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Abstract—Standardization of evaluation techniques for build-
ing extraction is an unresolved issue in the fields of remote
sensing, photogrammetry, and computer vision. In this paper,
we propose a metric with a working title ‘PoLiS metric’ to
compare two polygons. The PoLiS metric is a positive definite and
symmetric function that satisfies a triangle inequality. It accounts
for shape and accuracy differences between the polygons, is
straightforward to apply, and requires no thresholds. We show
through an example that the PoLiS metric between two polygons
changes approximately linearly with respect to small translation,
rotation, and scale changes. Furthermore, we compare building
polygons extracted from a digital surface model to the reference
building polygons by computing PoLiS, Hausdorff and Chamfer
distances. The results show that quantification by PoLiS distance
of dissimilarity between polygons is consistent with visual percep-
tion. What is more, Hausdorff and Chamfer distances overrate
the dissimilarity when one polygon has more vertices than the
other. We propose an approach towards standardizing building
extraction evaluation, which may also have broader applications
in the field of shape similarity.

Index Terms—Building extraction, Metric, Polygon compari-
son, Quality assessment, Shape similarity

I. INTRODUCTION

OBJECT extraction and modeling from images has been
an active research area in computer vision and remote

sensing in the past few decades. The increasing spatial resolu-
tion of satellite and aerial imagery together with ongoing de-
velopments of methods enable accurate and (semi) automatic
object detection. The extracted objects are then represented
in vector or raster format. The latter is usually a result of
classification methods, in which each pixel is labelled, whereas
objects in vector format are represented by points, lines,
and polygons. When focusing on building extraction rather
than on general classification, many proposed methods obtain
2D building footprints represented by 2D polygons in vector
format. Hence, a performance evaluation is required for com-
paring methods either among each other and to the reference.
If both, extracted and reference data, are in vector format, a
measure is needed that fulfills the following requirements:

• compares polygons, not only point sets, with different
number of vertices

• is insensitive to additional points on polygon(s)
• is monotonic and also has linear response to small

changes in translation, rotation, and scale
• is a metric in the mathematical sense.
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A. State of the art

Several authors tackled shortage of standard evaluation tech-
niques for building polygon extraction by proposing, assessing,
and comparing these techniques [1]–[10]. Nevertheless, com-
monly accepted evaluation indices and metrics for building
extraction evaluation were not yet agreed on in the community.
[5] Lists several indices for evaluating building extraction and
[3] observes quantity differences between per pixel and per
object evaluation methods, as well as a significant difference
among per object based indices. Some of the commonly used
indices are correlated, e.g. perimeter ratio and few image
moments or completeness and correctness. Thus, [6] joined
and decorrelated several indices in a hierarchical evaluation
system, resulting in a single index.

Per pixel evaluation of detected buildings is analogous to
classification accuracy assessment using matched rates [6], e.g.
completeness, correctness, and quality rates. These three rates
are insensitive to additional points on polygons, and respond
linearly when small changes in translation, rotation and scaling
occur. The major issue with per pixel evaluation for polygon
comparison is that it requires rasterization of vector data
[4], [7] and consequently influences the accuracy. However,
such evaluation is straightforwardly applicable, requires no
thresholds and can serve for a quick assessment [5]. The
matched rates can handle vector data indirectly, if instead of
a number of pixels the areas of polygons are considered [5],
[9]. Furthermore, when indices are computed per object, a new
definition problem rises of true/false detected objects and so
a threshold must be set [2], [3], [10].

Shape similarity measures quantify per object similarity
between a reference and an extracted object in raster or vector
format. Their desired properties depend on the application
[11]. For instance, the affine invariance is desired for some
object recognition tasks, but not for evaluating building foot-
prints, because two footprints rotated, translated, and/or scaled
to each other should be recognised as different. Several shape
similarity measures on boundary level are being used for
building polygon extraction [5], [6], [10]. For instance, turning
angle function and Fourier descriptors are both translation,
rotation and scale invariant, whereas area and perimeter ratio
are only translation and rotation invariant.

