NOTES ON THE ELECTRICAL CONSTRUCTION OF DEEP-SEA TELEGRAPH CABLES.

THE data available for the guidance of the telegraph engineer or manufacturer in what may be termed the elec-
trical, in contradistinction to the mechanical, construction trical, in contradistinction to the mechanical, construction of submarine cables have not hitherto been collected, exa subject of study amongst the generality of those who are interested in the great problems of submarine telegraphy. The stock of knowledge which we have at hand to aid us, as an engineering nation, in giving to the rest of the world a solution of these problems is certainly not deficient in depth or in extent, but is insufficiently disseminated, and, owing to causes which-in spite of, and partly in consequence of, our various scientific organisations-are constantly operating to prevent the spread of science, is practically conno their ability for abstract investigation. In this circumstance is, we believe, to be found the main cause of deep-sea telegraphy being at the present moment at a stand-still, so far as regards progress in practical results. Be this as it may, the discussion in our columns of questions relating to deep-sea cables may be attended with advantage; and the observations we propose to offer under this heading may perhaps initiate this discussion, whilst affording infor
With the one exception of the last Atlantic cable, submarine wires have hitherto been insulated simply by "rule of any accurate theoretical principle in their construction. Even in the case of the cable mentioned, a wide deviation is observed from the relative proportions of copper
and gutta percha theoretically requisite to obtain the maximum of efficiency at the minimum of cost ; and the reasons for this divergence from the admitted scientific principle have not, so far as we are aware, been explained. We purThe " thumb" rule which on
The "thumb" rule which is now mostly prevalent is "to make the conductor as large as may be consistent with upon a generally safe principle, is, like most other empirical rules, deficient in definition and accuracy, and is fravght shareholders in telegraphic enterprises is not the least important. The rale of "as large a conductor as possible" certain limitations. It is not many years since it was rejected in toto by several electricians; and the reasons the first Atlantic cable of what has been considered a very faulty design, are deservingiof careful consideration in conthey are now known to be insufficient to lead to the conclusion that an advantage is gained by constructing a long cable with "as small a conductor as possible"-they afford the data for obtaining a golden mean between two extremes. It may here be remarked that the Atlantic cable
of 1858 was probably far more defective in execution than in design, electrically speaking; and that the proper diameter for the conducting wire of a submarine cable is a question which is dependent in very great measure upon
the nature and cost per lb. of the material used for the insulating sheath. The statement which has been madesulating sheath. The statement which has bertain ratio should be maintained between the diameter of the conducting wire and that of the insulated advantageous ratio varies in the case of different insulating media, and even with the variations in their price. The ratio to be considered is that of electrical efficiency to costone which should obviously in all cases bear the maximum
value, so long as the question of mechanical efficiency does not interfere with the electrical question
And in considering the construction of submarine cables from an electrical point of view, care should be taken not to underrate mechanical advantages. It is true that the
commercial value of a cable, when the latter has been successfully laid, is generally dependent upon the rate of speed attainable in signalling through the wire; but it should be borne in mind that the main difficulty has hitherto been in depositing deep-sea cables at the bottom of the ocean in a condition of efficiency, and the greatest mistakes made in connection with such cables have been those in their me-
chanical construction. Nevertheless, an electrical objection, chanical construction. Nevertheless, an electrical objection,
brought forward by an eminent electrician, but which, if it be not almost wholly unfounded under existing circumstances, is of small moment in comparison with the mechanical advantages in view, has been allowed to
militate against the adoption of a system of constructing militate against the adoption of a system of constructing
deep-sea cables which, whatever may be its merits and demerits, would doubtless have sufficed to obviate the disastrous failures which have again and again occurred in the attempt to lay a Transatlantic telegraph. We refer to Mr . Allan's system of placing the strength of the cable in the conductor, by forming this of a solid copper wire, surrounded with fine steel wires laid with a slight spiral. The electrical objection to this system is, that since the
conducting power of steel wire is much less than that of conducting power of steel wire is much less than that of copper, the compound conductor would expose a greater
amount of surface than docs a copper conductor of equal amount of surface than docs a copper conductor of equal greater inductive charge upon the surface, give, cateri paribus, a lower rate of speed in signalling. Obviously this is no valid objection if, as may undoubtedly be
the case, the advantage gained mechanically outweighs the electrical disadvantage; and, indeed, the former might be cheaply bought at the cost of the increased quantity of trical defect. But while pointing to the inexpediency of allowing comparatively slight electrical objections to intermay state that the "serious electrical disadvantage" in the case of Mr. Allan's cable is found, upon examination,
steel be considerably less than that of copper. Owing
to a solid copper wire being used in this cable in to a soid copper wire being used in this cabe in
place of a twisted strand of copper wires, the interplace of a twisted strand of copper wires,
stices in which are filled up with an insulating compound, it is found that the inductive charge in a given than that in a similar length of cable of the ordinary construction, equal to it in conductive resistance, and in thick struction, equal to it in conductive resistance, andor, necessitated in conal construction, is open to an electrical objection of at least equal weight to that we have referred to, but strangely enough, though involving the consideration of a rad defect instead of an advantage, the objection has in this case been but i itle insisted upo
Next-in the present stage of our progress-to the question of mechanical efficiency, comes that of electrical perfection in regard to the conditions which at the minimum cost allow of the maximum rate of speed in signalling. Nor should the latter consideration be underrated by those whose attention has been mainly directed to the mechanical construction of deep-sea cables ; for it is quite possible that, of two cables of equal cost and equal length, the one may allow of a rate of speed in the transmission of signals double or more than double that which is attainable in the other, or that the cost of cables equal in electrical efficiency may vary in similar ratio. And here perhaps a useful hint in relation to signalling apparatus may be given; for it is quite possible also to double the commercial value of a long submarine line by the use of improved instraments or despatches.

By far the most important electrical question to be conidered in reference to the efficiency of long submarine cables is that of inductive resistance, and it is worthy of tion in regard to insulation properly speaking will perfecrally, be found combined with economy of construction The rate of speed attainable in signalling does not, it is true, depend exclusively, as was once supposed, upon the inductive resistance of the insulating envelope of the cable Consh the as the dielectric in an inductive circuit ; since given tension as an inductive charge varies inversely as this resistance, the conductivity of the wire exerts a very important influence upon the rapidity with which this conductor can be charged and discharged in the operation or signalling. But, whatever may be the diameter of wire pecuniary sense that the maximum ratio of inductive resistance to cost should in all cases be obtained. It will in effect be easily understood, even by those who are un acquainted with electrical ence, that whist, on the one as its conductivity is increased-the conductivity vary ing as the square of the diameter, and the surface, upon which electricity becomes accumulated, only in the simple ratio of the diameter-it can, on the other hand, be charged and discharged more quickly as the quantity of electricity increasing the inductive resistance. But, as the increase in increasing the induce prosed by angmenting the thickess inductive resistance produced by augmenting the thickness of the insulatig some certain point, this thickness should practically be limited to that which at the minimum cost gives the maximum resistance. And it is necessary, theretore, that we should possess reliable theoretical data upon which, in conjunction with certain commercial data, we may calculate this warticular thickness in the case of various available insulating materials. We must defer until next week the considera ion of the laws embodying the first mentioned data.
But before closing the present chapter of notes, it may be useful to give a very plain definition of conductive and inductive resistance-two distinct properties which have frequently been confounded-and also two or three simple formula, in which are condensed the most important electrical principles applicable in the construction of submarine either by a good or a bad conductor to the passage of electricity as a current ; inductive resistance is that opposed by a bad conductor, or insulating substance, to the accumulectricity electricity as a charge. Thus the quantity of electromy passing as a current from a source of given resistomotive power will be inversely as the conductive resistance in the circuit, and the quantity of electricity resistance of the insulating medium or dielectric which necessarily forms part of every telegraphic circuit. Calling E the electromotive force and R the resistance, conductive or inductive, the quantity, Q, of electricity passing as a current or accumulated as a charge may, in either case, be expressed by the equation :

$$
\mathrm{Q}=\frac{\mathrm{E}}{\mathrm{~K}}
$$

In the case of priamatic resistances, either conductive or throughout its length, or a flat plate of insulating material, the following formula (also bearing out the analogy between Mr conductive and the inductive circuit established by Mr. Gaugain and Mr. F. C. Webb) is applicable-l being
the length of the wire, or thickness of the plate, and S the cross-sectional surface:-

$$
\mathrm{R}=\frac{l}{\mathrm{~s}}
$$

But, when l and S are maintained constant, the resistance (R) is found to vary in the case of different substances, and resistances. Calling r the specitic resistance, the equation, when different substances are compared, becomes

$\mathrm{R}=\frac{l r}{\mathrm{~S}}$

This equation, it should be pointed out, is inapplicable to -unlike the conductive resistance of the wire-not being
prismatic but composed of a hollow cylinder of dielectric,
within which is encased the conductor From the above equed the conductor.

$$
R=\frac{E}{\bar{Q}}
$$

(3)
an expression which would at once enable us to obtain experimentally at least an empirical formula applicable to inductive resistances in submarine telegraph circuits.

VISITS TO THE PROVINCES. MEETIIYR, AND ITS IRONWORKS.

The mining districts of South Wales are situated in the midst Glamorganshire and Monmouthshire in the north, to the Bristo Channel, in the sooth. The largest ironworks and collieries of Wales are as a rule, to be found near the upper parts of these valleys, at distances of from fifteen to twenty-five mile from the sea, and separated from each other by intervening ridges of hills., Thas, there are the Vale of Neath, the Aberdare Valley,
the Merthyr Valley, Rhymney Valley, Ebbw Vale and many the Merthyr Valley, Rbymney Valley, Ebbw Vale, and many others, all lying nearly parallel with each other, and opening in
the direction of the sea. Railways or canals, or both, ran down these valleys, in many instances amalgamating with each other as they reach the mors level ground in the south, and they finally terminate either in Cardia, Swassen, or Nowport, bo three grea shipping ports of Stouth Wales, Carain being ene
important. A little of the traffic of the iron districts also finds outlets at Neath and Briton Ferry.
The largest and richest of the Welsh ironworks are at Merthyr, which the Vale of Neath he Tafi Vale, and is connected with Swanse by the Vale of Neath branch of the Great Western Railway, tho
Glamorganshire Canal and the Taff Vale Railway uniting it with the port of Cardiff. Merthyr is rapidly increasiog in popalation, and now ranks in the census retarns next to Brighton. On both sides of the town high ranges of hills cut it off from the neighbounng valleys of Aberdare and Rhymney; the sides of these hils are defaced by great heaps of refuse from the mines and tions, niways and tramroads cat up the district in alt direc of the mountane above the omers are surent evis forth smoke by day and fire by night. while in the buildings beneath them, swarthy beings toil amidet fires and farnaces, surrounded by ponderous masses of machinery. From the hilly nature of the vorks in the immediate neighbourhood of the town, Merthyr by night
ficence rarely if ever equalled.
The people who labour in this black and fiery region hold their lives on a somewhat precarious tenure, the riturns of the Regis. trar-General showiog that the mortality in, e Welsh iron districts is greater than anywhere else in the United Kingdom. This is partly caused by the nature of the occupations of the inhabitants, partly by the extra liability to accidents, partly by wan in a popuiation continually increasing by new comers, who cannot find employmeat in Ireland or the Welsh agricaltural districts. The wealth of Merthyr is derived from the three large works in the neighbourhaod: The Dowhis ronworks, he largest in the
world ; the C farthfa Worls, the property of the Crawshay family. wor "I ino Kylarthfa Worls, the property of Crawsiay family Works, recently purchased by the Plymonth Iron Company, Mr. Richard Fothergill being the managing proprietor.

