THE ANTWERP EXHIBITION.
(From our Special Commissioner.)
In several important branches of engineering, Great Britain is only represented at Antwerp by one exhibitor. For instance, Messrs. Picksley, Sims, and Co. are the only English firm who show agricultural machinery. Their exhibit is neither in the Industrial nor in the Machinery Hall, but they have a little Agricultural Show all to them selves in a building to the right of the principal entrance,
in the road leading to "Old Antwerp." It has probably in the road leading to "Old Antwerp." It has probably been placed in a separate building to allow them to show
the different appliances, and especially the thrashing machine at work. That which they exhibit is driven by a 10-horse power nominal portable engine. At present it is only run slowly, so as to show the movements; but it
is intended to thrash with it when the judges desire to is intended to thrash with it when the judg
see it at work, or on other special occasions.
Messrs. Picksley, Sims, and Co. also show a 6 -horse power portable engine, a 4 -horse power semi-portable
with vertical boiler, an 8 -horse power vertical engine, but with vertical boiler, an 8 -horse power vertical engine, but
without boiler, and a 6 -horse power horizontal. They without boiler, and a 6 -horse power horizontal. They
have also chaff cutters, bone mills, a machine for flattenhave also chaff cutters, bone mills, a machine for flatten-
ing maize and barley, a turnip cutter, and cake breakers, ing maize and barley, a turnip cutter, and cake breakers, as well as a 2 -horse power horse-gear, a drill 10ft. wide,
a haymaker, and two reapers, one fitted with self-binder. The workmanship of all these machines and implement is very good, so that manufacturers of English agricultura machinery
In the Machinery Hall, Messrs. De Naeyer and Co., of Willebroeck, occupy a larger floor space than any other exhibitor, viz., 20,000 s quare feet. This is chiefly require for a complete paper-making plant, capable of turning out 6 cwt . of paper per hour. The installation com-
mences with pulping machines, the work of which may be conveniently observed from the gallery which runs round the Machine Hall. There does not seem to be anything novel about these, or the mixing vats; but the paper made in the Exhibition will be of a class suitable for newspapers ; but the machine can produce either finer or coarser qualities. They also show printing presses, envelope machines, dc. Another exhibit by the work. The system adopted is Pictet's, and the output 24 cwt. per hour.
The steam required for the motive-power of all engines in the Machinery Hall is generated in four 250-horse power boilers, just outside the hall; and these, with the shafting, steam pipes, valves, \&c., have also been supplied by Messrs. De Naeyer. These boilers are something like the Babcock and Wilcox; the makers say they are a
modification of the Roth boiler. The peculiarity about them is the simple manner in which the ends of the tubes are connected. The joints are made by cast iron caps, each fitting over two tubes, and held down by clamps
with one bolt in the middle of each, so that there is one with one bolt in the middle of each, so that there is one
clamp for every two tubes. The usual working pressure clamp for every two tubes. The usual working pressure
is 110 lb . to 120 lb ., but they can be kept at 150 lb . when desired. Every steam joint without exception in boilers, or in the transmission to the different machines, is made by wrought iron conical rings. These rings, which are turned very slightly conical at each end, are of all sizes from $1 \frac{1}{2}$ in. diameter upwards. They are inserted in the ends of the tubes, which are then screwed up, without
red lead or any packing being used. The joints thus made are thoroughly satisfectory, as no leakage of steam can be detected anywhere
Messrs. John Cockerill and Co., of Seraing, have the
most varied set of exhibits in most varied set of exhibits in the Machinery Hall. The sion marine engine, 1600 indicated horse-power, for the sion marine engine, 1600 indicated horse-power, for the
s.s. John Cockerill, now in course of construction at their shipbuilding yard, at Hoboken, just above Antwerp. The diameter of the high-pressure cylinder is 2 ft . $2 \frac{1}{2}$ in., that of the intermediate 3 ft .7 f in., and that of the low-pressure
5 ft .9 i in. ; the length of stroke is 3 ft . 7tin. The steam enters the first cylinder at a pressure of 170 lb . per square inch. The cylinders are steam-jacketed, and are cast
separately, copper pipes being nsed for the steam pipes separately, copper pipes being used for the steam pipes
and intermediary reservoirs. Piston-rods, crossheads, connecting-rods, and the columns supporting the front of the cylinders, are all of forged steel, and the pistons of cast steel. The air-pump is $2 \mathrm{ft} .2 \frac{1}{2} \mathrm{in}$. diameter, and
1 ft 9lin. stroke; it is lined with gun-metal, and the piston is also of gun-metal. The feed pumps are so arranged that they can discharge the water from the condenser either into a Weir's feed-water heater, or direct into the boilers. An auxiliary engine, $6 \frac{3}{4} \mathrm{in}$. diameter by ${ }_{6}{ }^{2}$ in. stroke, serves to turn the principal engine when it is at rest; and another auxiliary engine with two cylinders,
7 दin. diameter by 8 7 7in. diameter by 88 in . stroke, and making 350 revolutions per minute, drives a centrifugal pump, for circulating the water of the condenser. This centrifugal pump is also used for emptying the water ballast tanks. The diameter of the screw is 17 ft . 3 in ., and that of the shaft 12 in . The average speed is 66 revolutions per minute.
Messrs. Cockerill also exhibit two "Frikart" engines a single-cylinder engine, and a triple-expansion. The machine takes its name from the inventor of the valve Corliss. The single-cylinder engine is not at their stand, being used to drive a dynamo. It is a horizontal 100 indicated horse-power non-condensing engine, 1 ft . 7 Tin. diameter by 3 ft . $5 \nmid \mathrm{in}$. stroke, and has a normal speed of 70 revolutions per minute. The triple-expansion engine on this system is also horizontal, the hign-pressure and intermediate cylinders being on one side, and arranged air a tamp for the condenser being on the opposite side. an average speed of 80 revolutions. The diameter of the high-pressure cylinder is 1 ft .33 in ., that of the inter-
mediate 1 ft . 11 in., and that of the low-pressure 3 ft . mediate ftt .11 in ., and that of the low-pressure 3 ft .11 in . the back cylinder cover, guide bars, and crank-shaft
bearings are cast with the bed-plate, the weight of the casting for the low pressure cylinder being about five tons. The cylinders are all steam-jacketed; and under the floo are receptacles-also steam-jacketed-for steam passing
from high pressure to intermediate, and from intermedifrom high pressure to intermediate, and from intermedi ate to low-pressure cylinder. The first of these receptacles
supplies steam for the jacket of the intermediate cylinder sapp the other for the low pressure. The steam for the acket of the high-pressure cylinder is taken direct from the boiler. Three separate pumps carry off the con densed water from the steam-jackets and return it to the biler.
Another exhibit by the same firm is a compound locomotive for the Riazan-Ouralsk Railway in Russia. This engine, one of forty which are being made exactly alike has four wheels coupled features. It is for a metre gauge from the listill litione, and isto use as ruel he residuum rom distilation or naphtha. Before being accepted ho y must salisfy the follo traw ine, a dive niles ling must be able to miles an weighing 20 cons at a speed of at least eigh in the bile, the steam presure in the boiler or the water-level in the gauge glass go as an ordinary and also as a compound engine. Th principal dimensions are as follows :-

The tender bas six wheels Length of wheel base Total length over buffers Width... Capacity, water Capacity, naphtha Weight in working order, with reservoirs full	

 16 tons.

The change from simple to compound, and vice versà made instantaneously by the engine-driver withou stopping the train
Cockerill exhibit a mifferent classes of engines, Messrs. Seraing, showing the different seams and fissures, with shafts and galleries. In part of the model the overburden is removed, and a very clear idea is given of the strata of complete the account I must mention the Nordenfeldt type, the largest being for a projectile 3 in . diameter. They are made of Martin-Siemens steel and beautifully finished. The chief recent improvemen consists in the manner in which the recoil is taken up, in one instance by springs, in others by hydraulic pressure. weighing $3 \frac{4}{4}$ cwt, mules, together with twenty-four cartridges, each weigh ing $5 \frac{1}{2} \mathrm{lb}$. Special saddles are made, the first to take the gun, the second the carriage, and the third the wheels The same size of gun, $1_{\text {in }}$ in. internal diameter, is used
ind The same size of gun, 1 in. internal diameter, is used
on the Congo; and in the Congo building a large-sized nodel of a procession of natives mor be carryin the different pieces boxes of ampunition, \&c, as well a a section of a steel boat also made by this firm.

THE ENLARGEMENT OF LIVERPOOL-STREET Station, great eastern railway.

Or all the great lines of railway having termini in the metropolis, the Great Eastern has the advantage of possessing an area or territory of its own, the greater part of
which is almost completely secured from the hostile incursions of its neighbours and competitors. If we place a railway map before us, and draw a line from Liverpool street through Cambridge and Ely to "The Wash,", a
Lynn, it will be found that the whole of the districts o country, with one or two insignificant exceptions-lying on the right hand, or eastern side of the line of demarca-tion-belongs to the Great Eastern Railway system. In
addition to thus holding the keys of our sea gates from addition to thus holding the keys of our sea gates from
Hunstanton to Southend, it is a matter of universal recognition that the metropolitan, local, and suburban traffic which flows into and out of the Liverpool-street station attains to a daily record, which is not only unsur-
passed, but unequalled by any railway in the world. We passed, but unequalled by any railway in the world. We
are not, however, about to eulogise the Great Eastern Railway system, nor draw flattering comparisons-or which some might consider invidious-in its favour, in relation to our other great arterial routes of steam loco foreign to our purpose. Before proceeding farther with our subject, we have first to return our thanks to the directors of the Great Eastern Railway, and to the engiIt is to the It is to the latter gentleman we are indebted for the use
of the numerous valuable plans and drawings, which have enabled us to place before our readers the illustrations necessary to explain the text of the present and future articles. It will, we think, be interesting previously to passing on to the details of the widening of the Liverpool
street station, briefly to sketch out the salient features which mark the incorporation, subsequent amalgamations, and ultimate extensions which chronicle the past caree and progress of the Great Eastern.
Early history.-This railway, similarly to the maLondon, was endowed at its formation with a title different to that which now pertains to it. Refersent century we find that the Eastern Counties Railway

Company, now the Great Eastern, may be said to have been formed in the year 1835, and that its original line was from London to Colchester, and was partly opened
for traffic in 1839. It may be mentioned that the first for traftic in 1839. It may be mentioned that the first to run traffic over a, the Greenwich railway, commence proves that the metropolis was by no means altogether to the front with respect to establishing priority in steam communication with the provinces, because the Stockton
and Darlington promoted its first Bill in Parliament in and Darlington promoted its first Bill in Parliament in 1818. It was thrown out, a very common occurrence in
those days, and one from which fow of our main lines were exempt. Better fortune, however, attended it in the Session of three years later, and in 1825 the line wa opened to the public. A similarly good fate awaited the Liverpool and Manchester line in 1830, though its first Bill, likewise, suffered defeat five years previously. That the expenses attending the formation and incorporation of our original large railway companies, both parliamentary and on other counts, fully sustained their present reputa ion, may be gathered from the fact that in the case of the
Eatern Counties they amounted to $£ 45,000$. This modest little sum was completely thrown into the shade by the outlay incurred by its more powerful neighbour, th London and Birmingham, now the London and North Western, which amounted to $£ 75,000$, a sum total in its turn eclipsed by the Broad Gauge-as it should be-with
its $£ 88,000$. Beyond the opening of further railways in East Anglia, including one in connection with the Cam oridge line in 1840, nothing of very great importance ccurred until 184,, when an of or Amalganation was btained which inchaded the Northern and Eastern Com pany, and some smaller systems, under the comprehensive itle of the Eastern Counties. Whether it was due to this amalgamation or other cause, it would appear that even
at this early stage of its existence, the Eastern Counties at this early stage of its existence, the Eastern Counties
evinced unmistakeable indications of material progress, evinced ummistakeable indications of material progress,
since a couple of years afterwards, an Act was obtained for the enlargement of the terminus at Bishopsgate-street. Two years subsequently to this date, the Eastern Counties amalgamated with, or rather absorbed into its own ystem, that of the Norfolk Railway, which had consame year its capital was united with that of the Northern and Eastern Company already mentioned, and reached a oint total of $£ 13,139,156$. It was about this time also hat arrangements commenced to be entered into with the Harwich Steamship Company, the felicitous results of which are apparent in intercontinental communication at the present day. About this epoch also, anxious glances began to be thrown in the direction of the Great Northern, and "the fear of interference on its part," as
the chairman of the Eastern Counties Company the chairman of the Eastern Counties Company entured at a half-yearly meeting held nearly hal a Enfield and Edmonton line, which was a separate underaking altogether, at a premium of 5 s . per share. The umber of shares was comparatively small, so that the total extra sum disbursed did not exceed £450. In pur-
chasing the St. Ives, March, and Wisbeach lines, the chasing the St. Ives, March, and Wisbeach lines, the company was unfortunate, as although the premium per
share was not over a couple of pounds, the line acquired, as share was not over a couple of pounds, the line acquired, as
may be seen from the map, is nearly parallel with another may be seen from the map, is nearly parallel with another
route, the property of the same company. It may not be route, the property of the same company. It may not be
generally known that the original gauge of the Eastern Counties Railway, as laid upon portions of both its Colchester and Cambridge permanent way was 5 ft ., sub equently 12.2 in . the immediate neighbourhood of London the wear and tear of the rails was considerable, owing to the sledgelike action of the engines," the weight of the said engines having been increased from 14 to 25 tons.
Further progress.-After emerging from the fiery ordeal of 1848, though like its neighbours, whether friends or foes,有 altogether with unscorched wings, the Eastern Counies pursued its progressive career, with no event of espe-
ial importance to interfere with it. It was not until 1856 that the situation began to border on the comical, and, as it may cause a smile of amusement on the face fordie of our readers, we may perhaps be pardoned for arto y doggrel verses and all kinds of abuse, was launched with ruthless scurrility against this "pariah of railways," as one author-no doubt, somewhat unjustifiably-termed the company. Among the best of these-or perhaps we
should say, the least objectionable-may be mentioned should say, the least objectionable-may be mentioned the challenge to the directors, real or assumed, of a
gentleman of the name of George Hoy, practising professionally as a costermonger, offering to race his own carriage and horse, the proprietor on the box, against
some of their business trains over the course from Cheshunt to Waltham-a distance of about two miles. A very diligent search among the records and documents. relating to this period has not resulted in the discovery of relating to cins which would warrant us in assuming that the auntlet of defiance so valorously thrown down, was taken ap by the company's champion. It is probable that the potent, grave, and reverend signors at that time on the oard of directors treated the challenge with contemptuous ions, one representing the triumph of the coster with his "barrer" and his donkey giving the go-bye to the train; and the other, in which the trio are coupled up to the engine and merrily " walking off ", with the whole train of passengers, are full of spinit, and by no mcans badly
executed. In the latter the attitude of the engine driver leaning with his arms folded, asleep against the coal, with the air of a man whose toils on earth are over, is not devoid of some artistic merit. Apologising for this digression we now return, au serieux, to our subject vailing among the great lines of railway at that time They are stated to be based on the authorised published time-tables of the period; and although not put forward

Two years later when its system embraced 600 miles, it
a fierce parliamentary fight with its powerful rival the
N Northern, in which it was worsted. The Great Eastern
petitioned for powers to rum a direct line from Cambridge to petitioned for powers to run a direct line from Cambridge to
Peterborough, and thence to Doncaster, and thus avoid the somewhat circuitous route viä Ely and March. As Peter-
borough is the key of the northern traffic to and from the orough is the key of the northern traffic to and from the
Great Eastern district, the importance of the proposed route Great Eastern district, the importance of the proposed route
called in the Bill the Great Eastern-Northern Junction, to the

Easte
was
bran
ire
of
thi
hi
esp
he
he
tions.
rancl
irect
the
thich
fespect
he im
ons.

CROSS SECTION, LIVERPOOL-STREET STATION
Company is obvious. In spite, however, of the most strenuous
efforts, the Bill was thrown out in Committee. Notwithstanding $\begin{gathered}\text { Extension to Liverpool-street.- The advent of the Grea } \\ \text { Eastern Railway into the heart of the city with an ex }\end{gathered}$ that the old station at Bishopsgate was known to be completely inadequate to the increasing requirements of the company, and
that the extension into Liverpool-street was already commenced, yet the construction of new lines in other directions
was carried on with unremitting perseverance. It will be ound on referring to The Engineer, of June 7th, 1872 ,
hat under the title of "Great Eastern Railway New Lines," that under the tirst section of the Metropolitan Extension of the Great ceedingly spacious terminal station of its own, marks
distinct, novel, and most important epoch of progress in istinct, novel, and most important epoch of progress in
its career. Viewed in a general point of view, apart altogethe rom the particular-and, it must be admitted, well-deserve advantages accruing to the company itself-the actual position
is exceptional, and not equalled by any other of our great main exceptional, and not equalled by any other of our great main
lines in London. If the remark be true-and it no doubt iswhich was made by the chairman of the company at a Board
in any friendly spirit, there is no particularly valid reason for doubting their genuineness. The speeds in Table I. relate to
only express and first and second-class trains. In those days the third-class passengers-now the backbone of many of our rail-
ways-were of no importance whatever; in fact, to use an Americanism, "they didn't count.

Table I
Sped in Miles per hour of the Trains of the Principal Railrays
in England, 1856.

Taking the average speed in miles per hour of all the lines in of the ordinary trains to $26 \cdot 43$. If anyone wished to make the experiment there would be no insuperable difficulty in finding an English railway
running at these velocities.
Adoption of present title.-After " living down" the stor of abuse levelled at it, which railway companies as well individuals can do, provided they live long enough, and passing 1862 a strong amalgamation with all the leading lines East Anglia, added to its title an epithet of magnitude already adopted by two of our principal railways, and became known
to the world in future as the Great Eastern Railway to the wo
of directors in 1864, when speaking of the old Bishopsgate station, that " the terminus of the Great Eastern Railway
serves a wholly distinct district of the metropolis," then the same serves a wholly distinct district of the metropolis," then the same
remark would be true, considerably stronger, respecting the present terminus. In spite of all efforts to reach the final goal, so ardently sought for by all London railways-that is, to have a terminus of their own in the heart of the metropolis-many North-Western, and the Midland are all in their original locality, jammed together so closely as to bewilder any outsider respect-
ing their separate identity. Junctions and branch lines-over or underground-by which connections are made with City or West-end stations, such as the North London in Broad-street, do not affect our statement. Nine Elms was the first resting
place of the South-Western, and it appears to be now stuck pretty fast at Waterloo. One of the stations of the London, Brighton, and South Coast, it is true, is at Victoria; but the other is still on the wrong side of the water. This company
might at some future period, if the approaches are widened and might at some future period, if the approaches are widened and
otherwise improved, ask Parliament for running powers into otherwise improved, ask Parliament for running powers into
Charing Cross and Cannon-street. The South-Eastern certainly have stations in both these localities, but at what a price. The extension from London Bridge was a skilful and able piece of
engineering, but it was nevertheless a tour de force. Now, engineering, but was nevertheless a tour de force. Now,
a tour de force, whether of an engineering or other character,
and however brilliantly and successfull it nd howeever brilliantly and successfully it may be executed, is enance is much too great. It is a temporary achievement, very dear if it eventuates in a failure, but very cheap if in a triumph. The difficulty, delay, and danger-as accidents have more than
nce proved-of getting into the terminal stations of the South astern are too well recognised to need any comment. Black friars was the first home of the London, Chatham, and Dover,
which at a great expense crossed the river-a Rubicon which, notwithstanding the somewhat arrogant motto Surrey side shore girders of the escutcheon of the this instance, lead to victory, but ultimately only to Hol born Viaduct.
People are very apt to imagine that railway termini, with perhaps a difference in the mere size and general appearance of the roof, are very much like one another whereas, as a matter of fact they are exceedingly unlike trains and management of the traffic vary in each separate instance. That there are certain guiding principles to be kept prominently in view when laying out the site of a and their professional colleagues the traftic mailway engineer it will be seen, as we proceed with our subject, that they have received their proper amount of attention in the planning and disposal of the station, offices, and buildings, and the adjustment of the eighteen lines of track bined old station and its present widening, now practically completed at Liverpool-street. It will be seen from the "Key plan" that the former building and the widening constitute practically a single structure, enclosing within exceeding that possessed by any similarly situated edifice in England, and possibly, in the whole world. Important engineering works of this character and magnitude erected in a metropolis of the dimensions and population of our own, are not the result in thought, word, or deed, of the deliberation of a few months, or the mere exercise of the ordinary abilities and experience of duly qualified professional men. They demand both in theor and practice, both in design and execution, inventive and constructive talents of a high order, and in addition, a special fitness for the particular class of work. We fully endorse the remark of the engineer-in-chief that the out side public know little or nothing of the difficulties to be ments to be removed, the interests to be guarded, and the nnumerable devices, many of a novel character, to be resorted to in order eventually to bring to a successfu
termination a task of the magnitude before us. It was bout ten years ago that it first began to become apparen hat the old, or as we prefer to call it, the first half of the Liverpool-street station, big as it was, would be in a very
hort time inadequate to meet the requirements of the continually increasing traffic, and that speedy measures must be apla tation while to the first part of the building opened in 1875, and while to the first part of the building opened in 1875, and
to a few of the details pertaining to its setting out and general arrangements.

There are thre leading principles or methods available, which to a great extent govern the laying out of railway ter
mini. In the first, the booking-offices, waiting-rem and other station buildings are disposed alongside or parallel with the departure platform. Examples of this mode are to be found in the Great Western, the Great Northern, and its two immediate neighbours, and in most of the earlier stations. For ordinary through the same buildings occupy a space in the rear of the be used in future to signify a single line or a single pair of rails. It is a good, accurate, and explicit term which is more than can be said of all the words which our American cousins have taken the liberty to add to hem the indiscriminate employment of the words "line lines, single or double lines," when they are applied generally to a railway project, or system, and individually Cross Station, Cannon-street, and the London, Brighton and South Coast Station at Victoria, are among other
instances of the class alluded to. A third method con ists in the combination of the former two, for which the station of the London, Chatham, and Dover at Victoria may be selected as an example. The booking. offices and other rooms belonging properly to the main ine are arranged according to the first plan, paralle to the departure platform, whereas the same buildings
for the service of the local and metropolitan traffic are or the service of the local and metropolitan traffic are placed at the "dead end" of the tracks. It is obvious dmissible, unless the station accommodation is placed exther under or over the line. There are abundan examples of this fourth method, as
on the Metropolitan and other underground railways, but very probably the arrangement is dictated more by necessity than choice. In the instances quoted all companies are sorely pinched for space, and the ined principles effects a noble to the utmost the ground available for the site. There is yet another plan according to which station build ings may be set out, although it is seldom employed which consists in disposing the offices within an area
situated between the tracks. A disadvantage of this method in case of through stations is that either subway or footbridge becomes indispensable, unless the letter. Passengers by the Great Western may be aware that a movable bridge, hauled up from under enable them to pass to another departure platform on the other side of a double track.
Liverpool - street terminus. - A reference to the Key plan will point out that the first part of the Liverpool-street terminus was laid out on the comlead ends on the north that the local lines have thei the offices belonging to them being located on the southern or inner side of the same bridge. The main arrival and
departure tracks Nos. 9 and 10 pass underneath the foot bridge and have their station buildings and offices arranged alongside, in the space between the foot-bridge Eastern Railw a Hecol which faces Liverpol the Grea somewhat different plan has been followed with respect to the laying out of the extension or widening, which will be described as we proceed. In the Key plan, the letter D B represent what may be regarded as the line o emarcation between the first and second portions of the extends from the end of the old wall at H, opposite to A, to B , the outside or northern corner of the Parcels Office. It vas necessary in order to run this wall perfectly straight line with the new. As originally constructed, iron semi arches of the solid web or plate type were supported by the portion of the old wall subsequently demolished, which nen rebuilt had been set back a distance sufficient space was covered in by the ingenious device of adding semi-arches to those already existing, and thus roofing in the entire extra area. Before the old wall was permitted to be removed, it was stipulated that the whole of the new vork should be completed. The portion of the old wall remaining is shown in the Key plan from F to H, and orms one side of the inclined exit roadway. At pre
ent, in addition to their vertical support, the arches may be said to be demi-encastre at their springings with the new wall, which has a total length from A to B o 50 ft . Measuring across the extreme width of the whole tation from the frontage in Bishopgate-street Without at the point C to the exterior wall at E along the line of he south roadway of the Parcels Office, and the subway for the gas company's mains, the distance is 540 ft ., whic
gives 310 ft . to the first part and 230 ft . to the second o widening
A very good idea of the extent of the actual area covered in of the whole station will be obtained from an ection of the entire roof. A length of 40 ft . must be added to the figured dimensions, to include the space
marked on the Key plan, "shops with offices over," which orm part of the present extension. The roof over the irst part of the terminus consists of four spans, and
was designed by the late Mr. Edward Wilson, the uncle was designed by the late Mr. Edward Wilson, the uncle of the present engineer-in-chief to the Great Eastern
Railway Company. The two central spans measure 109ft. ach, and the two side ones 46 ft . 6 in . and 44 ft . 9 in . respec ively. It will be observed that at the junction of the larger spans, instead of the usual single pillars, double Thismns are employed spaced sft. apart from centres. This mode of construction distributes the total weight evenly on the two supports. The main ribs are con-
nected by three tiers of trussed purlins, and the roof is clazed similarly to the new portion, on the ridge-and lazrow principle; but it is unlike it in one detail, as it dis penses with a screen girder. At the centre of the larger pans the rise is 24 ft ., and of the smaller 8 ft . For the former he principals are of the trussed type, but near the spring. solid plate web. In the side spans the principals are throughout of the plate description.

IN DEFENCE OF THEFT.

OUR United States contemporaries continue to pages concerning the theft of drawings. Obviously the ruth is very bitter. Our words have gone home. The various excuses and comments made are at once in.
teresting and amusing. The Boston Herald, the original teresting and amusing. The
defender of the theft, says:-
We had occasion not long ago to remonstrate with the London Esginger for what we regarded as an uncalled-for eruption of abuse, directed at Americans, for the alleged "theft", of plans of
the swift Britisk torpedo cruiser Havock. We held that the securing of plans of foreign construction was a recognised line of
military or naval activity, and mildy resented the imputation of personal dishonesty on the part of American intelligence officers.
THE ENGINEER now retorts, with undigguised ire, by accusing us Hy Evcinezr now retorts, with undisguised ire, by accusing us
of defending "theft" in general. While somewhat gratified at our unusually genial contemporary's apparent inability to attack our arguments, we must, nevertheless, call its attention to the fact
hat even a cursory reading of our words would show that they ould not possibly be interpreted by an unbiassed mind as justifyquite as absurd as to regard a militiary spy as an an eavesdropper. wanged, and, while regretting THE ENGINERE's loss of temper, still adhere to the language used in the editorial which has become the target for our contemporary's shafts
In other words, the Boston Herald defends the theft on the principle that all is fair in war, and maintains hat in the Intelligence Department of the United States
Navy must be sought the thief. We have already stated our belief that the Intelligence Department had nothing o do with the theft, and the same thing has been American Machinist is quite frank, and a little sarcastic. It says:-
News comes from Washington to the effect that the new battlecourse of building that those responsible for her construction have almost given up hope of ever making the vessel entirely satisfactory. The plans of this vessel were purchased in England, and
it is claimed that the delay in her completion-it is now about five years since the vessel's keel was laid -has been caused buy the
discovery of one weakness and fault after another which had to be remedied before work could proceed. The latest discovery in this
line was made when steam was turned on to the two barring ine was made when steam was turned on to the tow barring
engines, the frames of which immediately broke. Before this, and soon after the lannch, the boiler foundations were discovered to be
weak, and the vessel had to be put in dry dock to remedy this fault. It seems to have been unnecessary for os to have paid for
English naval vessel plans in view of our phenomenal ability to steal them, as set forth in THE ENGINEER, but since all the vessels
built here upon plans purchased in England have given trouble,
while there bas been very little trouble with the others, it will be while there has been very little trouble with the otbers, it will be
seen to be tho better plan for us to onnine ourselves strictly to
tealing ; the test of construction showing that those English plans stealing; the test of construction showing that those English plans
which we buy are worthless, while those we steal are fairly good.

Seriously, the simple fact is, however, that plans for anything which are transplanted dare not likely to turn out successsul. We tuink it
is altogether likely that complete plans of our most succesful naval vessels sent to England would seem to develope there very seriou dapted to the equipment, methods and materials of should be which the work is to be done, and English naval vessel plans can never be reasonably expected to be so successful when executed here by our methods, equipment, and materials as if executed at
home, and the same could be said of any other plans made in hatsoever coantr.
There is a good deal of common sense here; but it is scarcely fair to hold English designers responsible for faults in American workmanship. We never heard before of barring engines in a steamship. We take it for granted, however, that what is meant is the engine employed to turn the main engines while in port. The frames were no doubt designed for the excellent material put into all English naval wo
have used rubbish.
In another place the same journal says:-
The fact that our Philadelphia shipbuilders, the Cramps, have pon tho of the new vessels which that country proposes to build, what standpoint it is viewed. Upon the surface it looks as though the Cramps expected to be able to compete with the British ship-
building concerns, a thing which has long been declared on both building concerns, a thing which has long been declared on both
sides of the water to be impossible, though the Cramps have before declared their ability to do so. To our contemporary, THE ENGIeem nothing more than an attempt to get possession of the plans of an English vessel which could not be stolen.
As a matter of fact nothing of the kind suggested itself to us. Very recently, however, we were told by an uy or steal English drawings, as they could be had direct from the Admiralty by any big American firm offering to tender. We ventured to assure him that he was mistaken, but he left us unconvinced.

SCOTCH RAILWAY EXTENSIONS.

Railway construction has for several years past been very actively prosecuted in Scotland, especially in the western West Highland Railway and the Glasgow Central Underground Railway, which have already been dealt with in our columns, quite a number of smaller, but still important, underta kings are at present in progress, or have only recently
been completed. The principal of these is the Lanarkshire been completed. The principal of these is the Lanarkshire
and Dumbartonshire Railway now making, in the hands of a and Dumbartonshire Railway now making, in the hands of a completion. This line is being constructed by an indepenCaledonian system, piving that ompany an important footing in Dumbartonshire. The new line branches off the Glasgow Central Underground Railway at Stobcross, and passes westward in a fairly straight direction along the north bank of fourteen miles. From an engineering point of view the structural arrangements necessitated by the junction of the interest. The in at Stobcross are on condider cement, with a longth of about from 29 ft . to 60 ft ., and the arch rising 7 ft . in the length This chamber is said to be the largest of the kind
in the kingdom, and its construction directly underneath a portion of the North British Railway, over which more than 300 trains pass daily, was a work demanding the utmost circumspection; but it was recently successcontinues underground through Partick-except at the point where it crosses the river Kelvin - till the western extremity of that suburb is reached, when the line comes into the open and remains so for the rest of its course. The underground way is formed for the most part of rubble-faced concrete side walls, covered by steel cross-girders, the spaces between being filled in with jack-arching of brick. The Kelvin is crossed by a steel-plate girder briage, with three spans of 60 ft . of an ancient stone bridge, which is to be replaced by a lattice girder strue bridge, with a single span of 90ff a steel Partick the line runs on an embankment of moderate height through Whiteinch to Clyde-bank, and thence between the Clyde and the Forth and Clyde Canal to a point near Bowling Harbour, where the canal has to be crossed, and also the North British Railway, running immediately alongside the waterway. The works here being carried out are of considerable magnitude, including the complete rearrangement concrete viaduct of fourteen arches and a swing bridge a 110 ft . span. In these alterations the engineers have had a free hand, as the Forth and Clyde Canal, and the portion of Bowling Harbour connected by locks therewith, are practically the property of the Caledonian Railway Company. The concrete viaduct of seven arches, each of 20 ft . span, equally disposed on either side of the canal, is now being erected; but the swing brige has not yet been commenced. It will however, be of the and provided with hydratic sported gear The North British Railway will be crossed by a plate girder bridge, and also the turnpike road a few yards to the north. Thereafter the new line passes close along the base of the steep whinamount of cutting has been necessary. A little to the west of the village the line leaves the cliffs and passes under the
road, the level of which has had to be considerably raised to make this possible. A couple of miles further on, the North british Railway is again crossed at Dumbuck, and thereafter Dumbarton, when it curves inland and joins the older rail way about 500 yards east of the existing passenger station. From the foregoing it will be gathered that the new railway runs generally much nearer to the Clyde than the rival line. It will therefore, especially as it is in direct connection with the Lanarkshire coal, iron, and steel centres, be in a better
position to deal with the traffic of the large shipbuilding and other works along the north bank of the river, and the num improved carriage facilities. Mr. Charles Forman, of Messrs.
is and M'Call, Glasgow, is the engineer for the Lanar opened for traffic The sut $£ 600,000$.
The suburban railway facilities of Edinburgh and Glasgow

THE TWIN - SCREW STEAMSHIP PRUSSIA
messrs. harland and wolff, belfast, builders and engineers

have recently received important additions by the opening of two short lines of railway operated by the Caledonian Company. The Barnton Railway is ${ }^{3} 3$ miles in length, and connects Princes-street Station with Barnton Gates and Cramond Brig. Its construction was commenced about two
years ago, and recently completed at a cost of $£ 35,000$. The years ago, and recently completed at a cost of $£ 35,000$. The for traffic, forms a complete circular connecting railway for the southern suburbs of Glasgow. In 1886 a line was constructed from the Central Station to Cathcart, the distance being about 21 miles. This line has now been extended by the formation of a loop line running through a number of villages, and joining the original line at Pollockshields Junction. The new line, which has taken three years to length. The Glasgow and South-Western Company's handsome new station at Princes Pier, Greenock, is worth mensome new station at Princes Pier, Greenock, is worth mencater for the coast passenger traffic. An expenditure of $£ 42,000$ has been incurred to bring the trains 200 yards nearer to the steamers than formerly, thus saving a few minutes in transference of passengers from rail to steamer and vice versa. At the same time the directors have been station into accordance with modern requirements.