Next to the matched rates and shape similarity measures,
also the positional accuracy of extracted building footprints
can be computed. For instance, the root mean square error
(RMSE) between reference and extracted points of a building
polygon [5], [6] or Euclidean distance between centroids of
the objects [1]. Both these indices use vertices of extracted
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building footprints without accounting for the edges. However,
[8] accounts for the reference edges by computing the RMSE
between extracted points and nearest points on the correspond-
ing reference building polygon.

For naming various indices or measures for building extrac-
tion evaluation, also the term metric is used as a synonym,
i.e. in its broader sense [3], [6]. In strictly mathematical
terminology a metric or a distance function defines the distance
between elements of a set and is a positive definite and
symmetric function that satisfies a triangle inequality [12], as
used in [10], [11]. So, a RMSE is not a metric in contrast to
the Euclidean distance between two centres of mass.

In this paper, we define a metric for comparison of polygons
and line segments, hereafter referred to as PoLiS metric. It
accounts for positional and shape differences by considering
polygons as a sequence of connected edges instead of only
point sets, and fulfills the mathematical conditions for a metric
(Sec. II). Moreover, the PoLiS metric is straightforward to
implement and responds approximately linearly to changes in
translation, rotation, and scale. We recognize the importance
of existing matched rates, similarity, and positional accuracy
measures for building footprint evaluation, e.g. [1]–[7], [9],
[10]. Thus, the proposed PoLiS metric should be considered
as an alternative approach for per object building extraction
evaluation [5], [6], which may also have broader applications
in the files of shape similarity.

II. METRIC

A. Metric definition

Let S be any set of objects. A metric d on a set S is a
distance function d : S × S 7→ R. For all x, y, z ∈ S, the
function d must satisfy the following conditions [12], [13]

d(x, y) ≥ 0 and
d(x, y) = 0⇔ x = y positive definiteness (1)
d(x, y) = d(y, x) symmetry (2)
d(x, y) + d(x, z) ≥ d(y, z) triangle inequality. (3)

Many shape similarity measures are based on distances be-
tween points [11]. For example, the Euclidean distance de-
noted ‖·‖ is defined by a function e : Rn × Rn 7→ R, where
e(x, y) = ‖x− y‖ = (

∑n
i=1(xi − yi)

2)
1
2 , x, y ∈ Rn.

Now, let us define A and B as two sets of points, with
elements aj ∈ A, j = 1, . . . , q and bk ∈ B, k = 1, . . . , r,
respectively. The Euclidean distance e(aj , bk) between any
two points of the sets A and B can be computed, if correspon-
dences between points are known. For applications like stereo-
matching or comparing generalized to more detailed shapes,
distances are needed that allow a different size of the sets
q 6= r, e.g. Hausdorff or Chamfer distance (Subsec. II-B).

B. Hausdorff and Chamfer distances

A directed Hausdorff distance ~h(A,B) between the sets A
and B is defined as the maximum distance (Fig. 1a) between
each point aj ∈ A and its closest point bk ∈ B

~h(A,B) = max
aj∈A

min
bk∈B

‖a− b‖. (4)

~h(B,A)

h(A,B)

~h(A,B)

(a) Hausdorff metric

~c(A,B)

~c(B,A)

c(A,B)

(b) Chamfer metric

~p(B,A)

~p(A,B)

p(A,B)

(c) PoLiS metric

Fig. 1. Distances (black solid lines) between two sets of points, i.e. A
(orange) and B (blue). Directed ~·(A,B) (first row), ~·(B,A) (second row)
and symmetric Hausdorff h (Fig. 1a), Chamfer c (Fig. 1b) and PoLiS metric
p (Fig. 1c) between A and B is shown. Arrows represent direction in which
the distance is computed, grey (solid or dashed) connections between points
show an intermediate step in computing a distance, i.e. an underlain Euclidean
distance between points. The PoLiS metric is defined for polygons and not
for point sets, so connections between the points (blue and orange lines) are
established (Fig. 1c).

