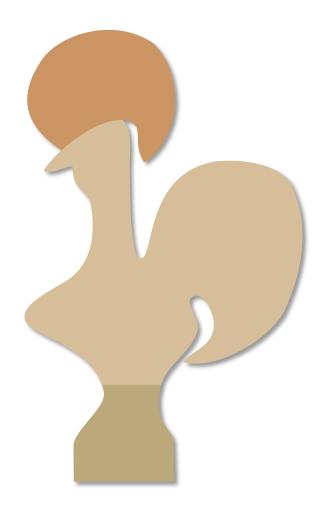
Experience implementing a performant category-theory library in Coq

Jason Gross, Adam Chlipala, David I. Spivak Massachusetts Institute of Technology

How should theorem provers work?



Coq, is this correct?

No; here's a proof of $1 = 0 \rightarrow False$

Theorem (currying): $(C_1 \rightarrow (C_2 \rightarrow D)) \cong (C_1 \times C_2 \rightarrow D)$ Proof: homework

Coq, is *this* correct?

Yes; here's a proof ...

4

Theorem (currying) : $(C_1 \rightarrow (C_2 \rightarrow D)) \cong (C_1 \times C_2 \rightarrow D)$ Proof: homework

Theorem currying : $(C_1 \rightarrow (C_2 \rightarrow D)) \cong (C_1 \times C_2 \rightarrow D)$. Proof. trivial. Qed.

Theorem (currying): $(C_1 \rightarrow (C_2 \rightarrow D)) \cong (C_1 \times C_2 \rightarrow D)$ Proof: $\rightarrow: F \mapsto \lambda (c_1, c_2)$. $F(c_1)(c_2)$; morphisms similarly $\leftarrow: F \mapsto \lambda c_1 \cdot \lambda c_2 \cdot F(c_1, c_2)$; morphisms similarly Functoriality, naturality, and congruence: straightforward.

```
Theorem currying : (C_1 \rightarrow (C_2 \rightarrow D)) \cong (C_1 \times C_2 \rightarrow D).

Proof.

esplit.

{ by refine (\lambda_F (F \mapsto (\lambda_F (c \mapsto F_0 c_1 c_2)))). }

{ by refine (\lambda_F (F \mapsto (\lambda_F (c_1 \mapsto (\lambda_F (c_2 \mapsto F_0 (c_1, c_2)))))))). }
```

all: trivial.

Qed.

Theorem (currying) : $(C_1 \rightarrow (C_2 \rightarrow D)) \cong (C_1 \times C_2 \rightarrow D)$ Proof: $\rightarrow: F \mapsto \lambda (c_1, c_2)$. $F(c_1)(c_2)$; morphisms similarly $\leftarrow: F \mapsto \lambda c_1 \cdot \lambda c_2 \cdot F(c_1, c_2)$; morphisms similarly Functoriality, naturality, and congruence: straightforward.

```
Theorem currying : (C_1 \rightarrow (C_2 \rightarrow D)) \cong (C_1 \times C_2 \rightarrow D).

Proof.

esplit.

{ by refine (\lambda_F \ (F \mapsto (\lambda_F \ (c \mapsto F_0 \ c_1 \ c_2) \ (s \ d \ m \mapsto (F_0 \ d_1)_m \ m_2 \circ (F_m \ m_1)_0 \ s_2))

(F \ G \ T \mapsto (\lambda_T \ (c \mapsto T \ c_1 \ c_2)))).

{ by refine (\lambda_F \ (F \mapsto (\lambda_F \ (c_1 \mapsto (\lambda_F \ (c_2 \mapsto F_0 \ (c_1, c_2)) \ (s \ d \ m \mapsto F_m \ (1, m))))

(F \ G \ T \mapsto (\lambda_T \ (c_1 \mapsto (\lambda_T \ (c_2 \mapsto T \ (c_1, c_2)))))).

all: trivial.

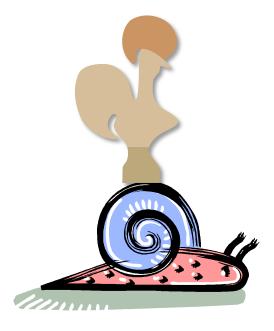
Qed.
```

How theorem provers do work:

Theorem (currying): $(C_1 \rightarrow (C_2 \rightarrow D)) \cong (C_1 \times C_2 \rightarrow D)$ Proof: $\rightarrow : F \mapsto \lambda(c_1, c_2)$. $F(c_1)(c_2)$; morphisms similarly \approx 0 s $\leftarrow: F \mapsto \lambda c_1 \cdot \lambda c_2 \cdot F(c_1, c_2);$ morphisms similarly Functoriality, naturality, and congruence: straightforward. 2m 46 s !!! (5 s, if we use UIP) Theorem currying : $(C_1 \rightarrow (C_2 \rightarrow D)) \cong (C_1 \times C_2 \rightarrow D).$ Proof. esplit. { by refine $(\lambda_F (F \mapsto (\lambda_F (c \mapsto F_0 c_1 c_2) (s d m \mapsto (F_0 d_1)_m m_2 \circ (F_m m_1)_0 s_2))$ $(F \ G \ T \mapsto (\lambda_T \ (c \mapsto T \ c_1 \ c_2)))).$ { by refine $(\lambda_F (F \mapsto (\lambda_F (c_1 \mapsto (\lambda_F (c_2 \mapsto F_o (c_1, c_2)) (s \ d \ m \mapsto F_m (1, m))))$ $(F \ G \ T \mapsto (\lambda_T \ (c_1 \mapsto (\lambda_T \ (c_2 \mapsto T \ (c_1, c_2)))))))$ all: trivial. Qed.

Performance is important!

If we're not careful, obvious or trivial things can be very, very slow.



Why you should listen to me

Theorem : You should listen to me. Proof. by experience. Qed.

