only difference being the reduction of the DC deck passageway width from 2m (used in 

all other ship design studies) to 1.5m due to the smaller size of the ship. The above 

arrangements are shown in Figure 5.46. 
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DC Deck Access 

 

DC Deck Access and Vertical Access 

  

Figure 5.46: Corvette Access Philosophy 

 

The Destroyer design also includes one through deck (No 2 Deck) although its 

hull consists of 5 decks. Being a conventional destroyer, it was decided to implement a 

double, side, passageway arrangement, Figure 5.47. 

 

DC Deck Access 

 

DC Deck Access and Vertical Access 

  

Figure 5.47: Destroyer Access Philosophy 
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The two side passageways converged to a single centreline access strip above all 

machinery compartments (with the exception of the gas turbine compartment) in order 

to facilitate engine removal, and at the narrow forward end of the hull. The WT sections 

with a centreline passageway include two vertical accesses, one at either side of the 

passageway and at the forward and aft end of each WT section respectively; the WT 

sections with side passageways include two vertical accesses, one adjacent to either 

passageway and at the forward and aft end of each section respectively. A cross-

connecting passageway is included at all WT sections with side passageways, therefore, 

improving communication and personnel flow, but occupying a considerable amount of 

space, as in the trimaran frigate design. Advantages of side passageways were examined 

(see Appendix 4.2) and include the protection of sensitive compartments and equipment 

located in between them (Begg et al 1990; Harney 2010) and the ability to run pipes and 

cables along them for the redundancy and separation of services (Brown 1987; 

Afanasieff and Mabry 1994). More detailed access arrangements are presented in the 

GAs, Appendix 8. 

 Figure 5.48, Figure 5.49, Figure 5.50 and Figure 5.51 illustrate the distribution 

of all equipment and compartments relevant to the recoverability PMs (Sections 4.3.1, 

4.3.2 and 4.3.3) employed in the recoverability assessment method previously 

described. The first two illustrations show the arrangement of items related to Category 

1 PM analysis. 

 

 

Figure 5.48: Corvette Category 1 PM Elements 

 

As before, the calculation of MPs 1.1, 1.2 and 1.3 is relatively straightforward 

from the figure above, as is that of PM 1.4, given there is only one route (of smaller 

width than in the frigate variants and Destroyer designs). For the location of items 

related to all other category 1 PMs (which are estimated by use of SURVIVE Lite, as 

explained in Section 4.3.1), a similar philosophy to that for the frigate designs was used; 

i.e. the Operations Room was located deep in the hull for reduced abovewater threat 

vulnerability, conveniently to the bridge for improved crew evolutions and at a distance 
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from the SCC (positioned close to machinery compartments, although the use of a 

widely distributed IFEP system created constraints) to enable its use as a secondary 

Operations Room in emergency. All other equipment and compartments were located 

through zoning considerations. A noticeable difference between the Corvette and frigate 

arrangements is the positioning of one of the FRP section bases at a different deck from 

its corresponding NBCD store, although the adjacency requirement has still been met. 

This was a result of the decision to locate the NBCD store adjacent to the forward 

airlock and cleansing and decontamination station (Figure 5.42), which were located in 

the forward superstructure in order to direct to the weather (forward weather deck); and 

the requirement for all FRPs to be stationed on the DC deck, being the only deck with 

unrestricted access the ship’s length. Another difference with the baseline frigate is the 

fact that not all FRP section bases were located adjacent to main zone boundaries. With 

only two zones and one main zone boundary, such a decision would effectively group 

the two section bases together, therefore, practically eliminating one of them and 

increasing their vulnerability. Instead, the two FRP section bases were separated in a 

forward and aft arrangement. 

 

 

Figure 5.49: Destroyer Category 1 PM Elements 

 

The logic used for the location of the Category 1 related PM spaces in the 

Destroyer design was the same as in the remaining combatants described above. There 

are three main differences worth commenting. First, the side passageway arrangement 

across a substation length of the hull would affect PM 1.4 by providing a larger number 

of alternative routes to reach the affected compartment, therefore, improving DC. 

Second, the aft FRP section base has been placed adjacent to, but one deck below its 

corresponding NBCD store (which in turn is located beside the airlock leading to the 

hangar, Figure 5.43). A final, but significant variation is the placement of the 

Operations Room above a machinery compartment. This arrangement is generally 

undesirable due to the compulsory provision of removal routes for engines, which has 
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led to the incorporation of a generous margin in the Operations Room space 

requirement in order to remove the engine below it with minimal disruptions. This 

complicated arrangement was a result of the 5 zone requirement (each with independent 

power generation) which led to relatively small zones; the zone in which the Operations 

Room is located being only 2 WT sections long. It could be argued that the Operations 

Room could be moved one WT section forward (as in the trimaran frigate variant); 

however, due to the presence of the forward SAM vertical launchers at that WT section 

(visible in Figure 5.45, and in Appendix 8) there was not an adequate provision of 

space. 

 Figure 5.50 and Figure 5.51 below depict collectively the distribution of 

Category 2 (and Category 3) PM related items on the Corvette and Destroyer designs. 

 

 

Figure 5.50: Corvette Category 2 PM Elements 

 

 

Figure 5.51: Destroyer Category 2 PM Elements 

 

By comparing the above two illustrations with Figure 5.10 it becomes clear that 

the arrangement of Category 2 PM related compartments is almost identical for all three 

Corvette, baseline frigate and Destroyer design studies. Workshops and spare gear 

stores have been split in two groups for redundancy, arranged in a forward and aft 

orientation (separated by only two WT sections in the smaller Corvette design). Each 

workshop has been located conveniently to its corresponding spare gear store and to the 

machinery rooms. The Operations Room and SCC have been separated by a reasonable 

distance for redundancy reasons and the naval stores have been located primarily by 

taking into account stability considerations. In addition to the above compartments, 
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Category 3 PM analysis involves all of the items of each major ship system; system 

architecture illustrations are included in Appendix 7. 

 

5.3 Replenishment Ship Design Studies 

 

 In Section 4.2 it was mentioned that the current survivability assessment method 

would be applied to AOR type ships in order to demonstrate the applicability of the 

method on non-combatant ship types. The increased significance of such ships is 

examined in Appendix 2.3, where the need for global military presence (despite 

declining defence budgets and fleet sizes) and new IMO regulations were identified as 

the main motives for many navies to require improved underway replenishment 

capabilities (Bricknell and Vedlog 2007; Andrews and Pawling 2007). 

 Two AOR variants were designed, again using the DBB approach through the 

SURFCON module in Paramarine, Section 2.1.5. To familiarise with designing such a 

ship type, past UCL as well as industry developed designs were studied (Project 

Management Office JSS 2005a; Project Management Office JSS 2005b; BMT Defence 

Services 2012). Information about specialised equipment such as RAS equipment and 

cranes was taken from (Rolls-Royce 2008; TTS Marine 2010; Flensburger 2012). The 

requirement was for a ship capable of accomplishing the roles of cargo transportation, 

replenishment at sea, aviation support and provision of medical facilities. The aim was 

that two of the AOR ship designs would be part of a task group, consisting of one CVF, 

two AAW Destroyers, four ASW Frigates, with a maximum range of 15,000nm in 

addition to a 30 day period for the conduction of operations. The AOR cargo capacity 

was calculated primarily through the work done by Martin (2001) as well as by 

comparing to existing similar ships. Table 5.6 describes the required cargo capacity 

breakdown and Table 5.7 lists the performance requirements for the two AOR variants. 

 

Table 5.6: AOR Required Cargo Capacity 

AVCAT (m3)  11,600 

Dieso (m3)  7,100 

Dry Stores (m3) 4,850 

Ordnance (m3) 2,600 

Water (m3) 400 

Lube oil (m3) 100 

TEU Minimum 8 
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Table 5.7: AOR Performance Requirements Adopted for Design Studies 

Maximum speed 18kts 

Endurance 15,000nm at 15kts 

Stores 42 + 30 days 

Stability 
Defence Standard 02-109 (NES 109) intact and damage criteria 

assessment (MOD 2000) 

Zoning 2 zones with maximum independence 

 

In addition, Table 5.8 lists the weapons and sensors, as well as the RAS 

infrastructure, incorporated in the AOR designs. Identical equipment was used in both 

variants. 

 

Table 5.8: AOR RAS Infrastructure and Payload  

Port, starboard and astern refuelling 

4 × RAS posts 

1 × Crane 

RAS Infrastructure 

1 × EH-101 Merlin Helicopter + single spot flight deck for EH-

101 Merlin and hangar for four EH-101Merlins 

2 × Raytheon SeaRAM Weapon System 

2 × MSI Seahawk 30mm 

4 × Oto Melara 12.7mm 

4 × NATO Standard Decoy Launching System 

2 × Navigation radars 

1 × Single Face SR STAR Surveillance Radar 

1 × Surface Ship Torpedo Defence System 

2 × Thorn-EMI 'Guardian' Type 675 Jammer  

1 × Medium ship communications system (1 × communications 

mast + 4 × whip antennae) 

1 × Generic Satellite Communications System with 2 antennae 

Weapons and Sensors 

 

The SeaRam Weapon System was preferred to a conventional CIWS (e.g.: 

Raytheon Phalanx CIWS amongst which SeaRAM is based) due to its higher 

effectiveness (Harney 2010). 
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 A summary of the principal particulars of the two AOR variants is included in 

Table 5.9, with GAs in Appendix 8. 

 

Table 5.9: Principal Particulars of the AOR Variants Investigated 

Variant 1 

Dimensions 

 

Hullform Param. 

Displacement 

Maximum Speed 

Range 

Power Plant 

 

 

Accommodation 

205.4m (198.8m) × 28.2m (25.5m) × 20.4m (deep draught 12.0m); 

deep trim 0.7m, light trim 1.2m 

CB: 0.616, CP: 0.738, CM: 0.835, CW: 0.861, Circular M: 6.0 

38,450te deep, 23,620te light 

18.3kts 

15,300nm at 15kts, 11,400nm at 18kts 

4 × 5.76MW diesels (cruise and auxiliary), 1 × 0.685MW diesel 

(emergency) driving two 10MW pods and one pump-jet on a 1MW 

HTS motor. 

30 officers, 183 ratings 

Variant 2 

Dimensions 

 

Hullform Param. 

Displacement 

Maximum Speed 

Range 

Power Plant 

 

Accommodation 

205.4m (198.7m) × 28.2m (25.4m) × 20.4m (deep draught 11.9m); 

deep trim 0.6m, light trim 1.6m 

CB: 0.615, CP: 0.737, CM: 0.835, CW: 0.860, Circular M: 6.0 

37,850te deep, 23,360te light 

18.3kts 

15,600nm at 15kts, 11,600nm at 18kts 

4 × 5.76MW diesels (cruise and auxiliary), 1 × 0.685MW diesel 

(emergency) driving two 10MW pods. 

30 officers, 183 ratings 

 

 The complements of both ships were identical and were calculated based on 

work done by Martin (2001). Complement breakdown and accommodation 

requirements are given in Appendix 9.1. 

The two AOR design variants are illustrated in Figure 5.52 and Figure 5.53. 
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Figure 5.52: AOR Variant 1 Ship Design Study 

 

 

Figure 5.53: AOR Variant 2 Ship Design Study 

 

It becomes evident that two naval replenishment ship designs vary in 

configuration, one including a split forward and aft superstructure arrangement with the 

RAS infrastructure located between the two blocks (analogous to the Fort Victoria class 

replenishment oiler); the other including a single aft superstructure block, with the RAS 

infrastructure slightly forward of amidships (comparable to the Wave class tankers). 

These two configurations were chosen as they are the most common in current naval 

auxiliary ships. Therefore, an opportunity to investigate the survivability implications of 

the two choices was presented.  

 The top level functional breakdown of the AOR variants is illustrated in Figure 

5.54 and Figure 5.55. 
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Float 

 
Move 

 
Fight 

 
Infrastructure 

 
Figure 5.54: AOR Variant 1 Top Level Functional Breakdown 

   

Float 

 
Move 

 
Fight 

 
Infrastructure 

 
Figure 5.55: AOR Variant 2 Top Level Functional Breakdown 
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The most obvious effects of the configurational variations between the two 

design are the split nature of the move functional group (which resulted from the 

decision to apply an IFEP system, similarly to the combatant designs) and the 

Infrastructure functional group, as well as some of the sensors in the fight functional 

group in AOR Variant 1, as opposed to the concentrated nature of those groups in the 

second variant. This gives the impression of AOR Variant 1 being a less vulnerable 

design. A further point of interest is the fact that, unlike in the combatant design studies, 

the Fight group of the replenishment ship designs is represented in three different 

colours, each signifying a lower level Fight sub-group. In red are the ships weapons, 

sensors and related spaces (e.g.: hangars and LCUs); in brown is the ship’s cargo 

(although water tanks are depicted as part of the Infrastructure functional group as they 

have been combined with the ships own water tanks); and purple represents the RAS 

equipment. This colour variation assists in distinguishing that, the fact that all move and 

most Infrastructure related compartments and equipment were pushed aft in AOR 

Variant 2, has resulted in moving the cargo spaces (and RAS equipment) slightly 

forward. However, in Appendix 2.3 it was recognised that it is beneficial to locate the 

stores and tanks in the wide central part of the ship, therefore increasing cargo capacity 

and minimising ballast requirements when operating in light conditions (Andrews and 

Pawling 2007). Therefore, the configuration of AOR Variant 2 has led to a slight 

decrease in cargo capacity (more clearly represented in the GAs, Appendix 8) compared 

to AOR Variant 1 (see Table 5.10), although both designs meet the volume 

requirements listed at Table 5.6. 

 

Table 5.10: AOR Achieved Cargo Capacity 

 AOR Variant 1 AOR Variant 2 

AVCAT (m3)  12,800 12,240 

Dieso (m3)  7,800 7,220 

Dry Stores (m3) 5,040 5,040 

Ordnance (m3) 2,670 2,670 

Water (m3) 505 505 

Lube oil (m3) 105 105 

TEU 8 8 

 

A final point worth commenting on is that the observation of Cooper et al 

(2007), that that the main design drivers for such ships are the aviation requirements, 
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the accommodation requirements (i.e. Infrastructure) and cargo storage (although RAS 

rig location is vital for the efficient operation of replenishment ships, their placement is 

not usually a design driver due to the large abundant deck area above the cargo tanks) 

summarised in Figure A3 of Appendix 2.3, is roughly confirmed from the functional 

group description of the above two AOR design variants. 

The two AOR Variants are described with respect to their top level weight 

breakdown in Table A13 and Table A14 of Appendix 9.2. In addition, the margin 

philosophy adopted for these design studies is summarised in Appendix 9.3. 

 The Intellihull object of Paramarine was used to generate the AOR hulls, due to 

its ability to produce auxiliary ship hullforms; the bulbous bow was sized based on 

current similar ships. Both variants were based on identical (8-deck) hulls, the lines plan 

of which is shown in Figure 5.56. 

 

 

Figure 5.56: AOR Lines Plan 

 

 The propulsive powering requirements for AOR Variant 1 were computed 

through the inbuilt Paramarine powering module. It was decided to include a podded 

drive arrangement in the AOR variants. The main reason for this, discussed in Appendix 

2.3, was that the use of podded propulsors requires reduced internal volume, therefore, 

providing more storage and tankage space (Andrews and Pawling 2007). After 

conducting the powering analysis (see Appendix 9.4), the machinery that was selected 

consisted of:- 

- 4 × 5.76MW Wartsila 12V32 diesel gensets (cruise and auxiliary); 

- 1 × 0.685MW Wartsila 4L20 diesel genset (emergency). 

In order to take full advantage of the split move system, visible in Figure 5.54, it was 

chosen to include a secondary forward propulsor in AOR Variant 1. Similarly to Frigate 

Variant 3 and the Corvette design studies, a pump-jet (Schottel 2010a) was the selected 

choice. Therefore, the machinery above drove two stern mounted SSP10 10MW pods 

and one Schottel SPJ 220 Pump-Jet on a 1MW HTS motor. The layout of the above 
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Move related machinery is illustrated in Figure 5.57, with whole major system 

architecture and tree diagrams included in Appendix 7. 

 

 

 

Figure 5.57: AOR Variant 1 Power and Propulsion Arrangement 

 

The scale and significance of the separation distance between the two sets of 

main machinery, which could have only been achieved through the use of an IFEP 

system, are clear in Figure 5.57. As a result, vulnerability (Appendix 4.2) of the power 

generation sub-system and, therefore, move system is greatly reduced, especially once 

taking into account the secondary propulsive unit. This is located at the forward 

machinery room, along with the forward set of gensets, therefore, providing a highly 

concentrated arrangement of equipment in series. The above IFEP arrangement has also 

allowed the positioning of cargo tanks and stores in the wide central part of the hull 

(Andrews and Pawling 2007), the advantages of which have already been examined 

(Appendix 2.3). The aft main machinery exhausts through a funnel on the starboard 

side, therefore, not interfering with helicopter operations, whereas the forward main 

machinery exhausts through the forward mast. The emergency genset exhausts from the 

stern, again to avoid interference with helicopter operations. Removal routes for all 

engines were taken into account through the inclusion of soft patches in the 

passageways and compartments above each engine. 

 The propulsive powering requirements for AOR Variant 2 were also computed 

through the inbuilt Paramarine powering module (see Appendix 9.4). The machinery 

that was selected consisted of:- 

- 4 × 5.76MW Wartsila 12V32 diesel gensets (cruise and auxiliary); 
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- 1 × 0.685MW Wartsila 4L20 diesel genset (emergency). 

For AOR variant 2, due to the relatively concentrated (towards the aft end) Move 

functional group (Figure 5.55) it was decided to not include a forward propulsor. 

Moreover, the survivability implications of the two different arrangements could be 

investigated and compared after applying the survivability assessment method. 

Therefore, the above machinery drove exclusively two stern mounted SSP10 10MW 

pods. The layout of the above machinery is illustrated in Figure 5.58, and is very similar 

to the move system architecture (see Appendix 7) which was investigated in the 

vulnerability and recoverability assessment methods. 

 

 

 

Figure 5.58: AOR Variant 2 Power and Propulsion Arrangement 

 

The above illustration undoubtedly shows a much more concentrated 

arrangement than that of AOR Variant 1 (Figure 5.57) and justifies the scepticism 

behind the inclusion of a secondary forward propulsor unit. However, as a vulnerability 

reduction measure, the IFEP system has allowed the two sets of main machinery to be 

separated by one WT section, in which a (ships own) dieso tank is located. Equally to 

the first AOR variant, the aft main machinery exhausts through a funnel on the 

starboard side (not interfering with helicopter operations), the forward main machinery 

exhausts through the forward mast and the emergency genset exhausts from the stern. 

Furthermore, consistently with all ship design studies, removal routes for all engines 

were taken into account through the inclusion of soft patches in the passageways and 

compartments above each engine. 
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 Hydrostatic analysis for the two AOR design studies was conducted through the 

inbuilt Paramarine module, as with all other ship designs. Intact stability was assessed 

against both Defence Standard 02-109 (NES 109) Stability Standards for Surface Ships 

(MOD 2000) and the Code on Intact Stability for all Types of Ships Covered by IMO 

Instruments (IMO 1993), until all criteria were passed. Damage stability for both 

replenishment ship variants was assessed against Defence Standard 02-109 (NES 109) 

damage criteria assessment (MOD 2000). Hydrostatics data are given in Appendix 9.5. 

 The two auxiliary ship variants each contain sixteen WT bulkheads (and 

seventeen WT sections), the arrangement of which is shown in Figure 5.59 and Figure 

5.60. 

 

 

Figure 5.59: AOR Variant 1 WT Bulkhead Arrangements 

 

 

Figure 5.60: AOR Variant 2 WT Bulkhead Arrangements 

 

As with the combatant designs, bulkhead locations were decided upon by taking 

into account zoning, structural, layout and damage stability related factors. In order to 

maintain structural continuity, bulkheads were located at superstructure steps and ends, 

masts, cargo cranes and RAS high points. 

 Given the non-military role of the auxiliary ship designs it was determined that a 

double zone philosophy is adequate. The zone boundaries are the red WT bulkheads in 

the illustrations above. AOR Variant 1 included seven WT sections in the aft zone and 

ten in the forward zone since the zone boundary was approximately at amidships, which 

suited the split forward and aft superstructure style. Conversely, the fact that the 

forward part of AOR Variant 2 was almost exclusively used for cargo storage, pushing 

most compartments and services to the aft section (Figure 5.55), led to the unusual 
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zoning arrangement illustrated in Figure 5.60. The aft zone includes four WT sections 

and the forward one extends across thirteen WT sections. Each of the two zones contain 

independent power generation units, 2 CWPs, 2 HPACs, 2FPs, independent ATU and 

ventilation, 2 NBCD stores, 2 airlocks for access to and from the citadel/weather and a 

cleansing/decontamination station. The zoning philosophy is clearly depicted in Figure 

5.61 and Figure 5.62. 

 

Machinery Room Arrangement 

 

ATU and Ventilation Arrangement 

 

NBCD Stores 

 

Airlocks 

 

Figure 5.61: AOR Variant 1 Zoning Philosophy 

 

From above it is evident that each zone has one main and one auxiliary 

machinery room. Each machinery room includes a CWP, a HPAC and a FP, while 

MMR1, MMR2 and AMR1 contain power generation units (Figure 5.57). Due to the 

large ship size, the ATU and ventilation compartments of each zone were split into two 

units in an effort to spread this service more efficiently across the ship’s length. These 
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units are located in proximity to spaces such as machinery rooms and accommodation 

areas and well above the waterline, correspondingly to the combatant designs. Another 

similarity with the combatant design studies is the adjacency of NBCD stores and 

airlocks. Airlocks 1 and 3, which are adjacent to cleansing/decontamination stations, 

lead to the aft mooring space and forward weatherdeck respectively. Airlock 2 leads to 

the hangar and airlock 4, to the forward mooring space.  

 

Machinery Room Arrangement 

 

ATU and Ventilation Arrangement 

 

NBCD Stores 

 

Airlocks 

 

Figure 5.62: AOR Variant 2 Zoning Philosophy 

 

AOR Variant 2 included identical equipment in its corresponding machinery 

rooms. A modification compared to the first variant is the fact that the forward zone 

ATU and ventilation arrangements are not split. This is because essentially only two full 

WT sections of that zone are dedicated to compartments and services other than cargo 

stores and tanks (Figure 5.55). Therefore, the necessity to spread the ventilation 
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arrangements in the forward zone was minimised. Other than that, the main difference 

between the zoning arrangements of the two auxiliary ships is the fact that in AOR 2 all 

replicated items (with the exception of airlock 4 and NBCD store 4 which lead to the 

forward mooring space) are concentrated at the aft end of the ship. An outcome that was 

expected given the arrangement of cargo and non-cargo related entities. This would 

probably lead to increased vulnerability, due to the relative concentration of parallel 

equipment. For example, the separation between all machinery rooms which include 

power generation units is only one WT section. As in AOR Variant 1, airlocks 1 and 3, 

which are adjacent to cleansing/decontamination stations, lead to the aft mooring space 

and forward weatherdeck respectively, while airlock 2 leads to the hangar. Due to the 

much larger size of the replenishment ship designs and the requirement for only two 

zones, the general observation was that it was considerably easier to achieve the 

minimum zone requirements compared to the combatant designs. 

 Figure 5.63 and Figure 5.64 illustrate the arrangement of the main items of the 

major Fight systems (Table 4.2) which were modelled in the vulnerability and 

recoverability assessment methods. Equipment which are solely related to each Fight 

system are depicted, with other necessary items which have functions additional to the 

capabilities modelled, such as engines, sensors and centralised command and control 

spaces, not included. Full major systems architecture and tree diagrams are shown in 

Appendix 7. 

 

 

Figure 5.63: AOR Variant 1 Major Fight System Arrangement 

 

From the above image it is evident that, unlike in the combatant design studies, 

each major Fight system has a much larger footprint (as a proportion of the ship’s 

length) and overlapping of different systems occurs to a much larger extent. This gives 

the impression that it is impractical to link Fight system arrangements with the zoning 

philosophy. However, by studying the major system tree diagrams (Appendix 7) one 
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can easily comprehend that (with the exception of the aviation support capability), all 

other major systems include equipment/compartments mainly arranged in a parallel 

pattern, rather than in series as in the combatant designs. That is to say that the major 

system tree diagrams of the replenishment ships are arranged in a horizontal 

configuration to a much greater extent than the combatant major system tree diagrams. 

It is, therefore, advantageous for most systems have large footprints, indicating a large 

separation (and therefore reduced vulnerability, Appendix 4.2) of items in parallel. For 

example, the two CIWS launchers shown in Figure 5.63 (the CIWS having the largest 

footprint) are in parallel; therefore, the large separation distance between them would 

cause that system to be almost invulnerable. Thus, it can be said that in the case of the 

replenishment ship design, the principal aim was to spread each major Fight system to 

as great an extent as possible (and in different zones) rather than to achieve high degrees 

of concentration as in the combatant design studies. The zoning arrangements of AOR 

Variant 1 have allowed separating AVCAT cargo tanks (three tanks in aft zone and nine 

in forward zone) and dieso cargo tanks (three tanks in each zone), as well as dry stores 

and ordnance cargo (approximately 50% in each zone); this is more clearly shown in the 

GA, Appendix 8. On the other hand, the aviation support system was attempted to be 

concentrated as much as reasonably possible, with the large footprint of the flight deck 

plus hangar constraining the minimum length to five WT sections. Importantly, the 

aviation requirement on such ships was identified as a design driver (Cooper et al 2007) 

in Appendix 2.3 and Figure A3. 

 

 

Figure 5.64: AOR Variant 2 Major Fight System Arrangement 

 

The comparison between the major Fight system arrangements of the two 

auxiliary ship designs shows that, although separation of the ability to RAS capabilities 

with respect to zoning has not been achieved, the footprints (and, therefore, separation 

between parallel items) of these major systems are approximately identical. This 
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suggests that zoning is not as critical in such ships, as it is in ship designs where 

equipment concentration is pursued. However, the unorthodox zoning arrangements of 

the second variant, in terms of the relative zone sizes, have as a consequence the hangar 

crossing the zone boundary. Since this was deemed unacceptable, it was decided to 

move the zone boundary one WT section forward in No 1 Deck and 01 Deck, proving 

that the zoning arrangements of this variant are not as efficient as in the first AOR 

design variant. A further dissimilarity is that the RAS posts in AOR Variant 2 are 

located at the middle of the cargo spaces, whereas in the first variant they are located 

just aft of the centre. The AOR Variant 2 arrangement is advantageous in that cargo 

transference routes are minimised, whereas the AOR Variant 1 arrangement is superior 

in that RAS posts are located closer to amidships which is regarded as the ideal 

location. However, the main reason for moving the RAS posts slightly forward in AOR 

Variant 2 was in order to have an adequate deck area between the superstructure and 

RAS equipment (i.e. aft of amidships) to locate heavy items (such as the cargo crane 

and containers) in order to reduce trim (and, therefore, ballast requirements) at the deep 

condition (see Appendix 9.5). An important similarity between the two variants is the 

positioning of the ordnance (and dry stores) cargo directly below the RAS posts (see 

GAs in Appendix 8). This was done to minimise required routes for RAS operations 

with hazardous materials (Andrews and Pawling 2007; Scott 2010), as suggested in 

Appendix 2.3. Figure 5.63 and Figure 5.64 also illustrate the arrangement of RAS 

equipment and compartments in the two AOR variants. The major variance between the 

two arrangements concerns the location of the RAS control space (RASco) 

compartment. In AOR Variant 1 this is situated at the aft end of the forward 

superstructure, therefore, providing good visibility towards the RAS equipment. 

However, RAS operations could be supervised from any other area of the amidships 

weatherdeck, reducing the importance of that compartment. In AOR Variant 2, RASco 

is located between the two sets of RAS posts, also providing good visibility. However, 

it is also located forward of the single superstructure block, therefore, providing 

visibility to the bow. This means that the RASco of the second variant could be used as 

a secondary bridge in emergency situations, reducing the vulnerability of an otherwise 

unduplicated service. 

 Both designs were based on an identical, 8 deck hull. One of the decks (No 2 

Deck) is the access, or DC deck. In both designs the DC deck includes a roughly 

centreline passageway. Figure 5.65 and Figure 5.66 elucidate the access arrangement of 

the two AOR variants.  
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DC Decks Access 

 

DC Decks Access and Vertical Access 

  

Figure 5.65: AOR Variant 1 Access Philosophy 

 

DC Deck Access 

 

DC Deck Access and Vertical Access 

  

Figure 5.66: AOR Variant 2 Access Philosophy 

 

Although it was attempted to accommodate a centreline main passageway 

(resulting to reduced volume and easier access (Ferreiro and Stonehouse 1994)), from 

the above two figures it is evident that numerous irregularities had to be incorporated. 

The main reasons for this were so that the access arrangements complied with certain 
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layout related constraints, such as the requirement for a large (almost through-going) 

medical centre, as well as the requirement for RFA crew cabins to include portholes 

(encouraging a side passageway arrangement). Furthermore, the access arrangements of 

the through deck were further constrained by the fact that they should integrate with the 

corresponding arrangements in the higher (superstructure) decks, which mainly 

contained accommodation spaces. These aspects (which are clearer in the GA, 

Appendix 8) led to an alternation between centreline and side passageway (to a much 

greater extent than in the combatant designs). This also affected the vertical access 

arrangements, with each WT section including two vertical accesses, one at either side 

of the centreline passageway and at the forward and aft end of each WT section 

respectively, or one adjacent to either side passageway and at the forward and aft end of 

each WT section respectively, depending on the longitudinal access style. This 

inconsistent access arrangement, present in both AOR design variants, could prove 

problematic during DC efforts. It also highlights the increasing difficulty of designing 

access arrangements with increasing ship size and possibly ascertains that a double side 

passageway system becomes more efficient for larger ships. 

 The following figures explore the distribution of compartments and equipment 

relevant to the recoverability related PMs in Sections 4.3.1, 4.3.2 and 4.3.3. The first 

two illustrations (Figure 5.67 and Figure 5.68) examine the arrangements of 

compartments and equipment related to Category 1 PM analysis in AOR Variant 1 and 

AOR Variant 2 respectively. 

 

 

Figure 5.67: AOR Variant 1 Category 1 PM Elements 

 

From Figure 5.67 it is evident that all redundant items are split between the 

forward and aft superstructure blocks, therefore, providing low levels of vulnerability 

(Appendix 4.2). For example the two FRPs (note that the same number of FRP section 

bases, positioned conveniently to NBCD stores, as in the combatant design studies was 
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selected, as suggested in Appendix 4.3 and Figure A36) are stationed at the extremities 

of the hull, therefore, minimising the probability of both FRPs being affected by a hit. 

However, being far from amidships (the ideal location in terms of minimising 

transference time and facilitating access to both zones ), their locations are rather 

inefficient in that the probability for DC crews to travel long distances (and operate 

many WT doors) to reach the affected section would increase, therefore, producing 

large values for PMs 1.1 and 1.2. Another similarity between the AOR designs and the 

combatant designs is the large distance between the Operations Room and the SCC, the 

roles of which could be interchanged in emergency situations, and the adjacency 

between the bridge and the Operations Room to improve communication. However, in 

the auxiliary designs it was decided that the Operations Room would be located high in 

the superstructure (02 Deck), increasing its vulnerability to abovewater attacks but 

decreasing it to underwater attacks. This decision was taken principally due to the 

largely civilian crew, usually managing the ship from the bridge. Had the Operations 

Room been located deep in the hull, at a distance from the bridge, there is a possibility 

that it would be understaffed. In addition, given the minor military role of the vessel, the 

increase in abovewater threat vulnerability of this arrangement was deemed of minor 

importance, compared to the argument above. 

 

 

Figure 5.68: AOR Variant 2 Category 1 PM Elements 

 

By studying Figure 5.68 one can easily conclude that the main difference 

between the two auxiliary ship variants is the extensive concentration of compartments 

and equipment at the aft end in AOR Variant 2. (This, for example, has led to the 

inclusion of only three ATU and ventilation units, contradictorily to the four units in the 

first AOR design variant). This concentration of redundant (i.e. parallel) items should 

result to an increase in overall system vulnerability. However, the fact that the forward 
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FRP section base is located more efficiently (i.e. proximate to amidships) should 

introduce some advantages in crew DCFF efforts (PMs 1.1 and 1.2). In addition, 

encompassing only one superstructure block, the number of internal decks in most WT 

section of AOR Variant 2 is less than in the first variant, therefore, improving PM 1.3. 

Namely, one would expect that overall AOR Variant 2 should ease DCFF crew efforts, 

although, a constant threat would probably lead to a greater number of items/systems 

being affects and needing recovery. The logic behind the location and arrangement of 

all other equipment and compartments is similar to that in AOR Variant 1 and in 

consistency with the zoning arrangements described above. 

 Similarly, Figure 5.69 and Figure 5.70 examine the arrangements of 

compartments and equipment related to Category 2 (and Category 3) PM analysis in 

AOR Variant 1 and AOR Variant 2 respectively 

 

 

Figure 5.69: AOR Variant 1 Category 2 PM Elements 

 

 

Figure 5.70: AOR Variant 2 Category 2 PM Elements 

 

There are two major aspects worth commenting on regarding the distribution of 

Category 2 (and 3) PM analysis. First, AOR Variant 1 adopts a split stores and 

workshops philosophy, including duplicated naval stores, in contrast to the combatant 

design variants. This is because the larger size of the auxiliary ship designs dictate 

larger naval stores (the parametric relationship used for naval stores required weight and 

space scaled with hull gross volume (UCL 2010b)) and the distance between the two 

superstructure blocks where most compartments and systems are located is relatively 

large; therefore, it was reasoned advantageous to select a split configuration. It follows 
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that the first auxiliary ship variant has two groups of workshops, spare gear stores and 

naval stores, each positioned adjacently to a main machinery room, therefore, tying in 

with the zoning arrangements. The presence of the second naval stores compartment 

necessitates alterations in the Category 2 PMs (PM 2.3, Table 4.4, Section 4.3.2) and 

Category 3 PMs (PM 3.3, Table 4.5, Section 4.3.3), which are specified in Section 

6.5.3. The second major aspect is that in AOR Variant 2, none of the above stores and 

workshops are split. There is only one workshop, spare gear store and naval store, all 

located adjacently and reasonably close to the two main machinery rooms. It is clear 

that this configuration was chosen as, given the compact arrangement of most non-cargo 

related spaces at the ship designs aft end, there was not much reason behind the 

selection of a split configuration. This arrangement would also require modifications to 

a number of Category 2 and 3 PMs (PM 2.1, 2.2, 2.3, 2.4, 2.5, Table 4.4, Section 4.3.2 

and PM 3.3, 3.4, 3.5, 3.6, 3.7, Table 4.5, Section 4.3.3). This non split arrangement may 

increase the vulnerability of the three compartments but should also lead to a 

susceptibility reduction. As with all previous design studies, category 3 PM analysis 

also involves all of the components of each major ship system, with system architecture 

illustrations included in Appendix 7. 
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Chapter 6: Results of Applying Proposed Survivability Assessment Approach 

 

 This section presents the full set of results which were obtained after applying 

the survivability assessment method detailed in Chapter 4 to the ship design studies 

described in Chapter 5. Results (including various sensitivity tests) are initially 

presented separately for each survivability constituent, followed by total survivability 

results. Finally, a brief section on ship costing is included, providing costing 

information of the ships designed. 

 

6.1 Susceptibility Assessment Results 

 

 The procedure described in Section 4.1 was followed in order to obtain 

susceptibility results for all ship design studies. 

 

6.1.1 Frigate Variants (Including Baseline) 

 

 The scenario selected was that of a naval ship being attacked by four radar 

homing (at 15GHz) sea-skimming ASMs (Figure 4.1). At this stage, the probability of 

each ship being detected and identified, P(di), was assumed equal to unity. In order to 

calculate decoy effectiveness (i.e., the probability that the missile locks on the ship, 

P(l)) the three frigate design variants were run in the SPECTRE RCS prediction 

software, since the attacking missiles were assumed to be radar homing. The RCS 

estimations for the three frigate designs are shown in Figure 6.1.  

 

 

Figure 6.1: Azimuth Plots of RCS (dBsm) Showing Peak Returns for the Three Frigate 

Variants 
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This illustration above gives RCS at an elevation of 0o and frequency of 15GHz. 

The relationship given in Figure 4.2 and Equations 3 and 4 (see Section 4.1) was then 

used to calculate P(l). The ship RCS value used in the equations is equal to average ship 

RCS. Note that RCS values at 90o (starboard), 180o (stern), 270o (port) and 360o (bow) 

± 4o were neglected due to the exceptionally large and, therefore, misleading, RCS 

returns. These are quite clear in Figure 6.1. As mentioned in Section 4.1 the chaff RCS 

used in Equations 3 and 4 was assumed to be 2,000m2 between 10-20GHz (Friedman 

2006). 

The CSEE method (McDonald 2010) was then used in order to estimate 

defensive system (hard-kill) effectiveness (i.e., the probability of the ship being hit by at 

least one ASM, P(h)). The timeline of events, from the launch of the first ASM until the 

last one hits the ship, is presented in Figure 6.2 and Table A33, using the weapon 

system data shown in Table A31 (see Appendix 10.1). Since all frigates had identical 

payload (Table 5.1), their event timelines were identical. 

 

 

Figure 6.2: Combat System Reaction Timeline for the Three Frigate Variants 

 

From Figure 6.2 it is clear that each frigate variant had enough time to fire four 

defensive missiles against the four attacking ASMs. For simplicity, the defensive 

missiles were assumed to have a probability of kill, P(k), equal to 0.73 (McDonald 

2010) (although, as explained in Appendix 4.1, P(k) varies with the angle between the 

attacking and defensive missiles). In addition, a simplified and unclassified jammer with 

a P(k) of 0.25 (McDonald 2010) was assumed. It was chosen not to calculate jammer 
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effectiveness using a separated method (as was done with decoy effectiveness) in order 

to avoid unnecessarily complications (reflecting the multifaceted mechanism 

characterising jammers) for the level of detail of the chosen ship design studies; a 

constant jammer effectiveness value for all designs was presumed adequate. Given that 

each pair of defensive missiles targets the same attacking missile, it follows that the first 

two attacking missiles were each targeted by two defensive missiles (as well as the 

jammer), while the last two attacking missiles only had the jammer to overcome. 

Therefore, the P(k) of each attacking missile was calculated using equation 6; the results 

are shown in Table 6.1. 

 

 P(k) Overall = 1 – (1– P(k) Defensive Missile) × (1 – P(k) Jammer) (6) 

 

Table 6.1: Probabilities of Kill of Attacking ASMs for the Three Frigate Variants 

 P(k) Defensive Missile P(k) Jammer P(k) Overall 

Attacking ASM 1 0.927 0.250 0.945 

Attacking ASM 2 0.927 0.250 0.945 

Attacking ASM 3 0 0.250 0.250 

Attacking ASM 4 0 0.250 0.250 

 

From the data given above it is relatively straightforward to calculate the three 

susceptibility related probabilities mentioned in Section 4.1, the probability of the ship 

being detected and identified, P(di), the probability that the missile locks on the ship, 

P(l), and the probability of the ship being hit by at least one ASM P(h). These, as well 

as each frigates total susceptibility (being equal to the product of the three above 

probabilities and yielding the probability that a ship was successfully detected, 

identified, targeted and hit by the adversary) are given in Table 6.2. 

