Experience implementing a performant category-theory library in Coq

Jason Gross, Adam Chlipala, David I. Spivak Massachusetts Institute of Technology

How should theorem provers work?

How theorem provers should work:

How theorem provers should work:

Theorem (currying) : $\left(C_{1} \rightarrow\left(C_{2} \rightarrow D\right)\right) \cong\left(C_{1} \times C_{2} \rightarrow D\right)$
Proof: homework ■

Coq, is this correct?

Yes; here's a proof ...

How theorem provers should work:

Theorem (currying) : $\left(C_{1} \rightarrow\left(C_{2} \rightarrow \boldsymbol{D}\right)\right) \cong\left(C_{1} \times C_{2} \rightarrow D\right)$
Proof: homework

Theorem currying : $\left(C_{1} \rightarrow\left(C_{2} \rightarrow D\right)\right) \cong\left(C_{1} \times C_{2} \rightarrow D\right)$.
Proof.
trivial.
Qed.

How theorem provers should work:

Theorem (currying) : $\left(\boldsymbol{C}_{1} \rightarrow\left(\boldsymbol{C}_{2} \rightarrow \boldsymbol{D}\right)\right) \cong\left(\boldsymbol{C}_{1} \times \boldsymbol{C}_{2} \rightarrow \boldsymbol{D}\right)$ Proof: $\rightarrow: F \mapsto \lambda\left(c_{1}, c_{2}\right) . F\left(c_{1}\right)\left(c_{2}\right)$; morphisms similarly $\leftarrow: F \mapsto \lambda c_{1} \cdot \lambda c_{2} \cdot F\left(c_{1}, c_{2}\right)$; morphisms similarly
Functoríality, naturality, and congruence: straightforward.

Theorem currying: $\left(C_{1} \rightarrow\left(C_{2} \rightarrow D\right)\right) \cong\left(C_{1} \times C_{2} \rightarrow D\right)$.
Proof.
esplit.
$\left\{\right.$ by refine $\left(\lambda_{F}\left(F \mapsto\left(\lambda_{F}\left(c \mapsto F_{0} c_{1} c_{2}\right)\right)\right)\right.$. \}
$\left\{\right.$ by refine $\left(\lambda_{F}\left(F \mapsto\left(\lambda_{F}\left(c_{1} \mapsto\left(\lambda_{F}\left(c_{2} \mapsto F_{0}\left(c_{1}, c_{2}\right)\right)\right)\right)\right)\right)\right.$. $\}$
all: trivial.
Qed.

How theorem provers should work:

Theorem (currying) : $\left(C_{1} \rightarrow\left(C_{2} \rightarrow \boldsymbol{D}\right)\right) \cong\left(C_{1} \times C_{2} \rightarrow \boldsymbol{D}\right)$ Proof: $\rightarrow: F \mapsto \lambda\left(c_{1}, c_{2}\right) . F\left(c_{1}\right)\left(c_{2}\right)$; morphisms similarly $\leftarrow: F \mapsto \lambda c_{1} \cdot \lambda c_{2} \cdot F\left(c_{1}, c_{2}\right)$; morphisms similarly Functoriality, naturality, and congruence: straightforward.

Theorem currying : $\left(C_{1} \rightarrow\left(C_{2} \rightarrow D\right)\right) \cong\left(C_{1} \times C_{2} \rightarrow D\right)$.
Proof.
esplit.
$\left\{\right.$ by refine $\left(\lambda_{\mathrm{F}}\left(F \mapsto\left(\lambda_{\mathrm{F}}\left(c \mapsto F_{0} c_{1} c_{2}\right)\left(s d m \mapsto\left(F_{0} d_{1}\right)_{\mathrm{m}} m_{2} \circ\left(F_{\mathrm{m}} m_{1}\right)_{\mathrm{o}} s_{2}\right)\right)\right.\right.$ $\left.\left(F G T \mapsto\left(\lambda_{T}\left(c \mapsto T c_{1} c_{2}\right)\right)\right).\right\}$
$\left\{\right.$ by refine $\left(\lambda_{F}\left(F \mapsto\left(\lambda_{\mathrm{F}}\left(c_{1} \mapsto\left(\lambda_{\mathrm{F}}\left(c_{2} \mapsto F_{0}\left(c_{1}, c_{2}\right)\right)\left(s d m \mapsto F_{\mathrm{m}}(1, m)\right)\right)\right)\right.\right.\right.$ $\left(F G T \mapsto\left(\lambda_{\mathrm{T}}\left(c_{1} \mapsto\left(\lambda_{\mathrm{T}}\left(c_{2} \mapsto T\left(c_{1}, c_{2}\right)\right)\right)\right)\right)\right.$. $\}$
all: trivial.
Qed.

How theorem provers do work:

Theorem (currying) : $\left(C_{1} \rightarrow\left(C_{2} \rightarrow \boldsymbol{D}\right)\right) \cong\left(C_{1} \times C_{2} \rightarrow \boldsymbol{D}\right)$ Proof: \rightarrow : $\boldsymbol{F} \mapsto \lambda\left(c_{1}, c_{2}\right) . F\left(c_{1}\right)\left(c_{2}\right)$; morphisms similarly $\approx 0 \mathrm{~s}$ $\leftarrow: F \mapsto \lambda c_{1} \cdot \lambda c_{2} \cdot F\left(c_{1}, c_{2}\right)$; morphisms similarly
Functoriality, naturality, and congruence: straightforward. $17 \mathrm{~s} \quad 2 \mathrm{~m} 46 \mathrm{~s}$!!! (5 s, if we use UIP)

Theorem currying: $\left(C_{1} \rightarrow\left(C_{2} \rightarrow D\right)\right) \cong\left(C_{1} \times C_{2} \rightarrow D\right)$.
Proof.
esplit.
$\left\{\right.$ by refine $\left(\lambda_{\mathrm{F}}\left(F \mapsto\left(\lambda_{\mathrm{F}}\left(c \mapsto F_{0} c_{1} c_{2}\right)\left(s d m \mapsto\left(F_{0} d_{1}\right)_{\mathrm{m}} m_{2} \circ\left(F_{\mathrm{m}} m_{1}\right)_{0} s_{2}\right)\right)\right.\right.$ $\left(F G T \mapsto\left(\lambda_{\mathrm{T}}\left(c \mapsto T c_{1} c_{2}\right)\right)\right)$) $\}$
\{by refine $\left(\lambda_{\mathrm{F}}\left(F \mapsto\left(\lambda_{\mathrm{F}}\left(c_{1} \mapsto\left(\lambda_{\mathrm{F}}\left(c_{2} \mapsto F_{0}\left(c_{1}, c_{2}\right)\right)\left(s d m \mapsto F_{\mathrm{m}}(1, m)\right)\right)\right)\right.\right.\right.$ $\left(F G T \mapsto\left(\lambda_{\mathrm{T}}\left(c_{1} \mapsto\left(\lambda_{\mathrm{T}}\left(c_{2} \mapsto T\left(c_{1}, c_{2}\right)\right)\right)\right)\right).\right\}$
all: trivial.
Qed.

