- *German, A. M., Squire, R., & Green, J. Semantic processing in dichotic listening? A replication. Memory & Cognition, 1974, 2, 641-646.
- Friesman, A. M., Sykes, M., & Gelade, G. Selective attention and stimulus integration. In 5.

 Doring Georg. Attention and performance CL. Hillsdale, N.J.: Lawrence Erlbaum Associates, 1977.
- Emeryona, G. Moray vs. the rest: The effect of extended shadowing practice. Quarterly Journal of Experimental Psychology, 1974, 26, 368-372.
- Griderwood, G. Semantic interference from unattended printed words. British Journal of Psychology, 1976, 76, 327, 338.
- Underwood, G. Contextual facilitation from attended and unattended messages. Journal of Verbal Learning and Verbal Behavior, 1977, 16, 99-106.

Voluntary versus Automatic
Control over the Mind's Eye's
Movement

John Jonides
University of Michigan
Unn Arbor, Michigan
USA

ABSTRACT

Three experiments are reported that test the hypothesis that shifts of attention can be mediated by automatic as well as voluntary control. In these experiments, subjects were induced to shift their attention, but not their fixation, through the use of two types of visual cue. The experiments examined differences between the cues on three criteria for comparing automatic versus nonautomatic processes: capacity demands, resistance to suppression, and sensitivity to changes in expectancy. According to all criteria, one of the cues was shown to induce shifts of attention more automatically than the other. This indicates two separable modes of control over the allocation of attention.

INTRODUCTION

Attention can be shifted from one locus in the visual field to another without shifting eye position. Two experimental results invite this conclusion: First, subjects are faster and more accurate at detecting or recognizing a target in a visual array if the position of the target is known before the array is presented than if it is not (Jonides, 1976; Smith & Blaha, 1969; Eriksen & Hoffman, 1974; Posner, Nissen, & Ogden, 1978). Second, misinforming subjects about a target's location harms performance relative to giving no location information (Jonides, 1976; Posner et al., 1978). Moreover, these "benefits and costs" in performance to caused by movements of fixation. They persist even with stimulus presen-

tations too brief to pertuit a saccade, and they are found when eye position is measured and remains fixed.

What controls movements of attention? An examination of the experimental procedure that is frequently used to elicit attention shifts suggests one answer. Frequently, subjects are presented with a visual marker in advance of each stantials array, with the marker located near the impending location of the target item (Friksen & Hoffman, 1972, 1973, 1974; Eriksen & Rohrbaugh, 1970; Homgren, 1974; Van Der Heyden & Eerland, 1973). Such a marker would be a high contrast, salient discontinuity in a nonfoveal area of the visual field. Intuition and some experimentation suggest that such a cue may automatically capture attention much as it might automatically elicit an eye movement to the cued location, if a functional eye movement were permitted in these experiments (Todd & Van Geider, 1979).

But peripherally located visual cues are not necessary to cause shifts of attention. Heimholtz (1925) realized this long ago when he remarked that "it is possible, simply by a conscious and voluntary effort, to focus the attention of some definite spot in a field." Various casual observations lead one to the same concausion. For example, in order to detect the dim illumination of distant stars, many astronomers have developed the ability to focus attention voluntarily on a part of the peripheral visual field while maintaining fixation at the center. But one does not even need to be extensively skilled or practiced to engage in a voluntary shift of attention: We have all, at one time or other, watched an event "out of the corner of our eyes" without actually foveating the event of interest.

Experimental data also support the claim that the location of attention is subject to voluntary control. Posner et al. (1978), for instance, gave subjects centrally located visual cues (arrows) to indicate the peripheral positions of impending targets in a detection task. Introspection suggests that such cues, unlike the peripheral visual markers just described, do not automatically draw attention to the cued location; rather, they seem to stimulate a voluntary shift of attention.