 

Table 6.2: Susceptibility Results for the Three Frigate Variants 

 Frigate Variant 1 Frigate Variant 2 Frigate Variant 3 

Average RCS (m2) 1,011.7 1,045.9 928.8 

P(di) (%) 100 100 100 

P(l) (%) 25.3 26.2 23.2 

P(h) (%) 94.4 94.4 94.4 

P(susc.) (%) 23.9 24.7 21.9 
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The main points worth mentioning are that all three variants have almost 

identical RCS values (also clear from Figure 6.1) leading to very similar P(l). (Note that 

the RCS results are generally lower than those of existing comparable current frigates 

(typically having an RCS of approximately 10,000m2) due to factors such as the 

perfectly smooth sides outputted by the Paramarine CAD software (before a design is 

imputed in SPECTRE) and the very little microgeometry included due to the minimum 

(preliminary design stage) level of detail. However, since a comparison is being made 

between concept ship designs, as long as the above variables are kept constant, the end 

results should be representative. Moreover, the fact that P(di) has been assumed equal to 

1 for all ship designs and P(h) is equal for all frigate variants due to their identical 

payload (and, therefore, defensive systems) has led to all frigate variants outputting very 

similar susceptibility results. This is evident in Figure 6.3 which shows total 

susceptibility results (i.e. the last row of Table 6.2) normalised with respect to the 

baseline frigate (hence the susceptibility value of Frigate Variant 1 in Figure 6.3 is equal 

to 1). 

 

 

Figure 6.3: Normalised Plot of Susceptibility for the Three Frigate Variants 

 

 The above results indicate the relative total ship susceptibility, not the 

susceptibility characteristics of each of the designs. However, as summarised in Section 

3.3.2 and 4.1 the factors affecting the lengthwise hit probability on a ship are not limited 

to ship and threat characteristics, but are affected by environmental conditions, ship 
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motions and manoeuvring and by variations in weapon performance (MOD 2001). 

Therefore, rather than using an RCS prediction software to obtain a (dubious) 

lengthwise hit probability distribution, it was assumed to follow a normal distribution 

with a mean equal to half of the ship’s overall length and a standard deviation equal to a 

sixth of the ship’s overall length (Section 4.1), as advised by the Maritime Integrated 

Survivability team of Dstl (Thornton et al 2012). These distributions are shown in 

Figure 6.4. 

 

 

Figure 6.4: Lengthwise Probability Hit Distribution for the Three Frigate Variants 

 

The data points shown in Figure 6.4 represent the hit probability of the centroid 

of each WT section of each frigate design variant and aggregate to 100% for each ship. 

 

6.1.2 Corvette, Baseline Frigate and Destroyer 

 

 For the comparative survivability investigation of the Corvette, baseline frigate 

and Destroyer, the identical threat scenario to that for the three frigate variants was 

assumed. Once again, P(di) was equalled to 1; P(l) was calculate by obtaining RCS data 

from SPECTRE, substituting the average ship RCS  in Equations 3 and 4 and assuming 

a decoy RCS of 2,000 m2 at 15GHz. The SPECTRE generated RCS data (at an 

elevation of 0o and frequency of 15GHz) for the three combatant designs are shown in 

Figure 6.5. 
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Figure 6.5: Azimuth Plots of RCS (dBsm) Showing Peak Returns for the Corvette, 

Baseline Frigate and Destroyer 

 

 The CSEE method was then utilized in order to estimate defensive system 

effectiveness and obtain P(h) values. Both the Corvette design and the baseline frigate 

design had identical AAW systems (MBDA MICA PDMS) to counter the threat (Table 

5.4). Therefore, by using the data displayed in Table A31, an identical combat system 

reaction timeline as for the frigate design variants, illustrated in Figure 6.2 and Table 

A33, was obtained, with both ships having enough time to fire four defensive missiles 

against the attacking missiles. 

Since the Destroyer design had a different, more advanced AAW capability 

(Table 5.4), the CSEE method was reapplied in order to calculate the corresponding 

P(h) value. The weapon system data shown in Table A35 was used to produce the 

combat system reaction timeline illustrated in Figure 6.6 and the sequence of events 

shown in Table A36 (see Appendix 10.2) for the scenario of the Destroyer being 

attacked by four ASMs. It is important to note that it was initially assumed that only 

Aster-15 (rather than Aster-30) SAMs would be deployed (together with the Phalanx 

CIWS). 
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Figure 6.6: Combat System Reaction Timeline for the Destroyer 

 

From the above data, the much more capable AAW system of the Destroyer had 

enough time to fire eleven defensive missiles before being hit. As with the frigate 

variants and the Corvette, the defensive missiles were assumed to have a probability of 

kill, P(k), equal to 0.73 (although this is an underestimate, given the increased 

capability) and the jammer a P(k) of 0.25 (McDonald 2010). In addition, the Phalanx 

CIWS P(k) was taken as 0.78 (McDonald 2010). Again, each pair of defensive missiles 

targets the same attacking missile. Therefore, the first attacking missile was targeted by 

four defensive missiles, 2 + 2, (as well as the jammer), the second attacking missile was 

targeted by three defensive missiles, 2 + 1, (as well as the jammer), while the last two 

attacking missile were targeted by two defensive missiles (and the jammer) each. 

Furthermore, the CIWS could only fire one burst, targeting only one of the four 

incoming missiles. The P(k) of each attacking missile is presented in Table 6.3 (while 

the corresponding Corvette and baseline frigate data is presented in Table 6.1). 

 

Table 6.3: Probabilities of Kill of Attacking ASMs for the Destroyer 

 
P(k) Defensive 

Missile 

P(k) CIWS P(k) 

Jammer 
P(k) Overall 

Attacking ASM 1 0.995 0.780 0.250 0.999 

Attacking ASM 2 0.980 0 0.250 0.985 

Attacking ASM 3 0.927 0 0.250 0.945 

Attacking ASM 4 0.927 0 0.250 0.945 
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From the data above, the total susceptibility results for the three combatants 

were calculated and presented in Table 6.4. 

 

Table 6.4: Susceptibility Results for the Corvette, Baseline Frigate and Destroyer 

 Corvette Frigate Variant 1 Destroyer 

Average RCS (m2) 910.0 1,011.7 3,924.6 

P(di) (%) 100 100 100 

P(l) (%) 22.8 25.3 98.1 

P(h) (%) 94.4 94.4 12.0 

P(susc.) (%) 21.5 23.9 11.8 

 

Although the Corvette and baseline frigate present similar susceptibility results, 

due to analogous radar signatures (P(l)) and an identical AAW system (P(h)), the 

Destroyer is distinctly less susceptible (see Figure 6.7 displaying total susceptibility 

results normalised with respect to the baseline frigate). 

 

 

Figure 6.7: Normalised Plot of Susceptibility for the Corvette, Frigate Variants and 

Destroyer 

 

The lengthwise hit probability distribution of the Corvette and Destroyer designs 

were assumed to follow a normal distribution with the same characteristics as for the 

three frigate Variants. The Corvette and Destroyer distributions, together with that of 

the baseline frigate design, are shown in Figure 6.8. 
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Figure 6.8: Lengthwise Probability Hit Distribution for the Corvette, Baseline Frigate 

and Destroyer 

 

The data points in the figure above represent the hit probability of the centroid 

of each WT section of each ship design and sum up to 100% for each ship. 

 

6.1.3 AOR Variants 

 

 For the final comparative survivability investigation, between the two AOR 

variants, the same threat scenario, of the ships being attacked by four radar homing sea-

skimming ASMs, was assumed. P(di) was equalled to 1, while decoy effectiveness, P(l), 

was calculate by obtaining RCS data from SPECTRE and using Equations 3 and 4. The 

results are shown in Figure 6.9. 

 

 

Figure 6.9: Azimuth Plots of RCS (dBsm) Showing Peak Returns for the Two AOR 

Variants 
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 The CSEE method was then used in order to estimate defensive system 

effectiveness against the above threat scenario and obtain P(h) values. Both AOR design 

variants incorporated identical weapon systems (Table 5.8), therefore resulting to 

identical event timelines. Data for the incoming missiles (which were identical to the 

ones assumed in the combatant scenarios) as well as the AAW capability of the 

auxiliary ships are given in Table A37. This data was then used in order to obtain the 

sequence of events shown in Figure 6.10 and Table A39 (see Appendix 10.3). 

 

 

Figure 6.10: Combat System Reaction Timeline for the Two AOR Variants 

 

The above data yields that the AOR design variants, with the relatively weak, 

purely self-defensive (given the limited military role of the vessels) AAW capability, 

had enough time to fire three SeaRAM missiles to the four attacking ASMs. The 

defensive SeaRAM missiles were assumed to have a probability of kill, P(k), equal to 

0.72 (McDonald 2010) and the jammer was given a P(k) of 0.25 (McDonald 2010), as 

in the combatant cases. Each pair of defensive missiles targets the same attacking 

missile, therefore, the first attacking missile was targeted by two defensive missiles (as 

well as the jammer), the third attacking missile was targeted by only one defensive 

missile (and the jammer), while the last two attacking missiles had only to overpower 

the jammer. The P(k) results of each attacking missile are presented in Table 6.5. 
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Table 6.5: Probabilities of Kill of Attacking ASMs for the Two AOR Variants 

 P(k) Defensive Missile P(k) Jammer P(k) Overall 

Attacking ASM 1 0.922 0.250 0.941 

Attacking ASM 2 0.720 0.250 0.790 

Attacking ASM 3 0 0.250 0.250 

Attacking ASM 4 0 0.250 0.250 

 

The above data was then processed in a similar manner to the previous 

comparative survivability investigations in order to obtain total susceptibility results for 

the AOR variants, Table 6.6. 

 

Table 6.6: Susceptibility Results for the Two AOR Variants 

 AOR Variant 1 AOR Variant 2 

Average RCS (m2) 11,248.5 3,069.6 

P(di) (%) 100 100 

P(l) (%) 100 76.7 

P(h) (%) 95.4 95.4 

P(susc.) (%) 95.4 73.2 

 

 From above it is evident that both AOR variants output similar susceptibility 

characteristics. Furthermore, they are much more susceptible than the combatant 

designs, given a constant threat (mainly due to increased signatures, but also due to a 

less capable AAW system when compared to the Destroyer design). However, a large 

difference is observed between the RCSs of the two variants (deducing that the launch 

of decoys with an RCS of 2,000m2 from the first variant is of no use and therefore, P(l) 

is equal to 1) which could change the similar susceptibility characteristics observation 

previously mentioned, given improved decoy systems. Figure 6.11 shows total 

susceptibility results for the two AOR design variants. The results are normalised with 

respect to the worst performing design (i.e. AOR Variant 1, Table 6.6), rather than a 

baseline design, the reasoning behind which is explained in Section 7.2.4. 
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Figure 6.11: Normalised Plot of Susceptibility for the Two AOR Variants 

 

 The lengthwise hit probability distributions of the AOR design variants (see 

Figure 6.12) were assumed to follow a similar, normal distribution, pattern as in the 

combatant design studies.  

 

 

Figure 6.12: Lengthwise Probability Hit Distribution for the Two AOR Variants 

 

6.2 Susceptibility Assessment Sensitivity Studies 

 

 Four sensitivity studies were carried out in the susceptibility part of the 

survivability assessment method presenting some interesting results:- 

- Selected external features on certain design variants were altered in order to 

investigate the effects on RCS; 
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- The defensive missile targeting pattern in the CSEE was altered; 

- The effect of changing the SAM type of the Destroyers PAAMS ADMS was 

studied; 

- The lengthwise probability hit distribution on the frigate variants was modified. 

 

6.2.1 External Features 

 

Certain external features of Frigate Variant 1 and Frigate Variant 3 were altered 

in order to examine their effect on the RCS signature. The first (microgeometry related) 

feature was the rotation of the RAS high points in the baseline frigate (located at 

approximately amidships, port and starboard, Figure 5.1) by 7o on the x-axis. This is 

clearly illustrated in Figure 6.13, where the before configuration is shown in clear light 

blue and the after, in opaque purple. 

 

 

Figure 6.13: Baseline Frigate Microgeometry Signature Reduction Feature 

 

This minor alteration led to a significant decrease in RCS, illustrated in the 

before and after plots of RCS showing peak returns, Figure 6.14. 

 

 

Figure 6.14: Before and After Azimuth Plots of RCS (dBsm) Showing Peak Returns 

for the Baseline Frigate 

 



203 
 

Following this find, all RAS high points were inclined by the same angle in all 

combatant design studies. 

The second (shaping related) feature varied was the application of a 7o flare on 

the structure connecting the third frigate variants main hull to its two side hulls, 

highlighted (in red) in Figure 6.15. 

 

 

Figure 6.15: Cross-connecting Structure in Trimaran Frigate Variant 

 

This is illustrated in Figure 6.16, where the before configuration is shown in 

clear light blue and the after, in opaque purple. For each of the four locations 

highlighted above, there are two sections where flare was applied, one on the side hull 

itself and the other on the box structure. 

 

Figure 6.16: Trimaran Frigate Variant Shaping Signature Reduction Feature 

 

The incorporation of this feature also led to an impressive RCS reduction 

(Figure 6.17). However, it also caused a slight reduction in the design’s fluid GMt due 

to a portion of the side hull being removed, visible in Figure 6.16. This stability loss 

could be relatively easily regained by moving the side hulls further outboard. This is an 

advantage of the trimaran configuration due to powering and stability considerations 
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being decoupled (Andrews and Zhang 1995; Andrews 2004). The result of the above 

feature is illustrated in Figure 6.17, where the eight additional RCS peaks arising from 

the two sections of each of the four cross-connecting structures before the flare was 

applied are clearly visible. 

 

 

Figure 6.17: Before and After Azimuth Plots of RCS (dBsm) Showing Peak Returns 

for the Trimaran Frigate Variant 

 

The effect of these alterations on the probability that the attacking missile avoids 

the decoys launched and locks on the targeted ship (P(l), calculated through Equations 3 

and 4) was to reduce it from 66.7% and 100% for Frigate Variants 1 and 3 respectively, 

to the current 25.3% and 23.2% (Table 6.2); i.e. an improvement of approximately 60% 

and 75% respectively, as illustrated in Figure 6.18. 

 

 

Figure 6.18: Before and After P(l) Values for Frigate Variants 1 and 3 
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6.2.2 Defensive Missile Targeting Pattern 

 

 In Section 6.1 it was mentioned that while applying the CSEE method to the 

ship design studies, each pair of defensive missiles launched by the targeted ship could 

only home in on the same attacking ASM, resulting in the data given in Table 6.1, Table 

6.3 and Table 6.5. A further sensitivity test was carried out where the above assumption 

was dropped, therefore, allowing each defensive missile to independently target an 

attacking missile. In the cases of the three frigate variant and Corvette designs where 

four defensive missiles were launched, it was assumed that each defensive missile 

targeted one of the four attacking missiles; therefore, resulting in equal P(k) values for 

all attacking missiles, shown in Table 6.7.  

 

Table 6.7: Probabilities of Kill of Attacking ASMs for the Three Frigate Variants and 

Corvette (Sensitivity Test) 

 P(k) Defensive Missile P(k) Jammer P(k) Overall 

Attacking ASMs 0.730 0.250 0.798 

 

For the Destroyer, which launched eleven Aster-15 missiles, it was assumed that 

the first three attacking missiles were targeted by three defensive missiles and the last 

attacking missile by two defensive SAMs, Table 6.8. 

 

Table 6.8: Probabilities of Kill of Attacking ASMs for the Destroyer (Sensitivity Test) 

 
P(k) Defensive 

Missile 

P(k) CIWS P(k) 

Jammer 
P(k) Overall 

Attacking ASM 1 0.980 0.780 0.250 0.997 

Attacking ASM 2 0.980 0 0.250 0.985 

Attacking ASM 3 0.980 0 0.250 0.985 

Attacking ASM 4 0.927 0 0.250 0.945 

 

Finally, in the scenario of the AOR design variants being attacked by four 

ASMs, the three SeaRAM missiles that were launched each targeted one of the 

attacking missiles, therefore, the last attacking missile was only countered by the 

jammer, Table 6.9. 

 



206 
 

Table 6.9: Probabilities of Kill of Attacking ASMs for the Two AOR Variants 

(Sensitivity Test) 

 P(k) Defensive Missile P(k) Jammer P(k) Overall 

Attacking ASM 1, 2 and 3 0.720 0.250 0.790 

Attacking ASM 4 0 0.250 0.250 

 

The effect of the above alterations was to decrease the probability of the ship 

being hit by at least one ASM, P(h), in all cases examined. More specifically, P(h) for 

the frigate variants and Corvette design was reduced to 59.5%, for the Destroyer design 

to 8.5% and for the AOR design variants to 87.7%. The magnitude of the enhancement 

in performance is depicted in Figure 6.19. 

 

 

Figure 6.19: Before and After P(h) Values for all Ship Designs 

 

The largest effect in the above sensitivity study was observed in the frigate 

variants and Corvette design, where the P(h) decreased to 59.9%, an improvement of 

almost 40%. The performance of the Destroyer improved by approximately 30%, but 

for the AOR variants, the above assumption did not have a significant outcome. 

 

6.2.3 Defensive Missile Type 

 

 Table 5.4 conveys that the PAAMS ADMS of the Destroyer design is able to 

contain a combination of both Aster-15 and Aster-30 missiles. However, while applying 

the CSEE method to the Destroyer (Section 6.1.2) it was assumed that the ship only 
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defended itself with Aster-15 missiles. It was, therefore, decided to examine the effects 

of changing the missiles to the more capable Aster-30, against the same threat scenario 

(four sea-skimming ASMs targeting the ship). Performance data for the Aster-30 

missile is identical to that for the Aster-15 shown in Table A35, with the exception of an 

increase in maximum range against sea-skimming ASMs to 30,000m, minimum range 

to 3,000m and velocity to 1,530m/s. The threat, as well as the Phalanx CIWS 

characteristics, are consistent with the initial scenario and are summarised in Table A35. 

From this data, it is evident that the Destroyers MFR horizon (Table A34) is lesser than 

the Aster-30s maximum range against sea-skimming ASMs. It was decided to apply the 

CSEE method taking both, the Destroyer’s radar horizon and the SAMs maximum 

range, as the limiting factors. The sequences of events for both cases are listed in Table 

A40 and Table A41 of Appendix 10.4 and the combat system reaction timelines are 

illustrated in Figure 6.20 and Figure 6.21. 

 

 

Figure 6.20: Combat System Reaction Timeline for the Destroyer (Aster-30, Maximum 

Range limited) 
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Figure 6.21: Combat System Reaction Timeline for the Destroyer (Aster-30, MFR 

Horizon limited) 

 

It is observed that if Aster-30 missiles were used rather than Aster-15s, the 

attacked ship would be able to launch one additional defending missile (i.e. twelve in 

total); if the limiting factor was the maximum range of the AAW system against sea-

skinning threats, this figure would increase to eighteen missiles. By assuming the same 

defensive missile targeting pattern and defensive missile, CIWS and jammer P(k) as 

before (Section 6.1.2), the probability of the ship being hit by at least one ASM, P(h), is 

decreased to 11.1% and 1.2% respectively. The comparative magnitude of this 

improvement is shown in Figure 6.22. 

 

 

Figure 6.22: Destroyer P(h) Comparison for Aster-15 and Aster-30 
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Although theoretically the use of Aster-30 missiles could vastly improve 

performance, by approximately 90%, practically, given the limiting, against sea-

skimming targets, radar horizon, the performance of both missile types is virtually 

constant. 

 

6.2.4 Lengthwise Probability Hit Distribution 

 

 The final susceptibility related sensitivity study was to assume a linear 

lengthwise probability hit distribution on the frigate design variants (rather than the 

normal distribution shown in Figure 6.4). This distribution is shown in Figure 6.23. 

 

 

Figure 6.23: Linear Lengthwise Probability Hit Distributions for the Frigate Design 

Studies 

 

As before, the data points shown above represent the hit probability of the 

centroid of each WT section of each ship design study and aggregate to 100% for each 

ship. The effects of changing the lengthwise probability hit distribution from normal to 

linear is further investigated in Sections 6.4 and 6.6.  

 

6.3 Vulnerability Assessment Results 

 

 The procedure described in Section 4.2 was followed in order to obtain 

vulnerability results for all ship design studies. QinetiQ’s SURVIVE Lite (Pugh 2006; 

Turner et al 2006) vulnerability assessment software for concept stage design was used 

for all comparative survivability studies, therefore, the first step was to develop 
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SURVIVE Lite models for all ship design studies. Certain features were kept constant 

in all SURVIVE Lite models produced for this research:- 

- The hull thickness was set equal to 10mm; 

- The superstructure thickness was set as 4mm; 

- The hull, superstructure, decks, WT bulkhead and passageway material was set 

as Mild Steel (Grade A) 40A; 

- The frame spacing was equalled to 0.7m; 

- Deck thickness was assumed to be 10mm and all decks were fire insulated; 

- WT bulkhead thickness was set as 6mm and all bulkheads were fire insulated; 

- Longitudinal partition (i.e. passageway) thickness was assumed 3mm without 

fire insulation; 

- Main zone boundaries were also main fire boundaries; 

With the exception of manually establishing main zone boundaries as main fire 

boundaries, all above settings are the default SURVIVE Lite v2.3.3 settings. It should 

be noted that in the two AOR variants, in addition to the main zone boundaries (i.e. WT 

bulkhead JK in Figure 5.59 and WT bulkhead MN in Figure 5.60 respectively), WT 

bulkheads EF and MN in AOR Variant 1 and WT bulkhead KL in AOR Variant 2 (i.e. 

the WT bulkheads separating the main cargo spaces from the remaining spaces (see 

Figure 5.54 and Figure 5.55) were also set as main fire boundaries. 

The next step was to cross-model all the required equipment items and 

compartments from the Paramarine ship design models (GAs of which are included in 

Appendix 8) to the SURVIVE Lite ship models. The equipment and compartments 

modelled included all those belonging to the major ship systems to be studied (Table 4.1 

and Table 4.2) as well as the recoverability related items listed in Section 4.2. System 

tree diagrams and system architecture illustrations for all ships are included in 

Appendix 7. In addition, the SURVIVE Lite equipment category to which each 

modelled equipment and compartment (belonging to the major ship systems 

investigated) was set, is given in Table A1, Appendix 6. The SURVIVE Lite equipment 

category (as well as the repair category) of recoverability related equipment and 

compartments is listed in Table 4.11. 

Before running the models, the following threat characteristics were inputted, 

consistent in all ship design runs:- 

- Threat Type: Missile; 

- Charge Weight: 165kg; 

- Fragment Pattern: Medium; 
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- Attack Direction: Side Grid; 

- Vector Direction, Azimuth: 90o (port) and 270o (starboard); 

- Vector Direction, Elevation: 0o (sea-skimming). 

As mentioned in Section 4.2, hit grids were applied to each WT section of each ship (for 

both port and starboard sides) separately, as illustrated in Figure 4.4 for Frigate Variant 

1. The lengthwise spacing between hit locations was approximately 2m and in the z 

(depth) direction each deck of each ship included one row of hit locations. 

 

6.3.1 Frigate Variants (Including Baseline) 

 

After running the missile hit simulations for the three frigate variant designs, the 

results listed in Table A42, Table A43 and Table A44 (see Appendix 11.1) were 

obtained. The vulnerability of each major system given an ASM hit at a WT section was 

then multiplied by the probability that that WT section was hit. Namely, the 

vulnerabilities in Appendix 11.1 were multiplied with the corresponding WT section 

susceptibility given in Figure 6.4, as outlined in Section 4.2. The sum of the above 

product was taken for each system in order to obtain the total major ship system 

vulnerabilities for the three frigate designs, shown in Figure 6.24. 

 

 

Figure 6.24: Total Major Ship System Vulnerability for the Frigate Design Studies 
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 The system vulnerabilities presented in Figure 6.24 were normalised with 

respect to the baseline (Frigate Variant 1) and weighted given the weightings in Table 

4.1. The sum of the normalised and weighted system vulnerabilities were taken for each 

ship design, and again normalised with respect to the baseline (hence Frigate Variant 1 

has a vulnerability of 1), outputting the results illustrated in Figure 6.25. 

 

 

Figure 6.25: Normalised Plot of Vulnerability for the Three Frigate Variants 

 

From above it is clear that although the first two variants present similar 

survivability levels, the trimaran frigate design is more than 50% less vulnerable than 

both its counterparts. This is largely due to its invulnerable move system (Figure 6.24), 

which was given an incomparably larger weighting than the other modelled systems 

(Table 4.1). 

 

6.3.2 Corvette, Baseline Frigate and Destroyer 

 

 As with the frigate variant design studies, the Corvette and Destroyer designs 

were run in SURVIVE Lite, simulating the identical threat scenario. The vulnerability 

results obtained are presented in Table A45 and Table A46 (see Appendix 11.2). This 

data was combined with corresponding WT section susceptibility data, given in Figure 

6.8, as outlined in Section 4.2. Total major ship system vulnerabilities for the combatant 

designs were then estimated in a similar manner to the frigate variants. The system 

vulnerability results, together with the corresponding results of the baseline frigate, are 

presented in Figure 6.26. 
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Figure 6.26: Total Major Ship System Vulnerability for the Corvette, Baseline Frigate 

and Destroyer Design Studies 

 

 After normalising the above vulnerability results with respect to the baseline 

frigate and weighting given the weightings in Table 4.1 (following an identical 

procedure to the vulnerability assessment of the frigate variants), the results illustrated 

in Figure 6.27 were obtained. 

 

 

Figure 6.27: Normalised Plot of Vulnerability for the Corvette, Frigate Variants and 

Destroyer 
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Figure 6.27 shows that the Destroyer is the least vulnerable ship, not 

unexpectedly since it is the largest of the three ship designs. However, a remarkable 

observation is that the smaller Corvette design is less vulnerable than the baseline 

frigate. This is entirely due to its invulnerable move system (Figure 6.26), which was 

given a much larger weighting than all other major systems (Table 4.1) as is discussed 

in Section 7.2.2. 

 

6.3.3 AOR Variants 

 

 The final SURVIVE Lite ASM simulation runs were carried out for the two 

AOR variants. The vulnerability results outputted are presented in Table A47 and Table 

A48 (see Appendix 11.3). These system vulnerability data given an ASM hit at a WT 

section were multiplied by the probability of hit of that WT section, Figure 6.12. The 

sum for each system was taken, as in the previous cases, and the total major ship system 

vulnerability results shown in Figure 6.28 were obtained. 

 

 

Figure 6.28: Total Major Ship System Vulnerability for the AOR Design Studies 

 

 The above system vulnerability results were normalised with respect to the 

corresponding vulnerabilities of the worst performing design (i.e. the move system 

vulnerability was normalised with respect to AOR Variant 2, RAS related capabilities 
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and aviation support were normalised with respect to AOR Variant1 and the CIWS, 

which was invulnerable in both designs, was given a value of zero). As with 

susceptibility assessment, in the case of the AOR design studies normalisations were 

performed with respect to the worst performing design, rather than a baseline, the 

reasoning behind which is explained in Section 7.2.4. The normalised vulnerabilities 

values were then weighted given the weightings in Table 4.2 and summed as before in 

order to obtain the results illustrated in Figure 6.29. Yet again, the total vulnerability 

results were normalised with respect to the worst performing design, i.e. AOR Variant 

1, hence the total vulnerability value of that variant is equal to 1. 

 

 

Figure 6.29: Normalised Plot of Vulnerability for the Two AOR Variants 

 

The overall observations from the vulnerability data above are that the 

vulnerabilities of the systems modelled in the AOR designs (Figure 6.28) are generally 

considerably lower than the vulnerabilities of the systems modelled in the combatant 

designs (Figure 6.24 and Figure 6.26), probably as a result of the much greater size of 

the auxiliary ships (although different systems were modelled, therefore, a direct 

comparison cannot be made); in addition an improvement of more than 40% in terms of 

vulnerability reduction was observed in the second AOR variant, due to enhanced 

performance in RAS related capabilities and aviation support. 

 As mentioned in Section 4.2, SURVIVE Lite was also used to investigate the 

vulnerability (to the same threat) of certain features required for recovery. This data, 

being more relevant to the recoverability part of the survivability assessment method, is 

presented in the PM matrices in Section 6.5. 
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6.4 Vulnerability Assessment Sensitivity Studies 

 

 Three main sensitivity studies were carried out for the vulnerability part of the 

survivability assessment method:- 

- The application of different system weighting schemes was examined; 

- The effect on system vulnerability, given a different lengthwise probability hit 

distribution on the frigate variants was investigated; 

- The consequence of varying the angle of ASM attack (rather than merely 

considering broadside attacks at 0o elevation) was studied. 

 

6.4.1 System Weighting Schemes 

 

 In order to examine the sensitivity of the vulnerability assessment method to the 

weighting scheme applied, a number of RN officers working at Dstl were interviewed 

(Mant 2012; Hood 2012; Day 2012; Sutcliffe 2012; Boughton 2012; Koheeallee 2012; 

O’Brien 2012; Kadinopoulos 2012). They were asked to fill in a form (see Appendix 

12) suggesting alternative weighting schemes. In contrast to the original (scenario 

independent) weighting scheme (Table 4.1) provided by 1st Lt. Fonseca, the interviewed 

officers were asked to provide a weighting scheme for three different scenarios. These 

are summarised in Table 6.10. (It should be noted that this sensitivity test was only 

carried out for the three frigate design variants). 

 

Table 6.10: Scenarios for System Weighting Schemes of the Frigate Design Studies 

Scenario 1 

Threats present 

Location 

Air and submarine 

Blue water 

Scenario 2 

Threats present 

Location 

Air, shore based missiles and gun batteries 

Littoral 

Scenario 3 

Threats present 

Location 

Air and surface (missile firing) 

Littoral 
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As with the original weighting scheme, the naval officers were asked to weigh 

each ship system between 0-10, ten being the most important. In addition, the 

interviewed officers were not exposed to previous weighting schemes so that their 

responses remain unaffected. The weighting schemes suggested by the interviewed 

officers are shown in Table 6.11. 
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It is important to mention that Lt. Cdr. Boughton proposed that the duplicated aft 

and forward SAM systems should have different weightings given that they provide the 

same function (Boughton 2012). However, since the decision of which of the two 

systems would be given higher priority depends on purely operational factors, the two 

weightings given by that officer were averaged; thus the decimal fraction form of the 

relevant weightings. This would have the same effect as interchanging the higher 

priority SAM system, obtaining the vulnerability results for both cases and averaging. 

Lt. Koheeallees (2012) remark that: “These weightings are based on self-protection and 

survival of own ship. If the role of own ship is also to provide force protection (over 

naval assets or land), weightings could be different. In fight section, consider adding 

external communications and surveillance systems”, is noteworthy. The above 

weighting schemes were plotted in a line graph (Figure 6.30) in order to compare the 

different weighting scheme philosophies of the interviewed officers. 

 

 

Scenario 1 

 

Scenario 2 

 

Scenario 3 

 

Figure 6.30: System Weighting Scheme Philosophies for the Sensitivity Tests on 

Frigate Vulnerability 

 

Broad patterns can be observed in Figure 6.30, something unsurprising since all 

officers (with the exception of 1st Lt. Fonseca) served in the same navy and, therefore, 

underwent similar training. However, each officer reflects on his own experiences and 
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knowledge, accounting for the differences in the schemes above. In addition, the 

different weighting scheme philosophies between the RN officers and 1st Lt. Fonseca 

are evident since the latter officer provided a scenario independent scheme. The 

weighting schemes in Table 6.11 were applied to the data provided in Figure 6.24 in an 

identical manner as described in Sections 4.2 and 6.3; the output results are presented in 

Figure 6.31, Figure 6.32 and Figure 6.33 for the three scenarios respectively. 

 

 

Figure 6.31: Normalised Plot of Vulnerability for the Three Frigate Variants 

(Sensitivity Test, Scenario 1) 

 

 

Figure 6.32: Normalised Plot of Vulnerability for the Three Frigate Variants 

(Sensitivity Test, Scenario 2) 
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Figure 6.33: Normalised Plot of Vulnerability for the Three Frigate Variants 

(Sensitivity Test, Scenario 3) 

 

The main observation from the three illustrations above is that vulnerability is to 

a significantly greater extent dependant on (i.e. sensitive to) the design itself, rather than 

the scenario or the weighting scheme applied. Another point of interest is the substantial 

difference in the total vulnerability results for the trimaran frigate design using 1st Lt. 

Fonseca’s weighting scheme and those of all RN officers. This is largely caused by the 

relative weighting given to the move system. A final remarkable result is that, although 

Frigate Variant 2 is the worst performing in all cases, the margin by which it fails in the 

first scenario is increased compared to the other two scenarios, principally due to the 

location of its aviation facilities. 

 

6.4.2 Lengthwise Probability Hit Distribution 

 

The next sensitivity study was related to the lengthwise probability hit 

distribution. As described in Section 6.2.4, a linear lengthwise probability hit 

distribution (rather than the normal distribution shown in Figure 6.4 which was used in 

all above vulnerability data processing) was assumed. This linear lengthwise probability 

hit distribution (Figure 6.23) was applied to the data given in Table A42, Table A43 and 

Table A44 in the manner outlined in Sections 4.2 and 6.3. The vulnerability of each 

major system given an ASM hit at a WT section was multiplied by the probability that 

the given WT section was hit and by taking the sum of these results, the total 

vulnerability for each system was obtained. This sensitivity study was also only applied 
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to the three frigate design variants. The effect of changing the lengthwise hit probability 

pattern from a normal to a linear distribution is shown in Figure 6.34, Figure 6.35 and 

Figure 6.36. 

 

 

Figure 6.34: Total Major Ship System Vulnerability for Frigate Variant 1 (Varying 

Lengthwise Hit Distribution) 

 

 

Figure 6.35: Total Major Ship System Vulnerability for Frigate Variant 2 (Varying 

Lengthwise Hit Distribution) 
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Figure 6.36: Total Major Ship System Vulnerability for Frigate Variant 3 (Varying 

Lengthwise Hit Distribution) 

 

Evidently, the selected pattern of the lengthwise hit distribution of the ASM on 

the ship has a large effect on the vulnerability of the modelled major ship systems to the 

ASM. Some systems present vulnerability fluctuations of 50% or more. After 

normalising the data above with respect to the baseline (Frigate Variant 1), weighing 

given the weightings in Figure 4.1 and summing the outcomes, the total vulnerability 

results presented in Figure 6.37 were obtained. 

 

 

Figure 6.37: Normalised Plot of Vulnerability for the Three Frigate Variants (Varying 

Lengthwise Hit Distribution) 
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Surprisingly, despite the large vulnerability variances previously observed the 

normalised total vulnerability results illustrated in Figure 6.37 are virtually unaffected 

by the choice of the lengthwise pattern of ASM hit probabilities. 

 

6.4.3 ASM Attack Angle 

 

 All vulnerability data presented above were obtained by simulating broadside 

missile attacks, with an elevation of 0o, in SURVIVE Lite. It was deemed appropriate to 

perform a brief investigation on the effect of varying the angle of attack. This 

investigation was carried out on the SURVIVE Lite model of the Destroyer design, 

simulating the effect of the same ASM with an 165kg warhead and a medium fragment 

pattern on the same ship systems listed in Table 4.1. However, in order to reduce 

computation and data processing time, it was decided to apply a single hit grid across 

the entire dimension of the design, rather than applying separate hit grids on each WT 

section (Figure 4.4) as was the norm in all previous investigations. The angles of attack 

considered, as well as the system vulnerability outputs, are summarised in Table A49 

(see Appendix 11.4) and Figure 6.38. The first number in the legend of Figure 6.38 is 

the ASM attack azimuth (0o/360o representing the stern and 90o the port side) and the 

second number is the ASM attack elevation, both in degrees. 

 

 

Figure 6.38: Total Major Ship System Vulnerability for the Destroyer (Varying Missile 

Attack Angle) 
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Although an overall pattern is observed in Figure 6.38, all systems investigated 

present vulnerability fluctuations of more than 50% depending on the angle of ASM 

attack. This suggests that in survivability assessment it is important to not only examine 

different hit locations (of a specific weapon), but also different threat trajectories. (Note 

that this sensitivity study was conducted on the Destroyer rather than Frigate Variant 1 

since it was carried out during a four week placement at Dstl, during which access only 

to the Destroyer SURVIVE Lite model was available). 

 

6.5 Recoverability Assessment Results 

 

 The procedure detailed in Section 4.3 was followed in order to obtain 

recoverability results for all ship design studies. The Paramarine models of all ships 

were completed and the SURVIVE Lite models were run as described in Section 6.3 in 

order to obtain the PM results presented in this section. 

 

6.5.1 Frigate Variants (Including Baseline) 

 

 The recoverability performance matrices for the three frigate designs are 

presented in Table 6.12, Table 6.13 and Table 6.14. The matrices are identical to Table 

4.6. The weightings (in red) are the ones presented in Table 4.3, Table 4.4 and Table 4.5 

(PM weightings for each PM Category) and Table 4.7 (group weightings). The 

numerals in black are the raw PM data given an ASM hit at each WT section (averaged 

port and starboard hit), while the numerals in blue are equal to the same raw PM data 

multiplied by the probability that the corresponding WT section is hit (i.e. Figure 6.4), 

as outlined in Section 4.3.4. All normalisation have been conducted with respect to 

Frigate Variant 1, consequently all values in the two columns with ‘normalised wrt 

baseline’ data are equal to 1 in Table 6.12. 

 



2
2
6
 

 T
a
b

le
 6

.1
2
: 

P
er

fo
rm

an
ce

 M
ea

su
re

 M
at

ri
x

 f
o
r 

F
ri

g
at

e 
V

ar
ia

n
t 

1
 

 

 

M
1

M
2

L
1

L
2

K
1

K
2

J
1

J
2

I 1
I 2

H
1

H
2

G
1

G
2

F
1

F
2

E
1

E
2

D
1

D
2

C
1

C
2

B
1

B
2

A
1

A
2

P
M

 C
a
t.