Performance is important!

If we're not careful, obvious or trivial things can be very, very slow.

Why you should listen to me

Theorem : You should listen to me. Proof.
by experience.
Qed.

Why you should listen to me

Category theory in Coq: https://github.com/HoTT/HoTT (subdirectory theories/categories):

Concepts Formalized

- 1-precategories (in the sense of the HoTT Book)
- univalent/saturated categories (or just categories, in the HoTT Book)
- functor precategories $C \rightarrow D$
- dual functor isomorphisms Cat \rightarrow Cat; and $(C \rightarrow D)^{\mathrm{op}} \rightarrow\left(C^{\mathrm{op}} \rightarrow D^{\mathrm{op}}\right)$
- the category Prop of (U-small) hProps
- the category Set of (U-small) hSets
- the category Cat of (U-small) strict (pre)categories (strict in the sense of the objects being hSets)
pseudofunctors
- profunctors
- identity profunction (the hom functor $C^{\mathrm{op}} \times C \rightarrow$ Set) adjoints
- equivalences between a number of definitions:
- unit-counit + zig-zag definition
- unit + UMP definition
- counit + UMP definition
- universal morphism definition
- hom-set definition (porting from old version in progress)
- composition, identity, dual
- pointwise adjunctions in the library, $G^{E} \dashv F^{C}$ and $E^{F} \dashv C^{G}$ from an adjunction $F \dashv G$ for functors $F: C \leftrightarrows D: G$ and E a precategory (still too slow to be merged into the library proper; code here)
- Yoneda lemma
- Exponential laws
- $\quad C^{0} \cong 1 ; 0^{C} \cong 0$ given an object in C
- $\quad C^{1} \cong C ; 1^{C} \cong 1$
- $\quad C^{A+B} \cong C^{A} \times C^{B}$
- $(A \times B)^{C} \cong A^{C} \times B^{C}$
$\left(A^{B}\right)^{C} \cong A^{B \times C}$
- Product laws
- $C \times D \cong D \times C$
- $C \times 0 \cong 0 \times C \cong 0$
- $C \times 1 \cong 1 \times C \cong C$
- Grothendieck construction (oplax colimit) of a pseudofunctor to Cat
- Category of sections (gives rise to oplax limit of a pseudofunctor to Cat when applied to Grothendieck construction
- functor composition is functorial (there's a functor $\Delta:(C \rightarrow D) \rightarrow(D \rightarrow$

Presentation is not mainly about:

Presentation is not mainly about:

- category theory or diagram chasing

Presentation is not mainly about:

- category theory or diagram chasing

- my library

Presentation is not mainly about:

- category theory or diagram chasing

- my library

- Coq

Presentation is not mainly about:

- category theory or diagram chasing

Cartoon from xkcd, adapted by Alan Huang

- my library

- Coq (though what I say might not always generalize nicely)

Presentation is about:

- performance

- the design of proof assistants and type theories to assist with performance

- the kind of performance issues I encountered

Presentation is for:

- Users of proof assistants (and Coq in particular)
- Who want to make their code faster
- Designers of (type-theoretic) proof assistants
- Who want to know where to focus their optimization efforts

Outline

- Why should we care about performance?
- What makes theorem provers (mainly Coq) slow?
- Examples of particular slowness

- For users (workarounds)
- Arguments vs. fields and packed records
- Proof by duality as proof by unification
- Abstraction barriers
- Proof by reflection

- For developers (features)
- Primitive projections
- Higher inductive types
- Universe Polymorphism

- More judgmental rules
- Hashconsing

Performance

- Question: What makes programs, particularly theorem provers or proof scripts, slow?

Performance

- Question: What makes programs, particularly theorem provers or proof scripts, slow?
- Answer: Doing too much stuff!

Performance

- Question: What makes programs, particularly theorem provers or proof scripts, slow?
- Answer: Doing too much stuff!
- doing the same things repeatedly

Performance

- Question: What makes programs, particularly theorem provers or proof scripts, slow?
- Answer: Doing too much stuff!
- doing the same things repeatedly

- doing lots of stuff for no good reason

Performance

- Question: What makes programs, particularly theorem provers or proof scripts, slow?
- Answer: Doing too much stuff!
- doing the same things repeatedly

- doing lots of stuff for no good reason
- using a slow language when you could be using a quicker one

Proof assistant performance

- What kinds of things does Coq do?
- Type checking
- Term building
- Unification
- Normalization

Proof assistant performance (pain)

-When are these slow?

- when you duplicate work
- when you do work on a part of a term you end up not caring about
- when you do them too many times
- when your term is large

Proof assistant performance (size)

- How large is slow?

Proof assistant performance (size)

- How large is slow?
- Around 150,000-500,000 words

Durations of Various Tactics vs. Term Size (Coq v8.4, 2.4 GHz Intel Xeon CPU, 16 GB RAM)

- match goal with |- ?G => set ($\mathrm{y}:=\mathrm{G}$) end (v8.4)
- destruct x (v8.4)
- assert (z := true); destruct z (v8.4)
- lazymatch goal with |- ?f ?a = ?g ?b => let H := constr:(@f_equal bool bool fab (@eq_refl bool a)) in apply H end (v8.4)
- lazymatch goal with |- ?f ?a = ?g ?b => let H := constr:(@f_equal bool bool fab (@eq_refl bool a)) in exact H end (v8.4)
- assert (z := true); revert z (v8.4)
- generalize $\times(\mathrm{v} 8.4)$
- apply f_equal (v8.4)
- lazymatch goal with |- ?f ?a = ?g ?b => let H := constr:(@f_equal bool bool fab(@eq_refl bool a)) in exact_no_check H end (v8.4)
- assert (z := true); generalize z (v8.4)
- lazymatch goal with |- ?f ?a = ?g ?b => let H := constr:(@f_equal bool bool fab(@eq_refl bool a)) in idtac end (v8.4)
- set $(y:=x)(v 8.4)$
- set ($\mathrm{y}:=$ bool) (v8.4)
lazymatch goal with |- ?f ?a = ?g ?b => let H := constr:(@f_equal bool bool fa) in idtac end (v8.4)
- lazymatch goal with |- ?f ?a = ?g ?b => idtac end (v8.4)

Proof assistant performance (size)

- How large is slow?
- Around 150,000-500,000 words

Do terms actually get this large?