A bundred years ago Merthyr was nothing but a moderato. that of the neighbouring millowners, growing guietly with the times, and presenting few features of bistorical interest excep turs, the riots. In 1800 there was a riot caused by scarcity of provisions. Several houses were plundered, after which the mob place in 1831, will long be remembered by the inhabitants. In June 1831, the rioters entered the house of Mr. Rowland Fothergill, mavager of the Aberdare Ironworks, and compelled him with menace to sign a paper of somewhat unmeaning character, which
he did, koowing that his life was in peril. After taking every he did, koowing that his life was in peril. Ater taking every where they destroyed the houses of the bailiffs of the Court Requests, and burnt the farniture. They also burnt in the street the books of the Court of Requests, as well as the furniture of Mr. Coffin; after which they went to Cyfartha, and urnite the men engaged in the works from continuing their employment. Soon actin Mr. William Crawshay, and Messrs. Bruce and Hill, party of the 93 rd Highlanders, followed by a mob of rioter The soldiers drew up in front of the Castle Inn, whence the mob was addressed by the High Sberiff, Mr. Guest, and Mr. Wm. no use. The soldiers were attacked by the crowd, who tried to wrest their arms from them; the major and many of the men wero whunded, when the soldiers placed in the windows, seeing
that their comrades were tbreatened with destruction, fired into the street, killing three upon the spot. A desperate fight soldied, in which thirteen more were killed, but in the end the continued firing into the Castle Inn. one of the shome of them missing both the High Sheriff and Mr. William Crawshay. night came on the little party at the Castle Inn managed to reach
Penydarran House, the residence of Mr. Forman, a mnch sofer position. For several days afterwards the town and district were in a state of great excitement. The rioters surrounded a body of
cavalry from Swansea, under Major Penrice, and disarmed the cavalry from swansea, under Major Penrice, and disarmed them;
but more and more military nid reached Merthyr frod but more and more military aid reached Merthyr from different
parts of the country, till at last the disturbance fore parts of the country, till at last the disturbances were quelled
without further bloodshed. The present Mr. R. T. Crawshay, without further bloodshed. The present Mr. R. T. Crawshay,
then a ceilid, was at the time of these riots given for safety into
the the hands of a workman and his wife living in a cottago on the
side of the Abertare hill, opposite Cyfartha Castle. The ring-
leaders leaders among the rioters were afterwards taken prisoners, and the worst of them only, Dick Penderrin, convicted and hanged. Thus
the old Iron Kings of this district ruled with a strong hand over a turbulent race. They, bowever, were true public benefactors, in makng a deis families which once only furroished to thousandx of few shepherds, and even before the enoubled times just cescriled, the strong attachment existing between the ironmasters and the
better portion of the workmen once prevented the sale of the
Ctfer Cyfartha Works to Sir Benjanin Hall prest as the deds were on
the point of being signed. It was only a question of five the point of being signed. It was only a question of five minutes.
Mr. R. Crawshay chanced to go outside the office docr, where some of the men from the mills who had just heard some rumours about
the sale, surrounded him, and their spokesman, Dick Morgan, said, The saie, surrounded him, and their spockesman, Dick Morgan, said,
"We hear, master, You do think of sclling the works. Ies indeed !" plored him not to sell them, $\begin{gathered}\text { saying it would beapon they im- }\end{gathered}$
selves and their families, and that they would not serve under an
other master. Mr. Crawshay could not stand this; he re-entere the office, and told the then Mr. Hall, in language more emphatic than polite, "I won't sell the works." Upon this Mr. Hall, to use "You won't, won't you ?", and hot words followed, calmed some-
what by the intervention of the son, Mr. William Crawshay, who chanced to be present. Both parties left the office, eager to ob-
tain those truly British luxuries, legal advice and expenses These were not the days of the railway or the telegraph ; so botl parties posted to London in hot haste, by different routes, with
all the speed the horseflesh could give, in crder to be first in engaging the services of Sir Samuel Romilly, who was then in the
height of his fame. Mr. Crawshay sped on his way by the
Brecon and Hereford road, reached London and the office of Sir Samuel Romilly; and after the interview, as he left the house of that eminent counsel, he met Sir Benjamin Hall coming in. They the property of the Crawshay family, and the words of Dick and the House of Peers; for the owners of the large Welsh ironworks have gained influence enough to occasionally send them-
selves or their representatives to both, as instanced in the one or other of the cases of Lord Llanover, Sir J. Baily, Bart, MP P., Sir
J.Guest, Bart. M.P., the Right Hon. H. A. Bruee, M.P., and others. The Glamorganshire canal, by which route alone goods were
once carried from Merthyr to Cardifi, is 25 miles in length, and was opened in 1798 . It has a fall of from 500 ft . to 600 ft ,, has
forty locks, cost $£ 100,000$, and has a branch to Aberdare. The Taff Vale Railway, one of the best paying lines in the kingdom,
also runs from Mertbyr to Cardiff, and was opened in May, 1841 A it passes through a very hilly country it has plenty of heavy
bridge work, and at Navigation Junction the trains bave to be briage work, and at Navigation Junction the trains bave to
drawn, locomotives and all, up a steep incline by means of a sta-
tion is being executed whereby the gradient will be rendered less steep, and the stationary engine abolished. The broad gauge afterwards
reached Merthyr by the Vale of Neath line in 1852, and within the last year or two railways from Abergavenny and Brecon have
been constructed to within a few miles of Merthyr, their further progress being retarded by the difficulties and expenses of the route. In former times, as at present, Merthyr was very unhealthy,
and Dr. William Kay, of B stol, after making an official investigation of the subject, calculated that in 1851 the average age at
death in Merthyr was 177 years, being rather less than half the average length of life in the healthiest district in the kinglom. Typhus fever and cho ra habitually made deadly ravages in th town, and as soon as the Public Health Act came into operation in
1850, it was found absolutely necessary to supply Merthyr and
Dowlais with water. Engineers were invited to send in plans to supply water by gravitation, the choice of the source being lef
to the candidates. The plans of Mr. . ynd, now engineer to the Manchester Corporation, were accepted. He proposed collecting
water on the mountains, below the Brecon Beacons, at about eight miles from Merthyr, and delivering it at the bighest level at the
top of Dowlais, whence all the rest of the town could be supplied top of Dowlais, whence ali the rest of the town could be supplied
As these plans, howerer, did not altogether meet the views of
the by the local authorities and ultimately rejected. The eminent suggested the construction of the present works, which consist of as a miles from Merthyr, and contains when fall $63,000,000$ cabic feet
of water, covering an area of 100 acres. The town is supplied with water direct from the river Tafr Vechan above the reservoir,
whence the water is delivered by 14in. pipes at Penybryn, about a whence the water is delivered by 14in. pipes at Penybryn, about
mile from Merthyr, where depositing tanks, filter beds, and Merthyr and Penydarran are supplied by gravitation, but for the upper part of Dowlais the water is pumped by two engines of
14-horse power each, made by the Vulcan Iron Company,
Warrington, delivering it into a small covered reservoirat Dowlais. The total length of pipes of various sizes, frcm 14 in . to 2in. in reservoirs and works was $£ 82,000$, raised by the Board of Health years, five of which have now expired. The yearly payment by the town on this account is 25,577 . The present daily consump-
tion of water by the town is 150,000 cubic feet, and the revenue from the water rates now amounts to about $£ 4,000$ a year,
showing that the new waterworks are becoming valuable property to the town. As regards the compensation reservor, as long as it
contains $20.000,000$ cubic feet, the millowners have the power, they require it. When the water sinks to to $20,000,000$ cubic feet the minimum quantity to be discharged is (by agreement) 110
cubic feet per minute. When it sinks to $6,000,000$ cubic feet, which it never has done, even in the excessively dry summers on owners will be reduced to ooft. per minute. There is an escap of water from the reservoir throogh the fissures in the limestone rock, whereby an average quantity of 150 cubic feet per minute
is discharged into the river, some of this amount, however, coming from springs. All this leakage, which varies in quantity accord
ing to the height and pressure of the water in the reservoir, is calculated in the quantity supplied to the millowners. The
waterworks were constructed by Messrs. Tomlinson and Harpur, surveror, of Merthyr. The total. expenuiture of the the Merthy
Board of Health is covered by two rates in the year, raising about $£ 10,500$, of which one-third is paid by the ironmasters.
At present there is a break at Merthyr betwen that will in future more directly unite North and South Wales. from the mountainous nature of the ground, and general heavy expenses. The London and North-Western Railway Company propounded a scheme last session to unite the Merthyr and Aber-
gavenny line, with the Vale of Neath Railway. For various commercial reasons this project has been abandoned. The plans in-
cluded a very large and expensive viaduct, besides which the proposed line was forced to make an ascent of 700 ft . in a distance,
in a straight line, of a little more than two miles, an ascent which with difficulty coald be overcome by gradients of about 1 in 40 . The Brecon and Merthyr Mailway Company is now making the
link which will supply North and South Wales with more direct communication than bitherto, by weans of the Cyfartha brancb, which will connect the Vale of Neath and Taff Vale Railways
with the Brecon and Merthyr Railway. This branch, although a bridges or viaducts. upwards of 100ft. in height, and consisting respectively of iftten snd seven arches of 40ft. span, over the
rivers Taff Vawr and Taff Vechan at Cefo and Pontsarn. Both bridges are built of the limestone of the district, but are not yet quite finished. The contractors for the line are Messrs. Savin and

Roberts, have within the last few years been covering Wales with railways in all directions, principally at their own expense. When the Cyfarthfa branch of the Brecon and Merthyr R-Wimay is Risished it is almost certain that the London and Norta.Whereby trains can come direct into Merthyr from Easton-square, via Abergavenny. Another great work of the future in Merthyr is the drainage of withstanding the large population. The plans prepared by the own surveyor, and passed by the Government engineers and and Dowlais, and for the disposal of the sewverage by irrigation in he surrounding country. These plans appear to be very complete, diameter, and nineteen miles of pipe sewers of from 9in. to 12in. in diameter. Flood outlets are projected for discharging any surplus of water in times of storms and heavy rains. The works
have been let to Messrs. Isasc Dixon and Co., contractors, of Liverpool, whose revised estimate amounted to $£ 24,068$, instead of $\ell^{226,123}$ as already published in Tre Engnsers. The sum
borrowed by the town for the construction of the works is $£ 27,000$, being the amount of the surveyor's estimate, and this sum is already in the hands of the town treasurer. The drainage works will be commenced in a few days,
be completed within two years.
A new feature in the trade of Merthyr is that within the last ew years the ironmasters have entered into the coal trade. Large quantities of coal are exported to all parts on then wond, and Mr. R. T. Crawshay is making pree regards Merthyr, that although coal and iron are so plentiful on engines, all the best steam machinery connected with the ronworks is made at a distance and bronght to Merthyr
by rail. Neither are the smaller description of iron goods manufactured on the spot, and in many instances the
ideotical iron made in Merthyr and sent to England has been traced back to Merthyr and South Wales in the shape of axles, iron hurcles, and other iron goods in large demand in the surrounding country, is not carried on at all, or to any extent worth noticing, in the Wolsh iron metropolis. Good schools have been
established by the millowners, although in this respect Merthyr proper is not well supplied. The Dowlais Works, the property of
the late Sir John Guest, Bart., are now in the hands of two trustees, Mr. G. T. Clark, who has given a greater impulse than any body
to the establishment of schools in the district, and the Right Hon H. A. Bruce, MP., who has devoted most of his time and attention in the House of Commons to the promotion of national education.

THE DUBLIN TRUNK CONNECTING RAILWAY. tunnel under the liffey
In the session of 1864 the plans of the Dablin Trunk Connecting Rail way were first deposited in Parliament amid strenuous opposiview but one object-the connection of the Dublin termini of the Irish truuk railways entering that city. Two of these schemes were
based on the plan of erecting a central station, whence lines should branch to the different trunk railways, bat the other three each purposed to make a railway round the suburbs of the greater part o Dublin, uniting the different lines as it crossed them. The capita necessary for the central station lines was in one instance calculated
at $£ 800,000$, and in the other at $£ 1,000,000$. The parliamentary committee were so satisfied with the plans submitted to them by one of the central station companies that they intimated to the Dablin taking any further steps in the matter. This took place imme diately before the Easter recess. After thirty days' deliberation any er, the plans of the Dublin Trunk Connecting Railway Comthey first accepted was thrown ont, more especially because the ex pense of carrying out the plans finally accepted would be only about others. Another feature was that the accepted plans brought the whole of the trade of the port of Dublin into more direct communiThe new railway will begin with a junction with the Great
Southern and Western Railway of Ireland at its terminus near the Pbonix Park. It will then be carried acoross the Liffey at a concolumns, each arch having 6 fft. span, or about 3 fft. on the square The rail way will next cross Parkgate-street on an ornamental girder
bridge and in this treet there will be a station. After wards it will cross Aughrim and russia-streete, between which there will be a
station for passengers, as well as a very extensive one for cattle-
the Dume the Dubliu cattle market being at thie spot. Here a large abatto by the new railway to market, where they will be immediately slaughtered on the spot, and in the majority of cases at onc shipped at Dablin or Kingstown as dead meat. The new line will next croos the Circolar--road, and the Midand Great Western
Railway of Ireland with which it has up and down junctions. A
station is to be buil in the Phibshour the rail way leads across the Royal Canal and one of its branohes, when Western of IIreland. Anofher mainy street it is is intended to cross is
Drumcondra-hill, where a station will be built. Atter crossing Drumcondra-hill, where a station will be built. Atter crossing
Ballyboughh-road it wrill have another station in the North Strand,
beyond which point it will crosg the Dublin and Drogheda Roil way beyond which point it will cross the Dablin and Drogheda Rail way
with which it communions point it descends for a distance of half a mile by gradients of
1 in 70 , to the river Liffey, under which there will be a tunuel, the The total lengtho of this tannel is 324 yards, one length of it1 in 70 . It is approached on both sides by a covered way. This for the down line, and the two will not be constructed together, bui one ways $12 n$. or 1 sel. before ene other, so that the water, by any
accident, is not likely to break into both at the same time. By making two tunnels instead of one more strength also will be given to withstand the superincumbent pressure. Each of these
tunnels is 15 ft . horizontal, inside measurement, and 15ft. from the

Borings have been taken in the centre and on each side of the
Liffey to ascertain the nature of the ground through which the tunnel will have to pass. These borings show that it will have to be built in a thick stratum of stiff blue clay, full of large limestone
boulders, and it will rest upon solid limestone rock. the north side of the river commenced about 8 ft . above high water mark, and passed through 15 ft . of mud and loam sand, 3 ft . of loam gravel, 18 in. of sand and gravel, 18 in. of fine sand, 1 tt . of sand and
sill, 1 ft . of sharp sand, 91 t of conse gravel, 1 ft vein strong loam sand, 1ft. 6in. sand and gravel, 17 lt . 6in. blue clay, and
boulders, 1 ft . 6 in . boul ler, 5 ft . 6 in . blue clay, 2 ft . limestone
 Io the centre of the Liffey the borings gave the followiog :-Below
the bed of the river, 5 ft . clay and silt, 2 ft . 6 in , silt and gravel,
3 ft . 6 in. gravel, 6 in. vein of clay, 7 tt , sand and kravel , 19 th , blue
 designed, states that, the stratum is very different to the treacherous
London clay, and is of a stiff character, very impervious to London clay, and is of a stiff character, very impervious to water.
The shatts or the tunnel have already been commenced on both
ides of the Liffey, and are being pusbed on with vigour. The side walls are built on a strong iron curb, constructed on the principle of some designed by Brunel when sinking the shaits for the
Thames tunnel. The walls, as they are built up on this curb, are dug away the curb weight. By this plan water is prevented from coming in at the
sides, nor has any yet been met at the bottom of the shafts. A

Most of the bridges and works on the line are to be built of stone, Which is found in abundance in the cuttings. Tramways for goods
traffic are to be made to the docks on the north side of the river, and on the opposite side of the Liffey is to be a station at Irishtown, and
finally a junction with the Dublin and Kingstown Railway at Sanally a junt.
A company has been formed, and will shortly submit to Parliament its plans ior constructing on the south side of the Liffey a
large floating basin, covering an area of about twenty acres. It will have an entrance lock 400 ft . long by 80 ft . wide, through which hour and a-balf after low water. This dock will be close alongside the Trunk Connecting Railway, and bydraulic lifts will be erected to raise coal from the ships into the railway trucks, the
imports of coal at Dublin being very large. Although a metropolitan line, the new railway will be cheaply made, because it
passes through much ground in the suburbs not much covered by the North London line would be to London did it cross the Thames at each end before terminating. The greatest gradients on the Dublin Connecting Railway wil be 1 in 70 , the greatest curves
about fifteen chains radius, the gavge 5 f . 3in.-similar to the rest of the Irish system, and the length seven miles. By means of the
new line, passengers arriving at Kingstown by the Holybead steam packets will be able at once to proceed by rail to their destinations in other parts of Ireland, and the mail service will be considerably Ireland must of necessity pass over the new railway, which will besides have a local suburban traffic, analogous to that possessed by
No North London. The deep water at all times of the tide of the Kingstown and Holyhead harbours is another feature in favour of the new line, as regards its cattle and miveral traffic, and the London and North-Western Railway Cumpany warmly support the scheme. The contractors are Messrs. J. and C. Rigby, who undertake to com-
plete the line for $£ 37,000$ per mile. It is expected that the railway will be finished in eighteen mopths or two years.