W
e
ig

h
ti

n
g

1
.1

A
ve

ra
g
e
 d

is
ta

n
c
e
 b

e
tw

e
e
n
 F

R
P

P
 a

n
d
 d

a
m

a
g
e
d
 W

T
 s

e
c
ti
o
n
 (

m
)

7
5
5
.1

0
0
.2

4
4
4
.5

0
0
.6

3
3
3
.0

0
1
.3

3
2
4
.5

0
2
.3

1
2
4
.5

0
3
.7

2
2
4
.5

0
4
.5

3
2
4
.5

0
4
.3

9
2
4
.5

0
3
.4

7
3
1
.2

0
2
.9

7
4
0
.4

0
2
.1

8
4
9
.3

0
1
.2

9
5
8
.4

0
0
.6

2
6
5
.1

0
0
.2

4
2
7
.9

1
1
.0

0
7
.0

0

1
.2

A
ve

ra
g
e
 n

u
m

b
e
r 

o
f 
W

T
D

 o
p
e
ra

te
d
 p

e
r 

F
R

P
4

5
.0

0
0
.0

2
4
.0

0
0
.0

6
3
.0

0
0
.1

2
2
.0

0
0
.1

9
2
.0

0
0
.3

0
2
.0

0
0
.3

7
2
.0

0
0
.3

6
2
.0

0
0
.2

8
3
.0

0
0
.2

9
4
.0

0
0
.2

2
5
.0

0
0
.1

3
6
.0

0
0
.0

6
7
.0

0
0
.0

3
2
.4

2
1
.0

0
4
.0

0

1
.3

N
u
m

b
e
r 

o
f 
in

te
rn

a
l 
d
e
c
k
s
 i
n
 d

a
m

a
g
e
d
 W

T
 s

e
c
ti
o
n

6
2
.0

0
0
.0

1
3
.0

0
0
.0

4
5
.0

0
0
.2

0
4
.0

0
0
.3

8
4
.0

0
0
.6

1
5
.0

0
0
.9

2
6
.0

0
1
.0

7
6
.0

0
0
.8

5
3
.0

0
0
.2

9
3
.0

0
0
.1

6
3
.0

0
0
.0

8
3
.0

0
0
.0

3
3
.0

0
0
.0

1
4
.6

5
1
.0

0
6
.0

0

1
.4

A
ve

ra
g
e
 t

o
ta

l 
w

id
th

 o
f 
a
lt
e
rn

a
ti
ve

 r
o
u
te

s
 (

in
ve

rs
e
) 

(m
)

7
0
.3

4
0
.0

0
0
.3

2
0
.0

0
0
.3

1
0
.0

1
0
.3

3
0
.0

3
0
.3

4
0
.0

5
0
.3

4
0
.0

6
0
.3

4
0
.0

6
0
.3

5
0
.0

5
0
.3

4
0
.0

3
0
.3

4
0
.0

2
0
.3

6
0
.0

1
0
.3

8
0
.0

0
0
.3

9
0
.0

0
0
.3

4
1
.0

0
7
.0

0

1
.5

A
T
U

 a
n
d
 V

e
n
ti
la

ti
o
n
 (

o
f 
d
a
m

a
g
e
d
 z

o
n
e
) 

(m
a
n
-h

o
u
rs

)
8

0
.0

0
0
.0

0
4
.0

0
0
.0

6
4
.0

0
0
.1

6
4
.0

0
0
.3

8
4
.0

0
0
.6

1
4
.0

0
0
.7

4
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.0

0
0
.3

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.3

2
1
.0

0
8
.0

0

1
.6

F
ir
e
p
u
m

p
 (

o
f 
d
a
m

a
g
e
d
 z

o
n
e
) 

(m
a
n
-h

o
u
rs

)
2

0
.0

0
0
.0

0
0
.0

0
0
.0

0
8
.0

0
0
.3

2
8
.0

0
0
.7

5
0
.0

0
0
.0

0
8
.0

0
1
.4

8
8
.0

0
1
.4

3
0
.0

0
0
.0

0
8
.0

0
0
.7

6
8
.0

0
0
.4

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
5
.1

8
1
.0

0
2
.0

0

1
.7

O
ve

ra
ll 

fir
e
p
u
m

p
 s

y
s
te

m
 (

m
a
n
-h

o
u
rs

/n
o
 o

f 
e
q
u
ip

m
e
n
t)

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.0

0
0
.1

6
4
.0

0
0
.3

8
0
.0

0
0
.0

0
2
.0

0
0
.3

7
2
.0

0
0
.3

6
2
.0

0
0
.2

8
2
.0

0
0
.1

9
2
.0

0
0
.1

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.8

5
1
.0

0
8
.0

0

1
.8

N
B

C
D

 s
to

re
s
 -

 a
ft
 F

R
P

 s
e
c
ti
o
n
 b

a
s
e

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.0

0
0
.0

4
1
.0

0
0
.0

9
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.1

3
1
.0

0
1
.0

0

1
.9

N
B

C
D

 s
to

re
s
 -

 f
w

d
 F

R
P

 s
e
c
ti
o
n
 b

a
s
e

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.0

0
0
.1

8
1
.0

0
0
.1

4
1
.0

0
0
.1

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.4

2
1
.0

0
1
.0

0

1
.1

0
R

e
m

a
in

in
g
 N

B
C

D
 s

to
re

s
2

0
.5

0
0
.0

0
0
.5

0
0
.0

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.5

0
0
.0

3
0
.5

0
0
.0

1
0
.5

0
0
.0

1
0
.0

0
0
.0

0
0
.0

5
1
.0

0
2
.0

0

1
.1

1
P

o
w

e
r 

(o
f 
d
a
m

a
g
e
d
 z

o
n
e
) 

(m
a
n
-h

o
u
rs

)
2

0
.0

0
0
.0

0
1
6
.0

0
0
.2

3
1
7
.0

0
0
.6

9
1
6
.5

0
1
.5

6
1
6
.5

0
2
.5

0
3
3
.5

0
6
.1

9
3
4
.0

0
6
.0

9
1
8
.0

0
2
.5

5
9
.0

0
0
.8

6
1
6
.0

0
0
.8

6
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
1
.5

2
1
.0

0
2
.0

0

1
.1

2
O

ve
ra

ll 
p
o
w

e
r 

s
y
s
te

m
  

(m
a
n
-h

o
u
rs

/n
o
 o

f 
e
q
u
ip

m
e
n
t)

8
0
.0

0
0
.0

0
3
.2

0
0
.0

5
1
0
.0

0
0
.4

0
1
0
.0

0
0
.9

4
9
.8

0
1
.4

9
6
.8

0
1
.2

6
6
.8

0
1
.2

2
7
.0

0
0
.9

9
1
.8

0
0
.1

7
3
.2

0
0
.1

7
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
6
.6

9
1
.0

0
8
.0

0

1
.1

3
S

C
C

 (
H

Q
1
) 

(m
a
n
-h

o
u
rs

)
6

0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.5

0
0
.1

0
2
.5

0
0
.2

4
2
.5

0
0
.3

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.7

2
1
.0

0
6
.0

0

1
.1

4
B

ri
d
g
e
 (

H
Q

2
) 

(m
a
n
-h

o
u
rs

)
2

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.5

0
0
.6

3
3
.5

0
0
.5

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.1

2
1
.0

0
2
.0

0

1
.1

5
O

p
s
. 

R
o
o
m

 (
m

a
n
-h

o
u
rs

)
6

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
6
.0

0
1
.0

7
6
.0

0
0
.8

5
6
.0

0
0
.5

7
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.5

0
1
.0

0
6
.0

0

1
.1

6
A

ft
 F

R
P

P
1
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.0

0
0
.0

4
1
.0

0
0
.0

9
1
.0

0
0
.1

5
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.2

9
1
.0

0
1
0
.0

0

1
.1

7
F

w
d
 F

R
P

P
1
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.0

0
0
.1

8
1
.0

0
0
.1

4
1
.0

0
0
.1

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.4

2
1
.0

0
1
0
.0

0

2
.1

A
ft
 w

o
rk

s
h
o
p
s
 (

m
a
n
-h

o
u
rs

)
3

0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.0

0
0
.1

6
4
.0

0
0
.3

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.5

4
1
.0

0
3
.0

0

2
.2

F
w

d
 w

o
rk

s
h
o
p
s
 (

m
a
n
-h

o
u
rs

)
3

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.0

0
0
.7

2
4
.0

0
0
.5

7
4
.0

0
0
.3

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.6

6
1
.0

0
3
.0

0

2
.3

N
a
va

l 
s
to

re
s

1
1
.0

0
0
.0

0
1
.0

0
0
.0

1
1
.0

0
0
.0

4
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

6
1
.0

0
1
.0

0

2
.4

A
ft
 s

p
a
re

 g
e
a
r 

s
to

re
s

7
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.0

0
0
.0

4
1
.0

0
0
.0

9
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.1

3
1
.0

0
7
.0

0

2
.5

F
w

d
 s

p
a
re

 g
e
a
r 

s
to

re
s

7
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.0

0
0
.1

8
1
.0

0
0
.1

4
1
.0

0
0
.1

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.4

2
1
.0

0
7
.0

0

2
.6

S
C

C
 (

u
p
d
a
te

d
 v

a
lu

e
) 

(m
a
n
-h

o
u
rs

)
6

0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.5

0
0
.1

0
2
.5

0
0
.2

4
2
.5

0
0
.3

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.7

2
1
.0

0
6
.0

0

2
.7

O
p
s
. 

R
o
o
m

 (
u
p
d
a
te

d
 v

a
lu

e
) 

(m
a
n
-h

o
u
rs

)
7

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
6
.0

0
1
.0

7
6
.0

0
0
.8

5
6
.0

0
0
.5

7
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.5

0
1
.0

0
7
.0

0

3
.1

.1
M

in
im

u
m

 m
a
n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 f
u
n
c
ti
o
n
in

g
1
0

0
.0

0
0
.0

0
1
6
.0

0
0
.2

3
2
8
.0

0
1
.1

3
1
6
.0

0
1
.5

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.8

7
1
.0

0
1
0
.0

0

3
.2

.1
N

u
m

b
e
r 

o
f 
m

a
n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 1

0
0
%

3
2
.0

0
0
.0

1
5
0
.0

0
0
.7

1
1
0
8
.5

0
4
.3

9
8
4
.5

0
7
.9

6
5
1
.5

0
7
.8

1
3
4
.0

0
6
.2

8
3
7
.5

0
6
.7

1
3
8
.5

0
5
.4

5
1
7
.0

0
1
.6

2
1
6
.0

0
0
.8

6
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
1
.8

1
1
.0

0
3
.0

0

3
.3

.1
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 n

a
va

l 
s
to

re
s

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
7
.4

3
0
.3

0
0
.0

0
0
.0

0
3
.2

0
0
.4

9
6
.8

0
1
.2

6
1
.2

7
0
.2

3
3
.4

0
0
.4

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.7

5
1
.0

0
1
.0

0

3
.4

.1
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 a

ft
 s

p
a
re

 g
e
a
r 

s
to

re
s

3
0
.0

0
0
.0

0
0
.6

7
0
.0

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.2

0
0
.4

9
6
.8

0
1
.2

6
1
.2

7
0
.2

3
3
.4

0
0
.4

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.4

6
1
.0

0
3
.0

0

3
.5

.1
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 a

ft
 w

o
rk

s
h
o
p
s

2
0
.0

0
0
.0

0
0
.6

7
0
.0

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.2

0
0
.4

9
6
.8

0
1
.2

6
1
.2

7
0
.2

3
3
.4

0
0
.4

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.4

6
1
.0

0
2
.0

0

3
.6

.1
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 f
w

d
 s

p
a
re

 g
e
a
r 

s
to

re
s

3
0
.0

0
0
.0

0
0
.6

7
0
.0

1
0
.0

0
0
.0

0
1
9
.4

0
1
.8

3
7
.4

3
1
.1

3
0
.0

0
0
.0

0
6
.7

0
1
.2

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.1

7
1
.0

0
3
.0

0

3
.7

.1
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 f
w

d
 w

o
rk

s
h
o
p

2
0
.0

0
0
.0

0
0
.6

7
0
.0

1
0
.0

0
0
.0

0
1
9
.4

0
1
.8

3
7
.4

3
1
.1

3
0
.0

0
0
.0

0
6
.7

0
1
.2

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.1

7
1
.0

0
2
.0

0

3
.8

.1
E

q
u
ip

m
e
n
t 

in
 d

a
m

a
g
e
d
 s

e
c
ti
o
n
 m

e
a
s
u
re

8
0
.6

7
0
.0

0
0
.0

0
0
.0

0
3
1
.4

0
1
.2

7
7
.4

3
0
.7

0
0
.0

0
0
.0

0
6
.7

0
1
.2

4
6
.7

0
1
.2

0
4
.5

7
0
.6

5
3
.4

0
0
.3

2
3
.2

0
0
.1

7
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
5
.5

5
1
.0

0
8
.0

0

3
.1

.2
M

in
im

u
m

 m
a
n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 f
u
n
c
ti
o
n
in

g
1
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.5

0
0
.8

1
5
.5

0
0
.7

8
0
.0

0
0
.0

0
1
4
.0

0
0
.7

6
1
3
.0

0
0
.3

4
5
.0

0
0
.0

5
0
.0

0
0
.0

0
2
.7

3
1
.0

0
1
0
.0

0

3
.2

.2
N

u
m

b
e
r 

o
f 
m

a
n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 1

0
0
%

3
0
.0

0
0
.0

0
1
6
.0

0
0
.2

3
5
1
.0

0
2
.0

6
5
1
.0

0
4
.8

1
5
0
.0

0
7
.5

9
3
5
.0

0
6
.4

6
4
6
.5

0
8
.3

3
4
8
.5

0
6
.8

7
2
3
.0

0
2
.1

9
3
1
.0

0
1
.6

7
1
4
.0

0
0
.3

7
5
.0

0
0
.0

5
0
.0

0
0
.0

0
4
0
.6

3
1
.0

0
3
.0

0

3
.3

.2
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 n

a
va

l 
s
to

re
s

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
7
.1

0
0
.2

9
0
.5

0
0
.0

5
3
.7

0
0
.5

6
7
.3

0
1
.3

5
6
.3

5
1
.1

4
3
.4

0
0
.4

8
0
.0

0
0
.0

0
1
3
.0

0
0
.7

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.5

6
1
.0

0
1
.0

0

3
.4

.2
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 a

ft
 s

p
a
re

 g
e
a
r 

s
to

re
s

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.7

0
0
.5

6
7
.3

0
1
.3

5
6
.3

5
1
.1

4
3
.4

0
0
.4

8
0
.0

0
0
.0

0
1
3
.0

0
0
.7

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.2

3
1
.0

0
3
.0

0

3
.5

.2
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 a

ft
 w

o
rk

s
h
o
p
s

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.7

0
0
.5

6
7
.3

0
1
.3

5
6
.3

5
1
.1

4
3
.4

0
0
.4

8
0
.0

0
0
.0

0
1
3
.0

0
0
.7

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.2

3
1
.0

0
2
.0

0

3
.6

.2
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 f
w

d
 s

p
a
re

 g
e
a
r 

s
to

re
s

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.4

0
0
.3

2
6
.6

0
1
.0

0
0
.0

0
0
.0

0
6
.7

0
1
.2

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
3
.0

0
0
.7

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.2

2
1
.0

0
3
.0

0

3
.7

.2
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 f
w

d
 w

o
rk

s
h
o
p

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.4

0
0
.3

2
6
.6

0
1
.0

0
0
.0

0
0
.0

0
6
.7

0
1
.2

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
3
.0

0
0
.7

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.2

2
1
.0

0
2
.0

0

3
.8

.2
E

q
u
ip

m
e
n
t 

in
 d

a
m

a
g
e
d
 s

e
c
ti
o
n
 m

e
a
s
u
re

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.4

0
0
.1

4
6
.6

0
0
.6

2
0
.0

0
0
.0

0
6
.7

0
1
.2

4
7
.2

0
1
.2

9
1
0
.1

5
1
.4

4
3
.4

0
0
.3

2
0
.0

0
0
.0

0
1
3
.0

0
0
.3

4
0
.0

0
0
.0

0
0
.0

0
0
.0

0
5
.3

9
1
.0

0
8
.0

0

3
.1

.3
M

in
im

u
m

 m
a
n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 f
u
n
c
ti
o
n
in

g
1
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.0

0
0
.1

6
4
.0

0
0
.3

8
0
.0

0
0
.0

0
5
.0

0
0
.9

2
7
.0

0
1
.2

5
6
.0

0
0
.8

5
6
.0

0
0
.5

7
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.1

4
1
.0

0
1
0
.0

0

3
.2

.3
N

u
m

b
e
r 

o
f 
m

a
n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 1

0
0
%

3
2
.0

0
0
.0

1
1
7
.0

0
0
.2

4
6
4
.0

0
2
.5

9
6
4
.0

0
6
.0

3
5
1
.0

0
7
.7

4
4
5
.0

0
8
.3

1
4
8
.0

0
8
.5

9
5
0
.0

0
7
.0

8
2
3
.0

0
2
.1

9
1
9
.0

0
1
.0

3
1
.0

0
0
.0

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
3
.8

4
1
.0

0
3
.0

0

3
.3

.3
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 n

a
va

l 
s
to

re
s

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
0
.9

3
0
.4

4
4
.3

3
0
.4

1
3
.3

7
0
.5

1
6
.9

7
1
.2

9
7
.1

0
1
.2

7
3
.4

0
0
.4

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.4

0
1
.0

0
1
.0

0

3
.4

.3
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 a

ft
 s

p
a
re

 g
e
a
r 

s
to

re
s

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.3

7
0
.5

1
6
.9

7
1
.2

9
7
.1

0
1
.2

7
3
.4

0
0
.4

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.5

5
1
.0

0
3
.0

0

3
.5

.3
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 a

ft
 w

o
rk

s
h
o
p
s

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.3

7
0
.5

1
6
.9

7
1
.2

9
7
.1

0
1
.2

7
3
.4

0
0
.4

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.5

5
1
.0

0
2
.0

0

3
.6

.3
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 f
w

d
 s

p
a
re

 g
e
a
r 

s
to

re
s

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.0

7
0
.3

8
6
.7

7
1
.0

3
0
.1

7
0
.0

3
7
.8

7
1
.4

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.8

5
1
.0

0
3
.0

0

3
.7

.3
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 f
w

d
 w

o
rk

s
h
o
p

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.0

7
0
.3

8
6
.7

7
1
.0

3
0
.1

7
0
.0

3
7
.8

7
1
.4

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.8

5
1
.0

0
2
.0

0

3
.8

.3
E

q
u
ip

m
e
n
t 

in
 d

a
m

a
g
e
d
 s

e
c
ti
o
n
 m

e
a
s
u
re

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.0

7
0
.1

6
6
.6

0
0
.6

2
0
.0

0
0
.0

0
1
1
.7

0
2
.1

6
7
.0

3
1
.2

6
1
0
.7

3
1
.5

2
3
.4

0
0
.3

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
6
.0

5
1
.0

0
8
.0

0

3
.1

.4
M

in
im

u
m

 m
a
n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 f
u
n
c
ti
o
n
in

g
1
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.0

0
0
.1

6
5
.0

0
0
.4

7
5
.0

0
0
.7

6
0
.0

0
0
.0

0
3
.5

0
0
.6

3
7
.5

0
1
.0

6
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.0

8
1
.0

0
1
0
.0

0

3
.2

.4
N

u
m

b
e
r 

o
f 
m

a
n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 1

0
0
%

3
2
.0

0
0
.0

1
1
7
.0

0
0
.2

4
6
4
.0

0
2
.5

9
6
5
.0

0
6
.1

3
6
0
.0

0
9
.1

0
3
6
.0

0
6
.6

5
5
0
.5

0
9
.0

4
6
1
.5

0
8
.7

1
2
3
.0

0
2
.1

9
1
9
.0

0
1
.0

3
1
.0

0
0
.0

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
5
.7

1
1
.0

0
3
.0

0

3
.3

.4
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 n

a
va

l 
s
to

re
s

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
0
.9

3
0
.4

4
0
.3

3
0
.0

3
3
.3

7
0
.5

1
6
.9

7
1
.2

9
5
.8

5
1
.0

5
3
.4

0
0
.4

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.8

0
1
.0

0
1
.0

0

3
.4

.4
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 a

ft
 s

p
a
re

 g
e
a
r 

s
to

re
s

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.3

7
0
.5

1
6
.9

7
1
.2

9
5
.8

5
1
.0

5
3
.4

0
0
.4

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.3

3
1
.0

0
3
.0

0

3
.5

.4
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 a

ft
 w

o
rk

s
h
o
p
s

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.3

7
0
.5

1
6
.9

7
1
.2

9
5
.8

5
1
.0

5
3
.4

0
0
.4

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.3

3
1
.0

0
2
.0

0

3
.6

.4
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 f
w

d
 s

p
a
re

 g
e
a
r 

s
to

re
s

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.0

7
0
.3

8
1
1
.7

7
1
.7

9
0
.1

7
0
.0

3
6
.8

7
1
.2

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.4

3
1
.0

0
3
.0

0

3
.7

.4
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 f
w

d
 w

o
rk

s
h
o
p

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.0

7
0
.3

8
1
1
.7

7
1
.7

9
0
.1

7
0
.0

3
6
.8

7
1
.2

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.4

3
1
.0

0
2
.0

0

3
.8

.4
E

q
u
ip

m
e
n
t 

in
 d

a
m

a
g
e
d
 s

e
c
ti
o
n
 m

e
a
s
u
re

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.0

7
0
.1

6
1
1
.6

0
1
.0

9
0
.0

0
0
.0

0
6
.7

0
1
.2

4
7
.0

3
1
.2

6
9
.4

8
1
.3

4
3
.4

0
0
.3

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
5
.4

2
1
.0

0
8
.0

0

3
.1

.5
M

in
im

u
m

 m
a
n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 f
u
n
c
ti
o
n
in

g
1
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.5

0
0
.6

3
7
.5

0
1
.0

6
1
.0

0
0
.1

0
5
.0

0
0
.2

7
5
.0

0
0
.1

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.1

8
1
.0

0
1
0
.0

0

3
.2

.5
N

u
m

b
e
r 

o
f 
m

a
n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 1

0
0
%

3
2
.0

0
0
.0

1
1
7
.0

0
0
.2

4
5
6
.0

0
2
.2

6
5
6
.0

0
5
.2

8
5
1
.0

0
7
.7

4
3
6
.0

0
6
.6

5
5
0
.5

0
9
.0

4
6
1
.5

0
8
.7

1
2
4
.0

0
2
.2

9
2
8
.0

0
1
.5

1
1
0
.0

0
0
.2

6
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
3
.9

9
1
.0

0
3
.0

0

3
.3

.5
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 n

a
va

l 
s
to

re
s

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
6
.9

3
0
.2

8
0
.3

3
0
.0

3
3
.3

7
0
.5

1
6
.9

7
1
.2

9
5
.8

5
1
.0

5
7
.4

0
1
.0

5
1
.0

0
0
.1

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.3

0
1
.0

0
1
.0

0

3
.4

.5
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 a

ft
 s

p
a
re

 g
e
a
r 

s
to

re
s

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.3

7
0
.5

1
6
.9

7
1
.2

9
5
.8

5
1
.0

5
7
.4

0
1
.0

5
1
.0

0
0
.1

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.9

9
1
.0

0
3
.0

0

3
.5

.5
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 a

ft
 w

o
rk

s
h
o
p
s

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.3

7
0
.5

1
6
.9

7
1
.2

9
5
.8

5
1
.0

5
7
.4

0
1
.0

5
1
.0

0
0
.1

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.9

9
1
.0

0
2
.0

0

3
.6

.5
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 f
w

d
 s

p
a
re

 g
e
a
r 

s
to

re
s

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.0

7
0
.3

8
6
.7

7
1
.0

3
0
.1

7
0
.0

3
6
.8

7
1
.2

3
0
.0

0
0
.0

0
1
.0

0
0
.1

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.7

7
1
.0

0
3
.0

0

3
.7

.5
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 f
w

d
 w

o
rk

s
h
o
p

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.0

7
0
.3

8
6
.7

7
1
.0

3
0
.1

7
0
.0

3
6
.8

7
1
.2

3
0
.0

0
0
.0

0
1
.0

0
0
.1

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.7

7
1
.0

0
2
.0

0

3
.8

.5
E

q
u
ip

m
e
n
t 

in
 d

a
m

a
g
e
d
 s

e
c
ti
o
n
 m

e
a
s
u
re

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.0

7
0
.1

6
6
.6

0
0
.6

2
0
.0

0
0
.0

0
6
.7

0
1
.2

4
7
.0

3
1
.2

6
9
.4

8
1
.3

4
3
.4

0
0
.3

2
5
.0

0
0
.2

7
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
5
.2

2
1
.0

0
8
.0

0

3
.1

.6
M

in
im

u
m

 m
a
n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 f
u
n
c
ti
o
n
in

g
1
0

1
6
.0

0
0
.0

7
1
6
.0

0
0
.2

3
1
7
.0

0
0
.6

9
4
.0

0
0
.3

8
1
.0

0
0
.1

5
0
.0

0
0
.0

0
7
.0

0
1
.2

5
1
1
.0

0
1
.5

6
7
.0

0
0
.6

7
1
.0

0
0
.0

5
1
.0

0
0
.0

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
5
.0

7
1
.0

0
1
0
.0

0

3
.2

.6
N

u
m

b
e
r 

o
f 
m

a
n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 1

0
0
%

3
1
7
.0

0
0
.0

7
3
3
.0

0
0
.4

7
6
9
.0

0
2
.7

9
5
6
.0

0
5
.2

8
5
1
.0

0
7
.7

4
3
5
.0

0
6
.4

6
4
2
.0

0
7
.5

2
4
8
.0

0
6
.8

0
2
4
.0

0
2
.2

9
1
8
.0

0
0
.9

7
1
.0

0
0
.0

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
0
.4

1
1
.0

0
3
.0

0

3
.3

.6
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 n

a
va

l 
s
to

re
s

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
7
.6

0
0
.3

1
0
.0

0
0
.0

0
3
.2

0
0
.4

9
6
.8

0
1
.2

6
6
.6

0
1
.1

8
3
.4

0
0
.4

8
1
.0

0
0
.1

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.8

1
1
.0

0
1
.0

0

3
.4

.6
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 a

ft
 s

p
a
re

 g
e
a
r 

s
to

re
s

3
0
.0

0
0
.0

0
7
.0

0
0
.1

0
1
6
.0

0
0
.6

5
0
.0

0
0
.0

0
3
.2

0
0
.4

9
6
.8

0
1
.2

6
6
.6

0
1
.1

8
3
.4

0
0
.4

8
1
.0

0
0
.1

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.2

5
1
.0

0
3
.0

0

3
.5

.6
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 a

ft
 w

o
rk

s
h
o
p
s

2
0
.0

0
0
.0

0
7
.0

0
0
.1

0
1
6
.0

0
0
.6

5
0
.0

0
0
.0

0
3
.2

0
0
.4

9
6
.8

0
1
.2

6
6
.6

0
1
.1

8
3
.4

0
0
.4

8
1
.0

0
0
.1

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.2

5
1
.0

0
2
.0

0

3
.6

.6
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 f
w

d
 s

p
a
re

 g
e
a
r 

s
to

re
s

3
0
.0

0
0
.0

0
7
.0

0
0
.1

0
1
6
.0

0
0
.6

5
7
.4

0
0
.7

0
8
.1

0
1
.2

3
0
.5

0
0
.0

9
7
.2

0
1
.2

9
0
.0

0
0
.0

0
1
.0

0
0
.1

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.1

5
1
.0

0
3
.0

0

3
.7

.6
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 f
w

d
 w

o
rk

s
h
o
p

2
0
.0

0
0
.0

0
7
.0

0
0
.1

0
1
6
.0

0
0
.6

5
7
.4

0
0
.7

0
8
.1

0
1
.2

3
0
.5

0
0
.0

9
7
.2

0
1
.2

9
0
.0

0
0
.0

0
1
.0

0
0
.1

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.1

5
1
.0

0
2
.0

0

3
.8

.6
E

q
u
ip

m
e
n
t 

in
 d

a
m

a
g
e
d
 s

e
c
ti
o
n
 m

e
a
s
u
re

8
7
.0

0
0
.0

3
1
3
.0

0
0
.1

8
4
.4

0
0
.1

8
7
.6

0
0
.7

2
0
.0

0
0
.0

0
6
.7

0
1
.2

4
7
.2

0
1
.2

9
1
0
.4

0
1
.4

7
3
.4

0
0
.3

2
1
.0

0
0
.0

5
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
5
.4

9
1
.0

0
8
.0

0

2
9
.0

0

1 1 2

1
0
.0

0

2
.0

0

9
.0

0

2
.0

0

2
.0

0

1
.0

0

1
.0

0

2
.0

0

2

G
ro

u
p

 

S
u

m

N
o

rm
a
li

se
d

 

w
rt

 b
a
se

li
n

e
G

ro
u

p
 

W
e
ig

h
ti

n
g

2

3
2
.0

0

3
2
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

0

1
.0

0

3
4
.0

0

3
2
.0

0

3
2
.0

0

3
2
.0

0

3
2
.0

0

Move System

Category 3 PMs

W
e

ig
h

te
d

9
0
.0

0

S
u

m
N

o
rm

a
li

se
d

 

w
rt

 b
a
se

li
n

e
P

e
rf

o
rm

a
n

c
e
 M

e
a
su

re

W
T

 S
e

c
ti

o
n

FLOAT

Category 1 PMs

W
e
ig

h
te

d

1
0 2 9

T
o

ta
l 

S
c
o

re

G
ro

u
p

 d
e
sc

ri
p

ti
o

n

Helicopter System

FIGHT

Naval Gun System

Category 3 PMs

ASM System

Category 3 PMs

Aft SAM System

Category 3 PMs

Fwd SAM System

Category 3 PMs Category 3 PMs

Recovery Support

Category 2 PMs

MOVE



2
2
7
 

 T
a
b

le
 6

.1
3
: 

P
er

fo
rm

an
ce

 M
ea

su
re

 M
at

ri
x

 f
o
r 

F
ri

g
at

e 
V

ar
ia

n
t 

2
 

 

 

M
1

M
2

L
1

L
2

K
1

K
2

J
1

J
2

I 1
I 2

H
1

H
2

G
1

G
2

F
1

F
2

E
1

E
2

D
1

D
2

C
1

C
2

B
1

B
2

A
1

A
2

P
M

 C
a
t.

W
e
ig

h
ti

n
g

1
.1

A
ve

ra
g
e
 d

is
ta

n
c
e
 b

e
tw

e
e
n
 F

R
P

P
 a

n
d
 d

a
m

a
g
e
d
 W

T
 s

e
c
ti
o
n
 (

m
)

7
4
6
.4

0
0
.1

9
3
6
.1

0
0
.4

9
2
8
.6

0
1
.1

8
2
8
.6

0
2
.8

5
2
8
.6

0
4
.3

9
2
8
.6

0
5
.1

5
2
8
.6

0
5
.1

1
2
8
.6

0
4
.0

8
3
5
.4

0
3
.3

9
4
4
.4

0
2
.3

7
5
3
.0

0
1
.3

0
6
2
.0

0
0
.5

9
6
9
.0

0
0
.2

3
3
1
.3

2
1
.1

2
7
.8

5

1
.2

A
ve

ra
g
e
 n

u
m

b
e
r 

o
f 
W

T
D

 o
p
e
ra

te
d
 p

e
r 

F
R

P
4

4
.5

0
0
.0

2
3
.5

0
0
.0

5
2
.5

0
0
.1

0
2
.5

0
0
.2

5
2
.5

0
0
.3

8
2
.5

0
0
.4

5
2
.5

0
0
.4

5
2
.5

0
0
.3

6
3
.5

0
0
.3

4
4
.5

0
0
.2

4
5
.5

0
0
.1

4
6
.5

0
0
.0

6
7
.5

0
0
.0

3
2
.8

5
1
.1

8
4
.7

1

1
.3

N
u
m

b
e
r 

o
f 
in

te
rn

a
l 
d
e
c
k
s
 i
n
 d

a
m

a
g
e
d
 W

T
 s

e
c
ti
o
n

6
2
.0

0
0
.0

1
4
.0

0
0
.0

5
4
.0

0
0
.1

6
4
.0

0
0
.4

0
4
.0

0
0
.6

1
6
.0

0
1
.0

8
7
.0

0
1
.2

5
7
.0

0
1
.0

0
4
.0

0
0
.3

8
4
.0

0
0
.2

1
4
.0

0
0
.1

0
4
.0

0
0
.0

4
4
.0

0
0
.0

1
5
.3

2
1
.1

4
6
.8

5

1
.4

A
ve

ra
g
e
 t

o
ta

l 
w

id
th

 o
f 
a
lt
e
rn

a
ti
ve

 r
o
u
te

s
 (

in
ve

rs
e
) 

(m
)

7
0
.2

1
0
.0

0
0
.1

8
0
.0

0
0
.1

6
0
.0

1
0
.1

6
0
.0

2
0
.1

6
0
.0

2
0
.1

6
0
.0

3
0
.1

6
0
.0

3
0
.1

6
0
.0

2
0
.1

6
0
.0

2
0
.1

6
0
.0

1
0
.1

7
0
.0

0
0
.1

8
0
.0

0
0
.1

8
0
.0

0
0
.1

6
0
.4

7
3
.3

1

1
.5

A
T
U

 a
n
d
 V

e
n
ti
la

ti
o
n
 (

o
f 
d
a
m

a
g
e
d
 z

o
n
e
) 

(m
a
n
-h

o
u
rs

)
8

0
.0

0
0
.0

0
4
.0

0
0
.0

5
4
.0

0
0
.1

6
4
.0

0
0
.4

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.0

0
0
.7

2
4
.0

0
0
.5

7
4
.0

0
0
.3

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.2

9
0
.9

8
7
.8

8

1
.6

F
ir
e
p
u
m

p
 (

o
f 
d
a
m

a
g
e
d
 z

o
n
e
) 

(m
a
n
-h

o
u
rs

)
2

0
.0

0
0
.0

0
0
.0

0
0
.0

0
8
.0

0
0
.3

3
8
.0

0
0
.8

0
8
.0

0
1
.2

3
8
.0

0
1
.4

4
8
.0

0
1
.4

3
0
.0

0
0
.0

0
8
.0

0
0
.7

7
8
.0

0
0
.4

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
6
.4

2
1
.2

4
2
.4

8

1
.7

O
ve

ra
ll 

fir
e
p
u
m

p
 s

y
s
te

m
 (

m
a
n
-h

o
u
rs

/n
o
 o

f 
e
q
u
ip

m
e
n
t)

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.0

0
0
.0

8
4
.0

0
0
.4

0
2
.0

0
0
.3

1
2
.0

0
0
.3

6
2
.0

0
0
.3

6
2
.0

0
0
.2

9
2
.0

0
0
.1

9
2
.0

0
0
.1

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.0

9
1
.1

3
9
.0

4

1
.8

N
B

C
D

 s
to

re
s
 -

 a
ft
 F

R
P

 s
e
c
ti
o
n
 b

a
s
e

1
0
.0

0
0
.0

0
1
.0

0
0
.0

1
1
.0

0
0
.0

4
1
.0

0
0
.1

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.1

5
1
.1

5
1
.1

5

1
.9

N
B

C
D

 s
to

re
s
 -

 f
w

d
 F

R
P

 s
e
c
ti
o
n
 b

a
s
e

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.0

0
0
.1

4
1
.0

0
0
.1

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.2

4
0
.5

7
0
.5

7

1
.1

0
R

e
m

a
in

in
g
 N

B
C

D
 s

to
re

s
2

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.5

0
0
.0

5
0
.5

0
0
.0

8
0
.5

0
0
.0

9
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.5

0
0
.0

1
0
.5

0
0
.0

0
0
.0

0
0
.0

0
0
.2

3
4
.2

8
8
.5

6

1
.1

1
P

o
w

e
r 

(o
f 
d
a
m

a
g
e
d
 z

o
n
e
) 

(m
a
n
-h

o
u
rs

)
2

0
.0

0
0
.0

0
1
6
.0

0
0
.2

2
1
7
.0

0
0
.7

0
1
6
.5

0
1
.6

4
1
6
.5

0
2
.5

3
3
4
.0

0
6
.1

2
3
4
.0

0
6
.0

8
1
8
.0

0
2
.5

7
1
7
.0

0
1
.6

3
1
7
.0

0
0
.9

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
2
.4

0
1
.0

4
2
.0

8

1
.1

2
O

ve
ra

ll 
p
o
w

e
r 

s
y
s
te

m
  

(m
a
n
-h

o
u
rs

/n
o
 o

f 
e
q
u
ip

m
e
n
t)

8
0
.0

0
0
.0

0
3
.2

0
0
.0

4
9
.8

0
0
.4

0
1
0
.0

0
1
.0

0
9
.8

0
1
.5

0
6
.8

0
1
.2

2
6
.8

0
1
.2

2
7
.0

0
1
.0

0
3
.4

0
0
.3

3
3
.4

0
0
.1

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
6
.8

9
1
.0

3
8
.2

4

1
.1

3
S

C
C

 (
H

Q
1
) 

(m
a
n
-h

o
u
rs

)
6

0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.5

0
0
.1

0
2
.5

0
0
.2

5
2
.5

0
0
.3

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.7

4
1
.0

3
6
.1

6

1
.1

4
B

ri
d
g
e
 (

H
Q

2
) 

(m
a
n
-h

o
u
rs

)
2

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.5

0
0
.6

3
3
.5

0
0
.5

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.1

3
1
.0

0
2
.0

1

1
.1

5
O

p
s
. 

R
o
o
m

 (
m

a
n
-h

o
u
rs

)
6

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
6
.0

0
1
.0

7
6
.0

0
0
.8

6
6
.0

0
0
.5

7
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.5

0
1
.0

0
6
.0

2

1
.1

6
A

ft
 F

R
P

P
1
0

0
.0

0
0
.0

0
1
.0

0
0
.0

1
1
.0

0
0
.0

4
1
.0

0
0
.1

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.1

5
0
.5

4
5
.4

0

1
.1

7
F

w
d
 F

R
P

P
1
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.0

0
0
.1

8
1
.0

0
0
.1

4
1
.0

0
0
.1

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.4

2
1
.0

0
1
0
.0

3

2
.1

A
ft
 w

o
rk

s
h
o
p
s
 (

m
a
n
-h

o
u
rs

)
3

0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.0

0
0
.1

6
4
.0

0
0
.4

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.5

6
1
.0

5
3
.1

4

2
.2

F
w

d
 w

o
rk

s
h
o
p
s
 (

m
a
n
-h

o
u
rs

)
3

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.0

0
0
.7

2
4
.0

0
0
.5

7
4
.0

0
0
.3

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.6

7
1
.0

0
3
.0

1

2
.3

N
a
va

l 
s
to

re
s

1
1
.0

0
0
.0

0
1
.0

0
0
.0

1
1
.0

0
0
.0

4
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

6
1
.0

0
1
.0

0

2
.4

A
ft
 s

p
a
re

 g
e
a
r 

s
to

re
s

7
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.0

0
0
.0

4
1
.0

0
0
.1

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.1

4
1
.0

5
7
.3

2

2
.5

F
w

d
 s

p
a
re

 g
e
a
r 

s
to

re
s

7
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.0

0
0
.1

8
1
.0

0
0
.1

4
1
.0

0
0
.1

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.4

2
1
.0

0
7
.0

2

2
.6

S
C

C
 (

u
p
d
a
te

d
 v

a
lu

e
) 

(m
a
n
-h

o
u
rs

)
6

0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.5

0
0
.1

0
2
.5

0
0
.2

5
2
.5

0
0
.3

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.7

4
1
.0

3
6
.1

6

2
.7

O
p
s
. 