These and other experiments (Jonides & Somers, 1977; Shaw, 1978; Shaw & Shaw, 1977) support the hypothesis that attention shifts can be guided by two mechanisms: On the one hand, certain salient stimuli have reflexive control over attention allocation such that when one of these stimuli occurs, a shift of attention to the stimulius is automatically elicited. On the other hand, subjects have internal control over the spatial allocation of attention so that, when motivated, they can voluntarily shift attention from one part of the field to another.

We tested this hypothesis by having subjects engage in a visual search task under the guidance of one of two cues. One was chosen because of its likelihood of automatically drawing attention (an arrowhead in the periphery), whereas the other (an arrowhead at the point of fixation) was chosen because it was presumed to cause a voluntary shift of attention (see Todd & Van Gelder, 1979, for a

discussion of stimuli that control shifts of the eyes, and presumably attention, in voluntary or reflexive manner).

The hypothesis, then, was that the two types of cues would mediate shifts of attention in qualitatively different ways—one via automatic control and one via voluntary control. Evaluation of the hypothesis required some empirical criteria of automaticity. To avoid ambiguous results, a strict position was adopted by choosing three criteria for automatic processes and testing whether a difference in automaticity between the types of cues could be demonstrated according to all three criteria. The experiments that follow report the results of tests against these criteria.

EXPERIMENT 1: CAPACITY

Perhaps the most frequently cited feature of an automatic process is its minimal use of mental capacity. According to many accounts, as a process becomes more sutomatic, the operations involved are executed with ever lessening demands on attentive resources. Presumably, this is due in part to the stereotypy of operation that characterizes most (if not all) automated processes.

In the present experiment, a standard laboratory paradigm was used to assess expacity demand. Subjects engaged in a memory span task while performing visual search under the direction of either peripheral or central cues. If peripheral cues are processed more automatically than central cues, subjects should be disrupted less by the memory task when using peripheral cues during search.

Method

Design. There were two conditions in the experiment, in both of which the primary task was the identification of an L or R that appeared among seven other letters. In the peripheral cue condition, each search display was preceded by an arrowhead that was placed near one of the letter positions. In the central cue condition, an arrowhead was also used as a locational cue, but it was placed in the center of the display where subjects were told to fixate. The delay between cue and search array was 90 msec.

The cost-benefit technique of Posner et al. (1978) was used to assess shifts of attention. On 70% of the trials (valid trials) with either cue the arrowhead correctly indicated the position of the impending target. On the remaining 30% of the trials (invalid trials), the arrowhead pointed to a nontarget location. We diagnosed shifts of attention by examining differences in performance between valid and invalid trials. This corresponds to adding together costs and benefits in the sense defined by Posner et al. (1978).

Subjects. Eight undergraduates served as paid volunteers in two experimental sessions of 1 hr each.

Apparatus. A computer controlled the presentation of stimuli, which were displayed on a graphic display device. Subjects were seated such that the viewing distance from the screen was approximately 60 cm. The testing room was kept durity illuminated throughout the experiment.

Stimuli. The stimulus arrays consisted of letters evenly spaced around the circumference of an imaginary circle of 7.5° diameter. Each letter was 1.2° in height and .8° in width. Each stimulus array was constructed by first locating an uppercase L or an uppercase R at one of the eight array positions and then randomly selecting uppercase letters from the remainder of the alphabet without replacement to fill the seven remaining display positions. On peripheral cue trials, the stimulus arrays were preceded by an outline arrowhead (.8° in length) that pointed to one of the eight array locations. The arrowhead was positioned in the display such that its tip was .7° from the closest position of the letter to which it pointed. On the central cue trials, an arrowhead also preceded the letter displays, but it was always positioned in the center of the imaginary circle on which the tetters were placed.

in the first experimental session, a subject received three blocks of 80 trials from one of the two conditions, preceded by 30 practice trials appropriate to that condition (peripheral for half the subjects, central for the other half). The second session contained trials from the remaining cue condition. In both conditions, tocic were 56 valid and 24 invalid trials with targets appearing equally often at each display position for each type of trial. The practice trials were constructed using the same principles as those used for the test trials. Data from the practice trials are not included in the analyses presented below.