Why you should listen to me

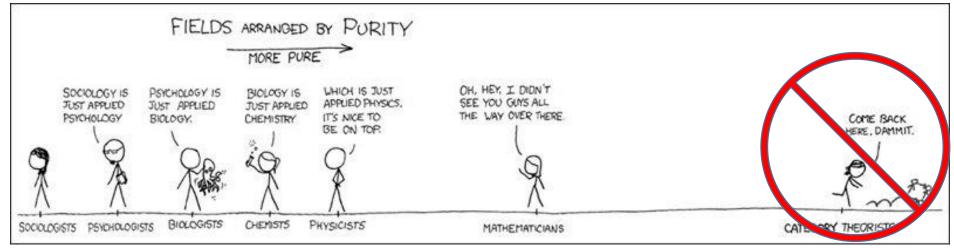
Category theory in Coq: <u>https://github.com/HoTT/HoTT</u> (subdirectory theories/categories):

Concepts Formalized:

- 1-precategories (in the sense of the HoTT Book)
- univalent/saturated categories (or just categories, in the HoTT Book)
- functor precategories $C \rightarrow D$
- dual functor isomorphisms Cat \rightarrow Cat; and $(C \rightarrow D)^{op} \rightarrow (C^{op} \rightarrow D^{op})$
- the category Prop of (U-small) hProps
- the category Set of (U-small) hSets
- the category Cat of (U-small) strict (pre)categories (strict in the sense of the objects being hSets)
- pseudofunctors
- profunctors
 - identity profunction (the hom functor $\mathcal{C}^{\mathrm{op}} \times \mathcal{C} \to \mathrm{Set}$)
- adjoints
 - equivalences between a number of definitions:
 - unit-counit + zig-zag definition
 - unit + UMP definition
 - counit + UMP definition
 - universal morphism definition
 - hom-set definition (porting from old version in progress)
 - composition, identity, dual
 - pointwise adjunctions in the library, $G^E \dashv F^C$ and $E^F \dashv C^G$ from an adjunction $F \dashv G$ for functors $F: C \leftrightarrows D: G$ and E a precategory (still too slow to be merged into the library proper; code here)
- Yoneda lemma
- Exponential laws
 - $\mathcal{C}^0 \cong 1; 0^C \cong 0$ given an object in \mathcal{C}

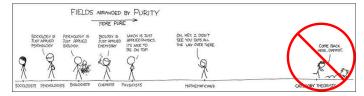
- $C^1 \cong C; 1^C \cong 1$
- $C^{A+B} \cong C^A \times C^B$
- $(A \times B)^C \cong A^C \times B^C$
- $(A^B)^C \cong A^{B \times C}$
- Product laws
 - $C \times D \cong D \times C$
 - $C \times 0 \cong 0 \times C \cong 0$
 - $C \times 1 \cong 1 \times C \cong C$
- Grothendieck construction (oplax colimit) of a pseudofunctor to Cat
- Category of sections (gives rise to oplax limit of a pseudofunctor to Cat when applied to Grothendieck construction
- functor composition is functorial (there's a functor $\Delta: (C \to D) \to (D \to D)$

category theory or diagram chasing



Cartoon from xkcd, adapted by Alan Huang

category theory or diagram chasing

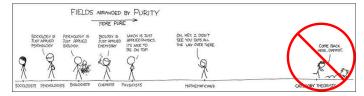


Cartoon from xkcd, adapted by Alan Huang

• my library

- category theory or diagram chasing
- my library

• Coq



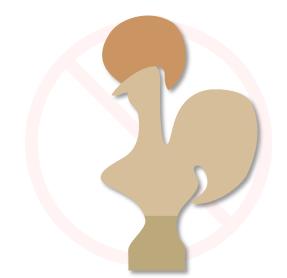
Cartoon from xkcd, adapted by Alan Huang

- category theory or diagram chasing
- my library

The D Star Printed Topping and EdD Printed Start D Printed Sta

FIELDS ARRANGED BY PURITY

• Coq (though what I say might not always generalize nicely)



Presentation is about:

• performance

- the design of proof assistants and type theories to assist with performance
- the kind of performance issues I encountered

Presentation is for:

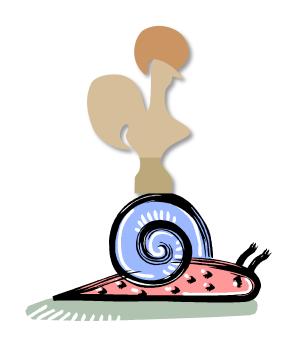
- Users of proof assistants (and Coq in particular)
 - Who want to make their code faster
- Designers of (type-theoretic) proof assistants
 - Who want to know where to focus their optimization efforts

Outline

- Why should we care about performance?
- What makes theorem provers (mainly Coq) slow?
 - Examples of particular slowness
- For users (workarounds)
 - Arguments vs. fields and packed records
 - Proof by duality as proof by unification
 - Abstraction barriers
 - Proof by reflection
- For developers (features)
 - Primitive projections
 - Higher inductive types
 - Universe Polymorphism
 - More judgmental rules
 - Hashconsing

Universes image from Abell NGC2218 hst big, <u>NASA</u>, <u>http://en.wikipedia.org/wiki/Abell_2218#mediaviewer/File:A</u> <u>bell_NGC2218_hst_big.jpg</u>, released in <u>Public Domain</u>; Bubble from <u>http://pixabay.com/en/blue-bubble-shiny-157652/, released in <u>Public Domain CCO</u>, combined in Photoshop by Jason Gross</u>

• **Question:** What makes programs, particularly theorem provers or proof scripts, slow?



- **Question:** What makes programs, particularly theorem provers or proof scripts, slow?
- **Answer:** Doing too much stuff!

- **Question:** What makes programs, particularly theorem provers or proof scripts, slow?
- **Answer:** Doing too much stuff!
 - doing the same things repeatedly

- **Question:** What makes programs, particularly theorem provers or proof scripts, slow?
- **Answer:** Doing too much stuff!
 - doing the same things repeatedly
 - doing lots of stuff for no good reason



Running rooster from http://d.wapday.com:8080/animation/ccontennt/15545-f/mr_rooster_running.gif

- **Question:** What makes programs, particularly theorem provers or proof scripts, slow?
- **Answer:** Doing too much stuff!
 - doing the same things repeatedly
 - doing lots of stuff for no good reason
 - using a slow language when you could be using a quicker one