R
o
o
m

 (
u
p
d
a
te

d
 v

a
lu

e
) 

(m
a
n
-h

o
u
rs

)
7

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
6
.0

0
1
.0

7
6
.0

0
0
.8

6
6
.0

0
0
.5

7
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.5

0
1
.0

0
7
.0

2

3
.1

.1
M

in
im

u
m

 m
a
n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 f
u
n
c
ti
o
n
in

g
1
0

0
.0

0
0
.0

0
1
6
.0

0
0
.2

2
2
8
.0

0
1
.1

5
1
6
.0

0
1
.5

9
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.9

7
1
.0

3
1
0
.3

5

3
.2

.1
N

u
m

b
e
r 

o
f 
m

a
n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 1

0
0
%

3
2
.0

0
0
.0

1
5
0
.0

0
0
.6

8
1
0
7
.5

0
4
.4

3
8
4
.5

0
8
.4

2
5
1
.5

0
7
.9

0
3
4
.0

0
6
.1

2
3
7
.5

0
6
.7

0
3
8
.5

0
5
.5

0
1
7
.0

0
1
.6

3
1
7
.0

0
0
.9

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
2
.3

0
1
.0

1
3
.0

3

3
.3

.1
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 n

a
va

l 
s
to

re
s

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
7
.2

3
0
.3

0
0
.0

0
0
.0

0
3
.2

0
0
.4

9
6
.8

0
1
.2

2
1
.2

7
0
.2

3
3
.4

0
0
.4

9
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.7

2
0
.9

9
0
.9

9

3
.4

.1
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 a

ft
 s

p
a
re

 g
e
a
r 

s
to

re
s

3
0
.0

0
0
.0

0
0
.6

7
0
.0

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.2

0
0
.4

9
6
.8

0
1
.2

2
1
.2

7
0
.2

3
3
.4

0
0
.4

9
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.4

4
0
.9

9
2
.9

7

3
.5

.1
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 a

ft
 w

o
rk

s
h
o
p
s

2
0
.0

0
0
.0

0
0
.6

7
0
.0

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.2

0
0
.4

9
6
.8

0
1
.2

2
1
.2

7
0
.2

3
3
.4

0
0
.4

9
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.4

4
0
.9

9
1
.9

8

3
.6

.1
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 f
w

d
 s

p
a
re

 g
e
a
r 

s
to

re
s

3
0
.0

0
0
.0

0
0
.6

7
0
.0

1
0
.0

0
0
.0

0
1
9
.4

0
1
.9

3
7
.4

3
1
.1

4
0
.0

0
0
.0

0
6
.7

0
1
.2

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.2

8
1
.0

3
3
.0

8

3
.7

.1
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 f
w

d
 w

o
rk

s
h
o
p

2
0
.0

0
0
.0

0
0
.6

7
0
.0

1
0
.0

0
0
.0

0
1
9
.4

0
1
.9

3
7
.4

3
1
.1

4
0
.0

0
0
.0

0
6
.7

0
1
.2

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.2

8
1
.0

3
2
.0

6

3
.8

.1
E

q
u
ip

m
e
n
t 

in
 d

a
m

a
g
e
d
 s

e
c
ti
o
n
 m

e
a
s
u
re

8
0
.6

7
0
.0

0
0
.0

0
0
.0

0
3
1
.4

0
1
.2

9
7
.4

3
0
.7

4
0
.0

0
0
.0

0
6
.7

0
1
.2

1
6
.7

0
1
.2

0
4
.5

7
0
.6

5
3
.4

0
0
.3

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
5
.4

2
0
.9

8
7
.8

1

3
.1

.2
M

in
im

u
m

 m
a
n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 f
u
n
c
ti
o
n
in

g
1
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.5

0
0
.8

0
9
.5

0
1
.3

6
0
.0

0
0
.0

0
1
3
.0

0
0
.6

9
1
3
.0

0
0
.3

2
5
.0

0
0
.0

5
0
.0

0
0
.0

0
3
.2

2
1
.1

8
1
1
.7

8

3
.2

.2
N

u
m

b
e
r 

o
f 
m

a
n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 1

0
0
%

3
0
.0

0
0
.0

0
1
6
.0

0
0
.2

2
4
9
.0

0
2
.0

2
5
0
.0

0
4
.9

8
5
0
.0

0
7
.6

7
3
5
.0

0
6
.3

0
4
6
.5

0
8
.3

1
5
2
.5

0
7
.5

0
2
3
.0

0
2
.2

0
3
1
.0

0
1
.6

5
1
4
.0

0
0
.3

4
5
.0

0
0
.0

5
0
.0

0
0
.0

0
4
1
.2

4
1
.0

2
3
.0

5

3
.3

.2
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 n

a
va

l 
s
to

re
s

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
6
.4

0
0
.2

6
0
.0

0
0
.0

0
3
.7

0
0
.5

7
7
.3

0
1
.3

1
6
.3

5
1
.1

4
7
.4

0
1
.0

6
0
.0

0
0
.0

0
1
3
.0

0
0
.6

9
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
5
.0

3
1
.1

0
1
.1

0

3
.4

.2
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 a

ft
 s

p
a
re

 g
e
a
r 

s
to

re
s

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.7

0
0
.5

7
7
.3

0
1
.3

1
6
.3

5
1
.1

4
7
.4

0
1
.0

6
0
.0

0
0
.0

0
1
3
.0

0
0
.6

9
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.7

7
1
.1

3
3
.3

8

3
.5

.2
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 a

ft
 w

o
rk

s
h
o
p
s

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.7

0
0
.5

7
7
.3

0
1
.3

1
6
.3

5
1
.1

4
7
.4

0
1
.0

6
0
.0

0
0
.0

0
1
3
.0

0
0
.6

9
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.7

7
1
.1

3
2
.2

5

3
.6

.2
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 f
w

d
 s

p
a
re

 g
e
a
r 

s
to

re
s

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.4

0
0
.3

4
6
.6

0
1
.0

1
0
.0

0
0
.0

0
6
.7

0
1
.2

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
3
.0

0
0
.6

9
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.2

4
1
.0

1
3
.0

2

3
.7

.2
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 f
w

d
 w

o
rk

s
h
o
p

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.4

0
0
.3

4
6
.6

0
1
.0

1
0
.0

0
0
.0

0
6
.7

0
1
.2

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
3
.0

0
0
.6

9
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.2

4
1
.0

1
2
.0

1

3
.8

.2
E

q
u
ip

m
e
n
t 

in
 d

a
m

a
g
e
d
 s

e
c
ti
o
n
 m

e
a
s
u
re

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.4

0
0
.1

4
6
.6

0
0
.6

6
0
.0

0
0
.0

0
6
.7

0
1
.2

1
7
.2

0
1
.2

9
1
0
.1

5
1
.4

5
3
.4

0
0
.3

3
0
.0

0
0
.0

0
1
3
.0

0
0
.3

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
5
.3

9
1
.0

0
8
.0

0

3
.1

.3
M

in
im

u
m

 m
a
n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 f
u
n
c
ti
o
n
in

g
1
0

1
.0

0
0
.0

0
5
.0

0
0
.0

7
1
.0

0
0
.0

4
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
7
.0

0
1
.2

5
7
.0

0
1
.0

0
6
.0

0
0
.5

7
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.9

4
0
.7

1
7
.1

0

3
.2

.3
N

u
m

b
e
r 

o
f 
m

a
n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 1

0
0
%

3
1
.0

0
0
.0

0
2
5
.0

0
0
.3

4
5
0
.0

0
2
.0

6
5
3
.0

0
5
.2

8
5
3
.0

0
8
.1

3
4
0
.0

0
7
.2

0
5
0
.0

0
8
.9

4
5
1
.0

0
7
.2

8
2
3
.0

0
2
.2

0
2
0
.0

0
1
.0

7
2
.0

0
0
.0

5
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
2
.5

5
0
.9

7
2
.9

1

3
.3

.3
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 n

a
va

l 
s
to

re
s

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
6
.4

0
0
.2

6
0
.5

0
0
.0

5
3
.8

7
0
.5

9
7
.1

3
1
.2

8
7
.1

0
1
.2

7
3
.4

0
0
.4

9
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.9

5
0
.9

0
0
.9

0

3
.4

.3
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 a

ft
 s

p
a
re

 g
e
a
r 

s
to

re
s

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.5

0
0
.0

5
3
.8

7
0
.5

9
7
.1

3
1
.2

8
7
.1

0
1
.2

7
3
.4

0
0
.4

9
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.6

8
1
.0

4
3
.1

1

3
.5

.3
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 a

ft
 w

o
rk

s
h
o
p
s

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.5

0
0
.0

5
3
.8

7
0
.5

9
7
.1

3
1
.2

8
7
.1

0
1
.2

7
3
.4

0
0
.4

9
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.6

8
1
.0

4
2
.0

7

3
.6

.3
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 f
w

d
 s

p
a
re

 g
e
a
r 

s
to

re
s

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.0

0
0
.0

4
3
.4

0
0
.3

4
6
.6

0
1
.0

1
0
.0

0
0
.0

0
7
.3

7
1
.3

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.7

1
0
.9

5
2
.8

5

3
.7

.3
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 f
w

d
 w

o
rk

s
h
o
p

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.0

0
0
.0

4
3
.4

0
0
.3

4
6
.6

0
1
.0

1
0
.0

0
0
.0

0
7
.3

7
1
.3

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.7

1
0
.9

5
1
.9

0

3
.8

.3
E

q
u
ip

m
e
n
t 

in
 d

a
m

a
g
e
d
 s

e
c
ti
o
n
 m

e
a
s
u
re

8
0
.0

0
0
.0

0
5
.0

0
0
.0

7
3
.4

0
0
.1

4
6
.6

0
0
.6

6
0
.0

0
0
.0

0
7
.3

7
1
.3

3
7
.0

3
1
.2

6
1
0
.7

3
1
.5

3
3
.4

0
0
.3

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
5
.3

1
0
.8

8
7
.0

2

3
.1

.4
M

in
im

u
m

 m
a
n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 f
u
n
c
ti
o
n
in

g
1
0

0
.0

0
0
.0

0
1
.0

0
0
.0

1
5
.0

0
0
.2

1
5
.0

0
0
.5

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.5

0
0
.8

0
4
.5

0
0
.6

4
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.1

7
0
.7

0
7
.0

3

3
.2

.4
N

u
m

b
e
r 

o
f 
m

a
n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 1

0
0
%

3
0
.0

0
0
.0

0
1
7
.0

0
0
.2

3
5
8
.0

0
2
.3

9
6
2
.0

0
6
.1

8
5
3
.0

0
8
.1

3
4
0
.0

0
7
.2

0
5
3
.5

0
9
.5

6
5
4
.5

0
7
.7

8
2
3
.0

0
2
.2

0
2
0
.0

0
1
.0

7
2
.0

0
0
.0

5
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
4
.7

9
0
.9

8
2
.9

4

3
.3

.4
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 n

a
va

l 
s
to

re
s

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
6
.4

0
0
.2

6
0
.5

0
0
.0

5
3
.8

7
0
.5

9
7
.1

3
1
.2

8
5
.8

5
1
.0

5
3
.4

0
0
.4

9
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.7

2
0
.9

8
0
.9

8

3
.4

.4
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 a

ft
 s

p
a
re

 g
e
a
r 

s
to

re
s

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.5

0
0
.0

5
3
.8

7
0
.5

9
7
.1

3
1
.2

8
5
.8

5
1
.0

5
3
.4

0
0
.4

9
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.4

6
1
.0

4
3
.1

2

3
.5

.4
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 a

ft
 w

o
rk

s
h
o
p
s

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.5

0
0
.0

5
3
.8

7
0
.5

9
7
.1

3
1
.2

8
5
.8

5
1
.0

5
3
.4

0
0
.4

9
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.4

6
1
.0

4
2
.0

8

3
.6

.4
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 f
w

d
 s

p
a
re

 g
e
a
r 

s
to

re
s

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
8
.4

0
0
.8

4
6
.6

0
1
.0

1
0
.0

0
0
.0

0
7
.3

7
1
.3

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.1

7
0
.9

2
2
.7

7

3
.7

.4
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 f
w

d
 w

o
rk

s
h
o
p

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
8
.4

0
0
.8

4
6
.6

0
1
.0

1
0
.0

0
0
.0

0
7
.3

7
1
.3

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.1

7
0
.9

2
1
.8

5

3
.8

.4
E

q
u
ip

m
e
n
t 

in
 d

a
m

a
g
e
d
 s

e
c
ti
o
n
 m

e
a
s
u
re

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
8
.4

0
0
.3

5
6
.6

0
0
.6

6
0
.0

0
0
.0

0
7
.3

7
1
.3

3
7
.0

3
1
.2

6
9
.4

8
1
.3

5
3
.4

0
0
.3

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
5
.2

7
0
.9

7
7
.7

7

3
.1

.5
M

in
im

u
m

 m
a
n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 f
u
n
c
ti
o
n
in

g
1
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.5

0
0
.8

0
4
.5

0
0
.6

4
5
.0

0
0
.4

8
5
.0

0
0
.2

7
5
.0

0
0
.1

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.3

2
1
.0

6
1
0
.6

0

3
.2

.5
N

u
m

b
e
r 

o
f 
m

a
n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 1

0
0
%

3
0
.0

0
0
.0

0
1
6
.0

0
0
.2

2
4
9
.0

0
2
.0

2
5
3
.0

0
5
.2

8
5
3
.0

0
8
.1

3
4
0
.0

0
7
.2

0
5
3
.5

0
9
.5

6
5
4
.5

0
7
.7

8
3
2
.0

0
3
.0

6
2
9
.0

0
1
.5

4
1
1
.0

0
0
.2

7
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
5
.0

7
1
.0

2
3
.0

7

3
.3

.5
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 n

a
va

l 
s
to

re
s

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
6
.4

0
0
.2

6
0
.5

0
0
.0

5
3
.8

7
0
.5

9
7
.1

3
1
.2

8
5
.5

2
0
.9

9
3
.4

0
0
.4

9
5
.0

0
0
.4

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.1

4
0
.9

6
0
.9

6

3
.4

.5
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 a

ft
 s

p
a
re

 g
e
a
r 

s
to

re
s

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.5

0
0
.0

5
3
.8

7
0
.5

9
7
.1

3
1
.2

8
5
.5

2
0
.9

9
3
.4

0
0
.4

9
5
.0

0
0
.4

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.8

8
0
.9

7
2
.9

2

3
.5

.5
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 a

ft
 w

o
rk

s
h
o
p
s

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.5

0
0
.0

5
3
.8

7
0
.5

9
7
.1

3
1
.2

8
5
.5

2
0
.9

9
0
.0

0
0
.0

0
5
.0

0
0
.4

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.3

9
0
.8

5
1
.7

0

3
.6

.5
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 f
w

d
 s

p
a
re

 g
e
a
r 

s
to

re
s

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.4

0
0
.3

4
6
.6

0
1
.0

1
0
.0

0
0
.0

0
7
.3

7
1
.3

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.6

7
0
.9

6
2
.8

9

3
.7

.5
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 f
w

d
 w

o
rk

s
h
o
p

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.4

0
0
.3

4
6
.6

0
1
.0

1
0
.0

0
0
.0

0
7
.3

7
1
.3

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.6

7
0
.9

6
1
.9

3

3
.8

.5
E

q
u
ip

m
e
n
t 

in
 d

a
m

a
g
e
d
 s

e
c
ti
o
n
 m

e
a
s
u
re

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.4

0
0
.1

4
6
.6

0
0
.6

6
0
.0

0
0
.0

0
7
.3

7
1
.3

3
7
.0

3
1
.2

6
9
.4

8
1
.3

5
3
.4

0
0
.3

3
5
.0

0
0
.2

7
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
5
.3

3
1
.0

2
8
.1

6

3
.1

.6
M

in
im

u
m

 m
a
n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 f
u
n
c
ti
o
n
in

g
1
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.0

0
0
.1

6
1
7
.0

0
1
.6

9
1
7
.0

0
2
.6

1
1
7
.0

0
3
.0

6
8
.0

0
1
.4

3
1
4
.0

0
2
.0

0
7
.0

0
0
.6

7
1
.0

0
0
.0

5
1
.0

0
0
.0

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
1
.7

0
2
.3

1
2
3
.0

9

3
.2

.6
N

u
m

b
e
r 

o
f 
m

a
n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 1

0
0
%

3
0
.0

0
0
.0

0
1
6
.0

0
0
.2

2
5
3
.0

0
2
.1

8
6
8
.0

0
6
.7

8
6
7
.0

0
1
0
.2

7
5
3
.0

0
9
.5

4
4
4
.0

0
7
.8

7
5
1
.0

0
7
.2

8
2
4
.0

0
2
.3

0
1
9
.0

0
1
.0

1
1
.0

0
0
.0

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
7
.4

8
1
.1

7
3
.5

2

3
.3

.6
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 n

a
va

l 
s
to

re
s

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
0
.4

0
0
.4

3
1
4
.5

0
1
.4

5
4
.7

0
0
.7

2
6
.8

0
1
.2

2
6
.6

0
1
.1

8
3
.4

0
0
.4

9
1
.0

0
0
.1

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
5
.5

8
1
.4

7
1
.4

7

3
.4

.6
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 a

ft
 s

p
a
re

 g
e
a
r 

s
to

re
s

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
4
.5

0
1
.4

5
4
.7

0
0
.7

2
6
.8

0
1
.2

2
6
.6

0
1
.1

8
3
.4

0
0
.4

9
1
.0

0
0
.1

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
5
.1

5
1
.2

1
3
.6

4

3
.5

.6
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 a

ft
 w

o
rk

s
h
o
p
s

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
4
.5

0
1
.4

5
4
.7

0
0
.7

2
6
.8

0
1
.2

2
6
.6

0
1
.1

8
0
.0

0
0
.0

0
1
.0

0
0
.1

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.6

7
1
.1

0
2
.2

0

3
.6

.6
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 f
w

d
 s

p
a
re

 g
e
a
r 

s
to

re
s

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.4

0
0
.3

4
1
3
.6

0
2
.0

9
1
6
.0

0
2
.8

8
8
.7

0
1
.5

6
0
.0

0
0
.0

0
1
.0

0
0
.1

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
6
.9

6
1
.6

8
5
.0

3

3
.7

.6
A

c
c
e
s
s
 m

e
a
s
u
re

 f
ro

m
 f
w

d
 w

o
rk

s
h
o
p

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.4

0
0
.3

4
1
3
.6

0
2
.0

9
1
6
.0

0
2
.8

8
8
.7

0
1
.5

6
0
.0

0
0
.0

0
1
.0

0
0
.1

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
6
.9

6
1
.6

8
3
.3

5

3
.8

.6
E

q
u
ip

m
e
n
t 

in
 d

a
m

a
g
e
d
 s

e
c
ti
o
n
 m

e
a
s
u
re

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.4

0
0
.1

4
1
3
.6

0
1
.3

6
1
3
.0

0
1
.9

9
8
.7

0
1
.5

7
7
.2

0
1
.2

9
1
0
.4

0
1
.4

9
3
.4

0
0
.3

3
1
.0

0
0
.0

5
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
8
.2

1
1
.5

0
1
1
.9

7

3
0
.5

7
T

o
ta

l 
S

c
o

re

Helicopter System

Category 3 PMs

5
4
.2

7
1
.7

0
2

3
.3

9

Fwd SAM System

Category 3 PMs

3
2
.2

4
1
.0

1
1

1
.0

1

2
7
.8

7
0
.8

7
2

1
.7

4

Aft SAM System

Category 3 PMs

2
8
.5

3
0
.8

9
1

0
.8

9

9
.0

8

FIGHT

Naval Gun System

Category 3 PMs

3
4
.5

9
1
.0

8
2

2
.1

6

ASM System

Category 3 PMs

MOVE

Move System

Category 3 PMs

3
2
.2

7
1
.0

1
9

Recovery Support

Category 2 PMs

3
4
.6

8
1
.0

2
2

2
.0

4

G
ro

u
p

 

W
e
ig

h
ti

n
g

W
e

ig
h

te
d

G
ro

u
p

 d
e
sc

ri
p

ti
o

n
P

e
rf

o
rm

a
n

c
e
 M

e
a
su

re

FLOAT

Category 1 PMs

9
2
.3

5
1
.0

3
1
0

1
0
.2

6

W
T

 S
e

c
ti

o
n

S
u

m
N

o
rm

a
li

se
d

 

w
rt

 b
a
se

li
n

e
W

e
ig

h
te

d
G

ro
u

p
 

S
u

m

N
o

rm
a
li

se
d

 

w
rt

 b
a
se

li
n

e



2
2
8
 

 T
a
b

le
 6

.1
4
: 

P
er

fo
rm

an
ce

 M
ea

su
re

 M
at

ri
x

 f
o
r 

F
ri

g
at

e 
V

ar
ia

n
t 

3
 

 

 

N
1

N
2

M
1

M
2

L
1

L
2

K
1

K
2

J
1

J
2

I 1
I 2

H
1

H
2

G
1

G
2

F
1

F
2

E
1

E
2

D
1

D
2

C
1

C
2

B
1

B
2

A
1

A
2

P
M

 C
a

t.
W

e
ig

h
ti

n
g

1
.1

A
ve

ra
g
e
 d

is
ta

n
c
e
 b

e
tw

e
e

n
 F

R
P

P
 a

n
d
 d

a
m

a
g
e
d
 W

T
 s

e
c
ti
o
n

 (
m

)
7

6
1
.1

0
0
.2

1
5
2
.1

0
0
.4

9
4

6
.3

0
1
.1

7
4

7
.7

0
2

.6
0

4
7
.7

0
4
.2

4
4
7
.7

0
6
.3

9
4
7
.7

0
7
.9

7
4
7
.7

0
8
.0

7
4
3
.1

0
6
.2

2
4
3
.1

0
4
.3

7
5
1
.9

0
3
.0

5
6
1
.9

0
1
.7

3
7
1
.8

0
0
.8

7
8
1
.5

0
0
.3

2
4

7
.6

9
1
.7

1
1
1
.9

6

1
.2

A
ve

ra
g
e
 n

u
m

b
e
r 

o
f 
W

T
D

 o
p
e
ra

te
d
 p

e
r 

F
R

P
4

5
.5

0
0
.0

2
4
.5

0
0
.0

4
3
.5

0
0
.0

9
3

.5
0

0
.1

9
3

.5
0

0
.3

1
3
.5

0
0
.4

7
3
.5

0
0
.5

8
3
.5

0
0
.5

9
3
.5

0
0
.5

1
3
.5

0
0
.3

5
4
.5

0
0
.2

6
5
.5

0
0
.1

5
6
.5

0
0
.0

8
7
.5

0
0
.0

3
3
.6

8
1
.5

2
6
.0

8

1
.3

N
u
m

b
e
r 

o
f 
in

te
rn

a
l 
d
e
c
k
s

 i
n
 d

a
m

a
g
e

d
 W

T
 s

e
c
ti
o

n
6

2
.0

0
0
.0

1
3
.0

0
0
.0

3
4
.0

0
0
.1

0
4

.0
0

0
.2

2
4

.0
0

0
.3

6
6
.0

0
0
.8

0
4
.0

0
0
.6

7
7
.0

0
1
.1

8
4
.0

0
0
.5

8
4
.0

0
0
.4

1
4
.0

0
0
.2

3
4
.0

0
0
.1

1
4
.0

0
0
.0

5
4
.0

0
0
.0

2
4
.7

6
1
.0

2
6
.1

4

1
.4

A
ve

ra
g
e
 t

o
ta

l 
w

id
th

 o
f 
a
lt

e
rn

a
ti
ve

 r
o
u
te

s
 (

in
ve

rs
e
) 

(m
)

7
0
.3

0
0
.0

0
0
.2

8
0
.0

0
0
.2

8
0
.0

1
0

.2
7

0
.0

1
0

.2
7

0
.0

2
0
.2

7
0
.0

4
0
.2

7
0
.0

5
0
.2

7
0
.0

5
0
.2

7
0
.0

4
0
.2

6
0
.0

3
0
.2

7
0
.0

2
0
.2

9
0
.0

1
0
.3

0
0
.0

0
0
.3

2
0
.0

0
0
.2

7
0
.8

0
5
.5

7

1
.5

A
T
U

 a
n
d
 V

e
n

ti
la

ti
o
n
 (

o
f 
d

a
m

a
g
e
d
 z

o
n
e
) 

(m
a
n
-h

o
u
rs

)
8

0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.0

0
0
.1

0
0

.0
0

0
.0

0
0

.0
0

0
.0

0
4
.0

0
0
.5

4
4
.0

0
0
.6

7
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.0

0
0
.4

1
4
.0

0
0
.2

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.9

5
0
.8

4
6
.7

0

1
.6

F
ir
e
p
u
m

p
 (

o
f 

d
a
m

a
g
e
d
 z

o
n
e
) 

(m
a
n
-h

o
u
rs

)
2

0
.0

0
0
.0

0
0
.0

0
0
.0

0
8
.0

0
0
.2

0
0

.0
0

0
.0

0
0

.0
0

0
.0

0
8
.0

0
1
.0

7
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
8
.0

0
0
.4

7
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.7

4
0
.3

4
0
.6

7

1
.7

O
ve

ra
ll 

fir
e
p
u

m
p
 s

y
s
te

m
 (

m
a
n
-h

o
u
rs

/n
o
 o

f 
e
q
u
ip

m
e
n
t)

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.0

0
0
.0

5
0

.0
0

0
.0

0
0

.0
0

0
.0

0
2
.0

0
0
.2

7
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.0

0
0
.1

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.4

4
0
.2

4
1
.8

9

1
.8

N
B

C
D

 s
to

re
s

 -
 a

ft
 F

R
P

 s
e
c
ti
o
n
 b

a
s
e

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.0

0
0
.0

3
0

.0
0

0
.0

0
0

.0
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

3
0
.1

9
0
.1

9

1
.9

N
B

C
D

 s
to

re
s

 -
 f
w

d
 F

R
P

 s
e
c
ti
o
n
 b

a
s

e
1

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.0
0

0
.0

0
0

.0
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.0

0
0
.1

0
1
.0

0
0
.0

6
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.1

6
0
.3

8
0
.3

8

1
.1

0
R

e
m

a
in

in
g
 N

B
C

D
 s

to
re

s
2

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.0
0

0
.0

0
0

.5
0

0
.0

4
0
.5

0
0
.0

7
0
.0

0
0
.0

0
0
.5

0
0
.0

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.2

0
3
.5

9
7
.1

8

1
.1

1
P

o
w

e
r 

(o
f 
d
a
m

a
g
e
d
 z

o
n
e

) 
(m

a
n
-h

o
u
rs

)
2

0
.0

0
0
.0

0
0
.0

0
0
.0

0
1

7
.0

0
0
.4

3
0

.0
0

0
.0

0
0

.0
0

0
.0

0
1
6
.0

0
2
.1

4
2
.0

0
0
.3

3
1
.0

0
0
.1

7
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
6
.0

0
0
.9

4
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.0

1
0
.1

9
0
.3

7

1
.1

2
O

ve
ra

ll 
p
o
w

e
r 

s
y
s
te

m
  

(m
a
n
-h

o
u
rs

/n
o
 o

f 
e
q
u
ip

m
e
n
t)

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.4

0
0
.0

9
0

.0
0

0
.0

0
0

.0
0

0
.0

0
6
.8

0
0
.9

1
0
.4

0
0
.0

7
0
.2

0
0
.0

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.2

0
0
.1

9
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.2

8
0
.1

9
1
.5

4

1
.1

3
S

C
C

 (
H

Q
1
) 

(m
a
n
-h

o
u
rs

)
6

0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.5

0
0
.0

6
2

.5
0

0
.1

4
2

.5
0

0
.2

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.4

2
0
.5

9
3
.5

3

1
.1

4
B

ri
d
g
e
 (

H
Q

2
) 

(m
a
n
-h

o
u
rs

)
2

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.0
0

0
.0

0
0

.0
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.5

0
0
.5

9
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.5

9
0
.5

3
1
.0

5

1
.1

5
O

p
s
. 

R
o
o
m

 (
m

a
n
-h

o
u
rs

)
6

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.0
0

0
.0

0
0

.0
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
6
.0

0
0
.8

7
6
.0

0
0
.6

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.4

7
0
.5

9
3
.5

5

1
.1

6
A

ft
 F

R
P

P
1
0

0
.0

0
0
.0

0
1
.0

0
0
.0

1
1
.0

0
0
.0

3
1

.0
0

0
.0

5
0

.0
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

9
0
.3

1
3
.1

1

1
.1

7
F

w
d
 F

R
P

P
1
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.0
0

0
.0

0
0

.0
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.0

0
0
.1

0
1
.0

0
0
.0

6
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.1

6
0
.3

8
3
.8

5

2
.1

A
ft
 w

o
rk

s
h
o
p

s
 (

m
a
n
-h

o
u
rs

)
3

0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.0

0
0
.1

0
4

.0
0

0
.2

2
0

.0
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.3

2
0
.5

9
1
.7

8

2
.2

F
w

d
 w

o
rk

s
h
o

p
s
 (

m
a
n
-h

o
u
rs

)
3

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.0
0

0
.0

0
0

.0
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.0

0
0
.4

1
4
.0

0
0
.2

3
4
.0

0
0
.1

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.7

5
0
.4

5
1
.3

6

2
.3

N
a
va

l 
s
to

re
s

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.0
0

0
.0

0
0

.0
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.0

0
0
.1

0
1
.0

0
0
.0

6
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.1

6
2
.7

2
2
.7

2

2
.4

A
ft
 s

p
a
re

 g
e
a

r 
s
to

re
s

7
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.0

0
0
.0

3
1

.0
0

0
.0

5
0

.0
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

8
0
.5

9
4
.1

5

2
.5

F
w

d
 s

p
a
re

 g
e

a
r 

s
to

re
s

7
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.0
0

0
.0

0
0

.0
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.0

0
0
.1

0
1
.0

0
0
.0

6
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.1

6
0
.3

8
2
.6

9

2
.6

S
C

C
 (

u
p
d
a
te

d
 v

a
lu

e
) 

(m
a

n
-h

o
u
rs

)
6

0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.5

0
0
.0

6
2

.5
0

0
.1

4
2

.5
0

0
.2

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.4

2
0
.5

9
3
.5

3

2
.7

O
p
s
. 

R
o
o
m

 (
u
p
d
a
te

d
 v

a
lu

e
) 