Procedure. Subjects were told about the design of the experiment and about the two conditions in which they would participate. This included instructions about one validities. Then they were told the order of events on each trial: First, they would be read a list of three, five, or seven randomly chosen digits. Following this, they could initiate a trial that began with a dot appearing in the center of the screen and remaining in view for 2 sec. The dot would be replaced by the cue which was displayed for 25 msec. Next, the screen would be blank for the outside of the delay (90 msec), and then an eight-letter display would be presented for 25 msec. Subjects were told to press a left response key if the display contained an 1, or a right key if it contained an R. They were instructed to respond as quickly yet as accurately as possible. Finally, subjects were instructed to recard about the digit string in serial order. Subjects were told to regard the sight task as secondary and not to let it detract from performance on the search task. Nevertheless, they were told to be accurate in their recall.

We exercised two precautions to ensure that subjects maintained fixation toronghout the trials. First, we vigorously instructed and reminded subjects about the importance of maintaining fixation throughout the experiment. Second, we

used a delay, 90 msec, for which the total duration of cue plus delay plus display was 140 msec. This value is about one-half of the average saccade latency reported in experiments similar to the present one (Colegate, Hoffman, & Eriksen, 1973). Thus, even the fastest saccades to the target should have been rendered nonfunctional.

Results and Discussion

Reaction Times and Errors. Figure 11.1 presents the mean response times and error rates for central and peripheral cues as a function of memory load. Separate analyses of variance for each dependent measure were used to analyze these results. The analyses included the factors of cue type (central versus peripheral) and memory load (three versus five versus seven items) in addition to a subjects factor.

The analysis of response times revealed a reliable main effect of memory load, F(2, 14) = 95.24, p < .001, and a reliable interaction of this factor with cue type, F(2, 14) = 10.07, p < .01. The main effect of cue type was not significant (F < 1). Examination of Fig. 11.1 shows the cause of the reliable interaction: Response times to central cues are affected by memory load more than responses to peripheral cues.

The analysis of error rates revealed no reliable interaction of cue with memory load, F(2, 14) = 1.76, p > .05, although each of the main effects was significant, F(1, 7) = 10.13, p < .02 for cue type, F(2, 14) = 10.44, p < .01 for memory load.

Memory Scores. On the basis of assumptions underlying the use of dual-task methodology, the reaction-time results indicate that processing the central cue is a more capacity-demanding task than processing the peripheral cue. To ensure that this conclusion is warranted, we examined the accuracy of subjects' memory scores. The result of this examination was the following: For list lengths of 3, 5, and 7, respectively, subjects correctly recalled 2.93, 4.53, and 5.56 items in the peripheral cue condition and 2.93, 4.38, and 4.75 items in the central cue condition. The data reflect the use of a strict scoring criterion in which a digit was counted as correct only if it was recalled in the correct serial position. Notice that on the average (and especially with list length = 7) performance is worse on trials with a central cue than on those with a peripheral cue. Analysis of the memory scores confirmed that there was a reliable main effect of cue, F(1,7)= 19.95, p < .001, and memory load, F(2, 14) = 87.35, p < .001, and a reliable interaction of these two variables, F(2, 14) = 9.02, p < .01. So both the

Prilot experimentation confirmed the success of these precautions. In this pilot work, subjects' fixations were monitored while the same two precautions as in Experiment 1 were exercised. We found that subjects refixated the display on 7% or less of all trials. The results of the pilot study were unchanged by deleting the trials on which refixations occurred.

for pouse times and the memory scores indicate the greater difficulty of processing the central cue.

We substacked technical A final analysis confirms the position presented here. Scores to calculate times and error rates for valid trials from the comparable and errors to calculate the comparable of costs to calculate the difference scores are measures of costs plus benefits an accordance. Our hypothesis was that the greater automaticity of the peripheral cue should render it more invulnerable to interference by the memory function of memory load for the peripheral than for the central cue. Our analyses contain this prediction.