TWIN-SCREW STEAMSHIP PRUSSIA, FOR THE HAMBURG-AMERICAN LINE.
This fine vessel, just built and engined by Harland and Wolft for the Hamburg-American Packet Co., for its North with a tonnage of about 5900 , constructed to the highest class of the Bureau-veritas, as well as to the requirements of the British and German Boards of Trade.
She has accommodation for about fifty cabin passengers, whose state rooms on the bridge deck will be roomy and comfortable, and heated in cold weather by means of steam pipes. The saloons are also commodious and elegant, and fitted up in a most luxuriant style. In all the rooms, an in fact, throughout the ship, electric light is provided.
extensive, provision being made for two thousand two hundred and fifty emigrants. These will be carried on three decks, in separate compartments of twelve each, and a very efficient system of mechanical ventilation will insure a constant circulation of pure air.
In addition to the passenger accommodation, the Prussia has very large cargo capacity, and will be provided with every mechanical device for its rapid loading and discharge. of fresh meat from the United States, and refrigerating machinery of the most approved type has been fitted on machinery of the most approved type has been fitted on addition, the ship has also provision for carrying 380 head of cattle
The ship is propelled by twin-screws, of manganese bronze, bolted to a cast steel boss, and placed extremely close together and overlapping-this feature being facilitated by the adoption of Harland's patent hanging stern post.
The engines, of which she has two
separate water-tight engine-rooms, are of the mete sets, in separate water-tignt engine-rooms, are of the makers' well a working pressure of 175 lb . per square inch.

THE CORROSION OF CAST IRON WATER MAINS.
A somewhat peculiar case of external corrosion of two cast fron water mains has recently come under our notice, and will no doubt interest a number of our readers. It is a case in which results very similar to those which are now so frequently ascribed to wandering electric currents, that it receives additional interest in this respect. The pipes thus affected formed part of private service mains in the neighmain pipes in 9 ft . lengths, running side by side, and placed at main pipes in 9ft. lengths, running side by side, and placed at which were laid some twelve years ago, were surrounded chiefly by gravel and clay; but the portions at which the corrosive actions took place exclusively were embedded in cinders. The annexed sketch portrays the character of the
wasting or pitting, and it will be observed that the holes
would almost appear to have been gouged out. This, however, is disproved by the number of lengths affected, namely, six. The defective portions were discovered owing to the pipes
having in some cases become so much reduced in thickness having in some cases become so much reduced in thickness
as to be unable to withstand the pressure within them. We as to be unable to withstand the pressure within them. We
have ascertained that there are no electric mains in the have ascertained that there are no electric mains in the
neighbourhood of the pipes, so that this phenomenon cannot neighbourhood of the pipes, so that this phenomenon cannot
have been produced by short circuiting or earthing. The crown plates of steam boilers, upon which ashes have been employed as a non-conducting material, have been known to

suffer in a very similar manner where any moisture has been be mentioned, and the partial experiences of this kind might into plumbago have been also known, and it is quite possible some of those now ascribed to electrolytic action may be due
to similar causes. to similar causes.

THE PORTSMOUTH ELECTRIC LIGHTING

 STATIONThe new station of the Portsmouth Corporation Electric Lighting Committee was, with due form and ceremony opened for the public supply of electric power and lighting the Mayoress of the ancient borough of Portsmouth, started the several engines, which at once began, without hitch or halt, to provide that light and power which is the object o their existence.
This is probably the most important provincial station for the supply of electricity, whether for light or power, in Eng land. It has begun a career which will be watched with jealousy by some, with envy by others, with admiration by many, and with keen interest by all engineers.
The committee appointed by the Portsmouth Town Council advantage to his town, and to which was relegated the consideration of the electric lighting proposition about five year ago-must be congratulated upon the success which has attended its labours, and particularly upon the system which it has adopted, through the advice of its engineers. At one moment it seemed as though Portsmouth was about to follow so many other corporations into an effete, low-tension possibly accumulator) system; but, fortunately for the against one adviser, and, relying upon those who now advise him, adopted high-tension alternating current. The gene ration of electricity is effected in this station by the most modern means, and, indeed, at every stage may be noticed advances upon previous practice.
The plant as at present constituted consists of two Ferranti alternators of a type not hitherto associated with his name, and of one turbo alternator and condenser by Messrs. C. A. Parsons and Co., of Newcastle-on-Tyne, as generators. The crank-shaft of a pair of compound horizontal Corliss engines crank-shaft of a pair of compound horizontal Corliss engines,
built by Messrs. Yates and Thom, of Blackburn, have a re volving field which may be said to act as the fly-wheel of the engines, and which is embraced in a mechanical fashion by the armature ring. The winding of the armature bobbins is parallel to the axis of the shaft, and is enclosed in a series of boxes which afford perfect protection against mechanical injury, and indeed most of the ills to which alternators have until now been heir. The machines are designed for an readily give an output much larger than this should they be required to do so. The periodicity of the should they be fifty, and the whole thing may be very fairly described as essentially a first-class electrical mechanical engineering job, and one with which we must deal in detail at a later date, The Parsons turbo alternator, which has been erected beside
one of the Ferranti machines, is capable of a present out put of 150 kilowatts at the same periodicity, though it may also be assumed that, like the larger dynamo, it will be able to give a considerably larger output after it has been at work working in the ib is success, and large and important stations at with such Newcastle-on-tyne, and elsewhere have also been fitted by the same firm. The two Ferranti alternators have been run in parallel with much success from time to time, but after the experience of Deptford, where machines designed by Mr Ferranti, generating at different potentials, and of such difference of size as 300 -horse power and 1500 -horse power are daily run in parallel without a moment's trouble or anxiety, we might reasonabl to report that the two Ferranti dynat we are the Parsons turbo alternator can be put into parallel and worked at Portsmouth quite successfully.
The current, which is generated at a pressure of 2000 volts, is transmitted to the street transformers at that electromotive force, and in these street transformers it is converted to 100 volts, and passed into a low tension system to do the lighting for a radius of 300 yards or thereabouts round the ransformer pit.
The arc lighting of the tower, which is extensive and remarkably perfect, is done by means of current from the by means of a Ferranti rectifier. No more perfect ar lighting can be seen than that at Portsmouth, and figures which we have before us now show that not only can arc lighting be brought very near to perfection by means of this system but that it can be done much more cheaply than by any purely continuous or alternating system.
The new station is remarkable for
departures from previous practice, which three distinctive departures from previous practice, which place it in the race
of progress. (1) Slow-speed direct-driven high-tension alternators. (2) Street transformation by efficient automatio transformers. (3) Arc lighting by means of an interrupted or rectified current. A detailed account of these we must leave to future impressions.

THE DANUBE REGULATION WORKS.
By Bela von Gonda.

The road of Trajan
THE road of Trajan was begun by the Emperor Tiberius, with the aid of the Fourth Scythian and the Fifth A. 103 donian legions. The parts of the road cut in the Mace are the existing evidences of the great determination of the Emperor Trajan.
The performance of this magnificent technical work was eternalised by the Romans with three commemorative tables. These are cut into the wall on the shore, in frames adorned on the Table of Trajan-see page 502-in the Straits of on the
With the decay of the Roman Empire the Lower Danube lost for a long time its former importance. The migration of people caused the decay of the great creations of the Latines ; and after long centuries the Lower Danube became the scene of heavy struggles against the Turks, and many fortifications having been built there in order to impede the hostile army to advance.
when the Turks were finally repulsed to the Balkan peninsula, and the reign of Napoleon came to an end, and the wa of the Governments andul times came again, the attention the question of the improvement of waterways, agted again to ment Council of Hungary had defined in 1816 Govern graphical and hydrographical plan of the Danube topo reference to the frontier of the country to Csernecz in Roumania, and with this object a special bureau was soon established under the supervision of the Board of Publi Works. But the surveys were begun only in 1823, and
finished in 1838. These survers embraced the finished in 1838. These surveys, embraced the study of all current that they are still technics. On the now the pride of the Hungarian hydro elaborated for the uniform rese surveys particular plans wer these plans were not carried out or the Danube; but these plans were not carried out.

To be continued.

RAILWAY MATTERS.

The Kolar Railway has recently been inspected by the Indian deputy consulting engineer for railways, wit
Tracklaying at the rapid rate of $10,000 \mathrm{ft}$. in ten hours was, according to Engineering Neurs, done on the Southern Pacific keep its agreement to have trains running by May 5th.
The Indian Engineer says that the old bridges on the Karachi to Kotri section of the North-Western Railway are being
renewed, and the bridges are made to carry double line ; also that the Government intend doubling the line on this section as soon as

The Western Railway Company of France is erecting a new station in place of the old building at Montretout at Saint Access will be gained to the new station, which will have a facade
of 100 ft ., by a handsome stone bridge, 9 ft . in span. Three months m
$£ 12,000$.
The Glasgow and South-Western Railway exhibit a weather report at the St. Enoch Station, Glasgow, which enables
pleasure-seekers to decide on their day's programme before booking. The weather, including direction of wind, is given for
a dozen most important places on the system, the information
being transmitted by telegraph each morning between seven and eight o'clock.
The scheme of railway construction upon which the Swedish Government has been engaged since the year 1855, was
completed at the end of last year, and there is now unbroken communication between Malmö in the south and Gellivaara in Swedish
Lapland. The mileage of the State Railway was increased by 443 年 Lapland. The mileage of the State Railway was increased by $44 \frac{3}{3}$
miles, bringing up the total to $1748 \frac{1}{3}$ miles. The revenue steadily
increases, having amounted for the year to $£ 1,271,509$, an increase of $£ 27,777$, or $2 \cdot 43$ per cent. over the previous year
The Brighton Line is probably in a better position than any other to express an opinion on the electric lighting of trains. electric lighting plant. It seems that the company is engaged in thoroughly overhauling its train-lighting arrangements, as
they have decided to erect oil-gas works under the Pintsch system
both at New Cross and at Brighton both at New Cross and at Brighton. So far, a preference for any
At the Crewe Engineering Works of the London and North-Western Company notices have been posted stating that the
works will be put on full time, commencing immediately. The notices are limited, however, to only one month, but it it boped
that it will be continued permanently. The workmen have been on short time about twelve months, for a portion of which period
they were working less than four days a week they were working less than four days a week. There is more prospect indic

In reporting on the collision which took place on the 12th March at Castle Cary on the North British Railway, when the
$11 \mathrm{a} . \mathrm{m}$. up express passenger train from Glasgow to Edinburghconsisting of engine and tender, two third-class, two first-class,
and one third-class carriages, and guard's brake van, fitted throughout with the Westinghouse brake-overran the up home
signal at Castle Cary at about 11.23 a.m., and came into collision with a train of fifteen goods wagons, which were being shunted back into an up siding, Major Marindin says:- "The
occurrence of such an accident as this, where, in broad daylight, occurrence of such an accident as this, where, in broad daylight,
upon a fine day, a light express train, fitted with a first-class continuous brake, runs at high speed into a shunting train, upon a can be brought about only by breaches of the rules, and caremost discreditable to those concerned.
A NEW light railway just over three miles in length, which puts the pleasant and rising watering-place of Lee-on-the
Solent in direct communication with the general railway system of the country, was on Thursday formally opened by the Countess of possessing the force of an Act of Parliament, was obtained by an
independent company for the construction of a new light railway independent company for the construction of a new light railway
line to Lee, under the Railways Construction Facilities Acts, and in
1893 this contract wes entrusted to 1893 this contract was entrusted to the firm of Panling and Elliott,
of 28 , Victoria-street, Westminster, who in a few months have
successfully commences with a junction with the London and South-Western Railway at Fort Brockhurst station, on the line to Stokes Bay and Ryde, and terminates at a station almost on the beach at Lee, and
close to the pier. The engineer is Mr. P. W. Meik, C.E. The chairman of directors is Mr. James
Ivatts has been appointed manager

Mr. G. W. Hawksley, Brightside Boiler and Engine Werks, Sheffield, whose plea for traction engines was noticed in last
week's Engrver, again returns to the charge against the Highway Committee of that city That body, he says, is trying to prevent the
removal by road of all loads of 15 tons and upwards. Mr. Hawksley says that since writing bis last letter be had occasion to deliver a
boiler 18 tons weight in the city. He did not send it by traction engine, but by horses, and on a broad-wheeled wagon. Nothing unusual, he says, occurred en route, yet the owner of the horses
has been served with a notice of law for damaging the roads all
along the way. Mr. Hawksley states that in Leeds, Manchester, along the way. Mr. Hawksley states that in Leeds, Manchester,
and other large towns weights of 30 or 40 tons are regularly passed
over the roads, and he contends that the policy of the Highway over the roads, and he contends that the policy of the Highway
Committee is a deliberate blow at the Sheffield heavy trades. It Sheffield is to maintain her place in the manufacturing world,
means must be found of keeping down working expenses, and Mr . Hawksley attaches great importance to the adoption of high adds, boilers were working generally at 30 to 60 lb . peassure; now
it is from 100 to 200 lb . working pressure. At the former period it is from 100 to 200 lb . working pressure. At the former period
double-flued boilers were usually about 10 or 12 tons; now 20 tons教
THE statement concerning the Congo railway, which was communicated on Wednesday to the Chamber by M. de Smet
de Nayer as an additional inducement to it to pass the measure by which, under M. Beernaert's Administration, a subsidy of It appears that, instead of the million sterling at which the cost
of construction was estimated at the outset, the railway will absorb two millions and a-quarter, and that its maintenance will
require an annual outlay of $£ 23,080$, without putting aside any
thing towards the ture will thus exceed by $£ 12,000$ the receipts anticipated by the company, even at the somewhat prohibitive rate of $£ 40$ per ton The company maintains, however, that when the line for a distance
of 175 kilometres is in working order the railway can be profitably construct and $£ 100,000$ for preliminary surveys, which have still o be carried on. The main obstacles to progress bave been the
climate, the soil, the conformation of the country, and the impossibility of finding capable workmen. Begun in 1890, it was only work of laying the line from Matadi to Kenge,

NOTES AND MEMORANDA.

When a mixture of sodium dioxide and aluminium powder is exposed to damp air, spontaneous combustion ensues,
If the mixture is moistened, a very high temperature is produced At a recent meeting of the French Academy of Sciences Alternating Currents and Restoration to Life by Means of Artificial Respiration." In the cases where death has apparently been caused by direct action of the current on the nerve centres,
without lesion or destruction of the tissues, it is fond possible to revive the patient by the treatment adopted with apparently
drowned persons.
AT a recent meeting of the Teign Naturalists' Field Chine Recording Instruments and their Uses," and, amongst other
shiter thing R, exhibited one of the original sun-bow, ans ased in Cangmbenrr
first instrument. The date of this sunburnt bowl is for the half. year June 21 st to December 21 st , 1869, or from the summer to the winter solstices of that year, and it is one of those burnt by the
solid glass lens. It is interesting to note that when the sun acted through the lens upon this
spot maxima around 1870 .
The recent earthquakes in Greece and Venezuela hav been unusually severe, and the discussion of them has led Engi-
neering Ners to publish the following statistics of great earthquakes and approximate loss of life: -1158 , Syria, 20,$000 ; 1268$, Cilicia,
60,000 ; 1456, Naples, 40,$000 ; 1531$, Lisbon, 30,$000 ; 1626$, Naples,

AT the general meeting of the Compagnie Parisienne d'Eclairage et de Chauffage par le Gaz the report stated that the
volume of gas consumed in Paris and neighbourhood during 1893 was $303,496,500$ cubie metres $70,979,625$ thousand cubic feot-less
by $5,404,088$ cubie metres $-190,818$ thousand cubic feet-tban the quantity consumed in 1992, which had one day more, being leap year. Anrly so great as that noticed in London, and bore chiefly on
not the second half of the year when there were so many fine and hot
evenings. While the use of Auer incandescent burners increat the number of subscribers, it brought about a diminution in consumption. The use of gas for cooking, heating, and motive power
is greatly extending, hee ratio of day consumption to the total consumption having
per cent. in 1893.
Irregular subsidence of the ground in which stone auses paipes are laid, even when well surrounded by concrete, ofte
 have this conspicuous advantage over a square mass of concrete-
that they present a much manaller surface to receive the weight of and la A 12n. diameter stoneware pipe sewer coold be provided and aid
in most localities for 3 sm . to 4 sp per yard, exclusive of digging. It
would require half a cubic yard of concret to enclose one would require half a cobic yard of concrete to enclose one lineal
yard of such a asower to a thickness of bin. from the top, bottom
 per foot, and could not be provided for much less than 18s. per lineal yard. There being fewer joints than in stoneware pipes, the
cost of laying would be less. It might be done for 1 s . to 1s. 6d., so that the cost would be more than double that of stoneware pipes which the use of s
cheapest in the end.
At the last meeting of the Physical Society, Professor W. Ramsay, F.R.S., read a paper on "The Passage of Hydrogen
Through a Palladium Septum, and the Pressure which it Produces. After referring to the analogy between asmotic pressare
of solution, and the behaviour of hydrogen and palladium, the and showed it in operation. A vertical platinum tube provided with a palladium cap is enclosed within a glass vessel, through
which hydrogen or other gases may be passed, and outside the glass vessel is a rapour jacket, by means of which a constant tem-
perature can be maintained. The lower end of the communicates through a graduated capillary tube with an adjust. able manometer, which enables the volume of the enclosed gas to be kept constant. Great precautions were taken for insuring purity and dryness of the gases used. After filling the palladium
and platinum tube with dry nitrogen at atmospheric pressure and
and
 vessel. Some of the hydrogen permeated the palladium walls, thus
increasing the pressure inside. After some time-usually an hour or so-the pressure attained a steady value, and the total increase
was then observed. Experiments were made with air, nitrogen was then observed. Experiments were made with air, nitrogen,
nitric oxides
nitrous oxide carbon dioxide carbon cyanogen in, the palladium tubes, and in some cases the hydrogen was diluted with nitrogen. In all cases the maximum prossure
of the hydrogen within the tube was less than that of the hydrogen of the hydrogen
outside the tube.
Concerning the number of flour mills in the United States and Canada, the Minneapolis Record says it places the
number in Canada at about 1000. There are probably, all told, number in Canad at about 1000. There are probaby, amber is
about 1200 mills in this country. In the States the number is placed at beyond 15,000. Pennsylvania leads all other States in
the number
 Virginia, 460 , Texas, 450 ; North Carolina, 405; Minnesota, 390
Georgia, 340 Went Virgini, 353 ; Kansas,
from running dow from that to three for the district of Columbia. While Minnesota beyond the capacity of any other State, owing to the larger size of
the the mills. The daily milling capacity of Minneapolis is about
47,000 barrels, if run up to the highest possible limit. This, however, is impracticable; and, during the last year, the average
production in this city was
$67 \cdot 3$ per cent. of the total capacity. production in this city was 67.8 per cent. of the total capacity.
The average production of Duluth and Saperior was 56.3 per cent.
of the total capacity. The average production of St. Louis was $48 \cdot 8$ per cent.; of Buffalo, $55 \cdot 9 ;$ Milwakeee, $60 \cdot 9$ per cent. The
average daily capacity of Duluth and Superior during 1883 was
 several mills were completed in West Saperior during the season,
and at the beginning of this yoar superior had a capacity of
12,000 barrels daily, and Duluth 6300 barrels daily ; St. Louis a

 producing cities separately. The production of this city was
greater than that of St. Louis, Baltimore, Philadelphia, Buffalo, Mrilwankee, Toledo, Detroit, Chicago, Duluth and Superior, Kansas City, Cincinnati, Cleveland, and Idianapolis combined, and they
aro the leading flour cities outside of Minneapolis.

MISCELLANEA.

An Admiralty order has been issued directing her Majesty's torpedo vessel Landrail to be despatohed from Sheerness
to London on June 29th to represent the Royal Navy at the openin3 of the new Tower Bridge
We are informed that Mr. George Pinkert, of Hamburg, the inventor of the "Land and Water Tricycle," intends going,
on his machine across the channel from Cape Gris Nez, near Calais, to Folkestone, probably at the end of this month.
On Wednesday the South Staffordshire Institute of Iron and Steel Works Managers held their annual excorsion, and visited
the Manchester Ship Canal and the Liverpool Overhead Electric the Manchester Ship Canal and tie Liverpool Overhead Electric
Railway. The party, together with their friends, numbered some

The Westinghouse Electric and Manufacturing Com pany, in thoir recently-issuad annual report, express great ex-
pectations of their long-distance power transmission business when the th
Falls.
The Maldon Union Rural Sanitary Authority, Essex, at their meeting on May 29th, appointed Mr. H. G. Keywood,
assistant in the Borough Engineer's Office, Nottingham, as the surveyer and inspector of nuisances, at a salary of $£ 200$ per annum.
.
The death is announced of Colonel Haywood, the chief engineer to the City Commission of Sowers, which office he had beld sider the filling years. of the vacancial committee appointed to con-
the assistant engineer, to the office. On the 31 st ult. the annual conversazione of the Institution of Electrical Engineers was held in the Galleries of the
Royal Institute of Painters in Water Colours, as on former Royal Institute of Painters in Water Colours, as on former
oceasions. Mr. Alexander Siemens, President of the Institation,
received the guests, and so brought to a conclusion his term of once.
On June 1st another new ironclad was successfully the Tsar and an enormous concourse of people. The Times says the now battleship, which is called the Sissoi the Groat, after an
orthodox saint, has already been three years under construction,
IT is satisfactory to know that the Simla water supply The pumping enginess at the waterrowreks are now delivering nearly
130,000 gallons daily, while from the old catchment area gallons a day are reaching the reservoirs by gravitation. This gives
a total lupply of over 240,000 gallons, so that the station has water
in

The Anderlues Mining Company of Belgium is now putting down a now shaft not far from that in which the terrible
accident occurred in March, 1892. On account of an underground fire at Height 670 N , in pit No. 7 , of the Bellevue Colliery, owned
by the Societe de 1 Ouenst de Mons it is faered that the workings must be definitely abandoned, and that fresh exploring works One of the boreholes of the Lens Colliery was reported to have struck a diamond mine-not one of bany was reported to thave struck a diamond mine-not one of bayk
diam onds meroly, but real gems. It is only suffieient to add that
the the report appeared in a local paper, which was appropriately dated
1st of April. The news, however, made sufficient impression in
Th Paris for the editor of the Echo des Mines to tolegraph to M.
Reumaux, general manager of the LLons Colliery, "Est-ce un The alterations to the Bombay Dockyard, begun about wet dock capable of accommodating eight vessels of the largest tonnage, a dry dock for the reception of three torpedo boats and
light eraft, and a tidal basin with a depth of 6 ft . at lowest spring light eratt, and a tidal basin with a depth of 6 ft . at lowest spring
tide, with a wharfage area of 600 ft . in length by 50 ftt. in breadtb. The dock throughout bas been deepened by about 7 ft ., and an Engineering says the total cost of these works amounted to about 17 lakhs of rupees.
The Technical Education Board of the London County subject of technical ed arestion of trade conferences to discuss the sund
industries. They will be hend at the County Hall, Spring gardonse
S. W., during the months of June and July. The chair will be taken at . M. by Mr. Sidney Webb, Ciairman of the Technical Educa-
tion Board. The dates of meeting and the particular groups of trades to which the conferences will be devoted are as follows:-
June 7th: The building and furniture trades. June 20th: The
 chemical and miscellaneous trades.
The reconstructicn of the Stockton Corporation Quay is still exciting great interest there. Sir Alexander Rendel, who was
called in to advise, has laid plans and specifications before the Quay Committee, and the Committee have approved these and
decided to advertise for tenders for carrying out the work. There was a lively meeting of the Corporation on Tuesday, when the
minutes of the Quay Committee came up for confrmation, and certain members took exception to the fact that there was no estimate given as so to the cost to be incurred, but the Town Clerk pointer out that it wes not wise to make known the estimate, as if
it were
"The Engineer," says Reynolds' Newspaper, "is very frank in its references to the International Miners' Congress.
Reynolds. Nerspaper has beens so succesfful in exposing the hypo-
crisies of modern life, that in latter years we hear much less of that in lattor years we hear much less branches of industry connected with engineering in ite latest
number freely admits that it is impossible to run the industrial number freely admits that it is in imposible to run the industrial
world on Christian principles.
for themselves; and acain, 'The mays, 'one and all work mainly ments, actions, mental goings and comings, is self. Of course, and the owning classes. It is always satisfactory to have your
enemy say exactly what be means, and, therefore,

At a meeting of the Manchester City Council on Wed nesday, a long statement was made by Sir J. Harwood, deputy-
chairman of the Ship Canal Board. He said it appeared that by the end of the next year, and probably earlier, there could be
nothing left of the corporation loan to the canal, and that they might expect a deficiency of $£ 146,862$ in December, 1895. Unless would in 1896 have to find money for the interest on debentures. He stated this some time ago, and that it would necessitate a rate
of about 1s. 8d, in the pound. This was ridiculed at the time, but it turned out to be very near the mark, for the interest on
£5,000,000 and the sinking fund which commenced in 1897 amounted to 1s. $7 \frac{1}{8} d$. in the pound, in addition to which there
would probably be other matters requiring serious consideration The work of the future would be for men of special triaining, and
he thought himself entitled to be relieved from further repo bility. The
the report.

TAYLOR'S GAS FURNACE FOR STEAM GENERATORS

TAYLOR'S SELF-CONTAINED GAS-FIRED STEAM GENERATORS.
The problem of the best and most economical means of consuming coal in steam generators has been a subject of
attention for engineers since at least the beginning of the century, but no general system of smoke prevention has ye been adopted. Great quantities of smoke are still produced, in spite of legal enactments for the suppression of the
nuisance. Apart, however, from the unpleasant consequences nuisance. Apart, however, from the unpleasant consequences of imperfect combustion, there is the equally important ques fuel Every consuming fuel must be of interest. One of the chief difficulties in the way of a satisfactory solution of the problem is the fact of the variable power demanded from a given generator. If cases were frequent in which an absolutely regular quantity of steam per hour were required, the arrangements for burning economically and perfectly a given quantity of coal would be comparatively simple. This case is me with in practice in the slow-running engines used in water works, and there no smoke should be produced, buthe problem so not at may be taken for varanted that if the gases produced by combustion of coal are uffered to impinge upon surfaces which are much coole han themselves, it will be impossible to prevent smoke, and the best surface for the purpose is undoubtedly fire-brick or some equally refractory material. In many boilers the use of fire-brick in contact with the metal surfaces which are heated is objectionable, therefore many attempts have been made to keep the fire-brick altogether separate. Many boilers have been fired with producer gas, with good resuits and a saving n coal con the in bistane from the boiler, and great care must be taken to void explosions in the gas conduit itself. If, then, the producer could be placed inside the boiler itself, or so close to it that the same brickwork which serves as the boiler setting would also serve for the producer, great economy should result, and if the quantity of air be properly propor-
tioned to that of the gas, entire absence of smoke should tioned to that of the gas, entire absence of smoke should
These views led Messrs. Taylor and Lowe to design such an arrangement as we have just named for all the wellknown types of boilers, but our space will only permit of our
illustrating one of these, which we think best illustrates the
principle. Figs. 1 and 2 represent the arrangement a is a sectional elevation, and Fig. 2 a plan. The small coal. burgy is charged into the hopper A, preferably about 2 cwt at a time, and is discharged, by means of the lever, into the gas-producer B, in which a deep fire is kept. C is the
clinker door, and D the ash door, which are closed by airlinker door, and D the ash door, which are closed by airdeliver air below the producer grate bars and the delivery of air is thus under perfect control, and the fuel burns in layers, which cause the production of carbonic acid gas and its subsequent carbonisation to carbonic oxide. If the apparatus receives proper attention, no carbonic acia ga gaseous products from the producer pass in the direction hown by the full line arrows over the bridge, and then descend. The whole of the setting is, of course, in fire-brick So far, the gas is the same as that given off from the ordinary producer, and it is now necessary to mix it with the due pio portion of air, and to cause combustion in the part of the apparatus best suited to supply heat to the boiler tubes. In order that the entrance of cold air may not cause a drop in the temperature of the rich gases, all the air used is caused prefer to dispense with the usual tall chimney stack, a n is used to produce the requisite draught. This current is entirely separate from that produced by the steam jet, which merely feeds the producer. Referring to Fig. 2, it will bo observed that there are two openings lettered F ; each of these is connected with the air-duct from the fan, and air passes Fiong in the direction of the dotted arrows up the side flues G, Fig. 2, and down the central flue H along the passage at the baseof the setting, and through the pipes Jinto the combustion chamber L, having on its way become heated to a high tem peracure. in the gasestion the full accows and pass through the pipes K , and mir with the air in the combustion chamber L. It has been found that the mixing of the ga and air is best effected by the mingling of separate stream in this way. The combustion chamber L is kept at a white heat by the perfect oxygenation of the gases, and the heated products pass in the usual manner round the waterwhole proper, except at the points where the latter rests upon it, and thus free expansion is allowed for.
The inventors claim that no trace of carbonic acid gas
passes out of the producer, and that no trace of carbonic oxide gas has been found in the chimney gases. We recently a similar principle by the inventors, and used at the Cadby Hall works of the Epstein Accumulator Company. The hopper was cylindrical, with its axis vertical, and the gases passed off up a central vertical group of smail tubes into a chamber, from which they descended by four larger tubes and discharged base of the boiler. Air was injected into an fire-brick ahmer of fire-brick, where it was heated and then annular into the combustion chamber, where it mixed and combined with the gases. The whole of the products then passed upwards through four groups of small vertical tubes to the smoke stack. The whole of the tubes through which the gases passed were entirely surrounded by water. No smoke was visible when we visited the place, but as we were unable to make any tests, we append a few results of trial made by well-known engineers. Proressor Alex. Kennedy K K Clark and Dr. John Hopkinson have on separate occasions carefully tested the apparatus.
The inventors inform us that with the boiler at Cadby Hall works alluded to above, the cost for coal consumption was only one-half of that previously required with the ordinary Lancashire boiler
The boiler tested by Mr. D. K. Clark at the Cadby Hal works is rated at 30 nominal horse-power, and has a heating surface of 856 square feet. The shell is 6 ft. 6 in. diameter and 8ft. high between the upper and lower tube plates. The steam is collected in a horizontal steam chamber at the upper
part of the boiler, 2ft. 6in. diameter and 4ft. 9in. long. The gas producer is 3 ft . 9 in. diameter and 5 ft .6 in . high, measured from the grate to the lower tube-plate of the boiler. The grate area is 11 square feet. Six test trials were made, and the coal was charged in quantities of from 50 lb . to 120 lb , each time. The working-pressure of the steam was 801 lb per square inch.
The coal used for trials Nos. 1 to 5 was Garswood Hall burgy, of which the following is an analysis:-Carbon, $81 \cdot$
per cent.; per cent.; hydrogen,
c.., $5 \cdot 8$ per cent.; moisture, 1.7 per cent.; ash, $7 \cdot 0$ per cent. total, 1000 . The calorific value is 14,300 heat units per lb of coal, represented by the evaporation of 14.8 lb . of wate from and at 212 deg. Fah.
The following details are extracted from Mr. D. K. Clark's oport.
Number of trials
Dunation of trial,

Coal consumed per \square | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- |
| 8 | 7 | 7 | 6 | 7 | Feced.water, totall "väaporition Feod- watere foot of of grate, polition per coal, as from and at 212 deg. Fah, verago prosuure in boiier per square

inch, pounds .

In the same report the following analyses of chimney gases are given :-

\[
$$
\begin{aligned}
& \text { Carbonic acid } \\
& \text { Carbonic oxid } \\
& \text { Oxygen ox } \\
& \text { Nitrogen } \quad .
\end{aligned}
$$

\] | y volum |
| :---: |
| Per cent |
| 5.21 |
| 0.00 |
| 14.17 |
| 80.62 |
| 100.00 |

The absence of carbonic oxide will be noticed, but it is obvious that on these trials too much air was passed into the furnace, as the percentage of unconsumed oxygen is high This would of course have a cooling effect, and would lowe of gas production in the boileritself, wemayrefer to the system which has been employed by the London, Brighton, and South Coast Railway Company for the locomotives working the expres trains to Brighton. Before leaving Victoria, the fire-box of the engine is filled with about 11 cwt . of coal, the fire being made up two hours before the train starts. The engine is brought to the train with a black fire, and after the stoke has pushed a dart through the whole depth several times the fire is not touched until Brighton is reached. On arriva there is a very low fire, and if the train is delayed on the
road the whole process of gas production is spoiled and ordinary firing has to be resorted to. The ashpan doors are made air-tight, and the front one is never opened unles absolutely necessary; the whole admission of the air is regulated by the back damper and the fire door. This is case of a fire-box acting as a gas producer, but no greater distance than from Victoria to Brighton can be accomplished in this way, as the fire would need to be disturbed.
The design of Taylor's smokeless boiler appears to us to be step in the right direction towards improved efficiency We understand that a syndicate is now being formed to wor the system.