(m
a
n
-h

o
u
rs

)
7

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.0
0

0
.0

0
0

.0
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
6
.0

0
0
.8

7
6
.0

0
0
.6

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.4

7
0
.5

9
4
.1

4

3
.1

.1
M

in
im

u
m

 m
a

n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 f
u
n
c
ti
o
n
in

g
1
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.0
0

0
.0

0
0

.0
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0

3
.2

.1
N

u
m

b
e
r 

o
f 
m

a
n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 1

0
0
%

3
2
.0

0
0
.0

1
2
.0

0
0
.0

2
4

7
.5

0
1
.2

0
1

8
.5

0
1

.0
1

2
.5

0
0
.2

2
3
4
.0

0
4
.5

5
1
8
.0

0
3
.0

1
2
0
.5

0
3
.4

7
0
.0

0
0
.0

0
1
6
.0

0
1
.6

2
4
7
.0

0
2
.7

6
1
6
.0

0
0
.4

5
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1

8
.3

1
0
.4

4
1
.3

1

3
.3

.1
A

c
c
e
s
s
 m

e
a
s

u
re

 f
ro

m
 n

a
va

l 
s
to

re
s

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
8

.0
0

0
.4

4
0

.8
3

0
.0

7
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.5

1
0
.1

9
0
.1

9

3
.4

.1
A

c
c
e
s
s
 m

e
a
s

u
re

 f
ro

m
 a

ft
 s

p
a
re

 g
e
a
r 

s
to

re
s

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.0
0

0
.0

0
0

.0
0

0
.0

0
0
.4

0
0
.0

5
3
.6

0
0
.6

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
8
.0

0
0
.8

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.4

7
0
.6

0
1
.7

9

3
.5

.1
A

c
c
e
s
s
 m

e
a
s

u
re

 f
ro

m
 a

ft
 w

o
rk

s
h
o
p
s

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.0
0

0
.0

0
0

.0
0

0
.0

0
0
.4

0
0
.0

5
3
.6

0
0
.6

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
8
.0

0
0
.8

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.4

7
0
.6

0
1
.1

9

3
.6

.1
A

c
c
e
s
s
 m

e
a
s

u
re

 f
ro

m
 f
w

d
 s

p
a
re

 g
e
a

r 
s
to

re
s

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
8

.0
0

0
.4

4
0

.8
3

0
.0

7
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.4

0
0
.5

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.0

9
0
.2

6
0
.7

8

3
.7

.1
A

c
c
e
s
s
 m

e
a
s

u
re

 f
ro

m
 f
w

d
 w

o
rk

s
h
o
p

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
8

.0
0

0
.4

4
0

.8
3

0
.0

7
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.4

0
0
.5

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.0

9
0
.2

6
0
.5

2

3
.8

.1
E

q
u
ip

m
e
n
t 

in
 d

a
m

a
g
e
d
 s

e
c
ti
o
n
 m

e
a

s
u
re

8
0
.6

7
0
.0

0
0
.0

0
0
.0

0
1

7
.4

0
0
.4

4
8

.8
3

0
.4

8
0

.0
0

0
.0

0
6
.4

0
0
.8

6
3
.6

0
0
.6

0
4
.5

7
0
.7

7
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
8
.7

0
1
.1

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.2

5
0
.7

7
6
.1

2

3
.1

.2
M

in
im

u
m

 m
a

n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 f
u
n
c
ti
o
n
in

g
1
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.0
0

0
.0

0
0

.0
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
6
.0

0
1
.0

1
5
.0

0
0
.7

2
0
.0

0
0
.0

0
1
3
.0

0
0
.7

6
1
3
.0

0
0
.3

6
1
.0

0
0
.0

1
0
.0

0
0
.0

0
2
.8

8
1
.0

5
1
0
.5

2

3
.2

.2
N

u
m

b
e
r 

o
f 
m

a
n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 1

0
0
%

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1

7
.0

0
0
.4

3
0

.0
0

0
.0

0
0

.0
0

0
.0

0
3
5
.0

0
4
.6

9
1
9
.0

0
3
.1

8
2
8
.5

0
4
.8

2
1
2
.0

0
1
.7

3
6
.0

0
0
.6

1
2
9
.0

0
1
.7

0
1
3
.0

0
0
.3

6
1
.0

0
0
.0

1
0
.0

0
0
.0

0
1

7
.5

3
0
.4

3
1
.2

9

3
.3

.2
A

c
c
e
s
s
 m

e
a
s

u
re

 f
ro

m
 n

a
va

l 
s
to

re
s

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.0
0

0
.0

0
0

.0
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.4

0
0
.5

8
1
.0

0
0
.1

4
0
.0

0
0
.0

0
1
3
.0

0
0
.7

6
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.4

8
0
.3

2
0
.3

2

3
.4

.2
A

c
c
e
s
s
 m

e
a
s

u
re

 f
ro

m
 a

ft
 s

p
a
re

 g
e
a
r 

s
to

re
s

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.0
0

0
.0

0
0

.0
0

0
.0

0
0
.9

0
0
.1

2
4
.1

0
0
.6

9
4
.0

0
0
.6

8
4
.0

0
0
.5

8
0
.0

0
0
.0

0
1
3
.0

0
0
.7

6
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.8

2
0
.6

7
2
.0

0

3
.5

.2
A

c
c
e
s
s
 m

e
a
s

u
re

 f
ro

m
 a

ft
 w

o
rk

s
h
o
p
s

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.0
0

0
.0

0
0

.0
0

0
.0

0
0
.9

0
0
.1

2
4
.1

0
0
.6

9
4
.0

0
0
.6

8
4
.0

0
0
.5

8
0
.0

0
0
.0

0
1
3
.0

0
0
.7

6
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.8

2
0
.6

7
1
.3

3

3
.6

.2
A

c
c
e
s
s
 m

e
a
s

u
re

 f
ro

m
 f
w

d
 s

p
a
re

 g
e
a

r 
s
to

re
s

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.0
0

0
.0

0
0

.0
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.4

0
0
.5

8
1
.0

0
0
.1

4
0
.0

0
0
.0

0
1
3
.0

0
0
.7

6
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.4

8
0
.4

6
1
.3

8

3
.7

.2
A

c
c
e
s
s
 m

e
a
s

u
re

 f
ro

m
 f
w

d
 w

o
rk

s
h
o
p

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.0
0

0
.0

0
0

.0
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.4

0
0
.5

8
1
.0

0
0
.1

4
3
.0

0
0
.3

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.0

2
0
.3

2
0
.6

4

3
.8

.2
E

q
u
ip

m
e
n
t 

in
 d

a
m

a
g
e
d
 s

e
c
ti
o
n
 m

e
a

s
u
re

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.4

0
0
.0

9
0

.0
0

0
.0

0
0

.0
0

0
.0

0
6
.4

0
0
.8

6
3
.6

0
0
.6

0
7
.1

5
1
.2

1
3
.0

0
0
.4

3
0
.0

0
0
.0

0
3
.2

0
0
.1

9
1
3
.0

0
0
.3

6
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.7

4
0
.6

9
5
.5

5

3
.1

.3
M

in
im

u
m

 m
a

n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 f
u
n
c
ti
o
n
in

g
1
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.0
0

0
.0

0
0

.0
0

0
.0

0
4
.0

0
0
.5

4
5
.0

0
0
.8

4
5
.0

0
0
.8

5
6
.0

0
0
.8

7
6
.0

0
0
.6

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.6

9
0
.8

9
8
.9

2

3
.2

.3
N

u
m

b
e
r 

o
f 
m

a
n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 1

0
0
%

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2

0
.0

0
0
.5

1
3

.0
0

0
.1

6
4

.0
0

0
.3

6
4
8
.0

0
6
.4

3
3
1
.0

0
5
.1

8
3
5
.0

0
5
.9

2
1
0
.0

0
1
.4

4
6
.0

0
0
.6

1
1
7
.0

0
1
.0

0
1
.0

0
0
.0

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2

1
.6

3
0
.4

9
1
.4

8

3
.3

.3
A

c
c
e
s
s
 m

e
a
s

u
re

 f
ro

m
 n

a
va

l 
s
to

re
s

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.0
0

0
.0

0
0

.0
0

0
.0

0
0
.0

0
0
.0

0
0
.5

0
0
.0

8
7
.7

3
1
.3

1
0
.6

7
0
.1

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.4

9
0
.3

4
0
.3

4

3
.4

.3
A

c
c
e
s
s
 m

e
a
s

u
re

 f
ro

m
 a

ft
 s

p
a
re

 g
e
a
r 

s
to

re
s

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.5
0

0
.0

3
0

.6
7

0
.0

6
4
.7

3
0
.6

3
3
.7

7
0
.6

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.3

5
0
.3

8
1
.1

4

3
.5

.3
A

c
c
e
s
s
 m

e
a
s

u
re

 f
ro

m
 a

ft
 w

o
rk

s
h
o
p
s

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.5
0

0
.0

3
0

.6
7

0
.0

6
4
.7

3
0
.6

3
3
.7

7
0
.6

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.3

5
0
.3

8
0
.7

6

3
.6

.3
A

c
c
e
s
s
 m

e
a
s

u
re

 f
ro

m
 f
w

d
 s

p
a
re

 g
e
a

r 
s
to

re
s

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.0
0

0
.0

0
0

.0
0

0
.0

0
0
.0

0
0
.0

0
0
.5

0
0
.0

8
7
.7

3
1
.3

1
0
.6

7
0
.1

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.4

9
0
.5

2
1
.5

7

3
.7

.3
A

c
c
e
s
s
 m

e
a
s

u
re

 f
ro

m
 f
w

d
 w

o
rk

s
h
o
p

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.0
0

0
.0

0
0

.0
0

0
.0

0
0
.0

0
0
.0

0
0
.5

0
0
.0

8
7
.7

3
1
.3

1
0
.6

7
0
.1

0
6
.0

0
0
.6

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
.1

0
0
.7

4
1
.4

7

3
.8

.3
E

q
u
ip

m
e
n
t 

in
 d

a
m

a
g
e
d
 s

e
c
ti
o
n
 m

e
a

s
u
re

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.4

0
0
.0

9
0

.0
0

0
.0

0
0

.0
0

0
.0

0
7
.0

7
0
.9

5
8
.6

0
1
.4

4
4
.7

3
0
.8

0
6
.0

0
0
.8

7
0
.0

0
0
.0

0
3
.2

0
0
.1

9
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
4
.3

2
0
.7

1
5
.7

2

3
.1

.4
M

in
im

u
m

 m
a

n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 f
u
n
c
ti
o
n
in

g
1
0

5
.0

0
0
.0

2
5
.0

0
0
.0

5
5
.0

0
0
.1

3
0

.0
0

0
.0

0
0

.0
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.0

0
0
.1

7
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.3

6
0
.1

2
1
.1

7

3
.2

.4
N

u
m

b
e
r 

o
f 
m

a
n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 1

0
0
%

3
9
.0

0
0
.0

3
9
.0

0
0
.0

8
2

9
.0

0
0
.7

3
3

.0
0

0
.1

6
4

.0
0

0
.3

6
4
0
.0

0
5
.3

6
2
2
.0

0
3
.6

8
3
0
.5

0
5
.1

6
1
0
.0

0
1
.4

4
6
.0

0
0
.6

1
1
7
.0

0
1
.0

0
1
.0

0
0
.0

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1

8
.6

4
0
.4

1
1
.2

2

3
.3

.4
A

c
c
e
s
s
 m

e
a
s

u
re

 f
ro

m
 n

a
va

l 
s
to

re
s

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
5
.0

0
0
.1

3
0

.0
0

0
.0

0
0

.0
0

0
.0

0
0
.0

0
0
.0

0
0
.5

0
0
.0

8
3
.7

3
0
.6

3
0
.6

7
0
.1

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.9

4
0
.2

5
0
.2

5

3
.4

.4
A

c
c
e
s
s
 m

e
a
s

u
re

 f
ro

m
 a

ft
 s

p
a
re

 g
e
a
r 

s
to

re
s

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.5
0

0
.0

3
0

.6
7

0
.0

6
0
.4

3
0
.0

6
3
.7

7
0
.6

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.7

7
0
.2

3
0
.7

0

3
.5

.4
A

c
c
e
s
s
 m

e
a
s

u
re

 f
ro

m
 a

ft
 w

o
rk

s
h
o
p
s

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.5
0

0
.0

3
0

.6
7

0
.0

6
0
.4

3
0
.0

6
3
.7

7
0
.6

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.7

7
0
.2

3
0
.4

6

3
.6

.4
A

c
c
e
s
s
 m

e
a
s

u
re

 f
ro

m
 f
w

d
 s

p
a
re

 g
e
a

r 
s
to

re
s

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
5
.0

0
0
.1

3
0

.0
0

0
.0

0
0

.0
0

0
.0

0
0
.0

0
0
.0

0
0
.5

0
0
.0

8
3
.7

3
0
.6

3
0
.6

7
0
.1

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.9

4
0
.2

7
0
.8

2

3
.7

.4
A

c
c
e
s
s
 m

e
a
s

u
re

 f
ro

m
 f
w

d
 w

o
rk

s
h
o
p

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
5
.0

0
0
.1

3
0

.0
0

0
.0

0
0

.0
0

0
.0

0
0
.0

0
0
.0

0
0
.5

0
0
.0

8
3
.7

3
0
.6

3
0
.6

7
0
.1

0
3
.0

0
0
.3

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.2

4
0
.3

6
0
.7

2

3
.8

.4
E

q
u
ip

m
e
n
t 

in
 d

a
m

a
g
e
d
 s

e
c
ti
o
n
 m

e
a

s
u
re

8
0
.0

0
0
.0

0
5
.0

0
0
.0

5
3
.4

0
0
.0

9
0

.0
0

0
.0

0
0

.0
0

0
.0

0
7
.0

7
0
.9

5
3
.6

0
0
.6

0
6
.4

8
1
.1

0
3
.0

0
0
.4

3
0
.0

0
0
.0

0
3
.2

0
0
.1

9
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.4

0
0
.6

3
5
.0

1

3
.1

.5
M

in
im

u
m

 m
a

n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 f
u
n
c
ti
o
n
in

g
1
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.0
0

0
.0

0
0

.0
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.0

0
0
.1

7
1
.0

0
0
.1

4
5
.0

0
0
.5

1
5
.0

0
0
.2

9
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.1

1
0
.5

1
5
.1

0

3
.2

.5
N

u
m

b
e
r 

o
f 
m

a
n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 1

0
0
%

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2

0
.0

0
0
.5

1
3

.0
0

0
.1

6
4

.0
0

0
.3

6
4
0
.0

0
5
.3

6
2
2
.0

0
3
.6

8
3
0
.5

0
5
.1

6
1
1
.0

0
1
.5

9
1
5
.0

0
1
.5

2
2
6
.0

0
1
.5

3
1
.0

0
0
.0

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1

9
.8

8
0
.4

5
1
.3

6

3
.3

.5
A

c
c
e
s
s
 m

e
a
s

u
re

 f
ro

m
 n

a
va

l 
s
to

re
s

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.0
0

0
.0

0
0

.0
0

0
.0

0
0
.0

0
0
.0

0
0
.5

0
0
.0

8
3
.7

3
0
.6

3
0
.6

7
0
.1

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.8

1
0
.1

9
0
.1

9

3
.4

.5
A

c
c
e
s
s
 m

e
a
s

u
re

 f
ro

m
 a

ft
 s

p
a
re

 g
e
a
r 

s
to

re
s

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.5
0

0
.0

3
0

.6
7

0
.0

6
0
.7

3
0
.1

0
3
.7

7
0
.6

3
0
.0

0
0
.0

0
1
.0

0
0
.1

4
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.9

6
0
.2

4
0
.7

2

3
.5

.5
A

c
c
e
s
s
 m

e
a
s

u
re

 f
ro

m
 a

ft
 w

o
rk

s
h
o
p
s

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.5
0

0
.0

3
0

.6
7

0
.0

6
0
.7

3
0
.1

0
3
.7

7
0
.6

3
0
.0

0
0
.0

0
1
.0

0
0
.1

4
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.9

6
0
.2

4
0
.4

8

3
.6

.5
A

c
c
e
s
s
 m

e
a
s

u
re

 f
ro

m
 f
w

d
 s

p
a
re

 g
e
a

r 
s
to

re
s

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.0
0

0
.0

0
0

.0
0

0
.0

0
0
.0

0
0
.0

0
0
.5

0
0
.0

8
3
.7

3
0
.6

3
0
.6

7
0
.1

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.8

1
0
.2

9
0
.8

8

3
.7

.5
A

c
c
e
s
s
 m

e
a
s

u
re

 f
ro

m
 f
w

d
 w

o
rk

s
h
o
p

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.0
0

0
.0

0
0

.0
0

0
.0

0
0
.0

0
0
.0

0
0
.5

0
0
.0

8
3
.7

3
0
.6

3
0
.6

7
0
.1

0
3
.0

0
0
.3

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.1

2
0
.4

0
0
.8

1

3
.8

.5
E

q
u
ip

m
e
n
t 

in
 d

a
m

a
g
e
d
 s

e
c
ti
o
n
 m

e
a

s
u
re

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.4

0
0
.0

9
0

.0
0

0
.0

0
0

.0
0

0
.0

0
7
.0

7
0
.9

5
3
.6

0
0
.6

0
6
.4

8
1
.1

0
3
.0

0
0
.4

3
5
.0

0
0
.5

1
3
.2

0
0
.1

9
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.8

6
0
.7

4
5
.9

1

3
.1

.6
M

in
im

u
m

 m
a

n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 f
u
n
c
ti
o
n
in

g
1
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
9
.0

0
0
.2

3
9

.0
0

0
.4

9
1
6
.0

0
1
.4

2
1
6
.0

0
2
.1

4
8
.0

0
1
.3

4
9
.0

0
1
.5

2
6
.0

0
0
.8

7
1
.0

0
0
.1

0
1
.0

0
0
.0

6
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
8
.1

7
1
.6

1
1
6
.1

1

3
.2

.6
N

u
m

b
e
r 

o
f 
m

a
n
-h

o
u
rs

 f
o
r 

s
y
s
te

m
 t

o
 b

e
 1

0
0
%

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2

7
.0

0
0
.6

8
1

0
.0

0
0

.5
5

1
7
.0

0
1
.5

1
5
2
.0

0
6
.9

6
2
7
.0

0
4
.5

1
2
8
.0

0
4
.7

4
7
.0

0
1
.0

1
7
.0

0
0
.7

1
1
7
.0

0
1
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2

1
.6

7
0
.5

4
1
.6

1

3
.3

.6
A

c
c
e
s
s
 m

e
a
s

u
re

 f
ro

m
 n

a
va

l 
s
to

re
s

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.0
0

0
.0

0
7

.0
0

0
.6

2
1
5
.0

0
2
.0

1
8
.5

0
1
.4

2
1
1
.9

0
2
.0

1
0
.5

0
0
.0

7
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
6
.1

4
1
.6

1
1
.6

1

3
.4

.6
A

c
c
e
s
s
 m

e
a
s

u
re

 f
ro

m
 a

ft
 s

p
a
re

 g
e
a
r 

s
to

re
s

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
5

.5
0

0
.3

0
1

.5
0

0
.1

3
0
.4

0
0
.0

5
3
.6

0
0
.6

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.0

9
0
.2

6
0
.7

7

3
.5

.6
A

c
c
e
s
s
 m

e
a
s

u
re

 f
ro

m
 a

ft
 w

o
rk

s
h
o
p
s

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
5

.5
0

0
.3

0
1

.5
0

0
.1

3
0
.4

0
0
.0

5
3
.6

0
0
.6

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.0

9
0
.2

6
0
.5

1

3
.6

.6
A

c
c
e
s
s
 m

e
a
s

u
re

 f
ro

m
 f
w

d
 s

p
a
re

 g
e
a

r 
s
to

re
s

3
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.0
0

0
.0

0
7

.0
0

0
.6

2
1
5
.0

0
2
.0

1
8
.5

0
1
.4

2
1
1
.9

0
2
.0

1
0
.5

0
0
.0

7
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
6
.1

4
1
.4

8
4
.4

4

3
.7

.6
A

c
c
e
s
s
 m

e
a
s

u
re

 f
ro

m
 f
w

d
 w

o
rk

s
h
o
p

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0

.0
0

0
.0

0
7

.0
0

0
.6

2
1
5
.0

0
2
.0

1
8
.5

0
1
.4

2
1
1
.9

0
2
.0

1
0
.5

0
0
.0

7
3
.0

0
0
.3

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
6
.4

4
1
.5

5
3
.1

0

3
.8

.6
E

q
u
ip

m
e
n
t 

in
 d

a
m

a
g
e
d
 s

e
c
ti
o
n
 m

e
a

s
u
re

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
3
.4

0
0
.0

9
8

.0
0

0
.4

4
1
2
.0

0
1
.0

7
8
.4

0
1
.1

2
3
.6

0
0
.6

0
4
.4

0
0
.7

4
6
.0

0
0
.8

7
1
.0

0
0
.1

0
3
.2

0
0
.1

9
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
5
.2

1
0
.9

5
7
.6

0

1
7
.4

5

0
.3

2

1
0
.4

8

2
0
.3

6
0
.6

0
2

1
.2

0

G
ro

u
p

 

W
e
ig

h
ti

n
g

Recovery Support

Category 2 PMs

Fwd SAM System

Category 3 PMs

1
5
.4

4
0
.4

8

1

MOVE

3
.3

5

W
e

ig
h

te
d

G
ro

u
p

 d
e
sc

ri
p

ti
o

n
P

e
rf

o
rm

a
n

c
e
 M

e
a

su
re

FLOAT

Category 1 PMs

6
3
.7

5
0
.7

1
1
0

7
.0

8

W
T

 S
e

c
ti

o
n

S
u

m
N

o
rm

a
li

se
d

 

w
rt

 b
a

se
li

n
e

W
e
ig

h
te

d
G

ro
u

p
 

S
u

m

N
o

rm
a
li

se
d

 

w
rt

 b
a
se

li
n

e

Move System

Category 3 PMs

1
1
.9

1
0
.3

7
9

2
.2

3

1
.4

4

ASM System

Category 3 PMs

2
1
.4

0
0
.6

7
2

1
.3

4

Naval Gun System

Category 3 PMs

2
3
.0

5
0
.7

2
2

Aft SAM System

Category 3 PMs

1
0
.3

6

T
o

ta
l 

S
c
o

re

Helicopter System

Category 3 PMs

3
5
.7

6
1
.1

2
2

FIGHT

0
.3

2



229 
 

The above total scores for each ship design were normalised with respect to the 

baseline total score (hence Frigate Variant 1 has a recoverability performance of 1) in 

order to obtain the total recoverability performance results shown in Figure 6.39. The 

higher the score, the worse the performance and, therefore, in effect the difficulty of 

recoverability in a given design is shown by the relative magnitude. 

 

 

Figure 6.39: Normalised Plot of Difficulty of Recoverability for the Three Frigate 

Variants 

 

The main observation from Figure 6.39 is that the two monohulls portray very 

similar recoverability characteristics. Conversely, the trimaran frigate design appears to 

be approximately 40% more recoverable than its two counterparts. This is further 

discussed in Section 7.3.1. 

 

6.5.2 Corvette, Baseline Frigate and Destroyer 

 

 The identical procedure was followed with the intention of investigating the 

recoverability performance of the Corvette and Destroyer designs. The recoverability 

performance matrices for the two additional combatant designs are presented in Table 

6.15 and Table 6.16. As before, all normalisation have been conducted with respect to 

Frigate Variant 1, Table 6.12. 
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In Table 6.15 and Table 6.16 the weighting values of PMs 1.8-1.10 (i.e. the 

NBCD store related PMs) are absent. This is due to the different number of NBCD 

stores each combatant contained. As summarised in Section 5.2 the baseline frigate 

included four NBCD stores (Figure 5.6 and Figure 5.9), the Corvette contained two 

(Figure 5.42 and Figure 5.48) and the Destroyer five (Figure 5.43 and Figure 5.49). It 

was decided that the total weighting of all NBCD stores suggested by 1st Lt. Fonseca 

(Table 4.3), i.e. 4, would be divided between the quantity of NBCD stores. Table 6.17 

shows the weighting scheme adopted for the NBCD stores for the Corvette, baseline 

frigate (same as before) and Destroyer design studies. 

 

Table 6.17: NBCD Store Weighting Scheme for the Corvette, Baseline Frigate and 

Destroyer 

 
PM 

Weighting 

Corvette Frigate Variant 1 Destroyer 

1.8 NBCD stores - aft FRP section base 2 1 0.8 

1.9 NBCD stores - fwd FRP section base 2 1 0.8 

1.10 Remaining NBCD stores 0 2 2.4 

Total 4 4 4 

 

After normalising the total recoverability scores of the Corvette and Destroyer 

designs with respect to the baseline total score, the results shown in Figure 6.40 were 

obtained. 

 

 

Figure 6.40: Normalised Plot of Difficulty of Recoverability for the Corvette, Frigate 

Variants and Destroyer 
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From Figure 6.40 it can be deduced that recoverability performance is more 

sensitive to hullform configuration than to ship size. In addition, one could assume that 

recoverability performance worsens with decreasing ship size, which could be expected. 

However, the fact that the Destroyer design performs marginally worse than the 

baseline frigate suggests that the above statement requires further exploration, which is 

addressed in Section 7.3.2. 

 

6.5.3 AOR Variants 

 

 Lastly, the procedure previously described was reproduced in order to 

investigate the recoverability performance of the two replenishment ship designs. The 

corresponding recoverability performance matrices are shown in Table 6.18 and Table 

6.19 and are identical to Table 4.8. A different weighting scheme to the above 

combatant design studies (detailed in Table 4.3, Table 4.4 and Table 4.5) was applied. 

However, this was necessary for consistency reasons since the weighting scheme 

proposed for the AORs major systems (Table 4.9) was given by a different officer, Lt. 

Cdr. (rtd.) Day. It was, therefore, deemed necessary that the PM weighting scheme 

should also be proposed by the same officer. Note that PM and group normalisation 

have been performed with respect to the corresponding value of the worst performing 

design variant. As with susceptibility and vulnerability assessment, in the case of the 

AOR design studies, normalisations were performed with respect to the worst 

performing design, rather than a baseline, the reasoning behind which is explained in 

Section 7.2.4. 
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By inspecting the two PM matrices above it became evident that certain 

modifications were required in order to apply the overall recoverability method to the 

AOR design studies. Firstly, the presence of two naval stores in AOR Variant 1 (Figure 

5.69) necessitated the alteration of two PMs and the creation of two new PMs; namely 

PMs 2.3.1 and 2.3.2 (aft naval stores and fwd naval stores respectively) and PMs 3.3.1 

and 3.3.2 (access measure from aft naval stores and access measure from fwd naval 

stores respectively). The weightings of the previous PMs 2.3 and 3.3 (both of which 

were equal to 2, see Table 4.4 and Table 4.5) were equally split between the new PMs, 

with all four PMs having weightings of unity each. 

Secondly, AOR Variant 2 included a single workshop, spare gear store and 

naval store (Figure 5.70), in contrast to the duplicated above compartments in the first 

variant. It was assumed that, given the identical requirements of both ship designs, the 

total workshops and stores in both variants would contain identical systems, equipment 

and material (and, therefore, the total weight and volume of these compartments was 

equal in both design studies). It was therefore, decided that for AOR Variant 2, PMs 

2.3.1 and 2.3.2, PMs 3.3.1 and 3.3.2 (mentioned above) as well as PM pairs 2.2 and 2.1, 

2.4 and 2.5, 3.4 and 3.6 and finally 3.5 and3.7 (i.e. all workshops, spare gear stores and 

naval stores related PMs, see Table 4.4 and Table 4.5) would be given the same value 

(which would be equal to the PM values for the single workshop, spare gear store and 

naval store respectively, calculated as described in Section 4.3.2 and 4.3.3). After 

normalising the total scores of the AOR variant (Table 6.18 and Table 6.19) with 

respect to the worst performing design, the total recoverability performance results 

shown in Figure 6.41 were obtained. 

 

 

Figure 6.41: Normalised Plot of Difficulty of Recoverability for the Two AOR Variants 
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From above it is evident that both AOR design variants present near identical 

recoverability characteristics despite the different configurations adopted. 

 

6.6 Recoverability Assessment Sensitivity Studies 

 

 Sensitivity studies were also carried out in the recoverability part of the 

survivability assessment method. Three sensitivity studies were conducted:- 

- The application of different weighting schemes was examined; 

- The effect on recoverability, given a different lengthwise probability hit 

distribution on the frigate variants was investigated; 

- The effect of decoupling the proposed recoverability assessment approach from 

SURVIVE Lite was explored. 

 

6.6.1 Weighting Schemes 

 

The initial investigation, as in the vulnerability assessment approach (Section 

6.4.1), was on the sensitivity of the recoverability assessment method to the weighting 

scheme applied. The same RN officers listed in Table 6.11 were interviewed and asked 

to fill in a form (Appendix 12) suggesting alternative weighting schemes (Mant 2012; 

Hood 2012; Sutcliffe 2012; Boughton 2012; Koheeallee 2012; O’Brien 2012; 

Kadinopoulos 2012). Consistently, the naval officers were asked to weigh each PM 

between 0-10, ten being the most important and they were not exposed to previous 

weighting schemes so as to not affect their responses. Their proposed weighting 

schemes, including the ones suggested by 1st Lt. Fonseca and Lt. Cdr. (rtd.) Day which 

have already been reported (Table 4.3, Table 4.4 and Table 4.5), are presented in Table 

6.20, Table 6.21 and Table 6.22. Unlike the system weighting schemes in the 

vulnerability assessment part of the method (Table 6.11) the PM weighting schemes are 

scenario independent. This sensitivity test was only carried out to the three frigate 

design variants. 
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It is worth mentioning some of the remarks made by the above officers on the 

Category 1 (immediate DCFF) PMs whilst filling in the weighting scheme form. 1st Lt. 

Fonseca (2011) commented that DC equipment is usually distributed through the ship 

(mainly on the DC deck, in proximity to the FRPPs), whereas NBCD stores merely 

contain maintenance material for the DC equipment. Hence the high weighting 

proposed by this officer for PM 1.16 and PM 1.17 and the low weightings given to 

NBCD store related PMs (PMs 1.8-1.10). Besides, he recommended the addition of 

Category 1 PMs describing the status of fixed firefighting systems, detection equipment, 

communications and the sickbay (for personnel recovery) after successful attack. Lt. 

Cdr. (rtd.) Mant (2012) suggested the addition of a Category 1 PM reflecting on the 

condition of smoke curtains (to prevent spread of smoke) after attack. Lt. Cdr. Hood 

(2012) recommended Category 1 PMs related to training as well as situational 

awareness and command and control (although it can be argued that command and 

control is incorporated in PMs 1.13-1.15). Moreover he gave a very low weighting to 

PM 1.15, Operations Room, since DCFF is associated with an automatic response, 

therefore, theoretically does not require substantial input from the CO. Lt. Cdr. 

Boughton (2012) mentioned that the addition of a Weapon Section Base Category 1 PM 

would be beneficial, therefore, linking the external and internal battles. He also 

proposed that the duplicated forward and aft FRPPs, as well as their corresponding 

NBCD stores, should have different weightings given that they provide the same 

function. However, since the decision of which of the two section bases and stores 

would be given higher priority depends on the CO and the operational circumstances, 

the two weightings given by that officer were averaged; thus the decimal fraction form 

of the relevant weightings. This would have the same effect as interchanging the higher 

priority FRPP and corresponding NBCD store, obtaining the recoverability results for 

both cases and averaging. Finally, Lt. Koheeallee (2012) suggested a Category 1 PM on 

the state of internal communications after the hit. 
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Regarding the Category 2 (major system recovery) PMs, there was some 

uncertainty as to what the naval and spare gear stores contained. According to 1st Lt 

Fonseca (2011) and Lt. Cdr. Hood (2012) the naval stores contained raw material, 

whereas the spare gear stores included spare parts. For this reason, given that most 

equipment and systems in modern frigates are electronic, raw material is of decreased 

worth, therefore, 1st Lt. Fonseca proposed a diminutive weighting for PM 2.3, in 

contrast to the relatively high weightings of PMs 2.4-2.5. However, Lt. Cdr. Hood did 

not agree with the above argument, therefore, suggesting almost equal weightings for 

both naval and spare gear store related PMs. 1st Lt. Fonseca further justified the large 

weightings for PMs 2.4-2.5 since there is no spares duplication. Moreover, he reasoned 

that most repair activities are performed on site; therefore, rationalising the relatively 

small weighting of the workshop related PMs. Lt. Cdr. Hood also proposed the addition 

of Category 2 PMs reflecting on then availability of people and their skills, necessary 

for system repair and recovery. Once again, Lt. Cdr. Boughton (2012) proposed the 

addition of a Weapon Section Base Category 2 PM. Furthermore, Lt. Koheeallee (2012) 

suggested that an updated bridge Category 2 PM is beneficial. 
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Regarding the Category 3 (individual major system recovery) PMs, form Table 

6.22 it is clear that the officers ranked the importance of access from the workshops and 

stores in a corresponding order to their importance for major system recovery (Table 

6.21). In addition, they generally agreed that access to the damaged WT section is more 

important than access of damaged equipment and compartments from the stores and 

workshops and that to have a system functioning due to redundant equipment (PM 3.1) 

is of greater significant than to have all, including redundant, equipment of a system 

functioning (PM 3.2). The PM weighting schemes were plotted in a line graph (Figure 

6.42) in order to compare the different weighting scheme philosophies of the 

interviewed officers. 

 

 

Category 1 

 

Category 2 

 

Category 3 

 

Figure 6.42: Performance Measures Weighting Scheme Philosophies for the Sensitivity 

Tests 

 

Some very broad patterns may be distinguished, although, the fact that each 

officer reflects on his own experiences and knowledge and is specialised in a different 

area, has led to significant variations in certain PMs. It is observed that the PM 

weighting schemes are more diverse than the major system weighting schemes proposed 

by the same officers, presented in Figure 6.30. This could be due to the fact that the 
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major system weighting schemes are scenario dependant and, therefore, probably rely to 

a significant extent on the response that the officers have been trained to execute in such 

situations (which should be similar, given that most of them served in the same navy 

and underwent similar training). The PM weighting schemes also rely on procedures to 

which the officers have been trained, however, the internal threat is much more visible 

and direct than the external threat, therefore, possibly the interviewed staff input 

elements of their own response to the internal battle, judged on the picture of it that they 

have created. 

 The weighting schemes in Table 6.20, Table 6.21 and Table 6.22 were 

substituted in the column headed ‘Weighting’ in Table 6.12, Table 6.13 and Table 6.14. 

In addition, for consistency reasons, the values in the ‘Group Weighting’ column were 

substituted by the major system weighting schemes proposed by the corresponding 

officers, Table 6.11, therefore, obtaining recoverability performance scores for the three 

scenarios summarised in Table 6.10. However, Table 6.11 includes weightings for the 

move and Fight groups, but not for the float and recovery support groups (refer to Table 

4.7). Therefore, the naval officers were also asked to propose weightings for the two 

remaining groups, which are presented in Table 6.23. 
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All officers gave the maximum weighting, 10, to the float group, for all 

scenarios. Moreover, Cdr. Sutcliffe (2012) and Lt. Cdr. O’Brien (2012) proposed a 

smaller recovery support group weighting for Scenario 2 and for Scenarios 2 and 3 

respectively. This probably reflects on the littoral location of the threats (Table 6.10), 

providing the ships with the opportunity to withdraw and proceed towards onshore 

repair bases rather than carrying out the repair and recovery activities on board during 

the scenario’s evolutions. The threat in Scenario 2 is shore based, therefore, cannot 

pursue the ship if it withdraws. However, Lt. Cdr. Kadinopoulos (2012) proposed a 

lower weighting for the recovery support group in the first (blue water) scenario, 

possibly implying that repair and recovery is increasingly difficult far from base, 

therefore, the crew should focus efforts in other mission areas. 

 Once the weighting scheme corresponding to each officer and scenario was 

substituted in the PM matrices, the data was processed in an identical manner as 

described in Section 4.3 and 6.5. The results illustrated in Figure 6.43, Figure 6.44 and 

Figure 6.45 were produced for the three scenarios respectively. 

 

 

Figure 6.43: Normalised Plot of Difficulty of Recoverability for the Three Frigate 

Variants (Sensitivity Test, Scenario 1) 
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Figure 6.44: Normalised Plot of Difficulty of Recoverability for the Three Frigate 

Variants (Sensitivity Test, Scenario 2) 

 

 

Figure 6.45: Normalised Plot of Difficulty of Recoverability for the Three Frigate 

Variants (Sensitivity Test, Scenario 3) 

 

As in the study of the sensitivity of the vulnerability weighting scheme, the main 

observation from the three investigations above is that recoverability is dependent to a 

significantly greater extent on the characteristics of the ship design itself, rather than the 

scenario or the weighting scheme applied. Furthermore, despite the scenario 

independence of the weighting scheme provided by 1st Lt. Fonseca, the results outputted 

are consistent with those that applied the RN officers’ proposed weighting schemes. 
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6.6.2 Lengthwise Probability Hit Distribution 

 

 Similarly to the vulnerability assessment approach sensitivity studies (Section 

6.4.2), the next investigation regarding the recoverability approach concerned the 

examination of the sensitivity of the results with respect to the lengthwise probability hit 

distribution. This was done by using the linear lengthwise probability hit distribution, 

illustrated in Figure 6.23, in place of the normal distribution (Figure 6.4). This data was 

therefore substituted in Table 6.12, Table 6.13 and Table 6.14 and the procedure 

summarised in Sections 4.3 and 6.5 was followed. That is, raw PM data, given an ASM 

hit at each WT section (averaged port and starboard hit), was multiplied by the 

probability that the corresponding WT section is hit and after a series of normalisations, 

weightings and summations, the results illustrated in Figure 6.46 were obtained. This 

sensitivity study was also applied only to the frigate design variants. 

 

 

Figure 6.46: Normalised Plot of Difficulty of Recoverability for the Three Frigate 

Variants (Varying Lengthwise Hit Distribution) 

 

From above it is evident that the lengthwise probability hit distribution does not 

significantly affect the recoverability performance of the frigate designs. The only point 

worth mentioning is that, with a linear distribution, the second variant improves its 
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performance by approximately 7%, although the trimaran variant still presents the most 

promising results by a significant margin (approximately 70% better). 

 

6.6.3 SURVIVE Lite Decoupling 

 

 As detailed in Section 4.3, the SURVIVE Lite ship design models were used in 

order to indicate if a specified item (corresponding to a PM) had been affected by a 

specific hit; if it had, the PM would be given a value based on the assumed number of 

man-hours to repair that specific equipment, otherwise it would be equal to zero. One 

could argue that through this procedure vulnerability is incorporated in the 

recoverability assessment method (and, therefore, double-counted) rather than 

measuring recoverability independently. (Although, as indicated in Section 4.3, no 

vulnerability percentages were used in the recoverability assessment method since, in 

order to carry out recoverability assessment, vulnerability (and susceptibility) is 

required to be equal to unity.) For this reason, it was decided to repeat the recoverability 

assessment procedure for the three frigate design variants, this time assuming that an 

ASM hit at any WT section of the ship would affect all equipment and compartments 

modelled (with the exception of underwater equipment, i.e. propellers, rudders and hull 

mounted sonars, which were assumed to be unaffected by the abovewater threat 

studied). This then decoupled the recoverability method from the SURVIVE Lite 

vulnerability assessment software. Other than the above alteration, an identical 

procedure to that described in Sections 4.3 and 6.5 was followed in order to produce the 

PM matrices shown in Table 6.24, Table 6.25 and Table 6.26. As before, the weightings 

(in red) are the ones proposed by 1st Lt. Fonseca for combatant type ships. The 

numerals in black are the raw PM data given an ASM hit at each WT section (assuming 

all items are affected), while the numerals in blue give the same raw PM data multiplied 

by the probability that the corresponding WT section is hit. All normalisation have been 

conducted with respect to Frigate Variant 1. 
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After the total score for each ship design was normalised with respect to the 

baseline total score, the total recoverability performance results shown in Figure 6.47 

were obtained. 

  

 

Figure 6.47: Normalised Plot of Difficulty of Recoverability for the Three Frigate 

Variants (Assuming All Items Affected By Every Hit) 

 

Interestingly, this modification caused a 100% reduction in the recoverability 

performance of the trimaran frigate design, whereas the first two variants are very 

similar. Therefore, Frigate Variant 3 is now the worst performing design by 

approximately 20%. Given that all three variants have identical systems and near 

identical system architectures (Appendix 7), the main cause for the trimaran resulting in 

worse results than the two monohulls is associated with the location of its stores and 

workshops in relation to the move system. However, the procedure followed above 

raises some scepticism linked to the assumption that a given threat would affect (and, 

therefore, recovery would be dependent on) the same items in two different designs. 

 

6.7 Total Survivability Assessment Results 

 

 As mentioned in Section 4.4, it was decided to combine the results of the three 

survivability constituents in the form of star plots. The total survivability star plot for 

the three frigate design studies is illustrated in Figure 6.48. The data presented below 

are identical to the survivability constituent results presented in Figure 6.3, Figure 6.25 

and Figure 6.39 and are, therefore, normalised with respect to the baseline frigate. Each 
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star (triangle in this case) represents a specific ship design and the smaller the area of 

the triangle, the more survivable against an ASM threat that ship design is. 

 

 

Figure 6.48: Normalised Star Plot of Survivability for the Three Frigate Design 

Variants 

 

Similarly, Figure 6.49 is the total survivability star plot of the Corvette and 

Destroyer design studies, including Frigate Variant 1 against which the results (Figure 

6.7, Figure 6.27 and Figure 6.40) were normalised.  

 

 

Figure 6.49: Normalised Star Plot of Survivability for the Corvette, Baseline Frigate 

and Destroyer 

 

Finally, the total survivability star plot of the two auxiliary ship designs is 

illustrated in Figure 6.50. As already pointed out, the survivability results of these two 

design studies (Figure 6.11, Figure 6.29 and Figure 6.41) have been normalised with 

respect to the worst performing, rather than a baseline design. 
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Figure 6.50: Normalised Star Plot of Survivability for the  Two AOR Variants 

 

 Moreover, it was decided to investigate the applicability of PM matrices for total 

survivability assessment. The procedure followed, detailed in Section 4.4, is similar to 

that for the recoverability assessment method, although total ship susceptibility and 

equipment vulnerability data were combined. This procedure was only carried out for 

the three frigate variant designs, and the results are illustrated in Figure 6.51. In Figure 

6.51, the higher the score, the worse the performance, consequently, the difficulty of a 

given design to survive a given threat is measured; furthermore, all results have been 

normalised with respect to the baseline frigate as was the norm. 

 

 

Figure 6.51: Normalised Plot of Difficulty of Survivability for the Three Frigate Design 

Variants 
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Although the results revealed above are in agreement with the frigate designs’ 

total survivability star plot in Figure 6.48, the appropriateness of such a procedure to 

estimate total ship survivability is questionable. Not only because of the multiplications 

involved between the survivability constituents connoting statistical independence (refer 

to Sections 3.3.5 and 4.4) which is not the case in the star plots, but also the PM 

matrices were specifically designed to examine recoverability, rather than total 

survivability. 

 

6.8 Ship Costing Results 

 

Cost analysis for the three frigate variants was undertaken in order to give an 

indication as to how survivability gains could be measured against ship cost. A brief 

discussion on ship costing is given in Section 2.2. Since it was beyond the scope of this 

research to create a new or modify a current naval ship costing method, it was decided 

to follow the procedure and use the parametric relationships and costing data given by 

UCL (2010a; 2010b). 

 

6.8.1 Unit Procurement Cost 

 

The parametric naval ship UPC relationships used are specific to the 4th ship of a 

class of twelve, designed to RN standards in 2008 prices and are in accordance with the 

UCL weight and space classification system (UCL 2010b). It should be noted that all 

cost analyses were carried out using 2008 prices (and, therefore, the results presented 

are in 2008 prices). The equation used in order to calculate the cost of a weight group, 

CgrpA, (with the exception of specific items, i.e. engines, electric motors and payload 

items) was (UCL 2010b): 

 

 CgrpA = 1.15 × MCgrpA × WgrpA + HR × LRgrpA × WgrpA (7) 

 

1.15 is the purchasing overhead factor used, MCgrpA is the material and equipment cost 

in £/te, WgrpA is the mass of the weight group, HR is the hourly labour rate in £/hr 

(assumed as £0.05016k/hr for UK shipyards) and LRgrpA is the required labour in man-

hours/te for that group (UCL 2010b). Detailed cost data for all weight groups and 

specific items are presented in the Appendices A13.1 for all three frigate designs. It 

should be noted that where cost data for specific items was inaccessible, data for similar 
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equipment was used. In addition, if the data obtained was not in 2008 levels, it was 

converted using RPI annual inflation data provided by (ONS 2012). After calculating 

the cost of each weight group, the cost margins listed in Table A57 (see Appendix 13.1) 

were applied. The UPCs of the three frigate variants were calculated as approximately 

£294M, £300M and £308M respectively (with detailed results presented in Appendix 

13.1). Figure 6.52 below illustrates the proportion of each weight group on the UPC of 

the three frigate design studies. 

 

Frigate Variant 1 

 

Frigate Variant 2 

 

Frigate Variant 3 

 
 

Figure 6.52: UPC Proportions for the Three Frigate Variants 

 

From the data and results presented above, the general observation is that UPC 

is not greatly affected (at least, to a much lesser extent than survivability performance) 

by ship configuration. 

 

6.8.2 Through Life Cost 

 

A number of TLC related costs were calculated for the three frigate designs.  

Annual fuel consumption was calculated by assuming an annual operational 

period of 200 days and the simplified operational profile illustrated in Figure A107 (see 

Appendix 13.2), similar to that used by Dirksen (1996). The total annual fuel 
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consumption for the three frigates was calculated as approximately 6,290te, 6,590te and 

6,500te respectively. MDO prices were forecasted by plotting historical data from 

(MOT 2013) (and using £ to $ exchange rates from (X-Rates 2012; BGFRS 2013)) and 

fitting an exponential trendline (see Figure A108 in Appendix 13.2). The resulting 

exponential relationship used to forecast MDO prices was: 

 

 MDO Price (Year), in £/te = 4 × 10-88 × e0.1032 × Year (8) 

 

Although the equation above contains vast uncertainties, it is believed that it is more 

than sufficient for the comparative study being undertaken. Further research on future 

fuel prices is beyond the scope of this project. Moreover, a discount rate, r, of 6% was 

assumed (Dirksen 1996), where the discount factor is defined by Dirksen (1996) as “the 

increase in value of money, above inflation, over time, i.e. if the cost of a system or 

equipment is fixed it will effectively cost less if it is paid for later than sooner due to the 

fact that the cash can be invested and earn interest in the interim”. Therefore, the present 

value, PV, of the future costs, F, (at year n after 2008, assumed year of start of 

construction) was calculated through the following relationship (Dirksen 1996; UCL 

2010b): 

 

 PV = F ÷ (1 + r)n (9) 

 

Detailed tables of forecasted fuel costs for the three frigate variants predicted using 

Equations 8 and 9 are presented in Appendix 13.2. 

 Crew costs were estimated by assuming the simplified salaries presented Table 

A61 of Appendix 13.2. Given the complement of each ship design (Table A2, Table A3 

and Table A4 in Appendix 9.1) annual crew costs for the three frigate variants were 

estimated at £3.18M, £3.23M and £3.49M respectively. Rather than using a relationship 

similar to Equation 8, an annual inflation of 4% was assumed for crew costs. The 

present value was then calculated using Equation 9, with through life crew costs for the 

three frigates presented in Appendix 13.2. 

 The costs of consumables were forecasted using the data in Table A62 of 

Appendix 13.2. As with crew costs, the total annual consumable costs were calculated 

for each frigate design given the frigate complement (£0.53M, £0.54M and £0.58M 

respectively), inflated annually by 4% and discounted using Equation 9. Detailed results 

are presented in the Appendix 13.2. 
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 In order to calculate the annual maintenance costs, the data presented in Table 

A63 of Appendix 13.2 was utilised. This then led to an annual maintenance cost of 

£4.40M, £4.40M and £4.42M for each frigate variant respectively. After inflating and 

discounting the annual maintenance costs in a similar manner as described above, the 

through life maintenance costs presented in Appendix 13.2 were obtained. 

 The final TLC element is related to the costs associated with refits. It was 

assumed that major refits occurred every eight years with minor refits between major 

ones (UCL 2010b). Table A64 of Appendix 13.2 lists assumed cost data for refits. The 

hourly labour rate used was the same as in the UPC estimation section, i.e. 

£0.05016k/hr for UK shipyards (UCL 2010b). After applying the above relationships, 

the costs of major refits were estimated at £52.12M, £53.02M and £54.26M and minor 

refits at £18.71M, £19.01M and £19.43M for the three frigate designs respectively. By 

assuming that the vessel construction will take place over a period of 3 years with trials 

and commissioning completed in the 4th year (Dirksen 1996), the dates of planned refits 

were estimated and the associated costs were inflated and discounted accordingly, in the 

manner described above. Detailed forecasted refit associated costs are presented in 

Appendix 13.2. 

 The total TLCs for the three frigates were than calculated by assuming a service 

life of 30 years. Annual cost expenditure for the three frigate designs is presented in 

Figure 6.53 (and in Appendix 13.2). Although UPC is not part of TLC, UPC values (of 

the 4th vessel in a class of twelve, as calculated above) are included in Figure 6.53. It 

was assumed that 30% of the total UPC is paid in each of the first 3 years with the 

remaining 10% paid by the end of the 4th year (Dirksen 1996). 
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Figure 6.53: Annual Costs for the Three Frigate Variants 
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TLC can also be separated into maintenance costs (consumables, maintenance 

and refits costs) and cost of ownership (fuel and crew costs) and compared to UPC, as 

illustrated in Figure 6.54. 

 

Frigate Variant 1 

 

Frigate Variant 2 

 

Frigate Variant 3 

 
 

Figure 6.54: TLC Proportions for the Three Frigate Variants including UPC 

 

From the above data and analysis it follows that the TLC for the three frigate 

variants is equal to £519.44M, £532.28M and £540.45M respectively. Once again, the 

general observation is that ship cost (in this case TLC) is not as sensitive as 

survivability performance to variations in ship configuration.  

 

6.8.3 Whole Life Cost 

 

 The final and most meaningful cost to be estimated is the whole life cost. This is 

calculated by combining the UPC, TLC, FOC costs and ship disposal costs of a class. 

First, it was assumed that the frigate class consisted of twelve ships in total and the UPC 

previously calculated was representative of the fourth vessel (UCL 2010b). Due to the 

shipyard learning curve, it is recognised that longer production runs may lead to 

reduced UPCs due to reasons such as increases of economies of scale brought about by 

increasing the amount of materials and number of equipment items purchased and 
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improvements in production planning and processes in the shipyard as they become 

familiar with the design (UCL 2010b). The following relationship was used to estimate 

the UPC of each of the twelve vessels (UCL 2010b): 

 

 UPCshipn = UPCship4 × 1.16 × shipn
-0.105 (10) 

 

Furthermore, the TLC of all vessels was assumed constant, i.e. no learning curve 

was assumed. FOC costs, or design and construction services, were assumed to be equal 

to 20% of the UPC of the 4th vessel for a naval ship (UCL 2010b). This is a one-off cost 

including elements such as office setup, design, drawings, recruitment and 

administrative costs (UCL 2010b). Moreover, by assuming that all ships will be 

recycled within the UK when decommissioned (33 years after construction begins, 

Figure 6.53), a disposal cost of £0.68M per ship was assumed (UCL 2010b). This value 

was inflated by applying the assumed annual 4% inflation and discounted annually by 

6% as above, in order to get the present value of the disposal cost at the year of 

decommissioning. Finally, it was assumed that all twelve ships of the class (of each of 

the three frigate variants) were constructed and disposed of in the same years. This is 

clearly unlikely; however, it was assumed during this comparative study for 

simplification purposes and does not alter the essential WLC comparison. Figure 6.55 

illustrates the relative proportions of all WLC elements mentioned above (detailed 

results are presented in Appendix 13.3). 
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Frigate Variant 1 

 

Frigate Variant 2 

 

Frigate Variant 3 

 
 

Figure 6.55: WLC Proportions for the Three Frigate Variants (for a Class of Twelve) 

 

From above, the WLCs were estimated at £9,740M, £9,970M and £10,160M for 

each frigate variant class respectively. From the above results it is observed that WLC is 

not greatly affected by ship configuration. This was expected since WLC is almost 

entirely dependent on UPC and TLC, for which the same observations were made. This 

is additional confirmation that ship configuration has a greater influence on 

survivability as opposed to ship costs. 
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Chapter 7: Discussion 

 

 The first five sections of this chapter discuss the analysis of the results reported 

in Chapter 6. The results were produced by applying the developed survivability 

assessment method (Chapter 4) to the ship design studies summarised in Chapter 5, as 

well as through the costing study undertaken. The final section of this chapter links the 

developed method to the research background (see Chapters 2 and 3). This is done to 

address whether the research aim (Chapter 1) has been met, to assess the extent to which 

that aim has been achieved and also to identify areas requiring further work. 

