
Experience implementing a
performant category-theory

library in Coq

Jason Gross, Adam Chlipala, David I. Spivak

Massachusetts Institute of Technology

How should theorem provers work?

2

3

How theorem provers should work:

1 = 0

Coq, is this
correct?

No; here’s a
proof of

1 = 0 → False

4

How theorem provers should work:

Coq, is this
correct?

Yes; here’s a
proof …

Theorem (currying) : 𝑪𝟏 → 𝑪𝟐 → 𝑫 ≅ (𝑪𝟏 × 𝑪𝟐 → 𝑫)
Proof: homework ∎

5

Theorem currying : 𝐶1 → 𝐶2 → 𝐷 ≅ 𝐶1 × 𝐶2 → 𝐷 .

Proof.
trivial.

Qed.

How theorem provers should work:

Theorem (currying) : 𝑪𝟏 → 𝑪𝟐 → 𝑫 ≅ (𝑪𝟏 × 𝑪𝟐 → 𝑫)
Proof: homework ∎

6

Theorem currying : 𝐶1 → 𝐶2 → 𝐷 ≅ 𝐶1 × 𝐶2 → 𝐷 .

Proof.
esplit.
{ by refine (𝜆F (𝐹 ↦ (𝜆F (𝑐 ↦ 𝐹o 𝑐1 𝑐2)))). }

{ by refine (𝜆F (𝐹 ↦ (𝜆F (𝑐1 ↦ (𝜆F (𝑐2 ↦ 𝐹o (𝑐1, 𝑐2))))))). }

all: trivial.
Qed.

Theorem (currying) : 𝑪𝟏 → 𝑪𝟐 → 𝑫 ≅ (𝑪𝟏 × 𝑪𝟐 → 𝑫)
Proof: →: 𝑭 ↦ 𝝀 𝒄𝟏, 𝒄𝟐 . 𝑭 𝒄𝟏 𝒄𝟐 ; morphisms similarly

←: 𝑭 ↦ 𝝀 𝒄𝟏. 𝝀 𝒄𝟐. 𝑭(𝒄𝟏, 𝒄𝟐); morphisms similarly
Functoriality, naturality, and congruence: straightforward. ∎

How theorem provers should work:

7

Theorem currying : 𝐶1 → 𝐶2 → 𝐷 ≅ 𝐶1 × 𝐶2 → 𝐷 .

Proof.
esplit.
{ by refine (𝜆F (𝐹 ↦ (𝜆F (𝑐 ↦ 𝐹o 𝑐1 𝑐2) (𝑠 𝑑 𝑚 ↦ 𝐹o 𝑑1 m 𝑚2 ∘ 𝐹m 𝑚1 o 𝑠2))

(𝐹 𝐺 𝑇 ↦ (𝜆T (𝑐 ↦ 𝑇 𝑐1 𝑐2)))). }

{ by refine (𝜆F (𝐹 ↦ (𝜆F (𝑐1 ↦ (𝜆F (𝑐2 ↦ 𝐹o (𝑐1, 𝑐2)) (𝑠 𝑑 𝑚 ↦ 𝐹m (1, 𝑚))))
(𝐹 𝐺 𝑇 ↦ (𝜆T (𝑐1 ↦ (𝜆T (𝑐2 ↦ 𝑇 (𝑐1, 𝑐2)))))). }

all: trivial.
Qed.

Theorem (currying) : 𝑪𝟏 → 𝑪𝟐 → 𝑫 ≅ (𝑪𝟏 × 𝑪𝟐 → 𝑫)
Proof: →: 𝑭 ↦ 𝝀 𝒄𝟏, 𝒄𝟐 . 𝑭 𝒄𝟏 𝒄𝟐 ; morphisms similarly

←: 𝑭 ↦ 𝝀 𝒄𝟏. 𝝀 𝒄𝟐. 𝑭(𝒄𝟏, 𝒄𝟐); morphisms similarly
Functoriality, naturality, and congruence: straightforward. ∎

How theorem provers should work:

8

Theorem currying : 𝐶1 → 𝐶2 → 𝐷 ≅ 𝐶1 × 𝐶2 → 𝐷 .

Proof.
esplit.
{ by refine (𝜆F (𝐹 ↦ (𝜆F (𝑐 ↦ 𝐹o 𝑐1 𝑐2) (𝑠 𝑑 𝑚 ↦ 𝐹o 𝑑1 m 𝑚2 ∘ 𝐹m 𝑚1 o 𝑠2))

(𝐹 𝐺 𝑇 ↦ (𝜆T (𝑐 ↦ 𝑇 𝑐1 𝑐2)))). }

{ by refine (𝜆F (𝐹 ↦ (𝜆F (𝑐1 ↦ (𝜆F (𝑐2 ↦ 𝐹o (𝑐1, 𝑐2)) (𝑠 𝑑 𝑚 ↦ 𝐹m (1, 𝑚))))
(𝐹 𝐺 𝑇 ↦ (𝜆T (𝑐1 ↦ (𝜆T (𝑐2 ↦ 𝑇 (𝑐1, 𝑐2)))))). }

all: trivial.
Qed.

Theorem (currying) : 𝑪𝟏 → 𝑪𝟐 → 𝑫 ≅ (𝑪𝟏 × 𝑪𝟐 → 𝑫)
Proof: →: 𝑭 ↦ 𝝀 𝒄𝟏, 𝒄𝟐 . 𝑭 𝒄𝟏 𝒄𝟐 ; morphisms similarly

←: 𝑭 ↦ 𝝀 𝒄𝟏. 𝝀 𝒄𝟐. 𝑭(𝒄𝟏, 𝒄𝟐); morphisms similarly
Functoriality, naturality, and congruence: straightforward. ∎

≈ 0 s

17 s 2m 46 s !!! (5 s, if we use UIP)

How theorem provers do work:

Performance is important!

If we’re not careful, obvious or trivial things can be
very, very slow.

9

Why you should listen to me

10

Theorem : You should listen to me.
Proof.

by experience.
Qed.