Proof assistant performance

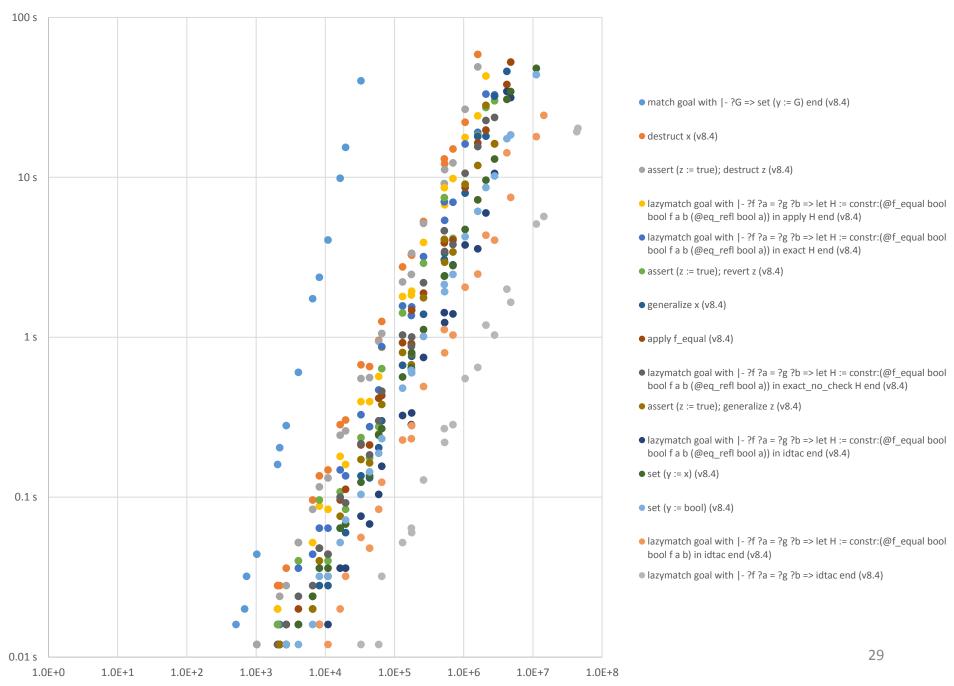
- What kinds of things does Coq do?
 - Type checking
 - Term building
 - Unification
 - Normalization

- When are these slow?
 - when you duplicate work
 - when you do work on a part of a term you end up not caring about
 - when you do them too many times
 - when your term is large

• How large is slow?

- How large is slow?
 - Around 150,000—500,000 words

Durations of Various Tactics vs. Term Size (Coq v8.4, 2.4 GHz Intel Xeon CPU, 16 GB RAM)



- How large is slow?
 - Around 150,000—500,000 words

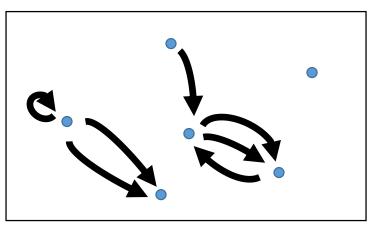
Do terms actually get this large?

- How large is slow?
 - Around 150,000—500,000 words

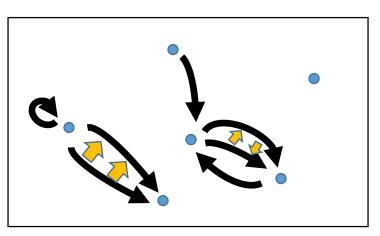
Do terms actually get this large?

YES!

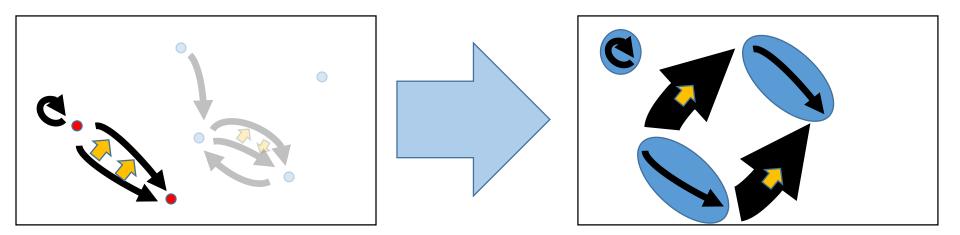
- A directed graph has:
 - a type of vertices (points)
 - for every ordered pair of vertices, a type of arrows



- A directed 2-graph has:
 - a type of vertices (0-arrows)
 - for every ordered pair of vertices, a type of arrows (1-arrows)
 - for every ordered pair of 1-arrows between the same vertices, a type of 2-arrows



• A **directed arrow-graph** comes from turning arrows into vertices:



- When are these slow?
 - When your term is large
- Smallish example (29 000 words): Without Proofs:

 $\{ | \ \operatorname{LCCM}_{F} \coloneqq _ _ \ \operatorname{induced}_{F} (m_{22} \circ m_{12}); \\ \operatorname{LCCM}_{T} \coloneqq \lambda_{T} (\lambda (c : d'_{2} / F) \Rightarrow m_{21} c. \beta \circ m_{11} c. \beta) | \} = \\ \{ | \ \operatorname{LCCM}_{F} \coloneqq _ _ \ \operatorname{induced}_{F} m_{12} \circ _ _ \operatorname{induced}_{F} m_{22}; \\ \operatorname{LCCM}_{T} \coloneqq \lambda_{T} (\lambda (c : d'_{2} / F) \Rightarrow m_{21} c. \beta \circ (d_{1})_{1} \mathbb{I} \circ m_{11} c. \beta \circ \mathbb{I}) | \}$

- When are these slow?
 - When your term is large
- Smallish example (29 000 words): Without Proofs:
- {| LCCM_F := __induced_F $(m_{22} \circ m_{12})$; $LCCM_{\mathbf{T}} \coloneqq \lambda_T \left(\lambda \left(c : d'_2 / F \right) \Rightarrow m_{21} c_{\cdot} \beta \circ m_{11} c_{\cdot} \beta \right)$ $(\Pi - \mathrm{pf}\,s_2 \ (\lambda_T \ (\lambda \ (c : C)) \Rightarrow m_{21} \ c \circ m_{11} \ c))$ $(\circ_1 - pf \ m_{21} \ m_{11}))(m_{22} \circ m_{12}))|$ {| LCCM_F := __induced_F $m_{12} \circ __induced_F m_{22}$; $LCCM_{\mathbf{T}} \coloneqq \lambda_T \left(\lambda \left(c : d'_2 / F \right) \Rightarrow m_{21} c \cdot \beta \circ (d_1)_1 \mathbb{I} \circ m_{11} c \cdot \beta \circ \mathbb{I} \right)$ $(\circ_1 - \text{pf} \quad (\lambda_T \quad (\lambda (c: d'_2 / F) \Rightarrow m_{21} c. \beta) (\Pi - \text{pf})$ kan Pnsions $(\lambda_T (\lambda (c: d'_2 / F) \Rightarrow (d_1)_1 \mathbb{I} \circ m_{11} c. \beta \circ \mathbb{I})$ $(\circ_1 - \mathrm{pf} \quad (\lambda_T \quad (\lambda (c: d'_2 / F)) \Rightarrow (d f))$ $(\circ_0 - \mathrm{pf}(\lambda_T (\lambda (c: d_2 / F))))$ $(\prod - nf s_{n} m_{n}, m_{n})$

Proof assistant performance (pain)