 

7.1 Susceptibility Assessment Results Analysis 

 

7.1.1 Frigate Variants (Including Baseline) 

 

The susceptibility results produced for the three frigate variants are essentially 

the same since all ship designs had similar RCSs and identical defensive systems to 

counter the same postulated threat. The minor differences in the susceptibility results 

are solely caused by the small variations in RCS (and therefore, P(l)). These differences 

are minor since similar RCS reduction techniques were used during the design phase of 

the frigate variants; namely, the application of a 7o slope to all superstructure sides and 

certain equipment and the placing of as much likely microgeometry as possible behind 

bulwarks. The small differences in the RCS values observed between the three frigate 

variants were caused by the variations in hull, superstructure and upperdeck 

arrangement between the three designs. Further analysis to identify the specific causes 

of these variations was not conducted for a number of reasons. For example, the 

variations are too small (less than 15%) to justify any further work; a large amount of 

work has already been done in RCS reduction techniques and validated through full 

scale tests (see Section 3.3.2), therefore, being beyond the scope of this research; and 

most importantly, the RCS prediction software used, SPECTRE could not be accessed 

daily, since it was operated by the sponsor of this research (Dstl) rather than UCL itself. 

However, certain variations in susceptibility relevant features reported in Section 6.2 

were investigated. These included alterations to microgeometry (7o rotation of the RAS 

high points in Frigate Variant 1) and shaping (application of a 7o flare on specific 

sections of the box structure and side hulls of Frigate Variant 3). The resultant 

improvement in the P(l) values for these designs (60% and 75% respectively) seemed to 
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match indications from adopting currently accepted RCS reduction techniques 

(Appendix 4.1) and justifies the efforts made in signatures reduction of current naval 

ships. In addition, it can be concluded that both hull and superstructure shaping and 

microgeometry management should be employed as extensively as possible. 

It was also demonstrated that susceptibility results were to a large degree 

sensitive to the targeting pattern of the defensive missiles. By assuming that each pair of 

defensive missiles launched by the targeted ship could only home in on one attacking 

ASM, the frigate designs, each launching four defensive missiles, could only target two 

of the four attacking ASMs. If, however, each defensive missile was able to target a 

separate attacking ASM, all four ASMs could be targeted improving the P(h) by almost 

40%. This highlights the importance of selecting an appropriate defensive missile 

targeting pattern, which largely depends on the characteristics of the incoming threat, 

the prediction of which is extremely challenging. 

 

7.1.2 Corvette, Baseline Frigate and Destroyer 

 

 When carrying out the comparative study between the Corvette, baseline frigate 

and Destroyer designs, larger variations in the results were observed. As expected, the 

Corvette design had the smallest RCS (and therefore, P(l)) out of all combatant designs, 

due to its smaller size. However, the difference between the RCS of the Corvette design 

and the three frigate variants was relatively small (between 2% and 15%). Conversely, 

the Destroyer design had the largest RCS by a significant margin, therefore, effectively 

rendering the use of a decoy system against the ASM threat of no use. The large RCS 

increase is not only attributed to its larger size, but also to the different equipment 

selected (e.g.: the two spherical, therefore, poor in terms of RCS, MFR Spectars and the 

larger helicopter) and the increased microgeometry (e.g.: the four additional 12.7mm 

machine guns and two CIWSs) summarised in Table 5.4 of Section 5.2. Again, 

however, further analysis to identify detailed RCS characteristics was not conducted 

mainly since the RCS prediction software, SPECTRE, could not be accessed daily, 

although it would be of interest to detect the specific features (and their effect) that 

cause the approximately quadrupling of the Destroyers RCS, compared to the remaining 

combatants. 

 The second large variation between the Corvette and baseline frigate designs and 

the Destroyer design was related to the P(h). The first two designs, having identical 

AAW system, gave equal results. However, the much more capable AAW system of the 
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Destroyer design led to a substantial improvement decreasing the P(h) by almost 90%. 

This is the largest effect that a single survivability feature has presented out of all 

features investigated in the current project and more than eliminates the effect of the 

larger Destroyer RCS. Therefore, the Destroyer design is approximately two times less 

susceptible than the Corvette and baseline frigate, which present similar susceptibility 

characteristics to each other. 

The Destroyers P(h) characteristics are further improved by approximately 30% 

if each defensive missile is allowed to independently target an attacking missile (rather 

than in pairs). The Destroyer, capable of firing eleven defensive missiles against the 

attacking ASMs, was initially assumed to target the first attacking missile with four 

defensive missiles, the second attacking missile with three defensive missiles and the 

remaining two attacking missiles with two defensive missiles each. By altering this 

pattern to three, three, three and two defensive missiles, the above improvement was 

observed. Finally, a further improvement was observed with the utilisation of longer 

range missiles, also having a larger maximum speed. These missiles, however, were 

limited by the ship design’s radar horizon, therefore, limiting the P(h) improvement to 

approximately 8% (due to the additional defensive missile fired, totalling twelve). If, 

however, the limiting factor was not the radar horizon, the improvement to P(h) would 

be approximately 90% (due to the capability of firing eighteen defensive missiles), 

although this scenario is questionable given the sea-skimming nature of the examined 

threat. 

 

7.1.3 AOR Variants 

 

 The most prominent variation regarding the susceptibility assessment of the two 

AOR variants is the much larger RCS of the first variant (approximately 3.7 times the 

RCS of the second variant) although both designs are similar in size and identical 

susceptibility reduction techniques were used for both. This large difference was caused 

by the two large RCS peaks towards the stern of AOR Variant 1 (not occurring in the 

second variant), at an azimuth of approximately 160o and 200o, as shown in Figure 6.9 

of Section 6.1.3. In order to identify the causes of these large peaks the designs were 

resent to Dstl and rerun in SPECTRE. Although the further analysis was not conclusive, 

it was observed that the forward RAS rig of AOR Variant 1 gave an unexpectedly high 

RCS when viewed from the above azimuth angles; it was suggested that the two peaks 

were caused by a distributed corner reflector (i.e. two or three facets that form a corner, 
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but do not share a common edge) which typically causes RCS peaks of the magnitude 

and width observed (Patient 2013). Therefore, corrective design action could possibly 

eliminate this occurrence. However, the overall effect of the large RCS difference 

between the two variants on the P(l) was not proportional. In a similar manner to the 

Destroyer design, both AOR variants had an RCS close to or more than the 4000m2 

limit (i.e. twice that of the assumed chaff RCS) above which, in accordance with 

Equation 4, a constant P(l) equal to unity, was employed. Therefore, the larger RCS of 

AOR Variant 1 resulted to a worsening of P(l) by some 30%. It follows that signature 

management loses its importance with ships of increasing signatures, unless decoy 

systems of much greater effectiveness can be utilised. 

 It is of interest that the AOR design variants (which included identical defensive 

systems and, therefore, P(h) values) gave P(h)s similar to the frigate variants and 

Corvette design, although the AOR designs had less capable AAW systems. In fact, the 

auxiliary ship designs were capable of firing only three defensive missiles against the 

four attacking ASMs, one less than the frigate variants and Corvette design. The 

similarity between the two P(h) values is observed solely due to the defensive missile 

targeting pattern adopted. The Corvette and frigate designs and the AOR designs were 

assumed to only target two of the attacking ASMs with their defensive missiles, as 

explained in Section 6.1. However, by allowing each defensive missile to independently 

target an attacking ASM, the Corvette and frigate variants would be capable of targeting 

all four attacking missiles, with the impressive 40% increase in effectiveness. 

Conversely, the AOR designs, launching only three defensive missiles could only target 

a maximum of three of the total four attacking ASMs. Although the P(h) value for the 

AOR designs was slightly improved by approximately 8%, the 40% improvement in the 

combatants could not be matched. 

 When comparing the auxiliary ship designs with the combatant designs it is 

easily observed that the AORs are (at least three times) more susceptible to a sea-

skimming ASM threat mainly due to their greater signatures than the combatants. 

 

7.1.4 General Observations on Susceptibility Assessment 

 

 One of the main differences between susceptibility assessment and vulnerability 

and recoverability assessment is that for the former, given the large variety of threats 

currently existent, a single method is not sufficient. A large number of tools are required 

in order to assess the susceptibility of a design to as many likely threats as possible. In 



268 
 

contrast, a single tool to assess vulnerability, such as QinetiQ’s SURVIVE software 

which can model the different current weapon mechanisms, and to assess recoverability 

should be adequate. However, in order to demonstrate the developed survivability 

assessment method, a specific scenario was chosen, that of four sea-skinning ASM 

against a ship design. A number of unclassified techniques were combined in order to 

simulate this scenario. Certain relationships, data and assumptions employed in this part 

of the method (summarised in Section 4.1 and 6.1), are considered to be oversimplistic. 

In addition to the assumptions mentioned in the above sections, it is useful to catalogue 

a number of points regarding the susceptibility assessment method. These were revealed 

from discussions with susceptibility experts at Dstl:- 

- The ASM detection range is affected by the type of sensor and threat; 

- The range of detection of a sea-skimming ASM is not equal to the maximum 

range of the defensive missile (which is usually relevant for larger targets at high 

altitudes, such as aircrafts); 

- The speed profile and, therefore, manoeuvrability of the defensive missile varies 

with time and flight altitude; 

- The defensive missile performance depends on the flight angle relative to the 

ASM (see Figure A15 and Figure A16 in Appendix 4.1); 

- Jammers are not very useful as attacking missiles can home onto them; however, 

it is possible to launch the jammer away from ship via rocket/parachute; 

- Different soft-kill techniques exist for different targets; 

- The relationship between ship and decoy RCS is not linear (as assumed in 

Figure 4.2 and Equations 3 and 4 of Section 4.1). It is possible to manoeuver the 

ship in order to present the lowest RCS possible; so manoeuvrability (including 

speed and acceleration) of the ship plays an important role in susceptibility; 

- Decoys are usually of similar and/or larger RCS than that the ship; 

- Susceptibility is personnel dependent (as analysed in the next paragraph). For 

example an auxiliary ship would have less specialized people to deal with threat 

situations and deploy defensive measures; 

- Chaff effectiveness depends on ASM sensor frequency. 

It is therefore evident that not only a large variety of threats currently exists, but each of 

these involves a large number of variables, highlighting the challenges in susceptibility 

assessment. Numerous such assessment methods already exist; however, since they 

largely rely on classified weapon data, they are not able to be readily accessed. Thus the 

method outlined in Section 4.1 was selected and judged sufficient for the purposes of 
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this research (since it was beyond the scope of this research to develop a new and 

improved susceptibility assessment method; rather, it was primarily about an integrated 

survivability approach at preliminary ship design). 

 Furthermore, it is evident that the susceptibility assessment method applied 

examines the susceptibility of the ship design, without, however, investigating 

situational awareness, which forms an important part of susceptibility performance. One 

of the outcomes of the above statement was the assumption of P(di) equalling 1 for all 

ship design studies. The probability of a ship being detected and identified largely 

depends on situational awareness and operational factors (rather than the ship design 

itself). It could be argued that the ship with lower signature would be more difficult to 

detect, therefore, it is possible that the susceptibility trend shown on the normalised 

susceptibility graphs (Figure 6.3, Figure 6.7 and Figure 6.11 in Section 6.1) would 

increase. 

Situational awareness can be split into two sub-categories:- 

- Ship situational awareness, being affected by such factors as sensor type, height 

and wavelength; 

- Human situational awareness, depending upon the ship command’s response to 

the situation, other human factors, manning, experience, length of watch, 

doctrine and training (including simulations and exercises used for training), 

scenario, aims and rules of engagement (e.g.: the target has to be identified 

before engaging it, so usually no action is carried out until hostile act occurs, 

such as with Fast Inshore Attack Crafts which may not pose an obvious threat). 

It could be argued that the susceptibility method adopted accounts for ship situational 

awareness. However, this is not the case with human situational awareness. This is 

particularly important with asymmetric threats and it may be argued that such threats 

are not captured by the ASM attack scenario. Asymmetric threats usually occur in 

littoral (as opposed to blue) waters where the cluttered picture and the reduced reaction 

times, as well as the minimum range of certain sensors, leading to a greater reliance on 

lookouts, increase the importance of human situational awareness. (It might also be 

argued that in such threat situation, developing vulnerability reduction, such as armour 

plating, and recoverability enhancement features is more effective than, for example, 

improving sensor technology). Nevertheless, human performance, including human 

situational awareness, is difficult to quantify. However, it is important to note that the 

developed survivability assessment method does not assess human performance related 

aspects (which are assumed to be constant) but the ship design itself and how the choice 
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of configuration has affected survivability. However, it could be argued that improving 

the ship design in regard to other aspects of human factors might improve the 

susceptibility aspect of survivability (Andrews et al 2008). 

 At this point it is useful to attempt and define the scale on the y-axis of the 

normalised susceptibility charts (Figure 6.3, Figure 6.7 and Figure 6.11 in Section 6.1). 

In the case of susceptibility assessment this is relatively easy, with zero being defined as 

the ship being assessed not being hit by a specified threat (i.e. one or more of the 

following probabilities: P(di), P(l) and P(h), have a value equal to zero). Unity can then 

be defined as the susceptibility performance of a baseline design. The definition of unity 

could be changed straightforwardly to: the ship being assessed is definitely hit by a 

specified threat (i.e. P(di), P(l) and P(h) are all equal to one), which would signify the 

worst possible case for susceptibility. 

 A general conclusion on susceptibility can be made that the large sensitivities (to 

relatively small changes) observed in the susceptibility part of the survivability 

assessment method, combined with the many simplistic assumptions made and the large 

variety of current threats which have to be accounted for, justify the considerable 

investigation in this topic. This research then justifies work carried out in this first 

survivability constituent and thus the need for an accurate susceptibility assessment 

method. Nevertheless, through the combination and use of simplified and unclassified 

susceptibility assessment tools, the design studies examined produced considerable (and 

traceable) results. This shows that such susceptibility assessment investigations are of 

significant worth during the preliminary ship design stages in order to not only select 

the most promising out of competing alternative designs, but also to tune the selected 

design in terms of susceptibility performance. 

 

7.2 Vulnerability Assessment Results Analysis 

 

In this section a summary of the analysis of the main results is presented, 

followed by some general observations resulting from the application of the 

vulnerability assessment approach to the seven ship design studies; a full results 

analysis is included in Appendix 14. This is done since the vulnerability assessment 

tool, SURVIVE Lite, was operated at UCL (unlike the RCS prediction tool, SPECTRE), 

allowing a large number of simulations and analysis; in addition, numerous ship 

systems were modelled (in contrast to a single system, i.e. the whole ship, modelled in 

susceptibility assessment). The above two reasons led to a vast amount of data and 
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related analysis, most of which confirm already acknowledged vulnerability reduction 

design drivers. 

 

7.2.1 Frigate Variants (Including Baseline) 

 

 Out of the six major systems modelled in the frigate design studies (for which 

reference should be made to the system architecture and tree diagrams included in 

Appendix 7 and detailed vulnerability results in the tables and charts of Section 6.3 and 

6.4 and Appendix 11), Frigate Variant 1 was least vulnerable in two (forward SAM 

system and helicopter system), Frigate Variant 2 in one (naval gun system) and the 

third, trimaran variant, performed best in the remaining three (move system, ASM 

system and aft SAM system). 

The design feature that had the largest impact on the vulnerability performance 

of the three frigate designs was almost certainly the degree of duplication and separation 

of identical sub-systems. For example, the move system of Frigate Variant 3 was 

invulnerable to the ASM threat investigated due to the split forward and aft propulsor 

configuration. The move system of the remaining two designs was vulnerable when the 

(two) HTS motors and/or (two) propeller shaft were affected. Although these items 

were duplicated, they were not reasonably separated as they were located in the same 

WT section. In addition, the power sub-system (containing all of the engines in parallel) 

was not vulnerable in any attack case investigated for any of the three frigate variants. 

This highlights the advantages of adopting an IFEP system with large distances between 

the power generation units. The benefits of redundancy and separation are also clear 

when considering that most ship systems modelled were most vulnerable when 

unduplicated (i.e. in-series) items were hit. For example, in all three frigate variants the 

naval gun system was vulnerable when items such as the magazine, gun power room, 

gunbay & guntrunk and 155mm gun were hit; the ASM system was vulnerable when 

the ASM launchers, LPCR (Local Power and Control Room) and Operations Room 

were hit; the aft and forward SAM systems were vulnerable when the VLSs and LCRs 

were hit. Furthermore, in two of the three frigate design studies (Frigate Variants 2 and 

3) the helicopter system is the most vulnerable of the system modelled largely because 

it contains the most in-series (unduplicated equipment) 

 A vulnerability reduction advantage of trimaran configurations is the fact that 

the side hulls shield certain items which are located at the amidships portion of the hull. 

For example, items such as the Operations Room and the helo weapons lift were found 
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to be less vulnerable in the trimaran frigate. This in turn had an impact on the 

vulnerability of ship systems which included these items in series, such as the ASM 

system and helicopter system. In addition, the effect on vulnerability of improving the 

system layout was perceived. For example, the large beam of the trimaran ship allowed 

for a wide weatherdeck. This in turn made possible the arrangement of the ASM 

launchers in a port-starboard configuration (as opposed to the forward-aft configuration 

in the first two variants) which dramatically reduced their vulnerability (assuming only 

broadside attack). 

 It was observed that equipment located deep in the hull was less vulnerable to 

the given, abovewater, threat (i.e. the sea-skimming ASM). This was particularly 

noticeable in the trimaran variant which had the deepest draught. The reduced 

vulnerability of certain items (such as the forward magazine and sonar instrument room, 

and the aft (helo) magazine and AVCAT tank) had an impact on the overall 

vulnerability of the naval gun system and helicopter system of that design. However, 

these effects are probably adverse when considering underwater attacks. Nevertheless, 

trimarans are also more vulnerable at the narrow forward and aft extremities of the hull. 

This was apparent in ship systems which included items at the extremities, such as the 

naval gun system (magazine, gun power room, gunbay & guntrunk and 155mm gun) 

and the aft SAM system (VLSs and LCR). 

 After carrying out the sensitivity tests on the lengthwise probability hit 

distribution, (i.e. changing it from a normal to a linear distribution), it was observed that 

assessment of system vulnerability is highly dependent on this assumption. Specifically, 

ship systems with the majority of their items at the extremities of the hull became 

significantly more vulnerable, while the opposite was true for systems with the bulk of 

their related items located close to amidships. As is clear in Appendix 14, in some cases 

the vulnerability of a system was altered by more than 50% after changing the 

lengthwise probability hit distribution. 

 After normalising the system vulnerabilities and applying the weightings 

proposed by 1st Lt. Fonseca, the least overall vulnerable ship was found to be the 

trimaran variant followed by the baseline and the second variant. The trimaran variant 

presented an approximately 60% decrease in overall vulnerability compared to the 

baseline design. After carrying out the sensitivity tests on the applied major system 

weighting scheme, by using the weighting schemes proposed by the RN officers at Dstl 

for the three scenarios summarised in Section 6.4.1, the main conclusion was that ship 

vulnerability is more sensitive to the overall ship design features than to the weighting 
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scheme or the operational scenario. The relatively small operational scenario related 

overall vulnerability variations are explained in Appendix 14. It is important to note that 

Frigate Variant 3 presented an improvement compared to the baseline frigate ranging 

from 28% to 42% (when considering all scenarios and the corresponding weighting 

schemed proposed by the RN staff) as opposed to the approximately 60% improvement 

observed with 1st Lt. Fonseca’s weighting scheme. This is attributed to the much higher 

weightings given to the Fight major systems by the RN officers (compared to the 

weightings proposed by 1st Lt. Fonseca). Therefore, the significance of the effect of the 

invulnerable move system of the trimaran variant was reduced. 

 

7.2.2 Corvette, Baseline Frigate and Destroyer 

 

 Out of the six major systems modelled in the ship size and level of combat 

system and ship performance capability varied combatants (for which reference should 

be made to the system architecture and tree diagrams included in Appendix 7 and 

detailed vulnerability results in the tables and charts of Section 6.3 and 6.4 and 

Appendix 11), the Corvette design was least vulnerable in two (move system and aft 

SAM system) and most vulnerable in the remaining, Frigate Variant 1 was not the least 

vulnerable in any and the Destroyer design performed best in the remaining four (naval 

gun system, ASM system, forward SAM system and helicopter system). 

In this case there were two major design features that influenced the 

vulnerability of the ship design studies; the degree of duplication and separation of 

similar sub-systems, and the overall ship size. The effects of the former were similar to 

those reported in the frigate variant comparative study. The move system of the 

Corvette design was invulnerable to the ASM threat investigated due to the split 

forward and aft propulsor configuration. In addition, the move systems of the baseline 

frigate and Destroyer were vulnerable when the duplicated but non-separated HTS 

motors and/or propeller shaft were hit. The power sub-system was not vulnerable in any 

attack case due to the widely separated IFEP system selected. The naval gun system was 

most vulnerable in all three designs when in-series, unduplicated, items, such as the 

magazine, gun power room/LCR, gunbay & guntrunk, and gun were affected. The 

vulnerability of the Destroyers naval gun system was significantly reduced due to the 

presence of an additional sensor separated by a considerable distance (the Destroyer 

naval gun sensors included separated forward and aft MFRs and a GPEOD which was 

located at the forward mast together with the forward MFR; conversely, the Corvette 
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and frigate designs included only a surveillance radar and GPEOD, both located on the 

forward mast). Similarly, the ASM system was most vulnerable when unduplicated 

items in series, such as the Operations Room, LPCR and launchers, were affected; as 

were the forward and aft SAM systems when the VLSs and LCRs were affected. 

However, the Destroyer design adopted a different, more capable (forward and aft) 

SAM system, with a different system tree diagram. For it, the LCRs are not in series but 

in parallel to the Operations Room, significantly reducing the vulnerability of the SAM 

control sub-system. However, the SAM systems of the Corvette and baseline frigate 

could operate with six sensors in total (forward and aft navigation radar, forward and aft 

IRST, surveillance radar and ESM/ECM module), while the Destroyer’s SAM system 

could only operates with the two MFRs. This had a slight adverse effect on the 

Destroyer (forward and aft) SAM system vulnerability. Finally, in all three designs, the 

helicopter system was also most vulnerable when items such as the AVCAT tank, 

magazine, weapon lift, sonobuoy store, helicopter and flight deck, Operations Room 

and sonar instrument room, all of which are in series, were hit. 

 Increases in ship size led to a decreased system vulnerability in two regards. 

First, the larger volumetric size of the WT sections of larger ship designs can more 

easily contain, but also diffuse, the blast and fragmentation damage caused by the 

exploding ASM warhead. To this could be attributed the improved vulnerability 

performance of the Destroyer designs move system (compared to the identical such 

system in the baseline frigate) as well as improvements in the naval gun system, aft 

SAM system and helicopter system. The second advantage of larger designs arises from 

the fact that the number of WT sections in a design is proportional to the ship’s length. 

Moreover, the footprint of identical/similar ship systems (in terms of WT sections 

containing items belonging to that ship system) was found to be almost unaffected by 

ship size. These two reasons lead to an increase in the proportion of ship’s length which 

if hit affects a ship system (i.e. an increase in the vulnerability footprint of the system in 

terms of percentage of the overall length). Therefore, given that the ship is hit (i.e. 

susceptibility = 100%), a system in a smaller ship would have a larger probability of 

being affected by the constant hit than a similar system in a larger ship. The above was 

observed to affect the vulnerability of systems such as the naval gun system, ASM 

system, forward SAM system and helicopter system, leading to improved performance 

in the Destroyer and decreased performance in the Corvette design. 

Although in the comparative study between the size varied combatants 

sensitivity studies regarding the lengthwise probability hit distribution were not 
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conducted, it should be noted that the ASM system is the most vulnerable of the six ship 

systems modelled in all three types of combatants. This is due to the concentration of 

the vulnerable equipment items amidships (therefore, most likely to be hit given the 

normal distribution). The effects of this assumption are thus once again profound, with 

more examples detailed in Appendix 14. A brief sensitivity test was, however, carried 

out on the Destroyer design to examine the effect of changing the elevation and azimuth 

angles of the attacking missile impact vector. In all system cases, vulnerability result 

fluctuations of over 50% were observed, indicating that hit location and weapon 

trajectory have a significant impact on system vulnerability. 

 After normalising the system vulnerabilities and applying the weightings 

proposed by 1st Lt. Fonseca, the least overall vulnerable ship design was the larger 

Destroyer (approximately 30% less than the baseline frigate). Despite the fact that the 

smaller Corvette design was the worst performing in four of the six major systems, it 

was overall less vulnerable than the baseline frigate, performing almost identically to 

the Destroyer design. This was a direct result of the considerably higher weighting 

applied to the move system (compared to the five Fight systems), which was 

invulnerable in the Corvette, as analysed above. If a weighting of 2, rather than 9, was 

used for the move system (i.e. in agreement with the weightings proposed by 1st Lt. 

Fonseca for the Fight systems, Table 4.1 in Section 4.2), the Destroyer design would 

continue to be approximately 30% less vulnerable than the baseline frigate, but the 

Corvette design would now be the most vulnerable ship design, by approximately 20% 

compared to Frigate Variant 1. This contradicts the conclusions made in Section 7.2.1 

regarding the relative insensitivity of the frigate variants overall vulnerability to the 

weighting scheme used. 

 

7.2.3 AOR Variants 

 

 Out of the seven major systems/capabilities modelled in the two AOR variants 

(for which reference should be made to the system architecture and tree diagrams 

included in Appendix 7 and detailed vulnerability results in the tables and charts of 

Section 6.3 and Appendix 11), the first variant was least vulnerable in one (move 

system) and the second variant performed best in five (all RAS related capabilities and 

aviation support). The CIWS of both designs was assessed to be invulnerable. 

 It was once again observed that adopting a philosophy of duplication and 

separation has a great effect on vulnerability performance. As before, the move system 
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of AOR Variant 1 is invulnerable owing to the vastly separated MMRs and propulsor 

units (realised by the adoption of an IFEP system). A forward propulsor unit was not 

included in the second variant, resulting in a vulnerable move system when the in-series 

and unduplicated pod drive room was affected. Furthermore, AOR Variant 2 presented 

the opportunity to duplicate the ship handling sub-system included in all RAS capability 

system tree diagrams. In AOR Variant 1 only the bridge can be used for ship handling; 

in the second variant, the presence of a single aft superstructure block led to the RAS 

control space (RASco) having an unobstructed view towards the ship’s bow, therefore, 

being able to duplicate (and separate) the functions of the bridge. This in turn led to the 

invulnerability of the RAS liquid capabilities and significant reduction in the 

vulnerability of the RAS solid capabilities in AOR Variant 2. In addition, the split 

forward and aft nature of the AVCAT/dieso cargo tanks (and pumps), contrasting the 

grouping of dry stores and ordnance cargo spaces (and lifts) adjacently, had a significant 

impact on the vulnerability of the RAS capabilities in both ship designs. Finally the 

CIWS was invulnerable in both designs due to the duplication of the SeaRAM 

launchers, each including an independent sensors and control room. 

 The auxiliary ship design comparative study also highlighted the vulnerability 

reduction effects of protecting critical items by less critical spaces. This was realised 

through the almost two times more vulnerable aviation support system of AOR Variant 

1. The absence of a forward superstructure block in AOR Variant 2 led a significant 

increase in the size of the (single) aft superstructure, which contained most items related 

to the aviation support system in both designs. The larger superstructure size (through 

the inclusion of, for example, accommodation spaces) resulted to the shielding of 

critical items belonging to this system. 

Furthermore, the decreased vulnerability to abovewater threats to items located 

deep in the hull was again observed. More specifically, stores below No 6 Deck (i.e. 

ordnance stores) were invulnerable to the ASM threat simulated. It is also interesting to 

note that the auxiliary ship designs output considerably smaller system vulnerability 

values than the combatants, often not exceeding 2%. This is possibly due to their 

significantly larger size (although different systems with different architectures and tree 

diagrams were modelled in the two ship types). 

 As in the previous comparative studies, the assumed normal lengthwise 

probability hit distribution has affected the vulnerability of the modeled systems, with 

systems located at the extremities (e.g. the move system) presenting considerably lower 

vulnerability values than amidships systems (e.g. RAS capabilities). After normalising 
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the system vulnerabilities and applying the weightings proposed by Lt. Cdr. (rtd.) Day, 

AOR Variant 2 proved to be approximately 40% less vulnerable, predominantly due to 

the entirely invulnerable ability to RAS AVCAT and ability to RAS dieso, both of 

which were given maximum weighting. 

 

7.2.4 General Observations on Vulnerability Assessment 

 

 In contrast to the susceptibility assessment method applied (with the exception 

of the RCS prediction tool), the vulnerability assessment method developed was based 

on the current established and accepted UK MOD vulnerability assessment software for 

concept stage ship designs, SURVIVE Lite (see Section 3.3.3). Also, in contrast to the 

susceptibility assessment method, SURVIVE Lite is able to simulate the damage effects 

of a large number of different weapons, with different characteristics (as summarised in 

Section 3.3.3); although the very specific case of a particular sea-skinning ASM was 

only examined in this research. Amongst the advantages given by the developed method 

is that the results can be easily backtracked in order to examine what caused each ship 

design to have its vulnerability characteristics and apply corrective actions. 

 However, a number of simplistic assumptions were made during the application 

of the method. These are in addition to the ones summarised in Section 4.2 and 6.3. For 

example:- 

- The system tree diagrams developed (Appendix 7) imply that all weapon 

systems operate identically with any of the sensors in their sensor sub-system 

(although, clearly, the performance of certain weapon systems will be degraded 

depending on the available sensors); 

- All engines fitted in the ship are assumed to be able to individually operate the 

ship in a fully capable manner (although clearly the loss of a more powerful 

engine will affect the ship in a different manner to the loss of a less powerful 

engine, and the loss of any engine could result to certain capability loss 

regarding not only propulsion but also operation of combat systems); 

- Cargo stores in the AOR designs were modelled in parallel although in reality 

the loss of cargo spaces would lead to a loss in cargo capacity and, therefore, 

capability). 

Such assumptions could be corrected in SURVIVE Lite by the inclusion of further 

system tree diagrams, each implying a different level of capability. This would, 
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however, dramatically increase results processing and analysis time which is probably 

counterproductive in the concept phase of ship design. 

 There are also the issues regarding the use of appropriate weighting schemes 

which rely on human judgement rather than simulation. Certain of the design studies 

investigated were highly sensitive to the (subjective) weighting scheme used; although 

patterns in the weighting schemes proposed by different naval officers were observed, 

large results variations were still observed. Furthermore, certain of the officers 

interviewed made comments which are related to the operational scenario. For example, 

the duplicated (SAM, in the combatants) systems should each be given different 

weightings and that weighting schemes (and the selected systems to be modelled) are 

highly dependent on the ship’s role as well as the operational scenario. This highlights 

the connection of ship overall vulnerability to human factors, such as how the 

operational situation is perceived by the ship’s crew, which is largely defined by 

situational awareness. Developing system weighting schemes is an area where further 

research is necessary and the application of methods such as the Delphi Method 

mentioned in Section 3.3.4 might prove beneficial in using a single weighting scheme 

for each operational scenario investigated. 

 As with the susceptibility method developed, it is useful to attempt and define 

the scale of a design’s vulnerability on the y-axis of normalised vulnerability charts 

(Figure 6.25, Figure 6.27 and Figure 6.29 in Section 6.3). This is relatively easy in 

vulnerability assessment, with zero being defined on the basis that all of the systems 

modeled in the ship being assessed not being vulnerable to the threat (ASM in this 

instance) given a hit at any location of the ship. The value of unity is defined as the 

vulnerability performance of a baseline design. The definition of unity could easily be 

changed to: all of the modeled systems in the ship being assessed are 100% vulnerable 

to the threat (ASM in this instance) given a hit at any location of the ship, (i.e. worst 

possible case). As already mentioned, in the case of the AOR variants, normalisations 

have been conducted against the worst performing ship design rather than an arbitrary 

baseline. This means that the score of unity is defined as the vulnerability performance 

of the worst performing design. This was done since both AOR designs included 

invulnerable (i.e. 0% vulnerable) systems. Thus, dividing (during the normalisation 

process) by zero is avoided since this would lead to impossible values. All other studies 

were normalized with respect to the corresponding baseline frigate values, which did 

not include any 0% vulnerable systems. This, however, was fortuitous possibly 

indicating that normalisation should always be made with respect to the worst 
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performing of the designs being compared. It could be argued that this would also give 

a more meaningful definition to the value of unity on the y-axis of the normalised 

vulnerability charts and simplify presentation and comparison of results between 

alternative designs. For consistency, the AOR studies’ total susceptibility and 

recoverability results were also normalised with respect to the worst performing design. 

In an alternative approach, experts could develop a set of minimum acceptable system 

vulnerability standards for each ship type and for a given threat (possibly based on the 

vulnerability performance of current ships), with new alternative designs being assessed 

against these standards. This latter approach would be analogous to traditional damage 

stability assessment. 

 A number of conclusions can be deduced from the vulnerability assessment 

results. Trimarans generally provide reduced vulnerability due to the protection 

provided by the side hulls, although they are more vulnerable at the narrow forward and 

aft ends; equipment located deep in the hull is less vulnerable to abovewater attack; 

increasing size tends to reduce vulnerability, duplication of identical systems greatly 

reduces vulnerability, provided that the redundant systems are reasonably separated; 

improved system architecture/layout (provided, for example, through the large box 

structure and associated DC deck and weatherdeck wide beam of a trimaran) decreases 

vulnerability and the protection of certain high value items by secondary compartments 

affects system vulnerability. However, system vulnerability results are largely 

dependent, not only on the trajectory of the attacking threat (a missile in all cases in this 

research), which can easily be simulated in SURVIVE Lite, but also on the 

(susceptibility related) assumed lengthwise hit probability distribution. The latter 

depends on a large variety of factors, such as ship and threat characteristics, 

environmental conditions, ship motions and manoeuvring and variations in weapon 

performance as outlined in Section 3.3.2. This can be seen to inhibit the development of 

a realistic prediction tool. It is relevant that although there have been efforts to link 

susceptibility and vulnerability assessment methods in order to calculate likely hit 

locations (Turner et al 2006; Martin 2007) (see Section 3.3.2), the official MOD 

maritime mission simulation programme (MISSION) does not utilise them. Rather, it 

simply assumes a normal lengthwise hit probability distribution. As mentioned in 

Section 7.1.4, further research is necessary in the area of susceptibility assessment, also 

because it has such an effect on the next survivability constituent, vulnerability. 
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7.3 Recoverability Assessment Results Analysis 

 

7.3.1 Frigate Variants (Including Baseline) 

 

Main Results 

 

 Out of the eight PM groups (immediate DCFF or Float PMs (Category 1) shown 

in Table 4.3, major system recovery or recovery support PMs (Category 2) listed in 

Table 4.4 and the six individual major system, one Move and five Fight systems, 

recovery PMs (Category 3) summarised in Table 4.5; see Section 4.3) Frigate Variant 3 

performed best in seven (float category, recovery support category and move, naval 

gun, ASM, aft SAM and forward SAM system recovery), while Frigate Variant 1 

performed best in the helicopter system recovery category. These results can clearly be 

seen in the PM matrices presented in Section 6.5.1. 

In the float category, the first two frigate variants performed almost identically, 

while the trimaran variant performed approximately 30% better. Some of the most 

noteworthy results include the fact that the third variant performed significantly worst in 

PM 1.1 and 1.2, due to the fact that, being a larger ship design than its counterparts, the 

FRPs had to travel longer distances and operate more WT doors in order to reach the 

affected section of the ship. In PM 1.4 Frigate Variant 2 performed best by a large 

margin due to the two passing decks presenting a greater number of alternative routes to 

the DC crew, followed by Frigate Variant 3, which included double, side passageways 

in the box structure (with single centreline passageways aft and forward) and finally the 

baseline (Variant 1), with its single centreline passageway presenting no alternative 

routes. Although in PM 1.3 the baseline frigate performed marginally better, due to the 

less number of decks in the hull, easing access, this was partially counterbalanced by 

the fact that the baseline had a full length superstructure, in contrast to the other two 

designs. Frigate Variant 3 performed much better in PMs 1.6 and 1.7 due to the fact that 

the firepumps in all variants were located deep in the hull. (As mentioned in Section 

7.2.1, the deeper draught of the trimaran offered more protection from abovewater 

threats to items located at the lower decks, such as firepumps, therefore, minimising the 

probability that these items will be affected after an attack and increasing post hit 

availability). The aft FRP section base in Frigate Variants 2 and 3 is located one WT 

section aft than the corresponding item in the baseline frigate, therefore, the assumed 

normal lengthwise probability hit distribution, minimising the probability of that FRP 
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section base being affected after a hit, leads to the significant improvement in PM 1.16. 

However, this also means that this FRP section base is less efficiently positioned (closer 

to the ships extremities) therefore, partially contributing to the decreased performance in 

PMs 1.1 and 1.2 for the last two frigate variants.  

In PM 1.10 the baseline frigate performs significantly better than the other two 

variants, purely due to the fact that, conversely to Frigate Variants 2 and 3, the two 

remaining NBCD stores of the baseline are positioned one at each extremity of the ship, 

therefore, minimising the probability that they are affected after a given hit. In all 

remaining PMs, the two monohull variants performed almost identically, due to their 

similar layout, whereas the trimaran variant performed better, in some cases presenting 

more than 80% improved performance. This is attributed to the fact that, as analysed in 

Section 7.2.1, the vulnerability reduction features of the trimaran led to less items being 

affected by a given threat resulting in an increased availability of DCFF required items 

(such as ATU and ventilation, NBCD stores, power generation unit, SCC, Operations 

Room and FRPP, which were all quantified through their respective PMs) which are 

needed after the assumed, unvarying, attack. The general conclusion is that the two 

monohulls perform almost identically; although the trimaran variant performs worse in 

most access related PMs due to its larger size, this is more than counterbalanced by the 

increased availability of items necessary for DCFF after a given attack, due to the 

trimaran’s increased inherent vulnerability reduction features. The relative difference 

between the performances of the three frigate designs also depends upon the weighting 

scheme employed. 

In the recovery support PM group the two monohull frigates performed almost 

identically in all PMs, whereas the trimaran variant displayed an overall improved 

performance by approximately 40%. Only in (low-weighted) PM 2.3 did the trimaran 

perform worse than the first two frigate variants, due to its naval stores being located 

closer to amidships (as opposed to the far aft positioned naval stores in Frigate Variants 

2 and 3), therefore, increasing the probability that these stores are affected and 

unavailable after a hit. In all other PMs (related to workshops, spare gear stores, SCC 

and Operations Room) the trimaran variant performed up to approximately 60% better, 

despite the very similar arrangement of the above compartments in all three variants. 

This is attributed to the increased post attack availability of these items due to the 

inherent trimaran vulnerability reduction features, as analysed in Section 7.2.1. 

