THE MANUFACTURE OF COKE.

 No. III.It is with considerable gratification that we find ourselves in the position of being able to record the fact that the recognition of the importance of the employment of more economical methods in the production of coke has made, and is making, considerable progress in this country, and we look forward to recording, before these articles are completed, some good examples from independent practical experience in this country of the many advantages accruing from the adoption of the long narrow oven

FIg. 24-View of a battery of 60 otto-hoffmann coke ovens from the ram side
with the recovery of by-products. As an example of bank of Huessener ovens, moreover, other blocks of retert this spirit of approval we quote the following from the
North Star of January 26th, 1897:-"Cleveland North Star of January 26th, 1897:-"Cleveland coke industry.-In March, 1895, it was announced in the North Star that a new departure was taking place in the Durham coke industry, and that the Carlton Iron Company, Limited, had arranged to erect retort ovens for the recovery of the valuable by-products, tar, sulphate of ammonia, and benzol, in conjunction with their blast furnace plants, so as to enable them to gain the advantage of a regular supply of first-rate coke close to the blast furnaces. We now hear that the Carlton Iron Company's experiment has been so successful and the quality of the coke produced so superior, that the proprietors have determined to put down another battery of Semet-Solvay ovens and complete recovery plant. This will make in all for the Carlton Ironworks a plant of Semet-Solvay ovens which is expected will produce about 1400 tons of coke per week. There is every reason to believe that the new coke industry with recovery of byproducts has taken a firm hold in the Cleveland district,
and the Carlton Iron Company, as pioneers of the and the Carilon Yron Company, as pioneers of the latest and most improved development of retort ovens, are to be highly congratulated." It must be borne in mind constantly that any haphazard adoption of any system will almost certainly lead to failure; therefore, when it has been decided to replace any old wasteful method by a new and improved method, the first step is to determine which system or combination of systems is to be adopted, and this should not be done hastily, but should be considered whe delliberation, coupled with careful inquiry into all the merits and demerits of rival systems, on no account relying solely on the statements of interested parties pro or con. Having ascertained these actors, the evidence accundated should be cautiously weighed and precisely applied to local circumstances ; bearing in mind particularly the quality of the coal from which the coke is to be made, and the modifications in he ovens that would be required to suit such coal. When these investigations are completed, and not before, should he system the berould be taken eesided it in yon in offient maner, o have it installed and operatedin efficient manner, working it regularly, systematically, and continuously, oherws recently we lave had sa ine oth from relort ovens, one fion and the other just as good as one could wish to see; the former would lead us to the conclusion that retort ovens are to be avoided, the latcer the determinatio of employng of the fact that care is required just one demonstration of the fact that care is before forming a decisive opinion on this subject.
efore forming a decisive opinion on this subject.
It is perhaps well to draw attention to the fact that in the great iron-producing countries of Western Europe the beehive oven tas practically disappeared, and even in the central countries is being rapidly displaced by retort ovens. The remarkable effect that this has exerted on the German iron industry is too well known to all interested to need further comment from us, and all must acknowledge that German opinion on and example in the practice of industrial operations are not to be dis-
carded without mature consideration, which will generally carded without mature consideration, which will generally
lead to the conclusion that the opinion and the example lead to the conclusion that the opinion and the e.
are worth putting to the test on a practical scale.
Turning to America, we have at hand the facts recently
Turning to America, we have at hand the facts recently
published, from the pen of Mr. Joseph D. Weeks, to pubom we have referred previously, and whose regretted
death has removed a prominent authority from the metallurgical circles in the United States. These facts relating to coke-making are contained in a Government report, and include data relating to the introduction and establishment of retort ovens into the States up to the end of 1895 . The position recorded is, that at the close of 1895 there were in operation in the United States, in addition to the 12 Semet-Solvay ovens that have been in operation for the previous two years, 60 Otto-Hoffmann ovens ; whilst in course of construction there were 100 Semet-Solvay, 60 Otto-Hoffimann, a large number of Slocum ovens-a modification of Carvés ovens-and a

The company declined to place a value either on the ovens were in contemplation. The Semet-Solvay record is as follows:-

Por cent. of the yield of coke in Somet-Solvay
oven yielded in beehive oven from the ssme coal

coke made or the coal used. It may be observed, however, that the actual yield of coal in coke throughout the United States in 1895, taking the actual weight of coal charged into the ovens and the actual weight of coke drawn, is put down as not exceeding 60 or 61 per cent. Then with regard to the Otto-Hoffiman ovens, they had not
been sufficiently long in operation to have passed the exbeen sufficiently long in operation to have passed the experimental cokings, and therefore no record of their performance appears in the report. With regard to the Connesvile region, it is remarked that probably " the charac ter of the coke is so good that the oven owners do not see any necessity for attempting to improve its quality.
It is probable that the quality of the coke would not be
improved in a by-product oven, but certainly the enormous waste of material that passes out with the gases would be avoided were the by-product ovens used. It will now be opportune to call attention to a British view of the question, which, although, judging from the imperfect and guarded statements made in reference to this subject, it is apparently based on very casual observations, is, nevertheless, of significance. We refer to the comments made by the delegation organised by the British Iron Trades Association to report on the iron and steel industries of Belgium and Germany, which were to the following effect: Their attention was repeatedly called, in both Belgium and Germany, to the value and economy of the system generally adopted in both countries for the recovery of the by-products of the coal in the process of manufacturing coke. So far as they could ascertain, this system was being carried out almost universally on the Continent, where the beehive oven had been displaced by the Coppee, the Appolt, the Otto, the Solvay, or some other system specially designed to enable the ammonia, tar, benzol, \&c., to be recovered in the process of coking. They found the effect of this system was to enable the coke to be sold or charged to the furnace at a lower cost than was possible in the absence of such a system. But they do not venture to express any opinion on the technical question of whether the quality of the coke is in any way deteriorated by this process, as appeared to them to be either apprehended or ascertained in English practice. Finally, they restricted themselves to asserting that this difference in practice was an element in giving to continental countries fairly cheap supplies of coke-a safe, butimportant admission. Nerer theless, in spite of being left in the dark as to the sctual systems in vogue, their relative merits, the quality of the coke produced, the proportion of coal regained as coke, the actual economy effected, and a multitude of other sig. nificant points, the admission that some economy is effected must be regarded as offering fair encouragc ment to those who hesitate about changing from the bee hive to the retort oven.
At the close of the second article of this series, which appeared in The Engineer of September 25th of last year, we said we hoped to draw attention to other forms of ovens and their modfications, an intention we intend to carry out, but for the present we shall continue our remarks on the systems already noticed, for the simple reason that they are the only two that are prominently before the public at the present time, and, moreover, one of them has made some further progress since we wrote about them. Firstly, we will draw attention to the illustrations numbered respectively Figs. $17,18,19,20,21,22$, and 23 in the issue just referred to, pages 305,306 , and 316 , and about which statistics are given in the table on page 306 . Fig. 17 is a representation of an installation erected in 1891, and numbered 5 on the table, it gives a very good idea of the general appearance of a Semet-Solvay battery of forty-eight ovens, with the recovery plant belonging thereto. The view is from the discharging side of the ovens, and the various details may be observed. The charging tubs and the three sets of rails upon which they run; the ascension pipes, briages, the hydrauic main and other pipes carrying away the volatile products, whilst the is seen following along the top of the ovens on the side towards the spectator. The magnith the the various parts may be juaged by comparison win the men standing about. The structure to the right of the figure is a
storage hopper where different qualities of fuel are mixed

Fig. 25-END view of battery of 60 otto-hoffmann coke ovens
and ground before filling into the small charging tubs. Fig. 18 shows a corner of the plant at Brymbo-No. 11 in the table. The washer to the left is the first ammonia washer and tar extractor; the round apparatus in the centre is the benzol absorber; and the square washer on the right near the round tower is the final ammonia washer. Fig. 19 gives a view from the discharging end of a plant erected in England as far back as 1886, and numbered 2 on the table. Fig. 20 depicts the bench numbered 5 on the table. It may be observed that the vertical lines in the background have nothing to do with the plant, but represent an avenue of trees as reproduced
in engraving. This is a bench of twenty-five erected
in 1892. The methods of closing the doors and points, shows an arrangement for utilising the waste heat the arrangements for taking off the gases are dis- under boilers for raising steam. There are two distinct tinctly shown, as are also the washed gas return batteries of 25 each, having separate boiler installations pipe and cooling the coke outside the oven by jets of and recovery plant; one set being in course of erection.

We have at present nothing further to record in connection with the Semet-Solvay system, as their system is found to work to their entire satisfaction.
In the meantime the Otto-Hoffimann system has been making progress, and has undergone very considerable modification since the period represented in the issue of The Engineer already referred to, and, therefore, calls for further notice and illustration. We publish also-what could not be obtained before-a general view, which will give an idea of the character of the structure required for this system; this is represent two views of batteries of Otto-Hoffmann coke ovens of Otto-Hoffmann coke ovens
from the ram side, showing the from the ram side, showing the well as the arrangements at the well as the arrangements at the Fig. 24 the method of closing Fig. 24 the method of closing the ovens can also be seen, and in the front to the right the dust arresters; the latter can, however, be seen better in Fig. 25 to the left outside the by-product recovery house; in this view, too, the ram for discharging the ovens can be observed. The ovinde of these from the men oint gathered from trol in front from the coal truck in front of Fig. 25, which is a continental and
We may now refer to some of the modifications that have been effected in the Otto-Hoffmann ovens, firstly comparing Fig. 26 with Fig. 4, p. 303, of the issue water, whilst part of the recovery plant towers up at the Fig. 23 in a similar way presents to view four batteries of already frequently alluded to; the most conspicuous alteraback. In Fig. 21 the battery numbered 9 is set forth, 25 each. Here again may be seen the operation of the tion is that connected with the regenerative system, for with an old form of coke oven in course of demolition on coke cooling by men directing jets of water on to the not alone have the regenerative surfaces and areas been the left of the figure and the colliery buildings and wall of hot coke just ejected from an oven. This is the very much reduced, but also the regenerative chambers

Fig. 27-RECENT TYPE OF OTTO-HOFFMANN COKE OV.N

on five, instead of three arches, and air can circulate freely under the whole length of each oven. The whole of the sole of the oven, therefore, can by this means benefit by the cooling influence of the air, and not as hitherto be partially cooled, and partially not only not
cooled, but even subjected to the by no means desirable influences of the heat from the regenerators. Then the reduction of the size of the regenerating system has enabled a simplification to be effected in the conduit that carries waste gases from and fresh to the re. generator, this conduit here appears as a single larger chamber instead of two smaller ones. Another important modication is shown in reference to the gas for
heating the ovens ; instead of being conveyed in mains run. ning below and in front of each end, as shown in
Fig. 4 , in Fig. 26 it will be observed that these gas mains run along the top, and the gas is supplied to the ovens only in the side flues, but both at the top and at the bottom, thus providing for a distribucombustion, in somewhat the same manner as the disadvantage of overheat in the sole flue was overcome in the case of the ransformations of the Carvés and Simon-Carvés The cooling flues below the sole only appear in one direction, whilst the mode of making the con. nection between the in terior and exterior of the ovens for the preliminary heating has undergone some change, and the
flue over the arch and the flue or flues connectthe flue or flues connect-
ing with the side flue considerable alteration. The travelling winches represented as working over the gas mains are
for the purpose of raising and lowering the doors. The Otto Company is, remever, not content to
still progressing, and as late as August 27th, 1896, a patent of its own was published by the German
Patent - office. This newest modification is shown Patent-oftice.
in Figs. 27, 28, and 29. Here we find a complete revolution has taken place, the Hoffmann characteristic has entirely disappeared, and a reversion to the single main for the waste gases below the ground The same remark applies to the connection of this The same remark applies to the connection of this
main with the sole flues by means of inclined ducts -Figs. 27, 28, and section 3, Fig. 29. But the sole flues have quite altered in character and function; near the entrance to the outlet duct there is a small
parting wall that shuts off the other part of the sole flue, in which part there is no arrangement for any regular circulation of gas, air, or heat; consequently the lower
cooling flue has become unnecessary, and has been cooling flue has become unnecessary, and has been
abolished. The lower longitudinal side flue is, however, abolished. The lower longitudinal side five is, however, divided into compartments by the continuation downwards
of some of the walls separating the vertical flues, and of some of the walls separating the vertical flues, and ducts, with the sole flue. In this way, moreover, it will be seen that the vertical wall flues become divided into groups, but only the group at the waste main end is in connection with that portion of the sole flue that connects with the waste main, see Fig. 28; consequently, the current of gas is downwards in the last group of
side flues and upwards into the upper longitudinal side flues and upwards into the upper longitudinal
side flue in all the others. Now we come to the special feature of the present modification, indicated in all the cuts, that is the method of burning the waste gases. Instead of admitting them unburnt into the flues, they are in the new arrangement led by
piping beneath each parting wall and from Bunsen jets piping beneath each parting wall and from Bunsen jets
rising from the piping are burnt in orifices opening rising from the piping are burnt in orifices opening serves for the escape of the products of combustion. To ensure thorough combustion arrangements are made for injecting air above each gas jet. The continuous flue over the vault of the ovens has gone, and only a few short flues and in the patent drawing, Fig. 29, there are no flues whatever over the arches of the ovens, the necessary connection between the side flues and the inside of the oven being made by a junction with the ascension pipe provided with a valve, so that when this valve, v^{1}, is open and that in the bridge, v, is shut, the gases pass into the side flues, which can also Coppée. These arrangements are required in the preliminary heating of the Otto-Hoffmann ovens, which in all its modifications takes place by working them as Coppée ovens until they are raised the proper temperature, which once being obtaina, necessitate a cooling down. When this stage is attained the ducts leading to the charging holes are blocked up, as shown in Figs. 26 and 27, ing the entrance to the side flues is closed, and that leading to the hydraulic main opened. The tubes $p p$ Fig. 29, above-conduct air rop 2 and 3 , under the sole flue in the former and in the latter in the side flue, to be out of the way of the spent gas ducts.

In the new arrangement the substructure and founda tion have undergone considerable change, the ovens being mainly supported on longitudinal vaults instead of trans verse vaults as in former cases; these vauls are will become hot enough to keep him out-and in them are arranged the gaspipes, jets, and cocks; the gas main running under ground at one end. The air supply is now heated as in most other systems by recuperation although no complications for the purpose are introduced as is done in many of the other systems. Fig. 27 shows as is done in many of the other systems. Fig. 27 shows
a transverse section of the new arrangement, as designed a transverse section of the new arrangement, as designed for working purposes; H are the lower side flues, 1 the
vertical side flues, K the upper longitudinal side flues,

S the ascension pipes, and V the hydraulic mains; the arrangement of the gas pipes and the connections between the sole and lower side flues, and between the latter and as set forth in the patent specification, and distinctly as set forth in the patent specification, and distinctly
illustrates all the points referred to above. Fig. 28 represents a sectional elevation in part through the length of the oven, and in part along the separating wall, from a special drawing, and, with the exception of the dividing walls in the lower longitudinal flue, shows very clearly the new arrangement, with all accessories, including the ram in this instance too, the arrangements for the preliminary heating are included in the structure itself, and the ai ducts, as well as the connections between the side flues
and the interior of the ovens, by the way of the charging and the interior of the ovens, by the way of the charging
holes, and the modes of working these, may be readily holes, and the modes of working these, may be readily
followed. Then, too, the ascension pipe, bridge, and followed. Then, too, the ascension pipe, bridge, and
hydraulic main are again displayed, also the tubs and the winches, and the little cooling channels below the great waste main.
The advantages claimed for this new scheme are many Of course, the usual one claimed for having the gas main underground and out of the way of the ovens; then the
better distribution of the gas and the exposure of the better distribution of the gas and the exposure of the lower part of the ovens, instead of the upper part to the
highest temperature, are the main advantages, the latter highest temperature, are the main advantages, the latter one increasing the yield of by-products, as they are not takes place in their vicinity; and furthermere an equali sation of the pressure of the gas is to result from the proposed subdivision, so leaks through cracks inwards or outwards from the coking chamber are, it is claimed, to be obviated. These are the advantages claimed, but it remains to be proved whether they are substantiated or not, and what is more, whether the newest order o things is economical or otherwise ; anyway, we are in-
formed, it is not intended to displace the usual form, as yet, by the new one
(To be continued.)

THE NEW WHITE STAR MAIL STEAMER.
In our last impression we gave all the information then available concerning the new White Star boat, the Oceanic. Messrs. Ismay, Imrie, and Co., which runs as follows :-That there is no such thing as finality in modern shipbuilding is strikingly evidenced in the announcement that Messrs Ismay, Imrie, and Co. have arranged with Messrs. Harland and Wolff, of Belfast, for the construction of a new and very remarkable addition to the White Star fleet of Atlantic liners. This steamer will exceed in length by 65 ft . any vessel, eithe afloat or in course of construction. Nor will her claim to distinction stop at this point; she will break the world's record for length, which hitherto has been held by the Great Eastern. The Great Eastern was 679 ft . in length;
the Oceanic will be 704 ft ., or 25 ft . longer, and her gross the Oceanic will be 704 ft .,
tonnage will exceed 17,000 .
In the construction of the new vessel the White Star Company adhere steadily to the principles which they have ollowed with such signal success during the whole of their
career. Due attention will be given to the matter of speed but extreme speed will be subordinated to the comfort and
convenience of passengers of all classes ; and in her internal arrangements the new vessel will be an enlarged reproduction of the Teutonic and Majestic, except in so far as improvements may have suggested themselves in the size and fittings of the rooms, and which may be rendered practicable by the increased dimensions of the ship herself.
Upon the question of speed the company announce that although a much higher sea speed than that now contemit has been determined as far as possible to aim at a regular Wednesday morning arrival, both in New York and in Liverpool, making the Irish land and Queenstown by daylight, and enabling passengers who may be travelling to placés and enabling passengers who may be traveling to places of cases reach their destinations with comfort during the day. It is expected that the new Oceanic will be launched in January next. Her advent will undoubtedly be regarded with interest not only from a commercial, but also from a naval point of view, as a valuable addition to the nation's fleet of mercantile armed cruisers, which contains at this moment only four vessels with twin screws-of which two are the White Star steamers Teutonic and Majestic-Mui filling all the Admiralty requirements, and capable of UninStates and Germany thanks to the fostering care of their Governments and the liberal subsidies allowed, can with just pride enumerate between them no less than eight such steamships afloat, with others larger and faster in course of construction. The new White Star liner will be able to transport a large body of troops, with stores and ammunition, to the most distant points with ease and unusual rapidity; while in the matter of coal endurance it will be noted that her powers are to be most exceptional, inasmuch as after making liberal allowance for the weights of stores, ammunition, and troops, this steamer will be able to steam in case cf
need 23,400 knots at 12 knots per hour, or practically round need 23,400 knots at 12 kno
the world without coaling. the world without coaling

The new steamer will be named the Oceanic, after the pioneer vessel of the company, which has recently been withcentury, and in the construction and arrangements of which were introduced for the first time many improvements, then regarded as luxuries, which the traveller of to-day takes as a matter of course and as essentials to comfort in ocean travel.
With the construction of the new Oceanic a chapter of
additional interest is added to the history of the White additional interest is added to the history of the White ing ships engaged in the colonial trade and many persons now well established in Australia have been safely carried across the ocean under its flag. As time passed, however, a change took place and in the comparatively short period of five years from 1870 to 1874 the steamships Oceanic, Baltic,
Republic, Celtic, Adriatic, Britannic, and Germanic were introduced by the company into the Liverpool and New Y̌ork trade, and the lead thus obtained by means of these vessels was so strong that it was not until the year 1889 that the company, keeping in view the comfort and convenience cf passengers rather than the attainment of the highest rate of year later her sister the Majestic. These two vessels, together with the Britannic and Germanic, have since performed with regularity the mid-week mail service from Queenstown to New York, and their popularity with the travelling public
has been unmistakeable. The Germanic, which was rehas been unmistakeable. The Germanic, which was reongined and renovated in 1895, has more than maintained her early record, and the Britannic, after twenty-two years cf
continuous service, during which she has travelled not less than $1,500,000$ miles with her original engines and boilers, made her fastest voyage of seven days seven hours to New York in the month of August, 1896.
It is well known that all the steamers of the fleet have been built by Messrs. Harland and Wolff, of Belfast. The tonnage hitherto turned out from their famous yard for the White Star Line reaches a total of 155,195 tons ; and the same builders have now in hand new steamers for the same company, amounting to no less than 103,885 tons. The capital expensents the striking total of over five millions sterling.

Yorkshire College Engineering Society. - At the last ordinary meeting of the above Society, Mr. Wm. Cleland, B.Sc., Sheffield, and late of the Yorkshire College, read a paper on
"Microscopy of Iron and Steel." He said that this subject was Microscopy of Iron and Steel. He said that this subject was entirely relied upon for testing purposes. In one case a flaw had been discovered in the skin of a rail, which, when removed,
rendered the whole rail its proper strength, which it had not had previously. He prophesied that in the near future no ironworks would be without its microscopist. The preparation of slides was
fully explained, as well as the methods for distinguishing the properties of the metals under examination. An interesting dis properties of the metals under examination. An interesting dis.
cussion followed, Messrs. Henry McLaren (chairman), Scott, Wilson, Hartnell, Whitehouse, Cornock, Falshawe, Watson, and Bullock, taking, part in it. By kind permission of Mr. Jas. Holroyd, managing director, several members visited the Burmar. tofts W
Royal Meteorological Society.-At the meeting of this
Society, on Wednesday evening, the 17 th inst., Mr. Edward Society, on Wednesday evening, the 17 th inst., Mr. Edward
Mawley, F.R.H.S., president, read a report on the phenological observations during the past year. He showed that throughout the flowering season wild plants came into bloom much in advance
of their usual time, and were, as a rule, earlier than in any recent year since 1893 . The wealth of blossom on nearly all kind of trees and shrubs was a noteworthy feature of the spring and
early summer, while the abundance of wild fruits in the autumn early summer, while the abundance of wild fruits in the autumn
was even more exceptional. From an agricultural and horticulwas even more exceptional. From an agricultural and horticul
tural point of view, the one great drawback of the year, which must otherwise have proved one of the most bountiful on record,
was a drought that lasted almost without break-at all events, was a drought that lasted almost without break-at all events, as far as vegetation is concerned-from March to September.
The wheat crop proved the largest and best for many yearr, The wheat crop proved the largest and best for many yeare,
while there was a good yield of barley and potatoes. The small
fruits were also ruits were also goomore or less indifferent, the crop of hay being especially scanty. The Hon. Rollo Russell gave the results if
some observations on "Haze and Transparency," which he had some observations on "Haze and Transparency," which he had made at Haslemere, in Surrey. From these it appears that the
clearest hours at a good distance from towns are from about noon clearest hours at a good distance from towns are from about noon
to 3 p.m. The clearest winds are those from S, to N. W. inclusive, to 3 p.m. The clearest winds are those from S, to N.W. inclusive,
and especially W.S.W., W., and W.N.W., the haziest are those
between N. and E. On bright mornings, with a gentle breeze or calm, from autumn to spring, the haze or fog which has lain on
the low ground frequently covers the hills in the course of it ascent a fow hours after sunrise. At any distance within 100 miles of London or of the Black Country, observations requiring from their direction, and should therefore be taken early

THE GERMAN NAVAL ESTIMATES.
The ordinary recurring expenditure for 1897-8 is estimated at $£ 2,946,263$, an increase of $£ 177,148$ over the budget o 1896-7; the non-recurring ordinary expenditure is estimated at $£ 1,587,546$, an increase over the budget of $1896-7$ of $\notin 1,934,167$, an increase of $£ 1,642,627$ over last year's budget. 1896-7 is $£ 2,154,981$. The principal items in the ordinary expenditure of the Admiralty are :

Description.

${ }_{-}^{\text {Admiralty }}$
 Naval Ca Lighthou Phy Ships in

Phy in in hations Rarrison Cat

Maintenange oo f foet and
Guns and fortifications
The number of officers and men provided for in the esti-
tes is as follows :-

\section*{| Officors |
| :---: |
| $\substack{\text { Doctors } \\ \text { Men }}$ |}

This is an increase over the number allowed for in last y budget of 1566 , including 54 officers. The chief features in the estimates for the non-recurring expenditure are as ollows

Item.	Description.
1	For the building of a 1st class ironclad (Kaiser Friedrich III.) to replace the Preussen

For the building of a 1st class ironclad (Kaiser Friedrich
III.) to eplace the Preussen
The estimated cost was £ $£ 006,000$, of which $£ 320,000$
have already been voted.
Third instalment for 1st class cruiser to replace the
Leipzig
The total cost was estimäted at $\ddot{£} \ddot{3} 12, \ddot{50} 0$, of which
$£ 112,500$ have already been voted.
3 Third and ânal instalment for 2nd class cruiser " K " \quad ".
Third and final instalment for 2nd class cruiser "L".

For renewing machinery and boilers of two ships of the
Sachsen class, as well as for the thorough repair of the
hulls, addition to the final instalment of $\& 82,000$ in the
estimates of $1896-97$
estimates of $1596-97$. \ddot{k} w wa
The necessary work
than had been estimated.

Second instalment for 2nd class cruiser "M"

For a 4th class cruiser, " G ," second instalment . in which
The total cost is estimated at $£ 130,000$, of whe
$£ 25,000$ has been voted already.
Second and final instalment for building a torped
divisional boat
The total cost is $£ 58,000$.
cond and final instalment for torpedo boats
The total cost is $£ 159,200$.
Second instalment for the renewal of the boilers of the
third and fourth ships of the Nachsen class, and for
repairing the hull repairing the hull
Total cost, $£ 273,000$.
First instalment for an armoured ship of the 1st class to
replace the Kaisor Wilhelm The Kaiser Wilhelm is 29 years oild, and a new ship is
urgently required. She will be of the Kaiser Friedrich
III model, and will cost the same, ick,
will take four years to build.

15 First instalment for the 2nd class cruiser " O "
16 First instalment for the 2nd class cruiser "P " First instalment for the 2 nd class cruiser " P "
These are the sixth and seventh of the protected
cruisers of the type Gefion. of which one ship is alrcady
built and four building. The cost of each is estimated
at $t 400,00$, including cioon for expense of trial trips.
Each takes two and a-half years to build (ece under
Nos. $3,4,8$, and 9).
First instalment for dispatch boat to take the place of the
Falke
Fol

Hyena

19 Gunboat to take the place of the 1tlis

These two gunboats are the have for use on foreign river service. E50,000, including cost of trial trip is to be built in one sear is to be built in oone year, as it is is urgently latteer ship, in consequence of the loss of the Itlis. The former vessel will take two years building

20 First instalment for a torpedo division boat This vessel is destined for service with the torpedo
division, for which the neecssary means were voted in
the budget of 1896.97 . The cost will be e58, 200, ex.
clusive of of guns and torpedoes. The construction will
take a little over one year.
21 First instalment for torpedo boats Eight new torpedo boats are required to replace oid
ones no longer in good condition. The total cost will
be E154,400 (without guns or torpedoess and ent wis00 for
trial trips. They will be finished in two years.
The total vote asked for for construction amounts to $£ 2,353,400$, against $£ 961,650$ voted last year, an increase of
$£ 1,391,750$ A sum of $£ 494,800$ is asked for for armaments. A final instalment of $£ 55,000$ is asked for for guns for the first-class battleships, Worth, Weissenburg, Brandenburg, these ships is $£ 845,600$. A final instalment is asked for for guns for the Aegir and Odin (fourth-class battleships) of
$£ 27,500$. The total cost is $£ 153,000$. A third instalment of $£ 50,000$ is asked for for guns for the first-class battleship Kaiser Friedrich III.; total cost of the guns to be $£ 150,000$. The vote asked for for guns is $£ 244,800$ in excess of the sum voted last year $(£ 250,000)$. The vote asked for for
torpedoes is $£ 185,100$; the sum voted last year for this same purpose was $£ 109,250$. A sum of $£ 75,000$ is asked for for arming older ships with machine guns; the total cost will refused by the Reichstag, of $£ 50,000$, as a first instalment for a dry dock at Kiel (to cost £262,500), is again demanded. A sum of $£ 10,000$ is asked for as the seventh and final instal. ment for arming forts on the Lower Elbe ; total cost, $£ 160,000$. $£ 37,500$ is asked for for steel shrapnel for forts and ships; the total cost is $£ 97,500$. $£ 46,700$ is required for the final contribution to expense of building a dry dock at Bremen; the total amount contributed by the Empire will be $£ 900,000$. A sum of $£ 262,500$ will be required for strength ening the fortifications of Kiel, for which a first instalment of $£ 50,000$ is asked for in the estimates. It appears that the dry dock accommodation in the Baltic is insufficient, and that, in the opinion of the Government, a new dock for Kiel
is urgently demanded. The total cost is estimated at is urgently demanded. The total cost is estimated at
$£ 429,500$. A grant for two docks was asked for in vain in £429,500. A grant for two docks was asked for in vain in German fleet is divided as follows (exclusive of training ships and ships for particular service) :-

ELECTRICAL AND ENGINEERING EXHIBITION, NEWCASTLE-ON-TYNE.
On the 15th inst. an Electrical and General Engineering Exhibition was opened at Newcastle-on-Tyne by the Mayor
of that city (Councillor J. Goolden, J.P.) The Exhibition, which promises to be very successful, was promoted originally by the committee of the Royal Infirmary, with a guarantee of $£ 10,000$; but difficulties arose, and eventually the scheme was taken in hand by Mr. J. Engel, and carried out on his own responsibility. Mr. Engel, who is already
well known as a promoter of similar successful Exhibitions well known as a promoter of similar successful Exhibitions
in the North of England, including those at Sunderland, in the North of England, including those at Sunderland,
Shields, Middlesbrough, and elsewhere, has acquired a repuand if or organisation in connection with these undertakings to if anything apart from its intrinsic merit were required that 20 per cent. of the money taken for tickets sold previous to the opening ceremony on Monday has been promised by Mr. Engel to the New Infirmary Building Fund at Newcastle. The Exhibition building, which has been erected by Messrs. Bruce and Still, Limited, of Liverpool, is 300 ft . long and
120 ft . wide, with an annexe, which became a necessity in order to accommodate the demand for space for exhibitors. One good feature of the regulations is that the retail sale of goods is prohibited, and the Exhibition is therefore protected from the risk of becoming a great shop
The greater portion of the floor space is occupied by firms and a wreat portion confined to the exhibits of local firms, and a great portion of this is in motion, the electrical system of shafting the idea of resorting to which having bee abandoned in favour of the motor εy stem. The bulk of the mctors are driven bysteam power, and pressure will be supplicd by two "Petersen" water tube boilers by Messrs. Clarke, Chapman, and Co., Limited, of Gateshead. These two boilers are arranged to occupy a special annexe at the east side of the
building. Each boiler stands upon a ground space of 8 ft . 10in. long by 7 ft . 10 in . deep, the height of the top of the steam drum being 12 ft .6 in ., and is capable of evaporating 5000 lb . of water per hour, having a grate area of 34 square
feet and beating surface of 1000 square feet. The heating feet and beating surface of 1000 square feet. "The heating,
surface consists of small straight tubes, called "compounds," surface consists of small straight tubes, called "compounds,
from the fact that each nest of nine tubes is an independent construction, having wrought iron boxes, with tube plates to each end, which are furnished with means of fixing them to pipes serving for the supply and delivery of water to and
from them. Each nest of nine tubes can be taken out by removing four bolts, without disturbing the others, when required. Sufficient circulation is maintained, it is claimed, in the compounds to prevent formation of deposit from the water, this being swept out by the current, and finall reaches the lower feed drum, where it remains. It is claimed for these boilers that freedom from priming is characteristic of them, and that they possess it in greater degree than any
other boiler of its type. The only brickwork required is th other boiler of its type. The only brickwork required is the
necessary fire-brick lining to the furnace. The boiler is lighter than the ordinary high-pressure marine type, and is specially adapted for transport.
patent single-cylinder direct-acting fo. also supply Horne's patent single-cylinder direct-acting feed pumps, containing
several unique features. In place of the several unique features. In place of the flat side valves, or
piston valves, which are commonly found in this class of pumps, four small mitre valves of very hard bell metal are used. Each valve has a separate communication passag to the steam cylinder, two of these passages being steam, and
two exhaust, as in case of the Worthington type of pump. This pump is specially designed for a working pressure of 300 lb . per square inch, and is capable of running at a speed of
fifteen strokes per minute and of feeding boilers developing 1300 indicated horse-power.
The same firm also exhibit a one-ton electric winch, consisting of an electric motor driving two warping ends or lifting barrels by means of worm and spur gearing, and tions per minute. The whole of the worm gearing is encased in a complete cast iron dust-tight casing, carried on the bedplate, the casing forming a complete oil bath for the gearing We may also mention, in addition to the dynamos, a 24 in search-light projector-in accordance with the English Admira ty requirements-and a 20 in . projector, more simple in detail than the Admiralty type, specially designed for use on merchant vessels for the passage of the Suez Canal by night or for river navigation. Dispersion lenses are fitted to these projectors when required for the Suez Canal passage,
so as to give a wide, flat beam of light at a distance of 1000 so as to give a wide, flat beam of light at a distance of 1000
yards, and also special lenses to give the dark interval in the yards, and also special tenses to give the
centre, as required by the regulations.

Messrs. Ernest Scott and Mountai
astle-on-Tyne, Close Works, Newelectrical engineering. They supply the vertical high-speed electric light engines driving the dynamos which supply the current for lighting the Exhibition. These consist of two "Tyne" compound-wound dynamos, with drum bar armatures for arc and incandescent lighting, also transmission of power work. Amongst the exhibits of the firm are a set of 7 in . by 12in. three-throw ram pumps, capable of delivering up to 250 gallons per minute against a head of 250 ft . ; also an
electrical coal-cutting machine of disc pattern, designed to electrical coal-cutting machine of disc pattern, designed to
cut 3 ft . deep, and fitted with an electric motor of 12 effective horse-power.
Messrs. J. H. Holmes and Co., electric light engineers, Portland-road, Newcastle, exbibit a Lundeli patent slowspeed electric motor, driving printing machines direct with out gearing and fitted with a controller for starting and electric motor, driving printing machinery by belting. The electrical driving of printing machines and other apparatus peculiar to the printer's trade is comparatively a new departure in this country, although much has been done in this direction on the other side of the Atlantic. In direct driving the armature of the motor is attached directly to the driving shaft of the machine, thus entirely dispensing with gears or other power-transmitting mediums; the speed of the armature is thus the same as that of the driving shaft, which, of course, is much lower than that of an ordinary electric motor. The of a 60 indicated horse-power Willans compound single-acting high-speed steam engine mounted on a post single-acting and coupled direct to a "Castle" dynamo, size No. 14 R.A. having an output of 115 volts and 325 ampères at 470 revo lutions per minute. On Messrs. J. H. Holmes and Co.'s stand the generators and motors receive power from the Holmes-Willans plant, and their arrangement demonstrates the ready manner in which energy can be transformed. All the separate machines, it may be noticed, are of the same type, the well-known Lundell machine, of which the firm of J. H. Holmes and Co. are the patentees and manufacturer The dynamo, forming part of a coupled set, drives the motor nearest to it, the current being conveyed through insulated the next size marn arive by belt. This generates the current by which the second motor-8 10-horse power-is driven, which in turn drives the second belt-driven dynamo. This method of transforming electrical energy into mechanical, and from mechanical again to electrical, is continued throughout the series, down to the smallest dynamo of 1 horse power, which, however, is suffi-
ciently large to supply current for the running of one 16 ciently large to sup
candle power lamp. The Sunbeam Electric Light Company, Ltd., Gateshead-on-Tyne, has an exhibit of every description of electric incan descent lamps, from 3000 -cande power-the largest incandes power. The company claims to enjoy the distinction of being the only manufacturers of electric incandescent lamps in this country outside of the city of London. A number of X ray photographic tubes are also shown.
Messrs. Easton, Anderson, and Goolden, Erith Ironworks, Kent, exhibit an electric bar coal cutter, intended for use in fiery mines, and an electric rotary rock drill-Bell, are now working in the ironstone mines of Messrs. Bell Bros., Ltd., to their entire satisfaction. The average output
of ironstone per drill is 1200 tons short weight, and has of ironstone per drill is 1200 tons short
reached as much as 1450 tons in one week.
The Roller Bearings Company Itd
Westminster S. W earings Company, Ltd., 1, Delahay-street, railways, tramways, road vehicles, \&c. These bearings con sist of a series of rollers placed between the journal of the axle and the casing or box. They are designed to effect large savings in motor power, either steam or electrical, and also in the use of lubricants. It is also claimed that they give traction effort.
Messrs. George Tyzack and Co., South Shields, exhibit a patent triple grip stockless anchor, about $3 \frac{1}{2}$ tons, and it is stated that last year about 500,000 tons of shipping were supplied with Tyzack's anchors. A 5 cwt. steam hammer and a equ. iso, suitabling ory and bited by Mr. Peter Pilkington, Accrington, Lancashire, and fitted with Pilkington's valve gear, which can be worked both self-acting and hand motion, or controlled by the forging thus diving both hands at
The exhibits of cycles and cycle fittings, as might have been expected, are a very important and interesting feature of this Exhibition. The local industries display a very creditable collection of machines.
The Exhibition building is warmed by Messrs. Henry Walker and Son, Limited, Newcastle-on-Tyne. Steam at a reduced pressure is conveyed by hot iron pipes to powerful radiators manufactured by the American Radiator Company,
the water of condensation being returned to the boiler, by a Worthington automatic pump.
One of the most interesting features of the Exhibition is Elswick Coal coal mine
In addition to thos.
In addicion the objects of interest articles relating to food and drink, occupy a large space.