Figure 1.2 plots costs plus benefits in response times as a function of memory ional. There is an overall effect of cue type, F(1,7) = 22.59, p < .01, and of memory food, F(2, 14) = 4.52, p < .05. Of greater interest, however, is the four was also found for these two effects, F(2, 14) = 4.73, p < .05. The interaction was also found for the error rates reported in Fig. 11.2, F(2, 14) = 8.87, p < .05, and ough neither main effect was reliable, F(1,7) = 1.98, p > .05 for edge, F(2, 14) = 1.35, p > .05 for memory load.

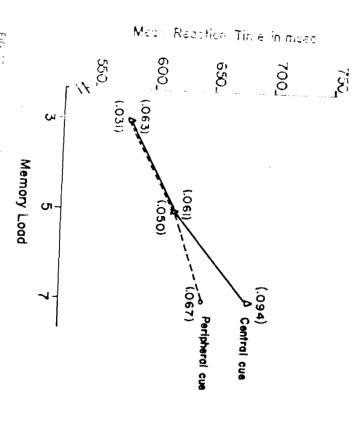


FIG. 12. Perpetation L. Mean reaction times as a function of memory load for costances a peripheral cues. Numbers in parentheses represent proportions of errors.

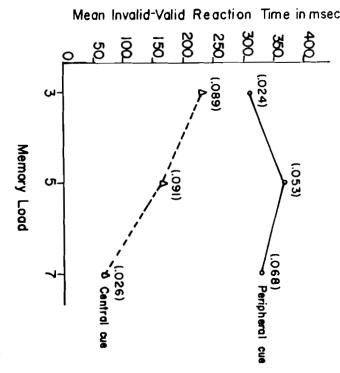


FIG. 11.2. Experiment I: Mean invalid-valid reaction times as a function of memory load. Numbers in parentheses represent proportions of errors.

Thus, the attention-capturing power of the peripheral cue is relatively unaffected by increased alternative demands on processing capacity. This is exactly what one would predict if the peripheral cue were operating in a more automatic fashion than the central cue.

We consider now two further criteria used to assess the automaticity of processing in this task.

EXPERIMENT 2: RESISTANCE TO SUPPRESSION

One of the most striking aspects of an automatic process is its resistance to suppression. By this, we mean that, given the proper initiating conditions (i.e., the proper stimulus), an automatic process will begin and end in an autonomous fashion. An attempt to suppress or interrupt processing will either completely fail or be less successful than a similar attempt to interrupt a nonautomatic process.

The classic example of resistance to suppression is the Stroop effect. The problem for subjects here is that the names of the words intrude on the naming of the hues in which the words are printed. But, subjects are aware of this. Their

were harm a statherently to eniminate the interference. probe a solbat, the as they may, they cannot seem to suppress processing of the 🎉

than a central cue, then subjects should have more difficulty ignoring it. $^{(i)}$ a peripheral arrow cue provides a more automatic basis for an attention shift cassituated to ignore the arrows that preceded the letter displays. We reasoned that Consequently, in Experiment 2 we introduced a condition in which subjects were process wai provide an indication of the level of automaticity for that process. ide suggest that measuring the degree to which one can suppress a particular Cossession officer similar phenomena (Shiffrin & Schneider, 1977, Experiment

Subjects. Eighteen undergraduates were paid for participation in one ex-

made clear later. Third, the memory load task was eliminated. to the actual location of the target. The reason for the decrease in valid trials is target focations, the one indicated by the cue was therefore only randomly related central one conditions was reduced to 12.5%. Because there were eight possible eue and insplay was used. Second, the validity of the cue in the peripheral and to those of Experiment I with three exceptions. First, a delay of 50 msec between Appuratus and Stimuli. The apparatus and stimulus displays were identical

anced across subjects. trials appropriate for that condition. The order of cue conditions was counterbalstains. The blocks of each cue condition were preceded by a block of 30 practice security haveks of 80 trials for each cue condition, resulting in a total of 320 test errors for the chanastron of the memory load task. Subjects received two con-Provedure. The find by find procedure was similar to that of Experiment L