 In the move system recovery PM group, once again the almost identical system 

layout in the two monohulls leads to an almost identical performance in all PMs. 
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Conversely, Frigate Variant 3 illustrated an improved performance by more than 60%. 

Approximately half of this improvement is attributed to the fact that, by adopting a split 

forward and aft propulsion system, the high-weighted PM 3.1.1 outputted a value of 

zero as a result of the move system being invulnerable to any single ASM attack 

(therefore, requiring zero man-hours for the move system to be functioning post-attack). 

The remainder of the 60% improvement is attributed to the improved performance in all 

other PMs of this group. This was a direct result of a given constant threat, affecting 

fewer items in the less vulnerable trimaran; therefore, fewer items need to be accessed 

and recovered post-hit. 

 When considering the naval gun system recovery PM group, a near identical 

performance is observed in the two monohulls, again due to the almost identical system 

layout; Frigate Variant 3 displays an almost 30% improvement. The improvement is 

less than that of the move system recovery PM group due to the fact that high-weighted 

PM 3.1.2 outputted a similar value in all frigate variants. This was expected since the 

naval gun system layout (regarding the in-series and therefore most vulnerable items, 

such as the magazine, gunbay & guntrunk, gun power room and 155mm gun) in the 

trimaran frigate was similar to that of the monohull variants, leading to similar overall 

vulnerability values. However, the increased protection and, therefore, post-hit 

availability, of duplicated system items, such as the engines contained in the power sub-

system, led overall to less items being affected post-hit, as clearly shown by PM 3.2.2. 

Therefore, overall fewer items needed accessing and repair works, reflected on the 

improved PM values of the remainder PMs in the trimaran for this PM group. 

 In the ASM system recovery PM group, the baseline frigate is the worst 

performing, with the second variant outputting approximately 13% better results and the 

third variant resulting to a more than 30% improvement. Most in-series, i.e. more 

vulnerable, equipment items of this system, such as the launchers and LPCR, are 

located amidships for Frigate Variants 1 and 3, and at the aft end in the second variant. 

The assumed normal lengthwise hit distribution (meaning that the in-series equipment 

in Frigate Variant 2 have a lesser chance of being hit) leads to the second variant having 

a larger availability of such items post-hit, reflected on the almost 30% improvement in 

PM 3.1.3 (in contrast to the approximately 10% improvement displayed in the trimaran 

variant, solely due to the improved system layout and inherent trimaran vulnerability 

reduction features). Once again, however, the least vulnerable trimaran leads to overall 

fewer items being affected and in need of access and repair works, therefore, showing 

improvements between 25% and 50% in all remaining PMs of this group. Conversely, 
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the second variant produces very similar results to the baseline in the remaining PMs. 

This can be interpreted as the advantages presented being purely related to the location 

of the most vulnerable system items, rather than improvements in the ship’s overall 

configuration which leads to greater post-hit availability of equipment. 

 A similar conclusion may be ascertained when comparing the PM values for the 

aft SAM system recovery PM group. The in-series most vulnerable equipment, such as 

the VLS launchers and LCR, are located one WT section closer to the aft extremity of 

the ship in Frigate Variant 2 compared to the baseline. This leads to PM 3.1.4 having a 

30% improved performance than the baseline, while all other PMs output near identical 

results; this limits the overall improvement to approximately 10%. On the contrary, the 

trimaran variant outputs an almost 70% improved performance. Approximately half of 

this improvement is attributed to the almost 90% improvement in PM 3.1.4, which was 

mainly due to the positioning of the above vulnerable equipment closer to the aft 

extremity of the ship design, therefore decreasing the hit probability and increasing the 

post-hit availability of these items. The remaining improvement is attributed to the 

previously mentioned overall trimaran vulnerability reduction enhancements, captured 

by the improved performance in all other PMs, between approximately 40% and 75%. 

 When considering the forward SAM system recovery PM group, the similar 

system layout between the two monohull frigates has led to almost identical 

performance in all PMs of this group. Once again, the trimaran outperforms the two 

monohulls in all PMs, leading to an overall improvement by approximately 50% 

(although the system layout is comparable to that of the two monohull frigates). This is 

again attributed to the fact that the inherent vulnerability reduction features of the 

trimaran lead to overall less items in need of access and repair, given a constant threat. 

 Finally, in the helicopter system recovery PM group, the baseline is the best 

performing, with Frigate Variant 3 producing a 12% deterioration and Frigate Variant 2 

almost 70%. The above results are clearly related to the aft positioning of the majority 

of the baseline’s helicopter facilities (such as the in-series AVCAT tank, magazine and 

weapon lift, sonobuoy store, helicopter and flight deck), compared to the amidships 

positioned helicopter facilities in the other two variants. The assumed normal 

lengthwise probability hit distribution leads to a smaller probability of these items being 

affected by a constant threat, therefore, increasing the post-hit availability and 

decreasing the number of man-hours required to put the system back to action in the 

baseline frigate. This is clearly shown in PM 3.1.6 where the second and third variants 

output approximately 130% and 60% worse results respectively. This worsened 
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helicopter system layout, as well as the similar workshops and stores layout between the 

first two frigate variants, has led to all other PMs outputting worse values for Frigate 

Variant 2 compared to the baseline. However, the improved trimaran configuration 

previously mentioned has led to overall less system items being affected (when 

including duplicated system items, such as the engines contained in the power sub-

system), leading to an improved PM 3.2.6 performance for Frigate Variant 3 as well as 

for some of the access PMs (PMs 3.4.6 and 3.5.6). 

 After normalising the PM group data and applying the weightings proposed by 

1st Lt. Fonseca, as expected, the most recoverable ship was found to be the trimaran 

variant. It performed approximately 40% better than the baseline due to the overall 

improved performance in seven out of the eight PM groups. The recoverability 

characteristics of the second variant were virtually identical to the baseline, the 

approximately 5% worsening being attributed almost entirely to the less recoverable 

helicopter system.  

 

Sensitivity Study Results 

 

A sensitivity study to the lengthwise probability hit distribution was carried out 

by assuming a linear distribution across the length of the ship designs. The effect of this 

change to overall recoverability was not considerable, with the trimaran variant still 

outputting approximately 40% improved results. However, the effect of this change to 

certain PM groups was profound. The largest effect occurred to the helicopter system 

recovery PM group of the second variant, which now performed identically to that of 

the baseline. This led the second variant to output the second best recoverability 

performance, outperforming the baseline by a negligible 1%. 

 Sensitivity studies were also carried out on the applied weighting scheme by 

using the weighting schemes proposed by the RN officers at Dstl for the three scenarios 

summarised in Section 6.4.1. As in the similar sensitivity study on the vulnerability 

assessment method, the main conclusion was that ship recoverability is more sensitive 

to the ship design than to the weighting scheme or the operational scenario. In fact, the 

output was much less sensitive to the weighting scheme than was the vulnerability 

output, possibly due to the increased number of variables (i.e. PMs) relevant to the 

recoverability assessment method. In all cases examined, the second frigate variant 

performed worse than the baseline by approximately 7% to 16% and the trimaran 

variant performed better by approximately 35% and 43%. The decreased performance 
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of Frigate Variant 2 in scenario 1 was once again displayed (however, to a lesser extent 

than in the vulnerability assessment section). This was a result of the comparatively 

large weighting given to the helicopter system by all RN officers for that scenario, due 

to the presence of a submarine threat (not present in the other two scenarios), 

highlighting once again the poor performance of the amidships helicopter system of that 

design variant. 

 The final sensitivity test carried out involved the decoupling of the 

recoverability assessment method from the vulnerability assessment SURVIVE Lite 

software. As explained in Section 6.6.3, this was done by assuming that an ASM hit at 

any WT section of the ship would affect all equipment and compartments modelled, and 

repopulating the PM matrices. This procedure led to some remarkable results. Certain 

patterns were observed and are briefly summarised. In the float category (Category 1), 

PMs 1.1-1.4 output identical values as before, since they are not related to any items 

being affected by the threat. All other float category, as well as recovery support 

(Category 2), PMs output identical, or near identical values (any negligible differences 

are attributed to slight differences in system layouts, such as the underwater exhaust of 

the forward auxiliary engine of the trimaran frigate design eliminating the abovewater 

vulnerability of an uptake). This was due to the (near) identical equipment and systems 

included in the three frigate designs, therefore, cancelling the advantages previously 

observed in the trimaran variant. For the same reasons, PMs 3.1 and 3.2 for all 

individual major system recovery PM groups output identical or near identical values, 

again cancelling the advantages previously observed, principally in the trimaran variant. 

The only major differences are observed when investigating the access related Category 

3 PMs. When considering Frigate Variant 2, the fact that the aft spare gear stores and 

workshops are positioned one WT section aft compared to the baseline have led to all 

related PMs performing slightly worse. The far aft positioning of the ASM system 

launchers and LPCR (as opposed to the baselines amidships) has worsened the access 

PMs of this system from the forward spare gear stores and workshops. However, this aft 

system layout improved the performance of PM 3.8.3, due to the assumed normal 

lengthwise probability hit distribution. The adverse occurred in the respective PM of the 

helicopter system due to the amidships location of the majority of the helicopter 

facilities (as opposed to the baselines aft). However, access from the forward workshops 

and spare gear stores greatly improved, but access from the aft located naval stores 

worsened. All other access related Category 3 PMs output similar values due to the 

similarities presented in the two ship designs. When considering Frigate Variant 3, the 
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amidships-forward located naval store (as opposed to the aft naval store in the baseline) 

improved the performance of the related PMs of the forward positioned naval gun and 

forward SAM systems and amidships posited ASM systems; conversely, the equivalent 

PMs for the aft positioned aft SAM system and amidships positioned helicopter system 

worsened. Furthermore, all Category 3 PMs related to all spare gear stores and 

workshops performed worse for all major systems (excluding the move system which 

will be analysed later). This was clearly due to all the above stores and workshops being 

positioned less efficiently (i.e. closer to the ships extremities) in the trimaran, therefore, 

worsening access. 

The split nature of the move system produced the most noteworthy results. In 

the baseline frigate (as well as the second variant) the naval stores, aft spare gear store 

and aft workshops were all located close to the aft end of the ship, where the propulsion 

machinery was located. In the trimaran variant with the split forward-aft steering and 

propulsion sub-system this is no longer the case, therefore, greatly worsening the results 

of PMs 3.3.1-3.5.1. However, the access PMs related to the forward spare gear stores 

and workshops were slightly improved due to the location of certain machinery in 

proximity. The overall conclusion is that, although a duplicated and separated system 

presents vulnerability related advantages, it inhibits recoverability (of the total system), 

due to the increased complexities relevant to accessing the dispersed system items. The 

above analysis led the trimaran to output an approximately 50% worse performing 

move system recovery PM group, which is almost entirely responsible for the trimaran 

frigate now being the least recoverable design, outputting results approximately 20% 

worse than the baseline. The two monohull designs output almost identical 

recoverability performance due to the near identical equipment, systems and ship 

configuration. It is clear that the above procedure gives a good description of the 

efficiency of the location of the various stores and workshops required for repair works 

relative to the equipment distribution of the modelled ship systems. This was also 

captured by the recoverability assessment method as performed previously; however, 

the efficiency of the location of these compartments was often overpowered by factors 

such as the number of system items requiring repair (and, therefore, access) after a 

constant threat. By assuming that an ASM hit at any WT section of the ship would 

affect all equipment and compartments modelled, in effect, the constant threat 

assumption is no longer valid. This is because for the same amount of damage on 

different ship designs, a different threat is required. This, therefore, creates a major 

inconsistency in the above method and questions its validity. However, the fact that this 
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inconsistency can only be overcome when involving vulnerability assessment software 

in a recoverability assessment method raises scepticism about the boundary between 

vulnerability and recoverability and if they should be separately considered. 

 

7.3.2 Corvette, Baseline Frigate and Destroyer 

 

 Out of the eight PM groups (immediate DCFF or Float PMs (Category 1) shown 

in Table 4.3, major system recovery or recovery support PMs (Category 2) listed in 

Table 4.4 and the six individual major system, one Move and five Fight systems, 

recovery PMs (Category 3) summarised in Table 4.5; see Section 4.3) the Destroyer 

design performed best in six (float category and naval gun, ASM, aft SAM, fwd SAM 

and helicopter system recovery) while the baseline frigate performed best in the 

remaining two (recovery support category and move system recovery). These results 

can clearly be seen in the PM matrices presented in Section 6.5.2. 

In the float category, the Destroyer design performed marginally better (by 4%) 

than the baseline frigate, while the Corvette performed approximately 13% worse. Some 

of the most noteworthy results include that in PMs 1.1-1.3, the Corvette performed best, 

followed by the frigate and finally the Destroyer design. This is clearly due to the 

smaller ship designs involving reduced distances travelled and WT doors operated by 

DC crews, as well as generally less decks in each WT section. The Destroyer with its 

double side passageways outperformed the other two combatants in PM 1.4, while the 

Corvette with, the single and narrower than the baseline frigate centreline passageway, 

presented the worst result. It is interesting to note that when regarding equipment and 

compartments split in accordance to zoning, such as ATU and Ventilation (PM 1.5), 

firepumps (PM 1.6) and power generation units (PM 1.11), the Destroyer, with the 

greater number of (and therefore, smaller in size) zones, outputs the worst results. This 

signifies that the zones of this ship design are smaller than the ideal, therefore, the 

probability that one of the above items is affected after the corresponding zone is hit, 

would increase (i.e., a smaller zone is more vulnerable in the same way that a smaller 

ship is). It is also interesting that in PM 1.11 the Corvette outputs the most promising 

results, possibly due to the same number of engines as in the other two designs (i.e. 

five) spread over only two zones, therefore, significantly increasing availability. 

However, when considering the firepump and power system as a whole (PMs 1.7 and 

1.12), the smaller Corvette performs worst due to possessing the most vulnerable such 

systems, decreasing post-hit availability. Conversely, when considering items not 
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connected to the zoning arrangements, such as the SCC (PM 1.13), the Bridge (PM1.14) 

and the Operations Room (PM 1.15), the Destroyer design significantly outperforms the 

other two combatants due to the least vulnerable, larger Destroyer, leading to an 

increased availability of such items after the assumed, unvarying, attack.  

Due to the different relative weightings of the NBCD stores (mentioned in 

Section 6.5.2) it is difficult to make a comparison of the related PMs. However, as a 

whole, the NBCD store related PMs of the Corvette design outperform the almost 

identically performed PMs of the other two combatants. This is attributed to the location 

of the stores, with the Corvette including only two such stores, both positioned close to 

the extremities (as opposed to the other two ship designs which also include amidships 

positioned NBCD stores). Therefore, given the normal lengthwise probability hit 

distribution, the probability that the stores are affected by a constant hit is decreased and 

post-hit availability increased. For a similar reason, the Destroyer design outperforms 

the other two combatants in the FRP related PMs, 1.16 and 1.17. Similarly to Section 

7.3.1, it is observed that the Destroyer performs worse in most access related PMs, due 

to its larger size, but this is counterbalanced by the increased availability of items 

necessary for DCFF after a given attack, due to the increased inherent vulnerability 

reduction of the larger design. 

In the recovery support PM group, both the Corvette and Destroyer designs 

output more than 30% worse results than the baseline frigate. The Corvette performs 

worse in every PM of that group (with the exception of PM 2.4) unsurprisingly since the 

increased vulnerability of the smaller ship leads to decreased post-hit availability of 

stores, workshops and command and control centres. PM 2.4 performs better due to the 

fact that the Corvette’s aft spare gear store is only affected when the WT section in 

which it is located is hit (whereas the corresponding store in the frigate design is also 

affected when one adjacent WT section is hit), therefore, increasing post-hit availability. 

This occurs possibly since the Corvette’s store is located at the middle of a WT section 

while the frigates store is located adjacent to a WT bulkhead. When considering the 

Destroyer design, as expected due to its larger, less vulnerable, size, it performs 

correspondingly or better in all PMs of this group, apart from PMs 2.1 and 2.4. The 

reason being that the larger aft workshops and aft spare gear stores of the Destroyer 

span the entire length of a WT section and are therefore affected by a hit in that and any 

of the two adjacent WT zones (as opposed to the two WT zone vulnerability footprint of 

the equivalent frigate compartments). Therefore, the probability that these 

compartments are affected by a constant threat increases in the Destroyer design, 
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decreasing post-hit availability. This has almost caused a threefold decrease in the 

performance of PMs 2.1 and 2.4, overpowering the better performance of the remaining 

Destroyer PMs and contributing to the overall decrease of this PM group. 

When considering the move system recovery PM group, once again the baseline 

frigate was the best performing, with the Corvette and Destroyer designs outputting 

approximately 4% and 27% worse results. The split, therefore, invulnerable to any 

single ASM attack forward and aft propulsion system of the Corvette lead to a value of 

zero for the high-weighted PM 3.1.1 (therefore, requiring zero man-hours for the move 

system to be functioning post-attack). However, all other PMs of this group outputted 

worse values since generally more system items (including duplicated equipment) were 

affected in the Corvette and were, therefore, in need of access and repair. Interestingly, 

the Destroyer was the worst performing in this PM group, largely because of its aft 

spare gear stores and workshops being located further from the propulsion machinery 

than in the frigate design, worsening the values outputted for the access related PMs 

3.4.1 and 3.5.1. 

Regarding the remaining (Fight) system recovery PM groups (naval gun, ASM, 

aft SAM, fwd SAM and helicopter system) the conclusions made are consistent. The 

Destroyer performs better by between 1% and 24% and the Corvette worse by between 

10% and 71%, when compared to the baseline frigate. (The margin by which each PM 

group differs from that of the baseline frigate depends on factors such as the number of 

items in need of repair, their location with respect to the stores and workshops and the 

relative weighting of each PM). The similar conclusions are a result of the similar 

system hierarchies and layouts in all three combatant designs and the general tendency 

to increase vulnerability and, therefore, the number of items requiring repair, with 

decreasing ship size. Regarding the Destroyer design, the only results worth further 

commenting on is the over 20% decrease in performance of PMs 3.4.3, 3.5.3, 3.4.6 and 

3.5.6 (see Table 6.16 in Section 6.5.2) compared to the baseline frigate. This occurs due 

to the larger distance between the aft spare gears stores and aft workshops and the 

vulnerable, in-series, items of the ASM and helicopter systems (such as the ASM 

launchers and LPCR, and the AVCAT tank, magazine and weapon lift, sonobuoy store, 

helicopter, flight deck, Operations Room and sonar instrument room). Note that, 

additional to the above stores and workshops related PMs output worse values in the 

Destroyer than in the baseline frigate, however, by a negligible margin and so are not 

commented upon. The above is further justification on the increased access related 

complexity relevant in larger ship designs. However, these effects are balanced and 
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sometimes overpowered by the fact that a larger, less vulnerable ship would require 

fewer items needing access and repair after a constant threat. For this reason, all access 

PMs of the system recovery (Category 3) PM groups of the Corvette perform worse 

than the two other combatant designs, although the distances involved are smaller. 

Regarding the Corvette design, the only result worth further commenting on is the over 

20% increased performance of PM 3.1.4 (see Table 6.16 in Section 6.5.2) compared to 

the baseline frigate (this being the only PM in the Category 3 PM groups where the 

Corvette performs better than the frigate). This is attributed to the in-series, i.e. more 

vulnerable, equipment items of the Corvette aft SAM system, such as the VLS 

launchers and LCR, being located closer towards the designs aft end. The assumed 

lengthwise hit distribution (meaning that the in-series equipment in the Corvette have a 

lesser chance of being hit) leads to the Corvette having a larger availability of such 

items post-hit. However, the worse performance of the Corvette in all other PMs of this 

group is indicative that the above advantages are purely related to the location of the 

most vulnerable system items, rather than improvements in the ship’s overall 

configuration which would lead to greater post-hit availability of equipment. 

From the above analysis one would expect the Destroyer design to output the 

best recoverability performance results, since it performed best in six out of eight PM 

groups. However, this is not the case since after normalising the PM group data and 

applying the weightings proposed by 1st Lt Fonseca, the Destroyer was found to be 

approximately 6% less recoverable than Frigate Variant 1. As evident from Table 4.7 in 

Section 4.3.4, two of the PM groups (the Float PM group and move system recovery 

PM group) involved incomparably higher weightings (10 and 9 respectively) than all 

other PM groups (having a weighting of 1 or 2). In the first of these PM groups both the 

frigate and Destroyer designs outputted comparable results; in the latter group, however, 

the baseline frigate significantly outperformed the Destroyer, primarily due to the access 

PMs related to the aft spare gear stores and workshops, as summarised above. (The PM 

groups where the Destroyer outperformed the baseline frigate involved relatively small 

weightings). Therefore, it is a combination of access complexities encountered in larger 

ship designs during repair tasks and the weighting scheme selected that led to the above 

result. It could be deduced that there is an optimum combatant size where the damage 

caused by a threat (therefore, the amount of items requiring repair) combined with 

access implications would lead to the most recoverable ship. However this design point 

would be extremely difficult if not impossible to find since it would depend on aspects 

such as the weighting scheme employed and the threat considered. As expected the 
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Corvette design was the least recoverable design (21% worse performing than the 

baseline frigate) primarily due to the fact that a constant threat resulted in much greater 

damage in this smaller and more vulnerable ship, therefore, more items required 

accessing and repair works. 

 

7.3.3 AOR Variants 

 

 Out of the nine PM groups (immediate DCFF or Float PMs (Category 1) shown 

in Table 4.3, major system recovery or recovery support PMs (Category 2) listed in 

Table 4.4 and the seven individual major system, one Move and six Fight systems, 

recovery PMs (Category 3) summarised in Table 4.5; see Section 4.3) AOR Variant 1 

performed best in four (float category, recovery support category and ability to RAS 

ordnance and CIWS recovery) while AOR Variant 2 performed best in the remaining 

five (move, ability to RAS AVCAT and dieso, ability to RAS dry stores and aviation 

support system recovery). These results can be clearly seen in the PM matrices 

presented in Section 6.5.3. 

In the float category AOR Variant 1 performed considerably better, by 

approximately 30% compared to its counterpart. Some of the most noteworthy results 

include that in PMs 1.1 and 1.2 AOR Variant 2 performed better. Although the aft FRP 

section bases in both ship designs were collocated (leading to similar values for PMs 1.8 

and 1.16) the absence of systems and compartments other than cargo in the forward 

section of AOR Variant 2 led to the forward FRP section base being located at the 

forward end of the (single) aft superstructure block, therefore, closer to amidships. (In 

AOR Variant 1 the forward FRP section base was located at the far forward end since 

the philosophy was to split the two section bases between the two superstructure blocks 

containing the living and working spaces). The more efficient, closer to amidships, 

location of this section base led to smaller distances travelled and less WT doors 

operated by the FRPs; it also, however, led to much worse performing PMs 1.9 and 1.17 

due to the increased vulnerability and decreased post-hit availability associated with 

items located close to amidships due to the assumed normal lengthwise hit probability 

distribution. The position relative to amidships of the ATU and ventilation 

compartments also led to AOR Variant 2 outperforming the first variant in PM 1.5. 

However, in all other PM of this group, either both auxiliary ship designs performed 

similarly or AOR Variant 1 performed better (in some cases more than 90%). The 

reasoning is similar to that given for PMs 1.9 and 1.17, i.e., due to the absence of 



292 
 

forward superstructure in the second variant, the single aft superstructure block had to 

be enlarged and extended towards amidships in order to fit all required systems and 

spaces. This led to equipment necessary for DC, such as firepumps (PMs 1.6 and 1.7), 

power generation units (PMs 1.11 and 1.12), SCC (PM 1.13), bridge (PM 1.14) and 

Operations Room (PM 1.15) being located closer to amidships, therefore, the 

probability of them being hit by the constant threat was increased, decreasing their post-

hit availability. Therefore, if it were to be assumed that the normal distribution used to 

describe the lengthwise hit probability is realistic, the above analysis demonstrated that 

concentration of systems at the extremities of the ship design (as was done in AOR 

Variant 1) decreases their vulnerability and increases their availability during recovery 

and repair efforts.  

In the recovery support PM group AOR Variant 1 performed approximately 

14% better than the second variant, the main reason being the improved performance of 

the SCC and Operations Room related PMs (2.6 and 2.7) summarised above. However, 

a comparison between the stores and workshops related PMs is difficult due to the 

different numbers of these compartments in the two variants (mentioned in Section 

6.5.3). 

When considering the move system recovery PM group, the second variant 

performed best by approximately 9%. The split and therefore, invulnerable to any single 

ASM attack, forward and aft propulsion system of the first variant leads to a value of 

zero for the high-weighted PM 3.1.1 (requiring zero man-hours for the move system to 

be functioning post-attack). However, the total man-hours needed to restore all 

(including duplicated) affected items of the move system is comparable in both designs 

due to the identical hull and vulnerability characteristics (in fact PM 3.2.1 is slightly 

worse for AOR Variant 1 due to additional propulsion equipment, such as the forward 

motor and pumpjet, not included in AOR Variant 2). This led to AOR Variant 2 

significantly outperforming the first variants in all access related PMs of this group. In 

the second variant, all power and propulsion machinery were concentrated at the aft end 

of the ship, as were the unduplicated naval and spare gear stores and workshops, 

therefore, providing easy access. In the second variant, not only was the propulsion 

system split in a forward and aft configuration, but so were the stores and workshops. 

This overcomplicated the access arrangements and more than overpowered the effects 

of the invulnerable move system. Once again, the importance of access to damaged 

equipment is highlighted, but should be treated with caution due to its high dependence 
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on the weighting scheme used. In addition, the increased difficulty related to the 

recovery of duplicated and separated systems was again emphasized. 

In the two RAS liquid capability recovery PM groups, AOR Variant 2 performs 

16% and 19% better, respectively. This is because the duplicated ship handling sub-

system of AOR Variant 2 (consisting of the bridge and RASco) has resulted to an 

invulnerable capability given a single ASM attack, therefore, requiring zero man-hours 

for post-attack capability restoration (PMs 3.1.2 and 3.1.3). All other PMs of this group 

output similar values due to the similar system configurations. 

 The duplicated ship handling sub-system of AOR Variant 2 also had an impact 

in PMs 3.1.4 and 3.1.5 of the two RAS solid capability recovery PM groups, therefore, 

reducing the number of man-hours to restore the capabilities after attack (however, not 

to zero, since, as analysed in Section 7.2.3 these capabilities are not invulnerably to a 

ASM attack). Therefore, the total improvement of AOR variant 2 in the ability to RAS 

dry stores recovery PM group was limited to approximately 5% and the two variants 

performed identically in the ability to RAS ordnance recovery PM group. 

Considering the aviation support system recovery PM group, the second variant 

outperformed AOR Variant 1 by approximately 33%. As summarised in Section 7.2.3 

the vulnerable, in-series, items of this system, such as the flight deck, hangar, ship’s 

own AVCAT tank and all aviation workshops, are protected by additional structure in 

AOR Variant 2, therefore, leading to an improved performance in PM 3.1.6. 

Furthermore, similar to the move system in AOR Variant 2, the aviation support system 

was concentrated towards the aft end in both AOR designs. The concentration of stores 

and workshops required for repair works also towards the aft end of the second 

auxiliary variant (as opposed to the split forward and aft such compartments in AOR 

Variant 1) led to a considerable improvement in the access related PMs, further 

augmenting the performance of AOR Variant 2 in this group. 

Finally, in the CIWS recovery PM group, AOR Variant 1 performed better to a 

level of more than 70% than its counterpart. Both systems were invulnerable to a single 

attack leading to zero values for PMs 3.1.7. However, the forward SeaRAM sub-system 

of the second variant was more vulnerable to fragmentation from the RAS posts and 

crane since it was not shielded by any structure, unlike in AOR Variant 1. This led to a 

larger total system vulnerability (including duplicated items), meaning that more system 

items were affected and needed repair in the second variant. Therefore, PM 3.2.7 of 

AOR Variant 2 performed worse by almost 100%. The fact that more items needed 

repair implied that more items required accessing from the stores and workshops, 



294 
 

therefore, dramatically decreasing the performance of all access related PMs of this 

group in AOR Variant 2. This was further amplified since all such stores and workshops 

were located at the ship’s aft end and the most vulnerable CIWS sub-system was 

located at the forward end. Furthermore, access to damaged CIWS related items form 

the aft stores and workshops of AOR Variant 1 was unobstructed. 

After normalising the PM group data and applying the weightings proposed by 

Lt. Cdr. (rtd.) Day it was found that the overall recoverability characteristics of the two 

AOR Variants were almost identical (less than 1% difference), although, as analysed 

above, certain remarkable differences were identified in the individual PM groups. 

However, this could be expected since there was an approximate balance in the number 

of PM groups (and their associated weightings) in which each variant outperformed its 

counterpart. 

 

7.3.4 General Observations on Recoverability Assessment 

 

Unlike the susceptibility and vulnerability assessment methods applied, it was 

necessary to develop a new recoverability assessment method. It was found that the 

recoverability assessment method developed could be relatively straightforwardly 

applied to different ship types encountering different threat scenarios. However, as 

mentioned in Sections 4.3 recoverability assessment is the most demanding and least 

researched area of survivability assessment and requires many assumptions, especially 

when the design is just at the concept definition level. The developed method involved 

various simplifying assumptions, in particular disregarding variations in human 

performance (although, theoretically, this could be addressed by varying the man-hour 

repair times employed, see Table 4.10 in Section 4.3.5). But also for fire (or flooding) 

spread (since it is simply assumed that only and all items in the hit WT section will be 

affected by fire) and the effects of excessive heel and trim (for example, from fire 

fighting). Despite this, the approach adopted can be used in the concept phase to 

investigate the efficiency of the arrangement of DC related items, major ship systems 

and stores and workshops required for repair works. This can be done in terms of 

magnitude of resulting damage and access to damaged items/WT sections. Therefore, 

the efficiency of the layout and system architecture can be improved in a concept stage 

ship design. As with the vulnerability assessment method, the recoverability assessment 

method facilitates results backtracking and provides ample insight into the effectiveness 
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of the recoverability characteristics of each ship design, facilitating the subsequent 

adoption of corrective design actions. 

It is, therefore, evident that the developed method examines recoverability of the 

ship design; however, this is done without regard to situational awareness, which forms 

an important part of recoverability (as well as susceptibility) performance. In Section 

7.1.4 it was noted that human performance, including human situational awareness, is 

difficult to quantify. Moreover, the developed survivability assessment method does not 

assess human performance related aspects (which are assumed to be constant given that 

all ships compared are assumed to have the same crew once a selection between the 

designs was made and brought forward); rather, it assesses the ship design itself and 

how the choice of configuration has affected survivability. Therefore, the proposed 

recoverability assessment method is consistent with the other two components of the 

survivability assessment method. It is interesting to note that when asked to propose 

alternative weighting schemes, certain naval officers recommended the addition of PMs 

regarding unquantifiable entities such as training, situational awareness, availability of 

skills as well as prioritising between duplicated systems (such as FRPPs and NBCD 

stores) which also depend on human and operational factors due to decisions probably 

made by the CO. All these comments serve to highlight the link between human 

performance and naval ship recoverability. 

Similarly to the vulnerability assessment method, there are issues regarding the 

use of appropriate weighting schemes which rely on human input (and are, therefore, 

subjective) rather than some numeric simulation. The impact of the applied weighting 

scheme on certain results was again highlighted, although very broad patterns were 

observed in the weighting schemes proposed by different naval officers. In Section 

6.6.1, various remarks made by the interviewed naval officers were mentioned. It was 

noticed that there were disagreements regarding, for example, the contents and 

significance of NBCD, naval and spare gear stores which affected the weightings given 

by each officer. Dissimilarities were also perceived regarding the perceptions of the 

relative importance of the various compartments (represented by their corresponding 

PMs) on DCFF and the repair routines followed. In addition different naval officers 

proposed the addition of various quantifiable PMs (but possibly not available in 

preliminary ship design), for example, those relating to items such as fixed firefighting 

systems, detection equipment (which would affect ship situational awareness), 

communications, sickbay, smoke curtains and the Weapon Section Base. All this 

signifies that each officer draws on his own experiences, knowledge and specialisation. 
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This means that the development of appropriate weighting schemes, as well as suitable 

PMs, is an area where further research is required. 

An interesting fact regarding the recoverability assessment of the two AOR 

variants is that the liquid and solid cargo tanks were assumed to belong to the fluid 

tanks and light engineering repair categories respectively (Table 4.10 in Section 4.3.5). 

This, however, gives an indication of the damage caused to the compartments 

themselves rather than the cargo and could be interpreted as the cargo tanks being 

empty. It would, therefore, be appropriate to investigate the recoverability 

characteristics of an AOR design with no cargo, as well as when loaded. This could be 

done by assuming that all cargo belongs to the last equipment repair category, i.e. 

humans and stores, assumed irreparable if affected by a hit. 

Again the scale on the y-axis of the normalised recoverability charts (Figure 

6.39, Figure 6.40 and Figure 6.41 in Section 6.5) needs careful definition (see Sections 

7.1.4 and 7.2.4 for susceptibility and vulnerability axis definition respectively). Zero is 

defined as the damages caused by the threat (ASM in this instance) being instantly 

recoverable despite a hit at any location of the ship being assessed. This would mean 

that all PMs would output a value of zero, i.e. either the number of man-hours to repair 

damaged items would be zero (instantly reparable), or no items would be damaged 

(corresponding to a vulnerability of zero, in which case recoverability assessment would 

not follow). However, a value of zero in some cases (PMs 1.1-1.4) is impossible since it 

would imply that the ship design would have a length of zero with, therefore, no WT 

doors and decks, and infinite access routes. Unity is defined as the recoverability 

performance of a baseline design (or the worst performing design in the case of the 

AOR designs; see Section 7.2.4). In contrast to susceptibility and vulnerability 

assessment, the definition of unity could not be changed to something similar to: the 

ship being assessed and its systems are totally unrecoverable (100% irreparable) to the 

threat, as this would imply infinite values in the PMs. For example, PMs quantified by 

man-hours to repair a specific equipment/system would require infinite values for 

irreparability. It becomes evident that defining the scale in recoverability assessment 

becomes increasingly difficult. Modifications to the PM recoverability assessment 

method would be required to achieve a more meaningful scale, indicating that this is an 

area for further research. These issues could be addressed partially through the 

development of a set of minimum acceptable recoverability standards for each ship type 

and for a given threat (possibly based on the recoverability performance of current 

ships), with all future alternative designs being assessed against these standards 
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(analogous, for example, to damage stability assessment), in the same manner as 

outlined in Sections 7.2.4 for vulnerability assessment. 

 Various conclusions were made during the application of the recoverability 

assessment method on the seven ship design studies:- 

- The impact of the number of damaged, unavailable, items which require repair 

and the access arrangements to the damaged areas, on recoverability 

performance was identified (including the effect of ship size on these two 

factors); 

- The contrast between the improved vulnerability but degraded (total system) 

recoverability characteristics of duplicated and separated systems due to arising 

access complexities was observed. (Total system recoverability increases in 

importance when follow-on attacks are expected. This is another factor that 

could influence the weighting scheme since PM 3.1 just focuses on the 

recoverability performance of the system because of any redundancy while PM 

3.2 focuses on the recoverability performance of the total system. The 

significance of the latter would increase if follow-on attacks are expected); 

- The fact that there is an optimum ship size and number of zones per ship. 

In addition, the impact of factors such as the applied weighting scheme and the 

susceptibility related assumed lengthwise hit probability distribution, which has been 

acknowledged as an aspect requiring further work due to its strong influence on all 

survivability constituents, were identified. Finally, the difficulty in distinguishing the 

boundary between vulnerability and recoverability was mentioned and the belief that 

they should be considered separately was questioned. 

 

7.4 Total Survivability Assessment Results Analysis 

 

7.4.1 Total Survivability Star (Triangle) Plots 

 

 The preferred method of presenting total survivability results is through the 

adoption of star plots in order to separate the results of the three constituents rather than 

providing a single (questionable) overall measure. Thus a smaller star (triangle) area for 

one design would indicate a more survivable ship (for a given weighting schemes and 

assumptions). The results illustrated by the star plots in Section 6.7 are those already 

discussed under the three survivability elements so further detailed constituent analysis 

is not required; however, some general survivability observations need to be made.  
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In both sets of comparative studies of the frigate and AOR variants, the 

susceptibility results of the ship designs compared were similar. This was not the case 

with the size varied combatants comparative study, where the Destroyer significantly 

outperformed the remaining two combatant designs (due to the much more capable 

AAW system of the Destroyer design, resulting in the largest effect that a single 

survivability feature has presented out of all features investigated in the current project, 

see Section 7.1.2).  

The choice of different hull configuration (such as in the frigate variants) was 

seen to have a much greater impact on vulnerability and recoverability than simply 

changing the ship size (such as in the combatants); although, the results were also 

affected by the choice of the applied weighting scheme, as well as, possibly, the specific 

hull configuration selected (hull configurations other than monohulls and a trimaran 

were not investigated). In addition, the AOR variant comparative study indicated that 

significant vulnerability reduction enhancements may be achieved by altering the 

internal and external configuration of a single hull configuration, despite identical 

dimensions, requirements and performance characteristics. 

Finally the least vulnerable ship design is not necessarily the most recoverable 

one. This arose from recoverability performance not only relying on the magnitude of 

the damage to the ship systems. It also relies on factors such as the access arrangements, 

the distribution of DCFF and repair works related items, the system hierarchies and 

architectures (and the weighting scheme used). In addition, the recoverability 

assessment method investigated total system recoverability, whereas the vulnerability 

assessment method is biased in favour of redundant systems. Therefore, some cases 

(such as the split propulsion system of Frigate Variant 3 and the Corvette design and the 

duplicated ship handling sub-system of AOR Variant 2) can be seen to augment the 

difference in vulnerability performance of different ship designs. However, when the 

magnitude of the damage caused by the same threat significantly differed between the 

designs being compared, this was found to usually dominate the remaining 

recoverability related factors. This was observed in the frigate variant case where the 

considerably less vulnerable trimaran outperformed its two counterparts in 

recoverability, despite the access deficiencies due to its larger size. 

An advantage of presenting the results in this star plot form is the avoidance of 

multiplying the three survivability constituents together, which side steps the issue as to 

whether the three survivability elements are truly statistically independent (see Sections 

3.3.53 and 4.4). Furthermore, with a star plot results presentation, further spokes such as 
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cost, displacement and power can be added; although it can only depict characteristics 

that are currently amenable to quantification (Vasudevan and Rusling 2007). The main 

disadvantage with this presentation is that the scales in the three axes (susceptibility, 

vulnerability and difficulty of recoverability) are not directly comparable (since only the 

definition of the origin, i.e. zero, is constant in all axes, as mentioned in Sections 7.1.4, 

7.2.4 and 7.3.4). For example, if a design has a susceptibility of 0.7 and a vulnerability 

of 0.6, it does not necessarily mean that the design is less vulnerable than it is 

susceptible, only that the improvement in vulnerability between that design and the 

baseline design it is being compared to is larger than the improvement in susceptibility. 

Since it is entirely a competitive approach, it is necessary to comprehend the 

survivability performance of the baseline in order to interpret the survivability 

performance of the designs being compared to the given baseline. This raises issues 

regarding how the diagram should be interpreted, with regards to the significance of the 

enclosed area. An obvious solution would be to equalise the definition of unity in all 

three scales (similar to the definition of zero, i.e. to set one as being equal to 100% 

susceptible, 100% vulnerable and 0% recoverable); however, as discussed in Sections 

7.1.4, 7.2.4 and 7.3.4, this is possible for susceptibility and vulnerability performance, 

but not currently for recoverability performance. A partial solution would be to develop 

standards for each survivability constituent (for each ship type and threat), and set unity 

as being equal to the minimum acceptable relevant standard. 