A directed Chamfer distance ~c(A,B) between the sets A
and B is defined as the sum of the distances (Fig. 1b) between
each point aj ∈ A and its closest point bk ∈ B

~c(A,B) =

q∑
aj∈A

min
bk∈B

‖a− b‖. (5)

Both, directed Hausdorff ~h and directed Chamfer distance
~c, fail to fulfill the condition of the symmetry eq. (2), and
are therefore not a metric in the mathematical sense. Thus,
to fulfill eq. (1)–(3), ~h is symmetrized by computing the
maximum of directed Hausdorff distances [11], [14], [15]

h(A,B) = max{~h(A,B),~h(B,A)}. (6)

In analogy with ~h, ~c is symmetrized by summing the normal-
ized directed Chamfer distances

c(A,B) =
1

2q
~c(A,B) +

1

2r
~c(B,A) (7)

or by computing the average or median between ~c(A,B) and
~c(B,A) [15]. The Hausdorff and the Chamfer distances in
eq. (6), (7) are defined with an underlying Euclidean distance,
thus any other distance could be underlain.

The Hausdorff distance is a measure for the highest dissim-
ilarity between the two point sets, and is therefore sensitive to
outliers, whereas the normalized Chamfer distance quantifies
the overall average dissimilarity [14]. Moreover, they are both
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h(A,B)

(a) Hausdorff distance

c(A,B)

(b) Chamfer distance

p(A,B)

(c) PoLiS distance, example 1

p(A,B)

(d) PoLiS distance, example 2

Fig. 2. Distance (solid black lines) between extracted building footprint A (orange) and a reference building footprint B (blue), marked with solid black lines.
The PoLiS metric (Fig. 2c, 2d) accounts for the shape, whereas the Hausdorff (Fig. 2a) and the Chamfer metric (Fig. 2b) are independent of the connections
between the point sets (solid and dotted blue lines). The dotted light blue lines demonstrate one alternative way to connect the point set B into a polygon.
Annotations analogue to description under Fig. 1.

sensitive to additional points on polygon edges (Fig. 3), and
have a non-monotonic response. Thus, a different measure
must be found for building polygons.

III. POLIS METRIC

In this section we propose a PoLiS metric for comparing
polygons and line segments. Let us assume points aj of a
set A (Subsec. II-A) represent salient points of a shape, e.g.
a building footprint. Thus, they can be connected in a closed
polygon in R2 (Fig. 2). We denote with the same capital letter,
e.g. A, point set and polygon with the same points and vertices
respectively. Then, the points aj , j = 1, . . . , q of the set A
represent the vertices of the closed polygon A, where the first
and the last vertex coincide a1 = aq+1, j = 1, . . . , q + 1. A
boundary ∂A consists of q+1 vertices aj of the closed polygon
A, q edges, and points that lie on the boundary. We refer to
point of a polygon, which has defined coordinates, as vertex,
even if it is not a corner point of a polygon and lies on the
polygons’ boundary. Any point, e.g. a ∈ A, without subscript
can be either a vertex or a point without explicitly defined
coordinates. Analogically to the point set A, the point set B
can be considered as a closed polygon B with k = 1, . . . , r+1
vertices.

A PoLiS distance ~p(A,B) between polygons A and B

0 2 4 6 8 10 12 14 16
0

dx

√
2dx

X
2

Hausdorff
Chamfer
PoLiS

(a) Number of added vertices per side

X
1/2X
1/3X

X

dx

d
x

(b) Polygons

Fig. 3. Sensitivity of the Hausdorff (3a, red), the Chamfer (3a, dark blue) and
PoLiS (3a, green) distance to additional vertices on the edges of the reference
polygon (blue). The extracted (3b, orange) and the reference polygon (3b
blue) have both side length of X and are translated for dx, where dx << X .
Vertices added to edges of the reference polygon are equally distributed, so
that the distance between two subsequent vertices is always equal.