THE UNION STEAMSHIP GASCON

MESSRS. HARLAND AND WOLFF, BELFAST, BUILDERS \& ENGINEERS

THE UNION S.S. GASCON.
THE twin-screw steamer Gascon, illustrated above, the sixth vessel built by Messrs. Harland and Wolff, Limited, for the Union Steamship Company, left her moorings at nine o'clock on the morning of Saturday week, and proceeded down
Belfast Lough for trial trip and adjustment of compasses. The Gascon, which is over 6000 tons gross register, and which is propelled by twin screws driven by two sets triple-expansion engines, is the first of three new steamers Messrs. Harland and Wolff have at present in hand for this company, of somewhat similar type to the well-know "G.'s." built by them, and largely running in the same service, but of considerably larger dimensions, and with unusually complete accommodation for first, second, and third-class passengers. The length of the ship is 430 ft ., breadth 52 ft ., and depth 33 ft . Electric ight and refrigerating apparatus, with cold chambers for the machance of frut, and also all the latest andmost improved machinery for working cargo, have been provided, and the vessel is so arranged as to provide a very large carrying done in oak and teak, and the ladies' room in dark mahogany, with marquetrie panels, satinwood, and other wood. The moke-room is done in oak, second saloon in mahogany and satinwood, and the library is handsomely fitted up with bookcase and writing desks, and surmounted by a handsome dome, with richly decorated glass. In addition to the sister ships, Messrs. Harland and Wolft have in hand a much larger vessel for the Union Steamship Company, which, when completed, will be the largest steamer in the South African trade. Captain Walter Martin is in command of the Gascon, which, while being built, has been under the supervision of Captain A. M'Lean Wait, the marine superintendent, and Mr. Du Sautoy, superintendent engineer.

THE NEW CRUISER NIOBE.
OF the four first-class protected cruisers of a new type laid down in 1895 for the British Admiralty, of which the typical ship is the Diadem, built by the Fairfield Shipbuilding fully launohed from the shipyard of the Naval Construction and Armaments Company at Barrow.

The hull of this ship, like that of her prototype, is-with the exception of her stem, sternpost, and propeller shaft brackets, which are of phosphor bronze-built entirely of Siemens-Martins steel ; the principal dimensions being:$69 \mathrm{ft} . ;$ depth to upper deck, 39 ft . 9 in. ; and displacement 69 ft .; depth to upper deck, 39 ft . $9 \mathrm{in} . ;$ and
11,000 tons, at which the water draught is 26 ft .
Throughout the length of the machinery and boiler spaces the vessel is double bottomed, and beyond these, both for and aft, water-tight flats at a lower level continue this bottom to the extreme ends of the ship. The vessel having no side armour, the protection of her vital parts is secured by a steel protective deck of arched form, having a maxi mum thickness of 4in., and running throughout her entire length. The stem of the vessel is ram shaped, the protective deck being carried down to, and effectively secured to it, at the level of the nose of the ram. Bilge keels are fitted to the ship's sides for about half her length, and she is steere engines. The thang of the hull is sheathed up-steering engines. The plating of the hull is sheathed up to well with sheet copper. At the load draught of 26 ft . the quantity with sheet copper. At the load draught of 26 ft . the quantity
of coal carried is 1000 tons, but provision is made for about twice this amount, if required.
The armament of the Niobe, which is of a most powerful description, will consist of sixteen 6in., twelve 12 -pounders, and three 3 -pounder quick-firing guns, two 12 -pounder boa guns, and eight $\cdot 45 \mathrm{in}$. Maxim machine guns. Twelve of the 6 in . guns will be mounted in casemates on the sides, and two in the forecastle, and in the poop, behind shields. Three torpedo tubes are fitted, two of which are submerged forward and one aft above the water line.
The propelling machinery, which is constructed by the shipbuilders, will consist of two independent sets of fou cylinders, four cranked triple-expansion engines ; the diameter of the cylinders being, high-pressure, 34 in ; intermediat pressure, $55 \frac{1}{2} \mathrm{in}$. ; and low-pressure cylinders, 64 in . each, al pressure cylinders will be fitted with piston valves, and the pressure cylinders wilt be fitted with piston valves, and the
low-pressure ones, with double-ported slide valves, actuated by double excentric and link-motion gear. The crank shafts are made interchangeable, and, together with the thrust and propeller shafts, are of steel. The propellers have three ad justable blades, and are designed to work inwards.

Steam for the engines will be supplied by thirty water-tube boilers of the Belleville type, arranged in groups in separate water-tight compartments, and designed for a steam pressure The total heating surface in the boilers is 45,900 square feet the fire-grate area being 1450 square feet. The propelling engines are designed to develope a maximum of 16,500 indicated horse-power, which it is estimated will give the ship a speed of $20 \frac{1}{2}$ knots.
The ceremony of naming the Niobe was performed by Lady Harris, wife of Lord Harris, the chairman of the shipbuilder's company, there being present on the occasion among others, Sir W. H. White, Director of Naval Construc tion, Admiral Boys, and Mr. A. Adamson, Managing Director of the Barrow Company.
The Niobe will have a complement of officers and crew to the number of 600

LETTERS TO THE EDITOR

(We do not hold ourselves responsible for the opinions or our correspondents.

hydraulic rams

SIR,-Owing to absence from home I have only just read the Sis,-Owing to absence from home I have only just read the Hydraulic Ram ;" and if you will allow me the space I should like to make one or two remarks thereupon. I may claim to write with some authority on the subject, as the founder of the company with which I am connected-Messrs, Easton, Anderson, and Goolden Limited-the late Mr. James Easton, sen, year 1827. A great number have been installed by us since that time, and till recently the original pattern was still in use
About fourteen years ago I had the privilege of conducting a very extensive series of experiments on rams, in consequence of
which a new pattern was designed-of which I send an illustra-whon-in many wattern was designed or orior to the old one, and which is at present in use. I found that the design of a ram was a thing which, though apparently a very simple matter, was, in fact, not by any means so and that a considerable practical experience was required to make one that was reliable and efficient.
The points to which I wish to draw attention are the statement made as to elficiency, and the ratio of the height to which the
water may be raised to that from which it falls to the ram. The efficiency is stated to be 82 per cent. according to Rankine's formula but no mention is made of the circumstances under which tha efficiency is obtained. I infer that the maximum ratio of lift to fall which can be obtained, is 30 to 1 , and it might also be efficiency of 82 per cent is obtained. I feel, however, quite an that this is not the case, and that this efficiency is obtained only when working at a low ratio, say about 5 to 1 .

 THE EASTON AND ANDERSON RAM

All experiments show that the efficiency is not a constant qual tity, and that it attains its maximum at a low ratio of lift to fall say about 5 to 1, and gradually decreases as the ratio increases.
It is evident, therefore, that a point must sooner or later be reached when the efficiency approximately becomes zero, and the rati orresponding to this gives the limit at which the ram will work efficiency, it is evident that there would be no limit to the ratio of lift to fall theoretically, except the strength of the machine to It it the pressure produced
It may be worth pointing out that the formulæ usually found in text-books and pocket-books are as a rule based upon an assumed Now, the maximum ratio at which a ram
will work is somewhere about that stated by the article; but b whil of much experimenting I have so modified the design that while at low ratios the efficiency is not greatly in advance of that increases is much more gradual, and I cmonsequently the ratio work up to much higher ratios than usual. I have records of experiments which go up to a ratio of 46 to 1, and the efficiency at such time has only been reduced to about 44 per cent.-Rankine's formula-so that evidently a much greater ratio could have been The experiments were not prolonged simply reen reduced to zero became too great for the safety of the machine. Also, it follow that a ram of this construction will be increasingly superior to one of the ordinary kind as the ratio of lift to fall with which it has to work becomes greater. The subject is very interesting, but would take up too much of your valuable space to go into it any urther
The arrangement for delivering pure water is ingenious, but pletely prevented from mixing, and I do not imagine that many of your readers would care to drink the so-called pure water a delivered by the ram, if the working water were obtained from doubtful source of supply.
Erith Ironworks, February 15th.

Sir, -I have just seen an American article in your issue of Jan 29th headed "A Hydraulic Ram Plant for a Public Waser Supply. Taking the machine illustrated and described as a hydraalic ran pure and simple, it cannot be said to be an improvement on the best English practice-in fact, rather the reverse. As to th
pumping or double-action ram, I refer to this later on. There is nothing whatever new in the later on.
Several English makers show in their catalogues adjustable shown valves, and of a design certainly superior to the one illustrated which appears to be very crude.
It is claimed as an improvement-and as if it were a noveltyis made escape valve is very light, and the extraordinary statemen enough to overcome the static pressure deape valve is made heavy

Were so the machine could not work, even neglecting the fact that
the full static pressure due to the fall could never be obtained the full static pressure due to the fall conld never be obtained owing to the loss of prossure due to the head required for velocity
of entry and friction of water in the drive pipe. Under such conditions the ram and its drive pipe would be simply in the position
of a long pipe running fall, the water having the velocity due to the size and length of pipe and the fall.
For instance, an 8 in. pipe 80 ft . loog, under a head of 8 ft .,
would give a maximum velocity of about 14 ft . per second, corwould give a maximum velocity of about $14 \mathrm{ft}$. . per second, cor-
responding to a head of, say, 3 ft ., so that the weight of the escape valve to work at all could not exceed 1.3 lb . per square inch,
whereas the weight due to the head of 8 ft . would be about 3.45 lb . per square inch.
While there is some divergence between makers in the best Eng. lish and American practice, the escape valves appear to be made of
such weight that they will lift when the velocity of tow is betwoen such weight that they will lift when the velocity of flow is between
the limits of about 5 ftt . and 8 ft . per second, corresponding to a head of from 0.5 fft . to 1 ft .
0.21 lb . to 0.43 lb . per square inch of area. The heavier the valve the greater the capacity of the ram and the smaller the valuber of beatat, but the greater the losses due to pipe friction.
nume Taking the ram illustrated in your article, the aren of tho ocsape
valve is $254{ }^{4} 47 \mathrm{in}$. and the weight 50 lb, or 0.196 lb. per square valve 1 is $24.47 \mathrm{in}$. . and the weight 501 lb ., or 0.196 lb . per square
inch, corresponding to a head of 0.45 ft and a velocity of $5 \cdot 388 \mathrm{ft}$.
per second. It per second. It does not, therefore, greatly differ from the usual
practice, and, with the sliding weight applied, would certainly fall within the limits named. The maximum weight which can be obtained by means of the sliding weight is not stated.
Assuming for convenience that the valve be so loaded as to
weigh about 551 lb, which would correspond to a head of 0.5 ft . and a velocity of $5 \cdot 67 \mathrm{ft}$. per second, the approximate theoretical
 length assumed at 100 ft .
From Eytelwein's experiments the beat of an escape valve may
be divided into four periods :-(1) Period during which valve is be divided into four periods:-(1) Period during which valve is
open =approximatoly 0.60 of beat. (2) Period during which
valve lifts to close.
 he corresponding velocity is 5.67 ft . per second. Hence the mean velocity through the escape valve during tho opening is 170.34 ft .
per minute. But as the valve is only open during $0 \cdot 6$ of the per minute. But as the valve is only open during 0.6 of the beat,
we have as the waste water capacity of ram in cubic feet per minate - Valve warea + , mean capacity of of ocity $\times 0.6$ ram in cubic feet per
The valve area
hould be the same as that of the drive pipe, viz, $50 \cdot 26$ square should be the same as that of the drive pipe, viz, 50.26 square
inch and I assume it to be so. The coefficient of contraction need
not here not here be considered.
We have, therefore
minute $\frac{50^{\prime} \cdot 26}{14} \times 170^{\prime} 3 \times 0 \cdot 6=35^{\circ} 675$ cubic feet $=222 \cdot 32$ gallons.
From your article the three rams used 810 gallons (American) $=$ fairly close.
Omitting losses due to the head required for velocity of entry
and friction of water in pipes, the theoretical work which this body
 pipe $=2175 \cdot 35 \mathrm{lb}$., and as the velocity at which the valve closes is
$5 \cdot 67 \mathrm{ft}$. per second, the theoretical work done per beat by this body of water would be at the rate of $\frac{2175 \cdot 35 \times 5 \cdot 67^{2}}{64}=1095 \cdot 81$ foot-
pounds per second. Bat as the work is only performed during the
closed period of the valve, or during only one quarter of the whole time, the actual work done per beat would be 1095.81 $273 \cdot 95$ foot-pounds.
Hence the number of beats per minute would be $\frac{22,232}{273 \cdot 95}=81 \cdot 15$. The quantity of water flowing through the escape valve $=$ 0.6 of the whole beat, the delivery is at the rate of 59.46 cubic
feet per minute. If, therefore, x be the required area of eseape
valve
 50.26 square inches, or the same area as the drive pipe. The circum-
ference of the valve being 56.54 in , we have for the theoretical lift of valve required, $\frac{50 \cdot 26}{56.54}=0.88 \mathrm{in}$.
Allowing for contraction, the actual lift to be given to the valve
Eth beat of the The escape valve is open during 0.6 of this period or 0.443
The amount of water vented by the escape pipe per bat is,
herefore, $0.349 \times 2.839 \times 0.443=0.439$ cubic feet, and the number of blows $\frac{35 \cdot 675}{0 \cdot 439}=81 \cdot 15$ nearly, as before.
If the sliding weight be so applied as to double the weight of
the valve, the velocity of water, quantity used, and work done will increase theoretically as $\sqrt{2}: 1$, while the number of blozs will decrease as $1: \sqrt{2}$, or in this case to about fifty-seven.
If the drive pipe be lengthened or shortened the work done will in direct proportion to the increase or decreass in the length of the pipe.
If the
valve and length of drive pipe remaining the same-double the water will be used. The speed of water in drive pipe will be
doubled, and the work done by such blow will be increased fourfold consequently while the work done would be doubled, the number
of blows would be halved. The loses due to velocity of entry of blows would be halved. The losses due to velocity of entry
and friction in pipes would, of course, increase and the efficiency and frictio
Of course, there are various other things to consider in fixing
hydraulic rams, such as a suitable pipe and head, so as to secure a velocity sufficient to lift the escep valve, and alaso to give sufficient momentum to overcome that of the column of water in the delivery pipe. The size of delivery pipe
also requires careful consideration. Snifting valves, as shown in your also requires careful considieration. Snitting valves, as divown in your are apt to get
is much better.
As regards the pumping, or double-action ram, it is difficult to
imagine how the arrangement shown can be effective. As I understand it , the pure water must the at a slightly higher
level than the ram-the height being depandent level than the ram-the height boing dependent on the power of
the ram, and the height to which the pure water is to be forced so as to insure the proper amount being supplied to tho ram each recoil. Apparently, at each recoil of the drive water, a certain portion of pure water gravitates into the ram and fills the vacant
space under the delivery valve, and is then delivered into the air space under the delivery valve, and is then delivered into the air
vessel at the next forward stroke of the drive water. But I question whether it is possible to adjust the machine so as to allow pure water will be wasted, or a lot of impure water will be delivered with it. In any case, I should imagine the water would get pretty well mixed. rectly, pumping rams, as made by several English makers, would bave beon much more efficient, would have enabled the plant
to be simpler, and would have avoided all risk of impure water
being delivered with the spring water. A point is made of the
size of the ram which can be made under this system, but severa English makers advertiso larger sizes, and I know of at least one your article. I understand he also now uses an ingenious dia phraghm valve, which render so the working practically noiseless
My excuse for this letter is that I have always considered hydraulic ram has not had fair play. Properly made and fixed is an efficient and durable machine, and one which ought to b much more largoly used than it is, especially in the Colonies.
February 1 1gth February 18th.

moment of resistance.

SIs, -1 should like to have the opinions of some of your reader as to the best method of calculating the moment of resistance o girders whose cross sections vary between that of a flanged girder with a thin web-plate and that of a rectangular beam.
It is not so much tho actual strength of a girder It is not so much tho actual strength of a girder of a given sec tion, obtained by some particular modulus of rupture, as the value
of its cross section that I wish to arrive at, so that, knowing the srength of the material,
The following formule, given by the authorities mentioned, have applied to the cross section shown, which is selected merely
for its convenience in calculating, but the results cannot be said agree very well

ha t that many home farmers posse to remedy. The fact in question article, of which 5 cwt fars are using nitrate of soda, an importce on crops that 4 cwt . of sulphate of ammonia, a home manv acture, are capable of doing. As the two manures have been fc complaining as he does of agricultural contributes to his sad condition by want of knowledge. Some portion of the requisite knowledge could be very effectively
conveyed by following the advice of Mr. James O'Sullivan, who, ai the recent Burton meeting of the Nottingham section of the the idea of nitrogen to the ordinary man's mind, whereas sulphate does not. He considered the great obstacle to the spread of the use of sulphate of ammonia was its name, and that if it could be rechristened, so that the name would convey this idea, it might be good thing. Presiding at the meeting, I joined in the smile evoked
by the suggestion, but thinking the matter over, I was struck with by the suggestion, but thinking the matter over, I was struck with
its great force, so that though received in jest it soon became to me a true word. In accordance with this idea, I would propose that sulphate of ammonia should, for agricultural purposes, be
known as "nitrogenous sulphate," which it is, and the farmer will not be mble misled, for a substanc not contains upwards of 25 per cent. more nitrogen than nitrate of soda, and which is besides the richest nitrogenous manur
When one considers how successful the application of suggestive names has been in other departments of industry and of commerce, it must be admitted that the neglect of sulphate o ammonia with its nearly $21 \frac{1}{4}$ per cent. of nitrogen, for nitrate of
soda which barely contains $16 \frac{1}{2}$ per cent., may be due to pre The Fertilisers and Feeding Stuffs Act makes no difference between the unit of nitrogen present in sulphate of ammonia and
that in nitrate of soda. This should go a long way to convince the farmer how great is his loss. Were the loss only his own, we might keep silence ; but as the whole community participates in
it, not only by the enormons sums that are sent abroad for an it, not only by the enormous sums that are sent abroad for an
inferior article, when a butter one is made at home, but also by making gas dearer, by tending to cause depression in the iron trade, and also by injuring a great Scottish industry, viz., the oil works, the case is one that calls for combined action.
In this spirit I trust you will kindly render your powerful help to this national cause by publishing this letter, which it is hoped
may incite gas authorities, ironmasters, and all others who are interested in sulphate of ammonia to adopt the name " nitrogenous sulphate," which must tend to increase its sale amongst home farmers, and thus gradually put an end to the anomaly of sonding
most of our sulphate abroad, and bringing nitrate from South most of our sulphate abroad, and bringing nitrate from Sod
America to take its place.
F. R. CARULLA America to take its place. F. J.
Sharon Caemical Works, Derby, February 9th.

the thwaite steel furnace.

Sir, -While agreeing with "Vulcan," in your last issue, that the Siemens furnace is "hard to beat," still, if some of the "very truction, as in the Thwaite steel furnace, then increased economy should result. Any leakage of air past the butterfly valve in the
Thwaite furnace involves no loss of an appreciable character. In Because it reduces the pull of the chimney on which the combustion action of the furnace depends. (2) Because this air may meet an escape of gas from a leaky gas valve, and an intense character of combus tion is established by the expansion of the gases due to this com-
bustion; the chimney pull on the furnace is still further reduced.噱 In the Thwaite furnace such combustion camnot occur. The air is introduced under pressure, and maintains the flap valve in a
comparatively cool condition-if leakage occurs, as the furnace is worked under the positive and uniform pressure that a chimney pull never gives, the leakage therefore does not appreciably affect
the working of the furnace. There is little likelihood of a gas escape past the gas valve, because (1) the combustion described above cannot occur ; (2) it is not exposed to the varying temperaure of the products of combustion ; (3) because the temperature 900 which it is subjected is fairly uniform, and should never exceed
90 . Fah. Should a leakage, however, occur, it can only involve a compa-
ratively inappreciable loss of heat, because, as the furnace is ratively inappreciable loss of heat, because, as the furnace is
worked with a slight excess of air, the gas, in passing through the air heat-restoration chambers, is burnt, and the heat is more or less completely transmitted to the checkers. There is no such nace ; there is only heat restoration. In the Siemens furnace, however, a leaky gas valve means a possible loss of a considerable volume
of gas direct to the chimney, and not through any portion of the urnace. Any one who has studied the question of chimney pull by high temperature versus the employment of heat thermodynamially ut As to the possible difficulty in using air blast machinery, "Vulcan" cannot be serious in referring to this. He knows
as well as I do that furnaces working with forced draught have worked for half a century without any difficulty whatever being ound in actual practice. Steam-driven or electric-driven fans can Besides the economy of forced draught, the power of control-and variation is most comprehensive, and the fact that all the heat transmitting surface is brought into useful service should be considered of very great value. In a Siemens furnace the gas accumu-
lated in the chamber and floes between reversal is lost, because there is no air to consume the gas present in the chamber, this gas loss is repeated at each reversal
When furnaces depend upon the pull of the chimney, it is often found that the products of combustion take the most direct course to the valve, and in Siemens furnaces, with both air and gas heat-
restoration chambers, the products of combustion may for the restoration chambers, the products of combustion may for the
most part traverse the gas chamber, and there not being sufficient checker work to absorb the heat, pass off to the chimney at an excessive temperature, while only a small portion of the products of combustion pass through the air chamber, which therefore keeps comparatively cool.
The record of the working of a charge, published in the Iron and Coal Trades Reviero, shows that the reduction of the carbon
down to 0.65 per cent. can be effected in 51 hours. If this reducion of time is a ratio of the reduction of fuel on ordinary Siemens furnace practice, Vulcan can himself calculate the money value of the saving of this system of melting 10,000 tons.
Layton, February 24th.
Horace A
Layton, February 24th.
Horace Allen.

petroleum vapour launches.

Sir, -We read with much interest in your issue of the 5 th inst. beg to inform you that the design of the engine you publish is that of the well-known shipbuilding and engineering company, EscherWyss and Co., of Zürich, Switzerland. This firm has during eight
years introduced with great success many improvements and years introduced with great success many
additions to this originally American patent.
We are of the opinion that the boat referred to in your article is one made by us, and carry not only two persons, as stated in your article, but from thirty to forty; and has made, on an official trial
trip of three continuous hours in the Channel, a mean speed of trip of three continuous hours in the Channel, a mean speed of
7.3 knots, and not 5.5 as mentioned by you.
The cost of the boat is only 8000 francs ($£ 320$), and not 11,000
franes (£440), as you state. The improvements introduced by
Escher-Wyss and Co., in the engine construction enable them to se petroleum oils having a greater density than 0.70 .
If you require any further information respecting the engines
nd boats made by this firm, they may be obtained from the Zompanying catalogue.

Rerrz,
Naval
Architects.
yorced v, suction draught.
Sur, -1 have read with pleasure and profit the articles on
Saction Draught for Marine Boilers" and on "Induced Draught," in your issues of February 5th and 19th. Both are full of instruetion. 1 regret that induced draught should have been
compared with forced draught on the closed stokehold system, because with such it is so easy to make a favourable comparison.
Before I venture on a comparison, I would like to touch upon the losed stokehold system, which has so often failed.
Given an air pressure of 3in. in a closed stokehold, fire-grates
5 ft . fy 3 ft . 9in., on theseg grates to an uniform depth 9in. of burn ing fuel, a chimney 8oft. high above the mean fire-grate level,
then for about seven or eight minutes the following conditions would obtain:-Air pressure in the ashpits 3in., above the fir ox there would be a vacuum about 75 in. The in the smoke the combustion chamber would be something over 2000 deg.
the stokehold it would be, say, 110 deg., not a bit too much. this moment a fire needs to be ceararged. The furnace door it
opened, and immediately air at 110 deg. and 3in. pressure rushes over the fire into and through the tubes a d lithitum, at the same time
playing havoo with that 2000 deg. The little tubes, which only moment before were expanding all they were fit, now shrink, and Admiralty ferrule is tried. Some one proposes to put the fan in the chimnney, and pull the air through the fire. It is done; and it
is said that the little tubes leak no more. This is the kind of forced draught with which I regret that induced draught shoul have been compared.
But, given two
But, given two examples, one induced draught with hot air air forced through closed ashpite, and see what takes place.
I caned give you figures from practice, which I propose to put in
parallel, thus :-

Ashpit, air pressure ..̈. Above the fre, iar pressere In smoke-box, air pressure
 At the fan, ain pressure Smokeobor, teonprature Air going into ashpits

Examine these figures, and what takes place can readily be seen. as though they bad no business to be there; in the second example they are not hurried, but allowed to flow out of the boiler under
the gentle influence of $-\cdot 25$ in. of a pull in the chimney, The the gentlo influence of $-25 i n$. of a pull in the chimney.
speed of the gases from the furnace to the chimney must not, an need not, be the same. In fact, the speed is not the same. A. boiler is a structure which is intended should amborb heat.
The element of time favours the absorption of heat. The element of time is favoured in the second example, but it is not favoured in the first, ard the cffect is seen in the difference between the
smoke-box temperatures. In consequence of which I pin my faith on the forced draught, hot air, closed ashpit system
Liverpool, February 23rd.
ashpit system
ALEXANDR
SIR, In the last paragraph of your article on "Suction
Draught," in your issue of the 19th inst., you cay, "It may, for instance, be pointed out that in all the experiments that have been
made on the transmission of heat through plates, next to nothing orcing flame against been experimenting in this direction during the last three years, and I fully agree with you "that the result, when published, wil These experiments have led me to construct a working model of a boiler of a new type, which gives resquinted. I hope to be able
way to any other with which I am acquain months.
Glasgow, February 22nd.
chimneys for cement kilns,
SIR, - In your issue of the 12 th inst. a correspondent-whose
initials I forget, and have not got my paper by me-asks the question as
cement kilns.
cement kiligs.
The he he the chimney-if in the country and away from any chance of causing annoyance to near restients - is quate
optional, and a chinuney, say, 28ft. to 30 ff . high answers the purpose well, providing the area of chimney at top is in proportion to
the size of kiln, or kilos, and their areas. The proper internal area of such chimneys at their upper orifice is : $-\mathrm{CA}=\frac{\mathrm{K} A}{11 \cdot 5}$ Both in square feet. Where C A is area of upper orifice of
chimney, and K A is area of kiln at its widest part. This rule

applies equally to those kilns with and without drying floors in
connection therewith, as in the Johnson and Bachelor kilns connection : In cases where the short chimneys are adopted it is advisable to erect two to each kiln or drying floor-dividing the total area
 Sundon Cement Works, Dunstable, February 22nd.

observations in high latitudes,

Sire - The world is full of Nansen now, all honour to him, but I am a little puzzled, and venture to hope some of your readers can
help me. How did Nansen, when he had left the Fram kno help me. How hid
where he was? In the first place, the magnetic needle had little
or no directive power it was all dip. Parry or no directive power, it was all dip. Parry, I think, found the
manentic pole, and he complained that his compasses were almost magnetic
useless.
How did Nansen take his latitude? Daring the winter he could
work by the stars, but in the summer the sun work by the stars, but in the summer the sun never sets, and the
stars are, I take it, invisible. He lost his longitude when bie stars are, I take it, invisible. He lost his longitude when his
chronometer ran down, but that is comparatively a small matter. He could make noon 1 suppose with a sextant and ann artificial
Horizon, but noon would not help him much as to his latitude. Any horizon, but noon would not help him much as to
hint on these points would be much valued by
Putney, February 17th. A Geocraphical Student.
pounds and poundals.
SIR,-In a short note, Professor Greenhill refers to the fact that tion," 1 have expressed the force resulting from a mass of matter under the influence of gravity in such a way that it gives us its
value in poundals. This, of course, is quite true, but I must con-
fess that I prefer to state it in dynes, our system of weights and measures not being a very inviting one.
As a mechanical engineer engaged in railway work, to whom, herefore, the results of acceleration are by no means novelties, factory: Indeed, the article is by an engineer, and was written or engineers, and I am inclined to think that engineers will be able to follow it.
It may be that there is still room for improvement in our system measuring forces. But even if this be the case, engineers will rather resent che iaputaion that the subject may formulate within the sphere of their intelligence.
Engineers really view with interest the discussion which is now
taking place, and will not be slow, I think, to make use of any good points that may be brought out.
R. M. DEELEY. 10, Charnwood-street, Derby, February 23rd.

Sir,-I read with much pleasure Professor Greenhill's short note in your last in
For many years engineers wereleft to themselves, used those term which they found suited their purpose, enabled them to communi cate their ideas, make their calcuataions, and carry on thoir business.
They found ready to their bands the square inch, the pound, the foot, the second, and so on. I have not heard that any o the mechanical engineers of this country, who have done and do so much for the world's advancement, have found these units .
OH late years there has sprung into existence a class composed o names were not engineers at all; they would be called, if righ as a term of reproach, because the school master has a great work to do, and does it well. But the world is very apt to be led astray by grand titles, and consideration is given to the dictum of the
iessor that would not be given to the word of the schoolmaster.
Now it has occurred to the schoolmasters that an improvement in nomenclature is needed, and each man who writes a text-book
goes one better than his predecessor in inventing new names for goes one better than his predecossor in inventing new names for
units. It is an easy and simple type of invention, and there is really no limit to it, because we may combine units almost withou Piston spee for example, we might call a train mile a" to whanich we may add an ""e" for euphony, and write "pispem,", Anyone with a little time on his hands can compose a dozen such words
without trouble. These things have, however, no real value or without trouble. These things have, however, no real value or
importance at all. The engineer who sees the word "poundal"
smiles and passes on. It would not be neessary to soy about the subject if it were not for the sake of the student who, coming out of the teccnical college into the works, finds that he makes
master.
The engineer has no complaint to make concerning the foot and it is a pleasant thing to see a man like Professor Greenhill, who
and certainly is only in the very highest sense
master, speak out and tell the plain truth.
Engineers are a very long suffering lot, they have too much serious work to do to worry about Professors with their little in-
ventions of units which none of their fellows will accept. But the ventions of units which none of their fellows will accept. But the
worm will turn sometimes, and the engineer may even go so far as worm will turn sometimes, and the engineer may even go so far a
to tell the Professor to attend to his own business and leave the engineer to mind his.
25, Great George-street, February 23rd

a question of adhesion.

$\mathrm{S}_{\mathrm{IL}},-$ We notice under the heading "Locomotive Adhesion, Midland driver as to the quantity of sand used assertion of Midland driver as to the quantity of sand used during a ruin
from London to Nottingham. As makers of the steam sanding qpparatus with which these engines are fitted, we may say that it ip squite possible so o to regulate the anount of sand delivered to the
point of contact between the wheel and rail to any quantity, varying from a fow ounces to seeveral po

Ironworks, Man
February 19th.
(Gresham and Craven, Ltd.)

Traction Engings in South Arrica.-Mr. Alfred Mosely, who Kimberley for the purpose of making arrangements to try the experiment of running traction engines between Honeynesthloof
Station and Koffyfontein for transport purposes. The engines Station and Koffy fontein for trapsport purposes. The engines
have been specially constructed for use on South African roads have been specialy constrent that by means of them the presen
and Mr. Mosely is confide
transport dificulties will be overcome The engines proposed to be transport dificulties will be overcome. The engines proposed to be
used will have ft . driving wheels, 2 ft . wide, and a large drum wil be attached to each engine. This drum hold 400 yards of sin. steel rope, which, on a sandy or other bad place being reached, is
released from the drum. The engine is then moved forward by itself and converted into a stationary winding engine, the rope with the load attached, being pulled up to it by re-winding on
the drum. The engine is then re-coupled, and if necessary the operation may be repeated until the bad part of the road has been got over. In the event of the sand being too heavy for the traction
engine to be able to go over by itself-a contingency not likely engine to be able to go over by itself-a contingency not likely to
arise-it carries with it a long steel screw. This screw is carried forward. The steel rope is then attached to it, and the engin winds itself up to that point. The wire rope is then returned, and
wild allowed to wind up the load. Thus any possibility of sticking in
sandy or other bad places is avoided. At a meeting of a loca sandy or other bad places is avoided. At a meeting of a loca
committee the request of Mr. Mosely to be allowed to use th ongines was ref
Imperfect Combustion Due to Heavy Fries.- When heavy fires are carried in a boiler furnace, the conditions are apt to
approach to those which pertain to the operation of gas producers a these a thick bed of incandescent coal is provided, and th the coal to carbonic oxide, and not to completely burn it. These conditions are more likely to occur in boilers which have the heat ing surface directly above the fire, as in those of the vertical type
and many forms of water-tube boilers. In boiless like the hori and many forms of water-tube boilers. In boilers like the hori-
zontal return tubular, where the products of combustion do not zontal return tubular, where the products of combustion do not
rise directly from the bed of coal, but mingle with those generated nor the other parts of the furnace, there is rather less opportunit Mr. Barrus where a 12 in. fire in a vertical boiler using semi-bitu minous coal gave a flue gas analysis, showing $6 \cdot 8$ per cent. o
carbonic oxide, 1.7 per cent. of free oxygen, and 11 per cent. o carbonic acid. When the thickness of the bed of coal was reduced half of oue per cent., an increase in the free oxygen to 3 per example the loss of heat from the imperfect co mbustion of the
carbon to carbonic oxide represents with the heavy fire 25 per cent. of the total heat of combustion of the coal; ; while in the case where the bed of coal was reduced, the loss is below 2 per cent This improvement was not attended by a serious increase in the
amount of surplus air, for in neither case did it exceed 25 per cent. amount of surplus air, for in neither case did it exceed 25 per cent.
Incidentally theso examples furnish an instance where gas analysis reveals certain facts which showed that the firing of the boiler was improper ; and, moreover, they increase our store of knowledge in
regard to the folly of carrying heavy fires, if steam is to be made

ALFRED BLECHYNDEN

WE announce with much regret the death, at the early
俍 We of forty-seven, of Mr. afternoon from syncope. Mr Blechyndenly on Salurdenticeship with Messrs. Morisons, Ouseburn Gardens Engine Works, Newcastle-on-Tyne. Subsequently he became draughtsman at the Ouseburn Works, and afterwards filled the same position at Messrs. Thompson and Boyd's. He then went to the Forth Banks Works, of Messrs. R. and W. Hawthorn, as leading marine draughtsman, and manager at their St. Peter's Works. While there the Esmeralda was engined. She was the first of the protected deck fast cruisers. In 1884 he became the of the protected of the Rio Tinto Copper Mines, a position which he had to relinquish after two years on account of ill health. In 1887 e joined the Barrow Shipbuilding Company as manager of the engineering department, and retained the position on the re-organisation of the company into the Naval Construction and Armaments Company, until the end of 1895. In February, 1896, he became general manager of Messrs. Jom While at Barrow, Mr. Blechynden designed and constructed the engines of the Oratava and Oruba of the Pacific Line Empress of India, Empress of China, Empress of Japan, and Empress of India, Empress of china, Empress os iapan, and and the second-class cruisers Latona, Naiad, Melampus, and Flora, and of the third-class cruisers Jasseur, Jason, and Niger. He also designed and constructed the machinery of the designed catchers sturgeon, Skate, and Staribs, and but he did not carry out the trials. At Penn's, at present, they have in hand from his design the engines of the Pomona
and Pactolus, each of 7500 indicated horse-power, and those of the battleship Goliath.
He was the inventor and patentee of the Blechynden water tube boiler, which has been fitted in several of the catchers and is being fitted in the Pomona and Pactolus, and in several foreign war vessels. He was a member of the Institute
Naval Architects, and of the North-East Coast Institute of Shipbuilders and Engineers, and has read papers on various rofessional matters.