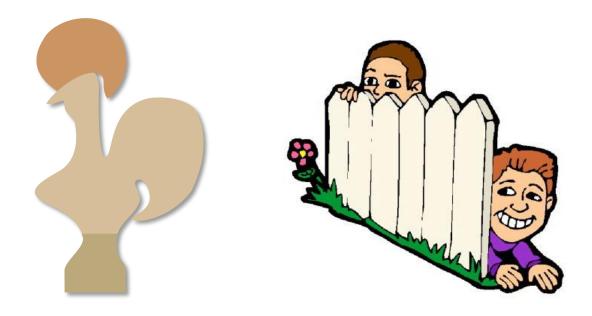
- When are these slow?
 - When your term is large
- Smallish example (29 000 words): Without Proofs:

$$\{ | \text{LCCM}_{F} \coloneqq [\] \text{LCCM}_{T} \coloneqq \lambda_{T} (\lambda (c : d'_{2} / F) \Rightarrow m_{21} c.\beta \circ m_{11} c.\beta) \\ (\Pi - \text{pf } s_{2} (\lambda_{T} (\lambda (c : C) \Rightarrow m_{21} c \circ m_{11} c) \\ (\circ_{1} - \text{pf } m_{21} m_{11})) (m_{22} \circ m_{12})) | \} =$$

$$\{ | \text{LCCM}_{F} \coloneqq [\] \text{LCCM}_{F} \coloneqq [\] \text{LCCM}_{T} \coloneqq \lambda_{T} (\lambda (c : d'_{2} / F) \Rightarrow m_{21} c.\beta \circ (d_{1})_{1} \mathbb{I} \circ m_{11} c.\beta \circ \mathbb{I}) \\ (\circ_{1} - \text{pf } (\lambda_{T} (\lambda (c : d'_{2} / F) \Rightarrow m_{21} c.\beta) (\Pi - \text{pf } d_{2} m_{21} m_{22}))) \\ (\lambda_{T} (\lambda (c : d'_{2} / F) \Rightarrow (d_{1})_{1} \mathbb{I} \circ m_{11} c.\beta \circ \mathbb{I}) \\ (\circ_{1} - \text{pf } (\lambda_{T} (\lambda (c : d'_{2} / F) \Rightarrow (d_{1})_{1} \mathbb{I} \circ m_{11} c.\beta) \\ (\circ_{0} - \text{pf } (\lambda_{T} (\lambda (c : d'_{2} / F) \Rightarrow m_{11} c.\beta) \\ (\circ_{0} - \text{pf } (\lambda_{T} (\lambda (c : d'_{2} / F) \Rightarrow m_{11} c.\beta) \\ (\Pi - \text{pf } s_{2} m_{11} m_{12})) \mathbb{I})))))) \} \}$$

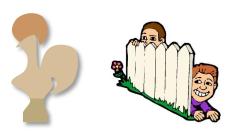
• How do we work around this?

- How do we work around this?
- By hiding from the proof checker!



- How do we work around this?
- By hiding from the proof checker!
- How do we hide?

- How do we work around this?
- By hiding from the proof checker!
- How do we hide?
 - Good engineering



• Better proof assistants

Careful Engineering

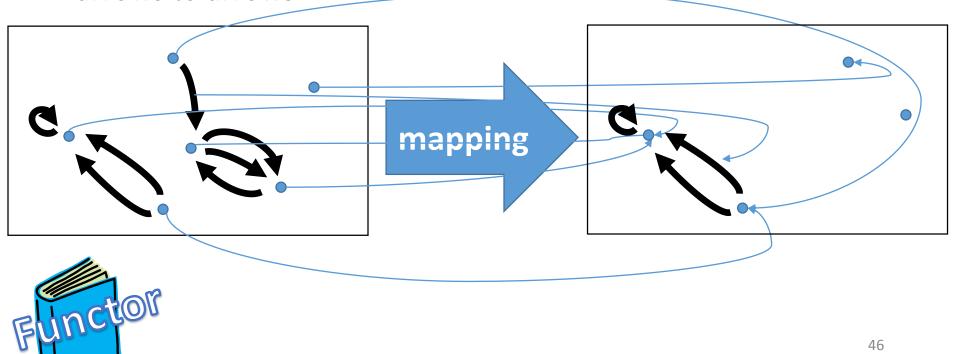
Outline

- Why should we care about performance?
- What makes theorem provers (mainly Coq) slow?
 - Examples of particular slowness
- For users (workarounds)
 - Arguments vs. fields and packed records
 - Proof by duality as proof by unification
 - Abstraction barriers
 - Proof by reflection
- For developers (features)
 - Primitive projections
 - Higher inductive types
 - Universe Polymorphism
 - More judgmental rules
 - Hashconsing

- How?
 - Pack your records!

- How?
 - Pack your records!

A **mapping of graphs** is a mapping of vetices to vertices and arrows to arrows



- How?
 - Pack your records!

At least two options to define graph:

Record Graph := { V : Type ; E : V \rightarrow V \rightarrow Type }. Record IsGraph (V : Type) (E : V \rightarrow V \rightarrow Type) := { }.

Record Graph := { V : Type ; E : V \rightarrow V \rightarrow Type }. Record IsGraph (V: Type) (E: V \rightarrow V \rightarrow Type) := { }. Big difference for size of functor: Mapping : Graph \rightarrow Graph \rightarrow Type. Vs. IsMapping : \forall (V_G : Type) (V_H : Type)

regories &

 $(E_G: V_G \to V_G \to \text{Type}) (E_H: V_H \to V_H \to \text{Type}),$

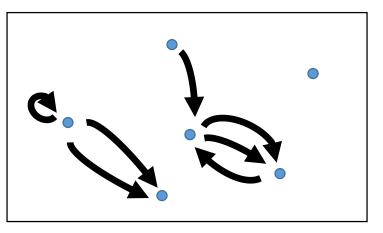
IsGraph $V_G E_G \rightarrow$ IsGraph $V_H E_H \rightarrow$ Type.