Canals and Navigable Rivers of England and Wales.-We bave received from the publishers a copy of the new map compiled
by Mr. L. B. Wells, M.I.C.E., late engineer to the River Weaver by Mr. L. B. Wells, M.I.C.E., late engineer to the River Weave Navigation, which for the first time places in the hands of engi
neers a complete map of these navigable waterways. The canal and rivers are of different widths and depths, and therefore of differont carrying capacity, are shown by lines of different thickness, whil those, which may be considered derelict are practically abandoned canals including those in the hands of railway companies, ar which gives the names, lengths, positions, and ownership of thes canals, and is one which will be found of great value and importane to those now engaged in the Canal and Railway Rates Enquiry, and in investigations as to the possibilities of existing and projected Manchester, and 181, Queen Victoria-street, Sons, Deansgato, Manchester
publishers.
Mason College Engineering Society.-A general meeting of Wednesday paper on "Ironfounding" was read by Mr. John Ashford. The author remarked the small amount of scientific information obtainpractical experience of the workman is still solely depended the The methods of moulding with greensand and dry sand were explained, and the various foundry sands and their preparation described. The relative advantages of mixing sands in the pug mill and by the Schultz mixer were discussed, the author pointplate patterns for repeat castings were shown and their use and illustrated, the author concluding with a full description of the Lieder moulding machine, a working model of which was shown The paper was illustrated by various models and drawings, and was followed by a discussion, in which Messrs, Richardson,
Hawkins, Winn, De Villiers, and Waynforth took part.

SINGLE-CYLINDER SEMI-PORTABLE ENGINE
Mr. R. G. MORTON, ERROL WORKS, PERTHSHIRE, ENGINEER

MORTON'S SEMI-PORTABLE ENGINE.
Above we illustrate an improved single-cylinder semi portable engine, made by Mr. R. G. Morton, Errol Works, Perthshire, from the designs of Mr. Duncan Morton. The materials used in its construction are of the very best quality, while the fit is perfect, and the finish leaves rained metal steam iacketed by means of a 2 tin, annular space run round it and forming a dome, from which it derives constant supply of dry steam. The jacket is drained back to the boiler. The slide valve is of the double-ported Trick type, and can be examined while steam is up. By removing the dome cover which forms the safety valve seat, the regulator and throttle valve can be examined and adjusted. The piston is cast hollow, and fitted with two Ramsbottom spring rings. The piston and valve rods are of steel, the connecting and joints are thoroughly case-hardened. The crank shaft, which is of steel and runs in heavy gun-metal bearings, is arger in diameter at the dip than in the body of the shaft. The governor, which is of the cross-armed type and loaded with a centreweight, controls the speed of engine by acting directly on a throttle valve. The feed pump is continuous acting, and is fitted with very large valves which rise only fin., thereby reducing wear and tear to a minimum, and njector is provided, which can be regulated for any supply, njector is provided, which can be regulated for any supply,
The boiler is of the locomotive type, and made throughout of the finest Siemens mild steel; all riveting is done by machinery. All plates are flanged with large corners. The proportions of steam and water space are ample, and the firegrate is unusually large, being specially arranged for burning inferior fuel. This type of engine is made in all sizes, and with or without automatic expansion gear.

ETCHELL'S "NON DRIP" SHAFT BEARING. We illustrate herewith a shaft bearing, Etchell's patent, now

Leeds. The engravings are almost self-explanatory. It will be seen that the brass, which is of the swiveling, or self-levelling
type, has a cavity in which oil lies. Across the bearing rests will find, as before, that there is no scope for theoretica. knowledge. a cotton wick which distributes the lubricant. It is claimed that the bearing is very cheap, that there are

etchelli's shaft bearing
no oil cups and no drip, the arrangement preventing oil from running along the shaft to the outsic

LETTERS TO THE EDITOR.

(We do not hold ourselves responsible for the opinions of our correspondents.)

Engineering as a profession

Sir, -As you have invited discussion on the subject of
Engineering as a Profession," I see no reason why I should not call a spade a spade, and tell" a few plain truths for the benefit of others like "Pater," whether they are acceptable or not to pro-
fessors or to mechanical engineers as a body. As to civil engineering, which I have heard profanely defined as "glorified roadscraping," I have nothing to say, because I know next to nothing about it. Ne sutor uttra crpudam-let the cobbler stick to his last. I proceed to consider the position of the ingenuons youth
who bas been trained in a college, and has "gone hops" forsooth, as a gentleman apprentice. bone through the This young man, if he bas a bead upon his
good use of bis time. He has learned a great deal, and I shal assume that be finds bimself placed in the position of manager of a department. The first thing he discovers is that the firm em-
ploying him make, let me say marine engines, by the dozen, and ploying him make, let me say marine engines, by the dozen, and
that they are all alike in every respect eave size. There is a distinct set of patterns for each size of engine, and from one end of the year to the other engines are built from these patterns. Now and then small changes are made, never when it is possible to avoid them. None of my young engineer's college training is of
the smallest use to him. The sole object of his existence is to get the largest quantity of work turned out on the old lines at the least cost. This is a science in itself, but it is never taught in colleges
If any young man gets into a locomotive shop on a railway, be
d build a dozen types of locomotive, and never make a single calculation. Neither be nor anyone else wants to know how thick the shell plates should be, or how close the stays or All that was settled years and years ago; a little taking out of quantities is all the figuring that is needed. Even in the matter of testing, the whole affair is cut-and-dry for
him. The one essential is -that he should him. The one essential is -that he surn out the greatest possible quantity of work.
Now I assert, withont fear of contradiction, that there is no scope for the display of scientific attainments in mechanical engineering
in the present day. It is simply a matter of pounds, shillings, and pence. Machinery is pounds, shillings, and pence. Machinery is hear it urged that surely such mechanism as that of the Havock, let me say, is certainly
the result of science. I answer that it is not. It is the result of trial and error; the result of long and costly experiment. It is simply a survival of the fittest. I do not hesitate to say that there is not a
portion of the machinery of a torpedo boat portion of the machinery of a torpedo boat
whose dimensions have been arrived at by calculation. Does anyone suppose that the steel framing has been calculated at so many tons per square inch of section Not a bit of it. Does
anyone imagine that they will find in a book a rule based on calculation that will give them the dimensions of a torpedo boat crank shaft, or of a leading axle of a modern express locomotive? If they do they bave everything to learn. All the so-called special mechanism that we see around us has grown. If there are any
rules extant that can be taught, they have been deduced from the machines, not the machines from the rules. As for the other machinery of the world, it is all cut and dried. Nothing is taught in college or school that is of the least pecuniary value in this "Oh",
"Oh," but it will be said, "look at the new machines, look at cannot help it. The oil engine bas emanated from men who have had no scientific training. One of the best is the invention of a medical man. There is not a college professor in existence who ever invented one, or even hinted that one was possible.
I do not think that any knowledge of thermodynamics has ever come to the aid of anyone making them. I do not believe that the makers of the best oil engines in the market could pass an examination in such subjects as those recently dealt with in your pages by Dr. Lodge. The scientific side of mechanical
engineering has no existence out of the brains of professors, I have said I wold all a ravering in the present day is not a profession, it is a trade. It has only one aspect, the commercial. It bas been found that there is no money, but very much the reverse, in scientific mechanical men. eventualities and possibilitice, discipline ; organisation ane, its perfectly in tune with every surrounding note, order. Let me explain. If work is to be turned out in quantity no department of the works must be idle ; none run overtime to supply the on the foundry for castings. The turnery must not be idle, waiting kept standing because they cannot get the work from the not be or planers. Just think what this means in a large establishment. Is it possible to overrate its importance? I tell you, Sir, and I tell
that success lies. Firms have been ruined in a couple of years after long periods of prosperity, simply becanse of a change of sooth, they were not engineers, and I have known the same men All this is quite outside a college training. It is not at all
outside the training to be had in works. If a young fellow keeps outside the training to be had in works. If a young fellow keep working overtime, on the one hand, or, on the other, are trying to young man does not keep his eyes open he will not see these Now, Sir, in all this I have not referred to the question whether
Nowanical engineering is a good profession or not. I hold that mechanical engineering is a good profession or not, I hold that
it is not a profession at all -that it is a trade or business. But I wis not a profession at ail-that it is a trade or onsiness. but it in simply frst-rate for those who have
really learned it. A good manager who can get out work up to the mark is worth his weight in gold. There is a never-ceasing
demand for good men, but scientific mechanical engineers are dimply a drug in the market. The Admiralty have been for years training engineers, and making men of science of them. They are now beginning to find out that all this is worse than useless, and that what suffices to pass the Board of Trade is good enough.
Perhaps at another time, with your leave, I may have a little Perhaps at another time, with your leave, I may have a little
more to say. Meanwhile, I should like to hear somebody else who will take the other side, and let us hear what the commercial value of a scientific training is, though I fear this is expecting too much.
Manchester, June 5th.

SIr, - "Pater's" letter deserves the attention of other paters an their sons, who propose to take up engineering as a profession.
Parents who have had non-commercial careers, such as military aval, clerical, and medical men, are too apt to gauge the advantage successful. Technical education is of value to every engineer, bot that it is not absolutely essential is shown by the numbers of great engineers who have succeeded without it. introduced to avoid so-called shop drudgery, while it is the experience of this shop drudgery which is the key of engineering. Many
lads are sent to work who loathe the sight of the shops, and seldom succeed in becoming more than draughtsmen. In using stances are compelled to work at the board for a draughtsman's pittance. At present quantity, not quality, rules the market. Your points to the fact that not only are many draughtsmen ignoran of the practical uses of machinery, and the principle of construc tion, but that the managers and principals are alike ignorant of
the working of machinery they sell. The cause of this is not far to the working of machinery they sell. The cause of this is not far to look for-it is simply the training. Of the large number of young
men who enter the lists for engineering fame, only about onefourth find workshop pursuits tasteful, and a large number of these fail through want of physical robastness; consequently their training must be either in the drawing-office or a college.
Such young men flood the market, and often obtain Such young men flood the market, and often obtain employ-
ment in preference to better men because they can make a drawing a little faster and neater, and will take a smaller wage than the man with shop experience, and also because so many engineering concerns are run by purely commercial men, whose only qualifica tions generally are cash or interest, and who imagine engineering to
be a series of calculations. No account is apparently given to the cost of drawings made twice over, or the extra cost of unnecessary machining due to faulty designs, or the unfitness of machinery to
do the work. While this lasts, young men cannot be blamed for following th. While this lasts, young men cannot be blamed for following the less arduous college course, which only fits them for
the board, generally at a salary less than a labourer, which from a monetary point does not justify the expenditure in costly
college courses. They may eventually drift into positions of trust, at salaries which are a disgrace to those who pay them. I instanc a firm who offered for the management of a works employing 200
to 300 hands, a salary of $£ 200$ to $£ 250$ per annum-about what to 300 hands, a salary of $£ 200$ to $£ 250$ per annum-about what design, this firm bas had to make good machinery which must have cost many hundred pounds. Some day when too late they will realise their mistake. I do not imply that this is universal,
but it is as well to know that, taking it all round but it is as well to know that, taking it all round, engineering is
about the worst paid and hardest-worked profession there is. After years of struggle at a salary which barely pays for living, Amter years of struggle at a salary which thares find themselves nearing the coveted position of trust, which often they do not get; many have, therefore, to end their days in bitter disappointment at a salary of $£ 100$ to $£ 150$ per
annum, while the few who get the plums find them cut down for annum, while the few who get the plums find them cut down for
their benefit to $£ 300$ or $£ 400$ per annum - about the pension of an officer who would have probably retired at the age when the engineer has worked for and won his prize.
I do not wish to criticise employers on the salaries they pay. Times are bad, their profits are uncertain. One cannot blame
them in struggling to cut their expenses down, but I think it is only right parents and lads should know that in following one of the finest, most interesting, and absorbing professions, that for a livelihood it is bad, that the door to good appointments is closed as a rule, without both large interest or capital. Chance may favour,
and has favoured many men, but should not be relied on. Parents and has favoured many men, but should not be relied on. Parents
should, therefore, think twice before drifting their sons into an should, therefore, think twice before drifting their sons into an
over-stocked and under-paid profession, and would do better to take the advice of those who may employ them, or from those who, like myself, are trying to make a living at it.
May 30th.

Mechanic.

BELLEVILLE BOILERS.

SIR,- We find that reports are being spread by persons who are evidently fearing the competition of the above boilers with thos of the ordinary type, to the effect that the Lords Commissioners of the Admiralty have counter-ordered the large contracts that they There is absolutely no foundation for these reports and as agents, and holding a concession for the manufacture of these boilers, we shall be glad if you will give publicity to this letter.
For MAUDSLAY, SoNs, AND FIELD, LTd.
London, S.E., June 1st. Walter H. Maudhairman.
THE BOARD OF TRADE UNIT OF ELECTRICITY.
Sir,-The Board of Trade unit of electricity is 1000 watts, that is a SIR, - The Board of Trade unit of electricity is 1000 watts, that is
kilowatt, and I know that 746 watts $=1$-horse power. Now a watt is got by multiplying volts by ampères. The volt
tands for "pressure," and the ampères for "quantity." In old stands for "pressure," and the ampères for "quantity." In old
times the term Coulomb was used, but as it was not the unit of electricity, but the unit of current that was to be measured, That is to say, the ampère stands for the quantity of electricity given off per second by a dynamo at the stated pressure in volts.
All this is very clearly set forth in MacFarlane's "Physical Arithmetic."
Now, what I am at a loss to know is, what does a Board of Trade nit mean electrically Curiously enough, 1 have consulted electrical struck them before. The question is this, is the kilowatt a time quantity or not? To put the question another way, suppose I have a
dynamo with an output of 40 ampères at 2000 volts. That means dynamo with an output of 40 ampères at 2000 volts. That means
$2000 \times 40=80,000$ watts, and represents $\frac{80,000}{746}=107 \cdot 2$-horse power. Now, I want to know bow long will that machine take to
deliver 80 Board of Trade units? So far as I can as all the quantities are expressed in seconds, it appears that the
machine will deliver 80 units per second, or 4800 per minnte, or 288,000 per hour. This cannot be right, because at 6 d . a unit suppose that the minute is the factor, then the income would be $£ 12$ per minute, which again is nonsense. If I take the hour as the time, then the machine will earn $£ 2$ an hour, which is reason-
ble. Nominally, the Board of Trade unit is 1000 watt hours. But able. Nominally, the Board of Trade unit is 1000 watt hours. But The watt has nothing to do with hours ; it is a seconds quantity seems to me that the unit is really $3,600,000$ watts. The whole
sffair is very confusing. Will any reader of The ExGINEER help a affair is very confusing. Will any reader of The Exanker help
Town Counctilor, perplexed
June 6th.

PILES AND PILE DRIVING
SIn, I have read tho excollont pappor by Mr. J. R. Baterden, eo

which you may possibly consider interesting to your readers. With
reference to the shoes, I have always found that when the piles have to be driven tbrough difficult ground, the straps of wrough iron should not be riveted to the casting, but simply run througb
slots left in the casting and then bent to required angle, one piece slots left in the casting and then bent to required angle, one piec
of iron forming two straps. In this case no rivets are necessary and I have never known a strap to break or come off when the

shoe has been properly fitted on, which is of paramount importance efficient, made to following general section, having smallest dia meter in centre, as shown by dotted lines. Pile should be headed more or less. In driving sheet piling in troublesome ground,
it is an excellent plan to drive simaltaneously two piles by two

the two circles cut the line of stroke in F. Then FO is the the centripetal acceleration of the crank-pin.
The demonstration is as follows :-The motion of the crosshead B may be compounded of two motions: (a) A motion of constan A with angular velocity $\frac{\mathrm{V}}{\mathrm{A} 1}$. The acceleration due to the motion (a) is $\frac{\mathrm{V}^{2}}{r}$, and is in the direction $\mathrm{A} O$. If the scale of velocity be chosen so that V is represented by the length A 0 , the acceleration $\frac{\mathrm{V}^{2}}{r}$ may also be conveniently represented by $\mathrm{A} O$. The com ponent of this acceleration in the direction of the connecting-rod
will then be A $g, 0 g$ being drawn perpendicular to A E. Ths

radial acceleration due to the motion (b) is $\frac{\mathrm{V}^{2}}{\mathrm{~A} 1^{2}} l$, and, making the same assumption as to scale, will be represented by the length $\frac{\mathrm{B}}{\mathrm{B}}=f \mathrm{~A}$, since $\frac{f \mathrm{~A}}{\mathrm{~A} \varepsilon}=\frac{\mathrm{A} e}{\mathrm{AB}}$. The tangential acceleration due to (b) has no component in the direction A B. Adding, the com ponent of B's acceleration in the direction B A is $f g$. But
obviously, the total acceleration of B is in the direction $\mathrm{B} O$, and must therefore be equal to F O , since fg is the component of FO in the direction B A.
If an ordinate be drawn from B of length equal to F O, and the construction repeated for a number of different crank-pin positions, Klein's construction does not fail, as Ritterhaus' does, at the dead
points. be the weight of the reciprocating parts per square inch of
II v be
piston area, and f be the acceleration, the steam pressure in pounds per square inch required to accelerate the moving parts is v f.
Guilds Central Technical College,
Archd. Sharp.

portland cement-making materials,

SIR, -Permit me to call your attention to an inaccuracy in
Molesworth's Pocket Book of Engineering Formule," unde heading, "Strength and Weight of Materials," item "Chalk." Two samples are given, weighing respectively 145 lb , and 162 lb .
per cube foot. My own experiments in weighing numerous blocks, as received from various quarries in Eogland, give results varying as received from various quarries in england, give results varying
from 111 lb . to 126 lb a acoording to moisture present. The crushing
strain was also experimented upon ; 3in. cubes were submitted to strain was also experimented upon ; 3in. cubes were submitted to gradually increasing pressures in a hydranlic press, with clock-
work-driven Richards indicator attached. The crashing strain varied from 500 lb . per square inch to 220 lb . per square inch;
Molesworth gives 501 lb. In most cases a preliminary breakdown varied from 500 lb . per square inch to 220 lb . per square inch
Molesworth gives 501 lb . In most cases a preliminary breakdow I call your readers' two-thirds of the pressure was attained.
engines, one at each end of the bay, and next each counter pile, having a pair of pitch pine plank walings secured together at such
a point on the piles as that when the latter are driven to the require apoint on the walings shall be, say, 3 ft . or 4 ft . from the bottom, and so form a guide for the remaining piles of the bay, which can a
then be pitched and lowered to within, say, 6in. of the bottom

leaving a space for the wedge pile in the centre of bay. In thi ppace a obock should be placed, and all the piles wed.
on itber side to the counter piles, and then driven. The following is a plan of counter piles and sheeting all whole timbers. attached the plank walings piles first driven, and to which are waling at low water.
These planks are bolted to the sheet piles A and B, but a hori

zontal slot is made in the planks to allow of play in case the bay is
not quite rectangular. The planks come slightly on counter the piles, not quite rectangular. The
As Mr. Baterden remarks, the subiect of pile drive As Miv. Baterden remarks, the subject of pile driving is a ver now take up more of your valuable space. SAMLL. H. AGNEW. London, June 2ad.
inertia of the reciprocating parts of a steam ENane.
SIr,--The very simple graphizal construction of Professor J. F.
Klein, Lehigh University, for ths determination of the acceleration of the piston of a steam engine, seems to be little known on thi side of the Atlantic, as several new toxt-books have appeared since its publication-Jowrnal of the Franklin Institute, September, 1891 less simple graphic method of Ritterbaus.
The following is Klein's construction:--Let OA and A B be the crank and connecting-rod in any position. Let the lengths of the crank and connecting-rod be r and l respectively. Produce the connecting-rod B A to cut the perpendicular 0 E to the line of
stroke. With A as centre and A E as radius draw a circle ; A B as diameter draw another circle, and let the common chord of

a very common error to consider a cubic yard and a ton as about the same thing; and because the importance of testing the strength of the material seems up to the present to have been completely ignored, both by purchasers of chalk and designers of chalk
breaking and washing machinery. The foregoing experiment breaking and washing machinery. The foregoing experiment
also go far to clear up the apparent anomaly of some Portland cement works taking double the horse-power per ton for thei wet washing and grinding that is found to be developed uader similar circumstances by other factories using what are nominally
the same materials. I enclose a tracing of one of the autographic the same materials. I enclose a tracing of one of the autographic
diagrams referred to, showing two preliminary yield points, then a iagrams referred to, showing two preliminary yield points, taly
a $e n e r a l$
yielding without reduction of pressure, and finally a sudden and complete collapse. Percy J. Neate, Rochester, June 4th.

oil fuel at sea.

SIR,-In the Scientific American supplement for the 19th inst there is published an account-credited to you-of liquid fuel burn ing on the steamer Baku Standard, by Mr. A. Suart.
We enclose a printed sheet of the rig for burning oil-which was the suggestion for our painting machines as used at the Columbian
Exposition in Chicago. It has been suggested that this way of spraying oil might be of service to Mr. Suart, as it would save the steam now used to spray the oil into the furnace. The statement Is made that the loss of steam is one of the drawbacks in his work. In spraying oil in the way shown the only power consumed is that
needed to drive the blower, which is nothing compared to steam used to obtain the same jet. One of our blowers com to the $\frac{1}{\frac{1}{2} \text {-horse power will spray } 40 \text { to } 60 \text { gallons of oil per hour. The oil }}$ tank is below the blower and jet pipe into the farnace, and may be any distance away from the blower, say 60 ft . outside the walls of the
building, which is the requirement of insurance companies building, which is the requirement of insurance companies. They also require that the oil supply shall be below the fire. In the make-
up of this rig we comply with these conditions. When the blower is not running the oil will sink to the level of the oil in the tank. Upon starting the blower the air pressure at the stop valve, acting through the small pipe to the gauge and the top of the oil tank, vorces the oil out of the bottom, and by way of a small pipe to a valve located over the air inlet to the blower. This valve regulates
the amount of oil fed to the blower, which breaks it up, mingles it with the air, and forces it to the fire by way of the jet pipe, which pipe may be made to pass to the back, and then forward, so as to weat the gas before delivery to the fire. The result of this plan of fed in any amount natl times get a perfect combustion of the oil fed in any amount needed to do the work, by the use of the most
simple devices, which will take care of themselves, there being no
small openings to gum up or clog. If the feed is adjusted to the $35, \mathrm{~W}$.
W. Fourteonth-street,
New York City, May 24th.
the indiana armour plates
SIR, - I enclose an approximate sketch of the results of the test of Bethlehem's 18 in. nickel-steel Harveyised ballistic plate, repre-
senting the side armour of the battleship Indiana, which may be of interest, in case you bave not received photographs.
The plate was hammer forged 16 . thick for 4 ft . of its width from the top, tapering thence to 18 in . the bottom edge. It weighed 33% tont, apering was secured to 3 oin. of oakk backing by twenty-six 3in. bets, as shown in the sketch.
Although 1 inin. in thicknes, , was tested with the lin Although $18 i n$. in thickness, it was tested with the 12in. rifle under
the clause of the specifications that "in no case shall the calibre of the clause of the specifications that "in no case shall the calibre of
the gun exceed one-seventh the width of the plate at the point of the gun exceed one-seventh the width of the plate at the point of
impact." It was a Bethlehem gun against a Bethlehem plate, so Bethlebem was a sure winner.
During one of the operations of the "Harvey" process to which
it was subjected loud reports indicated and it was subjected loud reports indicated an internal fracture. Care-
ful examination and drop tests failed, however to locate the ful examination and drop tests failed, bowever, to locate the
injury ; but the 12,660 foot-tons striking energy of the first 12 in. injury ; but the 12,660 foot-tons striking energy of the first 12in.
shot easily disoovered it. Propelled by 269.1b. of Dupont brown prismatic powder, giving a striking enorgy of 1465 foot-seconds, the shell cracked the plate into three pieces, as shown in the sketch marked "First shot." Three cracks extended from the shot-hole
to the top, bottom, and left edge, varying in width from tin to 8 in The long longitudinal crack was caused by an internal crack nearly two-thirds the length of the plate, which had evidently been caused when the lood reports were heard, as the narrow crevice was filled with the oil that was used in a, subsequent operation. Oil had found an entrance, although the most eareful
failed to discover any surface or edge eracks.
While the results of the first shot would cause the rejection of the plate, as the requirement of this shot is that "there shall be no prack, extending from the point of impact to an edge of the plate, or from one edge to another of the plate, and at the same
time through the entire thickness of the plate at the edge, it so evident that the repeated suspected defect had so radical an influence upon the repath, that Commododore Sampson deceided to
fire the second shot to determine if the plate would meet the fire the second shot to determine if the plate would meet the
second condition, viz, " The projectile, or any fragment thereof, shall not pass entirely through the plate and backing." Round ${ }^{2}$

was therefore fired with 419 lb , of Dapont powder. with a striking velocity of 1926 foot-seconds and an energy of 21,182 foot.tons Although the plate cracked badly again, no part of the projectile | penetrated beyond 6in. into the backing. |
| :--- |
| Capenter 850 lb |

Carpenter 8501b. projectiles were used for both shots. The first penetrated 20 in. and rebounded about 30 ft . It was set up about
4in. and developed a longitudinal crack 16 in . in length. The
The

second penetrated the plate and 6 in. of the backing, the forward two-thirds was broken, twisted, and partly welded into the plate
and itself, the rear third being broken into several longitudinal fragenents. As diametrically opposite opinions regarding the
ralue of the Harvey process have been reported as emanating from me, 1 shall be glad to tell you what I have said on the subject. based upon the results of the test of the Bethlehem 18in. plate at Indian Head, May 19th. This was a mere incidental endorsement of the opinion I have often expressed in my lectures, writings, and conversation.
While we
While we have abundant and reliable data relating to the pene-
tration and perforation of plain steel and nickel steel plates of nearly all the thicknesses that are liable to enter naval construction, we bave very little information regarding the cracking and shattoring effects of the larger calibres attacking surface-hardened homogeneous plates at very bigh energies. The action of the few opinion that, "The greater value of carbonisation was with the thinner plates, and that although the recent development has been
chiefly in the direction of securing a harder face to the homogeneous steel plates there still remains two types for comparison, that of a resistance which will keep out a projectile of any calibre
if thick enough, and that which will destroy the projectiles untii a
 I think there is a limit to the thickness of the plates that can be advantageously Harveyised. Just what that limit is we have for doubting its usefulness for plates above 12ino, and the best 12in. plate that has ever been Harveyised cracked badly when
 surface less in proportion to the thickness of the plate, but the
larger mases of steel, when sabjected to the sudden shocks of water-hardening, are more liable to initiate defects or develope minor ones that may occur in the ingot, which, in the condition
they exist after forging, might not sensibly decrease the balistic

Farther

is liable to be minor defect that may occur before carbonisation period the plates are undergoing the process of carburisation. smith's forre, risks than the dressing of an ordinary tool ; these risks must mave their influence in determining the thickness of plates that are to be subjected to this unatural treatment.
As to the value of carbonisation of plates of certain thicknesses there appears to be no doubt, and I gave prominence to its employ
only as early as 1891 , in a paper prepared for the British Iron and

Steel Institute. Its value in destroying projectiles of calibres up to and sometimes including 10 inin. alilibre, asssuring a decrease in
the weight of armour to be carried for calibres, cannot be over estimated, but we have not yet enough practical evidence to say if its application to the thicker plates will be finally adopted. While the defect in the plate on test of May and was a a prominent cause for its rejection, although theatmen have been a want of uniform chemical distribution in the ingot or some piping remaining after forging, all the opinions expressed failure of the plate was the result of pne of the in causing the Harveyising. Other thick plates selected for ballistic test will doubt perform better than the 18 in. plate in question, but 1 ing at sorvice energios, will crack the Harveyised plates, and pieces in position, we find ourselves back again to the old discus ion of which is the least objectionable, considerable penetration o cracks. No matter what future tests may decide one thing is certain, the calibres and energies of guns must be increased, no
W. H. Jaques.
diminished.
South Bethlehem, Pa., May 22ad.

the maxim breast-plate,

Sni,-As there has been so much in the papers during the last week regarding me and my cuirass, I think it is nothing more tha cientific world a few facts relating to the affair.
Durine the mast few montre

During the past few months a great deal has appeared in the which had been invented by a German tailor. The device, however instead of being a bullet-proof cloth or coat is, I believe, simply a Eiece of armour-plate sewn up in a bag. Had it been broght might have been highly amusing to the unscientificic, who are not
acguainted with the laws of dynamics. But they were not content acquainted with the laws of dynamics. But they were not content to exhibit the thing in its legitimate sphere; they entered and succeeded in getting some of the best men - from his Royal Highness the Commander-in-Chief down-to see their experiments. The great number of high officials and scientific and technical
men who went to see it, and the publicity that was given to it by men Press, brought it before everybody, and the claim set forth
the was an open challenge to me as much as to any other scientific man in kingland. I saw the game at once, and claimed that I had 7s. 6 d. cash, and that the substance which I proposed to use was a compound of organic and inorganic matter. This was set forth in alleged invention and to sell the secret on a certain day.
On that occasion the London terminus of the railmay that runs to Erith was simply overwhelmed with people wishing to go to
Erith, and the number that went was only limited by the transErith, and the number that went was only limited by the trans
portation facilitios that the railway was able to offer. Many went friends who were on the train have informed me that everybody was talking about it, saying that Mr. Maxim was a very clever man, that he had probal made a very marvellous invention, and that ironclads would likely go out of use because he probably had
some very light bullet-proof cloth that would resist all kinds of shots, even from large guns. One gentleman was anxious to have a complete suit of Mr. Maxim's new cloth, to wear under evening. dress, so that he could stand up and be shot at from all sides with a military rifle-to amuse his friends. I must confess I bad not the dead earnest.
The crowd that assembled at Erith was so great and so unruly that it was impossible to conduct the experiments in anything inee a satisfactory manner, and notwithstanding that Thad a conbarriers, mounting my table asd swarming over everything d bad barriers, mounting my table and swarming over every thing. I bad
provided m mself with scales and a a 2 ft . rule, and I asked the gentlemen to stand back and allow me to show them what my
cuirass measured and how much it weighed. I said I I had agreed cuirass measured and how much it weighed. Isaid cuirass, and to
to make somothing which would beat Herr Dowes employ certain organic and inorganic
that the most suitable inorganic substances were iron and nickel and for the organic substance a small percentage of carbon. When, owever, they found out tuat my cuirass was nothing but a stee ppate
described to them was nothing but the process of steel mak
ing headed by a very pompous officer, who had come down with
two orderlies, left in a great huff. They were perfectly
俍 two orderies, left in a great huff. They were pertectly
furious, and said they had been sold. About 600 remained
bind bhich has over shown. It was simply a piece of very fine highly-
tempered steel tin. thick. Two shields were shown, one sewn up tempered, steel thin. ther covered with felt.
At Herr Dowes demonstration on the night of the 5th inst., to provally fired at was about \&in. by hlin., and it was it, the area the weight was 111 lb . They, however, would not submit to the 2ft. rule and scales.
We are now able
We are now able to provide armour-plates for the Maxim guns
which will stop the small bore projectile, and which weigh 7 lb Which will stop the smail bore projectile, and which weigh 7 lib
to the square foot, and this, I think, all scientific men would be willing to back against all other substances, weight for weight. 1 hear from Germany on pretty good authority that Herr Dowe's
armour-plate is a piece of very bard aluminium bronze, but this, as armour-plate is a pieco
we all know, is never quite as strong as good steel. The amount of abose which I have received for giving away this little trick is simply wonderful. Had I been a pirate and sunk half the ships on I Thatice in this morning ave been worse.
I notice in this morning's papers that the general manager of the
Alhambra says that no cormed of fibrous material only, but in your issue of June 1st you say:-"It is said to contain not only no iron or steel, but no metal of any kind.'
June 6th.

oy's fluid valve gear.