Commencesment of the Forth Bridge.-This gigantic undertaking
may now be said to have fairly commenced, and to have commenced under unexpected favourable circumstances. The construction of a pier near the middle of the Forth has been contracted for, and the the estimate of the engineer. The pier, theough not of the largest dimensions of those proposed, is upon a very grent scale, and the tractors are Messrs. Jilks, Wilson, and Co., of Middlesbro', an opulent and enterprising firm. The contract price is about $£ 17,000$, iustead
of $£ 25,000$ as estimated by Mr. Bouch. The pier will be finished by May next-a result in the m tter of speed in construction of the This system, which has been recently applied by Monsieur Kalebot in the Garonne, on a great scale, with perfect success, proves to be revival of an ancient method which was used in the construction of the old bridge of Westminster. In one important particular the
plan adopted by Mr. Bouch differs from the method of the French plan adopted by Mr. Bouch differs from the method of the French engineer. In the lower portion Mr. Bouch uses green beech instead
of iron. The durability of green beech-that is, of beech with the
sap in the tree, and used immediately after being cut down-when coustantly immersed in a river or sea, and used in a situation in which there is no substantial alteration of dryness and moisture, has been proved by the remarkable discuvery or Mr. Edwin Clarke, perfect soundness for an ascertained period of at least 600 moars Iron, to a certain extent, used under such circumstances is liable to mous weight of piron, whils. Our readers may form some conception of the extent of the foundation of the pier when it is stated that it The formation of the pier is proceeding in the harbour of Burntand sunk. Our arboricultural friends will be glad to learn that a new value is given to the beech by its probable extensive appli-
cation in works to which it has not been applied for centuries. It cation in works to which it has not been applied for centuries. It superseded by iron in beetling works and machinery, and had thereby greatly lost its value, it is now in its turn superseding iron
in the construotion of river works.-Railway Nevos.
The Manupacture of Coke Frox Small Slack in Staffordshire, fine coal slack in the South Staffordshire and other mining distriots in a state almost, if not quite, commercially valueless, is a faot country. The fact that most of this slack, which has hitherto been crom which it is derived, has also been for some years forcing itself upon the attention of those interested and stimulating their efforts to recombine it as a fuel suitsble for smelting and other purposes. accruing therefrom, of coke in iron smelting and the advantage this slack, viz., by converting it into coke, would also be the way of giving it the greatest possible value. The difficelties in the way
of coking the S taffordshire slack arise from the fact that, althougg possessing the valuable propercies bituminous matter to cause it to cake or bind in the process of coking. The most successful method in coking the Staffordshire slack is found to be by mixing with it a certain portion or bitu din, in the shape of Welsh or other bituminou to the ovens, as in those hitherto in use the heat developed in the procficient manufacture is not applied with an effect of slack and the production of good hard coke. The charges are fouad to be caked only in layers at top and bottom, the interior of the charge being
imperfectly fused and waste. With a view of remedying the in the process, Messrs. Hinchlin and Pardoe have The prinent of ovens which has been employed with much success. flame and gases from each they are constructed is that of causing the of flues passing over and under every oven in the series, thereby causing a thorough intermixture of the gases, the developtoent of and effective mauner than hitherto, the coking in a more uniform fuse and convert into best hard found that the ovens will thoroughly slack with a less proportion of bitumen than is used habitually. The doors being as wide as the ovens. Any one or more of the ovene in a series can be drawn and re-charged without interfering with the contiguous ovens and upper and lower flues, and, in its turn, con-
tributes to the

HOW FORTUNES ARE MADE IN THE OIL REGIONS
Ous contemporary, the Railuay Nevs, contains a very interesting article on the oil regions of Pennsylvania, from which we make the
" It is not true that all person
windlers, or that everything connected with oil territory and are wells is a swindle. The business is as legitimate in every respect as the strictest hoonour und probity. But in oil mining, even more fraud, and there are always sharpers enough to take advautage every opportunity. Every step in the process of oil mining has Various artifices are resorted to for the purpose of getting up 'o excitements ' in new localities. Springs that for, enenerations have
yielded pure water suddenly become 'oil springs' by the judicious application over night of some crude petroleum. Sometimes a
mistake is made, and the refined product is used in the 'dootoring mistake is made, and ter refined product is used in the doctoring
to the speedy discovery of the cheat. One ingenious speculator owning a tract of ravioe whero no oil deposit had over been heard
 replaced. Soon the oil exaded through the buik into a small
stream, was sceidentally discovered, and great excitement followed A couple of speculators secretly dug into the face of the bank, and
finding an icreasigg drip of oil bought the land at a high figure, and
and commenceed exploring further. The pare quality of the oil was considered a great advantage, and a ppial of was taken to the pro
essor of chemistry at a neighbourivg ocllege for analysation. TT professor held tbe phial to the light, shook it, and solemnly y twiste
the crk around previous o o drawigit it out. The corres squeake The professor proceeded no farther with his analysis, bot gat guve his of lubricating property, evidenced by the aqueaking of the cork,
proved that the oil had been refine. The bank was dug further
nto, and the ' planted' barrel diecovered "A story is told of a Western Virginia dame who threw some
orude oil into a dith whe with the intention of deceiving some
opeculators from the East. The brit took and the at a good figure Strange to say, the lessees struck A Alowing well, greatly to the disgast of the Virginian dame, who repented not
havigg made a better bargain with her coustomerss. An ingenious
trick in connection with oil springs has been more than once trick in connection with oil springs has been more than once ated within a given time a long stick is pusbed down and comes ap smeared with oil, the extent of the soearing being supposed to
bhow the depih of oil. A moment's reflection will show that as the oil lies on the surface of the water a thickness of the sixteenth of an nch will completely smear a stick six feet long if pushed down its
whole length and brought slowly up. The device is very trans. parent, yet, in the excited state of an oil-seeker's mind it is rarely "When wells have been sunk and found unprodactive there are
various ways of concealing the trath and defranding some unsuspecting stranger into a purchase. A common method is to silyly onvey some crade oil into the well by night, and then. panp po the
in the presence of the stranger who is to be taken in. One of the a well near Franklin. The well proving unproductive, the engine conveniently broke down, and several days were occupied in fixing
it up. In the meantime the little almost inaccessible nook in which it was located wean boarded off from the too corious public,, , tank
holding about one hundred barres of oin was , planted in the
bround with a gaspipe leading from the tank ground with a gaspipe leading from the tank to the well hole
below the 'seed-bag,' where it was gecure from observation. The oil flowed down the outeide of the pump tube into the bottom of
the hole, and was there ready to be pumped up. All being ready, the engine was set in motion, and the pumps brought up a good
stream of oil. The news of the new t strike' rapidly spread and crowd gathered. There was no mistake about it, the yield was
steady and good. An offer was made to purchase the well at the hen current rate, four thousand dollars for every barrel of pure oil yielded in a day. The offer was accepted, and the intending bayer, to prevent tricks, determined to watch the yield all day. The result
was periectly satisfactory, the engine worked steadily and the flow ncreased. The rate having been settled on at twenty barrels per spoL For two days longer the well yielded steadily, and then
stopped. The tubing was drawn to refix. the geed sopped. The tubing was drawn to refix the seed-bag, when the
gaspipe was pulled ap and the obeat discovered. A diligent search
failed to bring the original owner of the well to light He had "Another and very common way of deceiving an intending purchaser of a well is to ' poup by head.'. The well is left idde
until the time set for its being 'shown off.' Then the engines are set to work, and the accumulated oil is pumped pus in at thiok stream.
As soon as signs of exhaustion appear the engioe breaks down and
 doubtful wells they break down at most opportune times to save the credit of the well.
"it is exceedingly difficult to get at the facts in relation to the
yield of a well.
Exageration is the rule, and from 25
cent on 50 phould be
deducted from nearly every statement as to the yield of a well. When first 'struck,' it is the usual practice to telegraph by one or other of the lines that cobweb the entire oil
region that a ove hondred, two hundred, or even an eight hundred barrel well has been struak, and, it is thonght, will go even higher telegraph, and visitors are told 'she has not been tubed yet' or that the engine has broken down. Should the well flow, or yield fairly by pumping, the product is systematically exaggerated, partly from
intention and partly from the impossibility of ascertaining the exact amount, and the desire not to have the report err on the
wrong iide. The United States Revenue tax of one dollar per
barrel on the actual yield has lately tended to moderate this exaggeration. was perpetrated in Michigan a few months since. An experimenta well having struck nothing but water the proprietor purchased peveral barrels of crude ored on their way, and carted in the night the
Two barrels were
the well where the oil was thrown ito the hole. Next day the pumping re-commenced, and a gush of valuable oil was the result. The engine broke down in a short time, was refitted, and another
guch of oil followed. The news was spread by telegraph - such news always are-it was 'a hundred barrel well', and crowds rushed to the spot to see the ol wow or oits. and boarded up his well, admitting witnessed the preagarations fors shipping it to market. They rushed off to purchase or lease the surroundivg lands, but foupd they had
all been taken up by a stranger, who re-sold or re-leased them at an of the destination of the two barrels diverted from the origina disappeared. Th an exposure foliowed, and the ow peared, and, for the tirct time, it dawned on the minds of the public
inat the two were actiog in concert."

Tis Istricis or Pasama.- (Fram our Correpondent.)-The project of an inter-oceanic canal through the 1othmus of Panama mal.

Tus ALooseuns and Wiscosscr. -The following correspondence
on the subject of the Alposquin aud Winooski trial has apparel on the subject of the Alqoonquin aud Winooski trial has nppeare1
in the Nejo York Semi-Weekly Times:-"New York, Wednesday,
in October 4th, 1865.-Hon. Gideon Welles, Secretary of the Navy.Sir, - I enclose the report of my engineer in repply to the publighed
report of yours on the dock trial of Al the Algonquin. II its statereport of yours on the yock trial of the Algonquin. Ir its state-
ments are true you and the pablic are rrossly deeeved by your
report; if false, 1 am grosely deceived. The consequences are too report; ; if false, 1 am grosely deceived. The consequences are
important to the conntry and to me to permit the ispue to pass un-
setuled. The records are in your possession, not mine ; I request that they be examined, and one report or the otber be proved. It
your engineer's report is incorrect Γ presume you will not ask me to submit again to such treatment. The board of experts can easily settle it by inspection of the logs. if 1 had anticipated that my efforts 10 present to the United States machinery would have been met with such opposition and obstruc-
tion as I bave experienced I sbould not have uniertaken the thankless service. The facts berfor resented by me if true, must astisfy you that a trin at the dook for the purpose of forming an opinion as
o the probable performance of a steamer when under way is wholly aallacious. A method which permits an official report to be made
purporting to be the truth, which deprives one of the steamers of purporting to be the trutu, which deprives one of the steamers of
some buudreds of revolutions actually made by her, and of a large unfair. I now expect, as my right, that the Algonquin be permitted to exhibit her economy any right, to to the plan of oner beonstruction,
when using the power neceesary for ordinary cruisiog the statements of my engineer, on whom I rely, are true, and I implicitly believe them, the facts are of the greatest importance to our
country. Om the
Oft of Avgast you sent me an ofllial letter from Che Bureau of Steam Engineering, in which your engineer-in-chief
usee these words:- My wishes from the first were to have a caes fuesel words:- $\begin{aligned} & \text { cock for economy of fuel, as that is really the } \\ & \text { foundation of thour whole claims, and then a trial for a mere test of }\end{aligned}$ speed if you desire it' This admits the truth. Economy of fuel is
reall the foundation of my olaims. But no opportuuity han yet
been oford every effort has been made to prevent the wxibibituon of that
economy. It is absurd to pretend that a vessel prepared to goeight knots an hour, with 900 ib , of conl, should be compelled to burn
$1,600 \mathrm{lb}$. per hour in order to show her coonomy ! 1 feel that I have or not I shall bave the opportunity to show the economy of the Algonquin at eight knots per hour under way, or if you will not
permit the trial to be made under way, then at the dock, each vessel receiving 900 lb . of coal an hour, and let the repol s.e all the
 Esq,-Dear Sir, - I bave read the report of Mr. Isherwood's three 26 ht , addressed to the Secretary of the Navelogg, and pated Seppember nornivg of the 27th. In this report it is alleged that, so far as the
comparison went, the Winooski was in truth 231 revolutions abead of the Algonquin, and it is claimed that she was her equal in
economy. The report is a fraud upon you and upon the pubicio its object is to prevent the exhibition of the Algonquin's great
economy. I predicted to you that this would be attempted when the accident to the Algonquin happened. The logs of the vessels kepp
by United States' engineers show the truth- which is, that at four riday both vessels, being under steam eleven o'lock on Sunday night, the last count before the stoppage of the Algonquin, each vessel had received exactly the same aproun
of coal, viz., 88,000 lb. With this coal the Algouquin, at elever oclock, had made 47,454 revolutions, the Winooski 47,362, or 92 less
(this count being subject to a trifing correction of two minutes for variation of clocke). Out of her coal the Algonquin had saved and piled up on the dock more than $2,500 \mathrm{lb}$ of coal, or
enough to run her an hour and a half longer. The Winooski had saved nothing. If the vessels had been under way the Algonquin would have been 92 revolutions ahead in distance, and no juggle o
arithmetic could have put her astern, or preveuted her saved arithmetic could have put her astern, or prevented her saveen on
from carrying her sixteen nautical miles further ahead when sho from carrying her sid burn it. The fraud by which at the dock the saved coal ia annibiliated, and the Algonquin is dragged astern, was perpetrated
by suppressing from the account the first four lours of the log, during by suppressing from the account the irst our iours or the log, during which four hours the Algonquin made about 300 revolutions more
than the Winooski, and the Winooski took 3,000 lb. of coal more than the Algonquin, in violation of the regulations of the trial, and without notice to me. Daring the first twenty-eight hours of th run the Algonquin saved conl and piled it up on the dock. A
eight oulock on Saturday night she began to burn 1,600 lb. an hour, the Winooski doing the same ; and for twenty-seven subse
ouent hours both vessels used the same hourly nllowance. It less time than the 96 hours is to be taken as a criterion, it should be that time during, which both vessels were burning hourly the same amount of coal, i.e., these twenty-seven hours. During these hours
the Algonquin made upwards of 1,000 turns more than the the Algonquin made ppwards of 1,000 turns more than the
Winooski, and was gaining at the ame reate when she was stopped by the accident, and could have continued to do it indefinitely, not not work at the dook, as you notified the napy department when you protested ; and notwithstanding the fact that our wheels adapted oexpansion and economy bad been removed against your protest and, more than all, notwithstanding the fact that we were require
to burn about twice as much coal per hour as was necessary t rive the Algonquin eight this best ordinary oruising speed, and in disregard of the order of the Secretary of the Navy, which requires 'the trial to determine
the relative economy of the power with each machinery operated the relative econony of the power with , each machinery operated
to the best advantage for that purpose.' If you have any rights
now is the time to assert them You treatment in the future than you have had in the past at the hands of those who, by a stroke of the pen, have annitilated your The engine of the Algonquin is constructed to drive her eight knots an hour-a fast cruising speed, with an economy which cannot
equalled by any other war steamer in the United States ; 900 lb . coal an hour are sufficient for that purpose. I am prepared
prover
I prove this assertion by the demonst
will show at the dock, disabled in condenser and wheels as she
is hat my aseertion must be rue. Let the Winooski and the Algon-
quin have each 900 lb . of coal per hour (both having working boiler pressare to begin with), and the Algonquin will beat he hours. That the Algonquin can do this I pledge myself to you anc
oo the public, and I rely apon your obtaining the opportunity.
 iog the same number of tons weight, in addition to their ma-
ohinery, the Algonquin will go as fast as the Winooski, and as far notwil tanding the fact that the Winooski has twenty-seven per times as large boilers. It should be known to the publio that the Algonquin's principles. She uses an indenendent cut-off, and expands her steam three times at one end of the cylinder, and twice be sot at six. there is no economy. This request was refused by Mr. Isherwood. None of the naval vessels proper built under Mr. Isherwood's theory have any independent cut-off. The economy of the
Winooeki, outting-off as she does, is sixty per cent. greater than that of the naval vessels without an in achasution of complexity made the fact that valve gear of preciisely the same con-
struction bas been running with great success for a

NOTES AND MEMORANDA.