Proof assistant performance (size)

- How large is slow?
- Around 150,000-500,000 words

Do terms actually get this large?

YES!

Proof assistant performance (size)

- A directed graph has:
- a type of vertices (points)
- for every ordered pair of vertices, a type of arrows

Proof assistant performance (size)

- A directed 2-graph has:
- a type of vertices (0-arrows)
- for every ordered pair of vertices, a type of arrows (1-arrows)
- for every ordered pair of 1-arrows between the same vertices, a type of 2-arrows

Proof assistant performance (size)

- A directed arrow-graph comes from turning arrows into vertices:

Proof assistant performance (pain)

- When are these slow?
- When your term is large
- Smallish example (29 000 words): Without Proofs:
\{| LCCM $_{\mathrm{F}}:={ }_{-} _$induced ${ }_{\mathrm{F}}\left(m_{22} \circ m_{12}\right)$;
$\left.\operatorname{LCCM}_{\mathrm{T}}:=\lambda_{T}\left(\lambda\left(c: d_{2}^{\prime} / F\right) \Rightarrow m_{21} c . \beta \circ m_{11} c . \beta\right) \mid\right\}=$
$\left\{\mid\right.$ LCCM $_{F}:={ }_{-} \backslash$ induced $F m_{12}{ }^{\circ}{ }_{-}$_induced $_{F} m_{22}$;
$\left.\mathrm{LCCM}_{\mathrm{T}}:=\lambda_{T}\left(\lambda\left(c: d_{2}^{\prime} / F\right) \Rightarrow m_{21} c . \beta \circ\left(d_{1}\right)_{1} \mathbb{I} \circ m_{11} c . \beta \circ \mathbb{I}\right) \mid\right\}$

Proof assistant performance (pain)

- When are these slow?
- When your term is large
- Smallish example (29 000 words): Without Proofs:
\{| $\operatorname{LCCM}_{\mathrm{F}}:={ }_{-} _$induced $_{\mathrm{F}}\left(m_{22} \circ m_{12}\right)$;

$$
\begin{aligned}
\mathrm{LCCM}_{\mathrm{T}}:=\lambda_{T} & \left(\lambda\left(c: d_{2}^{\prime} / F\right) \Rightarrow m_{21} c . \beta \circ m_{11} c . \beta\right) \\
& \left(\Pi-\operatorname{pf} s_{2}\left(\lambda_{T}\left(\lambda(c: C) \Rightarrow m_{21} c \circ m_{11} c\right)\right.\right. \\
& \left.\left.\left.\left(o_{1}-\operatorname{pf} m_{21} m_{11}\right)\right)\left(m_{22} \circ m_{12}\right)\right) \mid\right\}=
\end{aligned}
$$

$\mathrm{LCCM}_{\mathrm{T}}:=\lambda_{T}\left(\lambda\left(c: d_{2}^{\prime} / F\right) \Rightarrow m_{21} c . \beta \circ\left(d_{1}\right)_{1} \mathbb{I} \circ m_{11} c . \beta \circ \mathbb{I}\right)$

$$
\left(o_{1}-\mathrm{pf} \quad\left(\lambda_{T} \quad\left(\lambda\left(c: d_{2}^{\prime} / F\right) \Rightarrow m_{21} c \cdot \beta\right)(\Pi-\mathrm{pf}\right.\right.
$$

$$
\begin{aligned}
\left(\lambda _ { T } \left(\lambda \left(c: d_{2}^{\prime}\right.\right.\right. & \left./ F) \Rightarrow\left(d_{1}\right)_{1} \mathbb{I} \circ m_{11} c \cdot \beta \circ \mathbb{I}\right) \\
\left(\circ_{1}-\operatorname{pf}\right. & \left(\lambda_{T}\right)\left(\lambda\left(c: d_{2}^{\prime} / F\right) \Rightarrow(d)\right. \\
& \left(\circ_{0}-\operatorname{pf}\left(\lambda _ { T } \left(\lambda\left(c: d_{2} / /_{3} F\right) \Rightarrow\right.\right.\right.
\end{aligned}
$$

Proof assistant performance (pain)

- When are these slow?
- When your term is large
- Smallish example (29 000 words): Without Proofs:
$\left\{\mid\right.$ LCCM $_{\mathrm{F}}:={ }_{-} \backslash_{-}$induced $_{\mathrm{F}}\left(m_{22} \circ m_{12}\right)$;
$\mathrm{LCCM}_{\mathrm{T}}:=\lambda_{T}\left(\lambda\left(c: d_{2}^{\prime} / F\right) \Rightarrow m_{21} c . \beta \circ m_{11} c . \beta\right)$
$\left(\Pi-\operatorname{pf} s_{2}\left(\lambda_{T}\left(\lambda(c: C) \Rightarrow m_{21} c \circ m_{11} c\right)\right.\right.$ $\left.\left.\left.\left(\circ_{1}-\mathrm{pf} m_{21} m_{11}\right)\right)\left(m_{22} \circ m_{12}\right)\right) \mid\right\}=$
$\left\{\mid\right.$ LCCM $_{\mathrm{F}}:={ }_{-}$_induced $_{\mathrm{F}} m_{12}{ }^{\circ}{ }_{_} \backslash$ _induced ${ }_{\mathrm{F}} m_{22}$;
$\operatorname{LCCM}_{\mathrm{T}}:=\lambda_{T}\left(\lambda\left(c: d_{2}^{\prime} / F\right) \Rightarrow m_{21} c . \beta \circ\left(d_{1}\right)_{1} \mathbb{I} \circ m_{11} c . \beta \circ \mathbb{I}\right)$

$$
\begin{aligned}
&\left(\circ_{1}-\operatorname{pf}\right.\left.\left(\lambda_{T}\left(\lambda\left(c: d_{2}^{\prime} / F\right) \Rightarrow m_{21} c \cdot \beta\right)\left(\Pi-\operatorname{pf} d_{2} m_{21} m_{22}\right)\right)\right) \\
&\left(\lambda_{T}\left(\lambda\left(c: d_{2}^{\prime} / F\right) \Rightarrow\left(d_{1}\right)_{1} \mathbb{I} \circ m_{11} c \cdot \beta \circ \mathbb{I}\right)\right. \\
&\left(\circ_{1}-\operatorname{pf}\left(\lambda_{T}\left(\lambda\left(c: d_{2}^{\prime} / F\right) \Rightarrow\left(d_{1}\right)_{1} \mathbb{I} \circ m_{11} c . \beta\right)\right.\right. \\
&\left(\circ_{0}-\operatorname{pf}\left(\lambda_{T}\left(\lambda\left(c: d_{2} / F\right) \Rightarrow m_{11} c \cdot \beta\right)\right.\right.
\end{aligned}
$$

$$
\left.\left.\left.\left.\left.\left.\left.\left(\Pi-\operatorname{pf} s_{2} m_{11} m_{12}\right)\right) \mathbb{I}\right)\right) \mathbb{I}\right)\right)\right) \mid\right\}
$$

Proof assistant performance (fixes)

- How do we work around this?