- How?
 - Exceedingly careful engineering to get proofs for free

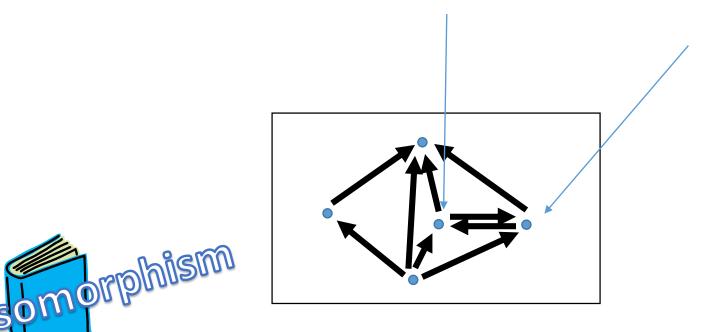
• Duality proofs for free

- Duality proofs for free
- Idea: One proof, two theorems

- Duality proofs for free
- Recall: A directed graph has:
 - a type of vertices (points)
 - for every ordered pair of vertices, a type of arrows

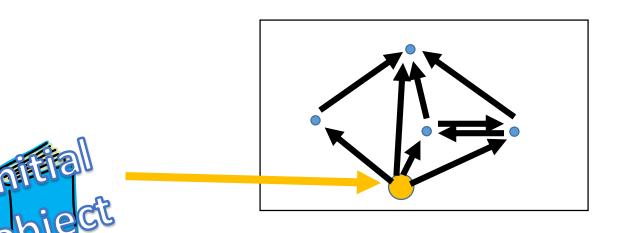


- Duality proofs for free
- Two vertices are **isomorphic** if there is exactly one edge between them in each direction



53

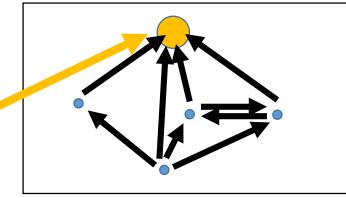
- Duality proofs for free
- Two vertices are **isomorphic** if there is exactly one edge between them in each direction
- An initial (bottom) vertex is a vertex with exactly one edge to every other vertex



• Duality proofs for free

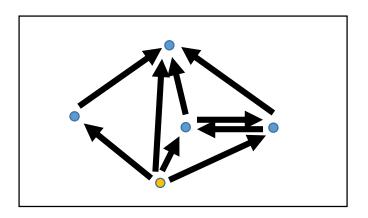
terranal

- Two vertices are **isomorphic** if there is exactly one edge between them in each direction
- An initial (bottom) vertex is a vertex with exactly one edge to every other vertex
- A terminal (top) vertex is a vertex with exactly one edge from every other vertex



- Theorem: Initial vertices are unique
 Theorem initial_unique : ∀ (G : Graph) (x y : G.V),
 is_initial x → is_initial y → x ≅ y
- Proof:

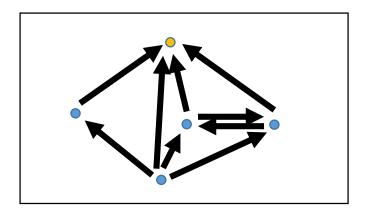
Exercise for the audience



Theorem: Terminal vertices are unique
Theorem terminal_unique : ∀ (G : Graph) (x y : G.V),
is_terminal x → is_terminal y → x ≅ y

• Proof:

 $\lambda G x y H H' \Rightarrow initial_unique G^{op} y x H'H$



- How?
 - Either don't nest constructions, or don't unfold nested constructions
 - Coq only cares about unnormalized term size "What I don't know can't hurt me"

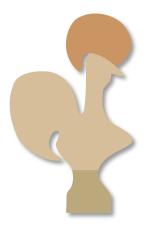
- How?
 - More systematically, have good abstraction barriers

- How?
 - Have good abstraction barriers

Leaky abstraction barriers generally only torture programmers

- How?
 - Have good abstraction barriers

Leaky abstraction barriers torture Coq, too!



61

- How?
 - Have good abstraction barriers

Example: Pairing

Two ways to make use of elements of a pair:

let (x, y) := p in f x y. (pattern matching)

f (fst p) (snd p). (projections)

- How?
 - Have good abstraction barriers

Example: Pairing

Two ways to make use of elements of a pair:

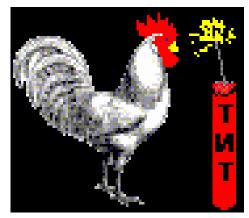
let (x, y) := p in f x y. (pattern matching)

f(let(x, y) := p in x) (let(x, y) := p in y). (projections)

These ways do not unify!

- How?
 - Have good abstraction barriers

Leaky abstraction barriers torture Coq, too!



Rooster Image from http://www.animationlibrary.com/animation/18342/Chicken_blows_up/

- How?
 - Have good abstraction barriers

Leaky abstraction barriers torture Coq, too!

Proof assistant performance (fixes) Concrete Example (Old Version)

Local Notation mor_of $Y_0 Y_1 f :=$

(let η_{Y_1} := IsInitialMorphism_morphism (@HM Y_1) in

(@center_(IsInitialMorphism_property (@HM Y_0)_($\eta_{Y_1} \circ f$))) 1) (only parsing).

Lemma composition_of x y z g f: mor_of _ ($f \circ g$) = mor_of $y z f \circ$ mor_of x y g.

Proof.

simpl.

```
match goal with | [ \vdash ((@center ?A?H)_2)_1 = _] \Rightarrow erewrite (@contr A H (center _; (_; _))) end.
simpl; reflexivity.
Grab Existential Variables.
simpl in *.
repeat match goal with | [ \vdash appcontext[(?x_2)_1] ] \Rightarrow generalize (x_2); intro end.
rewrite ?composition_of.
repeat try_associativity_quick (idtac; match goal with |[ \vdash appcontext[?x_1]] \Rightarrow simpl rewrite x_2 end).
                                                                                                        🔶 3 5 c
rewrite ?left_identity, ?right_identity, ?associativity.
reflexivity
                        Size of goal (after first simpl): 7312 words
                        Size of proof term: 66 264 words
                                                                                                           67
                        Total time in file: 39 s
```

Proof assistant performance (fixes) Concrete Example (New Version)

Local Notation mor_of Y_0 Y_1 f :=(let η_{Y_1} := IsInitialMorphism_morphism (@HM Y_1) in IsInitialMorphism_property_morphism (@HM Y_0) _ ($\eta_{Y_1} \circ f$)) (only parsing). 0.08 s Lemma composition_of x y z g f: mor_of __ ($f \circ g$) = mor_of $y z f \circ$ mor_of x y g. Proof. (was 10 s) simpl. 0.08 serewrite IsInitialMorphism_property_morphism_unique; [reflexivity]]. rewrite ?composition_of. (was 0.5 s) repeat try_associativity_quick rewrite IsInitialMorphism_property_morphism_property. reflexivity. Oed. (was 3.5 s) (was 3.5 s)

Size of goal (after first simpl): 191 words (was 7312) Size of proof term: 3 632 words (was 66 264) Total time in file: 3 s (was 39 s)