The density of Jupiter is 1.37 times that of yater.
Tre temperature of the lime light is estimated at $2,000 \mathrm{deg}$. Floriss were first coined at Florence, and guilders were silver gilt. Athelstan, in 928, first established an uniform system of coioage in England.
Ales per hour the equator is carried round with a velocity of 1,000 Is 1604 , nearly $3,000 \mathrm{oz}$. of Welsh bullion were minted at one
ime in the Tower. Tre roaring of the volcano of Coseguina was heard at San SalvaTHe first engine erected in London by Watt, was for a Mr. A cusor wht moving the rate of 500 mila
解 000 years to travel from Satarn to the sum M. Savart discovered that the human ear can appreciate a sound econd duration
The ancient silver penny was marked in the form
hus was easily broken into a half-penny and farthing
THE cow eats 276 plants and rejects 218 ; the goat, 449 and 126 ; For every pound of water vapourised by the sun's heat at the quator, a quantity of heas point.
of cast iron to its melting poin
Tre most ancient clock with wheels and balances mentioned in
istory, was constructed in England, by Richard Wallingford, bbot of St. Alban's, who lived in 1326
Is the reign of Edward I. $1,600 \mathrm{lb}$. weight of silver was obtained, ad been discovered in the beginning of this reign.
Tue first balloon ascent, in Scotland, was made by M. Vincent
nnardi, in November and December, 1785. He twice ascended from Heriot's Hospital-gardens, in Edinburgh. The Cardiganshire mines yielded, in the time of Charles I., 80 oz . silver in every ton of lead, and rart of the king
was paid with this silver, which was minted at Shrewsbary,
1,000 parts of wheat yield 740 parts of starch; of barley, 790 ; of
re and oats, 640 ; of peas, 500 ; of beans, 420 ; of potatoes, 160 to
200 ; of beet, parsnips, carrots, doc., under 75 ; grasses, from 65 to 20. Ir the orbit of the moon, which measures 474,000 miles in dia-
neter, were filled by a sun, such a sun might be placed wittin the
cotual sun, leaving between their surfacees a distance of 200,000

Tre first known account of an air gun is in the "Elemens Artilleria," of David Rivaut, who was preceptor to Louis XIII. He ascribes the invention to Marin, of Lisieux, who prosented one to

 He ascribes the invenHeery IV. of France
Ir is calculated that, for every million of pounds of raw silk prond that 5 million trees, of the average age of thirty years, are tripped to furnish them.
Sis Huge Mrpduetox is said to have cleared $£ 2,000$ per month
from the silver obtained from his lead mines in Cardiganshire, rom the silver obrained from his lead mines in Cardiganshire,
and to have been enabled thereby to undertake the great work of and to have been enabled
bringing the New River from Ware to London.
If the whole earth's orbit, measuring nearly 200 millions of miles be only about twenty-four times greater in its apparent diameter han is the actual sun seen from the eartb.
There were issued by the British Government, between the years
803 and $1816,3,227,716$ muekets, 118,108 carbines, 27,895 rifles, and 203,266 pistols. In 1815 there were,
Most of the great glaciers in the Alps have, in summer, a central (two points on the Mer de thirty inches in summer, and in winter have been found to move at half this rate.
The wood of trees which bave grown on mountains, under the same conditions, is more compact than that grown in plains ; the
wood of olosely-grown trees is more compact than that of isolated rees; and the compactness appears to increase in proportion to the trees; and the soil
dryness of the
A mint for the coinage of Welsh silver was established previous granted to Thomas Bushel for the coinage of half-crowns, shillings, sixpences, twopences, and pennies, all of which were to be stamped with the ostrich feathers on both sides.
The English silver ponny of E dward III. was ordered to weigh hirty-two wheat grains from the middle of the ear ; twenty of these
pennies were to weigh an ounce, and twelve ounces a pound; eight pounds were to be equivalent in weight to a gallon of wine, eight Were Jupiter to fall into the sun it would evolve by the shock as stopped by means of a brake, the heat of rotation would be equal to the solar emission for a period of 14 years 144 days. Were the sun
itself stopped in the same manner the emission of heat would equal itself stopped in the same man
116 years 6 days expenditure.
The first invention of the process of procuring alum by artificial
means is not known, but it appears to have originated in the East soon after the twelfth century. In the fifteenth century there were alum works at Constantinople. The first alum works in England were established at Whitby, by Sir Thomas Cbaloner, who was ex
communicated by Pope Pius II. for so doing, His Holiness having assumed the righ
Mr . Surris stated that we dig annually 84 millions of tons of coal
from our pits. The combustion of a single pound of coal, posing it to take place in a minute, would be equivalent to the wor day and night, with unimpaired strength, for a year, their united day and night, with unimpaired strength, for a year, heir united
energies would enable them to perform an amount of work just
equivalent to that which the annual produce of our coal-fields would equivalent to that whi
be able to accomplish
Tides are affected by the state of the atmosphere. At Brest the height of high water varies inversely as the height of the barometer,
and rises more than eight ivches for a fall of half an inch of the barometer corre
and at the Lond and at the London Docks a fall of one-tenth of an inch corresponds to a rise in the Thames of about seven-tenths of au inch.
Accondisa to Professor Tyndall $474,439,680,000,000$ of waves of light enter the eye in a second of time to produce the impression of
red colour. To produce the impression of violet a still greater numto fill an inch, and the number of shocks required to produce impression of this colour, amounts to 699 millions per second. The other colours of the spectrum rise gradually in pitch from the red

Webster, in his "History of Metals," published in 1671, makes
mention of two places in the West Riding of Yorkshire, where mention of two places in the West Riding of Yorkshire, where
formerly good argentiferous lead ore had been procured. One of the places was Bronghite Moor, in the parish of Slaidburn; the
held about the value of 67 lb . of silver in the ton; the other pla was skelhornfleld, in the parish of Gisburn; it had formerly have coined it, as there were many shillings in that county which
the common people called Pudsey shillings.

DESCRIPTION OF A ROTARY STEAM ENGINE.* By R. W. Trousow, O.E., F.R.S.E., Edinburgh, Is bringing beforo your notice a new steam engine, I feel that the moment I state that it it a rotary engine to which I wish to draw your attention a strong prejudice will at once be exited engines of this kind almost justify practical engineers in the belief
whioh has become pretty peneral amonget them, that a good rotary engine is an impossibility. I will not occupy your time in engine is an of the attompts hitherto made to construct rotary engines, nor will I explain the causes of their universal failure. I
will state as shortly as possible the eesential differences between this engine of mine and all its predecessors.
All the rotary engines hitherto proposed, with a fow excentions having a body of some shape or other, revolving in it eccentrically having a body or some shape or other, revoving in eccencricaly.
The revolving body, or pisto, generall ouches the inside
of the oglinder at one side, and being smaller than the cylinder it leaves space on the opposite side in which the steam does its work To enable the steam to act on the revolving part of the engine, an
steam stop or abutment is necessary, and berein lies the fatal steam stop or the rotary engines hitherto brought under the notice of the public. This steam stop or abutment must get out of the
way at every revolution of the engine. As one of the principal advantages of the rotary engine over the reciprocating form o
steam engine lies in the much greater speed of the former, it is steam engine lies in the much greater speed of the former, it it
essential that the steam abutment moves out and in with a rapidity greatly exceeding that imposed on any part of a reciprocationg
Great mechanical ingenuity has been displayed by many inventors in trying to overcome the difficulties of the steam abutment and it rapid movements. Sometimes the stop is a hixture, but this only throws the movement on the vane or piston. They must pass each
other. and it matters very litle which gives way to the other rapidity of movement are quite fatal.

No perfection of workmanship would keep in a steam-tight state any kind of rotary engine having either a movabie
steam abutment or a movable vane or piston, that is to say, having, in addition to their revolving movement, another movement towards and from the centre round which they are revolving.
I believe that this double movement of the parts of rotary engines, viz., a simultaneous movement round an axis, and a reciprocating movement lowards and from that axis bas been the
bane of all rotary engines without any exception. They have all had this fatal compound movement of parts within the steam-tight portion of the machine.
There is also an insurmountable difficulty in the packing of all rotary engines in which the axis of the moving part of the engine is eccentrio to the oylinder in which it is revolving, arising from
the fact that the convex curve of the packing strips and the concave curve of the inside of the cylinder cannot possibly coincide unless the packing is allowed to rook on its seat, and that is practically imposible; the result is that the packing, strips bear only along a
line against the inside of the cyllinder, and the wear necessarily line against the inside of the cy chinder, and e
becomes so excessive that they soon cease to be sleam-tight. ont of the nse of a steam stop or abatment are got rido of, simply
because I I dispense with the stcam stop or antent further, 1 get rid of the difticalty of keeping the packing steamight, from the fact that the packing strips have the same curvature as the inside of the cylinder, and they bear equally and steadily against it in the same way as packing of an ordinary piston does, tion of my rotary engine, but as its movements are very difficult to comprehend I have had those two wooden models made so as to exhibit its movements. They are simply moving diagrams, and 1
think they will euable you to form a clear idea of the principle of think they
my engine.
You will observe that the pistons or vanes revolve round an axis which coincides with the axis of the cylinder in which they revolve. In this model there are two double pistons. The steam is admitted between them on opposite points, and at first sight it may appear
that the steam would force the two pistons with an equal power in hat the steam would force the two pistons with an equal power in
opposite directions-indeed, several makers of steam engines to opposite I have shown this, engine are quite unable to comprehend why it goes at all. They see that the pistons or vanes are anc or will necessarily press one backward with as great a force as it presses the other forward. They are unable to see wherein the power of the
engine lies from overlooking the fact that the vanes do not travel engine lies from overlooking the fact that the vanes do not ravel
with equal speed. The number of pounds of pressure is equal in forcing one vane forward to that keeping the otber from following it but ine followiog vane does not cravel so far as the leading vane say 10in., each acted on by steam of of or pib. pressure per square
inch, the total pressure on each vane will be $10 \times 100=1,000 \mathrm{lb}$ inch, the total pressure on each vane will be $10 \times 100=1,000 \mathrm{lb}$,
and that if one vane moves tbrough a space of 8 sin. while the other moves through a space of only 4in., the first will exert twice as ment of my engine. The leading vane always travels further than hat following it, and the difference of travel is the available po of the engine. I have got rid of the insuperable difficulty of a steam stop or abutment by using two pistons, one of which, while it, when an interchange of functions takes porer get the working vane or piston past the abutment without removing the latter out of the way, and this involves an amount of mechanical complication that has been fatal to a great many rotary
ongines. 1 ln my eogine the difficulties arising from the use of a team stop do my eogine the difficulties arising irom the use of a pistons themselves are made to move with a varying velocity, in

such a manner that the one piston which is moving slowest acts as a steam stop to the one moving faster. Each piston in turn lags behind a mile, so as to let the other run away, and then the slow moving vane increases its speed while the otuer leesens is velocit
until the fast moving one is overtaken, and then it nd so they go on chasing each other round, always in the same direction, but with a systematio variation in their velocities which results in their approaching and receding from each other twice in each revolution through an angle of 45 deg. This variation in the velocities is most simply produced by the use of toothed wheels of
an eiliptic form, as in this model or moving diagram now on the an iliptic iorm, as in this mode or moving iagram now ot ine the mode of forming the curves on which those wheels are constructed.
In this other model two single pistons only are used, and the variation in their velocities is produced without the use of toothed wheels. It is effected by connecting the axis of the pistons by
means of cranks and short connecting rods to a wheel, the axis of which is eccentrio to the axis of the cylinder
The principle of the engine is the same, but the mode of making the pistons vary in their velocities is different. There are other
modes of producing this variation of velocity, but it is sufficient to modes of producing this variation of velocity, but it is sufficient deecribe the two modes represented by the models on the table.
will not fail to be observed that the model with the elliptio toothe wheels is perfectly balanced in all its moving parts, and that not by Wheels is perfectiy balanced in ain
adding balance weights to any part of the manghine. It it is perfectly symmetrical, and is in itself so completely bylanced that however
high its velocity it has no tendency to shake. This engine has no valves nor eccentrio gear of any kind. It poseseses peculiar steam from the ono port to the other, when the engine will at once reverse its action. It can also be arranged to work expansively
without anything more than leaving the leading edges of th pistons full so as to cot off the steam at any part of the stroke desired. We cannot, however, get a variable expansion withont some further appliances, which, however, are far less complicated
than those required in the ordinary reciprocating steam engines. The numerous advantages of this rotary engine need not be insisted on, and the experience we have had in the few engines already made justily me in believing that for many purposes it will supersede the ordinary form of steam engine. For cranee, hoists, and all simiar purposes, for diving, urasiag, and oter machine motives, it possesses special fitness
This engine, when manufactured under the same advantages as those under which the common engine is now produced, will be turned out at a cost not balf the cost of an ordinary engive. I have here in birming bam a portabie engie, which
during this and the following days, at the works of Messre, Street where those of you desirous to see it at work will have the opportunity of doing so. Gas exhausters constructed on this priuciple
act with an efficiency exceeding that of any of the machinee act with an efficiency exceeding that of any of the machinee hitherto in use for gas exbausting, One has been in in operation at
the Edinburgh and Leith Gas Works for some time. It goes with much less power, and discharges a much greater percentage of gas than any of the machines hitherto used for that work

MATHERS' IMPROVEMENTS IN SAWING
 MACHINERY.