HENRY CHARLES FORDE.
The sudden death of Mr. H. C. Forde, on Sunday last, deprives the profession of telegraph engineers of one of its few remaining pioneers.
in Ireland the cousy and distinguished career in Ireland, the country of his origin, where he was engaged F.R.S., sometimes with others, or alone, in a variety of ongineering work. Thus he came to be employed in 1846 pon different public works for the relief of the terrible Potato Lionel Gisborne commenced, leading in the first place to their oint visit of prospection and investigation to the Isthmus of Panama-the first attempt ever made to ascertain the pracicability of a ship canal across that isthmus-and afterwards their telegraphic partnership.
They had now struck fresh, and practically virgin, ground, upon which both of them established their reputation of poneers in the crat an of them, ho sobjo of this ork. In 1859 this firm represented H Goverment in the engineering department of the Malta and Alexandria able, supervising the work of Messrs. Glass and Elliot, the contractors. Mr. Forde subsequentiy-in 1862 -read an in-
eresting description of this enterprise before the Institution of Civil Engineers.
In 1860 Mr . Forde gave his evidence to the Joint Committee on the construction of submarine cables. One of the most useful tables prepared on this occasion was that of Mr. Forde ther minent comsult. He associated himself with several luding Sir Charles Bright, Mr. Fleeming Jenkin, Mr. Charles Hockin, and Mr. Latimer Clark. With the latter and Mr. partoresin the sucess of thed a more permanent one covering the entire field of work which it has done-is well known through the whole engineering and electrical world.
In the Institutions of Civil and Electrical Engineers, as well as in private life, where he always upheld the character amented by all who have known him.

RUSSIAN ARMOUR TRIAL

IT is reported that in last November a remarkable trial of rmour took place at Ochta, near St. Petersburg. An 8 in Krupp 10in. steel plate with a hardened face. The striking velocity is given as 2850 foot-seconds and it is stated that the projectile emerged at the back with a velocity of 700 foot seconds. This is in all respects a valuable experiment. The ery high velocity, the hard-faced plate, and the register of the shot after perforation are the very elements to be desired The projectile must have been an admirable one if it held ogether intact. We do not know its weight. Russian 8in armour-piercing projectiles exist weighing $192 \cdot 31 \mathrm{lb}$, and also
172 lb . Both are light for this calibre : the British 8in. sho weighs 210 lb This mor the calibre, the British 8 in . sho ment. Nevertheless it is very high for plate-firing. With he heavier shot, the striking energy and perforation through ighter aces tor nergy on the suppition the hesior emerged with a 653 foot-tons and of the lighter, of 584 foot tons. From thi it follows that either 10,167 , or else 9101 foot-tons energy was expended in perforating the plate. The projectile in this case exerted a power of perforation equal to 27.0 in . or 25.5 in . of exon. This means that the figure of the Krupp 10in. plate was 2.7 in . or $2 \cdot 55 \mathrm{in}$.; that is, it represented a thickness of argues we had morellenta this trial. We need scarcely add that on service such a plate might be safely depended on to defeat the gun. A projectile quickly blow, and so excellent a shot would form a combination blow, and so excellent a shot would form a combination of
favourable circumstances that would hardly occur on service.

THE TWIN-SCREW YACHT VARUNA
messrs. a. and g. INGLIS, GLaSGOW buIlders \& Engineers

THE TWIN-SCREW YACHT VARUNA. Notwithstanding the rapid advances in steel steamship construction which our Transatlantic cousins claim in regard to the production of racing yachts they have that succeeded in beating us, it is yet a circumstance worthy of notice that when a wealthy American wants a first-class steam yacht he generally builds her in the "old country." Of late many such orders have been placed with Clyde shipbuilders, and in each case the design of the yacht has been entrusted to the skilful hands of Mr. G. L. Watson. The Varuna, recently built by Messrs. A. and G. Inglis, of Glasgow for Mr. Eugene Higgins, a New York millionaire, is one of Mr. Watson's designs; and the fact that her owner sought not only the plans of the vessel, but the yacht herself, from the Clyde, is a tribute to British shipbuilding skill, indulged in by the newspaper press on the other side.
The Varuna is a steel twin-screw yacht 260ft. in length on the water line, 35 ft . extreme breadth, and 28 ft . in depth to Her length over all is 300 ft ., her depth in hold 18 ft. .; while her registered tonnage measurements are : under deck 1026 tons, gross 1573 tons, and net 595 tons.
Our illustration is from a photograph of the Varuna when ready for crossing the Atlantic. As will be seen from this and the profile plan, she has a topgallant forecastle which is 42 ft . in length, and beneath it are fitted bathrooms for petty officers and crew, galley, lamp-room, \&c. There end is supported by the casings and by stanchions at the bulend is supported by the casings and by stanchions at the bul-
warks. The remaining length of 128 ft . extends from side to side of the yacht. At the fore end of the bridge is the owner's room, which is 15 ft . long by 32 ft . broad, being lighted and ventilated by seven large circular ports on each side The fittings of this apartment are of mahogany, but the character of the material is concealed through being every-
where covered with a perfectly smooth enamelled white. Indeed, the whole of this and the adjacent apartments are enamelled white throughout, both in regard to furniture and fittings. The owner's room is divided by a partition into a bedroom and a sitting-room, the fittings of which in each case room and lavatory adjoin the bedroom, the walls and floors of which are in white porcelain tiles.
On the after side of the apartments just described are two large state-rooms, measuring 15 ft . by 14 ft . and 12 ft . by 14 ft . respectively, one of which communicates with the owner's room, and both with a stairway to bridge deck. These staterooms are decorated similarly to the owner's room, viz., in
enamelled white, and each room has a bath-room in communication with it, the floors and walls of which are of white tiles, and the fittings of white marble.
Alongside the machinery and boiler casings on starboard side are rooms for maids and valets, also bath-rooms and lavatories for guests. The library, measuring 17 ft . by 11 ft . is entered from the dining-room, which apartment is 18 ft be 34 ft ., and extends across the yacht between the casings of engine-room and those of the boiler space. The library is panelled and fitted with dark oak, and is upholstered in leather, the shelves in it being sufficient to receive upwards of 2000 volumes. The walls, furniture, and fittings of the dining-room are also of dark oak, but relieved with panelling ccommped leather and uphe dining table for twenty persons, and at the centre of the table is a handsomely carved oak pillar, to which is attached a well-designed arrangement of electric lamps fitted so that they may be varied in height rom the table as may be required. At the sides of the room re couches, swinging tables, cabinets, and cheffoniers, while with a centre of the forward bulkhe
an a finely carved oak mantelpiece.
At amidsips, and an casing on the starboard side of the yacht, there is a water-tight gangdation ladder, and by means of which entrance is obtained by the owner and his guests to this floating mansion. On
the inside there is a door of polished oak, admitting to the vestibule, from which a stairway on the opposite side leads o the smoking-room on the bridge deck above, and a door at Within the the dining-room already described.
asings over the twin-screw engines, and between the engine passage-way leading to the drawing-room, which is situated abaft the machinery space. Much skill is shown in the arrangement and ornamentation of this part of the yacht. An engine casing is not generally a sightly object,
but here it is a distinct feature of interest and adornment to but here it is a distinct feature of interest and adornment to
the vestibule. The fore end of the starboard casing is the vestibule. The fore end of the starboard casing is rounded in a bold curve. The lower part, to a height of about
ft . above the deck, is panelled in oak to correspond with ft. above the deck, is panelled in oak to correspond with
the walls and sides of the vestibule, and above this the whole of walls and sides of the vestibule, and above this the whole
of the whereby a view may be obtained of the engines working beneath. In this way, too, the whole of the vestibule and the passage-way to drawing-room is lighted from the engineroom skylights. At the after end of the passage-way access to the drawing-room is obtained by means of two doors. On entering the apartment, we find it relatively small when compared with the dining-room, as the bridge house at this part does not extend the entire breadth of the yacht, but leaves a passage way on each side, whereby both ventilation and lighting are afforded to the state-rooms below. The fittings
in the drawing-room are partly of dark-polished mahogany, in the drawing-room are partly of dark-polished mahogany and the remainder in enamelled white, the panels being of silk tapestry. The semi-grand piano, which is placed at the fore end of the room, was sent over by the owner from New drawing-room furniture and decoration, it may be sufficient to say that the whole is of a very tasteful and elegant cha to say
The profile sketch which we show of the yacht illustrates the general arrangement of rooms as already described, as well as other rooms of a subordinate description. Mention must, however, be made of the fencing-room, which is situated at the after end of the bridge house, and entered either from a companion way above, or by a door from the drawing-room.
The fencing-room, like the drawing-room, is lighted and ven The fencing-room, like the drawing-room, is lighted and ven
tilated by means of square windows at the sides, and by a skylight above, the latter being in this case of circular form The fencing-room is plainly yet conveniently fitted in polished oak, and contains four concealed beds, constructed after the manner found in Pullman cars, but with the addition of wash basins, \&c. Around the walls are seats with glass doors fo Abaft the fencing-room and below the upper deck are the bachelors' quarters, and rooms for valets. The crew accommodation and the spaces set apart for store-rooms and other purposes are shown in our illustration. The entir arrangement is excellently designed, and shows that Mr Higgins knows what is required, and that Mr. Watson is wel able to give a practicable and workable expression to thos requirements.
subdivided by no less than eight transperse water the Varuna is subdivided by no less than eight transverse water-tight bulk disaster at sea it is not necessary for us to to safety from disaster at sea it is not necessary for us to point out. Two
double-bottom cellular compartments are constructed for water ballast purposes, having a collective capacity of 66 tons and the fresh-water tanks will hold 9000 gallons. Eigh boats are supplied, including 33 ft . and 28 ft . steam launches The larger of these was built by the Liquid Fuel Engineering Company, of Cowes, Isle of Wight. As will be seen by our illustration, both electric lighting and refrigerating appliances are provided, the latter being by Messrs. Hall, of
Dartford. A system of hot-water heating is also carried throughout the yacht, radiators being placed in the apart ments for both guests and officers. The rooms are also ventilated by electric fans.
The twin-screw engines, of which illustrations are given are triple expansion, with four cylinders to each-two low pressure-of $22 \frac{1}{2} \mathrm{in} ., 38 \mathrm{in} ., 40 \mathrm{in}$., and 40 in . diameter, and
27 in . stroke. Two single-ended cylindrical back, are of $17 \frac{1}{2} \mathrm{ft}$. diameter and $11 \frac{3}{3} \mathrm{ft}$. long, with four furnaces to each, and loaded to a steam pressure of 160 lb per square inch. Forced draught is obtained by means of
fans. On the trial trip of four runs between the Cloch and and Cumbrae lights, when at a mean draught of about 15 ft ., a mean speed of 16.73 knots was obtained by an
indicated horse-power of 3995 , the engines working at 158 indicated horse-power of
revolutions per minute.
On leaving the Clyde the yacht presented a handsome, On leaving the Clyde the yacht presented a handsome, always characterises the work turned out by Messrs. Inglis, She will, without doubt, fully satisfy the desires of her owner, and probably afford his New York friends, who would like a steam yacht of their own, a good idea of where to get such an article designed and built.

GREAT EASTERN RAILWAY. - LIVERPOOL EXTENSION OF SKINNER-STREET BRIDGE.
THE subject of description and illustration in our present article, is the largest and the most important structure of the kind, rendered necessary in the vicinity of Bishopsgate-street by the extension of the terminal station of the Great Eastern Railway. Owing to the fact that the abutments of Skinner-street bridge have their faces inclined towards each other at acute angles of 73 deg. and 81 deg. with the overhead line of road raffic, the respective spans of the north and south main girders are by no means identical. This discrepancy is also augmented by the erection of two columns underneath the south girders on the station side of the bridge, which are
wanting on the north side, as shown in the general plan and elevation, Figs. 1 and 2 , and in one of the engraving plan and panying this article. Commencing from the old bridgepanying this article. Commencing from the old bridgene end on the abutment, and at the other at Y Y on the column P. The distance of 15 ft . between the small and large columns P and P_{1} is spanned by an underneath plate girder which is joined on to the south main girder over the column P_{1}, and forms the cab approach to the terminus, of which further details will be given. An elevation of the columns and of their he bluedestals ani foundions, which are cincipl he blue clay, is given in Fig. 2. For the principal dimenmain giraer, 159 ft . span of south main girder, 185 ft . 4 in . width of bridge between centres of north main girder and plate girder, 32 ft . 8 in .; width of bridge between centres of north main girder and south girder, 33 ft . 7 in .; width of bridge between centres of parapets, 30 ft .; depth of north main girder at centre, 15 ft .; depth of south main girder at centre, 12 ft .; depth of north and south main girders at ends, 9 ft .; breadth of the booms of both girders over all, 3 ft . 7 in . This total breadth includes the 1in. clearance between the twia main girders. There are fourteen cross girders con nected by intermediate girders, all of the plate description upon which are carried the buckled plates supporting the roadway.
Details of the smaller column P are shown in Figs. 3, 4, and 5 . It is 11 ft .58 in . high from the upper surface of the pedestal to the top of the capital, which measures 3 ft . by 2 ft . by 2 in . in thickness, which last dimension is that of the metal
of the column throughout, except at the base where the fillets or ribs occur, and where for a height of 9 in. it is in fillets or ribs occur, and where for a height of 9in. it is in-
creased to $2 \frac{1}{2} \mathrm{in}$. Holding-down bolts, four in number, 4 ft , long and $1 \frac{1}{2} \mathrm{in}$. diameter, with washers 1 ft . square, fasten the column to its foundation, Fig. 5, into which it is sunk to a depth of 1 ft .6 in . Fig. 2. The particulars of the larger column P_{1} are similar to those of the other P, but the diameter is 3 ft ., and the thickness is increased to 3in., the dimensions of the capital to 4 ft . by 3 ft . Sin., the base to 6 ft . by 6 ft . and the diameter of the holding-down bolts to 2 in . A differ ence is to be noticed, although not shown in the drawings on column the a ft a base ane casting in the larger they a 3 in . in taicness bearing surfaces of the columns are truly turned. The plate girder shown in elevation in Fig 2 , connecting th abutment, to which it is bolted down, with the smaller

SKINNER-STREET BRIDGE, GREAT EASTERN RAILWAY
MR. J. WILSON, M. INST. C.E., ENGINEER

column P, has a depth of 7 ft ., aad is bailt up of equal upper and lower flanges consisting of one plate 1 ft . 9 in . by $\frac{1}{2}$ in., and two angle irons, each $4 \mathrm{in}$. . by 4 in . by $\frac{1}{2}$ in., and capital of the pillar P , with the girder E to be subsequently described. Fig. 3, which is an enlarged sectional plan at Y Y in Fig. 2, explains the method of connection. Over the larger column P_{1} the attachment of the girder F to the south main girder takes place at X X, and is shown in Fig. 2, where the small underneath plate girder B is riveted up to one of the fourteen cross girders of the bridge.
The elevation of the north or larger main girder in Fig. 6 indicates that the type of construction adopted is similar to that employed for the structure at Primrose-street, previously described and illustrated in our columns. It will not be necessary to describe or refer further to the south main the same lines as its neighbour. There are fourteen bays, the two central of which are counterbraced, in the total length, 173 ft ., of the girder, twelve of which are spaced 12 ft . apart from the centres of the double strut diaphragms, which, as in the former instance, brace together the separate or twin girders composing the entire one. The two end bays are rather longer than 12 ft . At the centre of each of the twin girders there are ten plates, as seen in the diagrams, in the upper and lower flanges, all 1 ft . 9in. by $\frac{1}{2}$ in., having a maximum length of 30 ft . 2 in . The arrangement of the joints in the plates of the flanges is well shown in the diagrams in Fig. 6, in which one long cover plate covers them all. A width of the planges, showing the position of the cross irders and the ties and struts, is given in Fig. 7. From irde details in Fig. 8, which is an elevation on a larger scale of part of the north main girder, it appears that the diagonal tie bars vary in scantling from 10 in . by $\frac{1}{2} \mathrm{in}$. in the central counterbraced bays to 1 ft .10 in . by $1 \frac{1}{2} \mathrm{in}$. at the ends. Each strut, while the four angle irons, 3in. by 3in. by $\frac{1}{2}$ in., and the two vertical plates in the cross section of the girder orming the diaphragms, $\frac{1}{2} \mathrm{in}$. in thickness, retain these contant dimensions, has the two other vertical plates increasing in size in the elevation of the girder from 5 in . by $\frac{1}{2} \mathrm{in}$. to Sin. by $1 \frac{1}{2} \mathrm{in}$. It should be noticed here that these two plates are not always of the same thickness, the one nearer he end of the girder being thicker than the other, so as to gree to it, and thus provide for the augmentation in the mers the stresses acting on the bars of the web. The ends of the main girders are strongly stiffened by the web over the bearings being strengthened by plates ${ }_{3}$ web thick and a pair of tee irons 6 in. by 3 in . by $\frac{1}{2} \mathrm{in}$. In the cross section just over the bearings of the girder in Fig. 10 it will be seen that there are two longitudinal angle irons covering the space of one inch between the twin girders, and also a couple of angle irons, all $4 \frac{1}{2} \mathrm{in}$. by $4 \frac{1}{2} \mathrm{in}$. by $\frac{1}{2} \mathrm{in}$., riveted to the inner and outer edges of the upper flanges. The general cross section of the bridge is represented in Fig. 11, and an enlarged detail of a part of it in Fig. 12. Cruss girders 2 ft . 6in. at the centre, and 2 ft . $1 \frac{1}{2} \mathrm{in}$. at the ends, with a slightly concave lower flange, carry the intermediate girders. The intermediate girders shown in Fig. 13 support the cast iron floor plates, upon which placed. All the sets are 12 in . by 7 in . by 3 in and the surface placed. Atp the sets is covered with asphalte, which is raised 4in. above the level of the roadway, and separated from it by a granite curbstone 12in. by Gin. A small plate girder runs along the whole length of the footpaths on the inside of the main girder, and acts as an earth plate or ballast board. It may be observed that there is no joint in the cross girders, all the plates and angle irons being in one length. There are three plates in each flange 1 ft . 6 in . by $\frac{1}{2}$ in., two angle irons $3 \frac{1}{2} \mathrm{in}$. by $3 \frac{1}{2} \mathrm{in}$. by $\frac{1}{2} \mathrm{in}$., and two longitudinal corner ones, to which the flanges of the cast iron arched plates are bolted, Fig. 13. The web has a width of $\frac{g}{g} i n$. increasing to $\frac{1}{2} \mathrm{in}$. at the ends of the girders. Between the cross girders, at inter-
va's of 4 ft ., are the small interme diate girders 1 ft . deep, consisting of a pair of angle irons $3 \frac{1}{2} \mathrm{in}$. by $3 \frac{1}{2} \mathrm{in}$. by $\frac{1}{2}$ in., and a web plate in. in thickness, extending up above the angle through it of the flange of the cast iron arched plates, which are 4 ft . by 3 ft . 6 in . of $\frac{5}{8} \mathrm{in}$. metal.
The entrance to the cab approach to the terminus from Bishopsgate-street and Norton Folgate, which takes off at right angles from the bridge over the railway at Skinnerstreet, is shown in Fig. 2, carried upon a pair of main plate girders E and F . A general plan of the approach is given in Fig. 14, and the junction of the longitudinal approach girders E and F with the south main girder making a total 6 ft . apart from centres. Girders E and F are of the plate type, similar in design and construction, 7 ft . deep at centre, but of different span, as can be seen in Figs. 14 and 15, that
the details are shown in Figs. 19 and 20. The joints of the screen plates are covered by wrappers of plate 6 in . by 4 in ., and the screens are stiffened at intervals by angle iron $2 \frac{1}{2}$ in by $2 \operatorname{tin}$. by ${ }_{3} \mathrm{in}$. In Figs. 21 and 22 are given the details of arrangement, which, with the exchtion of a few details, is similar both in design and construction to that adopted for the Worship-street and Primrose-street bridges, previously published in The Engineer, and which therefore requires no further description. For the drawings accompanying our article we are indebted to the courtesy of Mr. John Wilson, M. Inst. C.E., Engineer-in-Chief of the Great Eastern Railway, and for much information to his resident engineer, Mr Cambridge The photographs which are self-explanst, at were very kindly placed at our disposal by Mr. H. I. Batting of the well-known Horseley Company, Limited. In addition

SKINNER-STREET BRIDGE, GFEAT EASTERN RAILWAY
of the former measuring 55ft. 91in., and that of the latter $53 \mathrm{ft} .11 \frac{3}{3} \mathrm{in}$. They are both 1 ft . 6 in . broad over the flanges, which are built up of three horizontal plates 1 ft .6 in . by $\frac{1}{2} \mathrm{in} .$, and two angle irons $3 \frac{1}{2} \mathrm{in}$. by $3 \frac{1}{\mathrm{l}} \mathrm{in}$. by $\frac{1}{2} \mathrm{in}$. in the
elevation in Fig. 15. Vertical plates 1 ft . by 3 in ., and tee elevation in Fig. 15. Vertical plates 1ft. by ${ }^{\text {gin., and tee }}$ web, which is in throur formed by these vertical stiffeners are placed the bross girders, Figs, 14 to 17 . They are 1 ft . 6 in daced 1 ft cros with flanges of plates 2 in . by $\frac{1}{2}$ in., two angle irons 3 in. by 3 in by $\frac{1}{2}$ in., and a web 3 in. thick. The space of 6 ft . between the centres of the cross girders is spanned, Fig. 17, by jack arches of brickwork 9 in . in depth, upon which the filling and road material is carried.
Over the cross girders runs the earth plate girder shown in Figs. 18 and 19, to which it is, by angleiron gusset pieces 6 in. by 6 in . by $\frac{1}{2}$ in., riveted over their upper flanges. Upon the prolongation of the web of the earth girder or ballast board are riveted the vertical plates 4 ft . by 7 ft . by 4 in . thick, of the parapet or screen, to which are fixed the cast iron mouldings, of which
to their contract for the construction of the three large ter minal bridges, Messrs. Horseley and Co. supplied to Messrs John Mowlem and Co. all the ironwork for widening from Bishopsgate to Globe-road, and from Bethnal-green to Hack ney Downs. \qquad
larger and Higher Bridge Spans.-A Bill has been introduced in Congress to limit the obstruction by future bridges of navigation on the Ohio, Monongahela, Mississippi, Great Kanawha Tennessee, Cumberland, and Illinois rivers. The clear waterway fixed at 1000 ft . and 40 ft . respectively for the Ohio 1000 ft ar 75 ft . for the Mississippi at and below St. Louis ; 800ft. and 54 ft . for the Monongahela, 500 ft . and 82 ft . for the Great Kanawha 250 ft . and 100 ft . for the Tennessee and Cumberland, and 250 ft . draw-spans for the llinois. The reported provision that "every bridge shall have its axis at right angles to the current at al
stages, and all of its spans shall be through spans," is obvionsly stages, and all of its spans shall be through spans," is obviously
arbitrary and unfair, even if not impracticable, and seems to over look the fact that final approval of any design must be given by the Secretary of War.

THE FEDERATED INSTITUTION OF MINING

$$
\begin{aligned}
& \text { ENGGINEERS. } \\
& \text { MANCHESTER MEETING, } 1897 .
\end{aligned}
$$

THE week before last we announced a forthcoming meeting of the business transacted at the meeting announced. This was the twenty-third general meeting; it was held in Manchester on
Tuesday, Wednesday, Thursday, and Friday of last week, and amongst, the papers presented at the meeting were the following:-
"Railway Nationalisation in Relation to the Coal Trade" was reated by Mr. Clement Edwards; recongising the pararacount im portance of cheap fuel, he first demonstrated that the railway rates
amount to a charge of 25 per cent. in the selling price of minerals; then commented on the higher railway rates in England as compared
with the continental railway rates ; he also arguued the question as to the exhaustion of our supply of coal, and the cost of, nand limits of profitable working, summarising the position to the effect that our coal petitors, but that long before the period of final exhaustion has been he case of competing nations. Some reduction of expenditure will therefore have to be made to help us as a nation to hold our own
against foreign competitors, and this compensatory reduction can gainst foreign competitors, and this compensatory reduction can
best be met by the institution of a much cheaper cost of carriage, mhich could be effected by putting the railway rates on a just basis
whit
from a national standpoint. As we are not likely to get this rom a national standpoint. As we are not likely to get this
satisfactory rearrangement of rates out of the present railway system,
Mr. Edwards believes that the remedy is to be found in the
 nationalisation of the railways. He advocates nationalisation
because he realises that there are wastes incident to our system-a definite waste estimated at $£ 10,000,000$ a year-and that we haveall the disadvantages of competition without any of its advantages;
such, for instance, as the carrying of foreign produce at a cheaper rate such, for instance, as the carrying of finds that the acquisition by the State of the railways has been attended by improved services, cheaper rates, and very great advantages to the community in Germany,
failed only in one instance, that of t taly.
No discussion was taken on this paper,
No discoussion was taken on this paper, which we think is to be
regretted. The paper was founded on statistics for the year 1889, regretted. The paper was founded on statistics for the year 1889,
which are rather out of date in 1897. It would, however, have which ared a basis for a discussion on a very important subject by
afractical men. The question of inland transport is undoubtedly of
prem pracime importance to the community, but we should be sorry to prime importance to the community, but we should be sorry
think that the only remedy was to place the carriage of goods
throughout the country as well as of passengers in the hands of the throughout the country as well as of passengers in the hands of the
Government. It is more than a commercial, in fact, it is a great political question.
The next paper read was on "The Cost and Efficiency of Safety
Explosives as Compared with Gunpowder," by Mr. H. Hall, H.M. Explosives as Compared with Gunpowder," by Mr. H. Hall, H.M. by the Secretary of State, which would shortly come into operation,
explosives would be of interest, and he had obtained full statistics
for actual comparisons between gunpowder used as the blastin gent and safety explosives used for the same purpose. Some
wenty firms have been included in the inquiry, and in each cas he last whole year in which gunpowder was used is compared with he year 1896 for the safety explosives; the same seam, or the same
olligry as a whole, is in each instance compared for the two periods. The inquiry embraces mines giving an annual output of $5,000,000$ tons, and in several instances the experience with safety explosive
extends to eight or nine years ; full details are given in the paper axtends to eight or nine years ; full details are given in the paper
and will appear in the "Transactions" of the Federated Institution of Mining Engineers, a remark that also apperies to the other
communications we notice. From these data it is deduced that the averagaige ocst per ton for explosives is o.6.61d. for gundowder and
b.92d. for safety explosives, or one-third more for the latter explosives than for the former. In the table given the safety
explosives used at a cost of one penny or less per ton of coal raised explosives used at a cost of one penny or less per ton of coal raise
include:-Ammonite, Ardeer powder, bellite, carbonite, electronite
and roburite. Dealing with the yield of round col, and roburite. Dealing with the yield of round cooll, the average
percentage with gunpowder was 62.2 , with the safety explosives 62.0 percentage with gunpowder was $62 \cdot 2$, with the safety explosives $62 \cdot 0$

- $\operatorname{comarkably}$ near.
But in it stonework, the safety explosives show an advantage of at least 25 per cent. over gunpowder.
The general conclusion drawn from the statistics is that the new "Explosives in Coal Mines Order ". will by no meneans prove so by some people, inammuch as as it it is estimated that less than one penny per ton will defray the whole cost.
Moreover, the question of safety is
notoriousty, fiery district where safety explosives, safety lamps, and
an official shot firer is compared with a district, presumed to be no officiel shot firer is compared with a district, presumed to b
safe, where candles, gunpowder, and collier shot fires prevail safe, where candles, gunpowder, and collier shot fires prevail.
Taking West Lancashire as the fiery district and Northumberland
as the other district, it is shown that during the last five vears as the other district, it is shown that during the last five years one
death in every 76,700 in the former district, and one death in every 23,
tively in in the latter district, and of of persons ind injured, we have respec.
1 in 1735 . That is, there have been more than hree times as many persons killed in Northumberland through accidents with explosives in proportion to the number of persons
underground than there have been in West Lancashire, and naerry
three times as many injured from the same cause during the last five three times as many injured from the same cause during the last fiv
years. Then turning to fire-damp explosions during the same period
there is shown to have been an average of 1 death per every 27,760 persons in Northumberland, and 1 in every 115,050 in West Lanca-
shire, the average injuries from this cause standing at 1 in 5552 and shire, the average injuries from this cause standing at ina in rose an
1 in 11,505 respectively. Of course, the numbers again refe to
the underground population; so there have been four times as many killed by explosiops of firedamp in in Northumberland as in Lanca
shire, and twice as many injured in the last five years. It would shire, and
thus appear that ty bobstinate adherence e o a ant fique method of of mining
and a district naturally safe has become less free qrom accident than one
naturally dangerous. The argument that the use of candles tends to naturally dangerous. The argument that the use of candles tends t
diminish the risk of accidents sliable to cause fall of roof and side is shown to be untenable by statistical comparison between a district
using candles and another using lamps, from which it is concluded that
 arked that in a list of 37 accoidents of all the the firedamp explososions
(ix) were caused by candles, and out of 31 accidents with pnosives 29 were due to gunpowder mostly in conjunction with ines Order" wil
amp and coal-dus The chairman considered that the cost of working with safety
explosives would be greater than Mr. Hall supposed. If all the men
vere taken out of a pit whenever a shot was fired, the cost would be were taken out of a pit whenever a shot was fired, the cost would be
prohibitive. It was pointed out that 1d. per ton on the whole
utput amounted to hire, , amount that at to the colliery he managed, where a high explosive duced more slack. He should have supposed that the Home Secretary would have had more faith in the so-called safety explo-
ine, and not ordered the removal of all the men except ten from a sive, an
mine.
"Var
their pr "Various Types of Ropeways" were described, with remarks as to nasmuch as wire ropeway transport can do thoroughly efficient and
tisfactory work, and compete well with the ordinary atisfactory work, and compete well with the ordinary ground
railways of the class found in mines, it is not used to the extent that it should be. This lack of apppreciation of this system of transport attributed to indiscriminate application of the many types of
vire ropeways, and to the adherence to one type for doing all kinds ire ropeways, and to the adherence to one type for doing all kinds
f transport work, whereas circumstances should decide as to the ype of ropeway to be adopted, the chief considerations being the
haracter of the country which has to be traversed, the class of material to be transported, the manner in which such material can be packed, the motive power available, the incline to be
urmounted, the spans to be. crossed, the quantity to be arried per day, spans to. Taking thessed, matters into sonsideran which direction they may most appropriately be applied. He
me wscribed five different arrangements of wire rope transport from
hish to select. The five are -- The endless running rope; the endless running rope with carriers rigidly fixed in position on the rope;
the two fixed ropes, with many carriess, ing rope; the single fixed rope, with one carrier, drawn to and fro by
neans of an endless hauling rope; and the double fixed ropes, with n endless hauling rope, having one carrier travelling in one direc-
tion while another runs on the parallel rope in the opposite direc ion. The further consideration of this paper and the notice of Mr. . Galloway's paper on "Appliances for Winding Water" will be reserved for a future occasion.
An excursion was made to the locomotive works of the Lancashire
nd Yorkshire Railway Company at Horwich. The president was ccompanied by about fompany at Horwich. The president was
ver the works by Mr. J. A. A spinall, the who were met and shown and superintendent he land works by Mred for J. A. Aspinall, the locomotive superintendentes.
smithy, forge foundry, machine-shops, and erecting and repairing-
shops, \&c. © ©. There are five miles of tramways 1ft.
in.
gauge, and a number of small locomotive engines are used for hauling
materials to and from the stores, and of work to and from the various departments. The works were commenced in 1 1886, and
were erected for the purpose of repairing and renewing the locowere erected for the purpose of repairing and renewing the loco-
motive stock and carrying out mechanical engineering work on the motive stock and carrying out mechanical engineering work on the
railway. The company have 1300 locomotives, and build about forty rainay. Ahmost everything in connection with the business and
annualy. Ander
the manufacture of engines, signals, ©c., is done on the premises; the manufacture of engines, signals, \&c., is done on the premises;
steel plates and rails are purchased, but the steel tiries and springs ster forged at the works. Interlocking frames and levers, signals,
and the reouirements of the telegraph service are all provided for and the requirements of the telegraph service are all provided for.
The raw material is dealt with at one end of a parallelogram and The raw material is dealt with at one end of a parallelogram and
follows its course to the end across the short side, and emerges at
the end of the second long side a finished locomotive. Between the end of the second long side a finished
3000 and 1000 men and boys are employed.
Messrs. Wm. H. Bailey and Col's Albed. Albion Works, Salford, were also visited, where Davidson's direct-acting steam pumps were
shown. These pumps are described as being suitable for pressures shown. These pumps are described as being suitable for pressures
varying from 50lb. to 4 tons per square inch. The Denaby sinking varying from 501 b . to 4 tons per square inch. The Denaby sinking
purng was also shown this type was designed for sinking two
large shafts, over 60oft. in depth, by the Denaby Main Colliery large shafts, over 60oft. in depth, by the Denaby Main Colliery
Company at Cadeby, near Doncaster. It has the Davidson piston ampany at Cadeby, near Doncaster. It bas the Daviason piston
and valve motion, and works when suspended by chains or steel
ropes. As the sinking proceeds extra lengths of pipes are added to ropes. As the sinking proceeds extra lengths of pipes are added to
the top of the shaft, and a telescopic suction pipe enables the sinking to proceed for a depth of ofest. without neocessitating the the serink-
of the pump. It can be fixed permanently in the shatt of the pump. It can be fixed. permanently in the shaft after the
sinking is completed. Eight of these pumps were supplied to the sinking is completed. Eight of these pumps were supplied to the
Denaby Main Colliery Company. The Aquathruster pump was also Denaby Main Colliery Company. The Aquathruster pu.
shown; it is an improved pump of the pulsating type.
$\bar{\longrightarrow}$
Trade $A x D$ BUsiness Anvouscemexts.-Messrs. Diek, Kerr, and Co.,
Limited, of 101 , Leadenhall-street, London, and Britannia Engineering Works, Kilmarnock, have inaugurated their now eleotrical traection
department by securing the contract for the electrical equipment of the Dover Corporation tram tways. - Mr.. W. W. The Paractack, 171, Quequent Victoria-
street, E.C., intimates that he is relinquishing the repesentation of
s.

 opened new head offices in London at 32, Nictoria Mansions, Westminster.
The, Warrington ofice will remain open as a norther district office.-
Leys Malleale Castins Company, Limited Derb, has been reon-
tructed Ley's Malleable Castings Company, Limited, Derby, has been recon-
structed, owing to increase of busines. No, shares, however, are bing
offered to the public.
ent

 cranes and winches for the quick handling of general cargo. This will be
the eoighth steamer built by the Caledon Company, Limited, for the
Cork Steam Shipping Company, Limited.