(Fig. 1, 2c, 2d) is defined as the average of the distances
between each vertex aj ∈ A, j = 1, . . . , q of A and its closest
point b ∈ ∂B (not necessary a vertex) on the polygon B

~p(A,B) =
1

q

∑
aj∈A

min
b∈∂B

‖aj − b‖. (8)

The directed PoLiS distance ~p is symmetrized, similar as in
eq. (6) and (7) by summing up the directional distances

p(A,B) =
1

2q

∑
aj∈A

min
b∈∂B

‖aj − b‖+

+
1

2r

∑
bk∈B

min
a∈∂A

‖bk − a‖. (9)

The normalization factors 1
2q and 1

2r are needed to quantify
the overall average dissimilarity per point, same as for the
Chamfer distance, eq. (7). The units of a PoLiS distance
(Fig. 2c, 2d) are the same as the units of the polygon vertices.

IV. EXPERIMENT

We carry out two experiments on a synthetic and a real
dataset. In both experiments the performance of the proposed
PoLiS metric (Sec. III eq. (9)) is compared to the Hausdorff
eq. (6) and the Chamfer eq. (7) distance (Subsec. II-B). Unit
of all metrics are in [m].

1: procedure POLISMETRIC(A,B)
2: p1, p2← 0
3: for j = 1, . . . , q do . for every point aj ∈ A
4: p1← p1 + MINDISTPT2POLY(aj , B)
5: end for
6: for k = 1, . . . , r do . for every point bk ∈ B
7: p2← p2 + MINDISTPT2POLY(bk, A)
8: end for
9: p← p1

2q + p2
2r

10: return p . PoLiS distance value
11: end procedure

Fig. 4. Pseudocode for computing PoLiS metric between two closed polygons,
A and B. The procedure MINDISTPT2POLY computes the shortest distance
between a point and a polygon given by its vertices, and can be for a 3D
case replaced by computing a minimal distance between a 3D point and a
polyhedron.
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Fig. 5. Hausdorff, Chamfer and PoLiS metric as a function of translation, rotation and scale. A polygon under consideration (orange filled polygon) is
compared to the reference (blue polygon). The area of polygons is equal. Hence, the extracted polygon is generalized representation of the reference polygon,
i.e. without division in two units and additional structure.

A. Synthetic data

We define two polygons of equal area, the reference polygon
(Fig. 5d, blue), which has two points on the edges and a small
structure, and the extracted polygon (Fig. 5d, orange), which
is a rectangle. This is a typical building polygon detection
scenario: two additional points dividing a building into two
building units are not detectable from remote sensing images
and the small structure is not distinguishable due to the spatial
resolution of the image.

The extracted building is translated (Fig. 5a), rotated
(Fig. 5b) and scaled (Fig. 5c) according to the centroid of the
reference polygon. The Hausdorff distance is not appropriate
for quantification of dissimilarity between two polygons, be-
cause it has no minimum at an initial position of the extracted
polygon and has a non-monotonic response. In contrast, the
Chamfer and the PoLiS distances have a minimum at the initial
position of the extracted polygon and the impact of changes
in translation, rotation, and scale can be approximated by a
linear function. Moreover, georeferencing accuracy in remote
sensing is normally in much smaller ranges than in Fig. 5a–5c,
e.g. < ±8 m, < ±22.5◦ and < 1±0.2. The graphs (Fig. 5a–5c)
of the Chamfer and the PoLiS distance have different slopes.
This is one reason, why the numerical values of the metrics can
be compared only relative to each other, next to the different
minimum values (Subsec. IV-A) and different definitions of
the metrics (eq. (6), (7), (9)).