Tus invention, patented by Robert Mathers, Leeds, has for it object improvements in sawing machinery. For these purposes the
ends of a narrov saw are fixed to the ends of two flexible bands which respectively are attached to two levers having curved end corresponding with the radii from the centres of the axes on which the levers vibrate. The upper (or it may be either) of these band is capable of adjastment in order that he saw may be kept at the
proper tension. The back ends of the levers are formed with simile curves, and they are connected together by a mod by ference of steel, tho tension on which is capable of being adjusted The upper part of the framing which supports the carriage or bearing of the upper lever comes forward or overhangs the lower part
so that the largest space may be obtained for the table and for the work placed thereon when using a given length of lever. The saw on the table by means of a presser rod having at its lower end presser, consisting of a series of discs with rounded odges on an axis a space being left between the central discs to admit of the saw working between them. The presser rod is carried by an arm fixed to the framing, and the socket of the rod is made capable of adjastmen at the end of the arm which carries it. Motion is communicated
to the levers by means of a connecting rod, one end of which is pin-jointed to one of the levers and the other end is connected to crank pin which is arranged to slide to and from the shaft or axis on which the face plate or diso is affixed. On the shaft or axis which carries the disc or plate is a fly wheel, and the shaft or axie receives motion from a steam engine or other power or by a crank and chain wheels is or are applied between the crank bandle and the fly wheel shaft. In some machines the ends of the levers are
connected by two saws and straps, and two tables for work are
conne
used
Fig.
Fig. 1 in the accompanying engraving shows a side elevation o a machine having these improvements applied thereto, which ma
chine works with only one eaw which is kept stretched between chine works with only one saw which is kept strecched between
front ends of the two levers b, b, the axes of which turn in boaring
carried by the raming a, a, the other ends of the two levers are concurved front ends of the levers b, b, have flanges, as shown by dotted lines. The tension of the saw is capable of being adjusted as shown spiral spring at c to impart elast is intended to be worked by hand, but when a machine is to be driven by ateam or other power a fast and loose pulley are applied on the shaft E; on the shaft E is a stud plate, the stud or crank pin o which is capable of being adjusted to and from the shaft E. Motion necting rod L, and the upper lever receives its motion from the lower one by the saw and the metal; G is a projecting arm which is supported by and is fixed at its back end of the framing of the machine: M is a presser rod, which is carried by the front end of Figs. 2 and 3 , where the parts are drawn on a larger scale. At the
Fits lower end of the presser rod M is a bent spring, which carries a horizontal axis on which are several circular discs which press on the upper surface of the work which is on the table. The presser
rod is held by and adjusted in the holder H, and is retained in position by the screw and handle g. The holder H is secured to the position by the screw and handle g. The holder H is secured to the
front end of the arm G, and is adjusted by a similar screw and ront end of the arm G, and is adjusted by a similer stwo of the
bandls to those just desorit ed; the saw works between two discs, as shown in Fig. 3. When desired, a machine is, according to his invention, arranged to work with two saws, one at each end
the two levers b, b, as is shown in the side elevation, Fig. 4 ; in thi arrangement it convenient to connect one end of the coanectiog rod to a slotted arm b^{1} on the lower lever b as is shomn. The as are used to indicate the same parts in the machine as shown in Figs. 1, 2, and 3, and as euch parts are combined and worked in tion will be necessary. \qquad
Mabine Engineering in the States.-Tho Naval Bureau of ast under Mr. Isherwood's rule. Few engined not to get on too his country would think of putting foll powered geared engines into ship of 3,000 tons burthen. They do strange things in America owever, as will be seen from the following description of a new "Neshaminy, screw, 17, was to be launched at the Philadelphi Yard on Thursday, She is a sister ship to the Ammonoosuc, and was built from drawings furnished by the Bureau of Construction She is one of the sharpest propeller war vessels in the world, and if there is anything in tho model, she has all the qualities of the heetest ship ever built. If she fails in speed it will be the fault of her engines. This vessel, with those of her class, have been
designed and constructed with a view of making speed the paramount object. The dimensions of the Neshaminy are a ollow:-Length between perpendiculars, 335 ft ; over all, 354 ft . measure, 3,212 ; new measure, 2,019 ; displacement in tons 3,998 space occupied by boilers and engines, 172 ft . ; coal capacity on back consist of 16 broadside guns 10 and 11 -in. calibre, and one rifle pirot on the forecastle. The engines of the Neshaminy are being constructed and compiled by John Roach and Son, at the Etna Ironworks in New York. They are designed by Mr. 1sherwood, an consist of a pair of geared engies oller shaft in thers and 48in stroke of piston, geared to the propeller shaft in the proportion of
bout two to one. They will have double ported slide valves, cutting off at two-thirds of the stroke or less, as required, by the well-known link motion. She will bave one of Sewell's surlace condensers, containing 7,168 seamless brass tubes. The pistons are intended by the designer to make 45 double strokes per minute, with a maximum pressure of 40 pounds of steam. She will have having a total grate surface of 1,128 equare feet; total water heating surface 28,300 square feet, and a total steam superheating surface o 2,848 square feet. She has the largest pair of geared engines for riving the propeller in the world, and they are without precedent. The total length of the gear-wheels from outside to outside is about he pinions is supported by three bearingsicist the top of the engine frames. These bearings are each 4 ft . long. The engine baft which carries the large gear wheels is supported by four bearinge, each 4 ft . long also. The bilge pumps and the application of he injection for freeing the dip (bilge?) in case of leak are of the most perfect and reliable kind. The screw propeller will be four-bladed, It will be 18 ft . diameter, and 25 ft . pitch. With 45 revolutions of the ain shaft it will be seen that the propeller shaft will have about 0 , which, with a fair allowance for slip, say 15 per cent., will, it is calculated, give a speed of upwards of 18 knots. It remains to be t may be remarked bere that Mr. Isherwood, in his letter to the ecretary of the Navy on these sloops, states that the maximum superintended by chief engineer John H. Long, U.S.N. Mr. W. L. Hanscom, naval constructor, late of the Boston Yard, superin-
tends the launch." Mr. Isherwood is evidently of opinion that the only thing necessary to speed is to make the screw run fast enough, nd this, of course, is merely a question of gearing. While he was about he should have run tue screw thres

RAMSBOTTOM'S MANUFACTURE OF STEEL AND IRON.

This invention, patented by Mr J. Ramsbottom, engineer, Crewe, applicabie to mine minuacture of steel and iron by tee atmospberi process commonly known as the Bessemer process, and as described
in tha specification of letters patent granted to Henry Beesemer the 12th February, 1856, No. 356, and it consists in certain improved apparatus for heating atmospherio air or other gases before
they are forced through the liquid metal in the converting vessel. The apparatus for heating the air or other gases may be constructed as shown at Figs. 1, 2 , and 3, in the accompauying engraving.
Fig. 1 is a plan of part of an apparatus fcr converting iron into steel according to the Bessemer process above referred to
$\frac{a, a \text { are sections of the converting vessels, which oscillate on the }}{}$ of the crane for supporting the lines $b, b_{;} c$ is the foundation plate poured into moulds ranged around the semicircular wall d; e is the series of pipes for conveying the blast or compressed air forward to tho converting vessel. This pipe the patentee now proposes to
make of about twice the area of the pipes hitherto employed in in ord that it may afford room for the hented ε pheres g, which are snpported on rails f^{\prime}, fixed in the pipes, as shown best in Figs. 2 and ${ }^{3}$,
Each end of the pipe f is closed with a lid, and the lower end, o prevent the spheres injuring the lid f. This end of the bipe f conoected to the trunuion of the converting vessel by the syphou pipe f^{4}. During the melting of the metal for conversion, the
spheres are being beated by the waste heat from the meltivg furanace, or in a suitrble oven provided for the purpose, and jus
beflore the metal is run into the oven upon suitable ways to the end f^{2} of the pipe f and are thence passed forward into the pipe f, the lid f^{3} having bees previously secured to the other end of the pipe; the lid f^{2} is then secured, and the blast, in passing through the pipe f, becomes
heated to the required extent before entering the converter. The relation between the heating surface and the quantity of heat contained in the spheres may be varied at pleasure, either by altering
the diameter of the spheres or by making them hollow. When the the diameter of the spaeres or by making teem hollow. When the
blowing is completed the lid f^{2} is removed, and the spheres are allowed to run out, or are blown out of the pipe f into a box, in
which they are taken to the oven to be re-heated for farther use It is evident that the samee spheres mas beo used for heating the blast or any convenient number of converters. The pipe f may be
lined with fire-bricks or other non-conducting substances, so as to prevent loss from radiation and reduce the distarbances arising
from expansion and also the reduction in the strength of the pipe be very highb.
Fig. 4 represents a modification of the improved heating apparatus. At the top of the wessel is a manhole provided with the lid h^{h}, and at the botom is the opening $h^{2} ; h^{h}$ is the pipe for admitting the blast to the vessel h, and h^{+}is the pipe in communication with the
truanion of the converter. The spheres similar to those shown in trunnion of the converter. The spheres similar to those shown in
the eppep having been heanted, are allowed to drop into the vessel h the liniog of the lower portion of which is protected by a meta plate or by pieces of broken fire-brick, or tap cioder, or other
suitable material. The blast becomes heated in passing through the spaces between the gpheres.
in Figs. 5 and 6 the
tubes i, which are 5 the blast is heated in passing between the metal tubes i, which are secured by flanges or othorwise to the top of the
vesselh. The tubes i are heated by the heaters j, which are lowered into the tubes previous to or during the time that the blest is bein admitted to the vessel h. The top and bottom of the vessel are held together by vertical stays to resist the internal pressuro of tho blast,
or the tubes may serve as stays by connecting the lower ends to th or the tubes may serve as stays by connecting the lower ends to the
botiom of the vessel. In this case the heat is conducted through the metal of the tubes, and the heatiog surface is therefore lesd To compensate for this the surface of the tubes is made proportion ately greater. It is proferred to make the cylindrical tubes i of cast iron, as the pressure is exterual, and this metal is comparatively The modes above dersaion when heated.
The modes above desaribed of constructing the improved heating apparatus are only given as illustrations of the mode of heating air
under considerable pressure, and may bs considerably modified, as, for instance, more than one line of spheres may be placed in the pipe f above described, or more than one pipe with spperes or other
heaters may be used, or the heaters may be oylindrical or of any other form that can be conveniently introduced ; or in the apparatua shown in Figs. 4, 5 , and 6, ingots from a previous cast may be used
as heaters, either by being placed in the vessel h. Fig. 4, or in it tubes i in Figs. 5 and 6
 with the atmoapherio nir or other gases, carburetted hydrogen ga or ordinary illuminatiog gas, in about the proportion of one part of
the carburetted hydrogen gas to thirty parts of atmospheric air, to eliminate sul phar and phosporus frem the converted metal;
otject being also to render available certain descriptions of iron which, owitg to the presence The patentee does not limit himself to any fixed proportions of carburetted hydrogen gas to atmospherio air, as these must vary
according to the quality of tho steel and iron under operation. It accoraing to tee quality of the stee and iron under operation.
is, however, evident that the proportion of carburetted bydrogen gas to the atmospherio air must not too nearly approach the point at which the mixture is explosive, such point being one of carThe introduction of carburetted hydrogen gas along with atmopheric air bas the effect of eliminating the greater part of the sulphar or phosptorus which hed metal contains in the shape of
sulpharetted or phosphoretted hydrogen. It is to be understood that hydrogen gas alone, or mixed with carburetted hydrogen ga
manner above described.

RECENT RESEARCHES IN ELECTRICITY. Durisg the present year much of the time of the Academy of Sciences at Paris has been occupied in the attompt tc discover both
the canses and cure of the cholera and silkworm disease. At the the canses and cure of the cholera and silkworm disease. At the
same time, in the course of that period, much that is new in elec rical science has had its share of attention. The production of hermo-electrio currents and the electrical propertics of minera walers have been noticed, but theso present few features of practical
value. M. Martin has brought forward a corious theory as lectricity. Minly in derable bodies, heat and light. M. de la Bive also has communicated to the Society some new experiments of his own respecting the passage of electricity through metallio vapours, and M. da Moncel has made known a new and extraordinary method of constructing olectro-magnets, a mothod which promises to bo of commercial Elue.
Electricity is usually considered as an immaterial force. The not feory of M. Em. Martin is that-1. The two electricities are virtue of whit simple bodies endowed with chemical properties, in bodies. 2. The two electricities of engendered by physical action, but by chemical action of the pooderong booites holding them in combination, which bodies, by hese same electricities, conveyed by conductors and passing through the voltameter, take direct participation in the action produced, and enter into chemical combination with the elements which they sepa-
rate. M. Martin says that there is nothiog vague or unceriain in this theory. The electricity entering the voltameter by one wire
that bas a greater affinity for the hydrogen of the water and one wire entering by the other wire has a greater affioity for the oxygen. Chemical decompositiou consequaently takes place, and hydrogen and oxygen gases are produced, each combined with a definite
quantity of electricity. Thus the decomposition of water by elecquantity of electrioity. Thus the decomposition of water by elec-
(ricity, which all the world bas practised for sixty-five years, is ricity, which all the world bas prac
explained in the most simple manner.
With equal simplicity and clearness M. Martin says that the decompose any liquid through which they pass. To bring the two olectricities into electro-chemical formuls 10 gives negative elecricity the symbol El, and positive electricity the symbol Et. It
follows then that the formula for hydrogen is Jolows then that the formula for hyarogen is HEI, and that of
oxygen OE. When these two electrcities unite with each other they, according to M . Martio, form caloric C^{*}, and light L^{+}, the liberated oxgen and hydrogen uniting to form water, The
decomposition thas produced is represented by the followiog for-

$$
\quad \mathrm{HEl}+\mathrm{OEt}=\mathrm{HO}+\mathrm{El}+\mathrm{Et} .
$$

So also, if the curreuts be allowed to unitto in a helicical wire, the nnion
of El with Et will produce an equivalent of caloric equal Ct in the combustion which takes place when oaloric equal C^{*}. While gas is united to one atom of oxygen gas, the same atom of calrogen is produced. Thus the two eleotricities unite with each other, as well as ponderable bodies in fixed unchangeable proportions, in the It follows corming light and heal.
iodine, and nitromen this that oxygen, fluorine, ochlorine, bromine, odine, and nitrogen are compounds with negative electricity. Also nium, silicium, and all the metals have positive electricity entering nto their composition. The separate members of these two groups in uniting with one of the opposite order, part with their elee-
tricities, which unite to form heat. At the end of the last century, Lavoisie mion ifre was in demostrating the part taken by Lavoisior made a great step in demonstrating the part taken by
ponderable agents in its production. Five years later Davy sought to discover the cause of the calorio produced, and even found the true cause, the union of the two electricities, but he had no data on which to establish his theory Simple and clever as this theory is it was riooted in Eugland fitteen years ago by Mr. Charles Chalmers, but attracted little attention. This gentleman did not follow the idea with neariy so muoh
energy as M. Martin, nor did he introduce the eleotricities into chemical formnle, but performed some singular practical experiments in proof of his assertions, In fact, he obtained hydrogen from water without oxygen, and oxygen without hydrogen, by the aid of electricity, as shown in the engraving