ii would improve their performance. dequently instructed to attend to the cue because on the average, they were told, out since was a "fairly low" cue validity, although they were not told that the vancing was at a chance level. Throughout the session, these subjects were visual search instructions of Experiment 1. In addition, these subjects were told Subjects in the "attend" group were given instructions that were similar to the

the caes in both peripheral and central conditions was emphasized. had actually ignored the cue. In this way, the need to ignore the directionality of expendent i to convince them that the experimenter could assess whether they were this about the actual cue validity and the random relationship between cue and target. Furthermore, these subjects were shown data similar to those of The second group of subjects was instructed to ignore the arrow cues. They

Results and Discussion

central and validity (valid versus invalid) for each of the dependent measures. valuations, only for each group, assessed the effects of cue (peripheral versus scordiant times and error rates are presented in Table 11.1. Two analyses of

> of the valid trials in this experiment due to their small number. difference between valid and invalid trials for the central than the peripheral cue. Insignificant interaction of the two variables, F(1, 8) = 1.43, p > .05. The F(1, 8) = 20.83, p < .001; no reliable effect of cue types (F < 1); and an was instructed to attend to the cue, there was a reliable main effect of validity, The analyses of reaction times revealed the following effects. For the group that Interaction is consistent with the finding of Experiment 1 that there is a smaller That this interaction is not reliable may be attributed to the increased variability

and invalid central cues (p > .05). cues (p < .05 by Scheffé post hoc test) but no reliable difference between valid to the fact that there is a reliable difference between valid and invalid peripheral iables, F(1, 8) = 6.25, p < .05. As Table 11.1 suggests, this interaction is due of cue type (F < 1). Also, there was no reliable effect of validity overall, F(1,8)= 2.98, p > .05. However, there was a reliable interaction of these two varrevealed a somewhat different pattern of results. Again, there was no main effect Analysis of the reaction times for the group instructed to ignore the cues

The analysis of the low error rates for each group revealed no reliable effects

more automatic fashion than does its central cue counterpart. peripheral cue, a result that is consistent with our hypothesis that this cue acts in a subjects have more difficulty in suppressing an attention response to the display, but they cannot do so when it appears in the periphery. In other words, directing cue, subjects can comply when the cue appears in the center of the These results indicate that, when given instructions to ignore an attention-

comparable values for Experiment 1 are 337 msec and 153 msec, respectively. Why is there such a large discrepancy between the experiments? tend" condition is 95 msec for peripheral cues and 61 msec for central cues. The mean difference between response times for valid and invalid trials in the "at-There is one aspect of these results that may appear strange initially. The

variable that may have exaggerated the invalid-valid difference. But as we shall One obvious possibility is that Experiment 1 also included a memory load

Mean Reaction Times and Mean Error Proportions for the Two Conditions of Experiments." **TABLE 11.1**

	Condition		Attend	nd	Ignore	ire
	Validity		Valid	Invalid	Valid	Invalid
	Peripheral RT	RT	666 (155)	761 (120)	714 (150)	812 (131)
2	<u>g</u> i	Епог	.039 (.042)	.067 (.029)	.061 (.042)	.086 (.026)
Cue	Central RT	RT	679 (149)	740 (113)	763 (197)	761 (122)
]	Fi	Errors	.045 (.046)	.070 (.026)	.050 (035)	.045 (.020)

⁹The values in parentheses each represent one standard deviation from the respective means

see, a summar see effect also obtains in Experiment 3 in which no memory load variable is involved. A more plausible possibility involves the cue validity. In Experiment 1, validity was 70%, whereas in the present experiment it was 12.5%. In another series of experiments, Jonides (1980) has shown that there are systematic and roughly symmetrical reductions in the magnitudes of costs and benefits with reductions in cue validity. The discrepancy between the first two experiments can be resolved on the basis of these findings.