Why you should listen to me

Category theory in Coq: https://github.com/HoTT/HoTT
(subdirectory theories/categories):

11

Concepts Formalized:
• 1-precategories (in the sense of the HoTT Book)
• univalent/saturated categories (or just categories, in the HoTT Book)
• functor precategories 𝐶 → 𝐷
• dual functor isomorphisms Cat → Cat; and 𝐶 → 𝐷 op → (𝐶op → 𝐷op)
• the category Prop of (U-small) hProps
• the category Set of (U-small) hSets
• the category Cat of (U-small) strict (pre)categories (strict in the sense of the

objects being hSets)
• pseudofunctors
• profunctors

• identity profunction (the hom functor 𝐶op × 𝐶 → Set)
• adjoints

• equivalences between a number of definitions:
• unit-counit + zig-zag definition
• unit + UMP definition
• counit + UMP definition
• universal morphism definition
• hom-set definition (porting from old version in progress)

• composition, identity, dual
• pointwise adjunctions in the library, 𝐺𝐸 ⊣ 𝐹𝐶 and 𝐸𝐹 ⊣ 𝐶𝐺 from an

adjunction 𝐹 ⊣ 𝐺 for functors 𝐹: 𝐶 ⇆ 𝐷: 𝐺 and 𝐸 a precategory
(still too slow to be merged into the library proper; code here)

• Yoneda lemma
• Exponential laws

• 𝐶0 ≅ 1; 0𝐶 ≅ 0 given an object in 𝐶

• 𝐶1 ≅ 𝐶; 1𝐶 ≅ 1
• 𝐶𝐴+𝐵 ≅ 𝐶𝐴 × 𝐶𝐵

• (𝐴 × 𝐵)𝐶≅ 𝐴𝐶 × 𝐵𝐶

• (𝐴𝐵)𝐶≅ 𝐴𝐵×𝐶

• Product laws
• 𝐶 × 𝐷 ≅ 𝐷 × 𝐶
• 𝐶 × 0 ≅ 0 × 𝐶 ≅ 0
• 𝐶 × 1 ≅ 1 × 𝐶 ≅ 𝐶

• Grothendieck construction (oplax colimit) of a pseudofunctor to Cat
• Category of sections (gives rise to oplax limit of a pseudofunctor to Cat when

applied to Grothendieck construction
• functor composition is functorial (there's a functor Δ: 𝐶 → 𝐷 → (𝐷 →

https://github.com/HoTT/HoTT
https://github.com/JasonGross/HoTT/blob/finished-but-slow-adjoint-pointwise/theories/categories/Adjoint/Pointwise.v

Presentation is not mainly about:

12

Presentation is not mainly about:

• category theory or diagram chasing

13

Cartoon from xkcd, adapted by Alan Huang

Presentation is not mainly about:

• category theory or diagram chasing

• my library

14

Cartoon from xkcd, adapted by Alan Huang

Presentation is not mainly about:

• category theory or diagram chasing

• my library

• Coq

15

Cartoon from xkcd, adapted by Alan Huang

Presentation is not mainly about:

• category theory or diagram chasing

• my library

• Coq (though what I say might not always generalize nicely)

16

Cartoon from xkcd, adapted by Alan Huang

Presentation is about:

• performance

• the design of proof assistants and type theories to
assist with performance

• the kind of performance issues I encountered

17

Presentation is for:

• Users of proof assistants (and Coq in particular)
• Who want to make their code faster

• Designers of (type-theoretic) proof assistants
• Who want to know where to focus their optimization efforts

18

Outline
• Why should we care about performance?

• What makes theorem provers (mainly Coq) slow?
• Examples of particular slowness

• For users (workarounds)
• Arguments vs. fields and packed records

• Proof by duality as proof by unification

• Abstraction barriers

• Proof by reflection

• For developers (features)
• Primitive projections

• Higher inductive types

• Universe Polymorphism

• More judgmental rules

• Hashconsing 19
Dam image from http://www.flickr.com/photos/gammaman/7803829282/ by Eli Christman, CC by 2.0

Fence image from http://www.picgifs.com/clip-art/playing-children/clip-art-playing-children-362018-689955/

Universes image from Abell NGC2218 hst big, NASA,
http://en.wikipedia.org/wiki/Abell_2218#mediaviewer/File:A
bell_NGC2218_hst_big.jpg, released in Public Domain;
Bubble from http://pixabay.com/en/blue-bubble-shiny-
157652/, released in Public Domain CC0, combined in
Photoshop by Jason Gross

http://www.flickr.com/photos/gammaman/7803829282/
https://creativecommons.org/licenses/by/2.0/
http://antwrp.gsfc.nasa.gov/apod/ap080210.html
http://en.wikipedia.org/wiki/Abell_2218#mediaviewer/File:Abell_NGC2218_hst_big.jpg
http://commons.wikimedia.org/wiki/File:Abell_NGC2218_hst_big.jpg
http://pixabay.com/en/blue-bubble-shiny-157652/
http://pixabay.com/go/?t=http://creativecommons.org/publicdomain/zero/1.0/deed.en

Performance

• Question: What makes programs, particularly theorem
provers or proof scripts, slow?

20

Performance

• Question: What makes programs, particularly theorem
provers or proof scripts, slow?

• Answer: Doing too much stuff!

21

Performance

• Question: What makes programs, particularly theorem
provers or proof scripts, slow?

• Answer: Doing too much stuff!
• doing the same things repeatedly

22
Snail from http://naolito.deviantart.com/art/Repetitive-task-258126598

Performance

• Question: What makes programs, particularly theorem
provers or proof scripts, slow?

• Answer: Doing too much stuff!
• doing the same things repeatedly

• doing lots of stuff for no good reason

23
Running rooster from http://d.wapday.com:8080/animation/ccontennt/15545-f/mr_rooster_running.gif

• Question: What makes programs, particularly theorem
provers or proof scripts, slow?

• Answer: Doing too much stuff!
• doing the same things repeatedly

• doing lots of stuff for no good reason

• using a slow language when you could be
using a quicker one

Performance

24

Proof assistant performance

• What kinds of things does Coq do?

• Type checking

• Term building

• Unification

• Normalization

25

Proof assistant performance (pain)

• When are these slow?

• when you duplicate work

• when you do work on a part of a term you end up not caring
about

• when you do them too many times

• when your term is large

26

Proof assistant performance (size)

• How large is slow?

27

Proof assistant performance (size)

• How large is slow?