A class jar filled with water is laid upon its side in a wooden trough. This trough is divided into two parts by a water-tight
compartment One of the compartments is filled with water, and the other, holding the jar, is empty. The bottom of the jar, whioh projects beyond the partition of the trough, is a plate of platina, A, B, five inches in diameter, the margin of which is imbedded in cement,
so that it is absolutely water-tight, and the water in the jar has not so that it is absolutely water-tight, and the water in the jar has not
the slightest communication with the water in the trough. The保 rough, and the upper part of the jar has two tabulures, into which
are inserted the tubes for collecting the gases. A diaphragm of cork divides the glass vessel into two parts to prevent the gas given
off in one part from going into the other. Through the centre of off in one part from going into the other. Through the centre of
the jar a spindle passes, by the turning of which a wiper is made to the jar a apindle passes, oy the turbing of which a wiper is mado to
sweep tho platian plate of any bubbles of gas that may adere to it.
This spin This spindle is a glass rod encased in ag gass tobe, whioh 1ts an
aperture in the centre of the diaptragm, as welllas the other cork. aperture in the centre of the diappragm, as wellasbe the other cork.
The outside surface of the platina plate has air bubbles swept off in a similar manner. The negative wire of the battery was introduced
into the glass jar, and the positive wire into the trough filled with into the glass jar, and the positive wire into the trough filled with
water slightly acidulated. With this apparatus gas, of course, was given off as usual by the
 poarised by induction. But by gradually reducing the power of on attenuated and become so low in intensity and quantity at any one point as to cease to decomposo the water, although gases will
still bo given off by the wires. By this means pure hydrogen, says still be given off by the wires. By this means pure hydroged, says
Mr. Chalmers, may be obtained from the water in the jar, and no oxygen. Ho also performed other highly curious experiments,
wbich were publisbed in 1851 , all pointing to the same conclasion which were publisbed in 1851 , all pointing to the same conclusion
os that recently formed from entirely different data by M. Martin iu Paris. This apparent discovery of a great elementary scientific of Mr. Chalmers' experiment rests upon the amount of gas absorbed by the water.
M. A. do Rive, the author of the most complete work in clectrieity extant, has communicated further interesting facts to the Cademy of Sciencos at Paris. Ho says that in parsuing his
cesearches on the propagation of electricity in highly raretied esearches on the propagation of electricity in highly raretied
elastic fluids, he was induced to try also the vapours of several elastio fluids, The wparatus he used cousisted of a glass balb of very large size, having four tubulures and mounted on a stand. Two of
the tubes placed at the extremities of the horizontal diameter of the hie tubes placed at the extremities of the horizontal diameter of the
globe were plugged with leather, through which passed the metal globe were plugged with leather, through which passed the metal
slips, to which the metal or aarbon electrodes for produciug the dighty arc were fixed. A powerfol battery, consistiog of sixy or oxtremities of the vertical diameler allowed the passaga of two rods of brass terminated by metallic balls, between which, in the mean-
time, discharges from a Ralmkorffis coil were allowed to play . The time, discharges from a Rahmkorff's coil were allowed to play. The
air was then exhausted from the globe and well-dried nitrogen air was then exhausted from the globe and well-dried nitrogen
admitted, rarefied to two or three millimetres of pressure, the admited, rareined two or three millimetres of pressure, the
discharge from the coil being still allowed to pass and its intensity measured.
After being assured of the constancy of this intensity the hori-
zontal metalicic points were brought near to each other in order to produce the voltaic aro which, in this experiment, acts solely as the ource of heat. After this had been produced for several minutes, the same instant the colour of the latter flame, which bad been previously of a deep rose hue, became of quite another tint, which varied according to the description of metal employed as the elecrodes of the vortaio circuit. These colours lasted several minutes Electrodes of silver, copper anen.
and carbon were used, and all these subbere cadmím, magnesium, the high temperature. With terminals of silver and zioc, a blue flame was produced, deeper with the ziac than with the silver ; with terminals of copper, aluminum, cadmium, and magnesium, the colour was a deep green with the copper, brownish green with tho
cadmium, bright green with mannes cadmium, bright green with magnesium, and light green with
aluminum ; with carbon terminals the colour was a bright which was fainter when the corrent was colour was a bright blue, caused by the formation of a little carboretted dydrogen. These effects are more visible in the upper than the lower part of the globe, and are brighter in metallic vapours than in rarefied gases.
As regards the increase in the intensity of the jet, this is greater rapidly from 30 deg, to 60 deg, copper. ore galvanometer deflects from the coils, by its change of colour, shows that its pasegage is assisted by the vapours of theso metals. The increase in intensity with the vapour of zino, cadmium, and magnesium was only 10 deg.
or 20 deg., but with aluminum it was rather greater. He Hmpleged or 20 deg, bat with aluminum it was rather greater. He employed
also terminals of iron and platina. With the first be observed a aligo terminals of iron and platina. With the firat he observed a
sighe in the colour of the discharge, and a slight increase in its intensity ; with the second no effact was obtained, except an appreciable increase in the conducting power of the rarefied nitrogen, apours of the higher temperature, proving most conclusiver M. de la Rive has published another fact discovered in his resarches. When alloys of different metals are used as electrodes,
they are decomposed by the high temperature produced. A plate of leney are decomposed hy the high temperature produced. A plate of
coke was used as a negative electrode, and that of an alloy of two metals as the positive-the last being melted and sublimed by the aea. Anloys of copper and zinc, copper and pewter, copper and posed at these high temperatures, and many of the particles of their Constituent metals found upon the coke.
A paper of great practical value was also read before the same
society by M . da Monce principle consists of a cylinder of that an electro-magnet on his holix. Up to the prosent time it was thought to bo indispensable
to obtain powerful results by using insulated wire for this purpose.
It was alterwards found that this insulation was not of such value It was afterwards found that this insulation was not of such value magnets, which had given extraordinary results which he would
not have believed had he not seen them. Not only did bare wire give as good results, bat the effeets were. in some instancees more feeble induced corrent in return. To obtain the best results the different layers
a layer of paper
a
telegraphy. First, there is is considerabide economy io the manufacture of electro-magnets in using bare wire instade of the expenasive
wire insulated with silk. Secondly, more powerful results are obtained, so that smaller magnets may be used and more rapi
results obtained. Lastly, by the partial suppression of the induce
current sparks at the points of contact are abolished. He adds: current sparks at the points of contact are abolished. He addis:-
"To give an idea of the power of these eleotromagnets it wiil be
suflicient to state that an electro-magnet having for its core a bar of

 the covered wire would only allow 7 turus to be wound on the
core., M. du Moncel next varied the battery power and descrition
of maguet, but obtained the same results. To discover the effect of better metallico contatat between the different layers of wire he sub-
stituted tinfoil for the paper first used, and this at onee very con
siderably reduced the power of the magnet. On separating agai

 more powerful than those of the usual construction.
These fats difter so greatl from all preconceived idens, and
have such a practical bearing on the prime cost of all telegraphic instruments, that the experiments of M. du Moncel require veritica-
tion in England before we can accept them as being in any sease
conclusive.

NEW STATION FOR THE GREAT FASTERN. principal railway companies in the way of providing new or en-
larged station accommodation at their London termini. The larged station accommodation at their London termini. The
Sooth-Eastern has \& t to the West-end at Charing Cross, and its City station at Can u u-street is nearly completed. The London,
Chatham, and Dover, now delivers its passsngers either at tho Vitaria, station, West-end, or at Ludgate, city, as they may
prefer. The London and North-Western and North London bave almost finished their fine joint station in Broad-street; the Metro-
politan is pushing on the works of its new stations in Charlesstreet and at Aldersgate and Finsbury, which will in a week or
two be available to the public. The Great Western, the Great Northern, and the London, Chatham, and Dover, will have their
own lines running into these stations of the Metropolitan. The Midland, which has already a portion of a vast goods station in
active operation at Agar Town, has also matured the plans for magnificent passenger station to front Euston-road at its junction have already given particulars in former numbers of The Engerisek. We pe opose now to supply information regarding the new pas-
senger station of the Great Eastern in Liverpool-street. mile in leggth. It will leave the main line at Tap-street and will
cross Bishopggate-street to the north of Worship-stret, and will pass on to Liverpool-street, where the new termininal stataiou will be
erected in the immediate neighbourhood of the Broad-street station of the London and North- Western and the North Londoon. Altouthon
the outer casing of the present principal station of the Great Eastern at Shoreditch presents a q arther inposing appearance the
accommodation for the arrival and departure of passengers is quite inadequate to the requiremonts of the companys's traftio. The
Shoreditch station is roofed by three bays, the centre much wider and higher than those on each side. It is well lit ty sk skliights, and
the centre bay has an arcaded louvre for ventilatiog, of bbout 4ft. deep, at the eaves of the principaral Ipan. The statiang, of sbout four lines.
of rails and two platforms of something more than 100 yards long. The departure platform is about 8 yards wide, but the arrival ong is
much narrower. The existing station at Shoreditch will, after the much narrower. The existing station at Shoreditch will, after the
completion of the new station at Liverpool-street, be devoted to the
goods traffic. The new station will have eight lines of rails, and will have two
arrival and two departure platforms, of 25ftand and 2 .ft wide, with a
common cross platorm at the inner end of 3oft. wide. The common cross plattorm at the inner end of 30ft. wide. The
covered area of the station proper will be about 630 f . l long by about
200ft wide. This structure will heve dating two companies - not by affording space for them to run in dating two companies-not by affording space for them to run in
and out on the same level, as with the London and North-Western
and the North London, in the neighbouring station, but by their running in and out the one directly under the other. The lower
lines will be those of the East London, which, our readers will
remember, is to cross tot remember, is to cross into Surrey by the old Thames Tunnel,
which has already passed into the hands of the company. The riis
of the of the East London will be 37ft. below the level of those of the Great
Eastern immediately above Thit company-the East London-
will have six lines into the station, and four passenger platforms, within a cross platiform at the inuer end. The papper rood way will
be borne upo brick arched worke There will be for transverse
bays of 4unt. spran, and twenty-eight longitudinal arches of 12it.
span, There will span. There will also be two subordinate arches on the outside, of
2aft. span. The ongitudinal arches will be segmental, and the
transverse arches semicircular. trapsverse arches semicircular. The carringe ways on each side,
about 18 fl . wide, are by inclines of 1 in 17 , with a level length in
the The station will be covered by a roof of two semicircclar spans, 13ft. wide, a sort of well, designed to light, and especially to ven-
tilate, the underground station of tho East London piine. In so far
as the roof is concerned the new station of the Great Esstern will as the roof is concerned the new station of the Great Eastern will
more closely resemble that of the Great Northern than any other
we know of. The principals of the roof wirl be laminated girders, springing from corbals set at about 1 If. wabove heo rail level. The
height from the rail level of the East Loodon station to the top of
tit ornamental face girider. The rofe, which wiil be enlmost entirely
of timber, will be surmounted by lowires of about 200 th across the base, and rising at their apex about 6it. above the arch. The open
sides of the louvres will be about 4 ft. high. The inner spriugs of the girders on each side of the open space will be from longitudinal gircers, supported on iron columns placed at vefr. between centres.
The crown of the roof will be covered with corrugated iron to the
easing of the lourre eelt of glass ; the bottom portion will be slated. The range of pillars supporting the girders at their inneer spring will be connected
by elliptical girders ; the spandrils to be filted in with oonnamental
irowork. There will be an ornamental iron fence also along the platforms, partitioning them off from tho well before referred to.
Both horse and carriage docks on the outer side of the passenger plattorm
of about 100 ft . long, with three side platforms, and an end landing
stage of 25 ft . wide. stage of 25 ft. wide.
The station outer buildings will present a unique and imposing
appearance. The principal facade will be in Liverpool-street, appearance. The prinoipal facade will be in Liverpooi-street, closel
adjoining the end of Broad-street and the new station there of the
Ljof
 arobitectoral decorations, suob in its general character and separate
parts as will command attention, and, we believe, admiration. The
peculiar feature of the station will be its having two carriage and
footways, one above the other. The upper carriage way will be
. over a colonnade sapported on colnemns and girders duly proportioned
to the possible weights to be borne. The upper road way will be fenced by a handsome ballustrude, with panels and pilasters corresponding with the columns which are coupled at appropriate inter-
vals. The principal fegade will be boout 200 oft. long, and will bave
 will also be relieved by projections. The front will have a range
of seventeen wiodows, three in each proectiog portion, and four in
 stone quoins and a massive cornice of stone and terra cotta. TTh
froat will han central projecting part, which will also havo four. 中'the station has
been designed by Mr. Sinclair, the company's engineer, and a concract bas been completed with dessrs. Lucas for ine extension and
station, exclusive of the outer buildiigg. In addition to the contemplated new passenger station, the Great
Enstern Company in providiag a coal depôt in Whitecluapel, on
very
 Soit. in span. Six lines of rails run into the etstion, and the coals
will be ohot from the bottoms of the wagons through hatchway in extend lengthways, and on one side the height, A from the the groun
exter
level to the crown of the arch, will be 18tit. 6 in. . on the other side the height will be 23ft. ; this side will have an intervening plank
that ind
floor with batches for coal storage. There will bo a roandwy of
above 30ft. wide aloog each side of the station ; the whole will be encosed all rond by walls of sufficient theight. Ingress and egres
will be by gate ways, waie leading directly to the Whitechapel aud
Mile-End thoroughfare, the other to Shoreditch. The station occupies about seven acres, and will cost between $£ 50,000$ and $£ 60,000$. I
is built on the site of what was once known as Smith's distillery, and it also displaces some cottage property of a very low character.
It may be remembered that the proprietors of the distillery
detected, some years ago, tampering with the excise laws.
 remained so till now.
The East London
coal station, with a roa passes under the Buch s-row end of the canported on brick arches of 5 ft . between centres, which spring
suppon the flamches of cross wrought iron girders of above 2f. in
from the
depth. The brickwork will be covered with concrete to prevent dripping from the upper surface.
We believe that the Great Eastern, when they have completed
these projects, and have finally arranged for running powers and these projects, and have finally arranged for running powers and
station accommodation with the Midand at their new station in Easton-road, will be ready, with good reason, to adopt and act upon
the motto, "Rest and be thankful."