Sir, -I regret that your correspondent Mr. S. J. Ross has seen
fit to June 1st. In such form I must decline altogether to carry on the cor espondence, which so conducted could have no practical end, so far earnest a aders are concerned. 1 am in earnest and have plenty of questions in good faitb, and some of those which your corresponletters. Has he not noticed this? My confidence in my new plan seems to offend him, but it is based on very crucial and positive tests ; and I do claim that I bave some right to speak with contidence on this special question under discussion after the are I have devoted to it, and after so long an experience as 1
and gear is an instance.
Many of the details, however, against which your correspondent tilts so recklessly are not my own, but have been adopted after criticism
ond disuasion with abler men than myself, and with whom 1 im in reaty for the introduction of the plan on a large scale. I repeat that 1 welcome fair criticism made with the bona fide object of getting at information, but of this mere "picking to pieces," for the sake of "piekking to pieces," I must decline to take any further notice.
Your correspondent says he "has handled a few engines, and
ny new system, and I think he would have found that he had yet something to learn had he accepted my invitation, which I now do not repeat.

street, Westminster, June 6th.

sale of materials of the albert palace and connaught hall.
Sir, - As the last issue of your paper contained a most erroneons eport of our res
the actual facts.
The glass, after being taken down, packed, and removed, would ive the purchaser an extremely small margin of profit, and we alued it at nil, though we succeeded in obtaining some $£ 50$ for -exclusive of the glass on the roors, which was sold with the ronwork. The floor boards realised 5s. per square, at which price
now can be purchased. Joists fetched $E 4$ per standard, and new can be bought for $£ 5$. As for the ironwork, about 800 tons sold or $£ 900$, and the cost of getting it down, estimated at about 20 s. a ton, falls on the purchaser. The hot water piping sold for
c3 10s, whereas new can be purchased for $£ 5$. The zinc on the ch 10 s, whereas new can be purchased for $£ 5$. The zinc on the
coof sold for nearly $£ 14$ per ton. The whole of the materials realised equally satisfactory prices, and exceeded the estimate made previous to the auction by about 40 per cent.

Gresham-street, E.C., June 6th.
adams' sewage lift.
Srk, -May I add a few words to the description you give of our mentioned bas no moving parts-as this would seem to imply-but our ordinary deep-trap syphon as used for sewer and flushing,
opending only upon the liquid reaching the desired level in the tank.
The arrangement adopted for allowing exit of liquid from the air chamber when full is simple, briefly a spindle valve is closed ain and opened by the greater pressure, that of the column of quid in the air cbamber. To secure this increase of pressure the which floats into position as the air chamber flls.
Old Queen-street, Westminster, S. W., June 2nd.
THE INSTITUTION OF CIVIL ENGINEERS.
The Council of this Society bas made the following awards for papers reard and discossed deriog treminion to William John Bird Water Supply of Bombay." Cord Premiums to James Henry Great ead, M. Inst C.E, and Francis Fox, ${ }^{1}$ M. Inst. C.E., of West minster, for "The Liverpool Overhead Railway.
A George Stephenson Medal and a Telford Premium to Thomas Parker, M. Inst. C.E., of Wolverhampton, for "The Electrical Equipment of the Liverpool Overhead Railway."
A Telford Medal and a Telford Premium to Henri Léon Partiot, Paris, for "Estuaries."
A Watt Medal and a Pelford Premium to Robert Edden ommans, Assoc. M. Inst. C.E., for The Concentration and A Telford Medal and a Telford Premium to Professor Franz Krouter, of Munich, for "The Design of Masonry Dams,"", Assoc.
A Tofford Premium to Boverton Redwood, F.R.S.E., Ast. C.E, for "The Transport of Petroleum in Bulk.". Ins. C.E.,
A Telford Premium to William Colquhoun, Assoc. M. Ins.

The Manufacture of Briquette Fuel." A Telford Premium to
A Telford Premium to I ${ }^{2}$. M. Inst. C.E., for ${ }^{\text {Then The Training, of }}$, Rivers, illustrated by the Kesults of various Training Works.
For Pa
For Papors Printed in the Proceedings without being Discussed:
A Watt Medal and a Telford Premium to Bryan Donkin M Inst. A Watt Medal and a Telford Premium to Bryan Donkin, M. Inst. A Telford Medal and a a Telford Premium to Sidney Richard LowCock, Assoc. M. Inst. C.E., for "Experiments on the Filtration of
Sewage.".
A Telford Medal and a Telford Premium to Sakuro Tanabe, M.E., A ssoc. M. Inst. C.E., for "The Lake Biwa-Kioto Canal."
A Tolford Premium to Heorry Ewart. M. Inst. C.E., for "The Maligakana Service Reservoir, Colombo . Moncrieff, Assoc. M. Inst.
A. Teford Preminm to John Mitchell
C. .for "The Design and Construetion of Dock Gates of Iron And Teelford Premium to George Croydon Marks, Assoc. M. Inst. E., for "Cliff Railways. For papers read at the supplemental meetings of students, the
Miller Scholarship, tenable for two years has been Loonard Hodigson, Appleby, Stud. Inst. C.E., for his paper on
Forms of Tensile Test Pieces," and Miller Prizes to Arthur Robert Gale, Stud. Inst. C.E., for "Refrigerating Machines;" to
Walter Beer, Stud. Inst, C.E., for "Ship Slipways;" to William Garnys, Wales, Stud. Inst. C.E. For "Discharging and Storing
arain ;" and to Henry Thomas White, Stud. Inst. C. , for "The Sinking of the Cylinder Foundatians of the Trent Viaduct under Compressed Air.
For papers read before local associations of students, Miller
rizes bave also been awarded to Pierce Josent Tacker Inst. C.E., of Birmingham, for "Locomotives in Regard to Speed;" Honry Nowmarch Allott, Stan. Instite C.E., of of Manchester, for
to Hylinder Foundations ", to Arthur Wateon, Stud Inst C. Cylinder Foundations"," to Arthur Watson, Stud. Inst. C.E., of Manchester, for "The Salford Widening of the Lancashire and
Yorkshire Railway;" to William Orr Loitch, jun., Stud. Inst. C.E., of Glasgow, for "The Renewal and Maintenance of Short-span
Bridges;" and to Thomas Harkness Watt, Stud. Inst. C.E." of Glagoow, for "The Lanarkshire and Dumbartonshire. Raili,",","
It has been determined to print the first threo students papers, Th has been determined to print the first threo students' papers, ither in whole or in part, in the "Minutes of Proceedings."

Power from Artesin. WriLs. - In several cases of artesian
ells, where the well pressure is considerably over 100 lb . per wells, where the well prossure is considerably over 100 olb. per
square inch, the water is used for driving electric light plants and flour mills, through the intervention of water-wheelse, In England well supply is not unkuown, and in at least one case an overehot wheel has been operated by the water from such a well for more than twenty years, driving a colour-grinding mill and other
machinery. The subject calls to mind a similar use which has been proposed for natural gas in the early days of gas well development. TTh gas isuaed from many or the wells at tressures
of from 60 Ib. to 801bs per square inch, and it was thought quite possibls to use it, first in the cylinders of engines as a motive could be drawn afterward for heating. The gas in at least one of the districts was actually used in this way, being put directly into engines, and for a number of years gave apparently quite satisfactory results. One drawback to the method, however, resulted from the fact that the gas, as it issued from the wells,
carried with it more or less sand, which must have worked serions harm in the cylinders by cutting the walls and pistons.
1 Has previously received Telford and George Stephenson Medals and ${ }^{2}$ Has previously received a Telford Medal and Telford and Manby Has proviously received Telford Premiums.

VIEWS OF THE WORKS FOR THE REGULATION OF THE DANUBE

the table of trajan in the stratts of kazan

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER

ational News. Company, 83 and 85,
huane-stret.

CONTENTS.

TO CORRESPONDENTS.

BUBBCRIPTION

meetings next week

Roval Socrervy
day, June

THE ENGINEER.

JUNE 8, 1894.

the united states armour-plate scandal.
We have been favoured with a set of pamphlets and letters connected with the fines imposed on the Carnegie teel Company for tapering wivn ant. We plate say at once that, after all pleas have been urged, we do not see that Messrs. Carnegie have anything to complain not see that Messrs. Carnegie have anything to complain
of in the final decision of President Cleveland, that 10 per cent. of the price paid should be forfeited. At the same time, we confess to being rather puzzled at the way the various bearings of the question are regarded in the United States, and we think that our business reader will agree with us in concluding that the entire game is played under different rules from those which obtain in England.
Briefly,
Briefly, it may be said, if armour passes a certain minimum test, it is purchased at a given contract price A premium is offered for plates resisting the attack calcu lated as the match for armour of 25 per cent. greater intelligible, but the following is also stated:-"He [the manufacturer] is to use every endeavour, and incur all the expense necessary, to produce the most resisting and enduring plates ; and he is to regard the tests herein set forth merely as minimum limits of quality, which he is bound to excel, as much as practicable, by the use of all the means within the reach of his establishment." This we regard as an unbusiness-like and objectionable paragraph, such as a manufacturer would only agree to if he had confidence that it would not be used against him with its full meaning. For example, it appears that plates have been benefited by repeated treatment, involving, of course, extra expense. Can any one say that repeated treatment might not be enforced by words which specify that he is to incur "all the expense necessary to produce the most resisting and enduring plates?" Yet how can a man contract to make armour at a reasonable profit if he paragraph was not insisted on in this sense, but it was employed afterwards, and we think it a wrong weapon, although as we began by observing, no injury, in our judg. ment, was inflicted, for the verdict might have stood upo other and sound ground.
The circumstances which occurred were related in our article of April 13th last. The very searching system of watching the manufacture of armour and checking it in all stages was defeated, both as to samples tested and as to processes carried out, while in two cases plates selected by inspecting officers to be fired at were "re-treated, and their powers thereby improved, the evidence being furnished by a gang of workmen acting under the guidance of a Pittsburg attorney. Our object in recalling all this is to bring out the novel way in which each step is regarded by the United States authorities and others concerned. The first question seems to have been whether, on recovery of money from Messrs. Carnegie, the informants could legally be paid part of it. The Attorney
General decided in the affirmative on the following General decided in the affirmative on the forlowing original plea :- Your "inspection force "has clearly been
"inadequate," and these informants can be paid the money proposed as " watchmen," either "for inspectors wages or for detecive wh. that this is most uncesen. gentlemen will agree with us that this is most unnecessary. Surely it is more desirable in every way to say, "You
have done some dirty work, but useful work, and we acknowledge a claim for information offered, and pay it." acknowledge a claim for information offiered, and pay it in
There is nothing to be concealed or got over. Why, in There is nothing to be concealed or got over.
the name of all that is dignified, was it necessary to hunt up a plea for involving the Government in the unpleasant position of dealing with contractors by two systems of inspection at the same time? One consisting of officers acting for the Government, and purporting to be the only recognised and sufficient representatives; the other, men in Carnegie's pay, false workmen following the trade of irresponsible detectives, and using means that probably could not be traced. Can we conceive the English Government allowing of such relations with our manufacturers to be contemplated?
Next we come to the recommendations of a Board, of ability of this body of officers, bident. We pross of reasoning. They conclude that there is evidence that the company has shown the possibility of making armour of 20 per cent. better quality than the acceptance armour delivered, owing to fraud, is 15 per cent. worse than it might have been made, and consequently they recommend that 15 per cent. besides all premiums should be deducted, thus laying themselves open to a forcible rejoirder from Carnegie and Co., that by their own showing the plates were 5 per cent. better than the acceptance tests, and therefore ought to be fully paid for. They urge that the paragraph we noticed early in the article, which is quoted by Captain Sampson and
Board, could not be intended to be used as they use it, as an engine to raise the standard of acceptance, as they get better and better plates; for, say Messrs. Carnegie, if so "we have only to produce one plate pre-eminently
good to ruin ourselves irrevocably." Here again we think good to ruin ourselves irrevocably." Here again we think
we should have done better in England. We should have we should have done better in England. We should have
said "You have fraudulently violated the conditions of said "You have fraudulently violated the conditions of
the contract, and brought on yourselves the rejection the contract, and brought on yourselves the rejection
of your plates; however, if you prefer it, we will accept them at a price reduced by 15 per cent." We do not see what appeal could have been made against this. We may observe that Messrs. Carnegie put
forward bad arguments as well as good. For example, forward bad arguments as well as good. For example,
they tried to defend the re-treatment of selected plates on the plea that it was valuable to learn what was effected by such special treatment. To which the
United States officers naturally reply that such a plea
is idle when they were not consulted or told of it, and that it should have been a special experiment Undoubtedly this was the worst feature in the whol Uonduct of the business by Messrs. Carnegh. Chere their behalf, which, perhaps, they could hardly urge heir behalf, which, perhaps, they could hardly urge hevernment lay down conditions which admit of bein enforced so as to become very hard-if not impracticable nitiated into all the working of the plates to such an extent that they ought to per for learning manufacturing secrets as well as for their armour. We fancy that this seay are miven the secret treating of plates. One other feature should be noticed, namely, that while the fraudulent dealing was exercised to make airly or the in 0 . may conclude by observing that we are indebted to Mr Frick for very fairly supplying us with full correspondence on both sides of the question. We trust that he personall
anot have known of the fraudulent dealings which
not have known of the frauiatan what we waye said before, that they could not have gone on without the approval and direction of some one in high authority he approva's, and that the mere rcmoval of a manager from one department to another is no adequate treatment of the matter. Altogether, we admit that a standard excellence in armour, and in shot too, has been achieved in the United States, so high that we think their materiel may fairly challenge any in the world, and whatever we hope, we do not feel at all certain that it would be beaten, but we see much to avoid in the business transactions connected with its contract and delivery.

mechanical efficiency.

Professor Kennedy's presidential address, which has appeared in full in our columns, has apparently vexed the souls of numbers of electrical engineers. We are not surprised. Professor Kennedy is an engineer first, an lectrician afterwards. He possesses a great deal of the解 said things concerning electrical transmission and generation which are in no wise acceptable to those whose special avocation it is to design and construct transmission machinery. After all, the question is, he very properly points out, reducible to a matter of pounds, shillings, and pence. We fear that the fact is overlooked. It is possibleiency, and it is just as well that nigh mechanical eemers, and men of science, should have clear to them, that in mechanics at all events, the merits and demerits of things are usually reducible to pecuniary basis. Thus, for example, a steam engine ma be a far less efficient machine than a motor, but, never theless, the engine may cost less per annum in the long run, and so far it will be the better of the two. Professor Kennedy does not stand alone, Mr. Segundo read on Monday, the 4th instant, before the Society of Engineers, a paper on " Power Distribution by Electricity, Water, and Gas." He has no hesitation in stating that electricity stands low, and holds that hydraulic transmistion mus stand high as compared with it. No doubt exception will be taken to his utterances, but there they are, an they will need some ingenuity to refute them.
ission of power by electricity is really very the trans. mission of power by electricily is realy very thstruct At the first glance it will be seen that there is the strongest possibe prim Mr. Sello fo 0 Mr. Sellon, ic. Os to drive most employed to has and not the most econid with tirm nity with condensers, expected to run at a uniform speed Again the efficien of a cent, that of a motor ot 90 per cent, that of the engin at 90 per cent. The difference between the indicated horse-power and the dynamometric horse power, assumin the former to be 100 , will be 10 ; that is to say, 100 indicated will give 90 dymametric. The electrical power will be 85.5 , and the motor will give out $76 \cdot 95$-hors power. The unknown element is the energy expended in overcoming the resistance of the wire. In workshops an places where the wire is short, the loss must be smal It ought to be possible to reckon on getting 70 indicate horse-power out of the motor for every 100 indicated horse-power developed by the engine. If the engine managed with 2 lb . of coal per hour, the motor could get on with about 2.86 lb . This would be an eminently satisfactory we have a very high efficiency. The efficiency of the whole ought to be high, but as a matter of practical fact it is not high ; on the contrary, it is very low. Professo Kennedy gives it at fittle more than hall what we have stated above. Sometimes, indeed, the realised work is not one-third of the indicated horse-power, and that costs much, very much, more for coal than 21 b an hour. Working on a somewhat different basis Mr. Segundo has arrived at the result that Board of Trade unit, that is to say, a kilowatt hour should be supplied for $2: 86 \mathrm{lb}$. of coal. But a kilo watt hour represents 134 horse-power, a more favour able result than we bave ventured to suggest a possible. The way in which Mr. Segundo has arrived at these igures will serve to illustrate the erroneous method of estimation in use. He states that he has been told and certain boilers evaponate over 12 lb . of water from and at 212 deg. per pound of coal. This may or may do netrue. As a 212 d do not evaporate at 212 deg., seeing hat $h 12$ pres sure is 180 lb .; nor do they get their feed at 212 deg . bu aro deg., which is the maxim. economisers in the fiues wil give. But, indeed, as we link is weak. The rines, instend of bing work after
that constant load which is essential to economy, run under various loads. The friction of an engine is very an engine indicating 1000 -horse power, it will be 20 per cent. when the engine indicates 500 -horse power. As for the dynamos, 95 per cent. efficiency is quite possible in the laboratory; it is not possible from year's end to year's
end in daily work. As for motor efficiency, that must be an exceedingly variable quantity. On an electric tram line, for example, it is certain that there is nothing like
harmony among the results obtained from the different harmony among the results obtained from the different
cars; so with the line, and the trolley, and all the rest cars; so with the line, and the trolley, and all the rest
of it. These things should always be borne in mind. They are constantly forgotten or pushed out of sight.
Professor Kennedy will not suffer them to be hidden, that is the head and front of his offending
To do some electricians strict justice, they admit the substantial accuracy of views such as those we have just expressed, but they none the less hold that such men as Professor Kennedy and Mr. Segundo are pessimists. What they say is perhaps true; but wait a little. Like the tra-
ditional stage bandit, the electricians stamp their feet, and ditional stage bandit, the electricians stamp their feet, and mills and workshops ; and they say, "If these are so good, what may not be possible in the way of improvement?" The answer seems to be, Very little; and for the simple
reason that it is almost impossible to say where the imreason that it is almost impossible to say where the im-
provement is to be effected. The engine builder is quite provement is to be effected. The engine buil engines. If we apply to any firm making dynamos, they will give
machines which are so near perfect efficiency that machines which are so near perfect efficiency that upon. Messrs. Siemens, Ferranti, Mordey, Kapp, and If we go to cable makers, they leave us in no doubt that perfection in cables has been reached. The same may be said of motors. All the different parts, members, or as possible perfect. But the combination breaks down. How is this to be mended? That seems to us to be the problem to which attention should be directed. Unless ment must remain unrefuted.

china and her progress.

When the Chinese, a quarter of a century ago, tore up the rails of the little Woosung railway, they furnished an example to the world at large of being the only people It is not that other nations and other people have not resented and opposed, even vi et armis, the intrusion of
aliens wiser and more enlightened than themselves, but aliens wiser and more enlightened than themselves, but
their hostility resulted from causes totally different from those which, it will be seen as we proceed,
actuated the denizens of the celestial empire. In fact, the majority of nations-with the exception of our own-who are free to express their opinions, not
unnaturally view with feelings not altogether of a unnaturally view with feelings not altogether of a
fraternal character the influx of strangers foreign to them in speech, physiognomy, habits, and manners. Divide
two nations by a hemisphere, and it is not difficult to perceive how the complications of the situation become accentuated. There are a few in China, a very few, who
are wiser, a very little wiser, than their predecessors of are wiser, a very little wiser, than their predecessors of
the bygone twenty-five years; but still at the present day, the country of old Cathay, whose epoch fabulous in its antiquity, in spite of peaceful, war-
like, and scientific expeditions, remains almost a terra incognita to the rest of the world. The progress of a country of the enormous extent and population of China, readers, cannot fail to possess interest for them, nor is the subject, in a general point of view, devoid of a certain amount of attraction. Isolated, petrified, fossilised in a matrix of its own arrogance, exclusiveness, and superstition, this people, to whom historians and statisticians assign a minimum census of four hundred millions, not
including the Thibetans, their ancient and extramural foes the Tartars, nor other independent Mongolian races, has remained until yesterday a nation sui generis in every essential characteristic.
The difference between the civilisation of the Eastwhich some, perhaps, may hesitate to acknowledge-and standpoint, which is a pretty correct one, remained, and but for external interference and pressure would probably always remain, stationary, while the letter has always
been, and is daily, progressive. Those who are inclined to chafe at the tardy adoption by Orientals of the results will receive, should not forget the difficulties we have ourselves experienced. How often has our own onward current been impeded, checked, and thwarted, although, providentially, the bed of the channel has never been so completely choked, or so hopelessly silted up, as to render
impossible future navigation! In comparing the advance impossible future navigation! In comparing the advance
of Western civilisation in our own Indian Empire with that of China, it must be borne in mind that we conquered that country, vast as it is, by the sword, and by
the sword we hold it. It is very different with China. In the interests of international trade, commerce, and frequently of humanity itself, we, in common with other great European Powers, have insisted upon certain con-
cessions which were at first refused, and subsequently wrung from the Government of Pekin by the only means it could be brought to recognise, that is, force. Hence the opening of the twenty.two treaty ports, and the merchandise to and from certain parts of the coast. As a nation-and herein lies the obstacle which for the present is well nigh insuperable-the Chinese do not
recognise the superiority of the civilisation of the West over their own, sacred to them and engrained in them for centuries upon centuries. Consequently, they regard,
so far as the mass of the people is concerned, the adop-
tion of any of the most prominent, useful, and scientific results of our civilisation, such as railways, telegraphs, and steam machinery, not as an improvement on thei part, but as an absolute retrogression. The old Roman phrase, "Tempora mutantur et nos mutamur in illis,
or the pithy equivalent French rendering, "Autres temps, or the pithy equivalent French rendering, "Autres temps, autres mours," is not applicable to the sons of
flowery land. We are still the barbarians, the foreign devils, although, as will be seen, not quite to the exten we were.
It is barely thirty-five years since the signing of the treaty of Tientsin broke through the greater wall which had for ages excluded China from the rest of the world and it is but fair to state that its progress since tha period, as we understand the term in a scientific and
engineering point of view, has been both considerable and engineering point of view, has been both considerable and
rapid. In our impression of March 2nd we drew attenrapid. In our impression of March 2nd we drew atten-
tion to the opening of the railway from Tientsin to Shan-Hai-Kwan, which is a gratifying assurance, it is to be hoped, that the Woosung raid will not be repeated The same subject was again alluded to in our columns new railway bridge over the Lan-Ho. Taking Tientsin new railway bridge over tie Lrom the capital, as the
which is eighty-five miles from starting-point of the future railway system, and remarking that it is connected by rail with its port Takur, on the Gulf of Pectchelee, a length of twenty-five miles, there is at present, it is stated, in construction a line which has for its object the union of Tientsin with Kirin, in Man churia. Of this route, ninety-four miles are in the hand mileage bela Railway Company, and the remainin that while acknowledging at last the expediency of adopt ing steam locomotion, the Chinese Government evidentl intends, and we do not say unwisely, to retain under it own control the management of the new lines, irrespec tively of the conditions which have brought about their construction. The financial success of the undertaking launched under such auspices is a little doubtful, and no altogether likely to lead to any general development by private means of the railway system. Strategical reasons no doubt, count for a good deal in the fature extension of railways in China, as they have done with ourselves in
India, but the building and maintenance of lines of thi description do not hold out any very great inducement to the capitalist and the shareholder.
The Chinese are a people who, as a rule, have deal lenderly with mother earth, and if it be humiliation to us not to have penetrated deeper than about half a mile into the terrestrial crust, their feelings ought to be of a very abject character. In their tin mines in the Malay
Peninsula and in Dutch Settlements, they Peninsula and in Dutch Settlements, they rarely work the ore beyond comparatively a very shallow depth,
and their superstition exacts from the European visitor the penalty of walking in his socks over certain portion of the mine he wishes to inspect, furling his umbrella and adopting other precautions not to "frighten the or away. Their prejuate is strong against tunnels, as the subterranean operations would seriously provoke, no doub to their own detriment, he greal drag Sin resides in dislike to the bline himarly, their aisize to telegraph ines, which is by no means 0 ers in th dominions of the aërial genii, and the jealousy with which they guard their cemeteries is well known to those who have lived among them, and have had the misfortune to interfere with them. Part of this reverence for the relics of the dead, which is common to all nations, ma which is a markd and formbit in the and one which they fulfil at almost any personal sarifice and one which When a
Wractically secluded numerous as the Chinese, hitherto itself compulsorily brought into communication with it, the necessity of acquiring a knowledge of the mor widely used languages outside its own country becomes imperative, and a college for this purpose exists at Pekin. Athe capital, as well as in other towns, schools have tion in the different branches of learned and practica professions, and generally in the arts of war and peace. The example set so prominently before them by the great European nations has not been disregarded by the Chinese, and their attention has recently been directe and navy. With the assistance of foreign officers, a large portion of the military forces has been armed and trained according to the European standard, and it is calcu cavalry, the Emperor could bring indo artillery and million of men. With a coast line extending over a nearly thirty degrees of latitude, it is not surprising that the state of the navy should be regarded consideration as that accorded to the land forces. It present fleet may be said to be divided into two divisions, the one to cruise in its northern, and the other in its southern waters. Of these, the former consists of a couple of ironclads, of between 7000 tons and 8000 tons each, a dozen cruisers averaging 1800 tons, eight or nine other diva and the same number of smaller craft. The of that number fleet being manned by about 28,000 men. It is probable that the spirits of the air have been conciliated, for it appears that very recently the basis of a Russo-Chinese agreement for the establishment of telegraphic commuupon. A great difficulty had to be overcome in connection with this enterprise, which was to render the almost monosyllabic language of the Chinese amenable to the requirements of electric transmission. This task has, vernacul, been successfully achieved, and the oriental Liberty of the Press, as might be anticipated, does not exist in China proper, that is, in any district governed by
native officials; and it may be asked where does it exist as we understand the phrase, except in England and America? It is gratifying to learn from an independent
source, that nearly three-quarters of the whole trade source, that nearly three-quarters of the who carried on at the Treaty Ports is in the hands our carried on
Within the last few years that " first step," which cost so much, of attempting to emancipate China from the trammel of its own torpid civilisati and, in spite of the drawbacks and she has responded to the call, and a corresponding pro improbable that she will ever again go back to her old state, for it must be borne in mind that in everything the Chinaman is the most imitative of man kind, and, provided his prejudices are not too violently kind, and, provided his prejudices are not too violently
assailed, he can, and will, do anything if he is fairly remunerated for it.

mr. maxim's cuirass.

On Friday, June 1st, a large number of officers and civilians responded to Mr. Maxim's invitation to see a cuirass of his
tested at Erith. In a letter to the Times Mr. Maxim state that, "jealous" of Herr Dowe's success, he had at 11 o'clock half-past 12 the experimental stage had been passed," and he had then seriously commenced to construct a cuirass of his own "with a certain combination of organic and inorganic
materials " weight 10 lb., thickness 1 tin. He undertook t materials;" weight 10 lb, thickness $1 \frac{1}{2 i n}$. He undertook to
rival Herr Dowe's cuirass with one weighing 6 lb . only. He added that Herr Dowe was said to ask $£ 200,000$ for his secret whereas Mr. Maxim would divulge his for 7s. 6d., whic in the village of Erith." Everyone interested in the subject was invited to bring their own rifles and ammunition, espe cially Mr. Lowe, who was authorised to see that the experiments were conducted in exactly the same manner as those by this announcement was that Mr. Maxim had arrived at some means of stopping bullets so simple and obvious that
secret could hardly be made of it the inference being the perhaps Herr Dowe's was more or less similar. The tha perhaps Herr Dowe's was more or less similar. The tone of
the letter naturally prepared visitors for something in the nature of a surprise, though hardly for one in the particular shape which awaited them. After exhibiting some Maxim guns made for the Sultan of Turkey, the trial of the cuirass took place. It was hung from the neck of an absurd-looking dummy with long white hair, and a look of bland expectancy in his face, who shouldered an umbrella and was supported
by props against the sand cliff built behind him. The shiel by props against the sand cliff built behind him. The shield a steel plate 3in. thick. Mr. Maxim fired five bullets through the latter, and two at the shield on the dummy figure, whose hat and wig fell off. The steel plate was then shown to have ive holes in it, while the shield had stopped the two bullets. had laboured sleeplessly for an hour and a-half to make his shield, which he had sold, according to his offer, to the owne of the Aquarium, and therefore that he was unable to
continue firing at it, but that he would allow any of the musketry officers or others to fire the service ammunition o any other they had brought with them, at a second shield of
the same material, of which he was happily able to find small piece. He then produced a thin plate of steel.
Some visitors, especially Cuptain officers who expected to fire the service rifle at the
shield, denounced the whole affair as a fraud, and went angrily. Mr. Maxim then expressed regret that this vie should be taken of his exhibition. He said that he was certainly not debarred from using steel if it answered the purpose. There was, however, a feeling among the visitors that they
had been imposed on by "a sort of Barnum dodge." In our udgment, it is greatly to be regretted that Mr. Maxim acted a he did, and we think it damaged him in the eyes of the public see his battery of guns, and that he got written about in the papers. The loss was that he conveyed the general impression in he was an unblushing exhibitor of American bunkumagain collect an assembly such as were gathered on Frida last. Many people greatly dislike feeling that they are made puffing or boasting, it is difficult to get any credit accorded to him that he actually deserves. Mr. Maxim's explanation in the Times of June 4th makes matters worse. He commits tain stee The was not at the trial. We have had a bullet shown to us as one that has been set up on the cuirass, and it is distinctly unlike any or steel. It is have ever seen set up by impact against iron protrudes. Not pretending to the profound knowlede that extends to all undiscovered possibilitios, we decline to discredit Herr Dowe and Captain Martin, and protest against the language used by Mr. Maxim as a gratuitous insult to the trial, who Mr. Maxim pretty nearly calls fools, and something worse, for he says that he could not have allowed any unknown ammunition to be fired at his shield, because it we re have contained a " hardened steel projectile." It is, should have been discredited by something worse than bad taste. Putting the comic and offensive elements aside, however, and only looking at Friday's trial in its scientific The shield, so far as we had the opportunity of examining it and hearing about it, consisted of a nickel steel plate specially hardened, with a mock leather face stretched about an inch in front of it. Apparently it also convaluable fact is leather and aratively no significance. The steel can be so treated as to stop bullets which will per forate an ordinary sin. steel plate. The weight of armour that will stop point to consider. The lightest it, the best kind, though bulk no doubt is an the face of steel can be so treated bulk no doubt is also important. I these two respects, then steel sat all other materials in that offers itself. The remarkable feature in the Dowe cuirass was that something said not to be metal of any kind appeared to beat steel weight for weight. Apparently Mr. Maxim which has been resisting steel projectiles admirably on a large
against ordinary bullets, and so completely beat the cuirasses
of ordinary steel hitherto tried. We have in our possession a cuirass of Cronwelirs time which has stopped a bullet of measures 14 in . from throat to waist and 18 in . across from under one arm to the other, 10 gin. between the arms, and it weighs just over 8 ll 1 lb . It seems to be good steel, but a
modern bullet would doubtless perforate it very easily. Mr Maxim's nickel steel would probably admit of a cuirass of this size and weight being made completely bullet-proof, for Ir. Maxim is correct in the statement of the reduction he could ffect in weight, there would be a considerable margin ove and above what is necessary. Lastly, we may consider the shook of the blow on a living man wearing the cuirass. As we
noticed in the case of Herr Dowe's trial, the living man can noticed in the case of Herr Dowe's trial, the living man can standup almost without motion against the blow of impact in a
12 lb . cuirass. As the weight is reduced the shock is felt more. With a service bunde weighing 215 grains and a velocity of 200 foot-seconds, the striking energy is equal
to 12 lb . falling through 6 ni., or 6 lb . through 12 in. This jar is not quite pleasant, perhaps, but it is distributed
and is very endurable, and it saves the man's life. We are not, however, contemplating body armour proper so much as
mantlets, whether of Herr Dowe's material or hardened nickel steel pure and simple. No doubt more will be done in this direction. Three or four years ago Holtzer had made a considerable number of chrome stee breast plates to resist
the Gras bullet, but metal has been greatly improved in quality since then.