• Around 150,000—500,000 words

28

290.01 s

0.1 s

1 s

10 s

100 s

1.0E+0 1.0E+1 1.0E+2 1.0E+3 1.0E+4 1.0E+5 1.0E+6 1.0E+7 1.0E+8

Durations of Various Tactics vs. Term Size (Coq v8.4, 2.4 GHz Intel Xeon CPU, 16 GB RAM)

match goal with |- ?G => set (y := G) end (v8.4)

destruct x (v8.4)

assert (z := true); destruct z (v8.4)

lazymatch goal with |- ?f ?a = ?g ?b => let H := constr:(@f_equal bool
bool f a b (@eq_refl bool a)) in apply H end (v8.4)

lazymatch goal with |- ?f ?a = ?g ?b => let H := constr:(@f_equal bool
bool f a b (@eq_refl bool a)) in exact H end (v8.4)

assert (z := true); revert z (v8.4)

generalize x (v8.4)

apply f_equal (v8.4)

lazymatch goal with |- ?f ?a = ?g ?b => let H := constr:(@f_equal bool
bool f a b (@eq_refl bool a)) in exact_no_check H end (v8.4)

assert (z := true); generalize z (v8.4)

lazymatch goal with |- ?f ?a = ?g ?b => let H := constr:(@f_equal bool
bool f a b (@eq_refl bool a)) in idtac end (v8.4)

set (y := x) (v8.4)

set (y := bool) (v8.4)

lazymatch goal with |- ?f ?a = ?g ?b => let H := constr:(@f_equal bool
bool f a b) in idtac end (v8.4)

lazymatch goal with |- ?f ?a = ?g ?b => idtac end (v8.4)

Proof assistant performance (size)

• How large is slow?

• Around 150,000—500,000 words

Do terms actually get this large?

31

Proof assistant performance (size)

• How large is slow?

• Around 150,000—500,000 words

Do terms actually get this large?

YES!

32

Proof assistant performance (size)

33

• A directed graph has:
• a type of vertices (points)

• for every ordered pair of vertices, a type of arrows

Proof assistant performance (size)

34

• A directed 2-graph has:
• a type of vertices (0-arrows)

• for every ordered pair of vertices, a type of arrows (1-arrows)

• for every ordered pair of 1-arrows between the same vertices, a
type of 2-arrows

Proof assistant performance (size)

35

• A directed arrow-graph comes from turning arrows into
vertices:

Proof assistant performance (pain)
• When are these slow?

• When your term is large

• Smallish example (29 000 words): Without Proofs:

36

{| LCCMF ≔ __inducedF 𝑚22 ∘ 𝑚12 ;
LCCMT ≔ 𝜆𝑇 (𝜆 𝑐 ∶ 𝑑2

′ / 𝐹 ⇒ 𝑚21 𝑐. 𝛽 ∘ 𝑚11 𝑐. 𝛽) |} =
{| LCCMF ≔ __inducedF 𝑚12 ∘ __inducedF 𝑚22;

LCCMT ≔ 𝜆𝑇 (𝜆 𝑐 ∶ 𝑑2
′ / 𝐹 ⇒ 𝑚21 𝑐. 𝛽 ∘ 𝑑1 1 𝕀 ∘ 𝑚11 𝑐. 𝛽 ∘ 𝕀) |}

{| LCCMF ≔ __inducedF 𝑚22 ∘ 𝑚12 ;
LCCMT ≔ 𝜆𝑇 𝜆 𝑐 ∶ 𝑑2

′ / 𝐹 ⇒ 𝑚21 𝑐. 𝛽 ∘ 𝑚11 𝑐. 𝛽

(Π−pf 𝑠2 (𝜆𝑇 𝜆 𝑐 ∶ 𝐶 ⇒ 𝑚21 𝑐 ∘ 𝑚11 𝑐
(∘1 −pf 𝑚21 𝑚11)) (𝑚22 ∘ 𝑚12)) |} =

{| LCCMF ≔ __inducedF 𝑚12 ∘ __inducedF 𝑚22;
LCCMT ≔ 𝜆𝑇 (𝜆 𝑐 ∶ 𝑑2

′ / 𝐹 ⇒ 𝑚21 𝑐. 𝛽 ∘ 𝑑1 1 𝕀 ∘ 𝑚11 𝑐. 𝛽 ∘ 𝕀)
(∘1 −pf (𝜆𝑇 𝜆 𝑐 ∶ 𝑑2

′ / 𝐹 ⇒ 𝑚21 𝑐. 𝛽 (Π−pf 𝑑
(𝜆𝑇 𝜆 𝑐 ∶ 𝑑2

′ / 𝐹 ⇒ 𝑑1 1 𝕀 ∘ 𝑚11 𝑐. 𝛽 ∘ 𝕀
(∘1 −pf (𝜆𝑇 𝜆 𝑐 ∶ 𝑑2

′ / 𝐹 ⇒ 𝑑1

(∘0 −pf (𝜆𝑇 𝜆 𝑐 ∶ 𝑑2 / 𝐹 ⇒ 𝑚

(Π−pf 𝑠2 𝑚11 𝑚12)

Proof assistant performance (pain)

37

• When are these slow?
• When your term is large

• Smallish example (29 000 words): Without Proofs:

{| LCCMF ≔ __inducedF 𝑚22 ∘ 𝑚12 ;
LCCMT ≔ 𝜆𝑇 𝜆 𝑐 ∶ 𝑑2

′ / 𝐹 ⇒ 𝑚21 𝑐. 𝛽 ∘ 𝑚11 𝑐. 𝛽

(Π−pf 𝑠2 (𝜆𝑇 𝜆 𝑐 ∶ 𝐶 ⇒ 𝑚21 𝑐 ∘ 𝑚11 𝑐
(∘1 −pf 𝑚21 𝑚11)) (𝑚22 ∘ 𝑚12)) |} =

{| LCCMF ≔ __inducedF 𝑚12 ∘ __inducedF 𝑚22;
LCCMT ≔ 𝜆𝑇 (𝜆 𝑐 ∶ 𝑑2

′ / 𝐹 ⇒ 𝑚21 𝑐. 𝛽 ∘ 𝑑1 1 𝕀 ∘ 𝑚11 𝑐. 𝛽 ∘ 𝕀)
(∘1 −pf (𝜆𝑇 𝜆 𝑐 ∶ 𝑑2

′ / 𝐹 ⇒ 𝑚21 𝑐. 𝛽 (Π−pf 𝑑2 𝑚21 𝑚22)))
(𝜆𝑇 𝜆 𝑐 ∶ 𝑑2

′ / 𝐹 ⇒ 𝑑1 1 𝕀 ∘ 𝑚11 𝑐. 𝛽 ∘ 𝕀
(∘1 −pf (𝜆𝑇 𝜆 𝑐 ∶ 𝑑2

′ / 𝐹 ⇒ 𝑑1 1 𝕀 ∘ 𝑚11 𝑐. 𝛽
(∘0 −pf (𝜆𝑇 𝜆 𝑐 ∶ 𝑑2 / 𝐹 ⇒ 𝑚11 𝑐. 𝛽

(Π−pf 𝑠2 𝑚11 𝑚12)) 𝕀)) 𝕀))) |}

Proof assistant performance (pain)

38

• When are these slow?
• When your term is large

• Smallish example (29 000 words): Without Proofs:

Proof assistant performance (fixes)

• How do we work around this?