Soutr Kexsixaros
Mrsevis.-During the
21st, 1865, the visitors have been as

On Wednesday, Thursday, and Friday, students days (admission to the public 6d.), open from 10 a.m. till 5 p.m.., 1,511. Total, 10,971.
PAsis Eximrrios.-The following circular has been issued by
the Science and Art Department, South Kensington:-"Notice to Intending Exhibitors in the Paris Universal Exhibition, 1867.-
Although the 28th February, 1866 , has been fixed as the last day
for receiving demands for space, intending exhibitors are request 1or recevilay forwarding such demands, but to send them as soon as
not to del
possil possible. By order of the Lords of the Committee of
Education. South Kensington Museum, October, 1865 .
ScasDisavian Exhirrios.-The difficulty which occurred in con-
sequence of the deternination of Swedeu and Denmark to hold sequence of the determination of Swedeu and Denmark to hol
exhibitions of Scandinavian industry in their respective capitals at for the present, on the part of the authorities of the latter councriry. The Stockholm exhibition, therefore, now stands alone, and is fixed
to open, as announced in the Society of Arts Journal some weeks since, on the 15 th of June, 1866 .
Accidents
rRoal Stenc moval of certain restrictions respecting the employment of steam account of the accidents which happened through the use of steam during the past year. It appears that the accidents were only killed, or died afterwards of the injuries inflicted, amounted to forty and that fifteen otber persons were wounded more or less seriously. paper manafactories, two each iu distillery and drug works, and
one each in other industries. The canses of accidents are clasifie as follows :-Eight occurred by the explosion of cylindrical boiler laree by that of tubular boilers with interior furnaces; one by the
explosion of a locomotive; and four by that of steam-heating apparatus. The immediate causes are supposed in eight cases to
have been the bad quality of the metal arrangement of the furnaces ; in seven others, carelessness or want of superintendence on the part of the engiueers or stokers; and in
the remaining case from the imprudence of other persons. The Sonitear gives twe details in each case, ,in order that manufac does not include railway or ther accidents which occurred in neetion with, but were not immediately casued by, steam machinery M. Paulin Gay, has lately perta for sawing or cutting through the hardest rock in quarries and tunnels. Experiments have been made lately at the Conservatoire
des Arts et Métiers of Paris, and the following is an extrat from the report of M. Tresca, the sub-director, countersigned by General machine:- The contrivance of M. Gay depends upon the new and special application of a principle, and consists of apparatus whereby
a disc of lead penetrates vertically or horizontally into the stone, being impressed with a rapid cireular motion, while powdered emery is applied to the edge of the disc by means of a small jet of
water. The emery, as fast as it it applied, falls into a receiver, Whence it is lifted to be replaced in the feeding hopper and used
over again. The disc is mounted upon a shaft so plane perpendicular to that axis, and is guided by friction wheele
whereby its motion is steadied. The body of this disc is of wroug irou phate four millimetres thick, and is pierced all round the edge with a double row of elliptio holes, to afford passage for the melte
lead which is cast upon the wheels to the thickness of six mill lead which is cast upon the wheels to the thickness of six milli-
metres, and a total width of seven millimetres. This wheel is put into motion by a machine or motive power, the strength of which is regulated by the diameter, and also by tho nature of the stone to
be cut, and, placed upon a movable chariot on rails it advances in be cut, and, placed upon a movable chariot on rails, it advances into
the tunnel, resting on the floor of the heading. If a block of stone be required to be cut for building or other purposes, the machine is cxed while the block is placed against the revolving diso by a
counterpoise. For tunnel wort M . Paulin Gay has an disc two metres in diameter."-Builder.

PARIS UNIVERSAL EXHIBITION OF 1867. ThE following important document has just been published by the Committee of the Kancir or Ean We Nommend it careful perusal to all intending exhibitors, as it supplies the fullest possible information on every point which ca possibly be raised
IMPERIAL COMMISSION. GENERAL REGULATIONS DISCUSSED
ON 7TI JULY, THE 12 TH JULY, 1865.

Section I.-General arrangements and Syster op Classification Article 1. -The Universal Exbibition to be held in Paris in 186 of agriculture and industry of all nations. It will be held in a temporary building on the Champ de Mars. Around the Exhibition live animals, objects which cannot bs exhibited in the main buildings.
 Art. 2,-The Universal Exhibition of 1807 direction of the Imperial Commission nominated by the decree of the 1st February, 1865. The general commissioner appointed by Imperial Commission
 Art. 3.- In every department of the French empire the Imperial committee, whose duty it will be-1. To make known throughou organisation of the Exhibition, and to distribute the forins of demand for space, and other documents issued by the Imperial Commission agricuiturists, and manufacturers whose productions would seen the agricultural products of the department ; 4, to appoint a commis sion of learned men, agriculturists, manufacturers, overseers, and other persons with special knowledge, to make a carefal stydy of the Exhibition, and to publish a reportupon the means of applying in 5 , to create, by collecting subscriptions, by association, or by any husbandmen, and mechanics of the department to visit and study

 the Exhibition, and to pay the expenses of publishing Art. 4.-The Imperial Commission will make the necessaryarrangements with the Ministers of War and of Marine, for obtaining a proper representation of the products of Algeria and of the Art. 5.-The commissions appointed by the various foreign will take in the Universal Exhibition are in direct communication with the Imperial Commission relative to the exhibition of the the Imperial Commission will not correspond with foreign exhibitors. Products sent by a foreign exhibitor can only be admitted
through the medium of the foreign commission which represents him. The foreign commissioners will also provide as they may see fit for the carriage, the reception, the arrangement, and the return of the productions of their countrymen. They must, however
conform to the regulations laid down by the Imperial Commission. Art. 6.-Foreign commissioners are requested to place themselves to depute possible in relation with the Imperial Commission, and sentative will person to represent them. The duty of this repre exhibitors, and porange the questions to the allo whole space among the various countries, and to the manner in building and in the park.
Arch country order to facilitate the division of the space allotted to Article 11, the Imperial Commission will place at the disposal of the the French section of the Exhibition building, drawn on a scale of two milmmetres to a metre (lin, to $41 \cdot 6 \mathrm{ft}$ or n^{1}). This plan shows the arrangement of the glass cases and countwrs suitable for each class of objects, as well as the shape, height, and other dimensions of the showing the manner in which the portions of the Exhibition building allotted to each foreign country will be subdivided is to be 1865. Plans in detail, on a scale of two centimetres to the metr (1in. to $4 \cdot 16 \mathrm{ft}$, or $\frac{\mathrm{x}}{\mathrm{L}} \mathrm{J}$), showing the place allotted to each exhibitor
and to each separate stall, are also to be forwarded with the list of exhibitars by each stall, are aiso to be forwarded with the list of 1866, in order that in arranging the interior of the Extibitio building the 1mperial Commissionry.
sideration the wants of each
Arh. 8. -Each foreign country may elaim, for the formation of a special park, the portion of the Champ de Mars adjoining the space each foreign commission will settle with the General Commissione the plan of the paths for the circulation of the public, and of the
earthworks, which will be executed at the cost and under the eartirection of the Imperial Commission. Each representative will
dital also arrange with the General Commissioner so as to leave at the
disposal of the Imperial Commission the portions of the ground which may bo in excess of the wants of his countrymen, or obtain an additional piece of ground from the portions to which ofther representacives may have given up their claim. In order bitors in the portions of the park allotted to them, the Imperial Com mission will place at the disposal of the representatives for thei guidance the plans adopted by the French exhibitors for arranging the animals, plants, model cottages, k c. (Appendix A).
Art. 9.-An official catalogue of the products of all the foreign countries will be drawn up, showing the place which they occupy either in the Exhibition building or in the park. This catalogue
will contain two alphabetical lists, one of the exhibitors, the other of the products exhibited. Foreign commissioners are requested to before the 31st January, 1866
1867 by .-Those states which can only be represented in Paris in similar geographical position ore requested to concert begides in to insure a niethodical grouping of the products of an analogous rapresen The Imperial Commission will place at the disposal of the have been prepared, with a view to harmonise the advantages of such a grouping with the fundamental rule of national representa-
tion. In the event of these plans being approved the Imperial tion. In the event of these plans being approved the Imperial
Commission requests the commissioners of those same states to appoint in Paris for each group an agent, whose duty it will be
to carry them out. The architects and officers of the Imperial Commission will afford assistance gratuitously to these agents.
Art. 11.-In each seotion assigned to the exhibitors of the same country the objects will be divided into 10 groups and 95 olasses,
viz:-1st group-Works of art (olasses 1 to 5). 2ad group-Appa-
ratus and applications of the libaral arts (classes 6 to 13). 3rd ratus and applications of the hiboral arts (classes 6 to 13). 3rd
group-Furniture and other articles intended for dwelling-houses
(classes 14 to 26), 4th group-Clothing (inclading fabrics) and other articles worn on the person (olasses 27 to 39). 5 th group-
Products (raw and manufactured) of mining (classes 40 to 46). 6th group-1 Instruments, and processes of the common arts (classes
to 66). 7th group-Food (fresh and preserved) in various states preparation (classes 67 to 73). 8th group-Live products
examples of
group-Live products and examples of hortionltural establishment
(clases 83 purpose of improving the physical and moral condition of the kroups are given in detail in the system of chare included in these A) annexed to these regulations. In order to avail itself of any suggestions that may be made by the French exbibitors and the
foreign commissioners, the Imperial the right to resolve, in the successive editions of this dos itsel all doubtful questions to which this frrst publication may give rise. building or in the park mary be drawo, copied, or reproduced in any manner whatever without the authority of the extibitor who is the author of it. The Imperial Commission reserves to itself the righ io authorise the taking of general views of the Exhibition.
Art. 13.-No work of art or cbject exhibited may be removed before the close of the Exhibition withont the berity of the 1 mperial Commisesion.
ny rent for the space occupied foreign exhibitors will have to pay costa incurred for fittingg and decoration in the Exhibition building and in the park must be borne by them.
Art. 15. - Frenchmen and foreignere,
Art. 15. - Frenchmen and foreignere, by the act of becoming Art. 16. The Imperial Commission will correspond with the President or the G autborities of the French empire
 position Universello de 1867 , à Paris. Letters need not be prepaid

Art. 18 . Wint the let January, 1855 , wrench and fore receive for artists, executed since Aose which reproduce a work in a be receivered :1. Copereses, including origival. 2. Oil paintings, miniatures, water-colour pantinge pastele, designs and cartoons, for miniatures, water-colour paintingo
rammes.
3. Sculpt pure in and frescoes, withou rames. 2. Sculpture in uubaked clay.
Art. 20. The Imperial Commission
a apecial jury, respectiog the admisision of works by Fist nomination of this jury brend questing permission to send a work of art to the Exhibition, will be
explained by regn questing permission to send a work of art the the Exhibition, will be
explained by regulations to be pabished hereafter thees regula-
tions will make known how works of art are to be transmitted and Art. 21.-The Imperial Commiesion will make known to the
persons concerued, before the 1st January, 1867, its decisions especting the admission of works of art.
Art. 22 . -The number and nature of then
Att. 22. The Thember and nature of the rewards that may be
given in reepect of work of art, as well as the constitution of the international jany who will be called upon to act as judges, will be
decided hereatier.
Sketion IIL--Spz
Arrasgemests
rs Rrapgo
Chaptrar L.-Aduissios and Cexssification or Phodects. Art. 23. - All the products of agricultare and indastry will be
admitted into the Exhitition with the exceptions and limitations nentioned in the following article:Art. 24. - Detonating, explosive, and other subbances of a
Jangerous nature will pot botmitted. Spirits and alcohols, oils,
 hhe purpose, and of small dimensions. Percussion caps, firoworks han made in imitation and deprived of all inflammable ingredients. able nature will be bound to contorm at all times to ounch maeasures of saiety as may be prescribed to them. The Imperiilation reserves to itseif the right to cause tho remova of any products,
whether French or foreign, which by their natura or their bulk might appear inju
of the Exhibition.
Art. 26.- Before the 15 th A ugust, 1865, the Imperial Commission will notily to the foreign commissions the amount of space alloted
to each of them for the digplay of the productions of their respective oxbibitors. Before the 25 th August, 1865, the Imperial Commiksion
will publifh, in a tabulated form, the amounts of space alloted in he French portion of the Extibition bailding to each of the first Art. 27 . - After the pablication of this document, French exhibi-
ors carrying on the trades comprised in the same class are requested ocome io an understanding among themselves relative to a common plan of arrangement of tho eppaco which will have been allotted to
their class. It they should which shil bill meeni caen accommodate, and upon the amount of space
that sball be ansigned to each, they will nominate one or more the Imperial Commission, submit their plan and list of exhibitiors Cor its approval, and generally act an the representatives of the
common interest of these exhifitors. Art. 28 . - In default of oush spontaneous action provided for in fue preceding srticle, the municipal authorities of centres of beanuarts and manulacture, artistic and indostrial societies, agricaltural ocieties and meetings are requested to urge the prodocers in their istriet lo act in concert
Art. 29.-The dediartmental conmittees (Article 3) will receive rom the Imperial Commission and will communicate to the coosul-
ative chambers of agricalture and to the agricultoral socities and tative chambera of agricaltura and to the agricultoral societies and
meetings of the departuent, the plans adopred for the representa-
tion of the argicultore of the vilus that they may co-operate in carrying out these plans. They will
especially request these societies and meetings to prepare collective xhibitions of types of animalis and plants, and modele of farm uilldings and agricultural works. The local committees of a large display, without useless repetitions, the characteristio leatures of the agricalture of the district.
Art. $30 .-$ The
Art. 30.-The applications for space having reference to the
arrangements described in A riticles $27,28,29$, will be made by the epresentatives of the exbibitors who have been acting in concert, or the matter. For this purpose the representatives will canse eache ex-
bibitor to fill up and sign in duplicate, an application for space Tbese applications are to be addressed to the General Commissioner
at Paris (Article 17).
(To be continued)

LETTERS TO THE EDITOR.

the source of the pressure, record the time, and observe the pressure fil the boiler is tight and the fittings are all good, the pressure will not fall ten pounds in a day. A very little experience will
teach the tester what to expect. The elasticity of the air cushion allows much greater exactness in setting the pressure than is posif any, is more easily judged. If a rial there is less need to strip and examioe all the surflace; and il it is not tight, the necessity for doing so is obvious.
The plan is not, therefore, put forward as superseding more pre-
cise examination, but as a preliminary test of a most reliable kind. cise examination, but as a preliminary test of a most reliable kiod.
When a large number of boilers aro in use and worked in rotation and when systematic cleaning is practised, this method of test should be applied on every occasion before a boiler is put on. In all cases where a supplementary cold feed from water mains is a
permanent fixture, the apparatus is ready to band. I am certain permanent fixture, the apparatus is ready to hand. I am certain
that, in the majority of cases where explosions have occurred, the preseure gaugo applied in this way would have run back at a rate
hat would have clearly indicated a leak, and have proved the cot dinued use of the boiler to be reckleese
The proof of all the fittings by the same means is of sensible advantage, and the proceeding is not upat by rain, condensed steam, or any other wet, either of which make the testing with solid
water and looking for weeps, sweats, drops, and larger eeceapes both water and looking for weeps, sweats, drops, and larger eccapes boin
inconvenient and difficult; more than this, a master or superior man mas, without boiling himsen, see his, boilers proved with hi Swn eyes, and, if he will, ".
Old Ford, Oct. $24 \mathrm{tth}, 1865$.

patent law.