Proof assistant performance (fixes)

- How do we work around this?
- By hiding from the proof checker!

Proof assistant performance (fixes)

- How do we work around this?
- By hiding from the proof checker!
- How do we hide?

Proof assistant performance (fixes)

- How do we work around this?
- By hiding from the proof checker!
- How do we hide?
- Good engineering

- Better proof assistants

Proof assistant performance (fixes)

Careful Engineering

Outline

- Why should we care about performance?
- What makes theorem provers (mainly Coq) slow?
- Examples of particular slowness

- For users (workarounds)
- Arguments vs. fields and packed records
- Proof by duality as proof by unification
- Abstraction barriers
- Proof by reflection

Proof assistant performance (fixes)

- How?
- Pack your records!

Proof assistant performance (fixes)

- How?
- Pack your records!

A mapping of graphs is a mapping of vetices to vertices and arrows to arrows

Proof assistant performance (fixes)

- How?
- Pack your records!

At least two options to define graph:
Record Graph $:=\{V:$ Type ; $E: V \rightarrow V \rightarrow$ Type $\}$.
Record IsGraph (V:Type) (E:V $\rightarrow V \rightarrow$ Type) $:=\{ \}$.

Proof assistant performance (fixes)

Record Graph $:=\{V:$ Type ; E $: V \rightarrow V \rightarrow$ Type $\}$.
Record IsGraph (V : Type) $(E: V \rightarrow V \rightarrow$ Type) $:=\{ \}$.
Big difference for size of functor:
Mapping : Graph \rightarrow Graph \rightarrow Type.
vs.
IsMapping : \forall (V_{G} : Type) $\left(V_{H}\right.$: Type $)$

$$
\left(E_{G}: V_{G} \rightarrow V_{G} \rightarrow \text { Type }\right)\left(E_{H}: V_{H} \rightarrow V_{H} \rightarrow \text { Type }\right)
$$

IsGraph $V_{G} E_{G} \rightarrow$ IsGraph $V_{H} E_{H} \rightarrow$ Type.

Proof assistant performance (fixes)

- How?
- Exceedingly careful engineering to get proofs for free

Proof assistant performance (fixes)

- Duality proofs for free

Proof assistant performance (fixes)

- Duality proofs for free
- Idea: One proof, two theorems

Proof assistant performance (fixes)

- Duality proofs for free
- Recall: A directed graph has:
- a type of vertices (points)
- for every ordered pair of vertices, a type of arrows

Proof assistant performance (fixes)

- Duality proofs for free
- Two vertices are isomorphic if there is exactly one edge between them in each direction

Proof assistant performance (fixes)

- Duality proofs for free
- Two vertices are isomorphic if there is exactly one edge between them in each direction
- An initial (bottom) vertex is a vertex with exactly one edge to every other vertex

Proof assistant performance (fixes)

- Duality proofs for free
- Two vertices are isomorphic if there is exactly one edge between them in each direction
- An initial (bottom) vertex is a vertex with exactly one edge to every other vertex
- A terminal (top) vertex is a vertex with exactly one edge from every other vertex

Proof assistant performance (fixes)

- Theorem: Initial vertices are unique

Theorem initial_unique : \forall ($G: G r a p h$) ($x y: G . V$),

$$
\text { is_initial } x \rightarrow \text { is_initial } y \rightarrow x \cong y
$$

- Proof:

Exercise for the audience

Proof assistant performance (fixes)

- Theorem: Terminal vertices are unique

Theorem terminal_unique : $\forall(G: G r a p h)(x y: G . V)$,

$$
\text { is_terminal } x \rightarrow \text { is_terminal } y \rightarrow x \cong y
$$

- Proof:
$\lambda G x y H H^{\prime} \Rightarrow$ initial_unique $G^{\text {op }} y x H^{\prime} H$

Proof assistant performance (fixes)

- How?
- Either don't nest constructions, or don't unfold nested constructions
- Coq only cares about unnormalized term size - "What I don't know can't hurt me"

Proof assistant performance (fixes)

- How?
- More systematically, have good abstraction barriers

Proof assistant performance (fixes)

- How?
- Have good abstraction barriers 0 Leaky abstraction barriers generally only torture programmers

Proof assistant performance (fixes)

- How?
- Have good abstraction barriers 0

Leaky abstraction barriers torture Coq, too!

Proof assistant performance (fixes)

- How?
- Have good abstraction barriers

Example: Pairing
Two ways to make use of elements of a pair:
let $(x, y):=p$ in $f x y$. (pattern matching)
f (fst p) (snd p). (projections)

Proof assistant performance (fixes)

- How?
- Have good abstraction barriers

Example: Pairing
Two ways to make use of elements of a pair:
let $(x, y):=p$ in $f x y$. (pattern matching)
$f(\operatorname{let}(x, y):=p$ in $x)(\operatorname{let}(x, y):=p$ in $y)$. (projections)

These ways do not unify!

Proof assistant performance (fixes)

- How?
- Have good abstraction barriers Leaky abstraction barriers torture Coq, too!

http://www.animationlibrary.com/animation/18342/Chicken_blows_up/

Proof assistant performance (fixes)

- How?
- Have good abstraction barriers 0

Leaky abstraction barriers torture Coq, too!