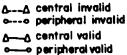
The fact that cue validity can have an effect on the magnitude of costs and oenebits for a peripheral cue as well as a central cue suggests that subjects do have some measure of control over whether they attend to the peripheral cue. Of course, as the data of the "ignore" condition in the present experiment show, subjects do not have total control: They cannot completely ignore the peripheral cue even if motivated to do so. Thus, a reasonable conclusion might be that the operation of the peripheral cue is not completely automated. Perhaps there are two components to its processing, an automatic and a nonautomatic one. The automatic component is revealed by the identical differences between invalid and valid trials for the attend versus the ignore conditions. The nonautomatic component is revealed by the change in invalid minus valid response times with cue validity. This may be an interesting hypothesis for future research; but for the present our main purpose is to demonstrate a difference in the processing of central and peripheral cues. The present experiment is support for such a hypothesized difference.

EXPERIMENT 3: EXPECTANCY

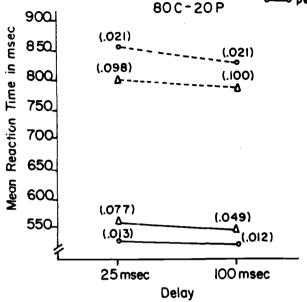
In Experiment 2, we discovered that it is difficult to ignore a peripheral cue when it precedes a stimulus display, apparently because the presence of such a cue autrates a shift of attention on many trials regardless of instructions to ignore the cue. The result suggests the following generalization: The proper stimulus conditions alone may often be sufficient to trigger an automatic process in the present task. From this it follows that a peripheral cue should remain an effective stantings to capture attention regardless of whether subjects expect it to be presented or not. This stands in contrast to the effectiveness of a central cue. Here we hypothesize that the controlled processing that is required to render this cue effective would leave it subject to changes in expectation. The present experimeat tests this notion; that is, whether the potency of the two types of cues is mimenced by subjects' expectations about their occurrence. We predict that the automaticity of the peripheral cue should render it less subject to such influence. We test this prediction by mixing trials with the two types of cues and varying the probability that each cue will be presented. Presumably, if one cue is made much more probable than the other, then subjects will come to expect its occurrence more frequentiv.

Method

General Design. There were two groups of subjects in the experiment. Each group was presented a series of visual search trials as in Experiment 1 (though without the memory load task) with either peripheral or central cues preceding each trial in a mixed random order. For one group (80 C-20 P), central cues occurred on 80% of all trials and peripheral cues occurred on the remaining 20%. For the other group (80 P-20 C), peripheral cues appeared on 80% of the trials, whereas central cues appeared on 20%.


Subjects. Twenty-four undergraduates were paid for participation in two 1-hr sessions. Twelve were assigned to the 80 C-20 P group, 12 to the 80 P-20 C group.

Apparatus and Stimuli. The apparatus was identical to that described for Experiment 1. The test stimuli likewise were constructed according to the same principles used for Experiment 1. In the present experiment, two delay values were used, however: 25 msec and 100 msec. Subjects were presented with 400 test trials in each session at one of these two delays. The order in which subjects were presented with the two delay conditions was determined randomly.


Procedure. In addition to general instructions about stimulus events, 70% cue validity, and cautions about speed and accuracy, subjects were told about the uneven probability of central and peripheral cues. They were further instructed that although the two cues were randomly intermixed, a trial-by-trial expectation for the more frequent cue would be correct much more often than not.

Results and Discussion

Reaction Times. Figure 11.3a and b display the reaction-time results for the 80 P-20 C and 80 C-20 P groups, respectively. An analysis of variance was used to examine trends in the data. It included the factors of expectancy condition (80 P-20 C versus 80 C-20 P), delay (25 msec versus 100 msec), cue type (peripheral versus central), validity (valid versus invalid), and subjects. The analysis revealed several reliable effects. As the figures clearly show, valid cues produce responses that are faster than those produced by invalid cues, F(1, 22) =77.70, p < .001. Furthermore, as in Experiment 1, the difference between valid and invalid cues is greater for peripheral than central cues, F(1, 22) = 89.82, p< .001. The most relevant interaction for the hypothesis underlying the experiment, however, is the reliable four-way interaction among expectancy, cue, validity, and delay, F(1, 22) = 20.51, p < .005. Its interpretation is revealed by examining Fig. 11.3. Note first that the difference between valid and invalid central cues is much smaller (and, in fact, not statistically reliable by post hoc test) in the 80 P-20 C than in the 80 C-20 P condition at a delay of 25 msec. At the same delay, however, the difference between valid and invalid peripheral cue trials is about the same magnitude in the two expectancy conditions. This pattern