RAILWAY MATTERS．

The mileage of the Pennsylvania Railroad system at end of 1896 aggregated $12,859 \cdot 97$ miles．
The Electrical Engineer states that the Diatto surface contact electric tramway is to be tried at once at Tours．
At present the tramways there are run with Serpollet steam tramears．
Two compressed air cars of the American Air Power Company were given a trial run in Now York recently，the trip
boing from Fort Lse ferry to Broad way and the Grand Central Station．The cars carry air at 2000 lb ．pressure in the reservoirs．
The promoters of the City and West．End Railway Company，and of the Brompton and Piccadilly Circus Company， heir return along its whole length＂to the satisfaction of the City nd Guilds of London Institute．
Expressed in terms of hundreds of square miles，of the leading railway countries Belgium has $29 \cdot 1$ miles of road per
$100 ;$ Great Britain， $16 \cdot 6$ miles ；Netherlands， 135 miles Germany， $13 \cdot 6 ;$ Switzerland， $13 \cdot 1$ ；France， $11 \cdot 5 ;$ Italy， 78
United States， $5 \cdot 7 ;$ Canada， $4 ;$ Mlexico， $7 ;$ British India， .9
Argentine Republic .7 ；and Australia $\cdot 6$, AN alternative proposal for a railway line from Noak hali to the Assam－Bengal Railway has been put forward．The
original idea was to connect it with Feni，a sub－divisional town in original idea was to connect it with Feni，a sub－divisional town in
the district，while the scheme now put forward is onake it pass along the centre of the district，and eventually link it
Assam－Bengal Railway somewhere near Laksam Junction．
From reasons at present unexplained，the London an 3 South．Western upLondon mail train crossed the junction points near
Dorchester，on Sunday night，and ran on to the Great Western main line．The train was pulled up in the Great Western station，
and，after some delay，the officials got it on to its own line．A Board of Trade inquiry into the incident will probably be held．
The Government of India has approved the Port Com－ missioner＇s proposals for spending 20 lakhs of rupees at Kidderpur
in improving the docks with coaling berths and golahs，or salt repositoriess in the boat canal adjoining，and has authorised the
raising of a loan of 15 lakhs of rupees at $3 \frac{1}{2}$ or 4 per cent． According to Router，the Government bas agreed to the
the only feasible solution of a serious practical difficulty．
The company of the Chemin de Fer de l＇Ouest has besn experimenting with the Chapseal electric air brake
between Paris and Mantes．The brake is designed to obviate the troubles which arise when it is attempted to apply without modifi－
cation the ordinary air or vacuum continuous brake to goods trains， owing to the time the impulse takes to travel along the train．It
is claimed that in the Chapsal brake an electrical apparatus starts is claimed that in the Chapsal brak
the braking pistons simultaneously．
An old brick bridge which carried the Manchester， Sheffield，and Lincolnshire Railway over a drain at Lincoln
collapsed on Sunday．The bridge had been under observation collapsed
since the recent floods，and the down siding was strengthened
fy by timbers．On Sunday a gang of seventy men were engaged in
demolishing the structure to make way for a girder bridge．When
the main lines were removed the centre arch collapsed，and twelve men were precipitated into the water．The stream，swoollen by
the floods，was flowing very rapidly，but fortunately a lifebuoy and the floods，was flo
boat oere provi
quickly rescued．

On the Eastern Bengal State Railways the work of doubling the line from Poradaha to Naihati is rapidly approaching
completion ；the additional g gat sidings and extension to Farid－ pore are well in hand；the Saltanpore－Bogra－Kaliganj branch line
is being taken up；the extension of the Cooch Behar section to Is being taken up；the extension or the cooch Beaar section to
Santrabari and Buxar has been commenced the Teesta bridge is
in hand，and on the Mymensing line the important prolongation to Jamalpore and beyond to a point oppositer Serajganj is under
way．The project for extending the Bengal－Central Rxilway－ which is now about to work independently of the Eastern Bengal State Railway－fron Singhia to a point opposite Chandpore is one
that is being reconsidered，and，says an Indian contemporary，is likely to be brought into practicable shape
The Secretary of State for Foreign Affairs has received a despatch from H．M．Acting Consul－General at Christiania
stating that notice has been published by the Norwegian Board of Works inviting foreign as well as Norwegian ongineers to doraw ap competive plans or in that city．The Contract Journall says：－
having their termin
Four
 Farther particulars can be had on application to the Railway Otfice，Board of Works，Victoria－terrace 6 ，Christiania，where also
maps and sections，\＆c．，cean be obtained on depositing 50 kroner， maps and sections，\＆c．，can be obtained on depositing
$£ 2$ 15s．6d．Such further particuars as have been recied may
San be seen at the Commercial D．p．
day between 11 a．m．and 6 p．m．

Never in the history of railway construction in India have so many important briages been in hand at the same moment
The East Coast line，which is making satisfactory progress，for
instance，claims the Godavery Bridge，which will possess fifty－six
 and three smaniler bridges over the delta of twenty spans of 150 ft ， nineteen spans of 150 ft ．，and sixteen spans of 100 ft ，．，respectively． Rupnarian，and the Cossye，on the Midnapur line，the two first o
these being tidal．Finally，there is the large bridge over the Indu these being tidal．Finally，there is the large bridge over the Indus
at Kotri，which will be constructed with fve spans of 350 ft ；the
Sone River bridge，on the Mogal－Serai－Gaya line，and the Gogra Sone River bridge，on the Mogal－Serai．Gaya line，and the Gogra
bridge，in the North．West Provinces，of twenty spans of 150 ft ．
It is is interesting to note，too，that the plenum process，by which the It is interesting to note，too，that the plenum process，by which the
work of sinking is carried out by compressed air work of sinking is carried out by compressed air power，is being
adopted for the first time in the construction of the Godavery and Indus bridges．
Tre dispute which has been pending for some time between the North－Eastern Railway Company and their employes
reachei a climax on Wednesday night，when，at a crowded meeting of the men held at Neweastle，it was decided by Mr．Harford，the general secretary of the Amalgamated Society，to declare a general
strike all over the North－Eastern system．Mr．Harford said sixty goods checkers had an intimation that their hours of labour were to
be increased，and the general body of men had grievances of their wn．He had seen Mr．Gibb，who had made certain proposals， Tae speaser desired to be fair to both sises．He understood the contrary to an award．He had seen Mr．Gibb，and Mr．Gith laid
down three propositions．The first was that the company declined down three propositions．The first was that the company declined to enter upon any decision of any matter while the men were on
strike．Mr．Harford＇s recommendation that the men should adopt this course was at once cried down．By this reply，he said they had
told him exactly what to do．They had a fund of $£ 200,000$ ．He did not want to waste money，but there should be a proper under
standing with the North－Eastern Railway Company before they returned to their work．By numbers and combination they could
reme returned to their work．By numbers and combation In that locility 95 per cent．of the
settle the matter in two days．
men were society men，and he wanted those 95 per cent．to declare men were society men，and he wanted those 95 per cent．to declare
that they were not going back to work，no matter whether they had been right or wrong in ceasing work，until they had a fair
haderstanding as to what the issue was to be for all grades of

NOTES AND MEMORANDA．

The steamers on the Official Register of the United The steamers on the Official Register of the United
Kingdom have increased by 144 vessels，and 289,981 tons，during
1896 while sailing vessels have decensed by 342 vessels，and 1896，while
138,173 tons．
The flags to be hoisted at one time in signalling at sea never exceed four．It is an interesting arithmetical fact that，with
eighteen various coloured flags，and never more that fcur at a time no fewer than 78,642 signals can be given．
According to a special census report on the occupations of the puople of the United States at the eleventh census， 1890 ，
just issued by the goverment，there were in the United States nearly 140,000
on locomotives．
The Prince of Wales，President of the Society of Arts，last week presented Professor David Edward Hughes，
F R．S．，with the Abert medal＂in recognition of the services he has rendered to arts，manufactures，and commerce，by his
numerous inventions in electricity and magnetism，especially the printing telegraph and microphone．＂
As showing the development of trade with Uganda，it may be stated that the value in rupees of imports and exports at
Kampala by the south route during the years 1894，1895，and the 6irst ten months of 1896 ，，bave been as follows ：－Imports in 1894 ， Exports in 1894， $47,016 \mathrm{R}$ ．；in $1895,76,272 \mathrm{R}^{2}$ ．；and in 1896 ，
161,023 R．

Herr Laur argues that petroleum originates in the decomposition of subterranean carbides by water，so that the pro－
cess must be a continuous one．Such carbides as that of aluminium would favour the formation of natural gas ；such as that of uranium would favour that of liquid products，The nitrogen in crude
petroleum would，on this view，not be of animal origin，but would放放位e of nitrides．
Recent experiments on argon by Messrs．Trowbridge and Richards show that argon－at low pressures－fluoresces（blue）
nader the action of the Hertian waves．The spectrum given by ander the action of the Hertuian waves．The spectrum given
the gas depends，says the Electrical Engineer，upon the voltage of
the discharge throgh it blue of high－voltage spectrum；but if there is self－－induction in the
circuit，this is converted into the lower or red spectrum．It is suggested by the investigators that it migbt be possible to use an argon dischargo abe as an inductometer．
During 1896， 558 new vessels of 920,961 tons were classed by Lloyd＇s Register．Of these vessels， 498 of 853,579 tons
are steamers，and 60 of 67,382 tons are sailing vessels．Compared with the similar figures for 1895 ，the present return shows an in．
crease of 33,000 tons as regards steamers，and 15,000 as regards sail－ ing vessels．Only 98 ． 6 per cont．of the tonnage classed has been built 25 per cent．of the total tonnage olassed in 1891， 31 per cent．in
1892 ，and 18 per cent．in 1893 ，forms only about 7 per cent．of the present total
Of the tonnage classed by Lloyd＇s Register during the year， 877,174 tons，or 951 per cent．，have been built in the
United Kingdom．Among foreign countries，France contributes the largest amount of tonnage． 645,345 tons，or 70 per cent．，have
been built for the United Kingdom，and 275,616 tons，or 30 per cent．，for other countries．Among the latter，Germany leads with位， 365 tons；Russia has 49,190 tons；and France 26,956 tons． Conmark and Norway have about 17,500 tons each；various British
Colonies， 12,560 tons ；and Holland，Sweden，and Japan about 10，000 tons each
Notwithstanding hostile tariffs which have reduced the export of tin－plates from Swansea to the United States by
57,182 tons，or $57 \cdot 6$ per cent．during 1896 ，the shipments to Petersburg last year increased from 3590 tons，to 6164 tons，or 71.6
per cent．；Germany， 7284 tons to 19,921 tons，or 173.4 er cent per cent．；Germany， 7234 tons to to 19,921 tons，or 173.4 per cent．
Italy， 8220 to 730 tons，or 51.5 per cont．A Astria， 1279 to 1126
tons，France， 9745 tons to 12,153 tons，or 24.7 per cent．；Straits Settlements， 231 tons to 5493 tons，or more than 2000 per cent． The total shipments in the month of January of the current year
were 15,770 tons，as against 11,482 tons，or 20 per cent．more．
Lifutenant Hugh D．Wise，of the United States Army，has made a successful ascent by kites．In his experiments
at Governor＇s Island，he used four kites，a modification of the Har． grave invention，and weisging about 16 ，li，each．The kites were
ttached to a windlass running out a tin．manila cord connected attached to a windlass running out a $\frac{1}{2 i n}$ ．manilla cord connected
with an iron ring drawn up 5oft，above the ground．From the ring with an iron ring drawn up 50ft，above the ground．From the ring
the kites ran up on two lin．cords．Two kites，one above the ther，were attached to each of the latter cords．To the ring was ground．On this rope，says Nature，Lieutenant Wise was drawn up，and remained for a considerable time at a height of about 4．ft．，surveying the environment on all sides with his field glass．
The wind was blowing fifteen miles an hour，and the pull of the
The total addition of steam tonnage classed by Lloyd＇s Register during the year 1896 has been 710,247 tons gross ；and of
sailing tonnage， 61,200 tons gross ；or in all 841,447 tons gross． ver 96 per cent．of this addition consists of new vessels，not one of tonnage from the register amounts to 490,266 tons ；and of sailing tonnage，to 199,373 tons ；or in all to 689,639 tons．About 40 per cent．of the steam tonnage，and 59 per cent．of the sailing tonnage，
included in these figures have been removed on account of loss， breaking up，dismantling，\＆c．The tonnage sold to foreigners during 1896，although less by 20,000 tons than the similar figures
for 1895，is still exceptionally large．The steam tonnage，which has ons，and the sailing tonnage to 7 ， 0886 tons，or about 53 and 39 per cont．respectively of the total deductions．
The total tonnage of vessels entered and cleared at the harbour of Ruharort last year was，according to the Rhenish－
Westphalian Gazette， $5,562,222$, arainst
is equal to an increase of $1,085,174:-$

MISCELLANEA

As her Majesty＇s ship Blake was leaving Portland for Portsmouth on Sunday，an explosion occurred in the engine－room
through the bursting of a separator pipe．Four men were
Fol through
injured．
The Admiralty has decided that H．M．first class cruisers Powerful and Terribe are to have their masts lengthened for
signalling parposes．The engines of the Powerful have undergone signaling parposes．The engines of the oontractora＇representataives
so satisfatory an opening out that that
have left the shin Our congratulations to the Naval Construction have left the shin．Onr co．
and Armaments Company．
Another section of the African Trans－Continental Telegraph Company＇s line has been opaned between Chiromo and
Chikwawa．This new piece fills in the blank which hitherto existed Chikwawa．This new piece fills in the blank which hitherto existed in the direct line of communication between the East Coast of
Africa and Z3mba．There is now an uninterrupted line from Chinde Africa and Zamba．There is now an uninterrapted line from Chinde
and Quilimane and the Enst Coast to Zomba．Owing to the troubles in Mashonaland there doos not appear to be much prospect
of the line from Salisbury to Tete being completed during the

The export trade of Uganda still consists exclusively of ivory，but the more intelligent Waganda are now fally alive to
the importance of fostering native products，such as coffee，rice， otton，tobacco，ground nuts，castor oil，and semsem and sunflower plants for the production of oil．Further examination of the
natural products of the country，which cannot be said to bave yet been really tested，has indicated also that vanilla and indiarubber which are known to exist in fair quantities，may offer a good field for enterprise．
We are glad to see that the Temperley transporter， which has been suceessfully adopted in H．M．Navy for the coaling，
specially at sea，of battleships and first－class cruisers，is now to be supplied to second－class craisers，and this in the British Navy is a large order．Undoubtedly，Mr．Temperley has made a very
palpable hit．In peace，as well as in war time，rapid coaling is palpable hit．In peace，as well as in war time，rapid coaling is
always a distinct desideratum，as it must materially increase the fighting value of every ship in which it can be carried out，as well
as contribute to the health and good humour of the entire ship＇s company．
The attention of manufacturers at home cannot be too frequently called to the value of the diplomatic and consular
reports on trade and finance which emanate annually from the Foreign－office．We have jost received the consular report com－
piled by Mr．Ernest J．L．Berkeley on the trade of Uganda，which states that trade generally has increased recently，and that a class than mere cloth twine．The market now calls for manu－ factured clothing，boots，shoes，household utensils，provisions，soap
writing materials，tools and a variety of manufactured articles

A TENDENCY is apparent among the peasantry in certain districts of the Caucasus to abandon the system，now
generally in vogue，of using buffaloes and oxen for ploughing and other field labour，in favour of horses．The arguments adduced in favour of this innovation are：－（1）That horse work is more
thorough and rapid；（2）that a horse is less liable to the attacks of epizootic disease ；（3）that a horse is also a more useful animal， gradual decrease，in those districts，of the area of available pasture
lands；and（5）the introduction of improved and lighter ploughs and other European agricultural implements．
The consular report for the year 1896 on the agricul－ ture of the district of Batoum says ：－＂The Ministry of the In terior，by arrangement with the Ministries of Finance and Agri－
culture，has，during last summer，been engaged in collecting information in respect to the timber trade，and as to the firms and individuals who are employed in exploiting Government and private forests．Inquiries have also been made with reference to
the agencies through which the timber is placed on the market． These steps have been taken with a view to the adoption of
measures for putting a stop to certain irregularities which exist in measures for putting a stop to certain irregularities which exist in
the trade．It is further proposed to introduce stringent rules for regulating the transactions of timber merchants in general，and more especially for the purpose
Although all new ships for the United States are required by law to be constructed of American material and by pparently be adhered to in the matter of the dient policy cannot Considerable interest，says a Now York correspondent，has been evolved by the announceement that the two torpedo boats for which tract，will be constructed from plans drawn by Professor Biles， the English expert，and designer of the American Line steamships
Paris and New York．This has been openly admitted by General Hyde，president of the Bath Ironworks，and it is recalled that on the recent visit of Professor Biles to the States he spent consider－ siderable time himself in Great Britain in consulting with eminent shipbuilders and naval architects．
A disastrous explosion of dynamite，resulting in the death of six men，took place on Wednesday morning at the Ardeer shire．At a distance of five miles from the sear Stevenston，Ayr－ on the high ground between Irvine and the village of Dreghorn，a sheet of flame was seen shortly after six o＇clock to shoot up into
the air above the sandhills at Stevenston．This was followed by the roar of an explosion，which shook the This was followed by if an earthquake had occurred，and in the town of Irvine and the neighbouring villages spread intense consternation．The explosion group of houses in which the nitro－glycering is washed and is house is said to have amounted to 2400 lb ．The process of mixivg the nitro－glycerine with the due proportion of nitro－cellulose in bogie was laden with the blasting gelatine in front of the hut，and where it stood there is now a great hole in the earth，every vestige carry six boxes of 150 lb ．each．Sir divappeared．These bogies scene of the accident yesterday，with the object of investigating the cause of the explosion．
In view of the additions which are at present being made to the recruiting and training ships in connection with the
Navy，it is of interest to learn that elaborate additions are also being made to the educational facilities on board these vessels．
These take the form chiefly of large－scale working models of features on board ship，for the proper understanding and manipu－
lation of which practice and skill are required．Thas a Glasgow lation of which practice and skill are required．Thus a Glasgow
firm of model makers is at present engaged upon six sets of and cables，stoppers，anchor davits，capstans，\＆c．，all the out－
standing features，in fact，on the forecastle head，where so many of the important operations involved in＂working＂，the ship are
carried out．All the fittings，which are of solid brass，will be carried out．All the fittings，which are of solid brass，will be
fitted in a dummy fore body of an actual ship made to a large scale．Other matters，such as the working of the steering wheel，
rudder，\＆c．，are being treated similarly．Some time ago the firm
which has this work on hand－Messrs．Kelso and Co．，55，Oxford－ street，Glasgow－provided an elaborate model on a scale of $\frac{1}{2} \mathrm{in}$ ．
per foot of an entire ship，the model being built actually in the manner of the real ship，and showing all interior compartments
and fittings in section．This interesting model，with all the parts H．M，training shis edocational object on board

FOREIGN AGENTS FOR SALE OF THE ENGINEER AUSTRIA.-Grrold and Co., Vienna.
CHINA.-Kxily and Walsi, LD., , Shanghai and Hong Kong.
 indIA.-A. J. Comaridare AND Co., Bpplanade-road, and Railway Book. ITALY.-Losscher AYD Co., sot, Corto, Rome.
japan.-Killy and Walsh, Ld., Yokohama RUBSIA.- O. RIokRR, 14, Neveky Proopect, st. Peteriburg. 8. APRICA. - Gordon and Goroh, Long-street, Capetoon.
R. A. Thoxpsos And Co., ss, Loop-strect, Capetoven.
J. C. Juta AND Co., Capetoon, Port Blizabeth, and AUSTRALIA.-Gordos AND A.

Atreet, Sydney; Queen-street, Brisbance
B. A. Thompson AND C.., 180 , Pitt-stret, Sydney; $\mathbf{8 6 8}$, Adelaide : Bdvarandstrret, Brisbane. Tovier and Henderson, Hunt-strect, sydney.
nBw zealand.- Upron and Co., Auckland.
Crata, J. W., Napier.
oanada.-Montreal News Co., s86 and sss, st. James.atreet, Montreal. UNITED STATES OF AMERICA. -INTRRNATIONAL NEws Co., 88 and 8
ascription News Co,
SrRaits settlements.- Krlly and Walsh, Ld., Singapore.
CEYLON.-WiaAYARTMA AND Co., Colombo.

SUBSCRIPTIONS.

ADVERTISEMENTS.

- The charge for advertisements of four Unes and under is three shillings, for every two lines afterwards one shilling and sixpence; odd
Hines are charged one shlling. The line averages seven words. When an advertisement meesures an finch or more, the charge is 10 s. per tich. All single advertisements from the country must be accompanied by Post-office Order in payment. Alternate advertisements will be
inserted with all practical regularity, but regularity cannot be guaran. Inserted with all praotical regularity, but regularity cannot be guaran-
teed tn any such case. All except weekly advertisements are taken teed in any such case.
subject to this condition.

Prices for Dtsplayed Advertlisements
positlons will be sent on applitation.

Letters relating to Advertisements and the Publishing Dopartment of the letters to be addreused io the Bditor of Tax Exgingre.
rolographle Address, "BNOINBER NBWSPAPBR, LONDON.

CONTENTS.

The Exainerr, February 26th, 1897.
Tge Mandracture of Conk. No. III. (Mustrated.)
New White STAR MAIL Stemmer ...
German Navil Estriates

ment of Resistance-Comparative Costs of Road PaVements:
Sulphate of Ammmonia -The Thwaste Steel Furnace- Petroleum
Vapour Launches

of dinesion.
of BLECHYDE

Alprid Blechysien :

Great Eastrrn Rallway-Liverpool-street Widenino. (Huis.)
 Machinery Prospects-Light Iride Re is Lest and Kept Sugar
New Colieries Litewature

Short Notices Books Recive

TO CORRESPONDENTS.

\because All letters intended for insertion in The Exonsxer, or comaining
 $\because *$ We cannot undertate to return drawiengs or manueripts; we must,

REPLIES.

A. W. (Pentonville.)-The story is untrue from beginning to end

inquiries.

heating $\overline{\text { BY }}$ hot air.
SiR, -I shall be obliged by the addresses of firms making a speciality
of heating buildings with hot air from a heating chamber in ithe base.

filling paper bags.
 facturers of this machinery we
Warrington, February 24th.

meetings next week.

 with res.
Council.
CrystaL PaLAcE.-Wednesday, March 3rd, at 8 p.m.: Course of
Victorian Era Lectures , "Sixty

 Company, Brook Green, Hammersmith.
Socritry op ARss.- Monday, March hat, at 8 p.m.: Cantor Lectures

 March 6th, at 3 p..... Leeture 1.,' "Electricity and Electrical Vilorations,
by the Right Hon. Lord Rayleigh, M.A., D.C.L., LL.D., F.R.S., M.R.I.

deaths.

On the 20th inst., at Roxburgh, Vanbrugh Park-road west, Blackheath,
suddenly, ALrRED BLEchYNDEN, C.E., aged forty. sevenen.

THE ENGINEER

FEBRUARY 26, 1897.

consuls and competition

If English manufacturers lose their trade, it certainly will not be the fault of our consuls. In season and out of season they warn, advise, and exhort. They repeat, each
after each, the same tale. By dint of iteration they hey succeeded in attracting a certain amount of attention; and the first and natural development of that attention takes the form of criticism. We are told certain things. The foreigner, and above all the German, has done, is doing, and will continue to do, that which English traders
will not do. If these last do not alter and improve their practices, then they will lose their trade. It is curious that while these warnings are being uttered our trade appears to be augmenting in every direction; but, of course, appearances may be deceptive. Consuls are on the spot, so to speak; they know what is taking place
abroad. It is part of their duties to advise and instruct But we cannot avoid the suspicion that, in some direc tions at all events, they manifest more zeal than dis cretion. They have in a measure lost the sense of pro portion. They do not quite appreciate the qualities, so to speak, of trade; and they may convey the impression that they are not quite as competent o give advice as is
desirable. This would be a matter for regret, and it may be useful here to endeavour to place consular warnings in be usefur here to ende
their proper position.
One of the most interesting and able reports that we have seen for some time is that just issued by the Foreign-
office on the trade of the Canary 1slands in 1895. The Canary Islands are a small group belonging to Spain, 1400 miles south of England, and 650 miles from Cadiz Their principal value lies in the fact that they form a
port of call for large numbers of steamers. They lie, indeed, in the direct route of all southward bound shipping, and constitute an admirable coaling station Insignificant as the islands are, our consul sends home some pages of excellent general advice on the subject of England's trade at large, and German rivalry in particular. We are told that "the chief cause of success in foreign
competition is the greater attention paid abroad to the competition is the greater attention paid abroad to the
art of exactly suiting the foreign customer's pocket, art of exactly suiting the foreign customer's pocket,
taste, and convenience, an art in which foreign nations pre-eminently excel. "The importance of pleasing the customer in these essential points has been too much ignored and neglected at home ; and our neglect has been
profitably turned to account by others to our present detriment
Unfortunately, our Consul does not give us any specific instances of what he means by "suiting the foreigner's pocket." But he does give some explanations which are good and suggestive so far as they go. They raise certain very important questions, which merit and should receive
careful consideration and adequate discussion. In the careful consideration and adequate discussion. In the
first place, we are told that the foreign customer likes long credit, and that he gets it more freely from our rivals than he does from us. "Terms Cash, are often not possible, and are never palatable to foreign purchasers, especially among those of small standing and capital." It appears to us that the benefit to be derived from push. ing trade on the long credit system must be highly problematical. It is very easy indeed to do business if we tell the purchaser of our commodities that he need not afflict himself to pay for them; but judging from the difficulties which the English trader usually experiences in recovering money long due abroad, we think that he has some excuse if he lets a long credit business with people of small standing and capital severely alone. Of course it may be urged that it would be worth while to incur considerable losses in this way with a view to ultimate gain, on the principle of risking a sprat to catch
a salmon. But this must be a matter of opinion and udgment; and we think it is safe to say that English traders are quite as able and willing to give credit as those of any other nation. This question of credit is, however, so closely bound up with trade methods, and presents itself in so complex a form, that we cannot venture to speak positively on the subject. The middleman and the agent have to be considered, besides many other conditions. There is no difficulty, however, in expressing opinions on another question-to wit, the supply of just taste,'" customer wants. "Suiting the customer successful trade. The great and minute attention paid abroad to the particular form, design, quality, 'showiness, colour, look, or peculiarity of the article exported, in order deserving of close attention s perhaps fasticious taste, manufacturer and exporter. That taste may be barbarous, inexplicable, and unreasonable ; but the mere fact of satisfying it, in whatever trivial form it may be, supplies a want and pleases the buyer; and those who are practicable and sharp enough to adapt their goods those who get all the orders." Ostensibly this is sound information, and excellent advice. Yet we doubt that it will, after all, stand the test of careful examination. Taken with the context, it means that the British manufacturer, if he wants to do trade, must be willing to sell our consul does not mean to go quite so far as this; but that is the impression conveyed by his words. If, for instance, the foreigner wants cheap table knives with them and let him have them? The answer is that by doing so we should run the risk of injuring the reputation which English cutlery now possesses all over the world ; while the value of the trade secured in return would Britain hin not hitherto found it pay to make rubbish. and it would be by no means easy to get the rubbish made even if we did. This is a very large and important question. It is easy to understand how people like the Germans, who are fighting for trade, and must have trade of some sort at any price, can find it worth while to
produce goods with cheap labour which no English produce goods with cheap labour which no
manufacturer could-or indeed would-turn out at
the the price. People who have no reputation to lose
can do things impossible for those of higher standing. On the other hand, however, it must not be forgotten that the manufacturer may easily lose good trade by refusing to consult the tastes of his customers. A case which occurred some years ago may be cited to of Asiatic Turkey for a handkerchief of a particular red tint. The trade was lost to this country simply because the English manufacturers would not supply the particular shade demanded. It was not a question in any way of price or quality. Various other cases of the saine kind suggest themselves as we write. It is unnecessary to state them. We may sum up the argument necessary to state them. We may sum up the argument
so far by saying that there is a class of trade which appears to be acceptable enough to German manufacturers, which it would not be worth while for Great Britain to touch; while we undoubtedly do not pay Britain to touch; while we undoubtedly do not pay
sufficient attention to the desires of our customers in the branches of trade which are really suitable to our brasches of trade which are really suitable to our
system of working and methods of production. An sistem of working and methods of production. An
interesting example of this is given by our consul. It may be taken for what it is worth. It seems that whereas we for a long time supplied the Canary Isles whereas we for a long time supplied the Canary Isles
with nearly all the bottled beer consumed in them, of late the Germans have ousted the English brewers. Not, it would seem, because the German beer was liked better than the English, but, marvellous to relate, because the English bottle of beer was too big. Here are the precise words of Mr. Reid, Vice-Consul at Orotava :-" Beer is another import in which the Germans have secured almost a monopoly in the islands. Their bottles are considerably smaller, but this does not affiect the sale, and makes some small difference in the bulk, and results in economising on freights of packages. One English firm Ihich at one time shipped very largely to the Canary Islands, refused to change the size of bottle.
On one point remaining for consideration there can be sufficiently consult the convenionce manufacturers do not oreigner does everything in his power to sove higner. The trouble. He quotes him a fixed price for goods delivered duty free practically at his own door-at the quay of a port, or in any particular town abroad - which includes freight, shipping charges, packing, \&c., up to that point.
H e states
language of the country where the sale is effected, and in the export market-an inestimable advantage. A purche export market-an inestimable advantage. A purthe article ordered and delivered at his own door
will cost him, and can exactly calculate if he can buy will cost him, and can exactly calculate if he can buy
cheaper elsewhere, and what profit he could make if for re-sale.

We are told that if only we had the metric system nothing of this kind could happen. But the adoption of
the metric system in Great Britain would not settle the the metric system in Great Britain would not settle the
question at all. The metric system is very far from question at all. The metric system is very far from Chins or Japan, nor with Turkey, nor with Russia, nor
with India, nor even with the Canary Islands. There with India, nor even with the Canary Islands. There
is no possible reason why English manufacturers should is no possible reason why English manufacturers should rally in the language of the country where they do, or
try to do, business. Many of our leading houses, it is try to do, business. Many of our leading houses, it is
true, leave nothing to be desired in this respect. Their example should be followed and extended. Before, however, we hasten to condemn the British trader, it is well to ascertain the precise nature of the conditions under adopted. In many cases the English manufacturer does no direct trade whatever. He simply consigns his goods to his agent on the spot, or to a man who sells on commission. In either case the acquainted with the language of the country in which he resides, and with its methods of doing business. We conclude from the numerous consular reports which
reach us that this is not the method of trading most in favour with Germans, who appear to prefer the direct system, employing travellers to effect sales. This aspect has yet received.
It is somewhat satisfactory to find from the report which we have been considering that, notwithstanding the Canaries, they have been losing ground and we have been gaining it. The returns for all the islands are only
available up to 1893. But we learn that in that year Great Britain exported goods to the value of $£ 344,000$, as against $£ 338,000$ in 1891. In 1893 Germany exported to the islands goods to the value of $£ 33,767$. In 1892 the $£ 91,021$. Our consul attempts to show that the increase in British imports is due to the influx of more coal; but fact that German trade is apparently steadily declining at a very rapid rate.

CERTIFICATED ENGINEMEN

It is impossible to read the debate which took place last week in the House of Commons on ing the fact that none of the speakers, either subject on its merits. The discussion was carried on by amateurs, and this we say with the full knowledge of the
fact that Mr. Burns was brought up as an engine-fitter, a highly respectable avocation which does not involve any boiler work. The speakers in favour of the Bill, indeed, seem to have failed to understand what in which the proposed Act of Parliament would operate. The fundamental idea is that enginecertificate from the Board of Trade. We may concede, for the sake of argument, that it would be an excellent thing to employ none but certificated engine-drivers and firemen; but it would remain to be proved that the objects
of those promoting the Bill would be secured. The theory of these gentlemen appears to be that boilers-we may eaverance of the engineers and firemen in explode by the ignorance of the engineers and firemen in charge of them. jured, and even caused to explode now and then by negligence on the part of those in charge of them; but it is conceivable kind could prevent this. All that the Board of Trade could do by examination would be to satisfy itself that the men in charge of boilers knew something about
them. It remains to be proved that the provision of this knowledge would prevent boiler explosions. No attempt knowledge would prevent boiler explosions. No attempt
whatever worth the name has been made to do this. The example selected by Mr. Samuel to illustrate his arguments was ludicrously inapplicable. He took the cele-
brated Redcar explosion, when a dozen boilers gave way brated Redcar explosion, when a dozen boilers gave way
and a number of men were killed. To this day the true and a number of men were killed. To this day the true conclusions arrived at by the Board of Trade inspectors
have not been universally accepted as sound, and we have not been universally accepted as sound, and we
have ourselves drawn attention to points which seem to have been quite overlooked by them. But be the cause what it may, the official finally held responsible would
have passed with ease any examination to which the have passed with ease any examination to which the
Board of Trade could submit him under the provisions of the suggested Act of Parliament. Those who spoke
in favour of the Bill appear to think that every enginein favour of the Bill appear to think that every engine-
driver and fireman in the kingdom possesses the power either to blow up a boiler or preserve it intact. Of course, those who are rightly informed know that their
powers for good or evil are extremely limited. The most
 explosions which ocaur from theses canaese are teve and far between, and could
When the subject is next brought up for discussion in Parliament the facts should be clearly and copiously set forth. It will not do to touch on them in a perfuncment knows all about boilers. The two main points on which to insist are, first, that while a certain small percentage of explosions is brought about by negligence,
that no Act of Parliament could make men careful.

Secondly, the advocates of legislation should be com pelled to prove, if they can, that explosions are caused
by ignorance, and that of a kind that the Board of Trade could eliminate. The mere granting of certificates to engine and firemen might prove very vexa-
tious, and even offensive, while it would be wholly tious, and even offensive, while it would be wholly
incapable of doing any good, and that simply because the engineers and firemen have little or nothing in their power-little or nothing, that is, that could be affected in any way by an Act of Parliament. So long as a
boiler is in good condition, and properly supplied with water, it will not explode. No legislation could secure the latter condition; and the owners of the boiler and not the engine-driver and fireman are responsible for the
first. It is on the owners, and on them alone, that the first. It is on the owners, and on them alone, that the work of keeping the boiler in repair must devolve, and any attempt to remove responsibility from their shoulders
and place it on those of the men would be extremely objectionable.
It may, perhaps, be conceded that some further legislation is necessary, and would diminish the number of explosions; but it must take an entirely different form from that of granting certificates to engine men and stokers. As was very properly pointed out by Mr. Collings, what was wanted was a Boiler Inspection Bill, not one for granting certificates to engine men. Much may be said or it being that it must do good by providing for those ases in which reckless users of steam power refuse to have their boilers properly periodically examined by competent men. We have on several occasions during a period extending over many years pointed out the ccasion has a dissentient voice been raised. We advo cate the principle of regarding every boiler owner as guilty of manslaughter when a death results from argument in favour of legislation of this kind is obvious. It is well known now that boilers which are in good conany fact within the range of human knowledge that when boiler explodes it does so, in nine cases out of ten, ase it was allowed by corrosion, and in the tenth the man to whom the boiler belongs ought to know its condition, and whether it is safe or not. It is part of the business of the steam user to take such measures as will neighbourhood. In the present day there is no difficulty whatever in keeping himself posted up as to the condition of his boilers. If, then, a boiler explodes, that explosion is prima facie evidence that the owner of it has entirely
failed in his duty. All the facts, so far as they are general and common, go to show that he is guilty of manslaughter such facts not obvious or common, as will go to prove that he is not guilty. Thus, for example, he might order made improperly, and an explosion follow. Such things have happened ere now, and will happen again. Judging, moreover, from the Board of Trade reports which are published periodically, a percentage of explosions does no doubt
result from causes which may be directly traced to the parsimony or negligence of the boiler owner, and in such parsimony or negligence of the bonished.
Acting somewhat in this direction, the existing law virtually places the boiler owner on his trial whenever a fatal boiler explosion takes place, and more or less heavy
damages are given. But although the system of fining damages are given. But although the system of fining
may do some good, it seems to us to be wholly inadequate to the offence. When, for example, we find that the owner of an old portable engine has been warned that the boiler is not safe, and nevertheless lets it out for hire, hoping to is not safe, and nevertheless lets it out for hire, hoping to make a few pounds out of it before it goes to the scrap
heap, can it be said that costs of ten or twenty pounds heap, can it be saident sufficient punishment when the boiler explodes in a crowded stackyard, and kills and maims a number of people? We do not lose sight of the fact that such an people? Wey malso be prosecuted for manslaughter with more or rather less success; but if he had clearly understood that his conviction to a long term of imprisonment would be more likely than it is, he would have thought twice before he allowed it to be used. Again when we come to consider the case of the large companies or wealthy millowners, it is obvious that costs to the exten oven a couple of hundred pounds is a matter of small importance. The destruction of their property involves
an outlay of thousands of pounds, and a few sovereigns more or less, "as a contribution to the expenses of the Board of Trade inquiry," is a matter of very little imIt is on
It is only necessary to put the question in the way we have done to show how wholly inadequate the granting tended object. Indeed, so obvious is the inadequacy of the means to the end, that we cannot avoid the conclu sion that many of those most eager to promote the Bill have done so with an ulterior object. The desire of a con-
siderable number of individuals to make Government or "The State" interfere continually between the employer and the workmen has long formed the subject of observa-
tion and comment, and the Engine and Boilers Bill seems to us to have been not inaptly described as the thin end of a wedge intended to open a way for an
extension of Socialist aims. extension of Socialist aims.
how trade is lost and kept.
Sir Frederick Thorpe Mappin, who is the head
of the well-known firm of Thomas Turton and Sons, Itd., Sheaf Works, Sheffield, has a most interesting letter in
well-known firm of Thomas Turton and Sons the Sheffield papers respecting the use of machinery in scissor manufacturing. Sir Frederick had noticed a para-
graph, headed "American and German Competition with graph, headed "American and German Competition with
England," in which it was stated that samples of scissors Bingham, head of the firm of Messrs. Walker and Hall,
had been placed in the hands of the Cutlers' Company with statements of their prices and those of English makers, it being mentioned as wen and American manu facturers. This led the member for Hallamshire to in quire into the cause of the decrease in the production of that in Solingen there were four large establishments, each employing thirty to forty men, entirely occupied in stamp ing out steel scissor blankr, and that the solingen manu facturers of scissors would purchase these blanks, made either from Bessemer steel or cast steel, at prices which enabled them greatly to reduce their cost of production there were no scissors manufactured by machinery in this mar superior saw samples of razor blades and be "athing "there is not a razor blade made by machinery in Sheffield." "I am not razor blade made by machinery " he adds, "at the above facts when I know there is so much opposition by the working men of Sheffield to the introduction of machinery in place of hand labour, and it reminds me of the struggle there was years ago to introduce machinery in the file trade, the success of which is acknowand to all sides, and the result bas been to retain this trade petitor, either in Germany Sheffield with any foreign comthe opinion that prison-made goods have no influence on the trade of this country, but that the use of machinery in pete successfully with us in the markets of the world. His letter has given rise to a deal of local controversy. On Sheffield firm writes to say that they have been making scissor blanks for the trade for some years, but adds signifi to publish the information that they use machine-made blanks, because of the prejudice against machine-made goods in general. This firm quite endorse what Sir Frederick cays intro the opposition by the working men of sheffield to the introduction of machinery in place of hand labour. That opposition, they say, has hindered them considerably. So much so that they would have been making the razor blades too, but for the fact that certain razor manufacturers told them it was no use trying to make the blades quicker for the men, because although there might not be a quarter of the work to do,
alter confirmation Sir Frederick's position matter is virtually a first, if not the first, to use file-making machines in his extensive establishment. He had to encounter organised opposition, but he put his foot down, and when Sir Frederick puts his foot down everybody knows it is down. A gentlemaster in his own establishment. It is about the best thing that could have happened, not only for his own file workers,
but for the file trade generally, for it is, as Sir Frederick says, owing to the energetic, sensible introduction of machinery that the file trade has been retained in this country.