THE P. and o. steamship fleet

The change in the character of our steamships is well shown in the report which the directors of the Peninsular
and Oriental Steam Navigation Company have just placed and Oriental Steam Navigation Company have just placed seea. That great ocean-carrying corporation has now yity
steark, as well as four building, and twenty-two steam tugs and launches. But it is not the number of the vessels so much as the class and the tonnage that marks the
alteration. If we refer to the year 1887, we shall find that the tonnage owned was then 194,000 ; now it is 213,000 tons but the contrast is more marked if the comparison be carried back a little later. Looking to the fleet as given in the report
nearly fifty years ago, we find that the largest vessel then nearly fitty years ago, we find that the largest vessel then
was one of 1800 tons, and of 520 -horse power; now the largest vessel is the Australia, of 6901 tons, and of 10,000 horse power effective, whilst the Caledonia, just launched, will make a still further increase both in size and power.
Putting aside the tugs and launches, the smallest of the present fleet is 2622 tons; and the average size is about 4223 tons, but the average will be improved when the four vessels
building are added to the fleet at work. These four, including the Caledonia, to which we have referred as just launched are of 23,300 tons in the total, so that they are considerably
above the average of the working fleet, the smallest three being 4500 tons. The whole course of the shipping very naturally there has been alteration in extent in and in average size of the steamships in the premier fleet.
The change is marvellous; but it is one that needs to be maintained, for we have now a great and growing rivalry in that branch of work in which the Peninsular and Oriental Steam Navigation Company has been prominent-
the carriage of the mails. There are no signs of a cessation of that rivalry, but rather an increase, so that it may be anticipated that the alteration in the size and that for years to come there will be a marked tenden the use of greater power in larger steamers in this the premier mercantile fleet.
the critical state of the coal trade,
The position of affiairs in the coal trade has now assumed critical phase. Though not in actual conflict, the Midland
counties- the backbone of the Miners' Federation of Great Britain-are looking on with no small anxiety to what is going on in the Scotch districts, and on a smaller
scale in Somersetshire, on the borders of the Federation area. scale in Somersetshire, on the borders of the Federation area.
The natural complications are evidently recurring, and解 rea of that organisation, it is seen that in the less powerful districts the trade is in a serious state consequent upon these owners being unable to compete with the more advan-
tageously situated counties in the Midlands. But the principle is to apply all round, and a minimum wage is to be maintained. Though this on the face of it may have been anforced, the pinch has been felt by a reduced number of to be associated with the Miners' Federation, viewing the coming difficulties. But it is the Scotch trouble which causes the greater anxiety, and the failures there to get together the
miners in a united force are certainly ominous signs. The miners in a united force are certainly ominous signs. The scotch miners have been called upon to obey the mandate th
the Miners' Federation of no reduction. But what will the response be ? Possibly the federated miners may deciae to paratively small. The influences at work in Scotland will in all probability in their turn affect the English districts with whom the Scotch owners compete keenly in some markets. The Miners' Federation in their conference at
Carlisle promised help, but Mr. Weir, the Scotch miners secretary, put the situation clearly when he asked the men not to expect cartloads of gold from England. The present state of the English coal trade practically answers that of estion, for in addition to the present depression, the effects disappeared. True, the Board of Conciliation, it is assumed will be a peaceful factor, at any rate until November, in the English districts, and this to consumers is, at all events, some assurance of stability in the trade of the Midland district
The situation is admittedly grave. It brings to the front a weighty and difficuit point for consideration. Can the Scoteh reduction be resisted

the american coal war.

The United States, like our own country, is rarely without a strike of some sort. Now it is the turn of the American coal trade of Great Britain. Prior to the abnormally large Altantic liners, it was the custom of the shipowners to
take sufficient coal on board at Liverpool to last for the round journey. But when the floating p palaces became so
huge as to require tremendous weights of fuel, the management of the different lines found it more convenient to re
coal at New York for the homeward journey. Through the scarcity of fuel in the States, the shipowners are now revert-
ing to their old practice of taking with them from the Mersey upplies sufficient to bring the shipaf pack again. Severa companies in other parts are also sending out stocks for
vessels that trade along the American coast. The effect, of vessels that trade along the American coast. The effect, of
course, is to impart a stimulus in some parts of the Welsh course, is to impart a stimulus in some parts of the Welsh
and English coal distriets. Several American gas companies, who are large consumers of coal, are also laying in heavy supplies lest they should be brought too near the working The American coalfield now practically idie, and Camberland. In Virginia the mines are worked by
and negroes, and in Cumberland by white men. New York requires weekly 50,000 tons of bituminous coal. Of that
amount the Virginia and Cumberland mines, by working amount, the Virginia and Cumberland mines, by working his country mainly cannel coal from the western district of this country, mainly cannel coal from the western district of
Scotland. As the strike in America has sent up prices 100 por cent. within a month, and freights across the Atlantic are per cent. within a month, and freights accoss can be delivered even with a duty of 75 cents per ton upon it, in the United tates market at a profit. The American Government ar while the strike lasts. If they do so, a brisk business wil spring up between the old country and the new. But what would have been thought in England if during the late coal strike our Government had offered to foreign coalowners a
subsidy of 3 s . 1 td. per ton on all coal brought into this subsidy of 3 s . 1 d. per ton on all coal brought into this
country? What would the labour leaders not have said? et this is practically what is reported to be in the mind o he Government of "Triumphant Demooracy."

LITERATURE

Systems of Car-Lighting. New York: Engineering News Publishing Company. 1892.
THE complete title of this volume is "The Comparative Merits of Various Systems of Car-Lighting : an Investi gation of the Comparative Cost, Safety, Light-giving Carburetters, The authors are Messrs. Welling end Baker, editor of the Engineering News, and Mr. Penniman, chemist to the Baltimore and Ohio Railroad. The treatise is a revised reprint of a series of articles which appeared in the paper, describing a series of tests made on the several systems. The makers of the various appliances had the opportunity allowed them of stating their own views, and as to which is the best system expression of any opind as to which is the best system, leaving that to the reader. The perol compor records specially made by Mr. Penniman with Dibdin's dial photometric apparatus.
The Frost dry carburetter plant, by which gasoline is vaporised in a chamber placed above the lamp, and air passed over a series of wicks steeped in gaso system is also in use in private houses and hotels. From table we find that 450 cars of the Pennsylvania Railroad Co are supplied with the apparatus, and a total of 866 cars have been fitted, of which nine-tenths came into use during the two years preceding 1892. The authors deal fairly with the reader, and after pointing out the advantages of the system, add accounts of accidents caused b the apparatus. The Pintsch gas system is then dealt with, and the authors appear to have derived most o their information from British sources, as they quote freely from papers by Mr. Hunter and by Mr. Ayres, printed in the "Proceedings of the Insticution and well illustrated. Notwithstanding the advances made in car lighting, it is stated that out of 30,000 cars now running on passenger trains in the United States, at leas Alludinghted by oil-lamps.
Alluding to the use of oil of low flashing, point, or as that formerly oil of specific gravity 50 deg. Beaumé, firing at 150 deg . Fah., and giving off inflammable vapour at 110 deg . Fe was used, but now the laws of many State equire the use of oil with a flashing point of 300 deg , Fah. on passenger cars. The use of the lighter oil is, o course, very dangerous indeed. The specincation of the Pennsylvania Rairroad co., which is given in all, sot sot if it flashes below 249 deg . Fah., or burns below 298 deg. Fah The method of testing employed by the company appears to be very crude ; the oil is placed in an open porcelain dish, placed in a small iron cup sand-bath, and heated over a Bunsen flame. A small test flame at the end of a glass tube is used, and, in our opinion, the results must be very unsatisfactory and untrustworthy. Why the Abe guired is that the oil shall not become cloudy when the sample has been ten minutes at a temperature of 32 deg sampl
Fah.
Ele

Electric lighting appears so far to have found little avour in the States, in fact the use of secondary batteries has been so far avoided as much as possible. Details are authors the English and continental pracination whic appears to give satisfaction in Europe is not considered at all adequate in America. The Pullman Car Company has made the greatest use of electricity so far. The authors say it must be admitted that "the use of the electric light is hardly advisable at present for any rail way which is not willing to go down deep into its pocket to pay for the luxury. Uur own opinion is that one or the chief difficulties in the matter is to get a secondary rains coupler. The lighting of block trains, that is to say, trains in which the coaches are never separated, is easy but when it is necessary frequently to divide trains, and when coaches must remain standing on sidings for long periods, the mater is a valuable little work, inasmuch as, besides
the original matter it contains, there is also a collection of data from various other sources

Electricity and Magnetism. By S. R. Bortone. Lond n
Whittaker and Company. 1893.
The author has not endeavoured to write a text-book, but states that his object is to present an easy and attractive stroduction to the sciences of electricity and magnetism. His desire has been to awaken a wish for further infornation. The expression of such a desire places the ritic in a somewhat awkward predicament, as, abserve a lack of information, he mhe, was intentional As is usual in all such books, we are taken first, in the sirit, to Asia Minor, to Magnesia-the land of the lode. stone-and, after this initiation, begin our examination of the properties of magnets. We then pass into the realm of pith-balls and influence machines. The latter part of the book is of the most value, and we are glad to see that the author has not thought it necessary to burden the work with descriptions of all kinds of cells, but has rations represent current types, and descriptions of induction coils and other apparatus are given.
We suppose there must be a demand for introductory works on electricity or they would not find publishers, but the number now in the market appears somewhat xcessive. If other branches of knowledge wore other interests, ind deflect part of the stream of would-be electricians, which now seems to flow so strongly

BOOKS RECEIVED.

Railray Policy in India. By Horace Bell, M. Inst. C.E. Practical Hints on the Construction and Working of Regenerator
Furnacs. Being an elementary
of lanatory treatise on the system of gaseous firing applicable to horizontal and inclined retort settings
gas-works. By Maurice Grabam, Assoc. M. Inst. C.E. London: Eand F. N. Spon. 1894.
The Metallurgy of Gold. By T. Kirk Rose, B.Sc. Being one of Royal Scbool of Mines. Edited by Professor W. W. C. Roberts.Austen, Grifin and Company. 1894.
Curtice's Index to "The Times," the London Morning and Evening
Papers, One Hundred and Turenty Weeklies, and Thiry-pone Prom rincial Nerspapers, July 1 lst to September '3oth, 1893. London:
Printed and published by Edward Cortice, and of Romeike and Curtice's Press Catting Agency.
An Analysis of the Acoounts of the Principal Gas Undertakings in ifth jear of publication. Compiled and arranged by John W.
Field. London may be had of Eden, Fisher, and Company, or of the Compiler, Horseferty y-road, Westminster, s.W. Year-book of the Scientific and Learned Socicties of Great Britain
and Ireland. Comprising lists of the papers read during 1893 before ocieties engaged in fourteen departments of research, with the names of their authors. Compilod from official sources. Elev.
annual issue. London: Charles Grifin and Company. 1894. Cotton Manufacture. A manual of practical instruction in the
processes of opening, carding, combing, drawing, doubling, and processes of opening, carding, combing, drawing, doubling, and
spining of ootton, and the methods of dyeing and preparing goods
for the market. For the use of operatives, overlookera, and manuor the market. For the use of operatives, overliookers, and manu-
acturers. By John Lister. With numerous illustrations. London: facturers. By John Lister. With n
Crosby Lockwood and Son. 1894.

Japanese War Vessels.-After some seven years' consideration n the part of the Imperial Japanese Government respecting the place both in this country, one with the Thames Ironworks and Shipbuilding Company, London, and a second one with Messrs.
Sir W. Armstrong and Co., Newcastle. The original inquiry was or an improved Collingwood, but the displacement tonnage was to be limited to 8000 tons, and seeing it was difficult to improve on a
Collingwood with 1500 tons less weight, the necessity of a larger tonnage soon became evident, and a limit was then given of 10,500 tons, or a Centurion type, but as it was required to carry a heavier
armament than that vessel, a still larger tonnage became necessary, resulting in a vessel of 12,250 tons, and of the Royal Sovereign
type. A commission has been appointed, and they have visited type. A commission has been appointed, and they have visited
the most important shipbuilding establishments, both on the Con tinent and in America, in which latter country they have inspected the manufacture of the Harvey system of casehardening armour
plates, which method has been adopted and improved upon with and by Messre in this country, boy divide the mmell and Co viding the armour for these vessels. It speaks well for the two have been invited to tender for these vessels, though the Japanese Government have had large experience, both in this country, in the greatest pressure was exerted in Tokio to obtain permission
for Continental firms to tender, such permission was refused. The Thames Ironworks have built for the Englisb Admiralty in all
fourteen vessels of the collective connage of 80,000 tons. Tbe Fuji Yama, after a celebrated mountain in Japan, and the follow-
 $26 \mathrm{ft} .6 \mathrm{in} . ;$ displacement, 12,250 tons; coals at this draught 700 tons:
total capacity 1100 tons ; armour belt, 226 ft . long, 18 in . through
machinery and boiler spaces, 16 in . at ends ; two barbettes, armourplated with 14 in , armour, each carrying two 12 in , breech-loading guns, ten 6in. quick-firing guns in casemates, fourteen 3-pounde
Hotchkiss quick-firing guns, ten 21 -pounder Hotchkiss quick-firin guns, and quix torpedo ejectors. The armour deck extending from
stem to stem is 2 in. thick, and terminates in a powerful ram at fore end. The decks to be cf teak. Two military masts wit
double tops, with derricks for ift'ng the boats in and out off ski beam. Thirrteen boatstin all are to be carried, including two 56 ft
vidette boats, Navy pattern ; five search lights, and the whole of vidette boats, Navy pattern ; five search lights, and the whole o
the vessel to be lighted internally by electricity. The engines
which are to be triple-expansion of 14, 000 -horse power, will be which are to
constrncted by Messrs. Humphrys, Tennant, and Co., of Deptford
the boilers being of the usual cylindrical type, and the tubes pro the boilers being of the usual cylindrical type, and the tubes pr
tected by Messrs. Humphrys' patent ferrules. Speed 18 knots.

INTERIOR OF BURTON-ON-TRENT ELECTRIC LIGHT WORKS

messrs. John fowler and co., leeds, engineers

THE BURTON.ON-TRENT ELECTRIC LIGHT WORKS.
On Friday last a large assembly gathered in the new electric generating station of the Burton-on-Trent Corporamachinery and engines and boilers by Messrs. John Fowler and Co., Leeds. By the Burton-on-Trent Electric Lighting Order, 1890, powers were granted to the Corporation to lay down works for the supply of electricity from a central station. The Electric Lighting Committee inspected the leading elecrricity works in the United Kingdom, and obtained competitive tenders. The Town Council having adopted the report of the committee and obtained tenders for the buildings and
plant, the specifications were examined and amplified by the plant, the specifications were examined and amplified by the
borough electrical engineer, and final tenders invited, with the result that the whole contract, with the exception of the buildings, were let to Messrs. John Fowler and Co. and Messrs. Hammond and Co., the latter afterwards retiring from the contract by permission of the Corporation, and Mr. Hammond becoming the consulting electrical engineer. The high-pressure - 2000 volts-alternating current transformer system of supply at constant pressure to transformers fixed in suitable positions in street boxes on the route of the
high-tension mains, has been adopted, feeding on to the low pressure-100 volts-cables for private supply.
The buildings are on a site adjoining the Corporation gas works, and the gas lighting and electric lighting committees work together. The buildings comprise engine and boiler houses, test room, \&c., carefully designed for the most efficient and economical working of the station and for ease of supervision. A large piece of land is available for extensions as necessity demands.
The engine-room is 60 ft . long by 63 ft . wide. The plant at present installed consists of three 125 -horse power engines, supplying electricity for about 60008 -candle power lamps supplying electricity for about 60008 -candle power lamps
fixed on consumers' premises, with one plant in reserve. red on consumers premises, with one plant in reserve
Engines. - The type of engine selected is, as shown in our
ngravings, that known as the horizontal, coupled, compound, non-condensing, the sizes adopted being considered suitable units to work in sections, having regard to the varying load. The speed of the engines is 90 revolutions per minute, and the ordinary working load 125 indicated horse-power, at a steam pressure of 95 lb . per square inch, but the engine is capable, by increasing the steam pressure, of giving a much automatic cut-off gear controlled by the governor. The chief dimensions of the engines are :-High-pressure cylinder, 14in. diameter: low-pressure cylinder, 24in. diameter; stroke 24 in . The fly-wheels are 12 ft . in diameter, grooved for seven $1 \frac{1}{2}$ in. ropes, Another point in these engines
worthy of note is the massive character of the bedplates. The annexed diagrams are from one pair of the engines, all The annexed diagrams are from one pair of the engines, all
of which give similar diagrams. They are taken with 40 lb . of which give similar diagrams. They are taken with 40lb.
and 16 lb . springs respectively, and are reduced in size about one-seventh. The engines are of thoroughly good design throughout, and justify the expectation that they would run continuously any length of time, even on the leaden unrelieved oad of a dynamo

Alternators.-Three 66-kilowatt alternators are of the Leeds and London type-Hall's patents-manufactured by Messrs. John Fowler and Co. The electrical working pressure is 2000 volts, at a speed of 450 revolutions per minute. Al ise or run in parallel with been constructed to synchron field magnet and armature conductors do not loads. The than 2000 ampères per square inch of section, thus allowing a good working margin. The terminals to which the high tension mains are connected are boxed in by hard wood lagging, so that they cannot be touched except by the proper
officials. The exciters for these alternators are driven by ropes from grooved pulleys on the alternator shafts, and can just be seen in our engravings. They are each of ample size the corresponding alternator at full load. The alter nators are provided with slide rails, by which they can be moved to regulate the tension on the ropes. The magnets are the rotating part, and consist of laminated horseshoe stampings, built up overlapping - alternately
 at the boss by means of keys and set-screws, Mannets at the boss by means of keys and set-screws. Magnets
so constructed give, as our electrical readers are aware the maximum efficiency for the energy expended in magnetising them, partly owing to the quality of the iron, and partly owing to eddy currents, which would cause energy to be dissipated in them if they were solid, due to the armature reaction. The armature being stationary, lends itself for sectional construction, and as this is built up of laminated charcoal iron sheets with short polar projections, each section be removed for inspection or repairs without interfering with any other part of the machine. The armature coil is insulated from the armature core, this is then again insulated from the frame of the machine, thus giving a double insulation between the conductor and frame or earth. The main terminals being mounted upon porcelain insulators, and enclosed in the wood lagging, make it impossible for personal contact with the high-pressure conductors.
Switchboard.-The switchboard, of enamelled slate, on which are arranged the most recent appliances for controlling the circuits and maintaining a constant voltage, was constructed under the Lowrie-Hall patents by Messrs. John tricity works at Madrid, Leeds, Brighton that of the elecBrompton, Halifax, \&c. It also includes the special apparatus known as a synchronising board, which is necessary when alternators are run in parallel, or when the load is changed over from one alternator to another. The alternating plant, however, is designed so that it may run continuously in parallel, as by so doing great economy and steadiness is effected. The trenches containing the cables from the exciters and alternators and from the main circuits lead into in which the connections from cables to space is provided connections on the switchbord inspected. At the same time it is perfectly isoled safely for the proper officials. A test room is provided in the building.

Boiler house. -This is 60 ft . long by 45 ft . wide, and in it are placed at present three Lancashire boilers, each 26 ft . long by

THE TWIN-SCREW STEAMER ST. PETERSBURG

7 ft . diameter, constructed for a working pressure of 100 lb . per square inch, with ample spare space for further boilers these boilers ine required. The fittings and mountings on arrangements for burning the coke dust and rubbish from the gasworks, coke screenings, coke and coal slack. Each boiler is fitted with the bars dipping in a water tank, and one fan provides the blast for all. Three feed-water heaters are also provided. By these the exhaust steam is utilised to raise the temperature of the
fuel. No condensers are used fuel. No condensers are used.
rendered necessary.-A very simple arrangement of the pipes rendered necessary by so many auxiliary parts of the plant,
including all the requisite pipes to and from the engines feed-water heaters, pumps, tanks, \&c., has been neatly worked out. An auxiliary steam pipe is provided for supplying the pumps and stoker engine, independently of the main steam
pipe. The donkey pumps for feeding the boilers are of the pipe. The donkey pumps for feeding the boilers are of the
duplex ram type, each of sufficient capacity to feed two boilers when working at their full power. The main steam pipes are connected up in the form of a ring, to which both two ways by which the engines can be supplied with steam, so guarding against the possibility of break-down of the running of the engines, should any portion of the steam range give way or be under repair. These pipes are provided with
a suitable number of stop valves placed between each engine and boiler, and are carried on brackets fixed to the wall of the engine house. The branch pipes to the engines are of wrought iron, with wrought iron flanges. The exhaust pipes lead off
from under the low-pressure cylinders, and a stop valve is provided to each engine exhaust to shut it off from the main exhaust pipe. Valves are arranged so that the whole or part of the exhaust steam can be turned through the heaters or direct into the atmosphere through the roof of the boiler house.
Distribution. -The distribution of electricity is effected by means of stranded copper single cables, insulated with vulcanised india-rubber and laid in a system of pipes combined with service and junction-boxes. Each junction-box has a culvert connection from the box to the consumer is made by a wrought iron pipe. The surface-boxes are in all cases placed at the corners of the roads, and in the case of a long straight run they are placed at distances of eighty yards to one hundred yards apart. The surface-boxes are made in two parts, the bottom part being permanent and the upper part with the cover being adjustable, so as to allow its surface to be raised or lowered as the road level may vary, the lid being filled in with wood, macadam, or pavement, according cable can be drawn in or out as required. Where passing road corners the cable is placed on a revolving drum, which entirely prevents the possibility of abrasion. The jointing of branch cables for consumers' premises is done by cutting away part of the insulation of the main cable, which con-
sists of india-rubber in the junction or surface-boxes, and soldering the copper conductor to the conductor of the branch cable; the joint is then lapped over with rubber to the spot, and the cable well taped and mechanically protected This makes the insulation of the joint practically equal to that of the cable itself. The converters are of Lowrie-Hall pattern, and made by Messrs. John Fowler and Co. They are placed about two hundred and twenty yards apart in cast iron waterpoof chambers with side wings or boxes cast upon them, so that the pipes convering the high-pressure cables2000 volts-pass in on one side, and those containing the low-
pressure cables- 100 volts-on the other side; the cables pressure cables- 100 volts-on the other side; the cables
themselves passing through the stuffing-boxes into the watertight chamber. The principle of the stuffing-box is the compression of a substantial vulcanised india-rubber ring of the same quality as the cable itself. In the interior of the box is placed a converter, together with high and low-pressure fuses, earthing device and high and low pressure switches ; the latter are double-pole double-break, and connected together
by an insulated distance piece, so that both switches are by an insulated distance piece, so that both switches are
turned off at the same moment, thus preventing any sparking whatever load may be switched oil. In order to take upany in the box a jer of caustic potash is placed to absorb this moisture, and once dry it remains so until any future date
when the box is reopened. The mains are laid and a supply of electricity is at the disposal of any householder in eight thousand yards distant from the generating works.

THE RUSSIAN VOLUNTEER FLEET.

The new twin-screw steamer, the Petersburg, now moored off the shipbuilding yard of Messrs. R. and W.
Hawthorn, Leslie, and Co., Hebburn, has created a large amount of public interest. The vessel, one of the largest and class constructed and engined by the firm named for the Russian volunteer fleet, her dimensions being 460 ft . in length, with a beam of 54 ft ., and a depth of 35 ft . Her capacity exceeds 6000 tons. Her speed is 19 knots per hour.
The bunker stowage amounts to 1200 tons of coal, a feature being that all fuel is shipped through the sides of the vessel, no dust reaching the decks above. The steamer is built o principle, extending right fore and aft, with no fewer than principle, extent compartments. The engine and boiler-rooms are divided by water-tight bulkheads. All decks are of steel, sheathed with teak, and to insure increased steadiness to the ship in rough weather, the bilge keels have been made exceptionally long and broad. The vessel has been constructed on the three deck grade, with long poop, bridge,
topgallant forecastle, and to the highest class at Lloyd's.
topgailant forecastle, and to the highest class at Lloyd's. deck amidships entrance to which is aptained by a the main corridor with beautifully carved balustrades of solid oak The floor is composed of parquet flooring, of variegated oak artistically arranged, and the framing and panelling through out is of solid oak, handsomely carved, and harmonising with the sideboard, which extends the entire width of the saloon the style adopted being Jacobean. The reception-room is divided from the dining saloon by a rich curtain of plush chairs are of solid oak, with bronze settings, the side-lights being exceptionally large and numerous, the windows in the corridor leading to the state rooms being cathedral tinted The music-room is on the navigating deck amidships, the framing being of carved walnut, artistically relieved by the introduction of holly panelling, in poker work and marble. The windows are of stained glass, of classical design, and in this apartment are placed life-sized portraits of the Empress St. Petersburg for the new vessel.
Cabinets of variegated wood are placed around the hall and, contrasted with the rich tapestry and panelling, the effect produced is very fine. The state rooms, which are on the same deck as the saloon, are remarkably well lighted and ventilated and arranged, none of the berths being more than two tiers high, while several have been made large enough to accommodate parties or families, the furnishing being on the bed-room and sitting-room combined principle, every electric light and fans, electric bells, portable dressing
cases, \&c.
The crew is berthed in the forecastle, all berths being o teak, with cabinets underneath, fitted with locks and fronts of iron trellis work. On the 'tween decks right fore and aft, for 1500 emigrants or troops. This space is lofty and airy to a degree, the height from floor to ceiling being upwards of 8ft. clear, natural ventilation being obtained by numerous side-lights and patent ventilators, while the electric fans with
whe vessel is fitted keep all decks free from accumula tion of stale air from stem to stern. The engineers and fire men are berthed in close proximity to the engines ; three distinct sets of pantries and cooking apparatus are supplied for the use of passengers, emigrants, and crew respectively. The hospital is immediately under the poop, and in the case of sickness occurring on board the patients can be com-
pletely isolated from the passengers and crew, the doctors' room and dispensary being in the immediate vicinity. One division of the hospital is set apart for the use of male and on the same deck and within the hospital area, a promenade being provided on the poop above.

Patent fire-extinguishing apparatus is fitted at the hatches leading to ail the holds, and in the case of fire a powerful jet or steam can be corced refter the ment on board, passengers, atter giving the alarm, hase stean instantly extinguishing the flames.
The vessel is fitted with the full complement of deck machinery of the latest and most improved type. The steering gear is on the upper deck amidships, while a reserve set of powerful machinery of the same class is placed under the poop aft, to be used in case of emergency, or instead of that on the bridge. The pumping arrangements are of exceptional power, being capable of discharging water at the rate of 1000
tons per hour, thus providing for the clearing of the largest hold in sixty minutes. Temperley's transporters for the rapid discharging and stowage of cargo are placed at each warping addition to the full equipment of silent winches, warping capstan, and windlasses. The auxiliary engines numbering altogether over forty, the former being in two numbering altogerker triple-expansion having cylinders 34 in ., 54 in , sets working triple-expansion, having cylinders
and 85 in ., with a stroke of 51 in . The steam distribution valves are worked by Marshall's system, and the whole of the machinery in the engine-room is duplicated, steam being pplied by seven large cylindrical boilers having thirty-six furnaces. A notable feature of the engine-room is the division of the coal, which is stored in bunkers extending along the port and starboard sides of the
ing additional protection in time of war.

ing additional protection in time of war. The Petersburg recently went on her

presence of the representatives of the buildial trip, in the and the following Russian naval experts, viz - Colone Linden, inspector of the Russian Volunteer Fleet; Mr Poretchkine, appointed by the Russian Minister of Marine; Mr. Varshafsky, the engineer-in-chief at Odessa; and Captain Radloff, who will take command of the vessel. In a continuous run, extending over twelve hours, the vessel gave an excellent account of corsen, the engines during the whole nots per hour being attained, the engines during the whole In response to numerous inquiries for admission to inspect he vessel, the owners and builders have mutually agreed to admit the public on Saturday, between the hours of 2 and 5 p.m., at a charge of 1s. each, the proceeds to be handed
over to the benevolent fund for aiding the adult blind in the towns of Newcastle and Gateshead.
The vessel will leave this week for St. Petersburg, the ity after which she is named, and, having been plac

REPORT ON TRIALS OF A CROSSLEY GAS ENGINE AT MESSRS. WALLAERT FRERES' MILL, AT ME

By M. Aime Witz.

The Crossley motor which Messrs. J. and O. G. Pierson have installed at the establishment of Wallaert Brothers, for the electric lighting of their spinning factory in the Rue de Poids, drives by means of a belt, a countershaft on which are mounted a fast and loose pulley, a Raffard coupling with elastic connections, and a fly-wheel of 1.10 m . in diameter at a speed of 160 revolutions of the engine, transmits the motion by a second strap to a dynamo making 1000 revolutions. The motor is of the XII type. It occupies a space of .66 m . by 2.50 m ., comprising therein two fly-wheels of 335 mm ., and the stroke of the piston is 530 mm . The trial was made with the town gas, and the initial compression is about 5 kilos.
The lighting is effected by an incandescent tube; the burner maintaining it incandescent, consumes 250 litres of gas per maint
hour.
The system is started with remarkable ease with the aid of the new self-starter patented by Crossley Bros., the fly-wheel
being untouched. The following observations have been taken at the trial which bear especially on consumption and peed. A revolution counter actuated by a small connectingrod at the end of the driving-shaft gives the total number of revolutions, and admits of observing the mean speed during an interval of any desired duration.
In order to count the number of admissions of the explosive mixture, M. Witz employed his electrical contact apparatus, scroll of a Morse receiver.
An ingenious and very simple automatic speed register, contrived by M. G. Otten, of Wallaert Bros., has served to show graphically the speeds, the maximum variations of which are given by vertical strokes traced by the pencil of the instrument, 1 mm . in heigh
1 revolution per minute.
The power indicated has been determined by the mean pressures based on a number of diagrams, sufficient in numer to reduce to a minimum the error arising from the were taken on the same paper, one above the other. The ension of the spring was adjusted following the usual method employed by M. Witz in mounting his apparatus on a reseroir containing compressed air, the pressure of which was measured by an excellent Bourdon gauge. The mean range
of flexure of the spring employed was 2.54 mm . per kiloof flexure of the spr
gramme of pressure.
The effective power of the motor was measured by a rope brake dynamometer-which was applied without any trouble embracing the whole circumference of the rim. The upper extremity was secured to a fixed point by the intervention of a small spring dynamometer, of which the tail weight p should be deducted from the value of the load P attached to the other end of the rope and kept floating. The effective load was then equal to $P-p$. As the brake was double, less the selves to the cooling of the rims, and it was necessary to selves to the cooling of the rims, and it was necessary to
reduce the length of the trials for fear of overheating the metal. On the other hand, the values of P and p have been determined with the greatest care, and the diameters over the rims accurately measured, which were 1.761 m . and 1.762 m ., he rope being 15 mm . in diameter.
The consumption of gas was shown by a special counter, placed in a room maintained at a constant temperature-this 24 deg. A preliminary trial determined the importance of the leakage and loss in the piping and gas bags. The mean M. Witz procured expressly from his laboratory of the
"Faculté libre des Sciences de Lille." It has thus been possible for him to compute the volumes at 0 deg. at 760 mm pressure.
The charges of gas taken in the course of the trial were measured by means of the eudiometer tube of the experialso ascertained. It varied little, being 5.011 heat units on the 26th, and 5.024 units on the 27 th October, the volumes being reduced to 0 deg. at 760 mm ., and the combustion taking
Finally, it must be said that the periods were counted to the
with the effective work, has hardly changed. It is as if the mechanical efficiency slightly decreased with the reduction the fact that the combustion took place better in a cylinder constantly reheated by the explosions.
The consumptions observed deserve notice, for they are remarkable, considering the relative poverty of the gas employed, an expenditure of 603 litres, with gas giving 501 heat units to the metre-cube, being equivalent to an expenditure of 570 litres, with gas possessing a mean calorific power of 5300 heat units.

Table a

1	Running light.	15 min	168.8	k.	-	15	$4 \cdot 7$	$7 \cdot 42$	
2	With shafting.	30 min	160			20	$5 \cdot 52$	$11 \cdot 50$	
3	On brake.	15 mi	$142 \cdot 8$	163.6	$28 \cdot 98$	71.4	$4 \cdot 78$	$35 \cdot 43$	
4	Do.	20 min .	$152 \cdot 5$	189.1	35-77	700	$5 \cdot 69$	$41 \cdot 35$	
5	Do.	20 min	$161 \cdot 3$	$181 \cdot 1$	$36 \cdot 23$	74.5	$5 \cdot 31$	41.09	
6	Do.	25 mi	163-36	$187 \cdot 8$	38.05	73.0	545	43•00	
7	Lighting.	3 hrs .	$150 \cdot 68$	-	28.54	$75 \cdot 3$	4.45	34 s1	

second on an excellent chronometer. This succinct descripion of the methods observed in order to insure rigorou exactitude in the results of the trials testifies that nothin Sen lrits he second was been ming light be with the transm light In the four following trials, $3,4,5$, and 6 , the indicated horse-power and the effective power were determined at the time in such a way as to establish the exact value of the mechanical efficiency of the motor: the power increased from 35 to 43 indicated horse-power.
Trial 3 of least power, was carried out in such a way a to have one explosion for two revolutions without any miss-the gas admission valve had to be regulated in con-
sequence. In the two other trials, on the contrary, the valve was full open, and under the action of the governor, the quantity of gas admitted per charge varied with the number

The high qualities of the engine under trial were best displayed by the thermal efficiency furnished by trial No. 6. The relation of effective work to the heat equivalen of gas used is equal to $\frac{75 \times 60 \times 60}{1063 \times 5011 \times 425}=021$.