B. Real data

For every pair of extracted and reference building footprints
(Fig. 6), the Hausdorff (Fig. 7a), Chamfer (Fig. 7b), and PoLiS
(Fig. 7c) distances are computed. The building footprints are
extracted from a digital surface model (DSM) with the method
described in [16] (Fig. 6, grey areas). The DSM with 1 m
spatial resolution is resampled from a LiDAR point cloud with
an average density of 1.69 points/m2. The reference building
footprints (Fig. 6, blue), provided by the City of Munich, are
detailed cadastral data.

The color bar for each metric in Fig. 6 is scaled from
the best extracted building footprint (dark green) to the worst
(red), i.e. from the minimum to the maximum distance value.
The rectangular and elongated L-shaped buildings are well

0 50 100 150 200 250 300

0

50

100

150

200

Extracted
Reference

Fig. 6. Extracted (grey filled polygons) and reference (blue polygons) building
footprints. Evaluation of this extracted building footprints with different
metrics is shown in Fig. 7.

estimated (green), yet some differences between the met-
rics occur. Moreover, the worst estimated building footprint,
according to the h and c distances (Fig. 7a, 7b, red), is
the elongated building with several small structures. On the
contrary, according to the PoLiS distance the worst estimated
building (Fig. 7c, red) is the one where a part was not extracted
Fig. 6, due to the vegetation on this part of the roof. Thus,
the PoLiS metric penalizes missing estimated areas more than
generalization of the boundary. This is what we require for
the application at hand.

C. Discussion

The PoLiS metric is a metric in mathematical sense,
straightforward to implement, and apply (Fig. 4). We showed
that it changes approximately linearly to expected small
changes between the extracted and the reference polygon.
It is, like the RMSE defined in [8], robust towards parti-
tioning of the polygon by adding vertices on the polygon
edges (Fig. 5, 3). However, RMSE is not a metric (is not
symmetric) and has a parabola-like response to small changes
in translation, rotation and scale.
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Fig. 7. Evaluation of building footprint extraction (Fig. 6) with Hausdorff (7a), Chamfer (7b) and building (7c) metric, all in [m]. The values of the metrics
can be compared relative to each other, but not numerically. Thus, for easier visual interpretation, a colour bar for each metric is scaled from the worst (red)
to the best extracted building footprint (dark green).

When no additional points on the edges of polygons are
present, the c takes similar values as the PoLiS distance. Yet,
the Chamfer and also the Hausdorff metric are very sensitive
to the additional points on edges (Fig. 3). What is more, these
two metrics compare only the point sets. On the contrary,
the PoLiS distance considers the shapes of the polygons by
computing distances to the polygon edges. If one of the poly-
gons has much larger number of vertices than the other, the
numerical value of the PoLiS metric underestimates the actual
dissimilarity, because of normalization factors. However, under
the assumption of small translation, rotation and scale, the
relations between values of PoLiS distances are consistent
relative to each other, in contrast to the values of Hausdorff
and the Chamfer distances (Fig. 7).

V. CONCLUSION

We propose a new PoLiS metric for comparing polygons
that quantifies overall average dissimilarity per polygon vertex.
The metric can be used to assess the quality of extracted
building footprints, when reference data are available. The
performance of the metric is tested on synthetic and real data
examples, i.e. evaluating extracted building footprints from the
remote sensing image. The PoLiS distance estimates similarity
between polygons with different number of vertices better than
the Hausdorff and the Chamfer distance and comparable, if the
number of vertices is similar. The proposed metric changes
approximately linearly, when small changes in translation,
rotation, and scale between the polygons occur. Moreover, it
is a combined measure, which takes into account positional
accuracy and shape differences between the polygons.

The PoLiS metric can be straightforwardly extended to a 3D
PoLiS metric (Fig. 4). Moreover, a potential of the maximum
of the PoLiS distance could be exploited as a measure for the
highest dissimilarity between polygons. The metric is suitable
for any polygon comparison, nevertheless our first direct goal
is its application in the field of building extraction evaluation.
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