199

126

the central cue, insofar as automatic processing is characterized by insensitivity to variations in expectancy.

The remaining reliable effects in the analysis of variance can all be interpreted in light of the reliable four-way interaction. The interaction of delay with validity, F(1, 22) = 5.78, p < .05, is a result of the overall smaller effect of cue validity at a delay of 25 msec. That this is due to the 80 P-20 C expectancy condition is indicated by the reliable interaction of these two variables with condition, F(1, 22) = 9.75, p < .01. Finally, the reliable three-way interaction of expectancy condition, validity, and cue type, F(1, 22) = 19.31, p < .001, also follows from the previous analysis: Although there is a larger effect of validity on peripheral than central cues, this is more true of the 80 P-20 C condition than of the 80 C-20 P condition.

Errors. As Fig. 11.3 shows, the error rates were generally quite low. An analysis of variance identical to the one for reaction times was used to analyze the data. The only reliable main effect was that for cue validity, F(1, 22) = 40.22, p < .001. Two interactions were also highly significant: The first was an interaction of expectancy condition by cue type, F(1, 22) = 191.03, p < .001; the second was a three-way interaction between these two variables and validity. t(x, 22) = 59/7, p < .001. These two interactions are apparently due to higher error rates for the trials on which expected cues appear than for trials on which emexpected cues appear. It is not immediately clear why this should have been so. In any case, because the error rates are different from the contrasts of interest for the reaction times, we are confident that subjects are not trading speed for accuracy to affect the interaction of interest in the reaction times.

Overall, the results of the experiment support the hypothesis that motivated it. If a peripheral cue attracts attention more automatically than a central cue, it should be less subject to changes in subjects' expectations about its occurrence. It is,

GENERAL DISCUSSION

The experiments just described have established four properties of peripheral cues:

- 1. The processing of the cues does not draw heavily on cognitive resources, at least in comparison with the processing of central cues.
- 2. It is more difficult to suppress a shift of attention induced by a peripheral cue than one induced by a central cue. This conclusion is supported by the persisting costs and benefits that accrue to a peripheral cue when subjects are instructed to ignore it. Such effects do not persist when subjects ignore central cues.
- 3. Peripheral cues maintain their attention-capturing property even when subjects up not particularly expect their occurrence. This is not true of central cues: Cheir effectiveness in causing attention shifts is directly related to subjects' expectations about their occurrence.
- 4. Peripheral cues are more effective in drawing attention in the sense that they produce greater costs plus benefits in processing times and accuracy than central cues.

Taken together, these results support the hypothesis that the two cues differ in the extent to which they engage attention automatically. One could attribute this difference in automaticity to any or all of several differences between the cues. One possibility is that the peripheral cue, by dint of its position in the display, is more precise in its localization of the cued letter. A second alternative is that the central cue is rendered relatively less effective than the peripheral cue because "deeper" encoding of it (analysis of the direction in which it points, as opposed to simple determination of its position) is required before its indicated location is revealed to the subject. Finally, a third plausible account of the effectiveness of the peripheral cue hinges on its similarity to visual stimuli that elicit reflexive saccades. According to this possibility, the peripheral cue effectively captures

attention because it exploits a predisposition of the visual system to be especially sensitive to salient discontinuities off the fovea (Todd & Van Gelder, 1979).