Proof assistant performance (fixes) Concrete Example (Old Interface)

```
Definition IsInitialMorphism_object (M : IsInitialMorphism A\varphi) : D := CommaCategory.b A\varphi.
Definition IsInitialMorphism morphism (M : IsInitialMorphism A\varphi): morphism C X (U (IsInitialMorphism object M)) := CommaCategory.f A\varphi.
Definition IsInitialMorphism_property (M : IsInitialMorphism A\varphi) (Y : D) (f : morphism C X (U_0 Y))
: Contr { m : morphism D (IsInitialMorphism object M) Y | U_1 m \circ (IsInitialMorphism morphism M) = f }.
Proof.
(** We could just [rewrite right_identity], but we want to preserve judgemental computation rules. *)
pose proof (@trunc_equiv' _ (symmetry _ (@CommaCategory.issig_morphism _ _ !X U _ )) -2 (M (CommaCategory.Build_object !X U tt Y f))) as H'.
simpl in H'.
apply contr_inhabited_hprop.
- abstract (
    apply @trunc_succ in H';
    eapply @trunc_equiv'; [ | exact H' ];
    match goal with
     [\vdash appcontext[?m \circ I]] \Rightarrow simpl rewrite (right_identity _ _ _ m)
     [ \vdash \operatorname{appcontext}[I \circ ?m] ] \Rightarrow \operatorname{simpl} \operatorname{rewrite} (\operatorname{left\_identity} \_\_ m)
                                                                                                                                               ς
    end.
    simpl; unfold IsInitialMorphism_object, IsInitialMorphism_morphism;
    let A := match goal with \vdash Equiv ?A ?B \Rightarrow constr:(A) end in
    let B := match goal with \vdash Equiv ?A ?B \Rightarrow constr:(B) end in
    apply (equiv_adjointify (\lambda x : A \Rightarrow x_2) (\lambda x : B \Rightarrow (tt; x));
    [ intro; reflexivity | intros [[]]; reflexivity ]
   ).
- (exists ((@center _H')_2)_1).
 abstract (etransitivity; [apply ((@center _ H') _ 2) _ 2 | auto with morphism ]).
Defined.
```

Total file time: 7 s

Proof assistant performance (fixes) Concrete Example (New Interface)

Definition IsInitialMorphism_object (M : IsInitialMorphism $A\varphi$) : D := CommaCategory.b $A\varphi$. Definition IsInitialMorphism morphism (M : IsInitialMorphism $A\varphi$): morphism C X (U (IsInitialMorphism object M)) := CommaCategory.f A φ . **Definition** IsInitialMorphism_property_morphism (M: IsInitialMorphism $A\varphi$) (Y:D) (f:morphism $C X (U_0 Y)$):morphism D (IsInitialMorphism_object M) Y:= CommaCategory.h (@center_(M (CommaCategory.Build_object !X U tt Y f))). **Definition** IsInitialMorphism_property_morphism_property (M : IsInitialMorphism $A\varphi$) (Y : D) (f : morphism $C X (U_0 Y)$) : U_1 (IsInitialMorphism_property_morphism M Y f) • (IsInitialMorphism_morphism M) = f:= CommaCategory.p (@center_(M (CommaCategory.Build_object !X U tt Y f))) @ right_identity ____. **Definition** IsInitialMorphism_property_morphism_unique (M : IsInitialMorphism $A\varphi$) (Y : D) (f : morphism C X (U , Y)) m' (H : U , m' • IsInitialMorphism_morphism M = f) : IsInitialMorphism_property_morphism M Y f = m':= ap (@CommaCategory.h _____) (@contr (M (CommaCategory.Build object !X U tt Y f)) (CommaCategory.Build morphism $A\varphi$ (CommaCategory.Build object !X U tt Y f) tt m' (H @ (right identity)⁻¹))). **Definition** IsInitialMorphism_property (M : IsInitialMorphism $A\varphi$) (Y : D) (f : morphism $C X (U_0 Y)$) : Contr { m : morphism D (IsInitialMorphism_object M) Y | U $_1 m \circ$ (IsInitialMorphism_morphism M) = f }. $:= \{ | center := (IsInitialMorphism_property_morphism M Y f; IsInitialMorphism_property_morphism_property M Y f) \}$ contr m' := path sigma (IsInitialMorphism property morphism MY f; IsInitialMorphism property morphism property MY f) m' (@ IsInitialMorphism_property_morphism_unique $M Y f m'_1 m'_2$) (center _) |}.

Total file time: 7 s

Proof assistant performance (fixes) Concrete Example 2 (Generalization)

Lemma pseudofunctor_to_cat_assoc_helper { $x x_0 : C$ } { $x_2 : morphism C \times x0$ } {x1 : C}

 ${x_5 : \text{morphism } C \ x_0 \ x_1} {x_4 : C} {x_7 : \text{morphism } C \ x_1 \ x_4}$

 $\{p \ p_0 : \text{PreCategory}\} \{f : \text{morphism } C \ x \ x_4 \rightarrow \text{Functor } p_0 \ p\}$

 ${p_1 p_2 : PreCategory} {f_0 : Functor p_2 p} {f_1 : Functor p_1 p_2} {f_2 : Functor p_0 p_2} {f_3 : Functor p_0 p_1} {f_4 : Functor p_1 p}$

{ x_{16} : morphism ($\rightarrow)$ ($f(x_7 \circ x_5 \circ x_2)$) ($f_4 \circ f_3$)%functor}

{ x_{15} : morphism (_ \rightarrow _) f_2 ($f_1 \circ f_3$)%functor} { H_2 : Islsomorphism x_{15} }

{ x_{11} : morphism (\rightarrow) ($f(x_7 \circ (x_5 \circ x_2))$) ($f_0 \circ f_2$)%functor}

{ H_1 : IsIsomorphism x_{11} } { x_9 : morphism (_ \rightarrow _) f_4 ($f_0 \circ f_1$)%functor} {fst_hyp: $x_7 \circ x_5 \circ x_2 = x_7 \circ (x_5 \circ x_2)$ }

(rew_hyp :
$$\forall x_3 : p_0$$
,

(idtoiso $(p_0 \to p)$ (ap f fst_hyp): morphism___) $x_3 = x_{11}^{-1} x_3 \circ (f_{0-1} (x_{15}^{-1} x_3) \circ (\mathbb{I} \circ (x_9 (f_3 x_3) \circ x_{16} x_3))))$ { H'_0 : IsIsomorphism x_{16} } { H'_1 : IsIsomorphism x_9 } { $x_{13}: p$ } { $x_3: p_0$ } { $x_6: p_1$ } { $x_{10}: p_2$ }

{ x_{14} : morphism $p(f_0 x_{10}) x_{13}$ } { x_{12} : morphism $p_2(f_1 x_6) x_{10}$ } { x_8 : morphism $p_1(f_3 x_3) x_6$ }

: existT (λf_5 : morphism $C x x_4 \Rightarrow$ morphism p (($f f_5$) x_3) x_{13})

 $(x_7 \circ x_5 \circ x_2)$

 $(x_{14} \circ (f_{0 \ 1} x_{12} \circ x_9 x_6) \circ (f_{4 \ 1} x_8 \circ x_{16} x_3)) = (x_7 \circ (x_5 \circ x_2); x_{14} \circ (f_{0 \ 1} (x_{12} \circ (f_{1 \ 1} x_8 \circ x_{15} x_3)) \circ x_{11} x_3)).$

Proof.

helper_t assoc_before_commutes_tac.

assoc_fin_tac.