Proof assistant performance (fixes) Concrete Example (Old Version)

```
Local Notation mor_of }\mp@subsup{Y}{0}{}\mp@subsup{Y}{1}{}f:
    (let \mp@subsup{\eta}{\mp@subsup{Y}{1}{}}{}:= IsInitialMorphism_morphism (@HM Y Y ) in
    (@center_(IsInitialMorphism_property (@HM Y ) _ ( ( \mp@subsup{Y}{\mp@subsup{Y}{1}{\prime}}{\circ}\circ\textrm{f}))\mp@subsup{)}{1}{})\mathrm{ ) (only parsing).}
Lemma composition_of x yzgf: mor_of__(f\circg)= mor_of yzf\circ mor_of xyg.
Proof.
    simpl.
    match goal with | [ }1((@center ?A?H) 2) 1= _ ] = erewrite (@contr A H (center_; (_; _))) end
    simpl; reflexivity.
Grab Existential Variables.
simpl in *.
repeat match goal with | [ }1\mathrm{ appcontext [(? ( }\mp@subsup{x}{2}{\prime}\mp@subsup{)}{1}{}]]=>\mathrm{ generalize ( }\mp@subsup{x}{2}{})\mathrm{ ; intro end.
rewrite ?composition_of.
repeat try_associativity_quick (idtac; match goal with |[ [ appcontext[?x [ ] ] ] simpl rewrite x }\mp@subsup{x}{2}{}\mathrm{ end).
rewrite ?left_identity, ?right_identity, ?associativity.
reflexivity. nll

\section*{Proof assistant performance (fixes) Concrete Example (New Version)}
```

Local Notation mor_of }\mp@subsup{Y}{0}{}\mp@subsup{Y}{1}{}f:
(let }\mp@subsup{\eta}{\mp@subsup{Y}{1}{}}{}:= IsInitialMorphism_morphism (@HM Y () in
IsInitialMorphism_property_morphism (@HM Y) _ (}\mp@subsup{\eta}{\mp@subsup{Y}{1}{}}{}\circf)\mathrm{) (only parsing).
Lemma composition_of x y z gf: mor_of__ (f\circg)= mor_of yzf\circ mor_of x y g.
Proof.
simpl.
erewrite IsInitialMorphism_property_morphism_unique; [reflexivity |].
0.08 s
rewrite ?composition_of.
repeat try_associativity_quick rewrite IsInitialMorphism_property_morphism_property.
reflexivity.
Qed.

Size of goal (after first simpl): 191 words (was 7312) Size of proof term: 3632 words (was 66 264) Total time in file: 3 s (was 39 s)