SUGAR MACHINERY PROSPECTS.
Sugar machinery engineers on the Clyde have been the report of the Sugar Commission. While it is yet too early to gauge with any pretence to accuracy the character which that document will assume, great interest yet attaches to the course which the inquiry is taking. According to the proceedings, the testimony which is being adduced at Demerara, whatever course the West Indian planters proper may thing calculated to impress the Commissioners that every of the industry by the adoption of improved machinery and extracting apparatus has beon done. The only salvation fo special measures of assistance which have been the subject of petition to the Colonial Office. Sugar machinery engineers will learn of this declaration sore matter of machinery than the West Indies, and has kept itself better equipped in the matter of plant and accessories, it had been thought that were the cultivators in a position to spend more money on the most modern productions of
Clyde engineering works, help of certainly not inconsiderable sort would be administered. The testimony of the Demerara witnesses called before the Commission, however, is that after visiting France, Belgium, Holland, Russia, and Austria for the purpose of finding out if anything could be done to that the process of manufacture in British Guiana is a Mechanical experts informed on the machinery question were called to support this view. Three estates are mentioned on which in the past fifteen years a sum amounting to some thing like $£ 229,769$ has been spent in machinery and agriculobject of placing them in a position to compete successfully against bounty-fed competition. The attempts to introduce take the place of sugar, are said to have been equally ineffectual to convert loss into profit. This being the position which British Guiana takes up, Colonies on the machinery subject. Additional orders would certainly be very welcome to our sugar machinery engineers, one of the results of the Commissioners' inquiries.

IGHT IRISH RAILWAYS,

We have already referred in The Engineer to the excel past half-t that the great Irish railways have had for the side to the question, and that is seen in the experience of some of the smaller railways. The Ballycastle Railway may be taken as an instance of the later being $£ 135,000$, part of
porated in 1878 , its authorised capital ber porated in 1878 , its authorised capital being $£ 135,000$, part of that the loan by the Board of Works of $£ 20,000$, with $£ 4118$ arrears of interest, has been arranged to be saaisfied by the
 are thus improved. It is quite clear, then, that the line had
allowed the interest on the loan to fall into arrears, and that an arrangement has been come to. There are other of the light railways and similar lines in Ireland in circumstances
that prove that, though the making of some of the smaller
lines in Ireland is cheaply effected, yet they are unable to make traffic sufficient to pay the requirements even of
interest on loans; and it is probable that it will only be when there has been first a reduction of the capital, and then that further growth in the traffic which time brings,
that the lines will be remunerative as independent underthat the lines will be remunerative as independent under-
takings. There is the alternative of inclusion in the system of some of the great lines of the country, which can pay good dividends, and which seem slowly adding to their length by the absorptiou of neighbouring small lines. In this way the Bundoran line of thirty-five miles long is bsing now
amalgamated with the Great Northern of Ireland, after its existence some thirty-six years as an independent undertaking, but one that was not very remunerative. Thus the number of the lines in Ireland is decreasing. They are slowly falling into a few well-defined systems, whilst recent additions to the mileage of the country are either light railways made the great companies, or constructed largely by grants to companies contingent on Mrir efficient ieporking. that where "combination is possible, competition is impossible," is a
policy that is finding effective illustration on the Irish policy that is
railway system.
new collieries in derbyshire and notts.
The development of the Derbyshire and Notts coalfield is proceeding at a rapid rate, and furthered by the East and
West-Coast Railway the districts named will soon rank mongst the most important in the country. The Shire brook Colliery, near Mansfield, which is being sunk under the superintendence of Mr. Arnold Lupton, of Leeds, is making satisfactory progress. Two 18ft. shafts are being put
down, and coal is expected to be reached about the month of Iay next. Those having charge of the concern are preparing description having been ordered. Four-head gear pulleys, 8ft. diameter, Candry Barnsley by Messrs, Needh the Borough Foundry, Barnsley, by Messrs. Needham, Bros., a good deal of attention. The firm are making a speciality of this class of work, most of the pulleys at work at
leading South Yorkshire pits being of their construction.

LITERATURE

The Engineering Works of the Godavari Delta; A Descriptive and Historical Account. Campiled for the Madras
Government by Geooge T. Warch, M. Inst. C.E. Vol. I
Printed Printed and publishe
Press, Madras, 1896.
AT the present moment, when the spectre of famine, as it were, stands at the door of our Eastern Empire, the record of any irrigation work in India assumes a peculiar
interest ; but apart from this a narrative description of interest; but apart from this a narrative description of with all the personal interest of an actor by one of the
staff, who had long been engaged in their construction, staff, who had long been engaged in their construction,
supervision, and direction, must command the attention supervision, and
The plates are specially attractive, some of the photo graph prints of views on the river Gódáveri reminding us strongly of the scenery of some parts of Scotland. Although the author gives us the history of the work with
due official reticence, we read between the lines of the record the oft-repeated story of the engineer of foresight and energy battling with the inert mass of a public body In the present case it is Major-now Sir Arthur-Cotton, R.E., forcing on the reluctant Court of Directors of the
Hon. East India Company a scheme which has since ton. East India Company a scheme which has since we see how nearly the ultimate su which the author's compilation is the record, was
jeopardised by the short-sighted parsimony of the Honorable Court.
The author opens with a physical description of the Godávari, a great river rising in the Western Ghauts 70 miles north-east of Bombay, and after a south-easterly
course of 900 miles, falling into the Bay of Bengal, about 25 miles north of Madras. It drains an area
greater than that of Great Britain, and discharges a volume of water three times greater than the Nile. As it nears the coast, it has forced its way through the Eastern Ghauts by a narrow gorge, the views in which
form the interesting plates already mentioned. When within forty miles of the sea, the river divides itself into wo branches, forming a delta of about 2000 square miles, and at this point is situated the weir, or anicut," which constitutes the head works of the canal, the subject of
the author's monograph. A small map at the end of this first chapter shows the whole system of the canal and he delta of the
Chapter II. deals with the history of the scheme, and from it we learn that over a hundred years ago a Mr
Topping had brought to the notice of the Madras Government the facilities for irrigation presented by the Godaveri and its delta; but the time and the man had not
then come, and did not do so for yet half a century. Not, then come, and did not do so for yet half a century. Not,
indeed, till in 1843 the district, after having been visited by a famine succeeded by a series of calamitous years had fallen into a sad case ; and Sir H. Montgomery, one of the ablest servants of the Government, was deputed to report on the state of things, and devise a remedy.
He also emphasised the irrigational resources of the delta, and advocated the deputation of Major Cotton, a Royal Engineer who had obtained practical experience on similar works in Tanjore, to examine the case and draw up a scheme for the irrigation of the district.
Voluminous extracts from the official correspondence on the subject follow, from which it appears that Major Cotton reported in sanguine terms on a scheme for the cost the modest sum of 12 lakhs of rupees- $£ 120,000-$ of which $4 \frac{3}{4}$ lakhs was for the weir and headworks of the were totally inadequate; for in the end the expenditure in the whole scheme reached a total of 109 lakhs, and more than 6 lakhs for the weir and headworks only.
The design of the weir and headworks forms the ubject of the next chapter, but space does not permit of mention further than that the problem was to construct
a masonry weir, $2 \frac{1}{4}$ miles long and 12 ft . high, across the sandy bed of a river, down which swept enormous floods of 25 ft . deep. This was no easy task, but we must refer the reader to the author's account in Chapters IV. and V. for its solution, and for an interesting description of the operations of construction. Suffice it to say that after much anxiety, several failures, and many vicissitudes, success eventually attended Major Cotton's unceasin efforts, and in 1852 were virtually completed the weir an headworks which he had commenced in 1847. During ing the water to various parts of the delt by other worls These, however, with the exception of the Gunnaram Aqueduct, are of minor importance and without special interest. This aqueduct is half aqueduct, half sluice being submerged in floods, and its description will be read with interest as an example of the rapid execution of a large work founded on sand. It is 2248 ft , in length, divided into forty-nine arches of 40 ft . span, and carries 500 cubic feet of water per second, and occupied only three months in construction. The prints of this work are clear and interesting, one showing a river flood passing over the structure. Chapter VI. is devoted to its history and description
Chapter IX. deals in a very unsatisfactory manner with the "Materials, Design, \&c." of the works, disposing of the whole subject in five pages of letterpress. Two short chapters are devoted to "Irrigation and "Navi-
gation," and the volume closes with a similar one on 'Results;" thus bringing the reader to an appendix containing the usual oflicial statement of the "Capita taining the usual official statement of the "Capital results of the work

The general result has been that the works estimated o cost 12 lakhs have cost 109 lakhs, the population has ncreased 47 per cent., the imports have advanced ten irrigation has increased from 150,000 acres to over 721,000 acres; and the revenue has risen from 24 to 88 lakhs of
pees yearly.
The reader
The reader will look in vain for the application of mathematical science to the author's subject, only one
formula appearing in the whole volume, where we are told that after a certain date, Bazin's formula-givenand co-efficients were adopted in designing the canals and distributaries.
The vexed question of the combination of irrigation with navigation in canals is very fairly discussed, and the compatibility of the two interests will depend on local onditions.
Major Cotton's methods were largely experimental, and much may be learned from his success-and by his failures, too-in dealing with foundations in the sandy designs of his locks and sluices, and the ill effects o designs of his locks and sluices, and the ill effects of
haste and false economy in adopting the badly aligned old native channels, as distributaries under the new system, are very noticeable. His justification of the large and con stant excesses on his estimates lie in the certainty that had he raised the alarm at an early stage, and before finan-
cial success had become apparent, by indicating the larger cial success had become apparent, by indicating the larger
sums that would be eventually required to carry out his great schemes, the works would never have been commenced. Nevertheless, one's patience is exercised by he constant iteration of official plaints over inadequat stimates, unforeseen expenditure and diatory or insum ient sanctions, but insflient usualishune India engineering, where insumicient estabishment leads to sketchy plans and approximate or piecemeal estimates,
and without a statement of the fact the record would not be true.

short notices

The Slide Rule.-Mr. C. N. Pickworth's capital litt"e book on
te "Slide Rule" has gone into a third edition, which is sufficient uarantee of tit merits. We do not noto that anything new has been added. This little book contains all the information that is
of really practical importance to the slide rule user, and so fulfiss of really practical importance to the slide rule user, and so fulfils
its title of a practical manual. The table of conversion factors is particularly useful. A great number of examples, showing the
application of the Gravet rule are given. It is a book which every side-rule user should possess.
Wire Mining and Hauling Ropes, their Manufacture and Appli-
ations. By J. Bucknall Smith, C.E., 1897 . London: Ballivant and Co., Limited.-This is a revised abstract from the copyright and July of last year, and will be read with interest in its present form by those interested in the technology, manufacture, and some excellent illustrations-chiefly reproductions from a con temporary-and Messrs. Bullivant have supplied useful data co Tresidder's Rapid Reckoner.-We have received from the invent a sample of his simple and cheap slide rule. It consists of two slide rule, and can be obtained from Hall and Sons, Sheffield for the small, sum of sixpence. The rule was originally, deesigned for
the use of stockbrokers and investors, but is, of course, applicable he use of stockbrokers and investors, but is, of course, applicable
to a variety of calculations in which very great accuracy is not supplied with the rule, and on the scales themselves are printed nstructions for the principal manipulations. The rule has a wid
field of usefulness, not least in an educational direction, and its cheapness puts it within the means of everyone. It is scarcely
necessary to say that it has not been produced with a view to making profit.
"The Electrician" Electrical Trades' Directory and Handlook for
1897. London: Offices of The Electricion.-This is the fiteontr no and kindred trades. Of the important matters dealt with, the 1897 issuue:-A large sheet table, giving technical particulars of the electric railways and tramways of the United Kingdom, regulations regarding the free supply of incandescent electric
lamps; the new regulations of the London County Council for lectric meter testing, issued February, 1897 ; a number of usefu hydraulic heads, feed-water heating, rope gearing, se.; ; a new
section of the directorial division, dealing with Japan and the Far East, which contains the names, professions, and addresses of all persons in those parts of the world associated with electrical work a carefally compiled sheet table, giving exhaustive particulars o
the electricity supply stations of the United Kingdom, compiled
up to Febraary, 1897; revised digests of the laws of electric
lighting and electric power for traction purposes ; the latest revised lighting and electric power for traction purposes ; the latest revised
rules of British, American, Canadian, French, und German Fire rules of British, American, Canadian, French, und German
Insurance Corporations, relating to electrical risks. In addition to the above-which appear for the first time in the new edition-a thoroughly up to date, the revision baving been very oxhaustive. The statistics relating to the engineering and finance of electricity
supply undertakings-both municipal and private-are unusually sapply undertakings-bot
cmplete on this ocoasion.

BOOKS REOEIVED

 Practical Hints for Light Railmays at Home and Alroad. ByR. Jobnson, M. Inst. C.E., F.R.G.S. London: E. and F. N. The $A \quad B \quad$ of the Differential Calculus. By William Dyson
Wansbrough. Manchester: The Technical Publishing Compan Wansbroogh. Manchester: The Technical Publishing Company,
Limited. 1897. Price 3s, net. Metals: their Properties and Treatment. New edition. By
K . Huntington and W, G . MeMillan. A. K. Huntington and W. G. McM
Green, and Co. 1896. Price 7s. 6 d .

Modern Oycles : A Practical Handbook on Their Construction and
Repair. By A.J. Wallis-Taylor, C.E. With over 300 illustrations. London : Crosby Lockwood and'Son. 1897.
Handbookfor Mechanical Engineers. By Henry Adams. Fourth dition. Revised and further ontarged
London: E. and F. N. Spon, Limited. 1897.
The Slide Rule: A Practical Manual. By Cbarles N. Pickworth
Wb. Sc. Third edition. Manchester and London: Emmott and Co., Limited, and C. N. Pickworth, Fallowfield. Price 2s. The Mechanical Enginering of Power Plants. By Frederick R,
Hutton E.M., Ph.D. First Edition. First Thousand. New York: ohn Wiley and Sons. London: Chapman and Hall, Limited. Marine Engineers and How to Become One: With Notes on the
Board of Trade Examinations. By E. G. Contantine. Manchester: Th
Price 5s. net.
South Australia Public Worls Report. Report of the Public
Yorls Department for the year ending June 30th, 1896. Ordered by the Assembly to be printed, December 9th, 1896. A
Authority: C. E. Bristow, Government Printer, 1896.
Procecings of the Sixth Annual Convention of the Association of
Railuay Sperintendents of Bridges and Bnildings ; held in Chicago, Illinois, October $200 t h, 21 s t$, and $22 n d, 1896.1 \mathrm{Co}$
Printed by the Republican Press Association.
Retaining Walls for Earth, including the Theory of Earth Pressure
s Developed from the Ellipse of Stress. With a Short Treatise on
 Thousand. New York: John Wiley and Sons. London: Chapman nd Hall, Limited. 1896
Gas and Fuel Analysis for Ennineers. A Compend for those
interested in the Economial Application of Fuel. Prepared especi-
ally for the use of students at the Massachusetts Institute of
Technology. By Augustus H. Gill, S. B., Ph.D. First Edition.

THE JAPANESE BATTLESHIP FUJI

During the past two years we have from time to time recorded in our columns the progress of an armoured battleIronworks and Shipbuilding Company for the Imperial Japanese Navy.
This vessel, as we noted in our issue of April 3rd, 1896, was successfully launched on the 31 st of last March, and on he same day taken round to the Victoria Docks for com-
pletion. On Wednesday last, at the invitation of the shippletion. On Wednesday last, at the invitation of the ship-
builders, a party numbering about two hundred had the pleasure of inspecting this splendid battleship, which is now completed prior to her removal from the docks, for her preliminary steam trial on Tuesday next.
As the Fuji is without exception the largest and finest warship ever built on the Thames, and as only few particulars of her have been made public, we may here state that she is an improvement on the Admiral class of the British Navy, and that her principal dimensions are:-Length between perpen-
diculars, 37 ftt .; moulded breadth and depth, 73 ft . and 44 ft . respectively, with a displacement of 12,450 tons, giving a mean Macrow, and her keel plate laid on September 1st, 1894.
At the time of the launch of the Fuji her weight was nearly 7500 tons, so that within the short space of eleven month nearly 5000 tons have been added to her displacement, she now being completely armed, engined, and equipped, thus making, we think, notwithstanding many unforeseen delays,
one of the best "completion records" in the kingdom. The propelling machiory Tennant, and Co., of Dephiord, and is to develope 14,000 indicated horse-power on trial, with moderate forced draught to the boilers, which are of the ordinary marine type.
trials entend to fily describe-on the complation of he nation in nay th the wark put int the jol tol mast heads is the best that could possibly be desired, and reflects the highest credit on her builders.

Institution of Naval Architscrs.-The following resolution to present a cold medal to any member or associate of the Inctitu tion, not being a member or associate member of Council, who shall at the forthcoming spring or summer meetings read a paper,
which, in the judgment of the Council, shall be deemed to be of exceptional merit. The Council will also be willing to present premium of books or instruments to the reader of any paper, no being a member or associate member of Counci, which pape
shall, in the judgment of the Conncil, merit this distinction, Shipping Indistry in South Wales.-The following figure illustrate the development of this trade. The tonnage of vessels whic
cleared Swansea Harbour in 1879 was 761,708 ; while last year th tonnage was $1,638,393$, an increase of 115 per cent. The extensio of this dock is now being carried out by Sir John Jackson, and it
is to be completed in the current year. The extension gives five is to be completed in the current year. The extension gives five
additional acres of water area, and increases the tipping capacit quite Bristol Channel, and accommodates the largest type of vessels engaged in commerce, is electrically lighted throughout, and the entrance ohannel is illuminated by Pintsch's system of gas buoys.
The Harbour Trustees have obtained parlianentary powers, and are about to carry out works and improvements representing an

SKINNER STREET BRIDGE, GREAT EASTERN RAILWAY-DETAILS
(For descruption see page 214)

MANCHESTER ASSOCIATION OF ENGINEERS.
THE members of the Association beld their forty-first annua dinner on Saturday week at the Grand Hotel, Manchester, Mr. Joseph Nasmith, the President, occupying the chair, and amongst the visitors present were Mr. W. H. Holland, President of the Manchester Chamber of Commerce; Mr. W. H. Collier, traffic manager of the Ship Canal Company: and Mr. G. S. Allott,
President of the Manchester Association of Civil Engineering Students. Sir W. Bailey, in proposing the trade of the district referred specially to the question of foreign competition, just now so much a matter of discussion. Although this cry of foreign competition was more than a bogey, yet there was no reason
why they should sit by the waters of Babylon, and imitate the daughters of Jerusalem. It would be well, he thought, if those in a state of despair would look not only at their own bank balances, but also study the national balance - sheet; if they did this, he was sure that although particular trades might perhaps feel the severity of foreign competition, they would industries were suffering from competulition from abroad and that certain common goods were being got from the United States and Germany. He might mention that his son, who bad recently visited the United States, had found that for certain goods their own firm made, and which were also made in the United States, the workmen in America could be paid 60s. per week in wages and week to the workmen in England. The fact was that in the United States they used finer and more expensive tools in certain
industries. By the use of these tools, by dividing labour, and making larger quantities, the United States manufacturers had been able to beat us in some things. Manufacturers in England must modern tools, that would tend to minimise the cost of labour. The general training of this country was also a matter which demanded
attention. Although they were doing chester, Liverpool, and Lseds, the high-class education of the country seemed to be devoted chiefly to training parsons and lawyers, and leaving engineers out in the cold. It would be necessary, to maintain themselves successfully against foreign competition, that both the employers and the workmen should have the advantage of the best training possible.
Mr. W. H. Holland, in responding, said he was glad to know that prosperous condition, and he thought the recent history of Man chester testified to the marked progress that had been made in the above industries. They might, he thought, fairly hope that W. Adrent of a new and highly important firm like that of Sir W. Armstrong to the district would also give some further new impetus to the industry. He would also take that opportunity of
strongly urging that the important engineering trades of the district should become a section of the Manchester Chamber of
Mr. W. H. Collier also responded to the toast, and spoke very hopefully with regard to the prospects of the Manchester Ship were fully jough he could not go into details, yet he could say they for the future
Mr. Frank
which stated that there had been added to the membership roll during the year two life hon. members, nine hon. annual members, loss by death, resignation, and erasure, the total number of names of all classes on the roll amounted to 381, as against 368 in the previous year, viz,, 28 hon. iife members, 128 hon. annual members, and 225 ordinary members. The balance standing to the credit of the Association, after payment of all accounts due up to
31st December, amounted to $£ 3849$, as against $£ 3645$ at the close of the preceding year, thus showing a surplus of $£ 204$ on the year's working.
C. Haworth, who prosperity to the Association was proposed by Mr. C. Haworth, who remarked that the day bad long passed when an ongineer could work by the rule of thumb; the engineer of the The President in responding referred the
variety of the engineering trades of the the wonderful extent and district anywhere that possessed so many engineering establishments as were to be found within thirty miles of Manchester Exchange. As oforeign competition, he was convinced that in spite of all they was that in the superiority of the German trained youth, there was that in the English youth which only required developing in perous in the future than they had ever been in the past
Other toasts followed, including "Our guests," proposed by Mr A. Saxon, who remarked that one reason for some of the successful competition of the United States was the organised system of Mr, S, Z D . the toast of the health of the chairman klosed the proceeding which

INSTITUTION OF MECHANICAL ENGINEERS
FOURTH REPORT TO THE ALLOYS RESEARCH COMMITTEE.
By Professor W, C. Robrrts-Austen, C.B., F.R.S. (Concluded from page 191)
Difficsion of metals. - When two metals are melted together, or when a fresh metal is added to two or more metals which have
already been melted together, the question has often arisen, why it that the resulting iss when solid possosses the uniformity ferro-manganese are thrown into a converter containing ten tons of fluid iron, the resulting ingots into which the fluid metal is cast are found to be singularly uniform in composition. Liquation may to ome extent have affected the distribution of the elements in each ingot ; but any one ingot will be found to contain approximately the
same amount of manganese as any other. The fluid mass in the converter cannot have owed its uniformity in composition solely to the mechanical agitation, which in one way or another aided the blending of the constituents. The result was influenced by the
molecular mobility of the metals, which when dissolved in each molecular mobility of the metals, which when dissolved in each
other become, by a spontaneous process, spread or diffused uniformly. This is true of many alloys; ; and the spontaneous spreading or diffusion may be studied best in those in which the
uniformity of composition does not become disturbed by liquation when the solidification of the mass is taking place. In approaching the consideration of this subject, it is important to remember that the laws which govern the diffusion of salts in water have already been carefully examined, and are well understood. Common salt issolved, and would spread, in virtue of its own molecclar move but, as Graham showed, the rate of diffusion is greatly increased by a small rise in temperature. It seems evident, therefore, that
the diffusion of molten metals would be greatly influenced by the necessity for working at the high temperatures required to keep hem melted; and certain experiments made by myself fourteen if measuring and recording the temperatures employed. The provision of the recording pyrometer, which was the direct out come of the work of this committee, enabled the investigation to be resumed; and the results have recently been communicated to
the Royal Society, and formed the subject of the Bakerian lecture ${ }^{-1}$ for the past year. A description of the apparatus empluyed and subject possesses so much industrial interest that a brief indication of the nature of the experiments should not be omitted. The various metals of which the diffusion had to be studied wer placed at the bottom of tubes afterwards filled with molten lead and the results of the diffusion, during twenty-four hours, of
platinum and of gold through fluid lead contained in tubes placed side by side and heated to a temperature of about 500 deg. C. 900 deg. F., are represented in Fig. 14. The columns Au and P fluid lead. The spheres represent the sizes of the buttons of gold and of platinum extracted from the several sections, shown by the

cutting tool after the metal had been allowed to solidify. In the curves which are marked respectively gold and platinum the
vertical ordinate represents the distance through which diffasion takes place, and the horizontal abscissa the degree of concentration Each of the metals, gold and platinum, which diffosed into the fluid column of lead, occupied, in the form of an alloy with lead
the length $a d$ of the tube ; and in both cases the initial concen tration of the alloy from which diffusion proceeded was the same denoted by $a c$; so that the area $a c c d$ represents the total amoun of gold or platinum employed in the experiments, the whole
quantity of either metal being originally below the line $d e$. The final state of complete uniform diffusion would be represented by the area abgf, which is the same as aced, since the quantity of
gold or platinum remains unaltered. In the same manner the area $a y x f$ would represent the varying distribution of the gold at the end of the experiment ; and, consequently, in experiment which have lasted for equal times, the nearer the curve y
approximates to the line $b g$, the more rapid is the diffusion of the metal it represents. The general results may be grouped in the ollowing Table 2.

Table 2.-Diffusion of Metals in Metals.

obtained only by elaborate mathematical treatment. The eurve marked platinum indicates a diffusibility of $1 \cdot 69$, and that marked gold a diffusibility of $3 \cdot 1$; while if complete diffusion took place,
the distribution would be represented by the vertical line $b g$, and the corresponding figure of diffusibility in the table would be the diffusibility which is indicated thereby
The practical bearing of this investigation is not remote, and may be sought in the following direction, It is admitted that the mode of action of an added element is one of the most important uestions in metallurgy ; and it is hoped that experiments on the Many physicists hold what may be called the " Many physicists hold what may be called the "gaseous theory" of
metallic solutions, which supposes that, when the amount of the added element is very small in relation to the mass of metal in which it is hidden, the atoms of this foreign ingredient are so widely separated by dilution that they act with no more mutua restraint than would the atoms of a gas, and exert pressure in the ame way as the latter. The rapidity with which diffusion appears
to take place in very dilute solutions of molten motals material supert to this gaseous theory of the action of an added element
As regards the diffusion of solid metals in each other, it should e observed that the action of solids upon solids has long been nown in industrial practice ; the penetration of solid iron by maker is a ceme in point, even though a gas may intervene in this process. The experiments summarised in the foregoing Table 2 onstitute an attempt to measure the velocity with which metallic diffusion takes place. They have already led to the recognition of the undoubted fact that it is possible actually to observe and measure the migration of the constituent atoms in a metal or alloy possibilities of structural change in metals used in machinery and possibilities of structural change in metals used in machinery and
o engineering construction generally, it enforces the need for continuing the prosecution of the investigations which the Alloys Research Committee have still in progress.
Relation beticeen melting points of alloys and atomic volumes of their constituent metals.-This is a subject to which brief reference was
made in the third Report of the Committee (1895, page 251) ; and

although the threshold of the inquiry can hardly even now be said information which it is desirable to indicate the nature of the Pictet ${ }^{21}$ showed that there is an intimate relation between the melting point of metals and the length of their molecular oscillations, namely, that the length of oscillation at ordinary temperaures diminishes as the melting point rises; and it is known that
the metals with the highest melting points are the most tenacious he metals with the highest melting points are the most tenacious,
He showed that this is the case with the well-known metals, and also that for all metals there is a simple relation between their atomic weight, the amplitude of the movement of their molecules ander the influence of heat-that is, the coefficient of expansionand their melting point. It follows, as stated in the last report, that "the absolute temperature of the melting point of a metal
must be closely connected with its atomic volume, because the must be closely connected with its atomic volume, because the
former is inversely proportional to the rate at which the amplitude of the oscillations of the molecules increases with temperature and the rate of increase of amplitude at any given temperature is obtained by multiplying the ordinary thermal coefficient of linear expansion by the cube root of the atomic volume. ${ }^{22}$
Since the last report was presented many alloy
examined from this point of view, in which tenacities and melting points are co-ordinates. It is not for a moment contended that dentity of condition has been attained in all the specimens was found to be possible by carefully working the rods by hand ander the hammer, and some approach to a standard condition has, therefore, been realised. Nearly all the rods were 6 in . long ture and the tenacity appears to be much more definite in worked alloys than in the pure metals. This may be because an alloyed metal is in a more definite condition than one which is nominally pure. The alloy is less radically changed by traces of impurity than a metal is. Matthiessen, 23 in his classical paper on the metals probably undergo an allotropic pointed out that many metals probably undergo an allotropic change when another cent. of one metal to another usually sets up greater relative changes in its properties than do subsequent additions. The fact
that metals are hardened both by alloying and by mechanical "work" suggests that in hammered alloys the metals would be $\frac{\text { in the most suitable condition for showing whether }}{21 \text { "Comptes Rendus," vol. 88, 1879, pages } 855 \text { and } 1315 .}$
21 "Comptes Renc
22 Ibid., paze 856.

Experiment proves that many alloys do fall points and teaacities, ing point and tenacity as co-ordinates ; and this strongly supports the view that there is such a connection. The pure metals have also been similarly plotted, and are found to lie generally on a have been gathered from varions sources, which may partly account for the irregularity observed ; and there appears, moreover, to be more difficulty in bringing pure metals than alloys to a standard condition ; hence metals are quite unsuitable for accurate comparison. It will be seen that, considered in relation to their melt ng points, the pure metals are consistently weaker than alloys,
When this question was brought before the Institution at the end of the last report, one or two alloys had been tested, which proved to be much weaker than might have been anticipated from their melting points. These were at first thought to be anomalous but closer examination showed that they really afford fresh insight into the influence of atomic volume on the strength of appeared to be exserved that were composed of two metals whose atomic volumes were identical or nearly so. Several other alloys of metals having nearly the same atomic volumes as each other were accordingly tested, and were all found to possess lower tenacities as

compared with their melting points than alloys of metals having
different atomic volumes. When the atomic volumes are identical or nearly so, the alloys appear to behave much as pure metals do perfect, they cannot all be expected to fall on a curve. It should also be observed that true compounds of metals, which, as is we known, are mostly very brittle, do not fall on either line. Certain aluminium-gold or silver-cadmium alloys, or some of the brasses present such examples; but this, as Fessenden bas pointed out, is probably not because the union of the molecules of the compound
is not strong, but is owing to the fact that in normal sized test is not strong, but is owing to the fact that in normal sized tes
pieces inability to yield leads to fracture, if the load is applied pieces inability to yield leads to fracture, if the load is applied
with the least divergence from uniformity; although if the tes pieces could be produced as fine threads, they might be expected to possoss great strength. Thus quartz is weak enough when tested in rods, but is strong in the form of quartz fibre produced
by Professor Boys. Steel is of such varied composition that it is by Professor Boys. Steel is of such varied composition that it
difficult to say what would be a typical steel. The foregoing observations are offered tentatively, All the members of any one series of alloys do not admit of classification in connection with these curves, although the exceptions may
usually be accounted for as being brittle "compounds." The general results as yet obtained appear, however, to be highly
suggestive as affording a basis for a broad classification of alloys, suggestive as ants in the recording pyrometer.-In the last report. this committee a series of three curves were given, which at that time marked the latest stage of manipulation then attained. In those curves the freezing points of bismuth, of tin, and of standar gold containing 1 per cent. of bismuth, were successfully recorded
by a method fully described in that report. The result afforde evidence that great delicacy in recording could readily be obtained; but the method was open to the objection that it
involved a large angular deflection of the galvanometer mirro whereby its suspending wires were severely strained ; consecutiv readings, therefore, could not be expected to correspond. It thu became a question to combine sensitiveness in the indications of
the galvanometer with constancy of its zero. This was effected by the use of the following device, A galvanometer, specially con structed by Dr. Muirhead, was supported on a slate slab let into the wall in an underground vaulted chamber at the Mint, in order to ensure steadiness. This current, produced by heating the thermo-junction attached to the galvanometer, would deflect its
mirror through a large angle, say 50 deg. This current from the mirror through a large angle, say 50 deg. This current from the
thermo-junction, however, is never allowed to pass unchecked through the galvanometer. It is opposed by a current from a large Clark cell, the amount of which, by the aid of a specially con
structed "potentiometer," could be readily adjusted and structed "potentiometer," could be readily adjusted and which would be generated ty heating the thermo-junction, reall passes through the galvanometer. The general result is we
exemplified in Fig. 18, in which the curve A B C D E is faithful reproduction of the photographic record obtained for the freezing of tin. In this case the thermo-junction was really heated to the melting point of tin, 231 deg . C., or 448 deg . F.; but the galvanometer was deflected only a short distance from its zore to 27 deg . C . or 49 deg . F . The current prod the the the Clark cell, and was measured by the potentiometer. Th angular deflection of the mirror may, therefore, be quite small even at the highest temperatures. It must not be supposed that is not increased, but a portion of the current from the thermo not increased, but a portion of the current from the therm-
junction is balanced. The curve shows that in fact the nometer is highly sensitive ; for the distance B C, which represents the surfusion of tin, is only 20 deg . C. or 36 deg. F, ments for actuating the sensitised photographic plate which receives the record. The astronomical clock hitherto sisting of a float moving upwards between guides, and bearing photographic plate. The whole was enclosed in a light-tight case, provided with a horizontal slit, through which the ray of light
from the galvanometer mirror has access to the plate. This plan is a convenient one, as it enables the chamber, which corresponds with the camera of the old recording instrument, to be illuminated light at fear of "fogging" the plate. The progress of the spot of he does not obstruct the ray of light from the galvanometer, moves about freely in the chamber. In this system of recording it is
absolutely necessary that he should be able to do so, because the absolutely necessary that he should be able to do so, becau.
electrical balancing has to be effected during the operation. electrical balancing has to be effected during the operation.
Comparison of the thermo-junction vith the air thermometer. -The question as to the degree of confidence which may be reposed in one ; and in connection with the last report-" Proceedings," 1895, page 283-it was stated that the temperatures which had been
accepted might be some 17 deg. C. or 31 deg. F. too low. Since that report, however, much work in this direction has been done. alloys, are well known. More recently Holborn and Wien ${ }^{25}$ have
and

24 United States Geological Survey, 1889, Bulletin No. 54 ,
25 "Annales de Chimie et de Fhybique," vols. 47 and 56 , 1892 and 1895,
instituted a now investigation, and they also compared directly the air thermometer with the thermo-jonction. The experiments,
wbich were very elaborate, were conducted with have done much to satisfy physicists as to the delicacy and trust wo thiness of thermo-junctions. Still more recently Heycock and
Neville, whose work has been so often referred to in these reports Nave re-determined a series of melting points by the aid of the resistance pyrometer, and their results give for the enelting point
of gold 10617 deg. C. or 1943 deg. F., while Holborn and Wion give 1072 deg. C.or 1962 deg. F.; and Mestrs. Holman, Lawrence,
and Barr asguming the temperature for the melting of pare gold and Barr assuming the temperature for the melting of pure gold
to be 1072 deg. C. or 1962 deg. F, find that of copper to be 1095 deg . C. or 2003 deg. F. which is 13 deg. C. or 23 deg. F. quoted as having been obtained severally by Violle, H. le Chatelier, by a now method of observation are also promised by M. Daniel
Borthelot, t^{56} who in 1895 communicated to the Academie des Sciences the principle of a system of measuring high temperatures,
based on the change which is produced by heat in the befraction of gases.
rese
The general result of recent pyrometric work still leaves un-
certain a range of some 10 deg. C. or 18 deg. F in the melting point of gold, which is to be regretted, because this metal affords a highly convenient standard of reference. Differences of tem-
parature, bowever, in the neighbourhood of 1100 deg. C. or 2000 deg. perature, bewever, in the neighbourhood of 1100 deg . . . or 2000 deg .
F. can be registered by the improved recording pyrometer with less error than one-tenth of a degree C. or one-fifth of a degree F. It therefore seemed well to employ the air thermometer in a series of new determinations of the melting point of gold. A number of
preliminary experiments have already been made; and although the results cannot be completed in time for insertion in this report, A porcelain bulb B, Fig. 15, having an internal capacity 360 cubic centimetres or 22 cubic inches, is made of porcelain
glazed externally, and is provided with a long tubular stem S , by bich it is connected with a suitable apparalus for measurin the expansion of the air or gas contained in the bulb. A re-entrant tube R, elosed at its inner end, affords the means of
introducing a thermo-junction T into the centre of the bulb, though not of course directly into the air space of the bulb, The thermo junction is supported by a suitable insulating
tube. The receptacle consists of a clay chamber C, divided tube. The receptacle consists of a clay chamber C, divided
into two halves, which are held together by iron plates and bolts. The heating is effected by passing a current from a dynamo
through the eoils of iron wire 11, which are placed inside ethe clay chamber ; and in order to insure uniformity of temperature the clay chamber is made to revolve on axles $A A$. An inner shell of
iron E is provided, in order to render the heating regular. The heat is steadily maintained for some time ; and the readings of the thermo-junction and of the air thermometer are made simul-
taneously. Some uncertainty as to what is the exact melting point of any which different experimenters have worked. Thus while Heycock nd Neville 27 find that copper melts at a temperature which is
$19 \cdot 8$ deg. C. or $35 \cdot 6$ deg. F. higher than that at which 19.8 deg. C. or $35 \cdot 6$ deg. F. higher than that at which gold melts,
Hoblorri and Wein find a difterence of only 10 deg. C. or 18 deg. F., the divergence being probably due to the presence of dissolved oxygen in the copper. Another cause of discrepancy between the
observations of different experimenters arises from the fact that the temperature of a freezing mass of metal is not constant, from for instance, that the freczing of a metal is represented in the cooling curve by an absolutely horizontal line ; hence it is im-
portant to know whether the beginning or the end of the freezing
has been noted; and it is evident that autographic records render it possible to state accurately what phase of the melting or freezing of a metal or alloy occurs at any particular temperature. It is to
be hoped that, before this report is discussed, it may be possible to be hoped that, before this report is discussed, it may be possible to
tabulate in an appendix some comparisons of temperatures as ndicated respectively by an air thermometer and by a thermojunction.
of the committee duriog the past two years has been largely iversified; and the evidence which has been gathered that there to be of importance in all industries in which metallic alloys are omployed.