39

Proof assistant performance (fixes)

• How do we work around this?

• By hiding from the proof checker!

40
Fence from http://imgarcade.com/1/hiding-clipart/

Proof assistant performance (fixes)

• How do we work around this?

• By hiding from the proof checker!

• How do we hide?

41

Proof assistant performance (fixes)

• How do we work around this?

• By hiding from the proof checker!

• How do we hide?
• Good engineering

• Better proof assistants

42

Proof assistant performance (fixes)

Careful Engineering

43

Outline
• Why should we care about performance?

• What makes theorem provers (mainly Coq) slow?
• Examples of particular slowness

• For users (workarounds)
• Arguments vs. fields and packed records

• Proof by duality as proof by unification

• Abstraction barriers

• Proof by reflection

• For developers (features)
• Primitive projections

• Higher inductive types

• Universe Polymorphism

• More judgmental rules

• Hashconsing 44
Dam image from http://www.flickr.com/photos/gammaman/7803829282/ by Eli Christman, CC by 2.0

Fence image from http://www.picgifs.com/clip-art/playing-children/clip-art-playing-children-362018-689955/

http://www.flickr.com/photos/gammaman/7803829282/
https://creativecommons.org/licenses/by/2.0/

Proof assistant performance (fixes)

• How?
• Pack your records!

45

Proof assistant performance (fixes)

• How?
• Pack your records!

A mapping of graphs is a mapping of vetices to vertices and
arrows to arrows

46

mapping

Proof assistant performance (fixes)

• How?
• Pack your records!

At least two options to define graph:

Record Graph := { V : Type ; E : V → V → Type }.

Record IsGraph (V : Type) (E : V → V → Type) := { }.

47

Proof assistant performance (fixes)

Record Graph := { V : Type ; E : V → V → Type }.

Record IsGraph (𝑉: Type) (𝐸: 𝑉→ 𝑉→ Type) := { }.

Big difference for size of functor:

Mapping : Graph → Graph → Type.

vs.

IsMapping : ∀ (𝑉𝐺 : Type) (𝑉𝐻 : Type)

(𝐸𝐺 : 𝑉𝐺 → 𝑉𝐺 → Type) (𝐸𝐻 : 𝑉𝐻 → 𝑉𝐻 → Type),

IsGraph 𝑉𝐺 𝐸𝐺 → IsGraph 𝑉𝐻 𝐸𝐻 → Type.

48

Proof assistant performance (fixes)

• How?
• Exceedingly careful engineering to get proofs for free

49

Proof assistant performance (fixes)

• Duality proofs for free

50

Proof assistant performance (fixes)

• Duality proofs for free

• Idea: One proof, two theorems

51

• Duality proofs for free

• Recall: A directed graph has:
• a type of vertices (points)

• for every ordered pair of vertices, a type of arrows

Proof assistant performance (fixes)

52

Proof assistant performance (fixes)

• Duality proofs for free

• Two vertices are isomorphic if there is exactly one edge
between them in each direction

53

Proof assistant performance (fixes)

• Duality proofs for free

• Two vertices are isomorphic if there is exactly one edge
between them in each direction

• An initial (bottom) vertex is a vertex with exactly one edge
to every other vertex

54

Proof assistant performance (fixes)

• Duality proofs for free

• Two vertices are isomorphic if there is exactly one edge
between them in each direction

• An initial (bottom) vertex is a vertex with exactly one edge
to every other vertex

• A terminal (top) vertex is a vertex with exactly one edge
from every other vertex

55

Proof assistant performance (fixes)

• Theorem: Initial vertices are unique

Theorem initial_unique : ∀ (𝐺 : Graph) (𝑥 𝑦 : 𝐺.V),

is_initial 𝑥 → is_initial 𝑦 → 𝑥 ≅ 𝑦

• Proof:

Exercise for the audience

56

Proof assistant performance (fixes)

• Theorem: Terminal vertices are unique

Theorem terminal_unique : ∀ (𝐺 : Graph) (𝑥 𝑦 : 𝐺.V),

is_terminal 𝑥 → is_terminal 𝑦 → 𝑥 ≅ 𝑦

• Proof:

𝜆 𝐺 𝑥 𝑦 𝐻 𝐻′ ⇒ initial_unique 𝐺op 𝑦 𝑥 𝐻′𝐻

57

Proof assistant performance (fixes)

• How?
• Either don’t nest constructions, or don't unfold nested

constructions

• Coq only cares about unnormalized term size – “What I don't
know can't hurt me”

58

Proof assistant performance (fixes)

• How?
• More systematically, have good abstraction barriers

59

Proof assistant performance (fixes)

• How?
• Have good abstraction barriers

Leaky abstraction barriers
generally only torture
programmers

60

Dam image from http://www.flickr.com/photos/gammaman/7803829282/ by Eli Christman, CC by 2.0

http://www.flickr.com/photos/gammaman/7803829282/
https://creativecommons.org/licenses/by/2.0/

Proof assistant performance (fixes)

• How?
• Have good abstraction barriers

Leaky abstraction barriers
torture Coq, too!