Proof assistant performance (fixes) Concrete Example (Old Interface)

```
Definition IsInitialMorphism_object (M : IsInitialMorphism A\varphi) : D:= CommaCategory.b }A\varphi\mathrm{ .
Definition IsInitialMorphism_morphism (M : IsInitialMorphism A\varphi) : morphism C X (U U (IsInitialMorphism_object M)):=CommaCategory.f A\varphi.
Definition IsInitialMorphism_property (M : IsInitialMorphism A\varphi) (Y:D) (f:morphism C X (U U Y))
: Contr {m:morphism D (IsInitialMorphism_object M)Y| U 1 m\circ(IsInitialMorphism_morphism M)=f}.
Proof.
(** We could just [rewrite right_identity], but we want to preserve judgemental computation rules. *)
pose proof (@trunc_equiv'__ (symmetry _ (@CommaCategory.issig_morphism ___ !X U __)) -2 (M (CommaCategory.Build_object !X U tt Y f))) as H'}\mp@subsup{H}{}{\prime}
simpl in H}\mp@subsup{H}{}{\prime}
apply contr_inhabited_hprop.
- abstract (
    apply @trunc_succ in H';
    eapply @trunc_equiv'; [ | exact H' H;
    match goal with
    |[\vdash appcontext[?m\circ\mathbb{I}]]=> simpl rewrite (right_identity ___m)
    | [\vdash appcontext[|\circ?m]] => simpl rewrite (left_identity ___m)
    end;
    simpl; unfold IsInitialMorphism_object, IsInitialMorphism_morphism;
    let }A:=\mathrm{ match goal with }\vdash\mathrm{ Equiv ?A ?B }=>\mathrm{ constr:(A) end in
    let }B:= match goal with \vdash Equiv ?A ?B=> constr:(B) end in
    apply (equiv_adjointify (\lambdax:A=>\mp@subsup{x}{2}{})(\lambdax:B=>(tt;x)));
    [ intro; reflexivity | intros [[]]; reflexivity ]
).
- (exists ((@center_H') 2) 1).
abstract (etransitivity; [apply ((@center_H') 2) 2 | auto with morphism ]).
1 s
Defined.
Total file time: 7 s

\section*{Proof assistant performance (fixes) Concrete Example (New Interface)}

\section*{Definition IsInitialMorphism_object ( \(M\) : IsInitialMorphism \(A \varphi\) ) : D:=CommaCategory.b \(A \varphi\).}

Definition IsInitialMorphism_morphism ( \(M\) : IsInitialMorphism \(A \varphi\) ) : morphism \(C X\left(U_{0}\right.\) (IsInitialMorphism_object \(\left.M\right)\) ): CommaCategory.f \(A \varphi\).
Definition IsInitialMorphism_property_morphism \((M\) : IsInitialMorphism \(A \varphi)(Y: D)\left(\mathrm{f}: \operatorname{morphism} C X\left(U_{0} Y\right)\right)\) : morphism \(D\) (IsInitialMorphism_object \(M\) ) \(Y\)
\(:=\) CommaCategory.h (@center_( \(M\) (CommaCategory.Build_object ! \(X U\) tt \(Y\) f \()\) ).
Definition IsInitialMorphism_property_morphism_property ( \(M\) : IsInitialMorphism \(A \varphi\) ) \((Y: D)\left(f:\right.\) morphism \(\left.C X\left(U_{0} Y\right)\right)\)
: \(U_{1}\) (IsInitialMorphism_property_morphism \(\left.M Y f\right) \circ(\) IsInitialMorphism_morphism \(M)=f\)
:= CommaCategory.p (@center_( \(M\) (CommaCategory.Build_object ! \(X U\) tt \(Y f\) ) )) @ right_identity \(\qquad\)
Definition IsInitialMorphism_property_morphism_unique ( \(M\) : IsInitialMorphism \(A \varphi\) ) (Y:D)(f:morphism \(\left.C X\left(U_{0} Y\right)\right) m^{\prime}\left(H: U_{1} m^{\prime} \circ\right.\) IsInitialMorphism_morphism \(\left.M=f\right)\) : IsInitialMorphism_property_morphism \(M Y f=m^{\prime}\)
:= ap (@CommaCategory.h \(\qquad\) _-)
(@contr_(M (CommaCategory.Build_object ! \(X U\) tt \(Y f\) )) (CommaCategory.Build_morphism \(A \varphi\) (CommaCategory.Build_object ! \(X U\) tt \(Y f\) ) tt \(m^{\prime}\left(H\right.\) @ (right_identity _-__) \({ }^{-1}\) )) ). Definition IsInitialMorphism_property ( \(M\) : IsInitialMorphism \(A \varphi\) ) \((Y: D)\left(\mathrm{f}:\right.\) morphism \(C X\left(U_{0} Y\right)\) )
: Contr \(\{m\) : morphism \(D\) (IsInitialMorphism_object \(M) Y \mid U_{1} m \circ\) (IsInitialMorphism_morphism \(\left.\left.M\right)=f\right\}\).
\(:=\{\mid\) center \(:=(\) IsInitialMorphism_property_morphism \(M Y f\); IsInitialMorphism_property_morphism_property \(M Y f\) );
contr \(m^{\prime}:=\) path_sigma_(IsInitialMorphism_property_morphism \(M Y f\); IsInitialMorphism_property_morphism_property \(M Y f\) ) I\}.

Total file time: 7 s

\section*{Proof assistant performance (fixes) Concrete Example 2 (Generalization)}

Lemma pseudofunctor_to_cat_assoc_helper \(\left\{x x_{0}: C\right\}\left\{x_{2}:\right.\) morphism \(\left.C \times x 0\right\}\{x 1: C\}\)
\(\left\{x_{5}\right.\) : morphism \(\left.C x_{0} x_{1}\right\}\left\{x_{4}: C\right\}\left\{x_{7}:\right.\) morphism \(\left.C x_{1} x_{4}\right\}\)
\(\left\{p p_{0}:\right.\) PreCategory \(\left\{f:\right.\) morphism \(C x x_{4} \rightarrow\) Functor \(\left.p_{0} p\right\}\)
\(\left\{p_{1} p_{2}\right.\) : PreCategory \(\left\{f_{0}\right.\) : Functor \(\left.p_{2} p\right\}\left\{f_{1}\right.\) : Functor \(\left.p_{1} p_{2}\right\}\left\{f_{2}\right.\) : Functor \(\left.p_{0} p_{2}\right\}\left\{f_{3}\right.\) : Functor \(\left.p_{0} p_{1}\right\}\left\{f_{4}\right.\) : Functor \(\left.p_{1} p\right\}\)
\(\left\{x_{16}:\right.\) morphism \(\left(\rightarrow_{-}\right)\left(f\left(x_{7} \circ x_{5} \circ x_{2}\right)\right)\left(f_{4} \circ f_{3}\right) \%\) functor \(\}\)
\(\left\{x_{15}:\right.\) morphism \(\left(\rightarrow_{-}\right) f_{2}\left(f_{1} \circ f_{3}\right) \%\) functor \(\}\left\{H_{2}\right.\) : IsIsomorphism \(\left.x_{15}\right\}\)
\(\left\{x_{11}:\right.\) morphism \(\left(\rightarrow_{-}\right)\left(f\left(x_{7} \circ\left(x_{5} \circ x_{2}\right)\right)\right)\left(f_{0} \circ f_{2}\right) \%\) functor \(\}\)
\(\left\{H_{1}\right.\) : IsIsomorphism \(\left.x_{11}\right\}\left\{x_{9}:\right.\) morphism \(\left(ـ_{-}\right) f_{4}\left(f_{0} \circ f_{1}\right) \%\) functor \(\}\left\{f s t\right.\) hyp : \(\left.x_{7} \circ x_{5} \circ x_{2}=x_{7} \circ\left(x_{5} \circ x_{2}\right)\right\}\)
(rew_hyp : \(\forall x_{3}: p_{0}\),
(idtoiso \(\left(p_{0} \rightarrow p\right)(\) ap \(f\) fst_hyp \():\) morphism___) \(\left.x_{3}=x_{11}{ }^{-1} x_{3} \circ\left(f_{0} 1_{15}\left(x_{15}^{-1} x_{3}\right) \circ\left(\mathbb{I} \circ\left(x_{9}\left(f_{3} x_{3}\right) \circ x_{16} x_{3}\right)\right)\right)\right)\)
\(\left\{H_{0}^{\prime}: \operatorname{IsIsomorphism} x_{16}\right\}\left\{H_{1}^{\prime}:\right.\) IsIsomorphism \(\left.x_{9}\right\}\left\{x_{13}: p\right\}\left\{x_{3}: p_{0}\right\}\left\{x_{6}: p_{1}\right\}\left\{x_{10}: p_{2}\right\}\)
\(\left\{x_{14}\right.\) : morphism \(\left.p\left(f_{0} x_{10}\right) x_{13}\right\}\left\{x_{12}\right.\) : morphism \(\left.p_{2}\left(f_{1} x_{6}\right) x_{10}\right\}\left\{x_{8}:\right.\) morphism \(\left.p_{1}\left(f_{3} x_{3}\right) x_{6}\right\}\)
\(: \operatorname{existT}\left(\lambda f_{5}:\right.\) morphism \(C x x_{4} \Rightarrow\) morphism \(\left.p\left(\left(f f_{5}\right) x_{3}\right) x_{13}\right)\)
```