From the point of view of regularity the results are also very satisfactory ; the speed remained constant, and, owing to the two fly-wheels, the blow of the explosion was scarcely elt on the diagrams furnished by the Otten apparatus. The height of the strokes does not exceed 2 mm ., corresponding to a variation of 1.9 revolutions in 150 revolutions. The X
motor is eminently suitable for electric lighting, from the motor is eminently suitable for electric lighting, from the steady. The Raffard coupling certainly contributes to this result, but the regularity of the engine is the principal factor of success in the installation. We may remark en fassant

Co., water-tube boiler ; (4) Herrmann und Schimmelbusch, Kaiserslautern, water-tube boiler: (5) Göhrig und Leuchs, Darmstadt, water-tube boiler; (6) Maschinen-Bau Actien Gesellschaft, Nürnberg, water-tube boiler.
The experiments were made from August to September, 1891, in the Exhibition boiler house, but have only rial been published. The coal used throughout the mine provided by the trinur nut, from the Shamrock mine provided by the trial committee; the feed-water was drawn
from the town main. As each boiler worked at a different

pressure, there were three main steam pipes, for pressures of , 10, and 12 atmospheres. Four large chimneys, 147 ft high, and about 5 ft . diameter at the top, carried off the hot gases. The boilers were mostly fed by steam pumps, in one ase by an injector. Water purifying apparatus was also sed, whe whers wer uppension par follows:-
(1) Schulz-Knaudt.-Horizontal single flue Cornish boiler-

SPEED DIAGRAM-CROSSLEY GAS ENGIN

of admissions producing a moving impulse. It is evident that in the different trials the mean speed of the test assumed different values. These differences were desired by M. Witz, who has sought to know the values of the mechanical efficiency at different speeds. In fact, the Crossley regulators allow of sufficient modification of the speed of the motor by a simple screw adjustment-otherwise tage which is appreciable in certain cases. The counting of the mean number of explosions per minute ought to be very precise if it is desired to measure the indicated horse-power with exactitude. The length of these trials could not exceed hirty minutes, owing to the excessive heating of the rims. The seventh trial was a trial of lighting, and extended over hree hours.
Taking a triple diagram every quarter of an hour, it was possible to determine with great accuracy the mean in-
dicated horse-power, and also by using the mechanical dicated horse-power, and also by using the mechanica power. We must note, as a matter of fact, that the trials Nos. 3 and 7 were made under identical conditions. The above Table A expresses synoptically the results obtained. The constants of the calculations are the following:-

Indicated power, T_{1}

$$
\frac{\mathrm{SC}}{4500}=0 \cdot 10381
$$

$\mathrm{T}_{\mathrm{i}}=0.10381 \times n \times p_{m}\left\{\begin{array}{l}n=\text { number of ignitions } \\ p_{m}=\text { mean pressure },\end{array}\right.$
Brake power, T_{e}.
Mean circumference of fly-wheols, including rope- 5 m , , 815 . $\mathbf{T}^{*}=\frac{5 \cdot 5815}{4500} \times \mathbf{N} \times \pi\left\{\begin{array}{l}\mathrm{N}=\text { number of revolutions. } \\ \pi=\mathbf{P}-v=\text { net weight on brakes. }\end{array}\right.$

Diagram A-Crossley engine

Diagram B-Crossley engine

The above diagrams are reproductions, A of the main diagram of the fourth trial, and B of the third trial. In the first, the valve was full open-while in the second, the valve checked the admission of the gas, in the same way as that in which there were as many explosions as compressions. It considered favourable, the consumption of gas, in connection
that a luminous intensity of 4922 candles for an hourly consumption of 18.5 metre-cubes of gas reduced at 0 deg . and 70 m . was obtained. The direct utilisation of the gas by the Bengel burners would give less light at three times the expense.
As the
As the dynamo furnishes 16,491 watts with 1109 volts and 1487 amperes, the watt-hour costs, in consequence, $1 \cdot 1$ litre of
gas. These results, showing the benefits which the use of a good motor for the electric lighting of industrial establishments procures, speak for themselves.

SIX GERMAN STEAM BOILER EXPERIMENTS WITH THE SAME COAL (RUHR.)
by bryan Donkin, M.I.C.E.
SUMMARY OF TRIALS.
AT the Frankfort Exhibition of 1891 a committee was ormed for the purpose of testing different machines, \&c. It

Fig. 1-with one internally-fired grate. Working pressure 12 atmospheres; heating surface, 645 square feet; grate surface, $15 \frac{1}{2}$ square feet; length of boiler, 25 ft .; mean diameter of the fire tube, 4 ft . The feed-water pipe was led through the steam space, and opened about $7 \cdot 8$ in below the water level. The hot gases passed forward over the firebridge and back along the left side and down the right to way with the Ruhr coal. By request of the the ordinary then submitted to a second experiment, with the addition of Rinne's patent fire-brick bridge-see Fig. $1 a$-to test for smokeless combustion. When this is used, the air for combustion is led through a passage and previously heated. Immediately behind the grate is the bridge, with numerous openings, placed athwart the fire-tube for a length of about 8 ft . The burning gases have to pass through these openings on their way from the grate to the back of the fire-tube, the

Fig. 1

was divided into nine groups, three of which undertook
experiments upon steam engines and boilers. The following

Fig. 1a
firms agreed to submit their boilers for trial:-(1) Schulz Knaudt and Co., Essen, Cornish boiler; (2) E. Willmann, Dortmund, water-tube boiler; (3) Düsseldorff-Ratinger Boiler

Swain Ena
heat of the brickwork, and more perfect combustion is said to pe obtained. There are also two iron tubes, $5 \cdot 8 \mathrm{in}$. diameter protected by fire-clay, extending from the back of the boiler to the Rinne bridge, which admit warm air, as shown in the drawing. This trial with Rinne's patent was made with coal from another mine, Lothringen, near Herne, instead of the usual "Ruhr nut." The results were kept separate, and do not appear in the table giving the results of the six trials, but (2) Whown as No. 7 in the graphic representation.
contains 66 tubes, 4in. diameter, and 157 ft . ler-see Fig. 2 pressure, 10 atmospheres; heating surface, 1307 square feet grate surface, 25 square feet. There are two grates, 5 ft . long by 2 ft . 9 in., separated by a wall. In the first two flues the hot gases circulate parallel with the water tubes, then pass along the upper pipes, and downwards to the main flue.
(3) Dilsseldorff Ratinger water-tube boiler-Fig. 3.-This boiler is similar in design to the one described above, and has two large upper tubes and a steam drum. Below are 93 tubes, 4 in . diameter, $14 \cdot 7 \mathrm{ft}$. long; working pressure, 8 atmospheres; heating surface, 1688 square feet; grate surface, 33 square feet. The grate is in three parts, divided by walls. The
arrangements for improved combustion, \&c., are similar to
those of boiler No. 2, and asbestos is used to make the joints of the doors for cleaning, and prevent air from penetrating to the flues.
ater-tube forming three boilers tubes are disposed in three groups, ubes is 4in., length 7.3 ft . Each boiler is connected to the others at the top and bottom by cylindrical tubes, and the hree steam spaces are also in connection. A "Cario" grate

boiler the water and hot gases are led off through the other wo. Working pressure, 8 atmospheres; heating surface of the upper boiler tubes 6.5 ft . and 5.2 ft . The hot gase circulate up and down between the vertical nests of tubes. With the exception of the lower parts of the three upper tubes, and the steam collector, the whole of the boiler is well protected from external radiation.
(5) Gijhrig und Leuchs, Darmstail-Fig. 5 -This is one of
the ordinary type of water-tube boilers. There are ninety-five
arrangement the air admitted to the combustion space is apper reservoir, is set in masonry. The removal of the soot takes place through the doors at the ends.

Object of Experiments.
The object of the experiments was to determine the following:- (1) The evaporating power of each boiler per unit weight of coal, taking the feed water at 32 deg. Fah., and steam at 212 deg . Fah. (2) Efficiency of each boiler, or percentage of water evaporated to heating value of the coal heat: Firstly, in the burnt products from the grate secondly, carried off to the chimney; thirdly, in the incombustible gases ; fourthly, lost by radiation or soot, or other wise unaccounted for
To form a basis of comparison for the different boilers, from $12 \frac{1}{2}$ to $24 \frac{1}{2} \mathrm{lb}$. of Ruhr coal were burnt per hour per square foot of grate surface. Thus the boilers were not forced ; the combustion of the coal and cooling of the hot gases was as complete as possible; and every effort was made also determined, or the quantity of priming water in the steam in the different cases.
The chairman of the committee was the well-known Professor M. Schröter, of the Polytechnische Hoch Schule, Iunich, and there were four members and eight assis tants. Each experiment was personally superintended by one of the above. Every boiler was first tested for leakage, and a preliminary experiment made, to accustom the assistants to take the various observations. Two experiments each of nine or ten hours, were then carried out, and the tions being made independently by two persons under the ions being made independenty by two persons under the classed under the following heads :-
(1) Coal and residuum of combustion.-One kind of coal only was used for all the six boiler tests. Although distinguished as "clean Ruhr nut coal," it contained a good deal of incombustible matter. It was easily kindled, and did not cake readily, nor did the ashes run together, but fell mostly
through the grate bars ; hence there was no difficulty in through the grate bars ; hence there was no difficulty in
keeping the latter clean. The coal was carefully weighed in quantities of 154 lb . at a time. Before the beginning and ond of each experiment the fires were kept as low as possible, the thickness of the layer of combustible being reduced to about 3 in. The maximum error on this account was put at per cent., to which should be added any slight error caused
by the difference in the heating value of the combustible left on the grate.

FIg. 4
tubes $16 \cdot 4 \mathrm{ft}$. long and 3.7 in . diameter, connected by a water chamber with an upper reservoir, 4.9 ft . diameter and 20 ft . long. Working pressure, $12 \frac{1}{2}$ atmospheres ; heating surface water is introduced into the upper vessel, and passes first through a stand pipe in the boiler, to separate the lime and impurities. The horizontal grate is about $2 \cdot 2 \mathrm{ft}$. below the nearest pipes. The masonry in which the boiler is set extends to half the height of the upper tube, above which the boiler is covered with heat-protecting material. The uppe part of the drum and the ends of the upper boiler are not protected.
(6) Maschinen-Bau Gesellschaft, Nilrnberg.-This water tube boiler consists of sixty tubes $14 \cdot 7 \mathrm{ft}$.long and 3in. diameter Fith an upper reservoir 4 . Wtt. in diameter and 19ft. long-se 860 square feet ; grate surface, 22.5 square feet. The feed water is led first through the upper boiler tube into a receiver where it is partly freed from impurities. The horizontal grate is about 2 ft , below the lowest tubes. By a special

The heating value of the coal was carefully determined by analysis of its chemical constituents, made separately for appended. To obtain a fair average specimen of the coal, a small quantity was taken from each lot when weighed, and after mixing, a sample of 44 lb . was reserved for testing. To determine the percentage of moisture, a handful was withdrawn from the coal every two hours, and enclosed in a hermetically sealed glass vessel. The samples thus obtained during each experiment were placed, together with others from the residual products, in a box, and carefully labelled. For each trial the quantity of water and ash contained in the coal, and the amount of combustible in the residuum, were
determined, as well as the composition of the latter. As the whole of the coal was delivered from one mine its composition was presumably the same, the only variation being in the percentage of water and ash; and this was found to agree with the results of the analysis.
The mean chemical composition of the combustible in the six experiments was :-C., $88 \cdot 55$ per cent. ; H., $4 \cdot 90$ per cent.;
ulphur, $1 \cdot 45$ per cent.; 0 (residuum), $5 \cdot 10$ per cent. : total, 100 per cent. The variations were so slight that this mean was used for all the experiments. The analysis of the con mean of six experiments:-Fixed carbon, 74-263 per cent. volatile substances, $19 \cdot 323$ per cent. ; ash, $5 \cdot 610$ per cent. water, 0.803 per cent. : total, 99.999 per cent. Percentage of coke 79.87 . The heating value was obtained by calculating the mean beating value of the carbon, hydrogen, oxygen, sulphur, water and ash from twelve analyses, and was deter mined at 7618 calories $=13,712 \mathrm{~T} . \mathrm{U}$.
(2) Fecd water and steam.-The feed water was measured in a tank placed on a weighing machine, in quantities of
1100 lb . to 1760 lb . The weight of water was noted, the time of weighing, and the beginning and end of each time of feeding. The quantities were strictly controlled by two observers. In some of the experiments the water was led directly from he tank to the boiler; in others it was first passed into a eed-water tank, the level of which was kept uniform at the beginning and end of every experiment. The temperature o the feed-water was always noted. To avoid, as far as possible, the error entailed by a difference in the quantity of water at

Fig. 5
the beginning and end of an experiment, no trial was concluded until the water level and steam pressure were the same as at the commencement. The fires were also lowered as much as possible wapplied with a minimum of water, that the composition and temperature of the feed-water might be the same. Further, it was considered desirable that the experiments should begin and end at a time when little steam was required. By these means the level of water in the water gauge was the same, as also the temperature and amount of steam in the boiler water, and the possible error thus reduced to $\frac{1}{3}$ per cent. All pipes being shut off except those in actual
use, there was no outlet for water not evaporated, nor use, there was no outlet for water not evaporated, nor
possibility of admitting water unless it was weighed. The heat of the steam was calculated from Regnault's formula, and the steam temperature taken from Fliegner's tables. The steam pressure was determined from the manometer on the boiler, checked by a tested standard gauge, and noted every quarter of an hour. Here the maximum limit of error was 0.18 per cent. Priming, or moisture in the steam, was determined independently of the evaporation. All the boilers were submitted to this test except No. ., in which, by request about eight days for each boiler, and was made once a day. A solution of common salt was fed into the boiler with the feed-water, until the proportion was $1 \frac{1}{2}$ per cent. After the

boiler had been working for a day, and the salt and water were thus well mixed, two samples were taken from the water at the same time, one from the Table B.

Name of boiler.	Feed-water used.	Salt in boiler water	Salt in water from steam pipe.	Salt in water.	Mois. ture in steam.
1. Essen, Cornish	Ord	$1 \cdot 324$	000116	0.00146	0076
2. Dortmund, Water-tube	waterC0 Purified	1229	000138	000195	$0 \cdot 112$
3. Ratingen " "	Ordinary	1146	000155	0.00148	$0 \cdot 135$
4. Kaiserslauten -	Puritied	1442	0.00122	$0 \cdot 00193$	0.085
6. Nürnberg "	Ordinary	$1 \cdot 610$	0.00246	0.001 H	0151

separator in the steam pipe. These samples were tested for their proportion of salt; the percentage of salt contained
amount of priming water in the steam. To prevent the
evaporation of part of the hot water from the boiler and evaporation of part of the hot water from the boiler and
separator, and hence an increase in the percentage of salt in In bample, it was first led through a copper refrigerating coil. solution of nitrate of silver, monochromate of potash being used to indicate
tion of salt in the feed-water was obtained by the same pro
cess, and each time a sample was taken the level of water in cess, and each time a sample was taken the level of water in
the boiler was read off. This method of determining the priming in the steam was not considered absolutely free from error, but it was adopted for want of a better. The
obtained were as shown in Table B, preceding page.

To be continued.
THE ROYAL INSTITUTION.
THE WORK OF HERTZ
On Friday night last, Dr. Oliver Lodge, F.R.S., delivered a lecture at the Royal Institution, on "The Work of Hertz."
Mr. Ludwig Mond occupied the chair, and there was an exceedingly large attendance of members and their friends. as among those scientific men in whom a young and brilliant add to the list the untimely end, said that they had now of this year, aged thirty-six, yet not before he had founded an epoch in experimental physicis, which will hand his name
down to posterity. Of the seed sown by those before him in down to posterity. Of the seed sown by those before him in the same department of researoh, none had done more tha
Clerk Maxwell. The popular estimate of the eminence different scientific men is sometimes more or less amusing to those working at the same subject, but this has not been
the case with Hertz, who well deserves his fame, and it would be a graceful act of tribute to his memory if the Physical Society saw its way clear to collect and publish all his scattered scientific papers. His students and those with whom he worked held him in high estimation.
His lecture that evening would consist of experimental
demonstrations of the outcome of Hertz's work. As a stone demonstrations of the outcome of Hertz's work. As a stone
cast into the water sets up ripples which do not subside cast into the water sets up ripples which do not subside
immediately, in an analogous manner an electrical charge or discharge of sufficient suddenness communicated, say, to a of the rapidly diminishing charge excite waves in the ether If a wire should be handy, these oscillations will run along it, otherwise they will go forth into space, varying as theygo according to the law of the square of the distance. Maxwell
knew that there must be such waves, and knew many of the knew that there must be such waves, and knew many of the
phenomena connected with them; their length was known from a thousand miles to a foot, and even how to make them;
all this was believed with varying degrees of confidence, but Hertz supplied the experimental verification. The lecturer here showed how a Leyden jar disckarged through a yard of wire, and near a similar jar with closed circuit, causes an
overflow of electricity in the latter, which discharges itself through a small air-hole proviously made in the glass, at the top of the tinfoil coatings. If the coatings of the jar be more separated a typical Hertz's oscillator is the result. The
electrical oscillations soon cease, in consequence of the electrical oscillations soon cease, in consequence of th
radiation of energy. The oscillator has to be "in tune with the radiating source.
previously calculated lengths of the waves to be true in fact he likewise observed that the secondary spark occurs mor easily when it can "see" the light from the first spark, that is to say, when the light from the primary spark falls upon
its knobs. Dr. Lodge illustrated this by experiment, and showed that the interposition of a piece of common transpa-
rent glass in front of the primary spark would stop the secondary sparking, for the rays whe pectrum, far beyond the visible part of the violet. Glass stops these rays of high rhem, so the secondary sparking continues during the inter position of a plate of quartz, as shown by the speaker. Fluor
spar, he said, transmits them slightly better than does quartz Atmospheric air in sufficient thickness, especially the air of towns, cuts off these ultra violet rays. Helmholtz made the be charged with negative electricity, and then be illuminated with these rays, it will discharge. The lecturer here projected upon the screen an image of a gold-leaf electroscope,
with which a small piece of zino was connected by a wire several yards long; the piece of zinc had but a few minutes
before use been well rubbed with emery paper. The leaves of before use been well rubbed with emery paper. The leaves o
the electroscope were caused to diverge by negative electricity, the electroscope were caused to diverge by negative electricity,
and upon the piece of zinc being then inserted in the path o a beam from the electric lantern with a quartz condenser, several times repeated, and it was shown that the interpo sition of a plate of glass stopped the effect which would therwise have been produced by the zinc.
gous in principle atention to a large Hertz's vibrator, analo apart, and said that it would radiate wares about 30 metres long, giving about $10,000,000$ electrical vibrations in a second conductors in the theatre would give off sparks. It would not work well that evening, however, because it had bee it produced an image of itself, which image tried to undo something analogous to this in singing flames, which will not sing so easily when placed near a wall.
Hertz found that his small sparks will start the current from a battery through a small gap in a circuit-a gap,
for instance, like that produced by a bad contact in an for instance, like that produced by a bad contact in an
oxidisable metal, such as iron, and Professor Fitzgerald had shown that a very delicate galvanometer would
ndicate when a spark passed in a Hertz's detector. The indicate when a spark passed in a Hertz's detector. The of detectors, and spoke of one devised by Professor Minchin of Cooper's Hill, as being astonishingly sensitive; the instrument responds to the radiation from a star. By means o suitable vibrators and detectors, he-Dr. Lodge-at Liverpoo
had transmitted quite strong signals through a distance o ixty yards in the open air; he thought that the limit with that apparatus might be, perhaps, half a mile. A short spark does better than a long one to excite the vibrations, electrical circuit to be bridged over for the current by the Hertz spark, and Dr. Lodge made some use of this method galvanometer to indicate the passage of the spark. All the
brass knobs used in the experiments had to be highly polished. Dr. Lodge showed that the radiant waves with which he
was dealing would not pass through metal casing, which must be pretty complete. For instance, his detecting appaelectrical gas-lighter while its insulating handle was wrapped round with tinfoil ; the brass tube covered the rest of the exposed a portion about as big as a shilling of the insulating handle, the detecting part of the apparatus helped to indicate the presence of the waves, when the gas-lighter was worked
at a distance of several yards. The radiation coming from an oscillator in the library at the other end of the Roya Institution building was also indicated by the apparatus on he table. . nobody knows where, sometimes perhaps from a thunderstorm a long way of
When the vibrator is placed in a copper vessel, not much of the radiation will come out through round holes of mode rate size in the wessel, bat much more from a hong silt in the metalicic covering. In his later experiments he protected al parts of the whole apparatus wit copper coverings, remo the he copper from hose places ang physiologist, he felt at iberty to indulge in the wildest speculations on that subject, so would suggest that the eye might act in subservience to some of the principles with which he had been dealing, and vision excited by mean
of bady conducting media.
With the radiations screened off by copper covers from all directions, except those in which he wished to use them, he paraffin, also that they can be reflected from any one of its aces; the paraffin prism he used had faces of about a polarised ; the polariser and analyser he used each consisted of parallel copper wires all in one plane, and kept in position by a wooden frame, to which their ends were attached.
When the two frames were placed so that the wires were crossed the radiations did not get through; they were at right angles to the plane of polarisation. He refected no
radiations also by a copper disc; a plate of glass did not reflect them because, he said, its surfaces were too close together. He also stated that the waves he was using were in. long. The copper plate formed much the best reflector. The large attendance of many of the old friends of the nstitution from among the most eminent scientific men of the day, not often now seen there together in suds by all present, ho attention given the widespread interest in this lecture, which, howver, much needed wall diagrams to give precise information is to all the conditi

Naval Exainert Appointuryts.-The following appointments have been made at the Admiralty:-Fleet engineers: Ivie A.
Couper, to the Imperieuse, to date June 15tb; and E. J. Comley, o the Cyclops, to date June 5th. Staff engineer: James J,
Walker, to the Northampton, to date June 14th. Engineer Assistant ongustin, to the Norbampton, to date . Van to date Assistant
June 4th.
Large gas Engines and Scotch Anthractite.- Messrs. Rober Maccaren and Co., the well-known cast iron pipe founders, Port
Eglinton, Glasgow, have just instructed Messrs. Tangyes Limited
to fix for them a 60 nominal horse-power single.cylinder Tance gas engine and a producer gas plant for working it. This gas regular worring lop load of 100 brake horse-power., It is, we belieye,
rege largest single-cylind is expected to developer 1 indicated horse-power with a consump.
ion of only 81 lb . of anthracite coal per hour, which will probably tion of only 81 lb . of anthracite cool per hour, which will probably
be about 1.2 lb per brake borse-power, a r result not yet attained
vith the emgine yet made. It may not be generally known that the coal
measures of the West of Scotland contain a vast auantity of measures of the west of Scotland contain a vast quantity of
nnthracite coal suitable for the generation of the gas used in this ype of engine, but up to the present time the demand for anthra
ite in the district has been but small in proportion to the possiiilities of supply. In the North of England large gas engines are much more commonly employed and for agreat variety of purposes,
Messrs. Armstrong, Mitchell and C . having, for instance, as many as twenty-eight sich engines running in their works. Considering
the quantity of suitable fuel which is closely at hand, it is somewhat surprising that Glaggow has not vied with Newcastle in the use of an engine which would afford a better market for its anthra-
citish coal, and thereby augment the commercial value of its great Tineral resources.
Topqueay Sewkrace.-In a paper read before the Municipal Engineers at Torguay on Saturday, on the "Municipal and
Harbour Eogineering. Works, Torquay," Mr. Henry A. Garrett,
ssoco. M. Inst. C. E., borough and harbour works engineer Assoc. M. Inst. C.E., borough and harbour works engineer,
mentioned that the sewerage system of the town was desiged and
carried out ty the late Sir Joseph W. Bazal gette, between 1875 carried out by the late Sir Joseph W. Bazalgette, between 1875
and 1878 . Its main features are a high and a low-lvel system of Torbay, and about two miles from the town. It is 7 ft . in diameter, Hitu zix hree tunnels, the Waldron, the Meadfort, and by 4 ft . wide. It is
Waldon is 1150 ft . long, and is 5 ft . 6 in . high by bored through Devonian limestone throughout, the nith cement. The cost of this tunnel amounted to 36 s . per
ined wit
ineal foot. The Meadfort tunnel is 4458 ft . long and 7 ft . diameter hroughout ; the nature of the ground through which it was bored part very soft ground. Where the rock occurred, the invert and hroughout was lined with two rings of brickwork in cement backed with concrete. The average cost of this tunnel was 29 s. per foot
ineal. The Kilmorie tunnel and the Meadfort sea wall was, howconstruct difsit pea wall at the toe of the Meadfoot Cliff, 1900 ft . in length, of random course masonry backed with rubble, sewer consisted of a single ring of brickwork founded upon a
concrete bottom carried down to the solid rock. The Kilmorie
tunnel is 4564 ft . long; the nature of the ground through which it is bored varied greatly, in some places argillaceous siliceous grit with bands of pure quartz, and in others soft shaly composition, rocky portion, the invert and half the ring only is lined with
cement concrete, and in the soft ground the sewer is lined
with concrete for its full circumference, In some places this ring of concrete is suffering a little from the crushing by the weight of the ground and prevalence of water in the shaly parts,
and the author has found it necessary-as also did his predecessor -to cause the concrete to be cut out and brick linings to be
inserted in several parts for distances varying from 9 ft . to 35 ft .
each. The total cost of the tunnel was $£ 14,358$, or $¢ 2 \mathrm{~s}$. 11d. per

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS, OTHER DISTRIOTS.

(From our oun Correspondent.)

The iron market this week bas been slightly improved in tone,
this circumstance being occasioned by the better accounts from this circumstance being occasioned by the better accounts from
Cleveland. Iromasters report that, compared with the end of the first half of last year, the work, on the books at present is favourab
for ordi
 to $£ 10$, f.o.b. Liverpool. Black sheets are nominal at $£ 67 \mathrm{~s}$. 6 d .
singles, $£ 610 \mathrm{~s}$. doubles, and $£ 7$ s. lattens. Steelmakers are singles, $£ t$ ios. doubles, and $£ 7$ s. lattens. steelmakers are quat.
ing sheets for galvanising $£ 7$ doubles and $£ 715 \mathrm{~s}$. trebles.
Iron
 rather easy anlmine hot blast. Midland sorts delivered here are this week 42s. Derbyshires, and 39s. to 40s. Nortbamptons
steel-making, upon which I last week remarl the kingdom to much attention. It is pointed out that so long as steel coupling be
only made on the acid process, there was a reason why Sto shire as a manufacturing centre was out of the running, as the native pig iron contains more or less of phosphorus. But now that
the basic process of steel-making redders the presence of
phosphorus an advantage, there is every reason why steel
 fuel of the district, comparatively foree from sulphur, with
unlimited supplies of ore especially suited for the manufacture of basic pig iron, there is, it it urged, no district in Great Britain better placed for the production or steel of the best quairies. We
are reminded that one great advantage that the pasic process
possesses is the commercial value as a fertiliser of the slag. In possesses is the commercial value as a fertiliser of the sla, In
point of fact, it is said that "at some works the slag itself produces
and
sufficient return to pay bandsome dividends on the capital invested.
The re-construction scheme of the Roond Oak Iron and Steel Works, formerly the sole property of the Earl of Dudley, is
proceeding so satisfactorily that in a fow days it is expected the the usual be completed, and the works resume operation under no usual management. In the meantime, the large steel plant
now being pat in is progressing. Under the new arrangement, by
which the Earl of Dudley takes more direct control of ty which the Earl of Dudley takes more direct control of the works,
Mr. Dalgleish, who has been chairman of the company since its formation, and another Lancaskire director, both resign their
seats, and three new directors have been appointed, namely, Mr. G. H. Clanghton, Mayor of Dudley, and principal mine agent to the Eari
of Dudley; Mr. Francis Grazebrook, of Netherton, and Mr. James Roberts, pipe founder
been elected chairman.
By the laying down of the latest and most improved machinery,
the local small arms and ammunition manufacturing firms are doing all they possibly can to induce the receipt of Governmen orders. The chairman of the King's Norton Metal Company, Bir-
mingham, bas just informed the shareholders that they have mingham, bas
splendid lot of machinery at the present time, and that they propose to add to it as they find necessary. They aim at possessing
the best means of production of any company in the trade and at defying competition, which at date is very excessive. The
works are fairly employed, and most attention is being paii
俍 to the perfecting of the machinery in the quick-firing ammunition department. The company have a plant capable of making
10,000,000 to $15,000,000$ a year of cartridge cases and bullets,
but owing to the want of Government work, the output last bear was somethe want less of than 2, ,ornmoneont work
yn impors.
ant matter to machine tool build
at the annual meeting of Kynoch and Co, thiss was touched on rating the important additions-costing in all something like
115,000-which they premises, he said there was an entirely new fitting shop, in which they bad about teo men constantly at work In these days of
excessive competition all manufacturers knew how difficult it was to get in any way in advance of competitors The moment any
new machinery was bought through the ordinary channel, "the firm that was kind enough to sell it to them went round to one's competitors with the glad tidings, and suggested that they should
have the same thing." The directors had therefore decided to keep their inventions and improvements to themselves, and turn
them out inside their own fitting shop. He also announced that they bad erected what was called their large machinery room, in which their military work was principally turned out. Likewise a
large and complete set of copper rolling mills, from which they
could turn out about seventy-five tons of rolled metal per week, The metal being entirely for their own use.
The new electrical engineering works at Wolverhampton of Thomas Parker will cover four or five acres. The frst section,
which will be capable of considerable extension, will consist of a
ater foundry of 120 ft . by 40 ft ., pattern shops 80 ft . by 40 ft t, and other premises, The Midland Railway will run a siding into the works, Council of the Institution of Civil Engineers has awarded Mr.
Parker, the managing director of the new company a A George
Stephenson Medal and a the electrical equipment of the Liverpool Overhead Railway.
Regarding the contract mentioned in my last, entered into by
the Birming ham Corporation with Messrs. Morrison and Mason, Glaggow, for the construction of one of the sections of the new
Birgingham Welsh water conveyance scheme, I may say that the total length of the aqueduct covered by the contract is $10 \frac{1}{2}$ miles, of which 69 miles is tunnel. The amount of the contract is
$£ 284,821$, on the basis of the tunnel being lined throughout. The time allowed for its completion is five years, but for cerrain of the
works the time is limited to a shorter period. The Elan works in works the time is limited on a shortor so far proceeded that the
connection with the scheme have now so Water Committe e think it will be well for the Corporation to visit
them The first section of the railway will shortly be completed. them. The first section of the railway will shortly be completed.
The committee propose that the Council should visit the works The committe
next month,

NOTES FROM LANCASHIRE.