Qed.

Speedup: 100x for the file, from 4m 53s to 28 s Time spent: a few hours

Outline

- Why should we care about performance?
- What makes theorem provers (mainly Coq) slow?
 - Examples of particular slowness
- For users (workarounds)
 - Arguments vs. fields and packed records
 - Proof by duality as proof by unification
 - Abstraction barriers
 - Proof by reflection
- For developers (features)
 - Primitive Projections
 - Higher inductive types
 - Universe Polymorphism
 - More judgmental rules
 - Hashconsing

Better Proof Assistants

Outline

- Why should we care about performance?
- What makes theorem provers (mainly Coq) slow?
 - Examples of particular slowness
- For users (workarounds)
 - Arguments vs. fields and packed records
 - Proof by duality as proof by unification
 - Abstraction barriers
 - Proof by reflection
- For developers (features)
 - Primitive projections
 - Universe Polymorphism 3
 - Higher inductive types
 - More judgmental rules
 - Hashconsing

Universes image from Abell NGC2218 hst big, <u>NASA</u>, <u>http://en.wikipedia.org/wiki/Abell_2218#mediaviewer/File:A</u> <u>bell_NGC2218_hst_big.jpg</u>, released in <u>Public Domain</u>; Bubble from <u>http://pixabay.com/en/blue-bubble-shiny-157652/, released in <u>Public Domain CCO</u>, combined in Photoshop by Jason Gross</u>

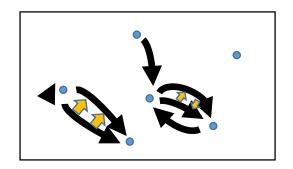
vmorphism

- How?
 - Primitive projections

- How?
 - Primitive projections
- **Definition 2-Graph :=**

{ **V** : **Type** &

 $\{ 1E : V \to V \to Type \&$



 $\forall v_1 v_2, 1E v_1 v_2 \rightarrow 1E v_1 v_2 \rightarrow Type \}.$

Definition V $(G: 2-Graph) := pr_1 G$. Definition 1E $(G: 2-Graph) := pr_1 (pr_2 G)$. Definition 2E $(G: 2-Graph) := pr_2 (pr_2 G)$.

Definition 2-Graph := { V : Type & { 1E : V \rightarrow V \rightarrow Type & $\forall v_1 v_2, 1E v_1 v_2 \rightarrow 1E v_1 v_2 \rightarrow Type$ }. Definition V (G : 2-Graph) := pr₁ G.

Definition 2-Graph := { V : Type & { 1E $: V \to V \to Type \&$ $\forall v_1 v_2, 1E v_1 v_2 \rightarrow 1E v_1 v_2 \rightarrow Type \}.$ **Definition V** (G: 2-Graph) := $(\text{Opr}_1 \text{ Type } (\lambda \text{ V} : \text{Type} \Rightarrow$ { 1E : $V \rightarrow V \rightarrow Type \&$ $\forall v_1 v_2, 1E v_1 v_2 \rightarrow 1E v_1 v_2 \rightarrow Type \})$

G.

Definition 2-Graph := { V : Type & { 1E : V \rightarrow V \rightarrow Type & $\forall v_1 v_2, 1E v_1 v_2 \rightarrow 1E v_1 v_2 \rightarrow Type$ }. Definition V (G : 2-Graph) := pr₁ G . Definition 1E (G : 2-Graph) := pr₁ (pr₂ G).

```
Definition 1E (G : 2-Graph) :=
(0) pr<sub>1</sub>
  (@pr<sub>1</sub> Type (\lambda V : Type \Rightarrow
                                 { 1E : V \rightarrow V \rightarrow Type \&
                                             \forall v_1 v_2, 1E v_1 v_2 \rightarrow 1E v_1 v_2 \rightarrow Type \})
                G \rightarrow
    (\text{@pr}_1 \text{ Type } (\lambda \text{ V} : \text{Type}))
                                 { 1E : V \rightarrow V \rightarrow Type \&
                                             \forall v_1 v_2, 1E v_1 v_2 \rightarrow 1E v_1 v_2 \rightarrow Type \})
                G \rightarrow
    Type)
  (\lambda 1E : @pr_1 Type (\lambda V : Type \Rightarrow
                  1E: V \rightarrow V \rightarrow Type \&
                                                                                                              83
```

```
Definition 1E (G : 2-Graph) :=
 (0)
      (@pr_1 Type (\lambda V : Type \Rightarrow
                                    \{ 1E: V \rightarrow V \rightarrow Tvpe \& \}
                                               \forall v_1 v_2, 1E v_1 v_2 \rightarrow 1E v_1 v_2 \rightarrow Type \})
                   G \rightarrow
        (\text{@pr}_1 \text{ Type} (\lambda \text{ V} : \text{Type} \Rightarrow
                                    \{ 1E : V \rightarrow V \rightarrow Type \& \}
                                               \forall v_1 v_2, 1E v_1 v_2 \rightarrow 1E v_1 v_2 \rightarrow Type \})
                   G \rightarrow
        Type)
      (\lambda 1E: @pr_1 Type (\lambda V: Type \Rightarrow
                                                \{ 1E: V \rightarrow V \rightarrow Type \& \}
                                                          \forall v_1 v_2, 1E v_1 v_2 \rightarrow 1E v_1 v_2 \rightarrow Type \})
                               G \rightarrow
                   (\text{@pr}_1 \text{ Type } (\lambda \text{ V} : \text{Type} \Rightarrow
                                               \{1E: V \rightarrow V \rightarrow Tvpe \&
                                                          \forall v_1 v_2, 1E v_1 v_2 \rightarrow 1E v_1 v_2 \rightarrow Type \})
                               G \rightarrow
                   Type \Rightarrow
              \forall v_1 v_2, 1 \in v_1 v_2 \rightarrow 1 \in v_1 v_2 \rightarrow Type)
      (@pr_2 Type (\lambda V : Type \Rightarrow
                                    { 1E : V \rightarrow V \rightarrow Tvpe \&
                                                  \forall v_1 v_2, 1E v_1 v_2 \rightarrow 1E v_1 v_2 \rightarrow Tvpe \}
                   G)
```