APPENDIX.

Table III.-Freesing Points of Copper-sinc Alloys. Figures in brackets indicate small halts in the cooling curves.

Percentage of		Temperatures of freezing points.		
Copper.	Zinc.	Centigrade.	Fahre	enheit.
100.0	${ }^{0.0}$	1052	${ }^{1980}$	
${ }_{96}^{96} \cdot 7$	3.8	1075 1076	${ }_{1969}^{1967}$	
${ }^{86}$ 80.1	18.9 19.9	1032	1890	
80.1	19.9	1008	1846	
76.3 75	- $23 \cdot 7$	${ }_{980}^{980}$ (478)	${ }^{1796}$	
71.7	${ }_{28}{ }^{28}$	995, (900)	1756, (1652)	
78.9	${ }_{29}^{29.1}$	${ }^{9532}$, (896)	1746, (1645)	
68.6 60.4	31.4 $83 \cdot 6$		1715, 1621,	(842)
${ }_{66}^{60.2}$	${ }_{33}{ }^{3} \cdot 3$	${ }_{\text {913, }}^{982}$		
63.0	${ }^{37 \cdot 0}$		1666	
${ }^{65} 59.7$	-	${ }_{886}^{892,}$, (450)		
39.7	$40 \cdot 3$	${ }_{894}(460)$	1641, (860)	
$59 \cdot 6$	40.4	889, (450)	1632, (842)	
52.1 50.2	47.9 9.8		1612, 865	
	51.9			
17.0	52.6.	${ }_{\text {8iol }}^{\text {85, }}$ (4i0)	1598, ${ }^{\text {che }}$	
${ }_{45} 8$	53.0 54.2	885, (472)	1566, ${ }_{\text {157 }}$ (864)	
${ }^{11} \cdot 2$	58.8		1544	
${ }^{38 \cdot 5}$	${ }_{61 \cdot 5}$	${ }^{823}$	1513	
${ }_{32}^{34 \cdot 8}$	$65 \cdot 4$ 67.2	816	$\underset{1501}{1577}$	
29.2	70.8	${ }^{786}$, (682), (531), ((50)	1447, (1260),	(988), (842)
${ }_{24}^{27 \cdot 3}$	${ }_{75} / 7$	740, $7880,5050,554$	1415, 12366 ,	
$24 \cdot 0$	76.0	741, 691, 569, 550	1366,', 1276,	1056,
$23 \cdot 2$	76.8	732, 680, 587, (554)	1350, 1256,	1089, (1029)
${ }^{22} 8$	8.2	729, 386 , (555)	1344, 1087 ,	(1031)
- 20.9	79.1 80.0	${ }_{700}^{712,}$ (683), 690 ,		1094,
$19 \cdot 1$	$80 \cdot 9$	695, 590	1253, 1094	
17.9	${ }_{8}^{82} \cdot 1$	680, 599	1236, 1096	
${ }_{\text {ck }}^{16.6}$	83.4		1231, 1090 ,	(8is)
$14 \cdot 3$	85%	633, $5100,(440)$	1171,	
$12 \cdot 2$	87.8	609, 586,419	1128, 1087 ,	786
${ }_{12 \cdot}$	${ }_{88} 87.9$	592, 419	1098, 786	
10.8	89.	588, 583,420	1090,	
$10 \cdot 9$ $10 \cdot 6$	89.1 89.4		1081,	
79	${ }_{92} \cdot 1$	547, 418	1017, 784	
$7 \cdot 2$	$92 \cdot 8$	637, 420	999, 788	
${ }^{3 \cdot 6}$	96.4	(465), 419	(880), 786	
1.9	98.1		(797), 780	
0.0	$100 \cdot 0$	419	786	

In concluding the report I would offer my warmest thanks to Mr . Alfred Stansfield, B.So., and Mr. Merrett, who so ably
assisted me in its preparation. The work of Mr. Merrett appears
28 "Comptes Rendus,", vol. 120, 1895, page 891.
27 Chemical Society, Journal, vol. 1 xvii., 1895 , pages 160 and 1024.
in this series of reports for the first time, and he has proved himself to be a carefut experimenter. To Mr. Stansfield the thanks of the committee are specially due, for owing to the many claims apon my
time, I have been obliged to entrust the conduct of certain portions of the research entirely to him, and I knew that I could do so with contidence.
Professor
Professor Roberts-Austen said: On page six of the report I refer mieroscope before we attempt to explain how structure is built up of molecules. I had fully hoped that the micros-structure of alloys would bave taken a prominent place in the present report, and the
members of the committee who visited the Mint some weeks since members of the committee wo visited the arrangements for conducting micro-photographic
saw work with high magnification, which I have made under the greatest living student of the micro-photography of metals. I am however, compelled to leave out until the spring the publication of my results. Thus it is chat, save for brie incidental references micro-structure does not find a place in the present report.
specially regret this, for there is important work of other serimenters with which I shall hope on a future occasion to deal

Theso workers are numerous, and among them may be nentioned M. Behrens, of Delft, and M. G. Gaillemin, who gave
some years ago some beautiful miero-photographic studies of the structure of copper and copper alloys. I would also specially mention the work of M. Charpy, who in the report of the Sociéte d'Encourage phographic study of the brasses, of which he gives no less than forty-eight admirable micro-photographs. Had 1 dealt with microscopio work in connection with alloys, I should have shown full
appreciation of the work of Professor Arnold, on whom, so far as Sheffield is concerned, the mantle of Sorby may be said to have fallen. In previous reports I have shown that the presence of
fusible eutectic alloy can be detected by the aid of the recording pyrometer, as the fusible eutectic is revealed by a low-down point
of arrest on the cooling curve. Professor Arnold of arrest on the cooling curve. Professor Arnold has shown in a
paper published in paper published in Enginecring in Fobruary of last year, that the
presence of these eutectics in gold and in copper may be revealed by the microscope, if the specimens have beopn subjected to certain furmish conditions, which he carefully defines. I trust that ho will is such results as these which I trust will not be lost sight of in future work. Miorcgraphic work demands a long apprenticeship,
and although I and my assistants have only recently attained the and although 1 and my assistants have only recently attained the degree of proficiency in micro-photography, which gives us con
fidence to proceed to publication; still for some time past the micrographic installation has been devoted to departmental uses hence the absence of microsections in the present report.

australian notes.

Throvghout the Australasian Colonies the official returns for decided In Victoria the not gain on the half-year amounts to $£ 118,827$, of which the railways contribute an increase of $£ 52,700$. New South Wales shows a nominal decrease of $£ 228,075$, but as
the remission of Custom duties represents a decrease of $£ 447538$ the remission of Custom rome has gained from other sources $£ 219,463$, of which rail ways and tramways show an increase of $£ 65,661$.
A strike is threatened in connection with the Australasian Institute of Marine Engineers. At the time of the great maritime trouble in 1890 an agreement was entered into with the Ship
owners' Association under which both sides worked amicably for owners Association under which At the end that period the engineers accepted reduction of 10 per cent. in their wages, on the understanding of a return to their former rates as soon as prosperous times returnod.
This they This, they consider, has now
trade shipping is very active.
trade shipping is very active.
It is considered by some of the engineers that oversea boats coming into Sydney pay higher rates than that obtained by the land under two or three years' engagements at lower rates than
The following is the

As regards the invitation for tenders for the supply of 150,000 tons
of steel rails for the New South Wales Government, only one local tender has been received, which is from Messrs. G. and C. Hoskins of Sydney, pipe manufacturers. The terms of their tender have no Messrs.
Messrs. Linzloherger and Estermann are visiting the principal
centres of the frozen meat trade in Queensland with the object of establishing trade in frozen meat between that Colony and Austria.
The fo
following return shows the principal articles of export from with comparisons for the previous three years December, togethe

	1896.	1895.	189.	1893.
Wool, bales.	638,259 19,49			
Hides	220,511	${ }^{367,871}$	08	145
Tin, ingots. ${ }^{\text {Tallow, cask }}$	${ }_{78,889}$	${ }_{87}^{114}$	53	82, 107 108
	367,156	354,961	.: 161,715	: 196,701
	14,115	12,018		
		339,092	1,891,353	.. 2,480,890

Mr. J. Davies, traffic manager of the West Australian Railways
has been appointed
has been appointed general manager.
An impetus has been given to Kalgoolie, West Australia, throug the discovery of the valuable product telloride of gold, this deposit
being found only in one other place in the world, viz,, South
Mort's Dock and Engineering Company, Sydney, has decided to
lengthen its dry dock to 640 ft . It was the intention of the company to build a new dock of larger dimensions, but satisfactory arrangements could not be made with the local council.
dock at Port Adelaide, so as to accommodate the largest vessed visiting Australian waters.
Mr. Richard Speight, ex.Commissioner for Victorian railways,
as advising engineer to a West Australian syndicate, proposes lay down light tramways for the carriage of ore from mines which are at a distance from the railway service. This scheme, which is
well sapported financially, should pay well, judging by the returs of the Government railways. published a return showing the cost of working and revenue received from the various branch railways in that colony, for the
year ending June last. Of 48 branch lines shown, 33 , with a mileage year ending June last. of 48 branch lines shown, 33 , with a mileage
of 515 , do not pay working expenses, the figures being: - Revenue,
$f 63,858$; working entense $£ 63,85$; working expenses, $£ 105,148$; capital cost, $£ 3,49,479$
interest on capital $\pm 137,981$; total loss inciuding interest for expenses but not interest, the return showing: - Rovenue
$£ 143,935$; working expenses, $£ 96,034$; capital cost, $£ 2,972,566$ interest on capital, $£ 24,884$; total loss (inoluding interest) for year
On the 21 st May last a commission was appointed by the
Parliament of New South Wales to inquire into certain allega-
tions made by Mr. Parney Parkes, M.P., against certain officers in contractors Works Department for undue preference to a firm o was appointed to inquire into the charges made ; 114 witnesses summing up of the report is as follows:proved by the evidence that has been produced. Your commissioner has failed to discover in that evidence any grounds for missioner has failed to inscover in that evidence any rounds
further inquiry ; and in your commissioner's opinion Mr. Hickson
and the other responsible oficerse of the Works Department stand and the other responsible officers of the Works Department stand
exonerated from all suspicion of improper conduct in relation to exonerated from all suspicion of improper conduct in relation to
the mattor into which your commissioner has been instructed to
The Victorian Parliament has passed loan votos to the amount of $£ 215,356$ for the following railway works:-Engine shed,, 23 ,
it Bonalla, $£ 13,500$; increased accommodation for dairy produce $£ 10,065$; re-grading and station yard works $£ 37,000$; equipment of vehicles with Westinghouse brake $£ 15,000$; improved carriage lighting, $£ 10,000$; new rolling stock, $£ 40,500$; North Melbourne The fepair shop, $£ 8000$; cattle pits, $£ 5000$
one irst trial of acetylyene gas in Australia was recently made invention of a Mr. T. L. Wilson was tried
The dificicalty with the marine engineers has been settled, but
t with satisfaction. When a determined stand was made by the not with satisfaction. When a determined stand was made by the
engineers the Steamship Owners A Association agreed to revert to the eng seers the steamship 0 wners
old standard of payy, which means an iucrease of about 10 per cent., also to the twenty-four hour hours' notice clause ; the other items in dispute were to be settled by conference, these being as follows: Pay of engineers on chartered steamers" to be made the same steamers of 200 nominal horse-power, running 400 mile betwoen steamers or ${ }^{\text {torminal ports." }}$ This was the eustom of tho profession until 1893; since thon the custom has been gradually infringed. "Overtime:, how it can be equitably paid, instead of allowing time off."
"Improved accommodation for evgineers." "Sailing with incompetent "crews." "The mode of calculating nominal horsepower." "All engineers under the grade of fourth to be paid not
loss than $£ 10$ per month." On submitting these points to the Steamship Owners' Association a lengthy reply was given in each case, but none of their claims conceded. As the most important
chen points in the dispate had been agreed upon before the conference met, the Engineers' Association have certainly gained something, at the general feeling appears to be one of dise The Department of Public Works of the New South Wales Government are inviting tenders for the supply and erection of
pumping engines and boilers for Marriskville-Sydney-Contract o. 15 , Western suburbs sewerage. Tenders to be in by 30th June. Also, for a truss bridge on iron piers over the river Murray
at Albary. Tenders to be in by 17th March. Conditions of contracts furnishcd in the Government Gaa-tle, which, together with specifications, can be obtained at the office of the Agent-General for Now South Wales, Westminster, London,
Referring to the only local tender given in for the supply of
150,000 tons of steel rails manufactured in the colony of New ydney, £ 94 s . per ton for fish-plates, bolts, \&c. This price is about 25 per cent. phigher than what the rails can be e imported. The last supply
of steel rails supplied to the department was about eighteen of steel rails supplied to the department was about eighteen
months ago, at a cost of $£ 5$ 16s. per ton landed in Sydney. The months ago, at a cost of 2516 ls . per ton landed in Sydney. The
Minister for Works appears to think the price quoted is too high, ven as a means of establishing the iron industry in the colony. The largest steamer ever in soutbern waters arrived in Sydney
this week, the Friedrich der Grosse, of the North German Lloyd line, sailing between Australia and Southampton, Antwerp and
Bremen. This vessel together with the s.s. Barbar arrive here in a month, are intended for the Australian service. n-the-Oder, while the s.s. Barbarossa is from the works of A Blohm and Voss, of Hamburg. The s.s. Barbarossa is 525 ft . between perpendiculars and a beam of $60 \mathrm{ft}$. , with an inside depth
of 34 ft ., and is 10,00 tons register, with a draught of 28 ft ., and has a displacement of nearly 20,000 tons. Accommodation is steerage passengers. In both fore and aft parts of the ship are four large hatches, which are provided with sixteen cranes worked by hydraulic power. These vessols have two promenade decks,
one immediately over the other, the lower one being used by the second-class passengers, and the upper one by the first-class. The and stretch the whole width of the ship. At the ends of the ship there is a poop about 66ft. in length, and a turtle back 80ft. long.
Besides a double bottom running from end to end, the ship is buit with twelve water-tight bulkheads extending to the upper deck, and divided into thirteen water-tight compartments. No particu-
lars whatever respecting the engines will be supplied by the chief ars what of the Friedrich der Grosse, now in Sydied by the chiof

CATALOGUES.

Tangyes Limited, Birmingham.- Illustrated unrevised priee litt
of machinery in stock.
W. B. Haigh and Co. Ltd., Oldham.- Hllustrated price list of dynamos and electric motors.
Robert D. Stewart, London.- Priee list of paints, colours, cils,
Les. pamphlet. Campbells and Hunter, Hunslet, Leeds.-This is an admirably appointed catalogue of machine tools. The illustrations, letterThe Jandus Arc Lamp and Electric Company, Old Charlton,噱 Louis Harper, A. M. Inst. C.E., Aberdeen, steel ropes. suspension
bridges.-The bridges illustrated and described in this pamphlet bridges. - The bridges illustrated and described in this pamphlet are suitable for spans up to 300 ft . Quotations are given for
bridges having spans varying between 50ft. and 300 ft ., and from 4ft. to 6 ft . wide.
are described and illustrony, electric mining.-In this catalogue cutting, and drilling, hauling, pumping and lighting by electrical power. A feature of interest is the apparatus for firing shots in Hills and Jones Come mive Illustrations of new special machine tools with recent designs for working iron and steel plates, bars and structural sections. catalogue, but the sizeresting appliances are the book and the binding are not in accordance with our conceptions of an ideal catalogue.
this firm's works at Sheffield, together with their bistor views of of the more important manufactures. The business of Messrs. growth has been a rapid in 1840 by Mr. Mark Firth, and it we are told, for 2000 hands, cover nearly 20 acres of ground, and
have an average yearly output of some 6000 tons of crucible have an average yearly output of some 6000 tons of crucible
steel. The views of the works are excellently reproduced. Mr. W. D. Houghton, of the Sankey Wire Miills, Warrington, who for the construction of ropes, has now the manufacture of wire of complete wire ropes. Wo. have received from him a little cata-
logue containing some useful notes on the employment of wite ropes logue containing some useful notes on the employment of wire ropes,
and including a number of tables giving the strength and weigh of various types and sizas of ropes. The figures show that very

LAUNCHES AND TRIAL TRIPS.

On Thursday afternoon, the 18th inst, the s.s. Tonstall
lanched from the yard of Messrs, Craig. Traylor, and
Thornaby-on-Tees. The dimensions are 280ft. by 4ft.
18ft. 9in., and she is a duplicate of the launched, a short time ago by the same the build. Urs. Thania, which was wessel will
laill
carry 3100 tons on a very light draught of water, and will be fitted with powerful steam winches, patent direct steam windlass, steam steering gear, and all modern improvements. The engines are
being constructed by M Messrs. Sir Christopher Furness, Westgarth, and Co., Limited, Middlesbrough, the cylinders being $20 \mathrm{in} ., 32 \mathrm{in}$ in.,
53 in , by 3 in. stroke, with two large boilers to work at 100 lb . prossure. The versel hith been built to the orderk of Messss.
Furness, Withy, and Coo, Limited, West Hartlepool. The vessel was named by Miss Bessio Craig, daughter of one of the builders.
On Wednesday, February 1 trh, Mossrs. Furness, Withy, and Co.,
Limited, launched from Middleton Shipyard, Hartlepool, a large Limited, launched from Middleton Shipyard, Hartlepool, a large
steel screw steamer of handsome design. She is a fine type of a steel screw steamer of handsome design. She is a fine type of a
modern cargo boat, measuring over 350 oft. in length, and built
throughout of Siemens - Martin steel, with a large measurement and deadweight capacity of about 6300 tons, built to the highest class at Lloyd's. The evessel is of the single deck type, with poop,
bridge, and forecastle. The holds are fitted with iron grain divisions, and all deck erections, skylights, bulwarks, \&c., are con-
structed of steel and iron. Cellular double bottom, fitted fore and structed of steel and iron. Cellular double bottom, fitted fore and structure of the ship very strong. Four large opoerful winches, donkey boiler, patent steam steering gear amidships, screw gear
aft, direct steam patent windlass, stockless anchors haling into
hawse pipes, and other modern working of the ship. The saloon and cabin providing
tion for the captain, \&ce, is handsomely finished in pommoda tion for the captain, \&ce, is handsomely finished in polished hard-
wood. The vessel will be rigged as a two-masted fore-and-aft
schooner, and will be fitted with triple-expansion engines of schooner, and will
massive design, with every provision fror economical enal working, of
Messr. W. Allan and Co.. Limitited, Sunderland. On leaving the
ways she was named Ohiwa, by Mrs. Henry Withy Brantiord ways she was named Ohiwa, by Mrs. Henry Withy, Brantiord
Houne. West Hartlepool.
On Friay afternon, the 19th instant, there was lannched from the West Yard of Messrs. C. S. Swan and Hunter, Limited, a steel
screw steamer built to the order of Messrs. Elder, Dempster, and Co., for their transatlantic trade. This vessel has been designed
to carry a dead weight cargo of 5600 tons on a moderate draught,
 under special survey. She has a poop, long bridge, and top-
gallant forecastle. On the top of the oridge, in steel houses, are
placed the accommodation for the officers, engineers, placed the accommodation for the officers, engineers, \&c., whilst
the orew are loated in the forecastle. Water ballast will be by Messrs. Wilson, of Liverpool, are supplied, with a full com-
plement of derricks and discharging gear. The steam windlass is of Messrs. Emerson, Walker, and Cor's. latest design, whilst a
special type of steering gear by Messrs. Bow, MeLachlan, and Co., special type of steering gear by Mossrs. Bow, McLachlan, and
placed aft, and controlled from the bridge, will be fitted.
machinery is of the latest tyre of triple.expense machinery is of the latest type of triple-expansion engines, built by
the North-Eastern Marine Engineering Company, Limited. He
cylinders are 24in., 40in. and 6 (in. diameter by 42 2in. stroke, supplied with steam by two large single-ended boilers $15 \mathrm{ft}$. . 3in.
diameter, by 10 ft . 6 in . Yong, working at a pressure of 170 lb . per square inch. Daring the construction the steamer has been sur
veyed by Captain Evans, the company's marine superinitendent
whit veyed by Captain Evans, the company's marine superintendent
whilst the construction of the machinery has been supervised by
Mr. Lees, the engineer surveyor for Messrs. Elder Co. On leaving the ways the steamer was named, the Ashanti by
Mrs. Henry H. Aitchison, of Port Villa, Wallsend.

The Civil and Mechanical Engineers' Society. - On Thursday. February 18 th, a paper was read by E. H. G. Brewster,
A.M.I.C.E., M.I.M.E., on Refrigeration." The author drew
atention to attention to the great importance of the subject at the present
time, and gave statistics in support of his contention that the
science of reducing temperature was second only in importance to that of increasing it. HHe then gave a brief history of the subject, and afterwards deait in detail with the various sy
the production of ice and for cooling purposes.
Naval Engivere Appoivtuents.-The following appointments
have been made at the Admiralty:- Fleet--ngineers: W . J.
Mauding, to the Royal Oak ; George
wood ; Fraser, to the
 surgeon: Alfred M. Page, to the Brisk, to date February 16th.
Surgeon. Albert X. . Avertine, to the Pembroke, additional, when
Dreadnought pays off. EEgineers : John E. Vibert, to the Royal Oak; Waiter F. Mitchell, to the Collingwood; and James Mounti-
field, to the Melponene, to date Febrary 15th. Assistant
engineers : Robert Spence, to the the Sans Pareil I Ivor E. E. . Roberts, to to the Collingwood ; Lewis
t. Cook (probationary), to the Royal Oak. Thomas A. Venning J. Cook (probationary), to the Royal Oak; Thomas A. Venning
(temporary), to the Undaunted, to date February th; Albert D.
Byrne (temporary), to the Blenheim, to date February 15th.

Engingering Societr, Kiv's College, London. - A genera
meeting was held on Febracry 16 th, the president in the chair
Mr. Lecuona read a paper on " Harbours and Docks," He firs Mr. Lecuona read a paper on "Harbours and Docks." He frrst
gave the history, construction, and maintenance of the principal gave the history, construction, and maintenance of the principa
harbours of Europe, North Africa, and America, describing the
result which tides, position and shape, and the reasons, which caused the adoption of
peculiar forms of construction. The author then proceeded to the description of dooks, giving details as to thenir extent, use,
depth, and construction; and explained the influence of the tides, currents, and peculiarities of the sea and river beds on all the
most important docks. He also gave some details as to buildings
on pile foundations on pile foundations, and the weight which a pile driven into soft mud would support without further sinkage. The meeting ter-
minated with a vote of thanks to Mr. Lecuona for his interesting paper.
MANCHESTRR SHIP CANAL-The half-yearly report of the
directors shows an expenditure on capital account during the
half-year, after dedneting $£ 4523$, the proceeds of sales of land half-year, after deducting $£ 4523$, the proceeds of sales of land
and
oflant, of $£ 14,592$, making a total expenditure out of capital
of $£ 15,168,995$, and leaving a balance on the account of $£ 235559$ Interest for the half-year on first and second mortgage debentures now due to the Manchester Corporation, but not paid, is $£ 393,750$. The gross receipts from ship canal traffic during the six month
amouted to \& Lo1,116, an increase of £26,67. The weight of
oll-paying merchandise over the canal gives totals of $1,003,158$ toll-paying merchandise over the canal gives totals of $1,003,15$
tons during the six months ended December last, as compared with parison is also $\begin{aligned} & \text { given of three years' traffic, which shows totals of } \\ & 825,659 \text { tons in } 1894, \text { as against } 1,358,875\end{aligned}$ tons in 1895 , and $1,826,237$ tons in 18n6. The directors sadd that there has been on theaverage Efforts are being persistently made in every possible direction to secure a continued and augmented increase of traffic. The greater
portion of the increased traffic has consisted of fimports, and the portion of the increased trafic has consisted of imports, and have
racent largely-augmented imports of cotton and grain have
emphasised the necessity for the early provision of increased transit shed and warehouse accommodation and general equip.
mont at the Manchester Docks. The director have deposited a
Bil Bill in Parliament in the present session to enable them to mortggge
the surplus lands of the company

THE IRON, COAL, AND GENERAL TRALES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.

For most descriptions of iron home orders represent a satisFor most descriptions of iron home orders represent a satis.
factory amount, but the over-sea demand is weak. good byingin which has characterised this district until very recently,
most of the works have plenty of orders to go on with, and in nearly all deparments prices are well upheld.
The demand for heavy angles, squares and rounds for construction purposes is much above the average of previous years,
and there is no lack of orders for steel sheets. Sheet quotations to-day-Thursday-in Birmingham were $£ 5$ to $£ 55$ s. for Siemens billets, $£ 415 \mathrm{~s}$. for blooms and billets of Bessemer make ; ordinary
heets $£ 72 \mathrm{~s} .6 \mathrm{~d}$.; and cold rolled sheots, $£ 10$ 10s.: bars, $£ 65 \mathrm{~s}$,
 Steel consumers are inquiring why it is necessary to import such
arge quantities of Bessemer billets and tin bars into this district large quantities of Bessemer bilets and tin bars into this district
as is now being done from South Wales, the North of England, the
West Coast, and other districts, for local consumption, instead of producing the steel locally. At present none of the Staffordshire steel works are laid out for going into this trade on any large scale
or at prices which could at all compete with the imported material. What is really necessary is a works purposely designed
or blooms and billets and tin bar making and nothing else question is being asked why such a works should not be founded in this district. The subject is the more attractive since it is
stated that the Bessemer basicsystem could be utilised for working siliceous pig for common stensel, and the open hearth basic system
for the better qualities. Snch and could, it is stated, be put down at a very moderate outlay, and yould pay well. Concerning this latter point there could be little from South Wales, the North of England, and other centres are
making something like $£ 5$ per ton, and supplies are so scarce that buyers can hardly obtain deliveries. The suggestions which have
been thrown out for the establishment of such a works for ben thrown out for the estabilishment of sucha works or bell cons,
billets, and tin bar making as is here sketched should be well con Pig iron continues in very good demand. The current production of Staffordshire metal is readily absorbed at the forges and
foundries. The Midland pig iron agents report large deliveries specially of forge iron, and the rates for these are still much at the furnaces are now described as being lower than at any time during the last three years. Staffordshire cold blast pig to-day
was 90 s .; all mine, 52 s .6 d . to 55 s ; part mine, 45 s . to 47 s . 6 d .; and cinder, 39 s . to 40 s . Northamptonshire forge was 44s. to 45 s s.;
Darbystire and North
Ufaffordshire, 45s. to 46s.; and Lincolnshire,
 firmed $£ 65 \mathrm{~s}$. as the Association's figure for common bars. Mer-
chant bar iron is firm at $£ 610$. to $£ 6$ 15s, and marked bars dhere to their $£ 710 \mathrm{~s}$. to $£ 82 \mathrm{~s}$. 6 d . quotation. There is no im-
 of the mills are being put on short time. It is hoped by some of
the Midland black sheet manufacturers that the Welsh mills will shortly be put to a greater extent on tin-plates, and the sheet com-
petition relaxed. The last Board of Trade returns gave evidence of an improvement in tin-plates.
Tube strip is quoted $\notin 517 \mathrm{~s}$. 6 d . to $£ 6$; hoop iron, $£ 610$ s.;
andles. $£ 515 \mathrm{~s}$, to $£ 6$; stamping sheets, $£ 9$ ios, to $£ 10$; and angles, $£ 515 \mathrm{ss}$. to $£ 6$; stamping sheets, $£ 9$ i0s. to $£ 10$; and nail
rods, 6610 . $£ 0.515 \mathrm{~s}$.
Great assistance is ministered to trade by the continuance of Great assistance is ministered to trade by the continuance of
harmonious relations between the ironmasters and the ironworkers -a rasult largely attributabe meting of this body this week, the chairman, Sir Benjamin Hingley, congratulated the trade that the
Board had now had an unbroken history of twenty-one years, and had done work of untold value. During the last year wages at
the mills and forges had been advanced 24.
the per cent., making
remuneration for puddling 7 s . 6 d . per ton, and a further advance would be certain to early occur, now that trade and prices had entered upon a period of undoubted revival.
t was explained, however, tbat whereas unmarked bars had advanced in price 15 s . or $£ 1$ per ton, and marked bars 10s., sheets
had dropped to an equal extent, and this it was which at present had dropped to an equal extent, and this it was which at present
kept down the average selling price as declared periodically by the
and was a great difference in declaring an advance in selling prices and declaration by the Unmarked Bar Association had not always been realised. The membership of the Board now represented
90 per cent. of all the ironworks, and in the 10 per cent. remaining atside there were only about three impor had been mind Sir Benjaside agitators to create trouble by sowing dissention among the enginemen, stokers, and foremen drivers connected with the Board,
but the Committee had taken prompt steps to repress the inter erence, and they had been happily entirely successful. He counselled moderation in the raising of selling prices, declaring
that in face of present competition from the whole world nothing could be more unwise, and
An active demand is reported for all kinds of engineering and tamping appliances have ple of shafting, pulleys, presses, and reasing activity is marking the bridge building and gasometer dionaltments. orders for iron, steel, and other metal rolling plant, and
ind some are unable to deliver the work in time, while the light ironounders are actively employed. Chainmakers are doing a The statatory gathering of the Patent Nut and Bolt Company, Birmingham-uniformly one of the most prosperous engineering interest. At the thirty third annual meeting this week, the chairman remarked that there was no decline in the remarkable
suceess of the concern, and that a a 10 per cent. division would
again be made, besides gain be made, besides which $£ 10,000$ would be placed to reserve,
nd $£ 30,000$ carried forward. Last year's profits had amounted rge reserve, which is set aside for the express porpose of keeping
the 10 per cent. dividend, and in addition the directors bave now been authorised to create a separate internal reserve to pro-
teet the interests of the company against any corapetition that may arise. Such competition, the chairman explained, "of a very
serious and important character, was now well-nigh at their door." An important new colliery is being opened at Astloy, near
Bedworth, in Warwickshire, and about five miles from Coventry It is on the estate of Mr. An. A. Nowdegate, M.P., and the first
tod has been sod has been cut this week. Boring operations, carried out by
Vivian's Rock Boring and Exploration Company, Limited, have
discolosed a splendid bed of coal, and it is computed that 1500 acres f an average thickness of 18 ft . are available for working. Under the engineering of Messrs. S. and L. Bailey, Birmingham, two fine
shafts are being sunk to a depth of 500 yards, and of a diameter of 16ft. In the clear. The shafts will be the largest in Warwickshire work of sinking has been entrusted to Mr. E. Ward, of Sheffield.
A branch railway of two miles' length is to be connect the colliery with the London and Nortb-Western Railway and the Coventry canal, and altogether the venture seems likely to
prove a notable one

The Light Railways Commission have just held an inquiry at Traction Company, Limited, to construct additional tramways for
the Potteries and Newcastle district. The company propose to the Potteries and Newcastle district. The company propose to
adopt a 4 ft . gauge, and overhead electric traction will most probably be the motive power employed. The application was opposed by the North stafrordshire Railway Company, on the grounds of of the local anthorities in the district concerned, however, approved the application. Lord Jersey said the Commissioners were unani-
mous in thinking the order should go on, but it must be dependent upon the clauses being drafted in a way satisfactory to all parties.
The Commissioners would not sanction compulsory running powers over any other tramway company's lines, but would not object

NOTES FROM LANCASHIRE.