Manchester.-The continued absence of improvement in the
general outlook of trade as regards the engineering iron and coal general outlook of trade as regards the engineering iron and conl
industries of this district is producing a despondent tone as to the prospects for the remainder of the year. Here and there some revised American tariff, which is fully expected to be definitely settled before the close of the present month, may bring increased
activity to the iron trade, but apart from this there seems to be practically nothing, at any rate in the near future, upon which to there is reme improvement it seems more than likely that the
wase wages question will again come to the front in the coal trade, and tion in Scotland is is just now being watched with considerable
the action taken the Miners interest in this district.
iron market, and although there continues throughout the Lancashire the Manchester 'Change meeting on Tuesday, complaints on all sides were prevalent as to the absence of business of any weight coming forward, In pig iron consumers go on buying simply in
the merest hand-to-mouth parcels, and even to secure these extremely low prices have to be taken, by makers, whisist in the open
market for orders of any moment there is exceedingly keen cutting
to secure them. Lancashire makers are doing little or nothing in to secure them. Lancashire makers are doing little or nothing in
the way of seouring new orders jost at present, as except where
they have speciall favorats ate conditions they are altogether cut out of the market by the exxeessively low prices at whice lininoun-
shire iron can be bought. Local makers are still asking shire iron can be bought. Local makers are still asking abont
late rates, but as they would have to come down considerably upon these to secure business, they are altogether nominal. Lincolnshire iron does not now average more than about 398, net cash for forge, and at this sigure moderate sales have bere and
there been made, whilst foundry there been made, whilst foundry qualities are quoted at 40s., w.t. .incolnshire foundry quoted at 43s.t. 4 4s, less 22, , delivered
P.
in the Manchester district. For outside brands offering here prices are much the same as. those quoted last week, good foundry Manchester, and Eglinton obtainable through second hands at about 45s, 6i. net prompt casb, delivered at the Lancashire ports.
In the finished iron trade business is reported to bo worse than
it it ass been for a considerable time past, very few makers booking half-time, and generally a very despondent tone is taken with regard to the future. Makers, however, seem determined not to
give way further in their prices ; in fact, there is not sufficient inquiry to tempt them to offer further concessions, and it is dincreased whethert lower prices would bring forward any appreciably
iner buyin. Delivered equal to Manchester or

 low prices ruling, ; ordinary foundry bematrites do not average more than $£ 5$, net cash ; whilst steel boiler plates are quoted at at more
 neering industries. Amongst boilerm report as regards the engithere is an increased weight of work stirring, some of them having booked a fair number of orders recently, and one of the loco-
motive-building establishments in the district is pretty full motive-building establishments in the district is pretty full of work
for the present, but other establishments continue only very poorly regards machine tool makers the position is them are tolerably busy, but generally they are onlialy indifferently engaged, and general engineering work continues very quiet.
Mossrs. Cunifife and Croon, of the Broughton Irowworks, Man chester, have just completed a specially designed four-spindle
drilling machine, which contains several this class. The machine has been specially constructed for drilling purposes where accurately pitched holes are required. The apindles
 bearing, and when the holes have been d riilled the required deptt
he drills are withdra wn, automatically ready for the traverse the head along the bed for the next set of holes. The . The
machine has a bed 18ft. fin. long to drill four hor centre to centre, in rails $15 f t$. long, and to clear 20in. between
the uprights, and admit and drill rails, beams, \&ca, 8in deep. The gear is of susficient strrength and power toa drill forer lin. diameter
holes at one operation, and the depth of self acting feed is
Amongst other special engineering work I may mention that
Messrs. Hulse and Co., of the Ordsal Works, Salford, have just completed for Messrs. Jessop and Sons, of Sheffield, one of their
largest size patent "Duplex lathes for marine crank shafts. The general features of these lathes have already been described and
Ilustrated in THE ENGINER, but the lathe above referred embodies several further improvements, the most noticeable
 tion, the firm Amove guite other mamerhines in coarse of construc.
trilling the water-tube boilers for her Majespe spindles, for
dresty destroyers, and others for boring aed screwing various parts
of the Belleville type of water.tube boilers, such as are
being made for H.M. ships Powerful and Terrible. Other special being made for H.M. ships Powerful and Terrible. Other specia
work includes several heavy milligg machines in various stages of
progress, and a large break and pit any object in steel or iron up to 12 Lin. diameter and 3 ytt. .ong, or up to nn. diameter by hear. hong. , wist lathe is composed or a
heavy and
face-plate9ft.diameter, gearedstoct, with atheback a large steel spindle and teeth, through which is transmitted the driving power under a great
variety of speeds. Supporting the headstock is a deep grooved base plate, to receive the tool rests provided, and a sliding bed, which is
movable along it, and carries the loose headstock. A novel feature is the introduction of another short-grooved base-plate,
inlaid in the main base-plate, and having its inlaid in the main base-plate, and having its upper surface at the esame
level, this inalaid plate beeing movabte longitudinally within the bed
surrounded placed at any required distance in in front of the base-plate. The
lathe altogether covers a space of about 420 square feet, and lathe altogether covers
weighs nearly fifty tons.
Only a very slow demand continues to be reported for all
descriptions of round coal, and although very few of the pits are working more tban three to four days per week, stocks go on
accumulating. List rates in the Manchester district remain unchanged, and pit prices generally are as last quoted, averaping
11s. to 11s. 6 d . for best Wigan Arey, 1s. to 10 . 6 d . for Pem.
Pert ranging from 7 s . 6 d . to 8 s . for steam and forge qualities, to 8 s .
and 8 s . 6 d . for common house-fire descriptions. To meet however, the keen competitious in the important manufactur-
ing districts on the east side of Manchestor, where low supplies have been coming in larcely from Dere Derystived
Staftordshire and Yorkshire, the Lancashire Coal Sales Association have decided that their minimum delivered or station rates shall be reduced 6d. per ton, this concession embrac-
ing such important markets as oldbam, Ashton, Stalybridge, Stockport, right on to Disley and Now Mills. For engine classes of fuel
there is a very fair inguiry, and the limited supplies of the Lanca shire colliieries movevof of without difificulty; butppies of the is plenty of
cheap slack offering from other districts, and prices are scarcely cheap slack offrining from other districts, and prices are scarcely
so firm all through at full rates, concesions huving beon found
necessary in isolatad cases. At the pit mouth slack ranges accord-

The shipping trade continues in a generally depressed con-
dition, and although the official minimum quotations are not changed from 8s. 6 d . to 9 s . for Lancashire steam coal, delivered at
the ports on cases are offering at 8s. to 8s. 6d. per ton
Barroio.- There is a very quiet business doing in hematite pig
iron, although there is a generally firmer tone. Prices are firm at
Mase. warrant iron sellers, net cash ; and 43s. 11d. buyers.
and Makers are quoting 44s. 6 d . to 4 4s. . for mixed Bessemer numbers,
net fo.b. There are still thirty-six furnacess in blast, compared with thirty-five in the corresponding week of last year. There is
very little trade indeed doing with foreign buyers of hamatite pig
iron, and the home demand is quiet-with the exception of local irron, and tre home demand is quiet
account, which is fairly maintained.

Heavy rails are in poor request. Orders are only held to a small extent, and they will not keep the mins going for many weeks.
The new consignments which are on offer are keenly competed for Heavy rails are quoted at $\& 315 s$.iper ton Nonthing, is doing in
light rails, prices being lower at $£ 5$ s. per ton, and colliery light rails, prices being lower at $£ 5$ 5s. per ton, and colliery
sections are at $£ 510 \mathrm{~s}$. per ton. There is a steady trade in steel shipward. In billets andttin-plates very little is being done in the
forw Furness district, but makers are better off in the Cumberland district, and are keeping their mills fairly employed. In blooms,
slabs, and wire rods there is nothing doing, but there is still a fair slabs, and wire rods there is nots.
demand for heay steel castings.
Shipbuilders and
Shipbuilders and engineers are very briskly employed. Last
week the Cork steamer Xema arrived at Barrow for new tripleexpansion engines and very extensive repairs, and this week the
Clan Ross, the first of three steamers building at Barrow for Messrs. Cayzer, Irvine, and Company, was launched. Much progress is
being made with the Admiralty work in hand at Barrow. There is being made with the Admiratty work in hand at Barrow. .inere is
very little demand for new shipping tonnage, but some important orders are now receiving attention.
The coal and coke trades are very quiet, and business does not
improve either on manufacturing or on shipping account. Prices There steady.
there is st a large number of unemployed men in Barrow and on the West Coast generally.
The shipmonts of hematite
during the week have amounted to 2139 tons, compared with 6975 tons in the corresponding week of last year. The exports of
steel last week were 2322 tons, compared with 7449 tons in the corresponding week last year. The aggregate shipments of pig iron
to date this year have been 160,306 tons, and of steel 153,091 tons, comparing with 111,271 tons of pig iron and 190,796 tons of steel in the corresponding period of last year, an increase of $49,035 \mathrm{ten}$
of pig iron and a decrease of 37,705 tons of steel. There have
been ion and ben no shipments of pig iron or steel this week to foreign ports.

THE SHEFFIELD DISTRICT.

The heavier trades are reported to be rather brisker at present. exceptional weights, and several of the princedpal firms hare largely increased their productive powers. The tendency is to use exconomise productions, There is a better demand, too, for iron-
vork for buildings. The increased stringency of the Government
 avourably affecting this business, particularly in fireproof doors Manufacturers of grain rolls, ingot moulds, and plate rolling ducing last year. Very little, however, is at present doing in railwalowork, which cannot possibly become satisfactory untwit tone or the autumn orders, which they expect rather earlier this season. These were entirely missing last year owing to the coal strike. The
Germans will not find the conditions so favourable for them this season. Crucible steel is in very languid request, and the men are but poorly employed. Quotations for tinished material still
remain as before. Hematites are in light demand - West Coast, Cos. 1,2 , and 3 , at from 51 s .6 d . to 52 s s. 6 d .; East Coast, about 1 s .
less; forge iron, 39 s .6 d . to 40 s . all delivered in Sheffield; bar iron,

 coal trade, but the demand has not been good effect on the house their consumption of coal than they used to are more careful in lessons taught by strikes. With regard to gas and steam coal,
Yorkshire and Lincolnshire owners appear to have had less difficulty than formerly in coming to arrangements to maintain the values to pay 1s. 6 d . per ton more than they had given for supplies during the previous balf-year. This is the amount of the advance coalowners Railway Company is stated to have placed nearly all its coal this beis an advance of 1s. per ton on the rates of last June
The Midand Company is expected to bring its negotiation o a close in a day or two, and with the placing of supplies for these two great concerns, the coal trade will be placed on a firmer
basis than it has been for some time. A good business has been a very large tonnage going to the Baltic ports. It may be useful for reference to note here the contract prices for steam coal since
1888.89 Then the

 shall not have the wages trouble to disorganise business this season
bt all events. It is quite evident hower at all events. It is quite evident, however, that the quantity o
coal raised is much in excess of what is required. A mere glance at the railway sidings, congested as they are with long lines of
coal-laden trucks, is sufficient to convince any traveller that there is a glut of fuel in the market.
In the lighter trades a
cross cot saws being in brisk request for the Russian and cross cut saws being in brisk request for the Russian and general
continental markets. In files, too, there has been a distinct improvement, although competition is very keen and prices are not
good enough to allow of a reasonale protit. The season for grass-cutting appliances, such as lawn mowers, sc., is now over,
and is reported to have been a fairly good one. The cutlery
trades remain as they have been reported for over American demand being still paralsed by the uncertainty attach ing to the Wilson Tariff Bill, and the general business of the country is not up to the average. Probably the electro-plate
manufacturers are even worse, gloomy reports being sent home by the travellers.
Some very
Some very ine samples of ornamental works in trophies, cubes,
Sc., bave recently been produced by the leading Sbefield, houses
The tendency has been of showy goods, once so popular.
Mr. W. E. Harvey, ascistr
c-secretary of the Derbyshire Miners on Monday. Mr. Harvey was one of the delegates to the Berlin there have been very manch coloured and exaggerated. Taking the conference as a whole there was nothing but praise to be afforded
for the way in which the English representatives had been
received by the Berlin generally. By going to Continental Conferences they had
effectually put an end to the foreign competition bogie,
and
 Carlisle Conference, Mr. Harvey said that they now bad between
30,000 and 40,000 members in the Scotch Miners' Federation. Soctland was not the only place where a reduction was being de
manded. Cumberland was under notice for a 10 per cent. reduc manded. Cumberland was under notice
tion, and in Somersetshire wages had also been attacked. Unles an amicable settlement was arrived at they would have fron
70,000 to 80,000 men fighting against reductions. To maintail "the great principle of a living wage," they must have no reduc
tions in Scotland or Eng land. Of course the miners' leaders would tions told that they were everlastingly setting masters and men a
beggerheads, but he could only say that they knew their busines
best. Complete organisation was their only salvation as a labour
class, and he was proud of the fact that there were many collieries in Derbyshire at which there was not a single non-unionist, whilst, notwithstanding all that bad been passed througb, the
association were not only powerful in numbers, but powerful in association were not only powerful in nuu.
finance, being worth thousands of pounds.

THE NORTH OF ENGLAND.

SEveral circumstances have this week adversely affected the iron and allied trades, the chief among them being the unfavour-
able statistics that bave been issued by the ironmasters, the exten. sion of the labour tronbles at the foundries and engineering works, and the threatened strike of colliers in Scotland. Prices have been kept rather firm, but buying has been checked, and now there
are as few orders given out as there were before the holidays are as few orders given out as there were before the holidays
Shipments are quieter than they were last month, and inland deliveries have further fallen off, because on account of the at a slower rate at shipyards and engineering works, and conseently at the finished iron and steel manufactories.
t many of the engineering works operations have bad to be so wo months since the first batches of moulders came out on strike because the masters would not comply with their demands for a large increase of wages, as the state of trade did not justify it, the
improvement having been in the number of orders distributed improvement having been in the number of orders distributed
rather than in the prices paid for them. The pattern-makers and joiners have joined the moulders, and the prospects of an early settlement do not appear good. The employers are very deter-
mined in their attitude, and so far the men are equally averse to giving in, and the consequence is that much harm is being done to sene trade o a good deal of work which cannot wait having to be
sent out thistrict for execution, and other orders that might
have not troubled in the same manner as this district, and where prompt delivery can be counted upon. Mr. Christopher
Furness, M.P. for the Hartlepools, whose firm is suffering through this labour difficulty, suggests that the whole question shall be at the stage when they are desirous of calling in a third party to settle their differences
The character of the Cleveland ironmasters' statistics for May on the face of them is very unsatisfactory, because there is a heavy increase in the production, and an equally heavy increase in the
stocks of Cleveland pig iron, indeed if the make had not been increased there would have been a slight decrease in the stocks.
Of Cleveland iron 127,664 tons were produced, 12,093 tons more than in April) and of hematite, \&ce., 129,011 tons, 1766 tons decrease, the otal being 256,675 tons $-10,327$ tons increase. This is almost the
argest output ever reported. In regard to the large increase in the production of Cleveland iron, this may partly be accounted for by the extra day in May over April, partly by the holidays, for during
Whit-week some of the furnaces which bad been producing basic on were put upon Cleveland iron, and partly by the better workgg of the furnaces themselves-they have been driven harder, and bave turned out a higher averago quail and yet the output was
93 furnaees at work as against 94 in April
increased. It is now cortainly in excess of the requirements, but it is probable that it will not long continue so, because several furnaces are intended to be blown out shortly, in order that they may be
relined, one having been in blast over twenty years. Advantage will be taken of the duller trade and the longer days to carry out is more effectually executed in the summer than when the days are short. The only furnace put out last month was one at Sir
B. Samuelson and Co.'s Newport Ironworks, Middlesbroug the close of the month there were fifty-two furnaces making Cieveland iron-one more than in April-and forty-one making
hematite, \&c., two fewer than in April, the output of the latter
 is very disappointing, as it shows in what is usually a very brisk號 the year, an increase of 11,185 tons. For some montbs eople bave been accustome to see decreases recorred, and they
o not take kindly to an increase. Almost invariably, a decrease
 production over consumption has been due to the bolidays, must have reduced, the consumption of pig iron by fully 8000 tons Uuring the month. The total quantity of cleveland iron held in
tock is 154,488 tons, of which only 55,792 tons is unsold in makers hands ; but that is 14,334 tons more than they held on April 30th.
The pig
The pig iron exports from the Tees in May were heavier than hey were only 5092 tons more tban in April, and were 12,724 tons only 47,420 tons last month, against 64,109 tons in the corresponding month last year; but large quantities of hematite pig iron were
sent to Russia and Italy, and the export of hematite, sc., rose to ally one-sixth of the ettal pig iron shipments, viz, 14,228 tons,
whereas in April they were only 8542 tons. The following are the totals of the exports from the Tees of pig and manufactured iron and stoel last month, as compared with April and the corresponding month last year

May. 1894
Aprin 1894
May, 1893

The above did not include all the Cleveland pig iron shipped, for
he Skinningrove Iron Company sent 5464 tons last month all to Seotland.
Business in No. 3 Cleveland pig iron has this week been gener
ally done at 35 s . 3 d . nothing loss would be accepted for June or July. Cleveland warrants have mostly been kept at 35s. 5d. cash, but the close on Wednesday was at 35s. 4 d. Connal's stock of Cleveland pig iron
on Wednesday evening was 97,812 tons, and their stock is now
increasing. At May 31 st they held 40,714 tons of hematite in increasing. At May 31st they held 40,714 tons of hematite iron,
584 tons less than at April 30th, whereas in April their stock
increased 3963 tons. No. 4 Cleveland Foundry pig is at 34 s . 6d., and grey forge at 34s., both being more readily obtainable than
for a long time past. East Coast hematite pig iron is advanced 3 d . per ton this week, production and stocks having been reduced while a better export demand has spring up. Mixed Nos, cannot
be bought under 44s. per ton. The Cariton Iron Company is
likely to follow the example of the Seaton Carew Iron Company in granting the eight hours' day to its blast furnacemen. More
men are needed per furnace certainly, but it is said that the cost of the pig iron made is raised scarcely at all,
because the men bave given up the extra pay they have
been accostomed to get for Sunday work, and that goes to pay the extra hands. The Seaton Carew Iron Company is wel masters' Association will decide whether there shall be a general
mith adoption of the eight hours at the furnaces.
The finished iron and steel industries are
are poor, and prices weak. Some of the finished ironworks are
running very irregularly, and even the bar trade is badly situated,
Steel ship patates are quoted at $£ 417 \mathrm{~s}$. dd ; steel ship angles,
$£ 415 \mathrm{~s}$; steel boiler plates, $£ 517 \mathrm{~s} .6 \mathrm{~d}$. ; iron ship plates, $£ 415 \mathrm{~s}$.
steel rails, $\varepsilon 3$ 122, 6 d . per ton, all being on trucks at works and

 has beon goeeral manager of palmer's shipbuildiog and Iron Co. resignation the directors passed ar areolution thanking him for his
valaubio services. Mr. Prico bas had a loog connection with the shipbuilidiog industry of the North. Ho wis engaged at one time
uider that well-kown builder Mr. John Pile, and then beeame

 Pridiononoton manipgard, Harctlepool, are about to build a new steame of the "turret" "type. Sbe will be the frrst of the kind over con. Structed at the port, and will carry aboot 4000 tons of cargo.
 that horse traction is beconing obselete, end that some better system must bo adopted if the growing needs of a large and im portant oity like Noweastio are to bo mot
The coal
trade
is very quiet and
price
the formation of the Aescociaition to and peep ap wricese wotwithstandiog the frrmation of tho Association tokeep ap prices. This Associa under the Companies sctto ant the Dur ram and Northumberrand Coal Sales Association, Limited Those urconnected with the share of the orders pasing. Some business in steam coal has
been done this week witt the United States, and 1000 tons will bo stipped within the noext fow days. The North-Estern Rail way
 given in 1892.

NOTES FROM SCOTLAND

(From our onen Correspondent.)
THE pig iron market has been som ewhat firmer this week owing has not, however, been very oxtonsiye. Tho uncertainty of the have sold from 41 s s. 6d, to 41 s . 8 d . cash, but Cleveland has gone
 hematito has been done at a4ss, 10 d.d., and the nominal price

 have been 7190 tons, compared with 6629 in the eorresponding week
of last yyerr. 0 ot the total
 China and Japan 250, other countries 30 , the coastwise shipments being 3174 tons, com pared with 2287 in the corresponding week,
The total stipments are
at There is no change in the total number of furnaces in blast, Ordinary and special brands are being produced by 48 furnaces, an increase of three on the week; 24 furnaces are making hematite,
compared with 25 a week ago; and only one furnace remains on basic iron at the beginning of the week, but the number has since been increased to three. The probability is that the output of this class of iron will soon cease altogether.
Inquiries appear to show that in the future there may be a more for tenders for considerable quantities of hematite, and the requirements of home consumers show no abatement.
The steel trade has not been quite so basy, and there is little or no excitement resulting from the possibility of a strike, because in addition to the safeguards provided in the shape of strike con-
tracts, the summer holidays are so near at hand that no scarcity of material is anticipated.
In the finished iron trade there has been a little more activity at some of the works, with the result of the necessity for early completion of particuly easy condition.
The exports of manufactured goods continue very light, those of
the past week embraced locomotives for India worth $£ 2800$; sewing the past week embraced locomotives for India worth $£ 2800$; sewing
machines, $£ 9363$; other machinery $£ 11,767$; steel goods, $£ 7422$; and miscellaneous iron goods, $£ 15,020$.
the miners for getting back their recent reduction of wages. The men in the various mining districts appear to be more united than usual, and it would not occasion any surprise were a general strike
entered upon before the end of the month. The miners' or cranisaentered upon before the end of the month. The miners' organisa-
tions are certainly not very strong either as regards membership or funds, but they have recently been acting with remarkable unanimity, and the fact that the Federation meeting at Carlisie
unat
last week voted in favour of a strike in Scotland and of a levy to support the men when they come out has certainly gone far the Union, open to all coal getters above sixteen years of age, has without delay. A manifesto has been issued from the headquarters of the Scottish miners calling upon them to act with decision, and warning them that any district adopting a course opp
of the majority will be expelled from the Federation.
The coal market bas been irregular owing to the uncertainty that exists as to the miners' vote regarding a strike, but the amount
of business has been considerably larger for local and manufacturing purposes. The coal shipments are not so satisfactory, the total being 141,829 tons, compared with 158,949 in the preceding week,
and 159,339 in the corresponding week of last year,

WALES AND ADJOINING COUNTIES

(From our ovon Correspondent.)

Avother good week in the coal trade has to be recorded, a
week of well-sustained demands and firm prices, with a round total exports from Cardiff of over 316,000 tons. This is now the second week for huge otals, and there is every prospect ver a continuance. 0 n one day this week large steamers were very con-
spicuous, 4000 tons going to Batavia, 4500 to Colombo, 3100 to spicuous, 4200 tons going to Batavia,
Brindisi, 3200 to the Mauritius, 3200 to Jamaica, and a namber at
2000 tons.
This activity in the coal trade is telling, favourably on the
mineral revenne of the Taff Vale. Last week's return showed an mineral revenue of the Taff Vale. Last week's return showed an
cannot be too highly commended. The healthy character of the Welsh coal trade is attracting a fair
share of attention from the outside world, and rumours of trans-
fers, purchases, and the formation of new syndicates are rife. One cate is being formed for the purchase of Lockett's Merthyr Steam Colliery, in the Rhondda Fach. This is an admirably laid out coal-
fold, and was first sunk by Mr. Mordeai Jones, of Brecon, and field, and was first sunk by Mr. Mordecai Jones, of Brecon, and
afterwards acquired by Lockett and Co. Lockett was one of the afterwards acquired by Locketr and Co. Locke colliery has been
earry pionoers of the Welah coal trade. The
inder the manasement of Mr. William Thomas, Brymawr and nay be regarded as one of the most important of the Rbondda, with a good "lift" yet in reserve. Another large colliery, near
oontypridd, is stated to be changing bands. The Dunraven Pontypridd, is stated to be changing bands, The Dungare
Colliery, which was withdrawn from the auction lately, only requires
in the opinion of leading anthorities-a strong body of capitalists in the opin
to pay well.
The latest conl prices on 'Change, Cardiff, this week were: Best
team, 11s, to 1 s . 6 d .: seconds, 10s. 6 d . to 10 s . 9 d .; Monmouth-

 5s. to 5s. 3d. The demand for cole shows a slight improvement,
and makers condidently look for a better condition ; latest prices
 are Cardiff. Swansea quotation for patent fuel is 10s. 6d. to
Os. 9d.; anthracite coal, Ss. 3d. to 12s. 6d., according to quality.

An impression is abroad that iron and steel works are going to be busp, and certriainly the principal works will be well equipped
vith foreign ore to meet even an extraordinary demand. Cytarthfa, with
Dowlaise, and Ebebt Ebo Vale, received large cargoes this week, giving ncreased animation to docks, railsays, and whe
noutations for forign ores vary slightly from those on the Swansea

 200 tons, left Newport again this week for Rotterdam
trades; business continues of an average character, with prices low enough to tompt, but in the case of steel bars another week or two
must pass before the expected spurt takes place. As for rails, trade is by no means brisk, and until the expected orders come
from India and South Africa, businoss is expected to remain in reem n state, colliery rails and a fows small railwey orders being the
feolk sow required. The statement made current that the rails oo bulk now required. The statement made current that the rails on
the line from Ostend to Brussels, weighing 1051 lb . to the yard had been oxamined lately, and warranted, after five years wear,
last another hundred, has been keenly discussed. On ordinary lines, where there is in no heavy gradient, the «ood steel rails now
made have certainly a twenty years' life so it is well for iron made e have certainly a twenty years' life, so it is well for iron-
masters to look for other sources of demand. Steel pit props have been suggested, and are coming in tardily in a fow places.
Cyfarthfa having excelled in turning out a sheet of steel much thinner than the finest tissue paper, it has been suggested that a
market might be found for it, but the inventive mind has not yet said for what. year from Wales have bea
On 'Change, Swansea, mid-week, it was reported that a slight
improvement' bad taken place in pig iron, that the export of tin. plate was showing a fair average, and that the final issue of the ar presen
many tin-plate works are idle, and makers will not restart until something definite is known.
The last quotations show only a slight alteration from those of last week. Glasgow. pig, 4 s . $7 \mathrm{~d} . ;$ Middlesbrough, 36 s . 4 d .
hematites, 43 s . 10 d d.; sheets, steel and iron, $£ 65 \mathrm{~s}$, to $£ 6$. 10 s , Welsh bars, $£ 415 \mathrm{~s}$, to $£ 5$; steel rails, heavy, $£ 315 \mathrm{~s}$. to $£ 3$ 17s. 6 d . light, $£ 410 \mathrm{~s}$, to $£ 510 \mathrm{~s}$.; Bessemer steel bars, $£ 4$ to $£ 42 \mathrm{~s} .6 \mathrm{~d}$.
Siemens, best, $£ 45 \mathrm{~s}$. to 47 s . 6 d ; seconds, $£ 42 \mathrm{~s}$. 6 d . to E 45 s .
 tions are better by dro. all Inound for tin. palates. Swansea shipment of
tin plates last week was 64,524 boxes, receipt from works 58,910 tin-plates last week was 64,524 boxes
boxes. Present stock 288,803 boxes.
I do not seo much realisation yet of the anthracite movements requires time to tloat, great ventures, and it may only be a case of
postponement. Activity is to the front at Port Talbot. The propostponement. Activity is to the front at Port Talbot. The pro
moters now are so confident of success that operations have been commenced. The scheme, readers will remember, is to provide a
port of shipment for the output of the collieries at O gmore, LIynvi, and Garw Valley. At the latter place important sinking is going on successfully. If the new antbracite developments are tardy
Monmouthshire cannot bo accused of being behind. The Unite Monmouthsbire cannot be accused of being bebind. The United
National-Walls, Ward, and Co.-contemplate sinking a pair o pits at Cwmeam. Great, Westorn Railway Company are asking
for powers to extend Hall's railway so as to enable sinking tions to be carried on apon the Llanover property. At Six Bells, Aberbeeg, new pits are being sunk by Lancaster and Co. The
Ebbw Vale new pits at Cwm are laid down on the double lift system, so as to increase celerity in output. Partridge, Jones, and shire, have won steam coal at Crumlin, and in the Eastern Valley
Tirpentwy Tirpentwys have strack the famous bla
things portend well for Newport, Mon
In respect of Glamorganshire, and of Cardiff in particular, th of 42 acres on the foreshore, to ad mit of the finest steamers running in from the Channel, is now only a question of time.
The railway bill fight, the "East Glamorgan Railway," is now commencing, and will soon come to a point, and as I note that
those those friendly disposed are stat "p arin, away" next year wil se resorted to, it may be taken as assumed that the strong argu-
bents of the Bute Dock, the Taff Vale, and the Rhymney rail ways are regarded as almost overwhel ming, and the probability o
getting it this year a remote one. But prophecy in regard to Parliamentary Committees is futile. We can only wait the chapte
The members of the South Wales Institute of Marine Engineer had an excursion to Chepstow and Tintern on Saturday last. In paper on "Brunel, Railway and Marine Encineer," and feresting referred to Brunel's early association with Stephenson. He becam chier engineor of the Great Western Railway in 1833 , and was
great advocate of the opinon the narrow gauge had been developed to its utmost limit, and any saving of time coald only be effected now at the expense
of accommodation and comfort. The only alternative, if they wanted increased speed, was to revert to the broad gauge again wand run engines capable of developing 3000 .horse power and a
ander of eighty miles an hour. This would bring London within
speen 24 hours of Cardiff
The members of the Rhymney Branch of the South Wale notices June 1st to terminate services in one month. The objec is to increase the wagos standard.
Disputes are on at Lletty Shenkin, Aberdare Colliery, an for nine weeks. A A strugge. is on at Gorseingon Tin-plate Works
The

are to visit Cardiff.

The Bute Dock authorities are going to expend $£ 40,000$ in giving
increased accommodation to the passengers landing at the Docks, increased
Cardiff.

NOTES FROM GERMANY

(From our oun Correspondent.)

THE iron trade in this country is, on the whole, progressing, foll employment and increasing production beeing noticeablo in
most departments. For the present, however, the improvement most departmens.
has been in the volume of business rather than in quotations $;$ in some branches manufacturers are even worso or han ever
regards while makers, on the other band, have not been able to carry corresponding advance in the prices for their articles,
In the Silesian district the situation of both
inished iron trade continues to improve. Export bund the Russia has mills reporting their order-books well filled. There appears to be ment is not likely to take place so long as foreign competitio remains as keen as at the present moment.
as led to a further advanan iron market the increase in demand bactive, and continues to expand ; makers report the iron trade i well satisfied with the prices they have realised. In the malleable iccupied orders for bars and pirders coming in very regularly occupied, orders for bars and girders coming in very regularly. I
the plate and sheet trade there is, likewise, a fair amount o basiness doing, and prices are stiffening. The railway and engineering department is in a very lively condition, there are plenty of contracts on the books, and the mils are kept fully going.
In France the tendency of the iron market is frm and satisfac. tory. A number of fair orders have been coming in upon the woek, and regular employment is secured to the different branchee blast farnace works, some of them being so folly engaged tha they were compelled to assign part of the orders received to
Belgian firms. Quotations bave undergone no change since for letters. In Belgiam both raw and manufactured iron are weakly called for, so that buyers can easily place their orders at quota tions below market pricee. Girders form the only exception,
being in lively request generally. Steel rails, on the other band March and April of present year, no alteration Plates, No. 2, free Belpian station, rose from 127.50 on 130 f . p.t.
No. 3 , from 147 to 150. p.t. Stoel plates have well
Naintained the price of 940 f. p.t., sheots, $95 f$. pt. . the begioning of May there were twenty-nine blast furnace of 1120 t . forge pig, four with a production of 315 t . foundry pig pit prong per day, while twelve produced 1150 t. basic per day.
The following shows the production of
The following shows the production of pig iron in April and
aring the first four months of 1894 and 1893 :-

\section*{Forge pig

Found
Basic... pig
..

Belgian export to Russia bas considerably increased since las year, owing in some measure to the tariit differences between
Russia and Germany. During first four months of 1892 export in
 There Thenisb-Westphalian iron remarkable variation in last week, the state of the ron ore market being favourable and much inclined to firmness. rising; Spanish ore is still but moderately inquired for. The pig
porm ron market remains comparatively quiet, buyers showing rather more reserve. Spiegeleisen continues in moderate request ants
former price of M .52 p.t. The malleable iron trade presents no new feature, except that the activity to which reference has already been made is increasing in some branches, Hoops, for
instance, bave been in decidedly better request this week than last. A regular demand is coming in for plates, but prices, unfortonately, remain a weak point. Much the same can be reported
of sheests. The situation of the wire business is rather more favourable than during previous weeks, but still prices are in no
proportion to the advanced quotations of steel billets. The ship. building and engineering trades continue dall, and there is only factories. 7 per cent. dividend for 1893, against b6 per cent. in the provious year. Statistics published by the French Minister of Public Work
show output of pit coal and brown coal to have been during the

MERICAN NOTES
New York, June 1st, 1894.
The rate of interest has fallen so low that certain wealth Thank rate institutions have withdrawn entirely from the loan
market. Bosiness of all kinds is at a low ebb. The month market. Business of all kinds is at a low ebb. The month of
Aguyst will wittenss some improvement. Stocks of mill, shop, and factory products are low. The range of valuess remains the same
In the iron trade less activity prevails. Furnaces are banked, and a great deal of rolling mill capacity is idle. The coal strike is general; 175,000 miners are idle. There is but little sign of an early settlement, Rail mills are doing well on girder rails.
Merchant steel is gaining. Bar iron has improved, but only while so many mills are idle. The summer months will be better if the out material or supplies, is waiting. The makers of pig iron are
or holding stocks at 12 dollars for No. 1 Foundry delivered. Bessemer pig is scarce and out of reach. The adjournment of Congress
probably mark a sudden improvement in business in all lines,

LAUNCHES AND TRIAL TRIPS.