61

Dam image from http://www.flickr.com/photos/gammaman/7803829282/ by Eli Christman, CC by 2.0

http://www.flickr.com/photos/gammaman/7803829282/
https://creativecommons.org/licenses/by/2.0/

Proof assistant performance (fixes)

• How?
• Have good abstraction barriers

Example: Pairing

Two ways to make use of elements of a pair:

let (𝑥, 𝑦) := 𝑝 in 𝑓 𝑥 𝑦. (pattern matching)

𝑓 (fst 𝑝) (snd 𝑝). (projections)

62

Proof assistant performance (fixes)

• How?
• Have good abstraction barriers

Example: Pairing

Two ways to make use of elements of a pair:

let (𝑥, 𝑦) := 𝑝 in 𝑓 𝑥 𝑦. (pattern matching)

𝑓 (let (𝑥, 𝑦) := 𝑝 in 𝑥) (let (𝑥, 𝑦) := 𝑝 in 𝑦). (projections)

63

These ways do not unify!

Proof assistant performance (fixes)

• How?
• Have good abstraction barriers

Leaky abstraction barriers
torture Coq, too!

65

Rooster Image from
http://www.animationlibrary.com/animation/18342/Chicken_blows_up/

Dam image from http://www.flickr.com/photos/gammaman/7803829282/ by Eli Christman, CC by 2.0

http://www.flickr.com/photos/gammaman/7803829282/
https://creativecommons.org/licenses/by/2.0/

Proof assistant performance (fixes)

• How?
• Have good abstraction barriers

Leaky abstraction barriers
torture Coq, too!

66

Dam image from ID-L-0010, WaterArchives.org, CC by SA 2.0

http://www.flickr.com/photos/waterarchives/5811736921/in/photolist-9PmPML-9QEq26-9Rztsr-9RyKQX-9RyDXT-9RyD2a-9RyHVg-9RyFUc-9RyA8X-9RBwh7-9RyGUk-9RyB4x-9RBDbN-9RyEUH-9RCk19-9QHeXw-9RBtzd-9YVxA7-9RCmSS-9YUMoW-9YSApx-9ZvsEH-9ZkekY-9ZzVGU-9ZvPEG-9ZhiMn-9ZsxPR-9RzrCa-6kQ2PU-6kQ2wJ-9RzzF2-9RzAzi-9X7SpV-9RzxUr-9RzyNk-6kQ2E7-9Xd7KG-9ZvMqm-9ZyjBh-9Zxyn7-9ZtdCD-9ZsTiK-9ZkdtY-9Zy6Sf-9Zh5W4-9Zu8j8-9ZxbfJ-9ZwuAq-9ZsNFZ-9Zh57r/
https://creativecommons.org/licenses/by-sa/2.0/

Proof assistant performance (fixes)

67

Local Notation mor_of 𝑌0 𝑌1 𝑓:=

(let 𝜂𝑌1
:= IsInitialMorphism_morphism (@HM 𝑌1) in

(@center _ (IsInitialMorphism_property (@HM 𝑌0) _ (𝜂𝑌1
∘ f))) 1) (only parsing).

Lemma composition_of 𝑥 𝑦 𝑧 𝑔 𝑓: mor_of _ _ (𝑓 ∘ 𝑔) = mor_of 𝑦 𝑧 𝑓 ∘ mor_of 𝑥 𝑦 𝑔.

Proof.

simpl.

match goal with | [⊢ ((@center ?𝐴?𝐻) 2) 1= _] ⇒ erewrite (@contr 𝐴 𝐻 (center _; (_; _))) end.

simpl; reflexivity.

Grab Existential Variables.

simpl in ∗.

repeat match goal with | [⊢ appcontext[(?𝑥 2) 1]] ⇒ generalize (𝑥 2); intro end.

rewrite ?composition_of.

repeat try_associativity_quick (idtac; match goal with | [⊢ appcontext[?𝑥 1]] ⇒ simpl rewrite 𝑥 2 end).

rewrite ?left_identity, ?right_identity, ?associativity.

reflexivity.

Qed.

Concrete Example (Old Version)

3.5 s

2 s

2.5 s
0.5 s

8 s

0.3 s

20 sSize of goal (after first simpl): 7312 words
Size of proof term: 66 264 words
Total time in file: 39 s

Proof assistant performance (fixes)

69

Local Notation mor_of 𝑌0 𝑌1 𝑓:=

(let 𝜂𝑌1
:= IsInitialMorphism_morphism (@HM 𝑌1) in

IsInitialMorphism_property_morphism (@HM 𝑌0) _ (𝜂𝑌1
∘ 𝑓)) (only parsing).

Lemma composition_of 𝑥 𝑦 𝑧 𝑔 𝑓: mor_of _ _ (𝑓 ∘ 𝑔) = mor_of 𝑦 𝑧 𝑓 ∘ mor_of 𝑥 𝑦 𝑔.

Proof.

simpl.

erewrite IsInitialMorphism_property_morphism_unique; [reflexivity |].

rewrite ?composition_of.

repeat try_associativity_quick rewrite IsInitialMorphism_property_morphism_property.

reflexivity.

Qed.

Concrete Example (New Version)

0.08 s
(was 10 s)

0.08 s
(was 0.5 s)

0.5 s
(was 3.5 s)

0.5 s
(was 3.5 s)

Size of goal (after first simpl): 191 words (was 7312)

Size of proof term: 3 632 words (was 66 264)

Total time in file: 3 s (was 39 s)

Proof assistant performance (fixes)

70

Definition IsInitialMorphism_object (𝑀 : IsInitialMorphism 𝐴𝜑) : 𝐷 := CommaCategory.b 𝐴𝜑.

Definition IsInitialMorphism_morphism (𝑀 : IsInitialMorphism 𝐴𝜑) : morphism 𝐶 𝑋 (𝑈 0 (IsInitialMorphism_object 𝑀)) := CommaCategory.f 𝐴𝜑.

Definition IsInitialMorphism_property (𝑀 : IsInitialMorphism 𝐴𝜑) (𝑌 : 𝐷) (𝑓 : morphism 𝐶 𝑋 (𝑈 0 𝑌))

: Contr { 𝑚 : morphism 𝐷 (IsInitialMorphism_object 𝑀) 𝑌 | 𝑈 1 𝑚 ∘ (IsInitialMorphism_morphism 𝑀) = 𝑓 }.

Proof.

(∗∗ We could just [rewrite right_identity], but we want to preserve judgemental computation rules. ∗)

pose proof (@trunc_equiv′ _ _ (symmetry _ _ (@CommaCategory.issig_morphism _ _ _ !𝑋 𝑈 _ _)) -2 (𝑀 (CommaCategory.Build_object !𝑋 𝑈 tt 𝑌 𝑓))) as 𝐻′.

simpl in 𝐻′.

apply contr_inhabited_hprop.