(x}\circ\mp@subsup{x}{5}{}\circ\mp@subsup{x}{2}{}

```


Proof.
helper_t assoc_before_commutes_tac.
assoc_fin_tac.
Qed.
Speedup: 100x for the file, from 4 m 53 s to 28 s
Time spent: a few hours

Outline
- Why should we care about performance?
- What makes theorem provers (mainly Coq) slow?
- Examples of particular slowness

- For users (workarounds)
- Arguments vs. fields and packed records
- Proof by duality as proof by unification
- Abstraction barriers
- Proof by reflection


\section*{Proof assistant performance (fixes)}

\section*{Better Proof Assistants}

\section*{Outline}
- Why should we care about performance?
- What makes theorem provers (mainly Coq) slow?
- Examples of particular slowness

- For users (workarounds)
- Arguments vs. fields and packed records
- Proof by duality as proof by unification
- Abstraction barriers
- Proof by reflection

- For developers (features)
- Primitive projections
- Universe Polymorphism
- Higher inductive types
- More judgmental rules

- Hashconsing

\section*{Proof assistant performance (fixes)}
- How?
- Primitive projections

\section*{Proof assistant performance (fixes)}
- How?
- Primitive projections

Definition 2-Graph \(:=\)
\[
\begin{array}{ll}
\{\mathrm{V} & : \text { Type \& } \\
\{1 \mathrm{E} & : \mathrm{V} \rightarrow \mathrm{~V} \rightarrow \text { Type } \& \\
& \left.\forall v_{1} v_{2}, 1 \mathrm{E} v_{1} v_{2} \rightarrow 1 \mathrm{E} v_{1} v_{2} \rightarrow \text { Type }\right\}
\end{array}
\]

Definition V (G: 2-Graph) := \(\mathrm{pr}_{1} \mathrm{G}\).
Definition 1E (G:2-Graph) := \(\operatorname{pr}_{1}\left(\operatorname{pr}_{2} G\right)\).
Definition 2E (G : 2-Graph) := \(\operatorname{pr}_{2}\left(\mathrm{pr}_{2} \mathrm{G}\right)\).

\section*{Proof assistant performance (fixes)}

Definition 2-Graph :=
\[
\begin{array}{ll}
\{V & : \text { Type \& } \\
\{1 E & : V \rightarrow V \rightarrow \text { Type \& }
\end{array}
\]
\[
\left.\forall v_{1} v_{2}, 1 \mathrm{E} v_{1} v_{2} \rightarrow 1 \mathrm{E} v_{1} v_{2} \rightarrow \text { Type }\right\} .
\]

Definition \(V(G: 2\)-Graph \():=\quad \mathrm{pr}_{1} \mathrm{G}\).

\section*{Proof assistant performance (fixes)}

Definition 2-Graph :=
\[
\begin{array}{ll}
\{\mathrm{V} & : \text { Type } \& \\
\{1 \mathrm{E} & : V \rightarrow \mathrm{~V} \rightarrow \text { Type } \& \\
& \left.\forall v_{1} v_{2}, 1 \mathrm{E} v_{1} v_{2} \rightarrow 1 \mathrm{E} v_{1} v_{2} \rightarrow \text { Type }\right\}
\end{array}
\]

Definition V (G:2-Graph) \(:=\)
\[
@ \mathrm{pr}_{1} \text { Type ( } \lambda \mathrm{V}: \text { Type } \Rightarrow
\]
\[
\begin{aligned}
& \{1 \mathrm{E}: \mathrm{V} \rightarrow \mathrm{~V} \rightarrow \text { Type } \& \\
& \left.\left.\quad \forall v_{1} v_{2}, 1 \mathrm{E} v_{1} v_{2} \rightarrow 1 \mathrm{E} v_{1} v_{2} \rightarrow \text { Type }\right\}\right)
\end{aligned}
\]
G.

\section*{Proof assistant performance (fixes)}

Definition 2-Graph :=
\[
\begin{array}{ll}
\{\mathrm{V} & : \text { Type \& } \\
\{1 \mathrm{E} & : \mathrm{V} \rightarrow \mathrm{~V} \rightarrow \text { Type \& } \\
& \left.\forall v_{1} v_{2}, 1 \mathrm{E} v_{1} v_{2} \rightarrow 1 \mathrm{E} v_{1} v_{2} \rightarrow \text { Type }\right\} .
\end{array}
\]

Definition \(V\) (G:2-Graph) \(:=\quad \mathrm{pr}_{1} \mathrm{G}\).
Definition 1E (G:2-Graph) := \(\operatorname{pr}_{1}\left(\operatorname{pr}_{2} G\right)\).

\section*{Proof assistant performance (fixes)}

Definition 1E (G:2-Graph) := @pr \({ }_{1}\)
(@pr \({ }_{1}\) Type ( \(\lambda\) V: Type \(\Rightarrow\)
\[
\{1 \mathrm{E}: V \rightarrow \mathrm{~V} \rightarrow \text { Type \& }
\]
\[
\left.\left.\forall v_{1} v_{2}, 1 \mathrm{E} v_{1} v_{2} \rightarrow 1 \mathrm{E} v_{1} v_{2} \rightarrow \text { Type }\right\}\right)
\]
\[
\mathrm{G} \rightarrow
\]
@pr \({ }_{1}\) Type ( \(\lambda \mathrm{V}\) : Type \(\Rightarrow\)
\[
\{1 \mathrm{E}: V \rightarrow V \rightarrow \text { Type \& }
\]
\[
\mathrm{G} \rightarrow
\]
\[
\left.\left.\forall v_{1} v_{2}, 1 \mathrm{E} v_{1} v_{2} \rightarrow 1 \mathrm{E} v_{1} v_{2} \rightarrow \text { Type }\right\}\right)
\]

Type)
( \(\lambda 1 \mathrm{E}: @ \mathrm{pr}_{1}\) Type ( \(\lambda \mathrm{V}:\) Type \(\Rightarrow\)

\section*{Proof assistant performance (fixes)}
```

Definition 1E (G:2-Graph) :=
@pr ${ }_{1}$
(@pr 1_{1} Type (λ V : Type \Rightarrow
$\{1 \mathrm{E}: \mathrm{V} \rightarrow \mathrm{V} \rightarrow$ Type \&
$\forall v_{1} v_{2}, 1 \mathrm{E} v_{1} v_{2} \rightarrow 1 \mathrm{E} v_{1} v_{2} \rightarrow$ Type $\left.\}\right)$
G \rightarrow
$@ \mathrm{pr}_{1}$ Type ($\lambda \mathrm{V}$: Type \Rightarrow
$\{1 \mathrm{E}: \mathrm{V} \rightarrow \mathrm{V} \rightarrow$ Type \&
$\forall v_{1} v_{2}, 1 \mathrm{E} v_{1} v_{2} \rightarrow 1 \mathrm{E} v_{1} v_{2} \rightarrow$ Type $\left.\}\right)$
G \rightarrow
Type)
($\lambda 1 \mathrm{E}: @ \mathrm{pr}_{1}$ Type ($\lambda \mathrm{V}:$ Type \Rightarrow
$\{1 \mathrm{E}: \mathrm{V} \rightarrow \mathrm{V} \rightarrow$ Type \&
$\forall v_{1} v_{2}, 1 \mathrm{E} v_{1} v_{2} \rightarrow 1 \mathrm{E} v_{1} v_{2} \rightarrow$ Type $\left.\}\right)$
G \rightarrow
$@ \operatorname{pr}_{1}$ Type ($\lambda \mathrm{V}:$ Type \Rightarrow
$\{1 \mathrm{E}: \mathrm{V} \rightarrow \mathrm{V} \rightarrow$ Type \&
$\forall v_{1} v_{2}, 1 \mathrm{E} v_{1} v_{2} \rightarrow 1 \mathrm{E} v_{1} v_{2} \rightarrow$ Type $\left.\}\right)$
G \rightarrow
Type \Rightarrow
$\forall v_{1} v_{2}, 1 \mathrm{E} v_{1} v_{2} \rightarrow 1 \mathrm{E} v_{1} v_{2} \rightarrow$ Type)
(@pr2 Type ($\lambda \mathrm{V}:$ Type \Rightarrow
$\{1 \mathrm{E}: V \rightarrow V \rightarrow$ Type \&
$\forall v_{1} v_{2}, 1 \mathrm{E} v_{1} v_{2} \rightarrow 1 \mathrm{E} v_{1} v_{2} \rightarrow$ Type $\}$
G)

```

\section*{Proof assistant performance (fixes)}
```