Whatever the difference between the cues, however, they both seem to have one common effect: They concentrate a disproportionate share of subjects' processing resources on the cued location. As Jonides (1980) has shown, a class of models that accounts nicely for this effect is one in which processing resources are initially spread evenly over all potential target positions. When a cue appears, it causes more of these resources to be assigned to the cued location than to the others, producing costs and benefits in performance. According to this class of models, the peripheral cue of the present experiment is simply more effective in causing a reallocation of resources, because it has automatic control over these resources. This greater control is not shown as a faster shift of attention compared with a central cue (overall reaction times to the cues do not differ). Rather, the peripheral cue seems to differ from the central by virtue of its ability to attract attention on a greater proportion of trials. It is in this sense that it is more effective.

We should make clear, of course, that we are not here claiming that the visual characteristics discussed above are necessary to engage selectively an automatic processing mechanism, only that they are sufficient. One may well imagine that some experimental manipulation could cause a central cue to act automatically as well. For example, the work of Shiffrin and Schneider (1977) suggests that training regimens that use consistent versus varied mapping with a single type of cue may cause the cue to act automatically or not. This might be tested in the present paradigm in two ways: One might provide subjects with extensive consistent mapping training with a central cue to produce its effect automatically; or one might provide varied mapping training with a peripheral cue to try to eliminate its automatic effect (actually, the question of how a process once automated can be made nonautomatic is itself an interesting one). In any case, the present experiments suggest only that certain stimulus characteristics may be sufficient to engage automatic shifts of attention.

Significance

13-65

What is the significance of having established two modes of control over attention shifts? First of all, in doing so, these experiments add to the growing body of literature concerned with voluntary versus automatic control over perceptual and cognitive processes. This literature has begun to establish a range of phenomena in which automatically guided mechanisms can develop. At some point, this collection of phenomena will contribute to a general theory of automaticity that will help us better understand the executive mechanisms that control cognitive activity.

But there is also a more specific implication of the present experiments that merits further exploration. Although the psychological literature has long con-

concern with the role that the 1. & Snyder, C. R. R. Relationships between attention shifts and Robert Victors. Proceed on carries, evidence of our abilitalintary control of the allocation of attention in the visual field. Paper Recentary, Nissen, Posner, an Paper presented at the meeting of the Psychonomic Society, November,

tenure recation and costs in ... In H. Pick & E. Saltzman (Eds.), Modes of perceiving and processing Phenomical are characterized, & Ogden, W. C. Attended and unattended processing modes: The role "fanictional relationship" N.J.: Lawrence Erlbaum Associates, 1978.

devoted to only one location (performance, 1978, 4, 586-598 terrized in terms of a spoths location model for reaction time. Journal of Experimental Psychology:

show. Perhaps the demonstry: Human Perception and Performance, 1977, 3, 201-211. together (although they can Optimal allocation of cognitive resources to spatial locations. Journal of

and attention shifts, especial omatic attending, and a general theory. Psychological Review, 1977, 84, attention shifts adds further evider. W. Controlled and automatic human information processing: II.

a "functional relationship" Ohio State University, 1969. capable of clienting automatics. Preliminary report summarizing the results of location uncertainty

search, however, will be req. P. Implications of a transient-sustained dichotomy for the measurement Journal of Experimental Psychology: Human Perception and Perfor-

A. R. Eerland, E. The effect of cueing in a visual signal detection task. A. (xperimental Psychology, 1973, 25, 496-503.

Psychology, University of Mich neip with data analyses. Reque Barbara Zeelf for their help in co 79.1.7373. I thank David Bauer This research was supported by

Truccea (W. & Robrbaugh, J. W. link of C. W. & Holtman, I. F. Enksce, v. W., & Holfman, J. E. i robsen, t. W., & Hoffman, J. E. Colcente, R. L., Holfman, J. E., & tien abote, it von Handbuch der cacoding from visual displays a overnamed by vocal reaction tin magness Penoption & Psychop Ter from all the Peechonomic Sec hours on tournal of Psychology

Journal of the n Hologory 3 F. The effect of a vilender i Voluntary versus reflexi Contact Perception & Psychopt meeting of the Psychonomic So 32 103 H2