- abstract (

apply @trunc_succ in 𝐻′;

eapply @trunc_equiv′; [| exact 𝐻′];

match goal with

| [⊢ appcontext[?𝑚 ∘ 𝕀]] ⇒ simpl rewrite (right_identity _ _ _ 𝑚)

| [⊢ appcontext[𝕀 ∘ ?𝑚]] ⇒ simpl rewrite (left_identity _ _ _ 𝑚)

end;

simpl; unfold IsInitialMorphism_object, IsInitialMorphism_morphism;

let 𝐴 := match goal with ⊢ Equiv ?𝐴 ?𝐵 ⇒ constr:(𝐴) end in

let 𝐵 := match goal with ⊢ Equiv ?𝐴 ?𝐵 ⇒ constr:(𝐵) end in

apply (equiv_adjointify (𝜆 𝑥 : 𝐴 ⇒ 𝑥 2) (𝜆 𝑥 : 𝐵 ⇒ (tt; 𝑥)));

[intro; reflexivity | intros [[]]; reflexivity]

).

- (exists ((@center _ 𝐻′) 2) 1).

abstract (etransitivity; [apply ((@center _ 𝐻′) 2) 2 | auto with morphism]).

Defined.

Concrete Example (Old Interface)

3 s

1 s
Total file time: 7 s

Proof assistant performance (fixes)

71

Definition IsInitialMorphism_object (𝑀 : IsInitialMorphism 𝐴𝜑) : 𝐷 := CommaCategory.b 𝐴𝜑.

Definition IsInitialMorphism_morphism (𝑀 : IsInitialMorphism 𝐴𝜑) : morphism 𝐶 𝑋 (𝑈 0 (IsInitialMorphism_object 𝑀)) := CommaCategory.f 𝐴𝜑.

Definition IsInitialMorphism_property_morphism (𝑀 : IsInitialMorphism 𝐴𝜑) (𝑌 : 𝐷) (f : morphism 𝐶 𝑋 (𝑈 0 𝑌)) : morphism 𝐷 (IsInitialMorphism_object 𝑀) 𝑌

:= CommaCategory.h (@center _ (𝑀 (CommaCategory.Build_object !𝑋 𝑈 tt 𝑌 𝑓))).

Definition IsInitialMorphism_property_morphism_property (𝑀 : IsInitialMorphism 𝐴𝜑) (𝑌 : 𝐷) (𝑓 : morphism 𝐶 𝑋 (𝑈 0 𝑌))

: 𝑈 1 (IsInitialMorphism_property_morphism 𝑀 𝑌 𝑓) ∘ (IsInitialMorphism_morphism 𝑀) = 𝑓

:= CommaCategory.p (@center _ (𝑀 (CommaCategory.Build_object !𝑋 𝑈 tt 𝑌 𝑓))) @ right_identity _ _ _ _.

Definition IsInitialMorphism_property_morphism_unique (𝑀 : IsInitialMorphism 𝐴𝜑) (𝑌 : 𝐷) (f : morphism 𝐶 𝑋 (𝑈 0 𝑌)) 𝑚′ (𝐻 : 𝑈 1 𝑚’ ∘ IsInitialMorphism_morphism 𝑀 = 𝑓)

: IsInitialMorphism_property_morphism 𝑀 𝑌 𝑓 = 𝑚′

:= ap (@CommaCategory.h _ _ _ _ _ _ _)

(@contr _ (𝑀 (CommaCategory.Build_object !𝑋 𝑈 tt 𝑌 𝑓)) (CommaCategory.Build_morphism 𝐴𝜑 (CommaCategory.Build_object !𝑋 𝑈 tt 𝑌 𝑓) tt 𝑚′ (𝐻 @ (right_identity _ _ _ _) −1))).

Definition IsInitialMorphism_property (𝑀 : IsInitialMorphism 𝐴𝜑) (𝑌 : 𝐷) (f : morphism 𝐶 𝑋 (𝑈 0 𝑌))

: Contr { 𝑚 : morphism 𝐷 (IsInitialMorphism_object 𝑀) 𝑌 | 𝑈 1 𝑚 ∘ (IsInitialMorphism_morphism 𝑀) = 𝑓 }.

:= {| center := (IsInitialMorphism_property_morphism 𝑀 𝑌 𝑓; IsInitialMorphism_property_morphism_property 𝑀 𝑌 𝑓);

contr 𝑚′ := path_sigma _ (IsInitialMorphism_property_morphism 𝑀 𝑌 𝑓; IsInitialMorphism_property_morphism_property 𝑀 𝑌 𝑓)

𝑚′ (@ IsInitialMorphism_property_morphism_unique 𝑀 𝑌 𝑓 𝑚′ 1 𝑚′ 2) (center _) |}.

Concrete Example (New Interface)

0.4 s

Total file time: 7 s

Proof assistant performance (fixes)

72

Lemma pseudofunctor_to_cat_assoc_helper {𝑥 𝑥0 : 𝐶} {𝑥2 : morphism 𝐶 x x0} {x1 : 𝐶}

{𝑥5 : morphism 𝐶 𝑥0 𝑥1} {𝑥4 : 𝐶} {𝑥7 : morphism 𝐶 𝑥1 𝑥4}

{𝑝 𝑝0 : PreCategory} {𝑓 : morphism 𝐶 𝑥 𝑥4 → Functor 𝑝0 𝑝}

{𝑝1 𝑝2 : PreCategory} {𝑓0 : Functor 𝑝2 𝑝} {𝑓1 : Functor 𝑝1 𝑝2} {𝑓2 : Functor 𝑝0 𝑝2} {𝑓3 : Functor 𝑝0 𝑝1} {𝑓4 : Functor 𝑝1 𝑝}

{𝑥16 : morphism (_ → _) (𝑓 (𝑥7 ∘ 𝑥5 ∘ 𝑥2)) (𝑓4 ∘ 𝑓3)%functor}

{𝑥15 : morphism (_ → _) 𝑓2 (𝑓1 ∘ 𝑓3)%functor} {𝐻2: IsIsomorphism 𝑥15}

{𝑥11 : morphism (_ → _) (𝑓 (𝑥7 ∘ (𝑥5 ∘ 𝑥2))) (𝑓0 ∘ 𝑓2)%functor}

{𝐻1: IsIsomorphism 𝑥11} {𝑥9 : morphism (_ → _) 𝑓4 (𝑓0 ∘ 𝑓1)%functor} {fst_hyp : 𝑥7 ∘ 𝑥5 ∘ 𝑥2 = 𝑥7 ∘ (𝑥5 ∘ 𝑥2)}