Manchester. - The indications I have recently noted of a report, become much more pronounced. The giving way in prices
is not now confined to speculative merchants, and "bear" operators, but makers find themselvemerchants, maintain the position they have for some time taken. The opinion, however,
still prevails generally in the market that the present depression still prevails generally in the market that the present depression is
not likely to be more than temporary and certainly there has been no retrograde movement in the iron-using trades to sufficiently account for the fall in prices. In some directions, as I have
previously pointed out, there is a quieting down as regards the weight of new work giving out amongst engineers, but this has no appreciable effect upon the general activity throughout the trade,
which is fully maintained upon orders in hand, which will keep most of the engineering firms fully going well over the year. N outlook abroad, have contributed towards unsettling prospects for the immediate future, and these have been taken full advantage of
by the powerful "bear", element in speculative iron markets, which has been further assisted by recent considerable importations of American pig iron.
bout an average irten Market on Tuesday brought togethe sluggiskness of demand both for raw and manufactured material,
consumers being just consumers being just as indifferent about placing further orders as makers were very recently about entertaining new business.
In pig iron buying continues extremely slow, and makers have at warrants. For local brands quotations remain nominally unlower. The ofitial list prices for Lincolnshire have been
reduced 1 s . per ton, and for foundry numbers now range from 45s. 6d. to 46s. 6d., with 49s. to 50s. about the average
figures for Derbyshire foundry, net, delivered Manchester, and Lincolnshire forge iron, delivered in the finished iron-making centres, obtainable at about 44s. net. For good-named foundry Middles. brough makers in some cases still quate 50 za . 4 d, , but this figure is
quite out of the market, ordinary brands being obtainable without difficullty at 48s. 10.0. to thas. 4d. .net, delivered by rail Manchester,
and 48 s . is now about the quotation at docks. Scotch iron is also easier, and both Fglinton and Glengarnock can be bought through merchants at 48 s . to 48 s . 3d., delivered Lancashire ports, and
50 s . 3d. to 50 s . 6 d ., delivered Manchester Docks. It is now recognised in most quarters that the shipments oo dmerican pig
iron to this country have largely contributed towards weakening the market, and some low prices are just now being quoted 47s. 6 d neester tocks general quotation for foundry qualities at the Manchester $\operatorname{locks,}$ whilst forge descriptions are reported to have
beon offered at about 44s., delivered finished iron-making districts, although 47 s . would seem to be about the price that mandacturer have recently been paying.
In the finished iron trad
quoted rates of $£ 6$ for lade makers hod frmly to their recent shire bars, delivered here, but they $£ 6$ ss. for North stafford open market by merchants, who are offering Lancashire bars at booking any great weight of new orders. Sbeets and hoops are only in slow demand, with prices unchanged.
Generally a rather easier tone is reported in
e steel trade, and less $2 \frac{2}{2}$; billets have to be cut low in face of American competition,
local makers would accept about $£ 413 \mathrm{~s}$. 3d., whist it is reported that American billets can be bought at about $£ 45 \mathrm{~s}$. delivered Warrington. Bars are steady at $£ 6$. 5 s., , sut biter plates are with-
out improvement, under $£ 6$ 10s. beigg still taken by some of the
to delivered in this district. An exceedingly strong tone is maintained in the metal market, and during the past week manufacturers have had under consideration the advisabinty of advancing
prices upon both brazed brass and copper tabes and copper plates, prices upon both brazed brass and copper tabes and copper plates,
but any upward move is being held in abeyance for the present. An interesting discussion has been going on in the Manchester
Press on the question of foreign competition and our patent laws Press on the question of foreign competition and our patent laws,
which was brought under the notice of the Manchester Chamber of Commerce by Mr. Ivan Levinstein, who advocated that no inven this country. Sir W. H. Bailey, in commenting upon Mr. Levinstein's suggestion, writes that such a proposal was so reasonable
that it must be a wonder to many why they had failed in rousing our Legislature to a proper sense of its duty to our commercial The bye.products of the the interests of the working classes. abroad by thousands of tons, and employed many thousands of back to us by the ounce. He did not object to a patentee receivgranted for the most warue and shany casos patents had been backed by large capital, no small chemical manufacturer dared question the monopoly, and we stood as a commercial community
convicted of voluntary servitude to stereotyped conditions of our During the peast week I had an opportunity of inspecting, at
Messrs. William Rose and Co.'s Metropolitan Works, Salford, couple of steam fire-engines they had just completed, according
to a new design, for the King's Norton District Council. In
In these engines, each of which has a capacity for delivering 350
gallons of water per minute, special attention has been devoted to simplicity of construction, and the arrangement of the working parts, so that they shall be readily accessible in case of necessity. A not infrequant cause of breakdown nin fire engines is the blockage
of the valves by grit or other matter drawn up with the water, and in these new ongines both the intake and discharge values have
been so designed that they can be readily pot at for inspection been so designed that they can be readily got at for inspection
or the removal of any foreign substance which may be interfering with their operation. The suction valves are placed inside the the stuffing box, so that by simply unscrewing four nuts,
the stuffing box casing can be drawn np, and these valves at once exposed, whilst to render the delivery valves similarly accessible the delivery box has been placed right in front, and
the covering of this box an be readily taken away, thus allowing
th
 lubricating arrangements are provided, and the condensed water
taps are all manipulated simultaneously through one lever; every joint is secured by a locking arrangement, so that no part can be
worked loose. The pump is all formed of one solidg gun-metal cast-
the boilers are throughout of Low Moor iron, and made extra thick
to ensure durability. The boilers are also larger than usual, good continuuous steaming powers being considered of greater value than thin boilers with small tubes, which, althorgh perhaps good for
gotting steam quickly, are very liablo to break down when put to
severe strain. The air vessels are placed in convenient positions out of the way, and the injector also is well away from the boiler 0 provent the water becoming hot, whist the gauge glasse are of novel design. On Tuesday, these two engines, which,
I may add, were built under the sopervision of Mr. A. Tozer
the obiof officer of the Birmingham Fire Brigae, were put
through a trial in the presence of a number of authorities hrougb a trial in the presence of a number of autherities
nterested in fire brigade equipment, on the banks of the
Manchester Ship Canal. In the tests made each engine thre
 afterwards each engine delivered the water through four gin. jets,
which ascended in a line to a height of 100 ft above the ground which ascended in a line to a height of 100ft. above the ground.
Finally the delivery pipes of both engines were coupled togother,
when a joet 1tin. diameter was delivered to a distance of 219 ft . Another intoresting exhibition' was given by attaching the nozzle
to the top of one of the firms patent fire eesaapes just oompleted
for Liverpool and which reaches to for Liverpool, and which reaches to a height of 7 ftt .-the loftiest
escape they have yet turned out, and then both engines working
togeiher sent a a jet 1 l in. diameter to a distance of about 200 . crom the ground. Daring my wisit to the works I bad an poppor
runity of inspecticg other specialities of the firm, inclading various
 deooted to every detail to secure strength and durability and and the
high-elass finish throughout. They have also at their works high-class finish throughout. They have also at their works a very
complete plant for weaving canvas hose pipes. for which specially
designed machinery of their own has been designed machinery of their own has been put down.
 currents, as it can be raised to a very high temperature without
permanently changing in resistance. Tho special feature of thi permanently changing in resistance. Tho special feature of this
wire is that its resistance is about forty-five
of corty-six times that
of copper at 155 deg. Cent., whist its weight is 0 9il times that of copper at The new. alloy has a a temperature coefficient of of 111 per
of copper. Ther
cent. per degree Cent., and is very easy to solder or braze, whilst cent. per degree Cant., and is very easy to solder or braze, whilist
it can be supplied covered in silk, cotton, or non-ignitable material,
or in any otber manner which may be found desirable. The firm or in any other manner which may be found desirable. The firm
has also made arrangements to supply insulating cement for bas ale also made arrangements to suply insulativg cement for
olectrical heating apparatus, sce. This cement has a high melting point and a coefficient of expansion very similar to that of iron.
1t sets very quicky so that in making electrial heationg apparatus the wires can be readily cemented down as they are got into
position.
The coal trade continues creasingly difficult to keep pits on full work, stccks here and there accumulating both in round coals and engine fuel. House coals
are only in limited request, but prices are without quotable change, the only easing downun being in iome of the best descriptions, which
have receded slightly from the top prices that were bieing quoted have ereceded slightly from the top prices that were being guoted
during the winter months. A fair demand is still reported for
the lower qualities of round coal for iron-making steam, and general manufacturing purposes, but with more plentiful supplie offering in the market prices are barely maintained at late rates,
good quantities of steam and forge coals only in exceptional case good quantities of steam and forge coas only in exceptional case
averaging more than about 6 s at the pit. Engine fuel also con tinues plentiful, and where collieries have to get rid of surplu
stocks low prices are taken for clearance sales; but quoted rate generally are unchanged, averaging 3s. to 3s. dd . for common, 3 s . 9 d
to 4 s . 3 d . for medium, up to 4 s . dd . and 4 s . 9 d . for best qualitios at the pit mouth.
There is a fair
There is a fair demand for shipment, but prices are rather low
comnion steam coal being obtainable at 7 s . 6 d ., with better quali ties quoted about 8s., dilivered at the ports on the Mersey.
Barow.-The hematite trade has shown rather a weaker tone
during the past few days. Makers have booked but little new during the past few days. Makers have booked but little new sold forward, and have their hands so full that they can afford to
wait until the lull in the market has passed away, as they have wlenty of evidence afforded on every hand that the demand mus
return of pig ron, whose engagements are moro fully made than are those
of smetiters geeorally. Warrant iron is aeasien at 48s. .1.d. net cash
sellers, 48s. 101d. buyers. Makers have reduced their quotations
 torran and now stand at 2892,229 tons, beeng an ang increasee since the
teginning of the year of 2283 tons. Thirty-six furnaces are in begin
blast. Iron ore is being raised on as large a seale as is possible with
the present facilities at command, but the requirements of smolters
are are far from being met, and Spanish ores are therefore liberally
imported. Prices remain firm an 12 . for native ores net at mines,
and 15 . 6 d . for Spanish sorts net at West Coast ports. Steel rails are in fair request, and, of course, makers are already
very busily employed on the orders in hand. Prices remain steady very busily employed on the orders in hand. Prices remain steady
at $£ 4.12 s$. .d. per ton net at mines. Ship plates are in better
inquiry, and other descriptions of shipbuilding material com inquary, and other descriptions of shipbuilding material command
good market. Billets, hoops, and merchant qualities of steel are in very full request
Shipbuilders and
Suipbuilders and marine engineers are fairly well off for orders,
but new work will soon be needed if the thanual activity at the
Barrow yard is to be maintained. It is one Barrow yard is to be maintained. It is reported that one new
order has been booked during the week, but it requires official Coal finds a steady market, but low prices are still ruling, and likely to do so, so long as colliery proprietors so keenly compete
with each other. Coke is brisk, in large consumption, and at full prices.
Shipping is again busier. During last week the exports of pif
iron from West Coast ports. reached 8145 tons, and of steel 675 iron from West Coast ports reached 8145 tons, and of steel 657
tons, an compared with 657 tons of pig iron and 6241 tous o
steel in the corresponding week of last year, making an increase 1577 tons of pig iron and 1100 tons of steee. The exports of pig
iron this year have reached 59,452 tons, and of steel 66,072 tons as compared with 48,073 tons of pig iron and 49,683 tons of stee in the corresponding period of lat
of pig iron and 6389 tons of steel.
The funeral at Barrow on We
aneral manager of Messrs. John Penn and Co,'s sengineering worko ganeral manager of Messrs. John Penn and Co., sengineering worko,
Greenwich who died suddenly at Blackheath on Saturday last,
was attended by a vast concourse of mourners, a worthy tribute was attended by a vast concourse of mourners, a worthy tribute
of the tigh esteem in which he was held at Barrow, where from
1887 to 1895 he held the post of manager of the Nan 1887 to 1895 he held the post of manager of the Naval Construc
tion and Armaments Company, and produced some of the finest
work ever put into either Admiralty or ordinary tommercil steamers. Mr. Blechynden, who was 47 years or age, had made his
way to the front of enginering science, and his death cannot but steamers. Mr. Blechynden, who was 4r years of age,
way to the front of engineering science, and his death
be regarded as a great loss to the engineering world.

THE SHEFFIELD DISTRICT.

(From our oon Correspondent.)
Altriovar there has been doring the last week ratber
dimirished demand in the coal trade and in several instances dimitished demand in the coal trade, and in several instances a
portion of the output has gone to stok, tho pits in the South
forkshire district continue to work good time, the average being five days a week at present, while in several, cases six days are
forke. As a rule, a heavy tonnage of hard coal is thrown down
working the winter months, but this has for the most part been worked. As a rule, a heavy tonnage of hard coal is thrown down
during the wintor months, but this has for the most part been
arooided during the present season. There are less accumulations
at the collieries than is customary at the end of the second month
of the year. The London demand for house coal has been wer
maintained, but the requirements for the Eastern Counties ha maintained, but the requirements for the Fastern Counties have
been somewhat reduced, and the local business is not quite qual to what it was. A reduction of 6 d . per ton was noted
the official quotations in the metropolitan market during last
woek. That may be taken as an indication that householders and merchants are buying from hand to mouth, and the expectation that the moment coalowners show signs of weakness they may being realised to any extent, such conesent these hopes are not applying to special lots, which it is desired to clear off. Quotations
 Con; thin seam coals from for. per tonn nuts from 6s. to 7s. per
ton. In steam coal it is usaal that time of the year, when the Baltic ports are colosed, for hard coal to be stocked at the, pits. A
present there are practically no accumolations, and the demand pully kept up. Such a gratifying feature of the steam coal trade
fole been more satisfactory than at the corresponding periods of previous years, as well as to the increasing requirements
of the ironmasters, whose call for coal has been very steady. A favourable opinion is entertained as to the future of the
trade, and improved values are in many quarters confidently ooked for. Mey railway companiess are takiog a foll ton-
nage. Barnsley hards are making 7s. to 7s. 6d. per ton, while econdary qualities are in brisk request at 6 s . per ton and upwards.
Cas coal, which is in large demand, remains at 6 s , to 7 s . per ton n improvement in values is, however, being obtained. Although uly is a long way off, prices, in viow of next contracts, have gone
up from 6d, to 1s. per ton; and it is at these higher rates that arther supplies must be arranged for. A steady markt io
eported for engine fuel of all qualities, values remaining steady at old quotations. Engine nuts, 5s. to 6s. per ton; screene
 i2. 6 . per ton for ordinary sorts, and whe ton.
The to
more especially in the railway material, engineering, and boiler-
making branches. Marine shafting is being largely produced. making branches. Marine shafting is being largely produced.
Var material is also in considerable reauest, although the daily Wxpected orders for armour plates sequired by the British Admiralty It is stated that the authorities ar aiting or the Admiralty programme was placed with one local firm som months ago, and the delay in placing the other portions is put dow to this account, it being, we hear, the desire of the Admiralty to
have, if possible, something oven better than what is now produced. In the Sheffield district there is talk of nickel steel plates probably becoming the armoor of the future. Significant proof of the vitality of the heavy industries is the fact that extensions are going on
very largely in most of the principal East-end establishments, where very largely in most of the principal East.end estabish
he productive capacity is being very greatly yincreased.
Hematite pig iron is now at 60 s. for West Coast
Hematite pig iron is now at 60s. for West Coast and 59s, for
North-East Coast; common forge iron, about 41s. 6 d. , all at Shefield. In the lighter industries of the city there has been rather less doing during the last few week. Orders are coming in very slowly
in the cotlery and white metal branches, and as " the lines there will be lack of employment for the workers unless trade rapidly picks up. The special demand for expensive goods in
commemoration of the Diamond Jubilee of her Majesty is not likely to be important. In 1887 our manufacturers prepared very
elaborately what were known as "Jubilee goods," but the demand was not at all equal to what was anticipated; in fact, if it had no for such goods, local manufacturers would have suffered very
A somewhat serious fire occurred on Sunday morning at the
Hecla Works-the Hadield Steel Foundry Co., Ltd. A very Hecla Works-the Hadifield Steel Foundry Co., Ltd. A very
exaggerated account of the damage was freely telegraphed to the ewspapers, but the loss was confined to only a portion of this large
and important establishment, and, although it will amount to several thousand pounds, it has not, materially interfered with the
usiness carried on, or in the provision of the shot and shell business carried on, or in the provision of the shot and shell of
smaller calibre, which were manufactured at this particular part of How prosperous the year 1896 has been is now being abundantly
indicated by the reports of public companies connected with the ron, steel, and cutlery trades. Messrs. Vickers, Sons, and Co. NGINEER last week, held their annual meeting on the 24th inst Mr. T. E. Vickers, J.P., the chairman, presiding. The report and
statement of accounts were adopted. The dividend is 15 per cent., being at the same amount as last year, carrying forward p42,261, truction and Armaments Company, Barrow, including the free. would be $£ 430,000$. The sharebolders in the Naval Construction The money required for this purpose would be raised by means of a priority of allotment to shareholders. Mr. Edwin Gray and Mr.
The twenty-sixth annual meeting of the shareholders of Messrs Joseph Rodgers and Sons, Limited, cutlery manufacturers, was
held on the 23 rd inst., when the usual dividend $-12 \frac{1}{2}$ per cent. for the year-was declared and confirmed. Mr. Joseph Ruston,
J.P., D.L, and Col. Edward Snow Watson, both of Lincoln, cliffe, again pay 20 per cent. for the year on the original $£ 10$
bares, and $12 \frac{1}{2}$ per cent. on the new shares of $£ 5$ each. The Midland Iron Company pays $7 \frac{1}{1}$ per cent., the directors reporting
that there has been an increased demand for iron manufactures at better prices, and they regard the outlook for the present year

THE NORTH OF ENGLAND.
THE most absorbing subject of attention in this district at present are the labour troubles that have sprung up, not only in the ship.
building and engineering industries, but also in connection with the railway service ; this last, in fact, almost overshadowing the other
difficulties, as it practically affects all branches of come district, causing a curtailment of business all round. The detriopportunity was afforded the manufacturers and other freighters tho prepare for the stoppage, and so mitigate its inconveniences, for
the men struck work without giving notice and entirely dislocated have adopted have undoubtedly alienated the sympathies of the general public from them, more particularly as the public are keen sofferers from this conduct, seeing that not only ythe goods traffic
but also the passenger trafic has been sadly interfered with this week, the regular service being suspended in the Tyne and Wear
districts, and the North- Fastern Railway Company has
its run
Thains at such timese as have been found pratecticale.
The company gave notice on Tuesday to the local colliery
 shipping places-have made common cause with the strikers. The
inception of the strike was due to seven rolleymen at the Forth Goods Station, Newcastle, who on Saturday morning last did no turn out at five o clock as they had been ordered to do, and
when they did put in an appearance at seven o'clock they were suspended from duty for disobeying regular orders. Thereupon
the other men in the goods department refused to continue at
work, engine struck work without notice, ignoring altogether the inconvenierce loss, and annoyance resulting to the unoffending general publi carried on in the district. It is evident that the suspension of th rolley mee in itself of the opportunity to endeavour to force from the raiway company concessions which under ordinary circumstance
they could not obtain. The leaders of the men have in thei communications with the representatives of the company adopte a very peremptory and unconciliatory tone. The manifesto
the men claims that victory is already assured to them. The leaders say that this is the climax of the agitation which has beth consequences of the strike to the commerce of the district promis to be very grave, and business is to a large extent paral ysed.
Oae labour difficulty, which was very threatenip Oae labour dificulty, which was very threatening last week, bas
been adjusted. The labourers and other unskilled men at the shipyards demanded a 10 per cent. advance of wages and cffered 5 per cent., which the men accepted, and decided to continue at work. About 13,000 men were concerned in this dispnte. But it is probaboe that they will have to cease work after
all, for the engineers at the shipyards on the North-East Coast have come out on strike to enforce their claim for an advance the Amalgamated Smiths, some of whom struck work and other were locked out by the employers. The question of the wages of
engineers in engineering establishments in the North. East England is also under the consideration of masters and men, the latter requiring advances on time and piece, and aiso
amendment in relation to the overtime question. On Tuesday, at a conference, the employers made an offer to the representative
of the Amalgamated Society of Engineors, and this is to be placed before the men, their decision to be communicated to the week. The details of this offer bave not yet come out, but there
emper is a probability that this dispute at least will be amicably arranged
On account of the difticulties with regard to labour in the shipyards, the manufacturers of steel plates and angles have in several
cases bad instructions to suspend deliveries to local yards, but, having plenty of orders for other districts and for export, they are as yee keping their milss in fall operation. At the Walsingham
street Works there bas been a strike of the gas producers for an advance of wages ; part
have resumed operations.
Trade is detrimentally affected, not only by these labour diffi-
culties but reports that are in circulation relative to American cometit theril trade. There can be no doubt that in regard to the latter America that the London and North-Western Railway Company had ordered 50,000 tons of American rails, but such a rumour
carried contradiction on the face of it, for the London and NorthWestern Company has its own steel rail mills at Crewe, capable
of turning out 1000 tons a week. It was then stated that another
leading company was the bur, work of any importance being undertaken by any British railway and the rails needed now are only those required for repairs and renowas, and such a heavy quantity as hat reforred to above
would scarcely be bought for this purpose. Moreover, it is reasorbought in America without first asking the leading British rail manufacturers for quotations, especially when such a large quan tity was in question, and such inquiries have not been made. the reports telegraphed from the States, as to the success o denied that they are sending considerable quantities of billet to be and bars to Lancashire and the Midlands, and partly on this
account one of our leading North of England steel works is only running four days per week. Nothwitbstanding the American competition, North of Eogland steel manuafacturers keep their
price of heavy steel rails at $£ 412 \mathrm{~s}$. 6 d . net at works, and billets a

There is not much deing in the pig iron trade, both sellers and buyers being afraid to operate in the present unsettled state of the of last week At the close businoes in No 3 Cleveland G.M.B pig iron was done at 403 . for prompt f.o. b. delivery, but the sellere
were merchants, and makers refused to accept any ush figure and simply lo
business that w rants on Monday touched a lower price than has been known tince the mader per ton. But by Wednesday there was a recovery of 92d. in 40 s . 6d. The stock of Cloveland iron in Connal's warrant store on Wednesday evening was 171,878 tons, or 4653 tons increase thi montb. The prices of the lower qualities of Cleveland iron at
more firmly maintained because of their scarcity, No. 4 foundry being at 40s., grey forge at 39s. 9d., and mottled and white 39s. 6 d . Pig iron exports are much above a February average: from the tons, against 56,888 tons last month, and 56,784 tons in February The cemand for Cleveland hematite pig iron is quiet, and mer chants are taking lower prices than makers are prepared to accep
boying warrants to enable them to carry out their contract Producers hold to 50 s. and even 51 s . for mixed numbers, ho The stock of hematite in Connal's stores on Wednesday night was
107,969 tons, a decrease of 10,296 tons this month. Rubio ore is somewhat easier in price, as is ase aso coke.
The finished iron and steel industries are well employed, but few fresh orders are forthcoilig. to cive them, prefering to mait order to see if the suspension of shipbuilders' orders brings about an easing of quotations. The plant of the Wear Steel Co., at
Castletown Works, Sunderland, is shortly to be sold by anction It was in use only eighteen months, and includes six 23 .ton stee furnaces, as woil as plate and bar mill machinery. Col, Ropne
shipbuil der, Stockton, has offered $£ 2000$ toward berton House, Middleton, St. George, near Darlington, as a per and Thornaby. The death is reported this week of Mr. Edwi Graham, of the firm of Osbourne, Graham, and Co., shipbuilders The Redheugh Bridg ind.
The Redheugh Bridge, at Newcastle, which was opened in 1871 ,
is to be reconstructed at a cost of $£ 80,000$ by the firm of Sir W and Co. The bridge will not be closed to foot passenger during the reconstruction. The question of erecting a now high-
level bridge betwen still attracting attention, and it is stated that if the Corporations
of the two towns do not take the matter up it is likely that private enterprise will carry out the work
the improvements which the the sare dissatisfied with the extent of proposes to make there, and on Tuesday a conference of pan proposes to make there, and on Tuesday a conference of repre
sentatives of the Hartlopool and West Hartlepool Corporations
the Shipowers'
made. These include the straightening of the deep water entrance
to the harbour ; a new fish harbour ; a new entrance to Victoria to the harbour; a new fish harbour ; a new entrance to Victoria to accommodate ships up to 6000 tons deadweight; a new dock in
the Slake, with entrance 85 ft . wide and 33 ft . to 35 ft depth of the Slake, with entrance 85 ft . wide and 33 ft . to 35 ft . depth of to No. 4 graving dock, so as to accommodate an ironclad at the
western end; laying the Jackson Dock to the coal dock; the contruction of a new railway station at Hartlepool, \&c. A committee directors of the North-Eastern Railway Company by a deputation. t was resolved that the needs of the port require much better facilities for its trade, and its shipbuilding, engineering, coal and Comber traffic, than at present exist, and the North-Eastern Railway Company are
The directors of Messrs. Bolckow, Vaughan, and Co., Limited, ecided to recommend to the ordinary shareholders the payment of a dividend at the rate of 5 per cent. per annum for the year
uded December 31st last, less the interim dividend paid in October last. They also recommend the expenditure out of the profits of the year of $£ 35,000$ on new plant, and the addition of
$£ 40,000$ to the reserve fund, carrying forward $£ 51,112$. The above-named interim dividend was at the rate
annum. The dividend for 1895 was 3 per cent.

NOTES FROM SCOTLAND
THi Glasgow pif iron market has been unsetlled, but in the in view of the different causes for lack of confidence, it is remark able that the market showed so well, especially in the early part
of the week. The report of increasing American competition cabled few days ago was calculated to produce a bad effect, for
although the large sales reported there for Europe consist for the most part of steel rails, with which Scotch manufacturers have the orders of the English works must indirectly affect the trade in Scotland. The disturbances in the labour market are likewise
ufficiently disturbing. On the other hand, whatever sympathy may be felt for Greece, the assurance that the Great Powers are the markets. A considerable quantity of pig iron changed hands in the last few days. Business was done in Scotch warrants rom 45 s . $10 \frac{1}{2} \mathrm{~d}$. to 46 s . 2 d . cash, and 46 s . $0 \frac{1}{2} \mathrm{~d}$. to 46 s . 4 d . one
month. Cumberland hematite was quiet at the opening, but cash, and 48 s . 101 d b. to 44 s . 6 d . place one month. Middlesburgh
cont 48 s .2 d . to 48 s . 81 d d . cash, and 48 s . 5 d . to 48 s . 11 d . one month.
The demand for ordinary Cleveland pig iron has shown consider able improvement, and the transactions have taken place at
$39 \mathrm{~s}, 5 \mathrm{~d}$. to 40 s. cash, and $39 \mathrm{~s}, 7 \mathrm{~d}$. to 40 s . $2 \frac{2}{2} \mathrm{~d}$. one month. ess in blast. The output of hematite pigs has there being one furnace ing in the last few weeks, the explanation of this being the difficulty that has been experienced in obtaining supplies of Spanish ore except present state of trade. The cost of bringing the ore to the Clyde rate freights, and this may possibly induce the makers in Scotland o maintain the output of hematite pigs at its present rate. There has certainly been a disposition of pate to purchase Middlesbrough
hematite more freely for use in Scotland, and its prices are in favour of its increasing use. The price of' Scotch-made hematite
is 53s., delivered on rail trucks at the steel works. Two furnaces have been withdrawn from the manufacture of hematite, but an ron, and there are now 40 making ordinary, 35 hematite, and 6 basic iron, the total of
The prices of Scotch makers' pig iron are 6d. to 1 s , per ton
ower. Govan and Monkland, f.o.b. at Glasgow, Nos. 1 are quoted

 The shipments of Scotch pig iron are rather better than in the last week or two, but still leave much room for improvement.
They amounted to 4541 tons, against 7332 in the corresponding week of last year. There was despatched to Australia 760 tons,
South America 130, India 85, France 126, Germany 130, Holland 340, Belgium 130, Spain 20, China and Japan 80 , other countries
320 , the coastwise shipments being 2400 , against 5623 in the correThe imports of English iron into Scotland from the East Coast are increasing, and for the past week they were 11,400 tons, an ncrease of 3399 tons.
Finished iron has
iderably in the last feen quiet, the demand having fallen off conreaction is not likely to be of long duration, as it is supposed to be largely due to the depression in warrants, and therefore likely to
pass away as the pig iron market recovers. The steel works are pass away as the pig iron market recovers. The
well employed, chiefly in shipbuilding material.
being good both for home use and export. The weel the demand have been 129,004 tons, compared with 127,342 tons in the preced ing week, and 121,925 tons in the corresponding week of last year. Pricas are steady, main coal boing quoted at Glasgow Harbour,

WALES AND ADJOINING COUNTIES.

11s. 3d. brush, 99.9d. to 108.; small, ss. to 8s. 6d.; No. 2 Rhondda,

 been desparatched, one of 2600 tons to Rio. Swansea toatal last weel vas 6 Ci35.
Oreign has slaceckened. Prices are well maintained. Pitwood is coming ins aboundantly, chiofty from France, and prices are not sot so frong 16 . being
Freights at Cardif continue firm, especially those for higher
Mediteranean. No alteration in French, Spanish, or cossting $\stackrel{ }{\text { rates. }}$ Satis
Satisfactory reports are to hand of the output at Felinfran, and Grargola colienter
The tin-plate trade in the Swansea district has been exceptionally busy, and the comment on 'Change this week was consequently
very gratifying to hear. The total shipment last week was 50,000 ery gratifying to the quantity sent in the corresponding week of ast year. The upward bound in American business was quite the
feature of the week, the clearance exceeding 20,000 tons, and in addition another good "line" was an excess of 2000 tons, also adition another good line was an excess of 200 tons, also
to the East. What with improved American business, a steady
Russian trade, and the new openings to the East, there is Russian trade, and the new openings to the East, there is
decidedly a more hopeful outlook in the trade. Last week the otal shipments of plates amounted to 63,419 boxes, while the
receipts trom works only totalled 39,989 boxes. Total stock is down to 168,625 boxes.
The tin-plate works are going on fairly well, the most regret table case of stoppage being at the Worcester and Forest Works, where sad cases of absolute want are taking place. To meet this active schemes of a charitable nature are being floated, the chie
daily newspaper of Wales advocating a sympathetic poll tax of on shilling per head, which would well meet the case.
The Morriston, Midland, and Beaufort Works a
fall drive, but the Foxhole Works bave suffered from wat
water. Landore, Bark, and Clydach are busy, and at Briton erry the whole of the tin-plate works in the mill and finishing
department were in full force all the week. It is expected that the new blast furnace at Briton Ferry Works will be lit up on
then There
Bilbao, and theen no decrease in the arrival of iron ore from ing the replenishment of stocks. Most of the principal works have aceived large cargoes during the week, and La Societe Commercial 1 s .9 d ; T main much the same ; best Rubio is quoted at 14 s .6 d , to ese ore came to Newport consigned from Vizagapalam to the yle and Blaina Company
On 'Change, Swansea, this week, it was reported that pig iron
had indicated a decline of from 9 d , to 1 s . This was attributed to mporary influences,
Present prices on 'Change, Swansea, iron and steel, are
 nd steel plates, $£ 615 \mathrm{~s}$. to $£ 617 \mathrm{~s}$. 6 d . Bessemer steel : Tin-plat bars, $£ 410 \mathrm{~s}$. ; Siemens, $£ 412 \mathrm{~s}$. 6 d .; steel rails, heavy sections,
$£ 412 \mathrm{~s} .6 \mathrm{~d}$. to $£ 415 \mathrm{~s} . ;$ light, $£ 512 \mathrm{~s}$. 6 d . to $£ 515 \mathrm{~s}$. Tin-plates:
Bessemer cokes, $10 \mathrm{~s} .4 \frac{1}{2} \mathrm{~d}$. to 10 s .6 d . ; Siemens coke finish, 10 s . 6 d Bessemer cokes, 10 s . $4 \frac{1}{2} \mathrm{~d}$. to 10 s .6 d .; Siemens coke finish, 10 s . 6 d
to 10 s .9 d . ; ternes, 28 by 20 C ., 18 s ., 18 s . 6 d ., to 22 s . Block tin
$£ 617 \mathrm{fs} .6 \mathrm{~d}$. to $£ 6110 \mathrm{~s}$.
Swansea quotations iron ore are as follows :-Tafna, 14s. 6 d . The demand for rails, billets, and bars at the leading works
(abs, ntinue.
In the
In the neighbourhood of Dowlais at the beginning of the week the lines leading into the works and out-forming connection with
the principal railways were simply gorged, accumulations of bars the principal railways were simply gorged, accumulations of bar
and rails being strongly in evidence. Indications are strong that notwithstanding the extent and variety of the make at DowlaisCardiff, the old works are not to be allowed to fall off, and the
atest additions of electric power, and the erection of the largest last furnace in Wales, appear to be proof positive of this.
At the Cyfarthfa Works a large make of steel rails is going on and considerable additions to the Bessemer, and other departments have been necessitated by the existing demand.
One of the results of the calamitousexplosions in Welsh collieries note that at the eighth ceneral meeting of the Ferndale-D. Davis and Sons-the sum of $£ 2047$ was directed to be applied in the pay ment of a dividend at the rats of $£ 6$ per annum upon the prefer
ence shares of the company, and the balance, $£ 667 \%$, 5 d, brought forward into current account.
At the meeting of the Rhondda and Swansea Bay Company this
week, it was intimated that the rumour of its possible absorption by the Great Western Railway Company, was not an authorised one, interest in the wellfare of the working community of the Merthyr Dowlais, Cyfarthfa, and Plymouth district, by bearing the expense
of a large additional wing to the hospital, forming a new accident ward. This was opened on Wednesday, by the Governors of the lospital in the presence of the donor. The cost of furnishing
has been volunteered by the Cyfarthfa and Dowlais Companies.
The latest report of the Brecon and Merthyr Line foreshadowe a number of good signs in the form of additions of n
business extensions, \&c., all promising well for the future.

NOTES FROM GERMANY

To judge from accounts that are received from the various iron
producing districts, an improving tendency seems to prevail al
In Silesia the iron trade is progressing favourably, both local and
round foreign demand having further increased upon the week. The have, on the whole, been willingly accepted by consumers, and this, as well as the slow but steady im
well for the tone of the iron industry
For the present only few large contracts are being secured, but
makers and manufacturers makers and manufacturers generally entertain a most hopeful view
with regard to the development of the spring business. Plates and bars are very firm in price, and so are sheets. The blast furnace works are trying hard to raise their output, and as the demand for
forge pig and for iron for steel making is steadily improving, and forge pig and for iron for steel making is steadily improving, and will continue to do so, most likely on account of the uncommonly active employment at the steel works, makers in pig iron may be
considered as having excellent prospects for at least a great part of the year.
business is no change to be reported in connection with the iron continues to Austria-Hungary. For structural iron a fair demand reported to be a trifle better than in previous weeks, but, on the whole, the tone of the iron market remains dull. The majority o
the machine factories are in tolerably satisfactory
only in a fow special cases complaints have been heard regarding
the insunfficient tamount of now The ins Frieentamount of new work. The French iron market has continued pretty lively during the last few weeks; in some departments prices have been showing a
fair tendency to improve, owing to a rather increasing demand that is beginning to be generally experienced.
The Belgian iron trade has maintained its former healthy position current output meeting with ready demand at prices that may be generally considered remunerative. Only for some sorts of iron,
where competition is particularly strong, export prices have to be where competition is particulary strong, export
reduced if makers wish to do any larger business.
phalia are pretty the iron and steel works in Rheinland-West improvement in activity which was reported towards the middle of January having here and there given place to a certain dulness. Turing the last few weeks during the last few weeks prevented all active business in the
building line, and has, consequently, put a stop to the brisk demand that was already coming in for structural iron of all descriptions Dealers show, as a rule, much inclination to purchase freely. The iron ore trade continues exceedingly animated; in spite of a steady existing demand, and imports in all sorts of foreign ore are conse quently very heavy. The following quotations areatpresent ruling:-
Red minette, M. 4 p.t.; inferior sorts, M. $3 \cdot 20$ to $3 \cdot 40$ p.t. : Nassau red iron ore, 50 p.c. contents, M. 11 p.t., free Dillenburg. The pig iron trade remains in a pretty lively state, the demand for the different sorts having been fairly strong upon the week. Nearly the total make of the third quarter of present year is reported to have
already been sold. Prices are firm, and perhaps inclined to rise in quotations until the iron trade is showing symptons of a general and lasting improvement. Only iron for steel making has been s. quoted M. 67 p.t.; foundry pig. No. $1, \mathrm{M} .67$ p.t.; No. 3 ,
M .60 p.t.; basic, M. 60.50 p.t., free place of consumption ; forge
pig, Rhenish-Westphalian and Siegerland oualities, fetches M. 58 pig, Rhenish-Westphalian and Siegerland qualities, fetches M. 58 Billets and blooms are in exceptionally good request. Old rails and scrap iron continue to be sold at very high rates, at a late
tendering rails were paid with M. 80 p.t. Bars are, on the whole, in moderate request; bars, in basic, now stand on M. 130 p.t. ; the girders have begun to fill their stores, and are buying largely; weeks, and prices have met with an advance of M. 2.50 to M. 5 p.t. boilers plates now realising M. 180 p.t. ; best qualities, M. 210 p.t.
Tank plates cost from M. 142.50 to 165 p.t. An irregular employment is going on at the sheet mills, those in the Siegerland being as a rule, complain of an insufficient amount of orders; especially price contracts are very scarce, and makers have to go down in M. 150 to 160 p.t. Hoops are in fairly good call generally. The business in light section rails is tolerably satisfactory, and the
works have hitherto well maintained the price of M. 110 to 112 p.t. Drawn wire and wire nails are in slightly improving request, the
atter realising M. 137 p.t., while for drawn wire M. 120 to 122 p.t. is given. Rivets are very dull. The wagon factories have received
sundry small orders for narrow gauge and electric railways, and wore work is expected to come forward. Prices and demand in he tube business have not altered, and are weak generally, owing

AMERICAN NOTES.

New York, February 16th
THE crash in the steel rail market has been the topic of conver
ation for ten days. The Illinois Steel Company has been under ation for ten days. The Peinois steel Company has been under
selling for months. A Pensylvania mill, not satisfied with its
scanty percentage, made this secret selling below the rate the scanty percentage, made this secret selling below the rate the
pretext for withdrawing. Thereupon the house of cards fell, and
rails tumbled from 25 dols, at Pittsburgh to 14 dols. They rails tumbled from 25 dols, at Pittsburgh to 14 dols. They
advanced to 17 dols., and are now 18 dols., and may reach one dollar higher. The entire trade is unsettled. The Carnegie interests control the situation, having all the advantage of ore and
coke, and transportation at cost price. There is a daily rush of orders, and none can tell where the demand will stop, possibly not Already the rail mills have sold more rails than they did all of last year, and the market has only opened. There is a struggle for ments which bave been pigeon-holed for several months. There is great deal of projected work, and if this work is pushed it will surveys had been made for the construction of some thirty thousand miles of road. If but 10 per cent. of this were built this year, the emand in adaition to that or repairs would pretty well occupy our Carnegie road will be completed by August, and then rails will be made cheaper at Pittsburgh than anywhere on the face of the is the money market. Should capital be unlocked and flow without restraint, with reproductive channels it will bring to the States an
of prosperity like that enjoyed by other countries. The the new President rips up things with a new tariff, the passage of
which is not altogether assured. There are a good many sore men to be pleased. The silver men are lurking in the dark. The
deficit is nearly fifty million dollars in eight months. This is a piece of business the people will not put up with.