 

7.4.2 Total Survivability Bar Charts 

 

 The above disadvantage would be avoided if the individual survivability results 

were combined in the manner described in Section 4.4 and output the results illustrated 

in Figure 6.51 of Section 6.7. After following this procedure for the three frigate 

variants, it can be said that the results depicted in the total survivability star plot (Figure 

6.48 in Section 6.7) were confirmed; i.e., overall, Frigate Variant 3 is the most 

survivable design, followed by the baseline and lastly the second variant. In addition 

since this procedure outputs a single survivability value it may be concluded that a 

better relative comparison can be made between the total survivability performances of 

the ship designs being compared. However, the main limitation of this method is that it 

is based on PM matrices which are specifically designed to investigate recoverability 

performance rather than total survivability. Therefore, the validity of the results and the 

relative survivability performance magnitude of each ship design is questionable. For 
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this reason it was decided to apply this method to a limited number of ship design 

studies. Other limitations include the issues with regards to defining the y-axis (see 

Section 7.3.4) and the questionable statistical independence of the three constituents, 

required for a single numerical value. 

 It can be concluded that currently, the use of total survivability star plots is the 

most sensible means of presenting results. However, it is clear that visualisation of 

results and comparison methods are an area for further development. 

 

7.5 Ship Costing Results Analysis 

 

7.5.1 Unit Procurement Cost 

 

 Certain assumptions, such as the material and equipment costs, labour costs, 

purchasing overhead factors, shipyard hourly charge-out rates and the parametric 

relationships used were based on historical (monohull) data and therefore are dubious in 

accounting for new technologies and innovative design features. It can be argued that 

when using specific item costs (as was done for engines, electric motors and payload 

items) more accurate cost estimation should be achieved; however, the lack of data in 

many cases led to estimations based on similar equipment and, therefore, further 

uncertainties. 

One of the major uncertainties of the UPC cost estimation was the design 

contingency margin adopted. All UPC analysis margins were taken from references 

such as Dirksen (1996) and UCL (2010a). However, there was no indication as to what 

was an appropriate contingency margin for an innovative hull configuration, such as a 

trimaran, beyond a general comment regarding the use of larger margins for Advanced 

Marine Vehicles (AMVs). It was, therefore, simply decided to increase this margin by 

1% between each frigate variant designs (see Table A57 in Appendix 13.1). From the 

above comments, the very similar UPCs were to be expected. Thus, Frigate Variant 3 is 

less than 5% more expensive and Frigate Variant 2 approximately 2% more expensive 

than the baseline. 

In all individual weight groups (with the exception of the main propulsion and 

payload groups) the trimaran gave larger costs, followed by the second variant and then 

the baseline. This was also expected since the parametric relationships scaled with 

weight and the ship designs descended in displacement in the same order. The main 

propulsion group for the second variant is slightly more expensive due to the larger 
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generating capacity of that design (see Appendix 9.4) (compared to the identical power 

generation units used in Frigate Variants 1 and 3). The payload group follows a 

converse pattern due to all three ship designs incorporating a constant payload (meaning 

payload equipment costs were identical and installation costs similar) and a 

displacement scaling factor applied to all weight groups (which has an effect of 

decreasing relative costs for heavier ship designs). This raises issues as to if the 

displacement scaling factor should be applied to all or just to specific weight groups 

(such as the hull group in which, due to economies of scale, the purchase of larger steel 

quantities should result to cost benefits from cost per weight reductions). In all three 

frigate design cases studied, the payload group accounted for almost half of the UPC, 

followed by the hull and main propulsion groups, being the only groups responsible for 

more than 10 % of the UPC. This suggests that cost cutting studies should focus on 

these areas. However, the effect this would have on survivability performance is 

unclear. 

 

7.5.2 Through Life Cost 

 

 When estimating TLC, the fact that costs have to be forecasted can only increase 

the uncertainties of the resultant values. The projected discount rate, inflation and fuel 

inflation are likely to be sources of significant error. However, since in the current case 

different ship designs are compared, more emphasis is given to the relative, rather than 

the absolute, cost values, thus, decreasing the importance of the accuracy of the above 

values. However, elements such as the forecasted operational profile could mislead the 

costing outputs due to the different speed-power characteristics of the three frigates. 

Such errors would be enhanced by the fact that the assumed inflation of fuel is larger 

than the assumed discount rate, whereas the opposite is true for the assumed inflation of 

all other TLC elements. 

Projected costs on maintenance and refits are derived though parametric 

relationships which are also based on historical (monohull) data and, therefore, often 

cannot account for new technologies and innovative design features. The fact that these 

parametric relationships scale with the already dubious UPC (and individual weight 

group cost) prediction increases uncertainty. As do the facts that all ships are assumed 

to be constructed in the same timeframe and all ships are assumed to undergo the same 

number of major and minor refits at identical intervals, regardless of the novelty level of 

the design. It is, therefore, not surprising that the TLC estimations of all frigates are 
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very similar (Frigate Variant 3 TLC costs are approximately 4% and Frigate Variant 2 

approximately 2% higher than the baseline). 

In all individual TLC elements (with the exception of the anticipated fuel costs) 

the trimaran outputted the larger costs, followed by the second variant and the baseline. 

Again, this was not surprising since crew and consumable costs are assumed to scale 

with complement (which in turn scaled with displacement) and maintenance and refit 

costs scaled with UPC (which also scaled with displacement). Larger fuel costs were 

projected for the second frigate variant due to the less efficient hull design (see Section 

5.1.2). The largest contributors to TLC were in all cases, and by a large margin, the 

projected fuel and refits costs. Together they were responsible for approximately 66% 

of the total, therefore, suggesting that cost cutting research should focus on these 

costing elements. However, once again the effect of this on survivability is not obvious. 

 

7.5.3 Whole Life Cost 

 

 The WLCs for the three frigate variants were estimated by adding the UPC, 

TLC, FOC costs and disposal costs for an assumed class of twelve frigates. A number of 

simplifying assumptions, such as a shipyard learning curve which would gradually 

decrease UPC, the scaling of FOC costs with UPC, the costs associated with scrapping a 

ship within the UK and the clearly unrealistic assumption of construction and disposal 

of all twelve ships of each class in the same years, were applied. It was found that the 

FOC and disposal costs were negligible compared to the UPC and TLC, therefore, 

leading to very similar WLCs for the three variants (the difference between the baseline 

design and the other two frigate designs was an increase of approximately 2% and 4% 

respectively). It is interesting to note that the discounted TLC accounts for 

approximately 64% of the WLC in all three frigate cases, with UPC accounting for 

approximately 35%. However, cost cutting is usually biased towards UPC, not only 

because the effects of UPC are much more immediate and, therefore, of interest to final 

decision making authorities, but also since the elements of the TLC have to be 

forecasted through a much larger timeframe, spanning through decades, therefore, 

dramatically increasing the uncertainties embraced. Again, however, the parametric 

costing model employed cannot account for the effects of this on survivability 

enhancement features. 
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7.5.4 General Observations on Ship Costing and Survivability Assessment 

 

 The major conclusion from the ship costing study applied to the three frigate 

variants is that the differences in ship related costs are negligible. This observation 

magnifies in importance if it is used to assess the merits of the survivability 

characteristics of the three frigate designs. It would seem that survivability performance 

is more sensitive to the ship (hull, internal and external) configuration than is ship cost. 

The costing method utilised was a parametric method, since such methods are generally 

more applicable to preliminary stage ship designs. As the parametric relationships used 

for all frigate designs were identical, the similarity between the results is not surprising. 

In addition, a vast number of simplifying assumptions and uncertainties were involved 

in the costing models, questioning the validity of the results. 

However, since in western nations naval ship design has been characterised as 

‘cash limited’ during recent decades (Brown 1986a), ship costing is one of the principal 

factors governing the inclusion of survivability (and other) features on ship designs. 

Clearly, the parametric costing model used is not capable of satisfactorily linking 

survivability performance to ship cost and, therefore, assessing the value of 

survivability. Survivability features such as the application of flare/tumblehome, the 

reduction of microgeometry and duplication/separation of equipment (to name a few) 

cannot be captured by the parametric costing model. It is evident that a more detailed 

costing model is needed; however, this might only be possible during the later design 

stages. The perception of the cost of survivability as being very (possibly 

unrealistically) high (National Warship Survivability Committee 2008) might however, 

mean that many survivability enhancement features will have already been withdrawn 

before reaching the later design stages. The need for an improved costing method during 

preliminary ship design and for a better understanding of the cost of survivability is, 

therefore, clear. 

 

7.6 Research Review 

 

This section considers whether the proposed approach in Chapter 4 addresses the 

gaps identified in Chapters 2 and 3 and, therefore, considers if the research aims in 

Chapter 1 were met and suggests a way forward for this research. The Research Review 

is split into nine sub-sections. The first three give background information on the topic, 

therefore, justifying the need for a survivability assessment method linked to 
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architecturally orientated preliminary ship design. The following three sub-sections 

summarise the capabilities of current survivability assessment techniques, identify 

where further work was required and describe how this was tackled. The seventh sub-

section includes a comparison between the proposed approach and MISSION, the 

current MOD programme attempting to integrate all survivability constituents, and leads 

to the eighth sub-section which discusses some of the perceived advantages of the 

proposed approach. The final sub-section gives a list of what are considered the main 

areas for further work in this research. Those areas were identified by comparing the 

work accomplished to the initial research aims as well as by detecting problematic areas 

throughout the course of the project. 

 

7.6.1 The Need for Survivability Quantification 

 

 It is commonly accepted that naval ship design has shifted from the technically 

best to the affordable design (Brown 1986a). The causes of this are a combination of 

various factors such as the above-inflation increase in UPC and the declining defence 

budgets, which have also led to a gradual reduction in the number of ships of most 

western navies. Another commonly accepted fact is that the main operational difference 

between naval and commercial ships is that the former are designed to be deliberately 

placed in harm’s way. Naval ships, therefore, have to survive much tougher conditions, 

requiring additional measures to the ship’s inherent survivability features. Such 

requirements establish the main distinction between naval and commercial vessels, 

contributing to the increased complexity and costs associated to warships. 

The increased knowledge concerning naval ship survivability acquired over 

recent decades has resulted in various documents and publications from major navies, 

including survivability related rules and management strategies to be used as guidance 

by the designer. Such documents usually contained feature-based guidance based on 

historical experience, rather than performance based specifications, due to the difficulty 

in obtaining survivability quantification methods and tools. Thus, survivability features, 

whose performance is difficult to quantify, become hard to justify, presenting an 

apparently attractive area for cost cutting. It has been argued that such attitudes could 

lead to unbalanced and ineffective ship designs (Brown 1993), especially when 

considering the increase in magnitude and variety of threats that warships currently face 

and the decreasing number of warships. 
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It has been argued that the best way to deal with the problems created by the 

increasing warship costs, declining budgets and requirements of increased capability is 

through innovations in both individual ship designs and the design process. However, 

prescriptive rule-based design inhibits novel and innovative designs (for which no 

historical data exist and are seen to be risky) and design processes; in addition, safety 

rules are always made following an incident. (This is also true in commercial ship 

design, where Table 1 of (Cai et al 2012) lists numerous safety regulations set after 

major incidents). Consequently, the need for methods to quantify survivability (and 

other important ship performance characteristics), which would allow innovations 

(therefore, theoretically enable the achievement of more cost effective designs) and 

justify survivability features is clear. 

 

7.6.2 The Importance of Survivability Assessment in Preliminary Ship Design 

 

 Ship design is an iterative process, often depicted in the form of a design spiral 

(Andrews et al 2012). The role of the naval architect is increasingly demanding given 

the multitude of variables existent within the process (especially in the highly complex 

warship design area), with which the naval architect has to arrive to a balanced solution. 

The challenges faced escalate when considering that prototypes are very rarely built, 

implying that the solution does not have the reassurance of prototype testing before 

FOC construction. One easily understands the need for the exploration and assessment 

of a number of alternative designs at concept stage before proceeding to the later design 

stages. Thus, it is important that survivability is quantified during these early design 

stages through an appropriate assessment method. The existence of a preliminary design 

stage survivability assessment and quantification method would enable appropriate 

survivability measures in the initial iterative design process and offer increased certainty 

and confidence to the designer as well as the customer that the requirement will be met 

(Andrews et al 2012). 

It is widely recognised that the time and resources expended during the concept 

design stages are minimal when regarding the entire project, despite the most major 

decisions and trade off studies which will define the final product being taken at these 

stages. Moreover, the identification and solution of a problem during the early design 

stages is much easier and cheaper than applying delayed corrective actions. Finally, 

addition of novel design features (aiming, for example, to increase capability and/or 

reduce cost) is much simpler to investigate and effectively incorporate during the 
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preliminary design stages. It is, therefore, easily apprehended that the early design 

stages are the most crucial stages which will largely define the final solution, further 

justifying the need for a survivability assessment method able to operate with ship 

designs of minimal design definition. 

 

7.6.3 Survivability Assessment and Architecturally Orientated Design  

 

 Most warships are described as ‘architecture limited’ (Purvis 1974) (see Section 

2.1.4), therefore, a fully integrated and configurationally orientated preliminary design 

process would ease the identification of design drivers and risk areas (therefore, better 

dealing with complexity and increasing confidence), enable the incorporation of 

innovative solutions through increasing the creativity and contribution of the designer 

and facilitate the rapid exploration of various design alternatives. Also, by providing a 

more detailed concept design configurational description it would enable the 

investigation and assessment of various configuration dependant areas, such as ship 

operations, personnel evolutions, structural continuity, topside design and ease of 

production during the early design stages. Furthermore, survivability is also largely 

dependent on the layout/configuration/architecture of the ship, justifying the 

combination of a concept stage survivability assessment method with architecturally 

orientated preliminary design approaches. 

The rapid development in computer technology and CAD systems over the last 

years has aided the production of powerful software fully integrating ship design 

synthesis with architectural factors in the centre and from the early stages of the 

process. One such method is the UCL DBB approach to preliminary ship design in 

which the designer separates the ship’s functions and sub-functions into discrete 

elements (DBBs) and positions them appropriately, putting architectural factors in the 

centre of the process. The DBB approach was implemented through the SURFCON 

module in Paramarine, therefore, facilitating the use of all the naval architectural 

analytical tools available in the commercially established Paramarine CAD software. 

Thus, a fully integrated preliminary design process architecturally centred and 

combined with traditional naval architectural numerical analysis techniques to achieve 

balance is available and the advantages of linking this method to a concept stage 

survivability assessment method clear. 

 

 



307 
 

7.6.4 Susceptibility Assessment 

 

 Regarding susceptibility assessment methods, a variety of validated tools able to 

assess and quantify the susceptibility performance of a ship design (in related areas such 

as signatures and defensive system effectiveness, and against numerous threats) have 

been identified, and many utilised in actual warship design projects (see Section 3.3.2). 

These tools can be applied on ship designs during different design stages (including 

preliminary). Therefore, most susceptibility assessment techniques can easily be linked 

to preliminary design methods such as the DBB approach and therefore should be 

incorporated in the Naval Architecture design process. It should be noted that since the 

need that was identified above was that of a survivability assessment technique 

investigating ship architecture the effects of human performance were not considered. 

That is to say, alternative ship designs should be assessed rather than alternative crews, 

therefore, assuming crew performance as constant. 

For these reasons, the development of a new susceptibility assessment technique 

was deemed unnecessary. Since most susceptibility assessment techniques rely on 

restricted information and are not easily accessible, it was decided to combine an 

unclassified tool (CSEE) with the outputs given by a signature prediction tool (which 

being classified, was not run at UCL). This was done at the expense of results accuracy; 

however, since the detailed analysis of susceptibility features was beyond the scope of 

this study, the above method was considered acceptable. The method adopted led to a 

straightforward and easily comprehensible quantification of susceptibility and linked 

susceptibility assessment to preliminary architectural ship design, characterised by 

limited detailed design definition. This seemed to work satisfactorily across the range of 

ships studied. 

 

7.6.5 Vulnerability Assessment 

 

 The extensive research in vulnerability assessment over recent decades has led 

to a multitude of relevant tools produced by different nations, able to simulate various 

weapons and predict probabilities of preserving capability (see Section 3.3.3). The 

recognised importance of preliminary ship design has even led to the development of 

such tools specifically aimed to concept design stages. Through the gradual 

development of such tools, it can be claimed that software such as SURVIVE (the 

current UK MOD survivability assessment technique) have reached a mature stage. 
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Such tools can assess various threat types and weapon effects using a single ship model; 

do so in three dimensions, with various levels of detail; use validated algorithms, 

including flexible methods for system definition; are able to simulate cumulative 

damage caused by multiple hits; and able to model novel hullforms. An issue that 

possibly requires supplementary addressing is the further validation of concept stage 

vulnerability assessment tools operating with low levels of design detail (such as 

SURVIVE Lite), especially when investigating the effects of applying different zoning 

philosophies, where the zones are largely defined by the routings and connections 

between different items which are vague at best. Nevertheless, vulnerability assessment 

is already considered part of the iterative ship design process mentioned above. 

Vulnerability assessment software has been used in actual projects in order to manage 

vulnerability throughout the design process (Martin 1998; Reese et al 1998; Thornton et 

al 2007; Schofield et al 2012). 

For the above reasons, and since access to SURVIVE Lite was granted, the 

development of a new vulnerability assessment technique was also deemed unnecessary 

for this project. SURVIVE Lite was used to develop an approach which quantified 

vulnerability (the quantification of which, however, depended on a subjective weighting 

scheme) and linked vulnerability assessment to preliminary architectural ship design, 

characterised by limited detailed design definitions. In addition, the approach facilitated 

the backtracking of the results and identification of undesirable vulnerability features, 

which could then be easily altered given the preliminary nature of the ship designs. 

 

7.6.6 Recoverability Assessment 

 

 In marked contrast to susceptibility and vulnerability assessment, it was not 

possible to identify a suitable recoverability assessment method which quantified 

recoverability and was able to be applied easily, simply and rapidly to preliminary 

design stage ship designs. This can be attributed to various reasons (see Section 3.3.4 

and 4.3) which constitute recoverability assessment considerably more demanding to 

achieve. For example, the reliance on human factors (since recoverability “is mainly an 

operational aspect relying mainly on the sufficient training of the crew although it may 

still pose several requirements to the designer” (Boulougouris and Papanikolaou 2012)); 

the time dependence (i.e. dynamic nature) of recoverability (in order to model 

secondary damage such as fire and flood progression and crew actions); the inadequate 

data available; and the difficulty in incorporating crew readiness and skill levels. 
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A number of recoverability assessment techniques exist (see Section 3.3.4), 

however, many, such as safety and risk analysis methods, are qualitative. Thus, they are 

subjective, relying on expert judgment, and furthermore, do not take specific ship 

architectural features into account and so are considered to be of limited use. They 

could possibly be useful after preliminary ship design, when deciding on what DC 

equipment to have on board and what procedures to follow. Other methods are focused 

on a particular aspect of recoverability (rather than total ship recoverability), such as fire 

and flood spread or DC crew evolutions/personnel movement. Such techniques often 

rely on simulations, with often lengthy computational times (only worsened by the 

substantial number of scenarios which could be modelled) and require a detailed ship 

design definition not applicable to preliminary ship design. The latter issue also applies 

when total recoverability has to be simulated. The increased dependence on operational 

and human factors for recoverability has led to the development of DC simulation tools. 

These tools capture both the performance of the crew in various DC scenarios and the 

effect of the ship architecture. However, they are also aimed at detailed, if not existing, 

ship designs. 

Since the required capability identified was that of a survivability assessment 

tool aimed at preliminary ship design and specifically investigating the effect of the 

choice of ship configuration on survivability (by linking the method to an 

architecturally orientated preliminary ship design approach) and none of the existing 

recoverability assessment techniques addressed this, the development of a new 

recoverability assessment technique was clearly identified. Simulations might just be 

possible late in preliminary ship design (Casarosa 2011) but an early assessment of 

survivability was considered preferable (for the level of ship definition in the ship 

design studies explored in this research). Furthermore, assessment of recoverability 

requires temporal metrics such as the time taken to repair systems, which would be 

produced by simulation. 

An alternative analytical method was developed in order to generate this data 

(and, therefore, decouple the method from chronological dependence). The new 

recoverability assessment approach developed a number of Performance Measures 

(PMs) and an appropriate weighting scheme in order to attempt to overcome the 

difficulties of recoverability modelling (such as lack of data, human performance and 

time dependence). The PMs are aimed at investigating the post-hit availability of the 

DC system, various major ship systems and the access to damaged items, thus capturing 

the effects of ship architecture. It can be said that, since recovery operations have a 
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storyboard, in ship designs with a low level of detail, the best way to describe this is by 

tying each action into a spatial feature represented by a corresponding PM which in turn 

indicates the performance of the design. The level of detail in the ship designs does not 

allow the detailed investigation of human performance and actions (with which the 

storyboard would be described); in addition, as mentioned, the need that was identified 

was that of a survivability assessment technique investigating ship architecture rather 

than human performance. 

However, since recoverability is more of an operational rather than a design 

aspect, the complete decoupling of human performance from recoverability 

performance is impossible. In the developed method it was incorporated through 

assuming man-hour data for the repair of the various affected items, which in turn 

defined the value of the PMs. Theoretically, human performance could be assessed by 

altering this data; however, the main objective of the developed method is to investigate 

ship architecture, i.e. to assess the survivability performance of alternative ship designs 

rather than alternative crews, therefore, assuming crew performance as constant. 

It could be argued that the developed method has some similarities and could be 

considered an evolution (since factors such as major system recovery and access were 

incorporated) of the suggestion of MOD (2001) that, given the immature stage of 

recoverability assessment, an interim solution would be to incorporate recoverability by 

modelling the vulnerability of the whole DC system, without, however, considering 

progressive damage. 

The proposed approach links recoverability assessment to preliminary 

architectural ship design, characterised by very low detail design definitions. In 

addition, the approach facilitates the backtracking of the results and identification of 

undesirable features, which could then be easily altered given the preliminary nature of 

the ship designs. Finally, the method partially succeeds in quantifying recoverability 

(the quantification of which, however, depends on a subjective weighting scheme). The 

major problem in this regard is the difficulty in defining the recoverability performance 

scale (due to the absence of a minimum recoverability value, see Section 7.3.4), an area 

requiring further research. 

 

7.6.7 Comparison between MISSION and Proposed Approach 

 

At this point, it would be useful to undertake a brief comparison between the 

developed survivability assessment method and MISSION, the current MOD 
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programme attempting to integrate all survivability constituents. The main top-level 

differences between the two methods can be summarised as:- 

- “MISSION is an event simulation tool designed to simulate a maritime mission” 

(White and Allwood 2011; Parry 2012; Parry and White 2012); inputs include 

tasks and movement of blue and red forces and, therefore, it can be considered 

as an operational analysis simulation tool; 

The proposed approach is a design optimization tool, designed to compare ship 

variants (or even ship types) with regards to their survivability performance; it is 

closely linked to CASD software and is designed to incorporate survivability in 

the iterative preliminary ship design process (in a similar manner to, for 

example, powering and stability analysis); 

- MISSION simulates “at a task-force level” (White and Allwood 2011; Parry 

2012; Parry and White 2012); 

The proposed approach looks at single ship designs; 

- MISSION gives a variety of outputs, the most important being the Probability of 

Mission Success; 

The proposed approach outputs survivability performance in terms of the three 

survivability constituents; 

- In MISSION, capabilities (and repair tasks) are prioritized, and crew and 

casualties are modelled and used for recoverability modelling; 

The proposed approach uses scenario dependant weighted PMs for 

recoverability assessment; 

- MISSION, being a Monte-Carlo model, involves the repetition of simulations in 

order to generate statistical results; 

The proposed approach, being a deterministic method/algorithm, outputs the 

same results given constant inputs; therefore, each ship design is investigated 

once; 

- “MISSION uses a time step simulation method” (White and Allwood 2011; 

Parry 2012; Parry and White 2012); 

Proposed approach uses an analytical method. 

Some top-level similarities between MISSION and the proposed approach include:- 

- Both methods are only defensive, i.e. blue forces are unable to target red forces 

but only the weapons attacking the blue forces; 

- Both methods disregard environmental factors; 
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- Both methods use SURVIVE (Lite in the latter case) for vulnerability 

assessment, using a near identical philosophy for system/capability definition; 

- Both methods use external models (which can be replaced/substituted) to input 

susceptibility and vulnerability (and in the case of the proposed survivability 

assessment approach, recoverability) data. 

In addition to the above, there are various lower-level differences and 

similarities between the two approaches. It should also be recognised that both 

approaches are currently in their development phase. The general conclusion is that 

MISSION, being a maritime operational analysis simulation tool, is generally more 

complex and requires much more input detail and computational time. The proposed 

approach solely investigates the survivability characteristics of competing ship designs 

in an attempt to incorporate survivability analysis in the iterative, architecturally 

orientated, preliminary design process. Moreover, the proposed approach, being 

constituted by three external methods to assess the three survivability constituents is 

able to output the relative recoverability (and susceptibility and vulnerability) 

performance of a ship design being assessed. MISSION is not able to do that for 

recoverability performance since it does not output a specific recoverability related 

value (it does, however, for susceptibility and vulnerability since it uses external models 

for their assessment). This also makes it easier to suggest improvements to the ship 

design when using the proposed approach, as negative results (e.g. worst performing 

PMs) can be traced back. 

 

7.6.8 Advantages of the Proposed Approach 

 

 The alternative proposals as to how to combine the results from the three 

survivability constituents in the proposed approach led to the decision to regard them 

separately and present them together in the form of star plots. This process is 

advantageous in that it gives a clear indication of the survivability performance of 

competing designs and avoids the uncertainties involved in the combination of the three 

constituents (see Section 7.4.1). It is believed that the proposed approach would support 

the move from prescriptive, feature-based to performance-based design for survivability 

by providing a supplementary tool for designers to assess survivability and ensure the 

attainment of the required performance from the commencement of the design phase. 

However, the issue regarding the meaningful quantification of recoverability 

performance must first be addressed, through for example, the development by experts 
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of recoverability (and susceptibility and vulnerability) standards for each ship type and 

for a given threat (possibly based on the recoverability performance of current ships), 

with these standards defining the recoverability performance scale (see Section 7.3.4). 

The proposed approach would thus support the establishment of survivability statements 

and detailed requirements/goals during the requirement formulation stage, rather than 

viewing them as further constraints to an already complicated process. 

Furthermore, the survivability assessment approach proposed would assist in 

achieving a balance between the three (equally investigated) survivability components 

and other design features, with consideration to their associated weight, volume and 

cost penalties, therefore, justifying the required survivability enhancement measures 

despite reducing budgets. 

 

7.6.9 Future Work 

 

 A number of issues must be addressed before the proposed survivability 

assessment approach is considered mature:- 

- The issue regarding the meaningful quantification of the recoverability 

performance scale (Figure 6.39, Figure 6.40 and Figure 6.41 in Section 6.5) has 

been flagged up (see Section 7.3.4). This might be addressed through the 

development of recoverability standards which would define a scale, or through 

alterations to the recoverability assessment method; 

- Further investigation is required regarding the use of appropriate weighting 

schemes for a given operational scenario (as well as appropriate equipment 

repair times). The Delphi Method (see Section 3.3.4) is seen as a promising 

technique for converging to a single weighting scheme per scenario and easing 

the concerns regarding the subjectivity of the weighting schemes (and repair 

times) and, therefore, vulnerability and recoverability results. In addition, it 

could be used to suggest alternative major ship systems and PMs that should be 

included in the vulnerability and recoverability assessment sub-methods 

respectively; 

- A major issue requiring further research is the modelling of secondary damage 

through the progression of fire and flooding, as well as the difficulties associated 

with excessive post-damage heel and trim in the recoverability assessment part 

of the method. In the proposed approach demonstrated it was simply assumed 

that fire (the effects of which are often worse than the effects from the weapon 
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detonation) would only affect all those items within the hit WT section (flooding 

was not considered since only abovewater threats were modelled and excessive 

heel and trim were neglected). In addition, fire effects were not accounted for in 

the PMs relating to the immediate actions and effects after attack (i.e. Category 

1 PMs), but only in the PMs relating to recovery operations after secondary 

effects have been dealt with (i.e. Category 2 and 3 PMs). This was assumed in 

order to avoid the use of complex simulation tools. The use of such tools would 

not only require a much higher level of design definition but would also disable 

the decoupling of the recoverability assessment method from time dependence, 

introducing further requirements, such as the modelling of crew evolutions. This 

would then result in a highly complicated simulation tool, similar to ones 

already existing (see Section 3.3.4), which are inappropriate for use in 

preliminary ship design. Of relevance is Cootes’ (2010) remark that “whilst it is 

imperative to implement survivability analysis at the early stages of design, the 

level of detail needs to be kept minimal early on”. Furthermore, the very detailed 

and accurate input data required by advanced fire modelling tools, as well as the 

amount of factors influencing compartment fires and required assumptions 

outlined in (Institution of Structural Engineers 2007), could limit the realism of 

fire analysis even at detailed level. Therefore, a certain level of damage (hit WT 

section) was simply assumed. However, this is an area regarding further 

investigation; 

- The proposed approach could be further developed in order to include the effects 

of multiple and varying threats (as opposed to the current demonstration just 

using radar homing sea-skinning ASMs) as well as protection offered by other 

ships in the task group (as opposed to assuming that each ship design only uses 

its own defensive systems). These developments could be addressed relatively 

easily given the plethora of susceptibility assessment techniques capable of the 

above (they could also be used to improve on the assumption of P(di) = 1 for all 

ship designs) and the ability of SURVIVE Lite to model various threat types and 

cumulative damage; 

- In order to fully regard the developed method as a constituent of the iterative 

architecturally orientated DBB approach to preliminary ship design, it should be 

computer coded, therefore, saving remodelling and method application time. 

- In Section 7.4.1 it was mentioned that the proposed survivability assessment 

approach demonstrated that the choice of hull configuration had a great impact 
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on vulnerability and recoverability performance. This observation requires 

further examination through the application of the proposed approach on 

additional hull configurations (other than the monohull and trimaran 

configurations investigated in this research); 

- The need for an improved costing method during preliminary ship design which 

would be able to capture the cost of survivability enhancement features, as well 

as the importance of a better understanding of the cost of survivability was 

identified in Section 7.5.4. 

A final problematic issue identified during this research (and summarised in 

Section 7.3.1), which is not directly related to the survivability assessment method 

developed but to the subject of naval ship survivability as a whole, is the correct 

identification of the boundary between vulnerability and recoverability, or even whether 

they should be separately considered. There is an inconsistency in the definitions of 

survivability given by various authors (see Appendix 3), where some consider the 

constituents of survivability as being susceptibility and vulnerability (which included 

recoverability) while others regarding recoverability as a separate topic. In addition, 

most authors do not seem to recognise that the susceptibility related lengthwise 

probability hit distribution of a ship (i.e. the location of the hit, an additional topic 

which requires further definition) directly affects the ship’s vulnerability (and, therefore, 

recoverability) performance, while not playing any role in the ship’s total susceptibility 

performance. The proposed survivability assessment approach did incorporate this 

relatively straightforward feature; however, the issues regarding the assessment of 

vulnerability and recoverability remain and need to be resolved. 
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Chapter 8: Conclusions and Future Work 

 

 The discussion in Chapter 7 details a large amount of issues arising from the 

application of the proposed survivability assessment approach outlined in Chapter 4 to 

the ship design studies described in Chapter 5 in order to output the results presented in 

Chapter 6. Several central matters emerged throughout this research, which are 

summarised in this concluding chapter. In general, the main research aim defined in 

Chapter 1 was met; however, a substantial amount of further work is required in order 

to classify the topic as mature. The major areas for further work are also summarised in 

this chapter. 

 The main aim was defined as: to propose an integrated survivability assessment 

approach and demonstrate it on a range of ship types and hullform configurations during 

the preliminary stages of ship design. It was rapidly identified that the linking of such a 

method to an architecturally orientated preliminary ship design approach, such as the 

DBB approach, would be advantageous for various reasons. Chiefly, attempting to 

assess human performance (upon which aspects of survivability, primarily susceptibility 

and recoverability, are dependant) is difficult, possibly unachievable in the concept 

design stages, with limited ship definition. Therefore, it was decided that the developed 

approach should investigate the effect that configurational choice had on survivability 

performance (ship configuration, i.e. design, as opposed to human, factors, being the 

other main driver of survivability). The advantages of the DBB approach were quickly 

realised during the development of the seven ship design studies on which the proposed 

survivability assessment approach was demonstrated. For example, the ability to 

quickly produce and compare alternative ship designs, locate related spaces efficiently, 

identify drivers and risk areas, encourage novel configurations, account for zoning in 

the early design stages and understand the implications of innovative technologies such 

as IFEP, were clear. It was concluded that a new ship design must be described 

architecturally, in terms of its functional breakdown, and also (traditionally) in terms of 

its weight breakdown, in order for one to be able to justify the selected design. Without 

an architectural description of a ship design, an adequate survivability analysis would 

not be possible. 

 Various susceptibility and vulnerability assessment techniques which are 

applicable to preliminary ship design already exist. These tools have been utilised in 

actual warship design projects in recent decades, contributing to the relative maturity of 

susceptibility and vulnerability assessment. It was, therefore, judged unnecessary to 
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develop new such tools. Due to the sensitivity relevant in the area susceptibility 

(assessment) it was decided to simulate a simplified ASM attack using an unclassified 

existing method with unclassified but representative data, in combination with a 

signature prediction tool operated by the sponsor of this research. Although the method 

and data used included extensive simplifications, various important features were 

highlighted after its application to the ship design studies. For example, the effect of 

signatures through varying ship size, managing microgeometry and shaping were 

confirmed as was the decreasing importance of signature management with increasing 

ship size. The consequences of varying defensive missile targeting pattern and defensive 

missile types were also observed. In fact, it was concluded that the largest effect that a 

single survivability feature presented (out of all features investigated in the current 

project) was the use of a more capable defensive AAW system (in the destroyer design), 

justifying the extensive investments made in susceptibility assessment techniques and 

reduction features. The method adopted led to a straightforward and easily 

comprehensible quantification of susceptibility and linked susceptibility assessment to 

preliminary architectural ship design, characterised by limited detailed design 

definition. This seemed to work satisfactorily across the range of ships studied. 

 For vulnerability assessment, QinetiQ’s SURVIVE Lite, being currently the 

principal concept stage vulnerability assessment code of the UK MOD, was utilised. A 

number of major ship systems were modelled and combined with a weighting scheme in 

order to assess the effects of the above ASM attack scenario. This approach also led to 

valuable data by giving indications of performance enhancements when adopting 

practices such as duplication and separation of identical systems, adoption of IFEP, 

increasing ship size, improving system layout (facilitated in trimaran configurations) 

and shielding critical equipment by other, less critical compartments. In addition, the 

considerable reduction in vulnerability of trimaran configurations through protection 

provided by the side hulls was observed. The dependence of vulnerability on issues 

such as the assumed lengthwise probability hit distribution, the attack trajectory and the 

subjective weighting scheme used, was also observed and those issues require further 

definition. Nevertheless, the developed approach quantified vulnerability and linked 

vulnerability assessment to preliminary architectural ship design, characterised by 

limited detailed design definitions. In addition, the approach allowed the backtracking 

of the results and identification of undesirable vulnerability features, which could then 

be easily altered given the preliminary nature of the ship designs. 
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 A recoverability assessment tool aimed specifically at preliminary ship designs 

and specifically investigating how ship configuration would affect overall naval ship 

recoverability does not seem to exist. It was, therefore, decided that a new recoverability 

assessment method should be developed to investigate such issues at early stage design. 

Since simulations are not appropriate during the early concept design stages and 

recoverability is strongly time dependent, the development of a number of Performance 

Measures (PMs) together with an appropriate (but subjective) weighting scheme was 

selected in order to decouple the method form chronological dependence. The PMs 

investigate the post-hit availability of the DC system, various major ship systems and 

the access to damaged items, thus capturing the effects of ship architecture. In addition, 

as mentioned in Section 7.6.6, since recovery operations have a storyboard, in ship 

designs with a low level of detail the best way to describe this is by tying each action 

into a spatial feature. Spatial features are represented by a corresponding PM which in 

turn indicates the performance of the design. The level of detail in the ship designs did 

not allow the detailed investigation of human performance and actions (with which the 

storyboard would be described). However, the strong operational (as opposed to design) 

aspect of recoverability did not allow the complete decoupling of human performance 

from recoverability performance. Specifically, human performance was incorporated 

through assuming man-hour data for the repair of the various affected items, which in 

turn defined the value of the PMs. The application of the proposed approach led to 

significant observations, such as the dominant effect of post-attack equipment 

availability (and, therefore, the efficiency of the ship layout as well as the assumed 

lengthwise probability hit distribution) on recoverability performance and the decreased 

access efficiency of larger ships, as well as the relative advantages of different access 

philosophies. Moreover, it was identified that there is an optimum ship size (since post-

hit equipment availability increases due to decreasing vulnerability, but access 

efficiency decreases, with ship size) for recoverability performance, as well as an 

optimum number of zones per ship (although zones are largely defined by the routings 

and connections between different items which are unclear during the preliminary ship 

design stages, therefore, requiring further work). The proposed approach links 

recoverability assessment to preliminary architectural ship design, characterised by very 

low detail design definitions. In addition, the approach facilitates the backtracking of the 

results and identification of undesirable features, which could then be easily altered 

given the preliminary nature of the ship designs. However, the method partially 

succeeds in quantifying recoverability, the major problem in this regard being the 
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difficulty in defining the recoverability performance scale (mentioned in Section 7.3.4); 

an area requiring further research. 

 From above, it is clear that the proposed design optimization approach is able to 

identify the principal survivability drivers of various ship types and hullform 

configurations. In addition, it is able to investigate the effect of factors such as ship 

configuration, hull configuration and ship size on survivability performance. Moreover, 

by assessing all three survivability constituents equally, a balance between survivability 

features may confidently be attempted. The fact that the proposed survivability 

assessment approach is linked to an architecturally orientated preliminary design 

approach allows the investigation of alternative designs, as well as specific survivability 

features in the earliest design stages. During these stages, ship designs are amenable to 

modifications, which would be expensive or even unfeasible in the later design stages; it 

is noteworthy that the resources spent during the early ship design stages are minimal 

compared to those spent during the entire project, although the decisions made during 

these design stages largely determine the final solution. Finally, the quantification of 

survivability would justify survivability enhancement features, therefore, discouraging 

cost cutting in this area. Moreover, through the quantification of survivability, the 

proposed approach encourages a more meaningful performance-based (rather than 

prescriptive, feature-based) requirements specification for a ship design project, with 

survivability analysis commencing at the early design stages, making survivability 

assessment an integral part of the design process. 

 A brief costing study was undertaken in an attempt to use ship cost as a measure 

against which survivability measures can be assessed. However, the parametric costing 

method used (applicable to preliminary stage ship designs) was unable to evaluate the 

value of survivability. Survivability features, such as the application of 

flare/tumblehome, the reduction of microgeometry and duplication/separation of 

equipment, were not captured. More detailed costing models are required for such 

analyses; however, they might not be applicable to ship designs of limited design 

definition, potentially leading to the omission of survivability features. The need for a 

better understanding of the cost of survivability, especially during preliminary design, is 

clearly identified. 

 Other main areas requiring further work (which have been detailed in Section 

7.6.9, therefore, are briefly mentioned here) are:- 

- The meaningful quantification of the recoverability performance scale; 
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- The use of appropriate weighting schemes and equipment repair times as well as 

the modelling of supplementary major ship systems and PMs in the vulnerability 

and recoverability assessment methods; 

- The modelling of secondary damage and excessive post-damage heel and trim in 

the recoverability assessment method; 

- The inclusion of multiple and varying threats and protection offered by other 

ships in the task group in the proposed survivability assessment approach; 

- The computer coding of the proposed survivability assessment approach; 

- The application of the proposed approach on additional hull configurations; 

- The correct identification of the boundary between vulnerability and 

recoverability, as well as a better definition of the lengthwise probability hit 

distribution of a ship. 

Despite the considerable amount of further work required, it is considered that 

this research has contributed to advancing knowledge of what is possible in the early 

stages of the design process of “the most complex, diverse and highly integrated of any 

engineering systems” produced today (Graham 1982). 
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