On Tuesday there was launched from the
Cleveland dockyard of Sir Raylton Dixon and Cleveland dockyard of Sir Raylton Dixon and C., Middlesbrough, a steel screw steamer,
named the Cierbana, which has been built to named the cierbana, which has been built to Ramon de la Sota of Bibao. The vessel is of the raised quarter-deck type, the principal dimensions being: - Longth, 234 ft , beam, 31ft.; depth
moulded, 17 ft . 6 tin. and she will 'arry about moulded, $17 \mathrm{ft}$. . 6 in. and she will carry about
1900 tons at a light draught. The decks and 1900 tons at a light draught. The decks and
deck erections are all of steel and iron, and prodeck orections are all of steel and iron, and pro-
vision is made for water ballast in the cellular vision is made for water balast in the cellu uar
doublom which extends right fore and aft, and also in the after peak which is fitted as a ballast chamber. The engines will be fitted by the North-E starn Marine Engineering Company,
of S Sunderland, the cylinders being 16in., 26in., 43in. by 30in., with one large single-ended boiler work. ing at 160 lb. proserge per square inch. Ther.
construction of the vessel has been carried out construction of the vessel has been carried out
under the supeintendence of Captain Ybarra. under the supeintendence of Captain Ybarra.
Oo the 26 th ult. the trial was made of the twin screw tug Cecil Rhodes, H, Mreen iesrs. R. Messrs. Alex Wilson and Co., Vauxball Ironworks, Wandsworth-road, London. The vessel is for service at Enst London, South Africa, the
dimensions of the hall being 10ift. long, by 2 ft . dimensions of the hull being 101 ft . long, by 21 ft .
beam, by 9 ft . draught, and the conditions of the contract in regard to speed, draught and stability were of the most onerous nature in order to
obtain the best possible results, and which wortain the best possible results, and which
obecessitated the use of workmanship and material necessitated the use of workmanship and material
of the higbest class for both hull and machinery. corrosion than steel at a port where the opportunities for docking frequently are fewer than in a home port. This, however did now apply to the
boiler and machinery, which are of steel throughboiler and machinery, which are of steel through-
out, the propellers being of manganese bronze out, the propellers being of manganese bronze,
both the vessel and machinery being also constructed under Lloyd's survey for the highest class. A speed of twelve knots was obtained throughout a six hours run between Gravesend and the Mouse Lightship, the engines maintain-
ing a uniform speed of 155 revolutions, indicating ing a uniform speed of 155 revolutions, indicating
700 -horse power. The engines, which are two in number, are of the compound type, having
cylinders $15 \frac{1}{2} \mathrm{in}$ and $30 \frac{1}{2}$ in. diameter by 2 lin.
stroke, with extra large cooling surface in the stroke, with extra large cooling surface in the condensers, and are fitted with the circular
balanced and double-ported valves which Messrs. balanced and double-ported valves which Messrs.
Wilson have now used for a number of years with great success. The consumption of coal was, we are great success. The consumption of coal was, we are
told, under 1 ib 1 b . per indicated h.p. per hour, which
is extremely is extremely low for a compound engine, and was, the makers state, due to the high piston speed and
bigh ratio of expansion, the valves being set to cut off at half stroke with the boiler pressure at 100 lb . The consulting and inspecting engineers were Messrs. John Thompson and Son, Londonstreet, E.C., this being the seventh vessel built
by Messrs. Green, and engined by Messrs. Wilson, under their supervision.
On June 5 th, Messrs. Furness, Withy, and
Co., launched from their shipbuilding works at Co., launched from their shipbuilding works at
Hartlepool a large steel screw steamer, built to the order of Messrs. Rankin, Giilmour and Co to Liverpool. The vessel is a very substantial type length, and built throughout of Siemens-Martin steel, with a large measurement and deadweight capacity, and built to the highest class at Lloyd's.
Following out the practice of the builder, the Following out the practice of the builders, the
greater portion of the shell plating is in 24 ft . lengths, and to still further increase the strength of the structure, some of the largest plates tha have ever been rolled have been used in the construction of this vessel; in several instances
some of the shell plates run up to 64 ft . by 5 ft . wide. These enormous plates have been rolled by Messrs. Bolckow, Vaughan, and Company, Middlesbrough. A new design of bilge intercostal keelson is fitted in the bolds-Sive wright's patent. By this new arrangement very
much of the dunnage and damage to bag cargo is avoided, there being no pockets or receptacles for loose grain, coals, dirt, \&c.; consequently these when dischan be much more rapidly cleaned down when discharging cargo. The accommodation for deom houses, one at the fore part of the egie room and the other at the after end of the climates, and in the heavient wiation in he the officers are likewise close to their work schooner, and, to make her available for bridge
and canal work, the topmasted engines and boilers have been constructedic. The well-known firm of Messrs constructed by the Sons, of Hartlepool, and are of Richardson and with every provision for economical working naces, and are fted with large suspension furauxiliary feed water supplied with the necessary The ship and engines have been constructed ator. Mr. Reid. supervision of Captain Davey and firm. On the marine superintendents of the firm. On leaving the ways the vessel was named
Saint Jerome, by Miss Kathleen Watson, Dock House, West Hartlepool
On the 5 th instant there
yard of the Earle's Shipbuilding and Engineering Company, Hull, the twin-screw steel yacht Zoraide, of about 550 tons yacht measurement which it has built to the order of Mr. T. J Waller, of Baynard's Park, Horsham, the dimen sions being as follows:- - Length on load line
162 ft ., breadth moulded 27 ft , and depth moulded 17 ft . 6 in . She is built to Lloyd's rules for the highest class in the yacht register. The vessel
has a squared stern and curved stem with hand some figurehead, a flush upper deck and top-
gallant forecastle, and a complete lower forward and aft of the engines and boilers. On the upper deck is a range of deckhouses, contain ing a drawing-room, vestibule, and entrance to sleeping cabins, dining-room, pantry, galleys, engine and boiler casings, and captain's room
\mathbf{A} water-ballast tank is fitted aft for trimming parposes. The ship is to be rigged as a fore-and builders with two sets of their triple-expansion three-crank engines, actuating two bronze propellers, and steam will be supplied from two stee
boilers, of large size, to work at 175 lb . pressure

THE PATENT JOURNAL

Applleation for Letters Patent

 * When patents have been "communtcated" the${ }^{23 n d}$ May, 1894.
 ectional Air Tubes for Tires, G. A. Macbeth, London. aisivg and Lowerivo Sashes, w. Meakin,
 10.017. Boor Headbanps, H. K. Stevens, London.
10,018. Extevsion or FLoor Laurs, W. Soutter, Bir
 10,020 K Kives and Forks, Deakin, Reuss, and Co. Sheffield.
10.0.02. Pootable Electric Laspra,
s. J. Maquay, 10,022. Lievid Metres, J. Thomson, London.
10,023. Are Puxp, T. W. Bourn and J. B. Richardson,

 ,029. Coaprersssd Fuzl, R. Fegan, London

 $\underset{\substack{\text { Lond } \\ \text { Lo. } 1.33 .1 \\ \text { Manc }}}{ }$

 Corthesy, Surrey.
00,037 DispuAxsao

 200. Drilinago and Boriso Apparatus, A. Taylor Lond. Dn.
Livisiso Gear of Velocirgdes, J. R. Topham,
London.
 O.Ondon. Coluprasbe Boxes, w. R. Cuttle and H
Tayior, London. Taylor, London.
,o4t. Prondina

Electric Morors, J. B. Ormaby
 Z.ocato, London of Stexcll Suetts, E. de

 2toburr Maiy, 1 Bat
10,050. Beatrers for Threshiva Machines, C. Garfitt, Sheffield
0.051. Poraro HoE, J. Crawley, jun., and c. s. Mossop, Lincolashire. ${ }^{\text {London. }}$, ons. Cutriva Wueks for Clocks, w. C. Fischer
Glasgow. . W. . STos, W. E. Parsons, London.
10,055. IRON FEvcivo, W.' Bayliss
. R. Hiold
 Manchester.
0,055 . TRer
,
, Shields 10,059 Coveriso for Sroppers, G. A. Shaw and Kay

 , Birmingham.

 $10,072$.
Man
Mana
Lornd
Lond

 Coventry.
10,0.081. Loons, T. Surpronnt, Canada,
KETLLE, H. W. Handcock, Lond

${ }^{10,1}$
 $\xrightarrow{0}$

 10,094. Sely-activa Dravoht Prevestren, J. Wilson,
Loondon Thes of Wakels of Bicycuse, R. J. White,
Lonandon.
Lond London.
stond
ston
RodAy Poxps, E. A. Jeffreys, A. H. John

10,09s. Thrizeway Cock, H. H. Lake.-(B. Hopkins,
Gemany.)
(0,099. lipreosatiso CLothes, A. Lenneberg,

 Wanger and W. E. Gibson, London,
O,102. Burress for Rolliso Brocks, H. B. T. Stanton and
and
Tozerr, Lo
London.
 Stata.) Decresaing the Deavort of Vessels, w. Pirrie, London.
10, 105
Prodoting Alcoholic Beveraoe from Mluk, 10,106. Prododing Alcoololic Beveraor from Mlik, A. Bernstein, London
EDPCLIOML
APLIANCE, M. R. Jewell
 London.
Lo109. Powder
Hoists, Sir Andrew Noble and R. T. Brankston, London. Good and S. Spencer, London.
0,111 . FORNACES, s . Oates, London.

 Lo, Lis. ELen
ectric Lasprs for Soroical Porposes, A. C
 0,117. Ovens for Burnimo Porcelain, dc., E. M. C Condouin, London. 10, 120. BLast PiPs for Locomotive Enoines, J. Angus, Lo,121. Scerw-proprlurrs, A. O. and W. G. Chudeigh

 ${ }^{\text {and }} \mathbf{1 2 6 .}$. LETTER FLLE, F. H. Browne, London.

25h May, 1894.

, 227. Bichrointe oxyhydroass Compousd, T. a

 Beard, and A. Taylor, Redbrook, near Monmouth.
10,130. ADVERTISEMENT or SBow' CARD, D. Forbes, Bristol
10, 131.
Breyolse, Tricyoless, and the like, J. Haslam,
 Halifax.
${ }^{\text {Colaven. Deyice for Mensurisa }}$ Ted, dc., W. Shaw London.
10. 135. ELAstic Tires, J. Moseley and B. Blundstone

on-Tyne. 10,140 Reoutiva Electric Currests, w. Hartnell, Lued. Buryino Hydro-caR Bons, F. Woodcock-Rhyce,
Birmingham.
00,142. ADAPTAB
B Bib Cock, \&c., T. Powlesland Plymouth.
iol 143. Tin FAstexer, w. W. Lewis and L. J. Mitchell,
London.
London.
10, 14. STaNDs for CARDs, C. W. and P. S. Faulkner,
L. 14 don.
10. 145 STAND for CARDs, C. W. and P. S. Faulkner,

lor Improved Dra uhght Company, Vnited Statas)
0,147 Repe Curs, W. Marshall and T. Greenwood

London 152 . Method of Marine Propulisios, G. W. Mallet

ondon.
Lamplugh, London.
10,155. Shirtive PuLie
Germany.)
0, 156. Revirimo Holes, w. J. Baliss and w. T. Hall,
n. spryon FLushiso Cistress, T. L. Templeman,

 London.
10,161. Device for Retalivivo Bed clothes, J. G. Jones,
,
,

 London
0, 164. Collurs for
Horses and Antuals, J. Rulph,
 London.
10,166. Corixiva Botrits, H. Stüssler and I. M. Zeller.
 CHives, Cr. F. Hilder, Londion. Hors, J. Watkins, 10,169.0. Phatates for Secondary Voltaic Battranies, g . R. Blot, Lodon.
10, 170. . Tipe Courlisos, J. E. Howard and J. C. Taite, ${ }_{\text {Lo,17. }}^{\text {London }}$ Writiso Tkiboraphs, P. A. Newton.-(B.
 son, Londons. Wirg Ropss, s. o. Cowper-Coles and

1. W. W. Wankiko
Her, London.

10,188. Isk and Pesch. Er.sers, C. S. Cohen, London.
10,184. Loons, A. J. Boult.-(E. Delacurellic and Co.,
 pool.
10. 186 . Skly lockiso Cleats for Wibss, E. Nashold London.
10,187. Rorary ExoIses, dec., w. P. Thompson.-(A.
 London. 10, Bing HAv, J. H. Howard and E. T. Bousfield
Lond London
10,191. Funsacess for Produciso Hot Arr, W. A. Gibbs, London.
10, 192.
BRUsers,
A. Dumas-Gardeux, London. 10,193. Toust PREpRRATION, H. Priester, London.
10,194. DyEs, J. Y. Johnson.-(The Badieche Anitin a
 London.
10, 1966 . Aropprss,
H. H.
H. Leigh.-(M. Rubin, United 10, 1977. Metallic Sodium and Potassiun, c. t. Vautin, 10, 19n. Consstructivo Whekls and Pullevs, R. Hudson,
 10,201. Boot Jacks, H. K. w. Jonas, London.

28bl. May, 1894.

10,202. Phorooraphy in Colours, G. Teasdale Buckoll, London.
10.203. CoAL-curtisg, \&c., Machiskry, J. B. Alliott, London.
10, 24. Valves for Prevsatic Hasagers, E. Bkinuer,
 10,206 Syrion Cistrexss, J. West, Sheefifield and W. T. Bury, Lond. .on.
ind
hampton.

 10,214 . Gas Exarne Exhavst Purifier, W. Habgood and s. . Smith, Bucks
a,215. Hikdesino Poivts of SERRATED Wire, J. Platt, Halifax,
10.216. Loudixa Guss, Sir A. Noble and C. H. Murray, 10, ont. son

 and
10,220. Pouirs for Forinco FLUIDs, R. B. Clarke, Manchenter.
10.2n. Excludisa Dravarts in in Doors, W. Nicol,
, haspow

London.
10.255 SpRyyso NozzLE with Swivel Joist, G. F.
Strawson, London. Strawson, London.
10,226. PEDAL
GRIP for Colise Shoss, H. Prince,
 ndi, DEoporisisa, \&c., Skwage, W. H. Hillart T. B. Smith, Birmingham,
10, 230 M M M pool. Birmingham
10.232. LJos of Ralx-water and Vent Pipes, J. Robson,
London. ${ }^{\text {London }}$ Lens. Fabtexino Leather stanps, T. Rosethorn,

 10, Rzs. Sants Lows for Spismiso Frause, R. H. S. Reade

 10,24nchonester. Dind Jans and Glasses, de., F. Delahay, LondonEanctric Swich, w. Hearn and C. Gatehouse,
Onden.

 10, 255 . Chinks for Velocipedes, H. P. Cook and J.
 selv-actino Catch for Doors, G. J. Cole,

Tiuss and Rdis of Cycles, cce., R. Watt, 259. Michinvs for Exsossixo Wood, A. E. Frisby,
 61. Tungs. Bolfast Flax S Sipining and Weaving Co.,
and 8 . McDowell, Belfast. Pkpals, W. Bown, J. W. Fhavell, and G. Cape-
Birming Birminghiam.
Mw.
ow. oting stockiscs and Halr Hose, C. O. Dixon, Not-

10, 270. Spard Gearixo, W. Boatock and A. Nicholson,
Nottingham. Notting ham.
10, 271. Daor Hasple, S. Skerritt and J. W. Ogden,
Bhefield. Shetield.
10.27. Dravort Ixdicator, T. G. Barron, West
Hartlepool. Hartlepool.
10, 27. Boller Chevlativa Apparatus, T. P. Statham, Bristol.
10,974. GLaziso Roors and Sunraces, H. C. Board, Bristol. FLoseiss WATEE-CLoskTs, \&c., J. H. Vidal,
Sunderland. 10.722. Packiva Pistove and Spisdles, G. W. Dowell,

10.275. GUards for Doors, E. . . Baller, Bouthport.
10,279. Bicyocks, R. Scott, New 10,280. Dayisa Cacao Beass, C. Hodson and W. Daw

10,283. Drbasiso-Blades, J. Gròger, Colegne.
$10,28$.
10,285 . Spoxozs, V. Rose, Cologer
Imtivo the Vkiss of Wood, F. W. D. Cohner,
Germany. Spisa Baxds for Belss, P. A. Martin,
10.236. Wire
Birmingham.
10,287. Eoc Whisks, T. Taylor, Birmingham.
10,238, Mcccines for Workivo Doven, J. H. Mitchell,
Glasgow, 10,239. PUMP, D. Davies, Swansea.
10 290. CAP, S. L. Pryor, London.
10,291. Jorstry for Tous, J. W.
10 290. Car, S. L. Pryor, London.
10, 2901 . Jonss for Tobes, J. W. and w. w. Bristol,
Binming 10.292. ILLLumisatiso Watches, J. Manger and E. Mojon, London.
10.293. ELEOTrac Lasp, J. Manger and E. Mojon, London.
10, Sobrendino Hats and Cars, G. M. Tarrant,
London. 10, 205. Gzaniva for Cycles, L. Watkins, London.
10,296 . Foot-Rest for Croles, P. R J. Willis -
 London,
10,299- IsDIA-RUbBER Erasers, H. P. Mitchell,
London. London.
10.30. Apparatus for Makina Ioes, A. Glasson,
London. London.
10, Soln. Cankss of Bicycles, de , T. and J. Hooper, London.
10,302 Berimas, G. J. Glover, London,
10,303 Oontaliniva Gold from SEA-WATER, H. C. Bull, London,
10,304. Typoarapaic Printino Surfaces, F. Stern-
berg, Herts. berg, Herts. 10,30. LEekikaoe Isdicator for Drains, F. H. Harvey,
London. 10,307. Sprisa, B. Cockin and G. E. Stringer, London. 10,30 . OLL Sroves, E. Rippingille and W. Porter, London.
10, 300. Oil Sroves, E. Rippingille and W. Brandon,
London. London.
10,310. On. Stoves, E. Rippingille and W. Brandon,
London. 10,311. CAstors, A. T. Eloure, London.
10, 312 Tires for BICYCLE WHEELS, R. J. White, London.
10,313. Vastatioys in Sewage, W. H. Hughan, sen.,
London. 10,3nd. Game, T. E. Franklyn, London,
10.315. Ball, Beakisas for Castors, H.
London.
Lexin
Lichor London.
10,316. Novel Means of Advertisina, G. S. Thompson,
London. Lo, 17 . Crole Pareumatic Tires, J. C. Montgomerie,
London. Lo, 318. EYE.-GLass, J. J. Thorpe and W. H. Andrews,
London. 10, L19. BLowgrs, G. W. Poole, London.
10,320. Ventilation of SEwERE, \&c.,
London. London.
10, 322.2 Extraction of Metals, J. P. van der Ploeg,
London. London.
1032. Feed Trovor for Cattle, \&c., J. H. Denison,
London.
 10, 325. Removisg Boller Scale, J. C. A. Marckmann, London. $10,320$. Miles, O. Zimmermann and G. Hagemann, London.
10,327, LDons, E. Schrabetz, London.
Lisisvzeror, H. K. Andersson a
10 London. Tap, T. R. Atkins and A. Krut 10,330. Protective Appliance for Hats, J. Ayres, London.
10, S3i. Electric Conductors for Vehicles, F. B. Behr, London.
10,332. Asc Lasp Reoulatino Device, S. J. Suter,
London. 10,333. Ngw Colourisa Marters, J. C. L. Durand,
D. E. Figuenin, and A. J. J. d'Andiran, London. 10,334 AprLyina the Brakes on Trains, C. Adler, Lotuon.
10,353. Trpewritkes, P. M. Justice.-(The Typerriter
Attachmonts (ompany, United State.). Altachmonts Company, United State.)
10 336. LaMrs, E. A. Jeffreys, London.
10.337. WATERPROorive, H. Cohrs and J.
10,338. Dental Drllinga Machings, T. Dill- Bicher London.
10, 339. Stean Motive Power Enoines, w. W. Dunn,
London. London.
10,340 . BorLers, W. W. Dumn, London.
$10,341$. Srpyos, D.
 Zielke, London. A. W. Hulsmann, London.
10.33. FuTER, H. A. .
10, ExtR London.
10.345. Transporting EARTH, J. S. and J. Hobrough,
London. London.
10,346. GAITERs, A. Hess, London.
10,347 . HEATINO
London. Londi. TYy Supports, V. Calendoli and A. Savarese,
London. 10,3i9. SETtivo-UP TyPE, V. Calendoli and A. Savarese,
 Lo, 351 . Nall Breshes and the Hike, H. A. Wanklyn,
London. London.
10, Conse
London. 10,353. Fittings for Electric Lamps, J. Mortis, jun., London.
10,354. Trusks, \&c., A. J. Boult.-(G. L. Lippold, Gcmany.)
10,355. Obinsisg Combestion in Borlers, H. I.
Roberts, Liverpool 10,356. VALVE MECHANISM, J. S., T. A., and E. R. Walker, London.
10,357. SWEAT-BAND and LEATHERS, A. Higginbottom,
Manchester. Manchester.
10,35. SADDEE Traks, A. J. Boult.-(- Pluer and -.
Thorring, Germany.) Thorring, Gervany.)
359. CLothes Washiva Apparatus, J. Roberts,
Liverpool. Liverpool. B
10,360. Doss Biss, F. S. Salberg, London.
10,361. ApPARATUS for Bolliso Size, F. S 10,361. Apparatus for Boiliso Size, F. Scarisbrick,
Manchester. 10,3 anchester. Spreso Scales, A. J. Boult.-(E. Keinhols, Gor-
many.)
 pool. Elsctric Morors and the like, E. Dragoumis,
10,364. Endon.
Lone London.
$10,365 \mathrm{~m}$ Tines for Bicyoles, \&e., W. Ashburn, Man-
chester. 10,366. Recordiso Apparatus, A. J. Boult.- (E. A. Mevrr, Germany.) 10,307 . Boors or dioks, A. Gilmour, Liverpuol.
Soropratso Botrke, A. J. Boult. - (Wegener, Germany.)
$10,360$. Pmovomsise for Photoonaphic Purposes, J.
Barnes, Manchester. Barnes, Manchester.
10,370. MLK-Boemrse AppARATV8, A. J. Boult.-(F.
Goldmann, Germany.) 29th 29th May, 1594.
10,371. AxLe-boxes for Rolliso Stock, G. Wilson, 10,372. Cionemtre and other Holders, R. Rapson, Margate.
10, 373.
Cigar
Trimager, C. and C. T. Edwards, Leamington Spa.
10,374. Puorooraphers' Desks, dc., J. w. Beaufort, $\underset{10,375 .}{\text { Birmingham. }}$ MLT, E. Manbrü, J. L. Barrett, and C. N. Pochin
 London.
10,378. Cask for UsE in Advertisina, T. R. Soymour BristoL
10,379
Halifax. Halifax.
10.380. Loom Patteran Charss, W. A. and D. Crabtree Keighley.
10,3s1. Picirsa Morross for Looss, J. Hibbert and
J. Marsden, Maner
 Worksop.
10,3S3 BLind Rollers and the like, S. O. Taylor,
Leicester. Leicester.
10.384. Carbos for Electrical Purposes, G. S. Orson,
Belfast Belfast. Nox-slipping Splice for Fishiva-rods, A.
10.355. Nrant, Glangow Grant, Glasgow.
10.386, Clocks for Oper
F. Fritz, Manchester
F. Frita, Manchester.
Restino Electrical Alak3s, burgh.
10,388. A CycLe, J. Pledger, London.
10,389. Skp
 borough.
0,390 HNEUMATic Tires, E. H. Seddon, Manchester
10,391 0,391. Apparates for Dyeina Textile Materials, F. A. Blair, Glasgow.
10,392. APPARATUS for Dyeino Yarns, J. Pritchard, Glasgow.
10,399. ARC LAMps and Appliancers, E. A. Claremont,
Manchester Manchester.
10,394. TAROET Reoister Holder, w. S. Buiton,
Aldershot. Adershot Antise Carriage Doors, L. E. G. de
Woolfson, Shrewsbury. Woolfson, Shrewsbury.
10.39j. COP HoLDINo STAND, E. Thompson, C. Colver,
and J. W. Dixon, Shentield. and J. W. Dixon, Sheffield.
10,397 , PIPE DAs
Shefield. 10,928. Crale Geariso, J. Allinson, Sheffield.
10,399. Cabr Reckoner and Teller, H. P. 0,399. Cabr Reckoner and Teller, H. P. Babbage
Cheitenham. 10,400. STTAM Bollers, M. Rankin, Glasgow.
$10,401$. STEAM Bollers, P. Pinckney, Portsmouth.
 10,404. Sprinsisa Frames, J. H. Hamilton and F. W. 10,405. CreLEs, A. Pickard. Harrogate.
10,406. TEA and Corver INYUBER, W,
Birmingham Birningham. 10,407. Locknso Crcles, T. Clarke, Birmingham.
10,408 . LAstiva Boors and SHozs, F. Cuthan, London 10,408. LAstina Boots and shozs,
Liverpool Liverpool. Crcle Gear, R. Campbell and W. Railton,
Liverpool. 10,411. GAME, L. A. Pilley, London.
10,412. Syoothiso SLATES, O. J. Owe

 -(F. A. Fox and D. H. Roberto, United Stated.) Wise
10,410. Kilas for Burnivg Limestone, \&c., J. Brige Lancashire.
10,417. SkLF-Lockisa Skibt Grit, S. J. Herts, London.
10,418. LETTER ENVELOPE OPENER, D. Young.-(W) Drylad, France.
10, 419. MAchive for Tursina Cury Blanks, G. E.

10,421. Hov. water Heatino Apparatus, C. J. Bal
thasar, London
thasar, London
10,422 dooniso Ranoes and Boilers, T. J. Cornisb,
London. ${ }^{10,423 \text {. }}$ Degion Paper for Weaying Purposes, H. Wilisch London.
10,424. Masuracture of Plunbaco, P. F. Johnson $\xrightarrow{\text { London. }}$
London.
10,426. Dynamo-electric Michings, J. A. Kiogdon,
London.
10,427. Conposirios for Iscandescerss for Layps, F.
H. Medhurst. - (L. Chandor, Rusia.)

London. London.
10,430. Door Chegeks, T. Curley, London.
$10,431$. Harekss, A. G. B. Ashton, London
10,432. Psisumatic Tires, P. L. Renouf and L. Stroud,
London.

 London.
10,436. Tirss, P. E. V. Hardy, London.
10,437. Tires, P. E. V. Hardy, London 10,437. Tires, P. E. V. Hardy, London.
10,438. MAKING ARTIICIAL FUEL, G. S. and C. Cory, London.
10, 439. MAkiva Iveots, A. H. Moore and G. Whitlock,
London. 10,440. Hat-RACKs, C. E. Cochnane, London.
10,441. Fime-PAILS and ATTACBMENTS, F. B. Comin
London London.
10,42. Machines for Makina Barbed Wire,
Sinbum Swanbum, London.
10,43. APPARATVS for SAVINo LIFE at SEA, F. Barathon, 10,444. Peryutation Locks, W. R. Lake.-(D. J. Cable Unitad Stala.)
0,445. Foxioators, C. T. Kingzett, London.
0,46. Rockina Cmiddern's Cradles, V. A. P. Louis,
London.
10,47 . Gis Heating Stoves, J. Grundy.-(H. Heim, Austria)
10,448. Rins for Use with Pmeventic Trese, E. A.
Bale, London. Bale, London. Sping Stay Bubk, J. B. Davis,
10,49. Centre London.
10,450. LACE, H. F. Moreau and L. Canevet, London,
10,451 . TRasiWAY and similar Enoises, E. F. Piers, London.
10, 52. Esornse, E. F. Piers, London.
10,432. ENornse, E. F. Piers, London.
10,453. HAIR-PIN, R. H. Parfitt, London
10,454. STITCHINO SHETs of Siose
Ortloff, London. 10,455. Churss, J. J. H. Duncan, T. Nuttall, T.
Bevington, and F.
H. Faviell, London. 10,456. WATCH PockET, G. W. Carter, London. 10,450. WATCI Pocker, G. W. Carter, London.
10.45. VAcUUA BRAKE APPARATVB, A. Spencer,
London.

10,458. Roranr Esoisss, H. A. House, H. A. House, jum.,
and R. R. Symon, London. and R. R. Symon, London.
10.450. Brakss, T. H. Alen, J. Gray, G. Hastings, G.
F. Shepley, and H. Marhi, Canada, F. Shepley, and H. Marhh, Canada
10,400. STEAM GENERATORS, C. S. Galloway, London.
10.461. CAMERA, B. D. Wiliams, Newport, Mon.

SELECTED AMERICAN PATENTS.

From the United Statet Patent oflice oficial Gasette.
 CCaim, - In a stemm generator of the character
described, the combination, with a water tube receiv-

ing water at one end, and discharging it wholly or
partly evaporated at the other end, of a device conpartly evaporated at the other end, of a device con-
sisting cosentially of a plurality of helicoidal blades set transensecy in in said turbe, and clips adapted to
sengase said tube and hold said device in position,
eng substantially as described.
518, 133. Electrical Contact Mechanisu, J, F
Blahk, Nae Haven, Conn--Filed January 25 th, isp
Claim. Claim.- (1) An electrical contact mechanimm, consist ing of a pivoted lever or arm provided with an insu-
lating portion and separated conducting strips,
dectrical terminals iating portion and separated conducting strips,
electrical terminals connected to said conductiog
strips, a rolling contact electrical terminals connected to sail conductiog
strip,
pivoted lever or armact and electriceally travel on the

said conducting strips, and a spring having a jointed
connection with the lever or arm for operating the connection with the lever or arm for operating the
latter, substantially as described. (2) An electrical contact mechanism comprising a lever or swinfing
arm provided with electrical terminals and with an
insulating portion a insulating portion, a rolling contact adapted to trave
between the terminals and isulating portion, and a between the terminals and isulating portion, and
hollow spring connected to said lever and adapted to
receive pressure for actuating the lever substantill receive press
as described.
518, 149. Controlliso Valye for Hydraulic Pres-
svie, A. Kampf.- Filed January 288 , 1893 . sous, A. Kamp.- Filed January 288, 1893.
Claim.- (1) In combination with the accumulator passagu,
comicating upper and the accumulator passage, the
over the overtow also communicating with the uppor cyllinder
passage, and the accumulator, the overfow passage, and the accumulator, the overflow and upper
cylinder valves, respectively controlling the accumu.
lator passage, the overflow passage and the communilator passaiges, the overtlow possage and the commumi-
cation between the upper cylinder and accumulator
cer

said valves, consisting of the pair of rock-shafts Q and connecting link Twh which cause, said shaftts to oscillate imultancousi, the one-armeo the accumulator valve ;
shaft V and projecting over the
and the lovers R, 8 , fixed upon the shaft Q, the leve S having a pair of arms projecting on one side over
said overflow valve, and the upper cylinder valve, and said overtiow valve, and the upper cyinder valve, and
the lever R having an arm projecting from the oppo-
site side over the accumulator valve, all substantially site side over the accumulator val
as and for the purposes set forth.
518,155. Gun Embrasure Joint, C.
Magdiduryh-Buckau, Gartin,
Memany.-Filed srd, 1891. The combination of an embrasure
Claim.-(1) The
 surface, a ring of concave-convox form in cross-section
fitting on the collar against the shoulder, and the fitting, on the collar against the shoulder, and the
adjustablo gland located in the bore, having a conical
recess in its forward end occupied by the rear side of

the ring; the shoulder, embrasure, ring, and gland
forming a space between them into which the powder gases onter from the front side of the ring and force
the latter against the collar and into the recess the lhe glar against substantially as described. (2) The
of the
combination of an ombrasure having a cylindrical
bore at its inner side forming a shoulder, a collar
surrounding the gun having a convex surface a ring of concave-convex form in cross-section, divided circumferentially and fitting on the collar against the
shoulder, and the adjustable houdider, and the adjustable gland locatedin the bore,
having a conical recess in ite sorward end occupied by The roar side of the ring; the shoulder, embrasure,
ting, and gland forming a space betwen them into
which the powder gases enter from the front side of which the powder gases enter from the front side of
the ring and force the latter agaiost the ecolnar and
into the recess of the gland substantially as describod
518,181. Gas Apparatus, T. Curley, Wimingtom,
Del.-Fled Noxomber 23rd, 1891. Claime- The combination of the generator and superheater of a gas apparatus, the discharge pipe at
the top of the superheater, a flue or pasage in said the top of the superfeater, a flue or pasage in said
superbeater extending from top to bottom of the
same, and communicatiog with the combustion

chamber of the generator, and with the lower ond of
the superheater chamber, and a by-pass connecting the superheater chamber, and a by-pass connecting
the upper end of said flue with the discharge pipe of the superheater, said by-pass having an adjustable
valve for regulating the flow through the same, sub518,285. Fursace for Tagatino Repuse or Cries, 1892. (1) In a furnace, the combination of a
Cevoiming cylinder, a fireplace at the receiving end revolving cylinder, a fireplace at the receiving of a
thereof, and a chimney at the other end with a gas combustion chamber located outside of the chimney,
and a perforated wall facing the discharge end of the
cylinder and anranged andiper orated arranged tetween it ard the chimney,
cylinder and
substantially as described. (2) In a revolving cylinder
fubt substantially as described. (2) In a revolving cylinder
furnace, the combination with the inner
outer shel A, of an
outl B, having flanged sections with opposing outer shell B, having flanged sections with opposing
flanged offsets d, immovable ring g, with mnserted

water pipe g^{\prime}, and end rings b, the whole being fittod
and arraved and operating substantially as herein shown and described, and forming a water jacket or
space for the purpose set forth. (s) space for the purpose set forth, (8) In a water-
jacketed revolving furnace, the combination with the outer shell provided with a water discharge opening,
of a groover ring encircling said shell and havigg an
orifice coinciding with the discharge opening thereof, of a grooved ring encircling said shell and having an
orifce ooinciding with the discharge opening theref,
constructed and arranged substantially as and for the purpose described.
518,291. Mode or Coolino Electric Motors, E.
Thomson, Skampacoth, Mass.-Filed Nocember 80th, Claim. -The combination of an electric motor, a
closed casing therefor provided with projecting studs closed casing therefor provided with projecting studs
or lings adapted to increase its radiating surface, a

pipe communicating with such casing, and a water
jacket surrounding a portion of the pire, all arranged, substantinlly as set out herein, to provide a water
proof inclosing casing for an electric motor, adapted to
dissipate the heat genernted therein. dissipate the heat generated therein. Eppr's Cocoanse.-Cocos-Nib Extract. (Tea like.)
The choicest roasted nibs (broken pp beans) of the
natural Cocoa, on being subjected to powerful natural Cocoa, on being subjected to powerful
hydraulic pressure, give forth their excess of oil,
leaving for use a finely-flavourcd powder, "Cocoaine," a product which, when preparced powder, bolling wocoaine,
has the consistence of tea, of which it is now with has the consistence of tea, of which it is now with
many beneficially taking the place. Its active
principle being a gentle nerve stimulant, many benefcially taking the place. 1ts active
principle being a gentlo nerve stimulant, supplies the
needed energy without unduly exciting the system Soedd onergy without unduly exciting the system Sold only in packets and tins, by Grocers, libelled
"JJMgRs Epps AND Co., Ltd., Homeopathic Chemists,
London. -ADVT.