THE NEWPORT HARBOUR COMMISSIONERS' WEEKLY TRADE REPORT
LARGE attendance at the annual general meeting of members. Continued demand for steam coal, with stems fairly well filled. House
coal shipments have lessened from the mild weather. Tin-plates
in moderate demand. The iron and steel works are all fully employed.
Coal: Best steam, 9 s . to 9 s . 3d.; seconds, 8s. 9d. to 9 s .6 d .;
 Pig iron: Scotch warrants, 38 s . 1d.; hematite warrants, 40 s . 01d d.
fo.b. Cumberland ; Middlesbrough No. 3 , 40 s .1 d.
prompt. Iron ore: Rubio, 14s. 8d.; Tafna, 14s. 3d.' Steel: Rails, heavy
sections, £4 12s. 6d. to £4 15s.; light ditto, $£ 5 \mathrm{~s} .6 \mathrm{~d}$. f.o.b.;
Bessemer steel tin-plate bars, $£ 412 \mathrm{~s}$. $6 \mathrm{~d} . ;$ Siemens steel tin-
plate bars, $£ 415 \mathrm{~s}$.; all delivered in the district, cash. Tin-plates: Bessemer steel, coke, 10s. 3d.; Siemens, coke finish, 10s. 6d.;
Pitwood: 16s. 3d. London Exchange Telegram: Copper,
£51 7s. 6d.; Straits tin, $£ 6111 \mathrm{~s}$. 3d. Freights steady.

The Albert Medal. - The professors and students of the Polytechnic School of Engineering, Regent-street, presented their president for this year, Professor D. Hughes, F.R.S., with an
Illuminated address, congratulating him upon the distinguished honour which was conferred upon him on Tuesday, the 16th inst.,
when he received from the hands of H.R.H. the Prince of Wales, Marlborough House, the Albert Medal, bestowed upon him by in recognition of the great services he has rendered to arts, manufactures, and commerce, by his numerous discoveries and in-
ventions in electricity and magnetism, especially the printing
telegraph, the microphone and long-distance telephone.

the patent Journal.

 Conderved from "The Mtutratad Omcial Jourral of Application for Letters Patent. * When inventions have beon "communicated" thename and addroess of the communicating party are
printed in italios 10th February, 1897.

 Monny, London. Paterson.-(J. Paterron and A. J.
 Meok, and J. Phill pon, jun, Newcastlo., Tryne. 349. HAT ADCUSER, E. Ashmore, Sheffivid.
3496. BEDSTEAD ATTACHMENT, E. Hitchon and J. Lucas,

 Soc. Docke Bhake, w. J. R. Wray, Holywood con Wo. Thymoun Macuinex, J. Dawson and S. T. 3500. Crocie Frumes, H. Lawson, jun., and H. M.
 chenter sil. Horon Exoivss, T. and L. Dunn, Newcestle-on.
 Gwinnett, London.
3513. Trkatino Waste Iron Ores, G. Haycraft,

.

3TEP-LADDER, A. L. Kneale, Douglas, Isle
San. 3524. BIICYCLE Rest, W. U. Coates, Falfield, Glos.
3525. Flum Pressure Reduciva VAlve, E. Makin
2in. 3un. and D. Speirs, Manchester.
3526. ELEcroo Dkposition of Mer Mis, J. E. Hartley.-
(F. W. Zingsem, United States.). (F. W. Zingsem, United States.). T. B. Sangster, Bir-
3527. Crcck-stekina Locks, C. T. mingham.
3528, BEAT Attrachment for Cycles, E. Goold, jun.
and D. Roberts, Leamington. and D. Roberts, Leamington.
3529. Starting BLowina Enaines, J. Procter and E. Crowe, Oakengates, Shropshire.
3530. BRuskes for Cleaning Sieves, C. H. Stubley
Mansfield. 353. Wansiel. Wr-closets, J. Wright, London.
3532. Snutre Guard T. Graham, London 3532. Shutris Guard, T. Graham, London.
3533. Asirir Doors, J. Duckett and Son, Ltd., and J.
Duckett, London. Duckett, London,
3534. Driviac Chaiss, T. R. Voce and B. Drysdale,
Birmingham. Birmingham.
3535. Bets for Conveyors, T. F. Ennis and F. S Greon, Birmingham.
3536. Rasisno Nap on Textile Fabrics, J. Schofield,
Manchester. Manchester.
3537, Carbiage Lasip Socket Clip, G. I. Randall,
Bristol. Bristol.
353s. STARTino GEar, P. McL. Baxter and D. Donald,
Penryn, Cornwall. Ponryu, Cornwall.
3539. Burners for 1
Birmingham.
8540. Brackets for Displayino Goods, S. P. Ming, 3541. Tirge, S. S. Walkor, Knowle, Warwickshiro,
3542. HEALD OPERATING Mechanism, A. Lockwood,

LJondon,

 afor Yygh, London ilerves, G. Haydon and Haydon
 337. BELALARNarus, T. E. G. Gronin, London. 337. AAT7.-voruso Couroisinos, J. C. Mowburn.-

 Unyctes,
Liverpool. ind Concentration of Sulphuric Acid, J. E. Campbell, Cyanchester. Sadde Attachment Bar, F. J. Rowsell, Birmingham.
3594. TElephone
Switch Device, J. H. West, Liver3594. Telephone Switch Device, J. H. West, Liver-
pool.
3595. Cycle Brake, H. williams and J. H. Jones, 99. Wainino Tumblers, O. R. F. Minck, Liverpool. 3597. Taprese Tvbes, F. J. Soyfried, Liverpool.
3598. Corsets, F. C. Mahon.-(J. D. Belcher and J. C.
Mahon, Noca Scotia.) 3559. Horsless Carriags, C. E. Henriod, London.
3600. Brake Mechantsm for Cycles, T. A. Borham, 3600.
Lo.
3601. 300 London.
$\begin{aligned} & \text { 3602. Spei } \\ & \text { Londe. }\end{aligned}$ London. Mechanism, N. Roser and J. Mazurier,

sio3. Cr. | 3603 |
| :--- |
| 3604 | ${ }^{350}$

$\underset{\substack{300 \\ 3000}}{\substack{300}}$

 110, Fetruary, 1897.

泿 362. Wet Ppisnivo Frivers, J. Barbour, Belfast.
Smetholina Heads of Carriages, C. E. Hartison,

$$
\begin{array}{|l|l|}
\substack{361 \\
3620} \\
3620
\end{array}
$$ Smethwick

3621. Admina Stand, C. G. Burton and G. H. Lister,
London. London.
Si2. Coprer Furnace Doors, G. Honeyball and J. 3623. TYPE-WRITINO MAchines, S. B. Shelton, St. Ives.
3622. Coolisa Butchers' SAYEs, W. H. Coppen and W. J. Woodward, London.
3623. Rrbed WHEELING PANT, T. D. Fraser, Glasgow.
3624. Drivino Gearino of Engine Flats, R. Tyack

32688
and
302 J. T. Keiller, Perth.
3625. Cleanino Streets, w. Harley and J. Duggan, Liverpool.
3626. Slipper Brakes for Road Vebicles, T. J. Davies,
Liverpool

33 3635. Fitiven Artificial. Treth, E. Hulme, Kingston-
upon-Hull 3630." "Sayety" Cycle Brake, W. Walker, Halliwell,
near Bolton. Hear. Corks for Bottles, W. H. Parry and F. O. Hart,
Birmingham. 3638. Extivauishiva Fires, R. Dawson and J. T
Clarke Clarke, Keighloy.
3627. Moroo Evoinss, J. E. S. Thornhill, Manchester.
3628. Indicatina Temperatures, H. Ramsden, Man 3640. INDIC
chester.
3629. PREy
and Preventiva Spillina of Liquids, T. W. Allan and A. G. Adamson, Glaggow.
3630. Shart FAstenkr, R. H. Huntor, Leeds.
3631. PhotorapHic CAMERAs, J. Manchester.
3632. WATE-PRoor Clotu, W. H. Douglas, Fallowfield, 3645. Oil Cans, J. W. Kaye, Bradford.
3633. Treatmex of Fabres J. Waugh.-(The Net Aujouryer Cortoor Mill Company, Germany.)
3634. Jornt for Auto-car Frames, C. Kenyon and J.
Pogson, Manchester. 3648. Ellgriric Incaridsgent Lamps, F. Ridyard and
W. Wardle, Manchoster.
 3650. WAtER-TIort Metal Bar, A. Fry, London.
3635. PEN WiPER, D. F. Basden and J. Davidson,
London. London.
3636. CELIING Roses, H. M. Darrah, Manchester.
3637. Rotiry Morion; W. E. Heys.- (Schaffer Budenturg, Germany,
3638. PRIFIN LAMP Frames, F. Sherwood, Bir
mingham.
 3657. Cycle Hub Cleaner, L. C. Harvey, Manchester
365s. Cycle Race for Staoe Eyvect, W.'D. Hanbury, London.
3639. Shutle Guard, T. and J. G. Ivers, Manchester.
3640. RAo Enaives, T. Horrox, Manchester, 3660. Ruo Enaings, T. Horrox, Manchester.
3641. Ribibons, P. Philpot, Manchester.
 364. Hydrocisbon Gabo Lamps, R. Henderson, G665. TIREs, H. Hubor, London.
3642. Cyces, . Lansdown, London.
3643. INCANDESEEN GAs, BuRNE,
 London.
3644. Internal Combustion Enaines, e. T. Carter,
London O60ndon.
3645. VioLis Machings, J. Baumgartner, London.
Londonisay Vehicle Couplings, M. L. Mardis, London.
3646. Coin-freed Delivery Apparatus, A. Pincus,
London. London.
3647. Detectina Potassium Compounds, G. S. Newth,
London. Londen. TELEphonooraph, J. Clark and J. H. Calcot
London.
Lin. 8675. Bicycle Tires, T. V. H. Obelt, London.
3648. PhonoorıpIs, T. V. H. Obelt, London.
3649. NVEEs, H. Schmidt, un. Berlin.
3650. Drivino GEAR for VElocipedes, T.

[^0]

 grany, Litd, and H. W. Latham, London.

 London.
3709. Bedstead Frimes, E., L. A., and B. R. Peyton, London.

$\left.\begin{array}{c}\text { 3710. Pre Joist, T. C. P. Jenkins and C. F. Archer, } \\ \text { Londo. }\end{array}\right\}$
London.
$\begin{aligned} & \text { 3711. Foldina Cyole Handle Bar, C. F. Archer, } \\ & \text { London. }\end{aligned}$
Ľindon.
London. Adina Picture Frames, W. S. Simpson,
37is. Word-recording Apparatus, E. S. Flint,
Londond-recording Apparatus, E. S. Flint,
Lin.
374. Lioud Measures, C. C. Hull, London.
3715. Sealino Punctures in Tires, A. J. Eli, London.
 London.
377. STAMPs, P. Krause, London.
3718. Trase, F. A. S. Reld, London
3710. TrawL NETs, A. J. Pardy, Lo
3710. Trawl Nets, A. J. Pardy, London.
3720. Fekding Printino Machines, E. T. Cleathero,
London.

London.
3721. Wercss, J. A. and T. G. Drinkwater and F. J. T. Haskew, London.
3722. Svprorss, W. P. Thompson.-(The Jtrm of C. W.
Kayser and Co., Gernany.) 3723. Disinfecting Apparatus, w. E. Thursfield,
Kind London.
$\begin{aligned} & \text { 3724. STEAM Boiler Furnaces, w. Brothors, Man- } \\ & \text { chester. }\end{aligned}$ 3725. Colin-yreed Apparatus, R. Lane, Liverpool.
3726. Locating Tire Treads, J. H. Glow, London. 3727. Tox, J. H. Homeistor, London.
728. SHPs, A. J. Boutt. (L. Dutac, Franc.)
3729. PACK SADDLEs, H. R. Newburgh. Stewa London.
3730. Slooting Metal Plates, W. W. Hulse, London.
3731. Inflatino Tires, B. R. Adkins and C. Windsor, LTondon. "Boards" for Trawl Nets, G. R. Purdy,
London. London. Orening, R. E. D. Rudman, London.
3733. Gatze Ofina Soryace of Ships, E. F. W. Agatz, London.
3735. GEYSERS, J. Winterflood, London.

12th February, 1897.
3736. Jonts of Earthenware Pipes, J. Farley,
London.

London.
3737. CLEANING WINDows, E. M. Jack
3738. Morors, H. Rogers, London.
3739. GMME, J. Bland, London.
3739. GAMre, J. Bland, London.
3740. PREPARING Fowls for Disner, R. R. Burt,
London. London.
374. OARs, J. Cotter, London.
374. BAEs, H. F. Smith, Sheffield
3742. BACS, H. F. Smith, Sheftield.
3743. BICYCLEs, T. Blackmore, Birmingham.
3744. NK and other STAIN Removers, \&. Learoyd,
Huddersfield.

Huddersfield.
3745. Diving Gear of Velocipedes, t. Cowper-Coles,
London.
3746. PLovens, H. Lees and R. Henderson, Clontarf,
Dublin.
3747. Eyklet Holes, W. T. Shore, London,
3748. MAKiNo BraNCH Pife Connections, J.

London.
3790. Kniting Machines, G. F. Sturgess, Leicester.
375l-MEAsurino Taps, J. H. Stubley, Aughton, near Ormskirk.
37751. Sortivo Imparists, C. O. Weber, Crumpsall, near Manchester.
3752. Connumisativg between Trains, H. Biermann, Manchester.
3753. Method of Drivina Cafstans, J. Hannan, Glasgow.
3754. Transmitino Elbctric Current, D. K. Tullis,
Glasgow. 3755. Water Tube Bollers, F. E. Rainey, Glasgow.
3756. Bioycle Tires, A. E. Lillie and J. Cockburn, 3757. Motor Cycles, W. Davy, Ryton-on-Tyne, Co Durham.
3758 Previctic Tires, A. Rollason, Attleborough, n759. Combiting Machine Circless, M. Firth and F. Davy Bradford.
3760. Coas Corring, W. E. Garforth, R. Sutcliffe, and
W. Buxton, Leeds. 3761. Sweerer for Billiard Tables, J. Boothman
Leeds.

 76i. Manupacture of Wert Pile Fabics, J. Farran,
Manchester.
7767. Mortising Machines, D. Pont, Manchester. ford.
figctric Traction Motors, B. Kennedy, Brad
3769. Steam Receiver, H. L. P. Boot, Tunbridge Wells.
3770. Ant1-incrustation Fluids, J. Gommell, London,
3771. Heel-plate for Revolvers, R. Gordon-Smith, Birmingham. 3773. Wedge, R. Hindle and J. Newman, Helton-le
Hole 3774. Flexible and Pneumatic Tires, J. R. Cooper
Birmingham. 3775. Obstetric Belt, M. A. Dunning, London.
377. Prodetion of Desions in Metal, R. J. Simpson, Birmingham.
3777. LABELS, F. Waite and Waite and Saville, Brad ford. Morors, H. Lentz, J. Weigl, and A. Hersch
mann, Bradford. 3779 APross, W. Eastham and Howard and Bullough ${ }^{\text {3780. Oif Fgedino }}$ Buspension Lishpy, A. J. Riley Birmingham.
3781. Purivying of Fegd-water, F, W. Wheadon
London. 3782. Cone Srove, H. Beuge, Brussels.
3783. WHEEL, H. Sdiss, Brussels.

3783.
3784
3785.
3786.
3787
3788.
Hon
$\begin{array}{c}3780 \\ 3790 . \\ \text { Gut }\end{array}$
.

3791. Coverinos for Wire Mattresses, J. Hubbert, London. 3793. Caps, M. Bchnoiders, London.
3792. Holdina CANDLEs, H. Jones, London. 3795. Treatagen of Sulphide Oqes of LEAD, G. G. M.
Hardingham. - (T. Huntiagton and F. Hibeilein taly.) 3797. Lamps, E. J. Shaw, London.
Economsina Motive Power, P. Jerrard, Brakrs, T. A. Hearson, Englefield Green, Surrey,
PrEssino the Brims of STRAW HATs, A. Lay, VALVEs, R. Boland, Birmingham.
JARS, F. W. Needham, Birminghan 3802. Jars, F. W. Needham, Birmingham. Heibing,
3793. Automatic Spray Difyubers, H. Heilus. London.
3794. Fixisa Heads to Piss, W. P. Ttompson.-(R. Neus, Germany.)
3s05. Tires, E. Hayle, Liverpool.
3795. GEAR Wherls, W. Morris and J. J. Baxendale, Manchester.
3796. Tre, W. Heyden, London.
3797. Corsers or AbDominal Belts, C. Irvine, Liverpoo. Hooks, J. H. Ross and R. Cunningham, Man-
3798. 3810. Luppings, H. Schowell, London.
1. FLuId for Impregnating Bodies for Incandes
CEvin 3812. Current Collector, A. Heusch and P. Brandt, London.
2. Hacking Flax, R. C. Sundberg, London.
3. FLAT-wICK LAMP Burners, J. Schneider-Dörffol, London.
4. Windino Wires on Armatures, J. C. Grant,
London. 3816. Rims for Cyole Wheels, J. C. Grant, London.
5. Pnevmatic Tire Valves, J. C. Grant, London. 3818. Rassina Liquids, W. A. Hills, London
6. Boot Treks, TJ Jing 3819. Boot Trees, T. Jonnings, London.
7. Suspended TramwAys, R. St. G. Morre and W.
J. Brower, London. J8. Brower, London. Botre Stoppres, T. Jennidgs, London.
8. DIspessino Composite Liquids, R. W. Vining, London.
9. Heating System of Kilns, J. P. van der Plogg,
London. 3824. Heating Incandescent Burners, J. P. van der
Ploeg London. Ploeg, London.
10. Air SUPPLY for Furvaces, E. H. J. C. Gillett, 3826. Ayrixina Scarves, J. Cryer, London.
11. Marine Construction, I. Chiera and 1in2. Lockino BICYCLEEs, J. Haag, London.
12. Preverinin
 Spencer, London.
13. PREsR2vINo Butter, B. Iribarnegaray, London.
14. ELECTRIC BATtER1ES, A. R. Adams, London. 3831. Elegtric Batteries, A. R. Adams, London.
15. Spinnino Abtificial Silk, R. W. Strehlenert, London.
16. Taps,
W. T. Sugg and W. G. H. Mattock, 3834. Gathering Sherts, J. B. Mercor, London.
17. Wrenct, J. F. Tiner and T. Tinsley, London.
18. Dreviso Ger 3836. Driviso Gear, M. S. Napior, London.
19. UTLIsING WAsTE HEAT, H. M. Robinson, London.
20. HoLDINa DEviek, E. B. Betham and W. White, London.
21. Screw-storpering Bottles, E. Handslip, LoLdon.
22. SEcurina London.
S84. FIxiso Inside Tubes, E. J. Hearnah and G. R.
Bate, London. Bate, London.

13th February, 1897.

2. Corsets, T. E. Mansfield, Bedmins PNEMATELT, TIREs, J. C. C. Barket, Brighouse.
LEvER Whezl GEA, J. W. Hart, London. BeLts, G. E. Stoad, Manchoster.
WARP Beass, G. E. Stead, Manchester.
ELECTRIC ARC LAMPs, H. M. Darrah, Man Electric Arc Layps, H. M. Darrah, Manchester.
Makina Joints, J. Birtwisle, Manchester. MAKino Joints, J. Birtwisle, Manchester,
Rallway Sirisalino, A. Dson, Halifax
FLoors of Rooms, M. Hall, Halifax. Oscilativa Turpers, J. Rigg, London.
Revolvivg Letrr case, , Frankland, Norwich.
HANDLEs for VELocredes, W. Handley, aham, and H. Lowe, Birmingham.
Bedsskans, G. Whitfield, Irmingham.
LEvER GEAB, D. Clark, London. LEVER GEAB, D. Clark, London.
MUD-OUARDS, E. D. Hopcroft, Kidderminste
Siva TIRES, J. Stewart, Edinburgh.
 Phythian, Manchester.
S1. Fasteninos for Sheets of Paper, E. M. Payn, London.
3. Moror Vehioles, A. W. Brightmore, Knighton.
4. Fire Escare, J. S. Gatland, Dorking. 3863. Fire Escape, J. S. Gatland, Dorking.
5. BicYcle Rest, R. F. Mallam, Banbury. 386. BICYCLE REST, R. F. Mallam, Banbury, J. ATTACHMENTS for OTtER BoARD, J. R.
Smith, Hull. Smith, Hull. Hammond, Winchester.
6. CrinsDers for Sorting Grain, C. E. Mumford,
Lavenham, Suffolk. 3868. Savcepan Lids, H. Drake, Norwich.
7. Neckcloth, H. Malet, London.
8. Butrons, J. N. Gardner and L. T. Slayden

$$
\begin{aligned}
& \text { London. } \\
& \text { R71. Brakes for Baby Carriages, H. W. Morgan and }
\end{aligned}
$$

$$
\begin{aligned}
& \text { R. Spence, London. } \\
& \text { 387. PILLAR and othor Letier-boxes, F. G. Gaschlin, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3874. CHURN, Thomas, London. } \\
& \text { 3875. STAIR RoDs, H. R.chmond, Manchester. } \\
& \text { 3876. HANDLES of Cycles, F. W. Stroudley, Man- } \\
& \text { chester. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { chestor. } \\
& \text { 3877. Pskenatic Tires for Vehicles, W. B. Thompson, } \\
& \text { Manchester. }
\end{aligned}
$$3878. Spanner and Tire Lifter, T. P. Willcox, Shef-

field. 3879. Conl Grids, H. Gibbon and W. Tyrer, Liverpool,
3880. Winpow Frasks, H. Gibbon and W. Tyrer, Liverpool.
3881. Frames for Suspending Lamp Vessels, de., B.
Edmonds, Birmingham. 3882. Urinals, J. Shanks,
 3885. Tobsoco Pife, W. H. Tapp, Frome.
3886. Soldering Appliances, C. E. Bacon, London.
3887. Lioktino Warboves, F. H. Royce and Co. Ltd., and W. G. Inglefield, Manchester.
388s. CYcLe STND, T. Shoreman, R. Johnson, and
J. G. Dodd, Manchester. S89. Impation Thes on Metal, F. L. Saniter,
Durham. urham.
Gas Enoings, P. Auriol, London.
Preparino Petroleva, J. W. Lead
 Crole Sadples, W. F. Mullor, Havre.
Vkhecle Whreis, N. D. and J. N. Coo, London
Blisd Rollers, S. Y. Davis, London.
 Glasgow.
3890. Ualoum Carbide, F. Richard, Liverpool.
Sor Rifle Practick, T. B. Ralsto Glasgow.
3900 Utuisino Brewery Reruse, A. Weickmann,
London. 3901. VELocipedes, W. G. Hartnoll and J. B. Jones,
Barnstaple.
3902. CUFF Holder, J. C. Vickers, Manchester.

3988. Drop-down Guns, J. W. Smallman, Camp Hill 39s9. Horst SAEETY Locck, R. Wright, Ardwick.
3990. Broshisco MACHINERY, R. Kely, jun., and J.
3991. Brakes for Bicycles, H. Maudsley, Accrington.
3992 Detachable Fasteninos, W. Birtwisle, Hart-
ford.
3993. Prton
VAlves, F. W. Webb, Crewe

3996. Telephone Apparatus, W E. Langdon, Derby.
3997. Looss, W. R. G. Farey and R. Langhorne, Man-
chester.
3998. Loons, W. R. G. Farey and R. Langhorte, Man
chestor.
3999. Furl Economiser, F. Eveleigh and P. H. Mellor,
Derby.
Derby.
oo. Derainment of Tramcars, E. J. Jenkios, Bristol.
01 Lebricators, H. N. Bickerton, Manchester. 2. Casp SToors, J. Davidson, Manchester.
P8. Beacker, A. Doman, Kate's Hill.

Brackets, A. Doman, Kate's Hill.
FENERs, And T. A. Jones, Smalheath
CruNks, J. N. Lester, Wolverhampton,
Cranks, J. N. Lestor, Wolverhampton.
Nugent.
07. Toover Squiss, S. E Statham, Manchester.
08. Prcteotors for Boots, F. J. Palmer, Dawlis 4008. Prctectors for Boots, F. J. Palmer, Dawlish.
1009. PNEvatic Tres, A. A. Wade, Bramley.
4010. Driviso Mechanisa, W. Snelgrove, shirley near Birmingham.
4011. ALARM DEVICE, J. S. Napier, Glasgow.
4012. Tox, W. Snelgrove, Shirley, near Birmingham. 4012. Toy, W. SNelgrove, Shirley, near Birmingham.
4013. JARs, R. . Brownlow, Manchester. . PNEUMATIC Boxino Glove, H! J. Dwight,
Bannsley. Barpsley.
4015. SADDlery, E. Chatham, Ruabon.
4016. PACKINO TEA, J. Aitken, London.
4016. Packivo Ted, J. Aitken, London.
4017. Fog-sionalliva Appratu, M. Chapman, Kent.
4018. Air Valve, L. Barres, sen., and C. O. Barnes, 4019. Device for Trachers of Cvcle Ridino, J. West,
W. West, and H J. W. Raphael, Teddington.
4020. Locks, A. G. Voigt and E. F. Cooko, London.
4021. REOISTERINO TERMOMETER, A. G. C. Davies
and H. Allen, Croydon.
402a. Bicyck SUPPorrs, E. Amphlett, London.
4023. Eye Protectors, U. S. Elliot, London.

 k. 4 ot 4

an 40

 \%
 40
10
408
4061. Harmonicss, H. Paris, Lendon.
Germany.n.)

40
40
40

 4
4

$$
409
$$

4022

16th Fcbruary, 1897.
4097. Obtinning Motion, R. C. Sayer, Bristol.
4098. Cutring Eggs, B. H. Watson, London 1099. Dryino Paper Machines, A. A. Hunting and E.
A. Leigh, London. A. Leigh, London.
4100 TiRES, J. Watson, Wilmslow, Cheshire.
410. BALANGING VALVES, J. Shenton, Oldham. 4102. Bread, B. F. Bryant, Ramsgate.
4103. Convection, W. A. Williams, London.
4104. Bobbin Wheels, H. Meadoweroft ad 4103. Convection, W. A. Williams, London.
4104. Bobbin WHEELS, H. Meadowcroft and G. B
Schofield, Newhey, near Rochdale. Schofield, Newhey, near Rochdale.
4105. TRaNsFormers, G. Adams, London.
4106. HAIR CURLERs, F. H. Shaw, Birming 4107. Aivusting Bearincs, R. Chambers and F Hawley, Binmingham.
4103. ATtACHMENT for Ladies' Hats, F. J. Jones, Bir mingham. Chain, M. A. H. Rongler, Birmingham.
4109. Drive Band
4110. BANJos, G. Hougnton, Birminghan 4110. BANJos, G. Hougnton, Birmingham.
411. OIL BURNER, E. R. Weston, London.
4112. Lemon SeUEEzERs, C. B. Carter, London. 4118. Boxss, H. A. Cobleigh, London.
4114. BorTLLEs, E. Towers, J. Gibney, and J. C. S.
Weils, Londo. Weills, London.
4115. Collar Athchments, G. Ward and J. E. Dodg 4116. GRIPr, J Jakins, London.
4117. BAKE PANs, W. G. Bhin

BAKE PANs, W. G. Blair, London.
Swrich R. C. Hart and R. S. Fied, London.
RAILWAY SwITcHEs, G. M. Hilbert, jun Lond Railway Switches, G. M. Hilbert, jun., London
Shaping Metals, W. Hail, Birmingham.
4121. Wherls, E. Scally, Dublin.
4122. Cycle sadoles, C. E. Vain,

WheEls, E. Scally, Dublin.
Cycce SADDLEs, C. E. Vail, London.
4. Cycle STAND, R. Blacklock, Sunderland.
M^Tch Box, W. W. Williams, Trat Cheshire.
4125. Arivicil Light, J. R. Wigham, Dublin.
412tron Gins, H Jones, Manchester. 4127. Boor Sole, W Oakes, Northamptou. 4128. GAs ENGINEs, W. Sayer, Derby.
4129. SPANERES, C. L Parkin, Sheffield.
413. Locks, J. Brown, Dudley
4131. ELectric Truction, C. Douglas, Leicester. 4132. Hair Corlers, A. S. Gilmore, London.
4133. CATCHINo RATS, T. Thompon, Machester
4134. LAMP BURNERS, W. Bourke. Manchester. 4135. Punchino Stekl Plates, M. H. Cameron, Manchester.
4186. Castiso Metals, W. B. Johnson.-(The Penn
sylvania Eatt Manufacturing Company, United States.) 4137. Heatino Watrr by means of Giss, T. Fletche
and Fletcher, Russell
 4140. Pile Fibrics, J Morton, Glasgow.
4141. Window Glass, T. W. Horn, Glasgo 4142. Cycle Handle-bars, T. Parker and H. C. Smith 4143. Carding Engings, G. Andrexs and J. Haley, 4144. Teaching Typewriting, G, Ager, Hakfax. 4146. BAsh Locks, H. D. Fitzpatrick. - (Miller Loc Company, United States.)
4147. CycLe and VEHCLE Whes.s, D. Mannion, Bir-
mingham.
4148. Mud and Dress GUard, W. H. and B. H. Jones,
Wolverhampton. Wolverhampton.
4149. Minature Practice Cartridoes, M. Mullineux, London.
4150. Chineys of Gas Burners, H. Walker, Bradford.
451. TUbular Vaporisers, H. W. Aitken.- (H. Kidd, Neo South IVales.)
4152. Tobsco PiPEs, E. H. Morley and S. Wilkinson, 4153. PUMP, W. Wheeler, Langley Green, Worcester shire.
4154. Stor Valves, M. Culligan, Dublin.
4155. Handles for Cycles, W. F. Muller, Havre 4156. Sokt Couter, W. Stabb and F. Little, London. 4156. SUER Covier, W. Stabb and F. Litte, London.
4157. Driviva Cycke, G. H. Bond, London.
4158. WAfErPRoor FABRICS, J. and H. Markus, Man chester. Brown,
Bron
160. Revolvino Bar and Ropes, t. H. Vol Becque,
London.
161. Pristiva Pictures, H. H. Light, jun., J. A.
Hoyle, and H. Holt, Manchester

Hoyle, and H. Holt, Manchester.
W. Garrett, Lond.n.
4164. Advertising Sign, L. Gorer, London.
4165. Textile Vegetable Fibres, R. J. Eke, London
4166. Rotary Meter, J. Readman, London.
4167. CIoAr-SHAPED TUbe for Smoking Tobacco, w.
${ }_{416}{ }^{16}$
${ }^{416}$
172. LAmps, W. Ackroyd and W. Best, London.
4773. PEHPELES, J. A. Jansson, London.
4itren, M. A. Heyn, London.
4174. Tiress, S. Bunting, Airmingham.
4175. Preserver, E. Thomson, Londu.
4175. Preserver, E. Thomson, Londin.
476 Printing Presses, C. G. Harris and J. F.
MeNutt, London.
177. Fkeding Printing Presses, C. G. Harris, 4178. ©ish Reaisters, D. W. Harper, T. R. Farns-
worth, and R. L. Matthews. London. 179. LEAD, A. J. Boult.-(S. Ganelin and J. B'och
United Sa 411 Ro. Revrieeratina apparatus, w. F. Singer,
London. London.
$4181 . V_{\text {ALVEs, }}$ S. Forter, London. 4181. Valves, S. Forter, London.
41F2. HoIstive, J. G. . Peidel, London.
4183. Lasps. C S. Dolley, R. Hawkin foot, and H. T. Goodwia, London. and W. S. Wilson, London.
4185. Bookbinding, G. Hayes, London.

SELECTED AMERICAN PATENTS.

572,177. Apparatus for Treatino Fire Gases, J.
Patlerson, Gourock, Scotland. -Filed August $31 s t$,
1895. -
Claim - The combination of a flue for smoke and
passag, a connecting, said flue and fan casing, means
pas and
for discharging jets of water into sald connecting pors discharging jets of water into sald connecting.
passage transversely of the current of gases passing
there through, and means for discharging inducing there through, and means for discharging inducing
jets across the transverse jets. (2) The combination
隹 of a fan, a flue or paseage through which the gases to
be treated pass,
means for flue being connected to said fan,

ducing a jet or jets of water through which said gases
pass, an inducing nozzle disposed in the passage leadpass, an inducing nozzle disposed in the passage lead
ing to the fan, and a perforated ring surrounding said ozzle through which water under pressure is caused
o pass in the direction leading to the fan. (3) Tho combination of a fan, a flue or passage through which
the gases to be treated pass, said flue being connected the gases to be treated pass, said flue boing connected
to ossidf fan, means for producing a jet or jets of water through which said gases pass an inducing nozzle
disposed in the passage leading to the fan, and jet derices disposed around said nozz'e through which
water under pressure is caused to pass in direction towards the fan.
72,204. Apparatus for Mancfacturing Axlfs,
\&C., from Iron or Steke, 7 . Higgins, Pitsburg, Cai-Filed An apraratus for the purpose of shaping
Caim-(1) An
forming csr axles and other cylindrical-shaped
bodies of metal, consisting of a stationary concare de, a convex die operating in conjunction therewith,
means for giving said convex die an oscillating movement, and a means for automatically feeding the
same downward to place the pressure upon the blank

between the dies, as described. (2) A means for
rolling axles and other like shapes from bars of metal consisting of a stationary concave die, an oscillating rocker arm provided with a convex die at the base, he axis of which is parallel to that of the stationary dio, anward, a means for rapidly lowering or raising
dhe same die, the journal formers arranged in each of the same die, the journal formers arranged in each of towards or away from each other, all arranged
combined for service, substantially as set forth.
572,396. Valve for Power Motors, J. Anderson,
Newacastle-upon-Tyne, England.-Filed April $12 h$,
Claim. - (1) A power cylinder having a piston adapted
ander provided with a steam space D and an exhaust chamber E, a cylindrical chamber C provided withports
communicatiog with the steam space and exhaust chamber and opening into the cylinder, and a valve
adapted to operate into the said cylindrical chamber

and comprising a riog C^{\prime} split or open at one si la, a H securing sadid wedge in ppace, substantially as
deqcribed. (2) In a power cylinder, a ring valve having a hub, a peripheral rimer and radial arms connecting a hub, a peripheral rim and radial arms connecting
said hub and rim, said rim and one of the arms being
split to receive a wedge G and split to receive a wedge G, and a bolt H passing through
the sp'it arm to secure the wedge in place, substan-
tially as described is described.
571,947. Pnevsatic Tire, H. Faulkner, Leicester,
England.- Filed June Sth, 1896 . Claim.-(1) A pneumatic tire containing within the
air chamber, small pieces of puncture-closing material and a liquid, the puncture-closing pieces being free to
move in the liquid and to distribute themselves auto.

matically, substintially as set forth. (2) A pneumatic
tire having the inner wall of its atr chamber lubricated, and inclosing loose puncture-closing pieces
within such air chamber, said puncture-closing pieces being free to shift about, substant 572,051. Motor Vghicle, J. F. Duryea, Springfeld,
Mass.-Filed March 6th, 1 S96. Claim.-In a motor vehicle, a main axle through
which the propelling force is conveyed to the wheels thereof, a suitable motor, a main shaft driven by said
motor, a cone pulley fixed on said main shaft. com-
bined with a counter bined with a counter-shaft having a belt-pulley there-
on, supported in axial alignment with said main shaft

andion Comporting.-"By a the operations of dige tigion and nutrition, and by a
careful application of the fine properties of wellselected Cocon, Mr. Epps has provided for our break.
fast and supper a delicately flavoured beverage which fast and supper a delicately flavoured beverage which
may save us many heary doctors bills. It is by the
judicious use of such articles of diet that a constitution may be gradually built up until strong enough to
resist every tendency to disease. We may escape resist every tendency to disease. We may escape
many a fatal shaft by keeping ourselves well fortified
with pure blood and a properly nourished frame. Civil SErvice Gazette-Made simply with boiling water
or milk - Sold only in packets and pound tins, by
Grocers Grocers, labelled, "JAsks Epps, AND Co., Ltd.,
Homoopathic Chemists, London., Also makers of
Epps's Coocoine or Cocoa-Nib Extract: A thin
beverage of full flavour, now with many beneficiall taking the place of tear, now with many beneficially
gentle nerve stime principle being a gentlo nerve stimulant, supplies the needed energy
without unduly exciting the system.-
[ADVT

[^0]: London.
 3679. Knives for Skinnina Animals, B. Price,
 London London.
 360. Expeditiovaly Blocking Tuneels, F. Barnett,
 London. London.
 361. Sionallino or Alarum Apparatus, C. Meisslet
 London. London.
 3683, Automatically Illuminatino Box, W. Elborne
 London. London.
 3684. Supportina Slidina Doors, M. H. Spear
 London London.
 3685. Havina Devices for Vehicles, G. T. Harrap,
 London. 3686. Socks, O. J. Bomborn, London.
 3687, SADDLE SUYORTs, J. Lane, London,