Definition 1E (G:2-Graph) :=
@pr.
(@pr_ Type (\lambda V : Type = { 1E: V }->\textrm{V}->\mathrm{ Type \& }\forall(\mp@subsup{v}{1}{}:V)(\mp@subsup{v}{2}{}:V),1E\mp@subsup{v}{1}{}\mp@subsup{v}{2}{}->1\textrm{E}\mp@subsup{v}{1}{}\mp@subsup{v}{2}{}->\mathrm{ Type }) G }
@pr Type (}\lambda\textrm{V}:\mathrm{ Type }=>{1\textrm{E}:\textrm{V}->\textrm{V}->\mathrm{ Type \& }\forall(\mp@subsup{v}{1}{}:V)(\mp@subsup{v}{2}{}:V),1\textrm{E}\mp@subsup{v}{1}{}\mp@subsup{v}{2}{}->1\textrm{E}\mp@subsup{v}{1}{}\mp@subsup{v}{2}{}->\mathrm{ Type }) G }
Type)
(\lambda1E:@ @ pr Type (}\lambda\textrm{V}:\mathrm{ Type }=>{1\textrm{E}:\textrm{V}->\textrm{V}->\mathrm{ Type \& }\forall(\mp@subsup{v}{1}{}:V)(\mp@subsup{v}{2}{}:V),1\textrm{E}\mp@subsup{v}{1}{}\mp@subsup{v}{2}{}->1\textrm{E}\mp@subsup{v}{1}{}\mp@subsup{v}{2}{}->\mathrm{ Type }) G }
@pr}1\mathrm{ Type (}\lambda\textrm{V}:\mathrm{ Type }=>{1\textrm{E}:\textrm{V}->\textrm{V}->\mathrm{ Type \& }\forall(\mp@subsup{v}{1}{}:V)(\mp@subsup{v}{2}{}:V),1\textrm{E}\mp@subsup{v}{1}{}\mp@subsup{v}{2}{}->1\textrm{E}\mp@subsup{v}{1}{}\mp@subsup{v}{2}{}->\mathrm{ Type }) G }
Type =
*(v. :@prr Type (}\lambda\textrm{V}:\mathrm{ Type }=>{1\textrm{E}:V->\textrm{V}->\mathrm{ Type \& }\forall(\mp@subsup{v}{1}{}:V)(\mp@subsup{v}{2}{}:V),1\textrm{E}\mp@subsup{v}{1}{}\mp@subsup{v}{2}{}->1\textrm{E}\mp@subsup{v}{1}{}\mp@subsup{v}{2}{}->\mathrm{ Type }) G)
(v2:@pr Type (}\lambda\textrm{V}:\mathrm{ Type }=>{1\textrm{E}:\textrm{V}->\textrm{V}->\mathrm{ Type \& }\forall(\mp@subsup{v}{1}{}:V)(\mp@subsup{v}{2}{}:V),1\textrm{E}\mp@subsup{v}{1}{}\mp@subsup{v}{2}{}->1\textrm{E}\mp@subsup{v}{1}{}\mp@subsup{v}{2}{}->\mathrm{ Type }) G),
1E }\mp@subsup{v}{1}{}\mp@subsup{v}{2}{}->1\textrm{E}\mp@subsup{v}{1}{}\mp@subsup{v}{2}{}->\mathrm{ Type)
(@pr_ Type (}\lambda\textrm{V}:\mathrm{ Type }=>{1\textrm{E}:\textrm{V}->\textrm{V}->\mathrm{ Type \& }\forall(\mp@subsup{v}{1}{}:V)(\mp@subsup{v}{2}{}:V),1\textrm{E}\mp@subsup{v}{1}{}\mp@subsup{v}{2}{}->1\textrm{E}\mp@subsup{v}{1}{}\mp@subsup{v}{2}{}->\mathrm{ Type }) G)
@pr_ Type (}\lambda\textrm{V}:\mathrm{ Type }=>{1\textrm{E}:\textrm{V}->\textrm{V}->\mathrm{ Type \& }\forall(\mp@subsup{v}{1}{}:V)(\mp@subsup{v}{2}{}:V),1E \mp@subsup{v}{1}{}\mp@subsup{v}{2}{}->1\textrm{E}\mp@subsup{v}{1}{}\mp@subsup{v}{2}{}->\mathrm{ Type }) G }
@pr}1\mathrm{ Type (}\lambda\textrm{V}:\mathrm{ Type }=>{1\textrm{E}:V->V->\mathrm{ Type \& }\forall(\mp@subsup{v}{1}{}:V)(\mp@subsup{v}{2}{}:V),1\textrm{E}\mp@subsup{v}{1}{}\mp@subsup{v}{2}{}->1\textrm{E}\mp@subsup{v}{1}{}\mp@subsup{v}{2}{}->\mathrm{ Type }) G }
Type

```

Recall: Original was:
Definition 1E (G : 2-Graph) := \(\operatorname{pr}_{1}\left(\operatorname{pr}_{2} \mathrm{G}\right)\).

\section*{Proof assistant performance (fixes)}
- How?
- Primitive projections
- They eliminate the unnecessary arguments to projections, cutting down the work Coq has to do.

\section*{Proof assistant performance (fixes)}
- How?
- Don't use setoids

\section*{Proof assistant performance (fixes)}
- How?
- Don't use setoids, use higher inductive types instead!

\section*{Proof assistant performance (fixes)}
- How?
- Don't use setoids, use higher inductive types instead!

Setoids add lots of baggage to everything


\section*{Proof assistant performance (fixes)}
- How?
- Don't use setoids, use higher inductive types instead!

Higher inductive types (when implemented) shove the baggage into the meta-theory, where the type-checker doesn't have to see it

Take-away messages
- Performance matters
(even in proof assistants)
- Term size matters for performance

- Performance can be improved by - careful engineering of developments
- improving the proof assistant or the metatheory


\section*{Thank You!}

The paper and presentation will be available at http://people.csail.mit.edu/igross/\#category-coq-experience
The library is available at https://github.com/HoTT/HoTT
subdirectory theories/categories
Ouestions?```