Definition 1E (G : 2-Graph) := @pr₁ (@pr₁ Type (λ V : Type \Rightarrow { 1E : V \rightarrow V \rightarrow Type & \forall (v_1 : V) (v_2 : V), 1E $v_1 v_2 \rightarrow$ 1E $v_1 v_2 \rightarrow$ Type }) G \rightarrow @pr₁ Type (λ V : Type \Rightarrow { 1E : V \rightarrow V \rightarrow Type & \forall (v_1 : V) (v_2 : V), 1E $v_1 v_2 \rightarrow$ 1E $v_1 v_2 \rightarrow$ Type }) G \rightarrow Type) (λ 1E : @pr₁ Type (λ V : Type \Rightarrow { 1E : V \rightarrow V \rightarrow Type & \forall (v_1 : V) (v_2 : V), 1E $v_1 v_2 \rightarrow$ 1E $v_1 v_2 \rightarrow$ Type }) G \rightarrow @pr₁ Type (λ V : Type \Rightarrow { 1E : V \rightarrow V \rightarrow Type & \forall (v_1 : V) (v_2 : V), 1E $v_1 v_2 \rightarrow$ 1E $v_1 v_2 \rightarrow$ Type }) G \rightarrow Type \Rightarrow \forall (v_1 : @pr₁ Type (λ V : Type \Rightarrow { 1E : V \rightarrow V \rightarrow Type & \forall (v_1 : V) (v_2 : V), 1E $v_1 v_2 \rightarrow$ 1E $v_1 v_2 \rightarrow$ Type }) G) (v_2 : @pr₁ Type (λ V : Type \Rightarrow { 1E : V \rightarrow V \rightarrow Type & \forall (v_1 : V) (v_2 : V), 1E $v_1 v_2 \rightarrow$ 1E $v_1 v_2 \rightarrow$ Type }) G), 1E $v_1 v_2 \rightarrow$ 1E $v_1 v_2 \rightarrow$ Type \Rightarrow { 1E : V \rightarrow V \rightarrow Type & \forall (v_1 : V) (v_2 : V), 1E $v_1 v_2 \rightarrow$ 1E $v_1 v_2 \rightarrow$ Type }) G) :@pr₁ Type (λ V : Type \Rightarrow { 1E : V \rightarrow V \rightarrow Type & \forall (v_1 : V) (v_2 : V), 1E $v_1 v_2 \rightarrow$ Type }) G \rightarrow @pr₁ Type (λ V : Type \Rightarrow { 1E : V \rightarrow V \rightarrow Type & \forall (v_1 : V) (v_2 : V), 1E $v_1 v_2 \rightarrow$ Type }) G \rightarrow @pr₁ Type (λ V : Type \Rightarrow { 1E : V \rightarrow V \rightarrow Type & \forall (v_1 : V) (v_2 : V), 1E $v_1 v_2 \rightarrow$ Type }) G \rightarrow @pr₁ Type (λ V : Type \Rightarrow { 1E : V \rightarrow V \rightarrow Type & \forall (v_1 : V) (v_2 : V), 1E $v_1 v_2 \rightarrow$ Type }) G \rightarrow @pr₁ Type (λ V : Type \Rightarrow { 1E : V \rightarrow V \rightarrow Type & \forall (v_1 : V) (v_2 : V), 1E $v_1 v_2 \rightarrow$ 1E $v_1 v_2 \rightarrow$ Type }) G \rightarrow @pr₁ Type (λ V : Type \Rightarrow { 1E : V \rightarrow V \rightarrow Type & \forall (v_1 : V) (v_2 : V), 1E $v_1 v_2 \rightarrow$ 1E $v_1 v_2 \rightarrow$ Type }) G \rightarrow @pr₁ Type (λ V : Type \Rightarrow { 1E : V \rightarrow V \rightarrow Type & \forall (v_1 : V) (v_2 : V), 1E $v_1 v_2 \rightarrow$ 1E $v_1 v_2 \rightarrow$ Type }) G \rightarrow @pr₁ Type (λ V : Type \Rightarrow { 1E : V \rightarrow V \rightarrow Type & \forall (v_1 : V) (v_2 : V), 1E $v_1 v_2 \rightarrow$ 1E $v_1 v_2 \rightarrow$ Type }) G \rightarrow @pr₁ Type (λ V : Type \Rightarrow { 1E : V \rightarrow V \rightarrow Type & \forall (v

Recall: Original was:

Definition 1E (G : 2-Graph) := $pr_1 (pr_2 G)$.

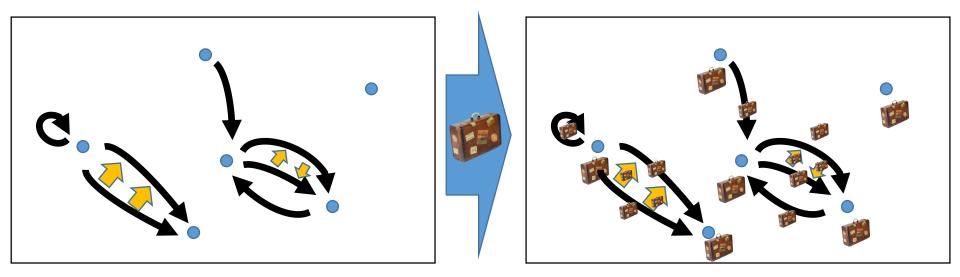
- How?
 - Primitive projections
 - They eliminate the unnecessary arguments to projections, cutting down the work Coq has to do.

- How?
 - Don't use setoids

- How?
 - Don't use setoids, use higher inductive types instead!

- How?
 - Don't use setoids, use higher inductive types instead!

Setoids add lots of baggage to everything



- How?
 - Don't use setoids, use higher inductive types instead!

Higher inductive types (when implemented) shove the baggage into the meta-theory, where the type-checker doesn't have to see it

Take-away messages

 Performance matters (even in proof assistants)

- Term size matters for performance
- Performance can be improved by
 - careful engineering of developments
 - improving the proof assistant or the metatheory

Thank You!

The paper and presentation will be available at

http://people.csail.mit.edu/jgross/#category-coq-experience

The library is available at

https://github.com/HoTT/HoTT

subdirectory theories/categories

Questions?