(rew_hyp : ∀ 𝑥3 : 𝑝0,

(idtoiso (𝑝0 → 𝑝) (ap 𝑓 fst_hyp) : morphism_ _ _) 𝑥3 = 𝑥11
−1 𝑥3 ∘ (𝑓0 1 (𝑥15

−1 𝑥3) ∘ (𝕀 ∘ (𝑥9 (𝑓3 𝑥3) ∘ 𝑥16 𝑥3))))

{𝐻0
′ : IsIsomorphism 𝑥16} {𝐻1

′ : IsIsomorphism 𝑥9} {𝑥13 : 𝑝} {𝑥3 : 𝑝0} {𝑥6 : 𝑝1} {𝑥10 : 𝑝2}

{𝑥14 : morphism 𝑝 (𝑓0 𝑥10) 𝑥13} {𝑥12 : morphism 𝑝2 (𝑓1 𝑥6) 𝑥10} {𝑥8 : morphism 𝑝1 (𝑓3 𝑥3) 𝑥6}

: existT (𝜆 𝑓5 : morphism 𝐶 𝑥 𝑥4 ⇒ morphism 𝑝 ((𝑓 𝑓5) 𝑥3) 𝑥13)

(𝑥7 ∘ 𝑥5 ∘ 𝑥2)

(𝑥14 ∘ (𝑓0 1 𝑥12 ∘ 𝑥9 𝑥6) ∘ (𝑓4 1 𝑥8 ∘ 𝑥16 𝑥3)) = (𝑥7 ∘ (𝑥5 ∘ 𝑥2); 𝑥14 ∘ (𝑓0 1 (𝑥12 ∘ (𝑓1 1 𝑥8 ∘ 𝑥15 𝑥3)) ∘ 𝑥11 𝑥3)).

Proof.

helper_t assoc_before_commutes_tac.

assoc_fin_tac.

Qed.

Concrete Example 2 (Generalization)

Speedup: 100x for the file, from 4m 53s to 28 s
Time spent: a few hours

Outline
• Why should we care about performance?

• What makes theorem provers (mainly Coq) slow?
• Examples of particular slowness

• For users (workarounds)
• Arguments vs. fields and packed records

• Proof by duality as proof by unification

• Abstraction barriers

• Proof by reflection

• For developers (features)
• Primitive Projections

• Higher inductive types

• Universe Polymorphism

• More judgmental rules

• Hashconsing 75
Dam image from http://www.flickr.com/photos/gammaman/7803829282/ by Eli Christman, CC by 2.0

Fence image from http://www.picgifs.com/clip-art/playing-children/clip-art-playing-children-362018-689955/

http://www.flickr.com/photos/gammaman/7803829282/
https://creativecommons.org/licenses/by/2.0/

Proof assistant performance (fixes)

Better Proof Assistants

76

Outline
• Why should we care about performance?

• What makes theorem provers (mainly Coq) slow?
• Examples of particular slowness

• For users (workarounds)
• Arguments vs. fields and packed records

• Proof by duality as proof by unification

• Abstraction barriers

• Proof by reflection

• For developers (features)
• Primitive projections

• Universe Polymorphism

• Higher inductive types

• More judgmental rules

• Hashconsing 77
Dam image from http://www.flickr.com/photos/gammaman/7803829282/ by Eli Christman, CC by 2.0

Fence image from http://www.picgifs.com/clip-art/playing-children/clip-art-playing-children-362018-689955/

Universes image from Abell NGC2218 hst big, NASA,
http://en.wikipedia.org/wiki/Abell_2218#mediaviewer/File:A
bell_NGC2218_hst_big.jpg, released in Public Domain;
Bubble from http://pixabay.com/en/blue-bubble-shiny-
157652/, released in Public Domain CC0, combined in
Photoshop by Jason Gross

http://www.flickr.com/photos/gammaman/7803829282/
https://creativecommons.org/licenses/by/2.0/
http://antwrp.gsfc.nasa.gov/apod/ap080210.html
http://en.wikipedia.org/wiki/Abell_2218#mediaviewer/File:Abell_NGC2218_hst_big.jpg
http://commons.wikimedia.org/wiki/File:Abell_NGC2218_hst_big.jpg
http://pixabay.com/en/blue-bubble-shiny-157652/
http://pixabay.com/go/?t=http://creativecommons.org/publicdomain/zero/1.0/deed.en

Proof assistant performance (fixes)

• How?
• Primitive projections

78

Proof assistant performance (fixes)

• How?
• Primitive projections

Definition 2-Graph :=

{ V : Type &

{ 1E : V → V → Type &

: ∀ 𝑣1 𝑣2, 1E 𝑣1 𝑣2 → 1E 𝑣1 𝑣2 → Type }.

Definition V (G : 2-Graph) := pr1 (pr1 G).

Definition 1E (G : 2-Graph) := pr1 (pr2 G).

Definition 2E (G : 2-Graph) := pr2 (pr2 G).

79

Proof assistant performance (fixes)

Definition 2-Graph :=

{ V : Type &

{ 1E : V → V → Type &

: ∀ 𝑣1 𝑣2, 1E 𝑣1 𝑣2 → 1E 𝑣1 𝑣2 → Type }.

Definition V (G : 2-Graph) := pr1 (pr1 G).

Definition 1E (G : 2-Graph) := pr1 (pr2 G).

Definition 2E (G : 2-Graph) := pr2 (pr2 G).

80

Proof assistant performance (fixes)

Definition 2-Graph :=

{ V : Type &

{ 1E : V → V → Type &

: ∀ 𝑣1 𝑣2, 1E 𝑣1 𝑣2 → 1E 𝑣1 𝑣2 → Type }.

Definition V (G : 2-Graph) :=

@pr1 Type (𝜆 V : Type ⇒

{ 1E : V → V → Type &

: ∀ 𝑣1 𝑣2, 1E 𝑣1 𝑣2 → 1E 𝑣1 𝑣2 → Type })

G.

(G).

81

Proof assistant performance (fixes)

Definition 2-Graph :=

{ V : Type &

{ 1E : V → V → Type &

: ∀ 𝑣1 𝑣2, 1E 𝑣1 𝑣2 → 1E 𝑣1 𝑣2 → Type }.

Definition V (G : 2-Graph) := pr1 (pr1 G).

Definition 1E (G : 2-Graph) := pr1 (pr2 G).

Definition 2E (G : 2-Graph) := pr2 (pr2 G).

82

Definition 1E (G : 2-Graph) :=
@pr1

(@pr1 Type (𝜆 V : Type ⇒
{ 1E : V → V → Type &

: ∀ 𝑣1 𝑣2, 1E 𝑣1 𝑣2 → 1E 𝑣1 𝑣2 → Type })
G →

(@pr1 Type (𝜆 V : Type ⇒
{ 1E : V → V → Type &

: ∀ 𝑣1 𝑣2, 1E 𝑣1 𝑣2 → 1E 𝑣1 𝑣2 → Type })
G →

(Type)
(𝜆 1E : @pr1 Type (𝜆 V : Type ⇒

{ 1E : V → V → Type &

: , 1E 1E

Proof assistant performance (fixes)

83

Definition 1E (G : 2-Graph) :=
@pr1

(@pr1 Type (𝜆 V : Type ⇒
{ 1E : V → V → Type &

: ∀ 𝑣1 𝑣2, 1E 𝑣1 𝑣2 → 1E 𝑣1 𝑣2 → Type })
G →

(@pr1 Type (𝜆 V : Type ⇒
{ 1E : V → V → Type &

: ∀ 𝑣1 𝑣2, 1E 𝑣1 𝑣2 → 1E 𝑣1 𝑣2 → Type })
G →

(Type)
(𝜆 1E : @pr1 Type (𝜆 V : Type ⇒

{ 1E : V → V → Type &
: ∀ 𝑣1 𝑣2, 1E 𝑣1 𝑣2 → 1E 𝑣1 𝑣2 → Type })

G →
@pr1 Type (𝜆 V : Type ⇒

{ 1E : V → V → Type &
: ∀ 𝑣1 𝑣2, 1E 𝑣1 𝑣2 → 1E 𝑣1 𝑣2 → Type })

G →
Type ⇒

∀ 𝑣1 𝑣2, 1E 𝑣1 𝑣2 → 1E 𝑣1 𝑣2 → Type)
(@pr2 Type (𝜆 V : Type ⇒

{ 1E : V → V → Type &
: ∀ 𝑣1 𝑣2, 1E 𝑣1 𝑣2 → 1E 𝑣1 𝑣2 → Type }

G)

Proof assistant performance (fixes)

84

Definition 1E (G : 2-Graph) :=
@pr1

(@pr1 Type (𝜆 V : Type ⇒ { 1E : V → V → Type & ∀ (𝑣1 : V) (𝑣2 : V), 1E 𝑣1 𝑣2 → 1E 𝑣1 𝑣2 → Type }) G →
(@pr1 Type (𝜆 V : Type ⇒ { 1E : V → V → Type & ∀ (𝑣1 : V) (𝑣2 : V), 1E 𝑣1 𝑣2 → 1E 𝑣1 𝑣2 → Type }) G →
(Type)
(𝜆 1E : @pr1 Type (𝜆 V : Type ⇒ { 1E : V → V → Type & ∀ (𝑣1 : V) (𝑣2 : V), 1E 𝑣1 𝑣2 → 1E 𝑣1 𝑣2 → Type }) G →

@pr1 Type (𝜆 V : Type ⇒ { 1E : V → V → Type & ∀ (𝑣1 : V) (𝑣2 : V), 1E 𝑣1 𝑣2 → 1E 𝑣1 𝑣2 → Type }) G →
Type ⇒

∀(𝑣1 : @pr1 Type (𝜆 V : Type ⇒ { 1E : V → V → Type & ∀ (𝑣1 : V) (𝑣2 : V), 1E 𝑣1 𝑣2 → 1E 𝑣1 𝑣2 → Type }) G)
(𝑣2 : @pr1 Type (𝜆 V : Type ⇒ { 1E : V → V → Type & ∀ (𝑣1 : V) (𝑣2 : V), 1E 𝑣1 𝑣2 → 1E 𝑣1 𝑣2 → Type }) G),

1E 𝑣1 𝑣2 → 1E 𝑣1 𝑣2 → Type)
(@pr2 Type (𝜆 V : Type ⇒ { 1E : V → V → Type & ∀ (𝑣1 : V) (𝑣2 : V), 1E 𝑣1 𝑣2 → 1E 𝑣1 𝑣2 → Type }) G)

:@pr1 Type (𝜆 V : Type ⇒ { 1E : V → V → Type & ∀ (𝑣1 : V) (𝑣2 : V), 1E 𝑣1 𝑣2 → 1E 𝑣1 𝑣2 → Type }) G →
@pr1 Type (𝜆 V : Type ⇒ { 1E : V → V → Type & ∀ (𝑣1 : V) (𝑣2 : V), 1E 𝑣1 𝑣2 → 1E 𝑣1 𝑣2 → Type }) G →
Type

Proof assistant performance (fixes)

85

Recall: Original was:

Definition 1E (G : 2-Graph) := pr1 (pr2 G).

Proof assistant performance (fixes)

• How?
• Primitive projections

• They eliminate the unnecessary arguments to projections,
cutting down the work Coq has to do.

86

Proof assistant performance (fixes)

• How?
• Don’t use setoids

87

Proof assistant performance (fixes)

• How?
• Don’t use setoids, use higher inductive types instead!

88

Proof assistant performance (fixes)

• How?
• Don’t use setoids, use higher inductive types instead!

Setoids add lots of baggage to everything

89

Proof assistant performance (fixes)

• How?
• Don’t use setoids, use higher inductive types instead!

Higher inductive types (when implemented) shove the
baggage into the meta-theory, where the type-checker
doesn’t have to see it

90

Take-away messages
•Performance matters
(even in proof assistants)

•Term size matters for performance

•Performance can be improved by
• careful engineering of developments
• improving the proof assistant

or the metatheory
92

The paper and presentation will be available at
http://people.csail.mit.edu/jgross/#category-coq-experience

The library is available at
https://github.com/HoTT/HoTT

subdirectory theories/categories

93

http://people.csail.mit.edu/jgross/#category-coq-experience
https://github.com/HoTT/HoTT