SIt, - Referring again to the dififcolties that would be induced
the withdrawal of all legal recognition of inventio oo the improvement of manufactures, I remember thion, as applied in the trath of the Bible of the many diffleulties in the way of belief, his answer was to this effect: "Yes, but there are more difficulties Some way of unbelief.
 atterance of a profound and vital truth. And there is an analogous lruth underlying the question of "Patents or no patents," If Lord
Stanley and others who aro strongly iropressed by the practical position that there would be fewer social and commercial difificulties if such law were abolished, I shonld at once acknowledge the force of the argament, and regard the days of patents as numberid. But
what abolitionist has hus succeeded? I Ido not recollect ever
meeting with any conspicuous effort in this direction. And votil meeting with any conspicuous effort in this direction. And until
this proposition Is established by overwbelming argument, my frrm
belief is that tyatenta will not be abolished While howerer thos feeling every contidence in the appeal to reason and facts in support probabio a pathy of Parliament on the anhect And this apprehen
in sion is increased by a sense of the difficalties resulting from the
necessary reconstruction of the Goverument at this time which is ikely to occupy the minds of the mejority of the Patent Commissioners who are members of the Goveroment, to the exclusion of the patent question-that "irrepressible negro" in the eyes of many lawyers.
For my own part I would much rather have the question dealt
with, and settled as soon as praeticable (taking my chance of the result), than be exposed to the inceonverienceo of further delay. if vigorously carried into effect, would produce a greater improve ment in practice than some persions appear to me to recognise. Bu
there is one recommendation in particular which is of incomparab nore importance than any of the rect, and it is agreed to by all th patent cases by a judge, with the aid of scientific assessors, but without a jary, unless at the desire of both parties to the suit
 perly carried out. It is no emall evidence of its value that
go large anumber of independent thinkerra as those who aat
on the Commistion should bave concurred in the recommendation. Nevertheless, the words of Sir R. Phillimore, (Queen'
Advocate, contained in a paper recently read by him at Norwich
on another branch of law, are applicables here :- "The nucees ol on another branch of law, are appliciblo here:-"The suocess
every institution depends upon the maneer in which it is worked as the success of every law depends upon the manuer in which it
is interpreted. Both are merely parchment or and figures written upon themerely paiti, in in fact, the breath of practical iffo nuimates them into real existenco."
These words remind us of the etsenticl importance of the manner a which the judges would be inclined to exercise their powers
ander a law founded on the recommendation referred to. And o under A IW
this point I cannot digguise from mymelt the fact that some of the presumption that they would work such a scheme efficiently the prot is suggestive as an argument in favour of a a special court. At
the same time I am persuaded that some of the judges could try the same time I am persuaded that some of the judges could try
patent cases satisfactorily on such a systom. And is it not true that a every brach of law some jadges can try cases more satiofactorily
than others by rasoon of their having more special aptitude for particalar subjects more or less connected with their antecedent ex
It is, therefore, no argument against patents that some judges dislike them because they involve questions which are remote from
their usual habits of thought. There seems to be just now an untheir usual hatits of thought There seems to be just now an un-
usual prejudice against patents, whish I take to be a reaction from is advisable for patentees to avoid giving just cause of offence in their dealings with the public, for we find Lord Brougham (while
generally favourable to them) admitting " that there gre grave obgenerally favourable to them) admitting "that there are grave ob-
jeetions to the inventor's rights as at present exercised, may be
tree." for abolishing patents ; but he seems to consider it as a mode accounting for somene of the existing prejudice against them.
Sill it is always to be rememered tuat the present weak Still it is always to be remembered that the present weak adminnorease the evil complained of; and that the rectompendation of
 8, Quality-court. Chancery-la
25th Oestober, 1865.

UGAR MACHINERY

Vacuum Pumps.-The cause and effect of creating a vacuum in
reesels used for chemical processes is, of course, well-known vessels used for chemical processes ies, of course, well-known.
is difficult to point out any portion of mechanical contrivances requiring more attention than the vacuum pamp, the imperative
ally to the vacuum pan. The modes of working the pumps now ander notice are various; in somes or working the pumps now
employed, in other cases an angular arrangertical action is employed, in other cases an angular arrangement is adopted, a
third system is that of the horizontal type. Now to ascertain the theorise on the cause and effect, after which the application of the mechanical powers. To exbaust air
or water from a vessel is to cause a vacuum in a certain space for a given time. To obtain a vacancy for the supply
is a simple matter, but to discbarge effectually is the vilal
part It can be readily understood hat part. It can be readily understood hat should any air remain
in the pump between the piston and the suction valve or vale in the pump between the piston and the suction vaive or vaives, it
wilh, to a certain extent, reduce the vacuum to be attained. Pnups of the class now under noticd should have perfect valves and joints
to attain the desideratum. Vertical action for the piston is often considered to be the correct or better mode to attain a good vacuam
due, perhaps, to the fact that the water and air will assist to cause implent of the piston or bucket. The angular arrangement is crank pin. The action of the water will, of course, in either case assume the level line, bence the vertical arrangement may be disposition of the valves of the pumps should be carefuliy considered. In some instances pumps with vertical action have the suction valves located at the bottom of the barrel at the side of the same; the
discharge valves are secured in like manuer at the top of the barrel. The pittou is itself a moving valve and seating, so that two valvee aelivery valves can be located opposite each other at the top of the pump. The piston in this case cisteru of water would ensure the absence of leakago of air
during the up stroke. With reference to the access for repair the hater arrangement is undoubtedly the better, a fact not unworthy of notice. When the valvular piston is adopted and the suction valve
directly under the tame, it is obvious that great disarran gement must ensne ere the lower valve can be inspected. In the case of the locality of the valve in question being at the side of the pump,
portion of water and air will remain, equal in volume to the space the area of the psssages in proportion to those above contraction The valves now univerrailly employed are of india-rubber, and their of the top of the barrel, the piton having a projection to effectaall discharge tha air and water at each bitroke. Anoother modeof securing is inserted at the side of the barrel at tho top-the discharge valve obvious that on compression taking place the air will be disocharged before the flaid, a fact not to be disregarded. The engines
commonly used for vertical pumps are of wo kinds, beam
and directecting and direct-acting $;$ when the former is adopted the pumps are
located one on each side of the centre of vibration, hence the requirement of du cranks between frames or standards impart the motion required a second examplo has the pumps below the steam cylinders, thue
autining a direct action, the crank shaft aud wheel being overhead. It is almost needless to state that, to the present, bingle-acting pumps have only been reverted to; those oi dosbe action ca
be trathfully termed the better. Pumps of this class are peculiar in relation to the passage of the water; the tocality of the valvee must
be duly considered to attain a good result. When the vertica pump is adopted the suction valves can be secured at the top and
bottom at the side of the barrel, those for discharge being arranged
 valves are inspected by doors on the valves are composed of india-rubber discs perpendicularly secured.
The horizontal double-acting pump consiots of a barrel, with the suction and delivery valves located under and over the same at eac pump, those for the discharge being on the same level, but of cours reverse in action; the doors for access are suitably arranged at the the arrangements of the mge and suction chamberb. siruated at the top of the building (as before stated in a previous
article); the pump exhausts the air only from the pan, while the munication. the air from the barrel at each stroke of the same. Pistons suitable for the pumps now in question should have projections beyond the
packing ring, so that the entirespuce beyond the frictional surface will The disposition of the valves should be as near the periphery of the barrel as possible. Yn bomo instances gua-metal valves are pre-
ferred for atmospheric pumps, particularly those working at high velocities. Solid plangers aree sometimes preferred to those of the
piston type. When this plunger is adopted the valves are located at the bottom on each side of the barrel, ,ingle action being only
attained. The arrangement of the engines for the borizontal type the framing, the piston rod being prolonged to that of the pump, thus
securing d direct action; tho rod pusses through the pump, and is
prolonged to the crosshead of the connectivg rod, the remainder prolonged to the crosshead of the connectiog rod, the remaindor
being hee same as for ordinary engince. It will thas be underatood rod guides. A second arrangement consists of the vacuum pump
past and valve chambers secured on each side of the steam cylinder
motion is imparted to the pumps by ordiuary cranks, connecting rods, and guides. To this example each connection is separate;
bed-plato common to tho whole ensures rigidity. A third disposition of both pumps and eugine has, the former opposite the froot
end of the latter, the connections and the mode of working being as tor that last noticed. The illostration represents a vacuum pump
and engine of the horizontal double-acting type ; the barrel and
valve chambers are in one castiog. The suction and delise are of the same exact shape and size, so that one pattern is ouly required, with the exception that the suction pipe has provisions or
boses for the holding-down bolts. The valve gear and seatings, as will bo seen, are of the ordinary marine type, with separate doors to each set ot valives tor binspection and repair. The suction valvee
are on a level with the bottom of the barrel, the delivery valves are
directly above thoe directly above those last alloded to, the ppice betwixt bieigg due
only to the area required. By this arrangement only a very small portion of water can remain in the pump during only a very smail
By locating the suction valves on troke By locating tho suction valves on
friction and ebollition is maintained. The piston is of of the ordinary metallic kind, with spring ring and adjosting Ecrews; the projec
tions on each side of the ring aro for the better purpose of discharg ing the pomp at each stroke. The spaces filled at the terminatio perfect discharge is certain, while compactness and simplicity if box, this latar of the pump is for the purpose of adjuating and removing the
piston when required. It will by this be understood that no disarrangement of any two portions at the same time is required either
for adjustment a
 beyond the latter. The mode of securing the rod in the pump
piston is by a nut at the back end, which can be readily removed when required. The rod in question passes through the steam piston, as before stated; the means of securing the rod in the same
is by a cone at the back and a nut at the front. This nut is suit. r, so ordinary kind, fitted with a metallic ring and spring. Should it bo required to remove the piston, the rod can be readily withdrawn by
unscrewing the nuts alluded to. The guide channel is arranged for a solid shoe guide of the marine type, the connecting rod is also of similar design. The engine framing or bed-plate is secured to th is of the ordinary kind, cuuting-off at a fair grade; the means of imparting motion to the slide are direct. The stop-valve wheel can of the entire engine and pump. The arran ement now alluded to bining strength, simplicity, and accespiblity. Each portion can be greatest importance in colonial machinery. $\stackrel{\text { N. P. A }}{ }$

DOUBLE-ACTING VACUUM PUMP AND ENGINE.
DESIGNED BY N. P. BURGH, ENGINEER, LONDON, FOR A SUGAR ESTATE IN PERU,

TRANSVERSE SECTION THRO VALVE BOXES

SECTIONAL PLAN OF PUMP

TO CORRESPONDENTS.

*We beg to call the a ate ention of our Advertisers to the notice compelas as to stoto to proses at at an earry hour of the morning of publiaction. Advertisements, to ensure insertion, must bo de-
liered at the Engineer Office before seven o'clock on the Thurs. day evening of each week; any received after that time must necessarily stand over till the following publication Foreign Cribculation. This edition printed published for Foreign Criculation. This edition, printed upon paper
manufactured for the purpose, will pass through the foreign post offices at the charge of a single postage.

and must, therefore, request our correspondents to retain copics. covers for binding price 2s. $6 d$. each.

T. J. (Pontypool),-Recrived, and will be examined. A. M. (Preston).-Mr. Barry is the architect, and the cost £1,600. G.-N. N, ordinary pattern. The injector will work in any position W. S. N.- (Chard).-We do not know the address of the party to who

 paimet. and at the rarious railiuay tataions: or it it can, Y Y prefereat, be of uppptied
 Wercili be tate

This. Exarsxan is regitered for tranmiusion a abroai
 THE ENGINEER. FRIDA Y, OCTOBER 27,1865 .
the ordnance select committee on naval guns. Ir will be remembered that in Jane last, Mr. Baillie demanded from the Government an explanation of the proceedings of the Ordnance Select Committee as regarded the experiments undertaken by it, to determine the relative merits of the different systems of rifing known as Comfrey's, and that at first spoken of as the French, and frey's, and that at first spoken of as the French, and
subsequently termed the Woolwich system. In the course of his speech, Mr. Baillie implied that Commander Scott of his speech, Mr. Baillie implied that Commander Scott
was not dealt fairly with, and he accused the members of the committee of going beyond their province as judges and assuming the office of inventors. The Marquis of Harting ton in his replystated that the Scott gun had been overrated in certain quarters as would be seen when the official report was published; while the Woolwich gun was not an invention but an adaptation. It is unnecessary to
dwell further on the speeches of either Mr. Baillie or the dwell further on the speeches of either Mr. Baillie or the
noble lord. The report demanded by the former gentleman now lies before us, and we can state, with all due deference to the Marquis of Hartington, that we have risen from its perusal with the conviction that the statements he made in the Hose oommons and that, notwithstanding an extremely judicious use of figures, purposes brought forward during the entire competition. We do not pretend to dispute for a moment the fact that morethan one of the rival systems approached that of Captain decide the question of relative merit, as it is to determine which is the better horse in a race won by a head. The questions at issue may be, and probably will be, warmly discussed; but in order to arrive at anything like a really valuable decision, it is absolutely necessary to set up some
standard of excellence, or of qualifications, to which the guns must approximate more or less closely in order that they may be fit for naval service at all; that which approximates most closely being, of coarse, the best. So
long as guns are merely tested against each other, their places in the order of merit may be changed daily with the nature of the test. No one system can excel in every point, nor does it follow that the gun of the highest average
merit is necessarily the best. A gun may, indeed, be radically bad in some one characteristic, and yet a very excellent gun for particular purposes notwithstanding. No yet, regarded in the abstract sense as an instrument con-
structed on scientific principles, the rifle is immeasurably superior to the smooth-bore fowling-piece.
Now it so happens that naval men have long since made ap their minds as to the kind of gun which they want, and were they but left to follow their own devices they would have had this gun two or three years ago. In high quarters, however, the sailor is still regarded as an intant, if not an diot, unable to take care of himself, and above all thing not to be trusted in the selection of the weepons wherewith he is expected to rule the waves, and keep Britons from lavery This duty has hitherto devolved Binly from lavery. This duty has hitherto devolved mainly on the most part, know a good deal about guns, especially in theory, and nothing whatever about a ship, save in that theory, and nothing whatever about a ship, save in that
general way in which all landsmen are familiar with the vessels which make war upon the seas. The best gun for vessels which make war upon the seas. The best gun for
sailors' use is, in one word, that which can burn most powder with safety behind projectiles of adequate weight. This qualification wanting, all others are absent. Next comes facility of loading-not only at the practice-ground, but under all possible exigencies of weather or of warfare. As to ease hix of twelve tons is as easily moved as six or tweive tons of iron in any other orm; and as all guns can be placed, weight for weight, on an equality in this respect, the question requires no consideration at present. An extended range-the power of throwing shot, or rather shell, to a distance-is worth something; and last of all we may place accuracy of fire-
an essential point in any gun intended for land service, but practically unnecessary-at least in the highest degreeand unattainable at sea; at once because of the magnitude of the object to be struck, and the unsteadiness of the base -the deck of a rolling ship-from which the gun is fired. Ordnance is useless without projectiles, and we find that these present questions of hardly less importance than those onnected with the gans from which they are to be fired. In the first place they must admit of being kept for long periods without deterioration; they must be simple in mallest variety of materials ; they must pe stan and hard, and in the case of shells, capable of holding very large bursting charges. And, finally, they must be cheap, provided that very admirable feature be not purchased at the expense of others of yet more importance. It is just possible that some of our readers may take exception wave placed the last first and the first last. We believe, ho placed the last first and heill endorse ou opinions, while few argumen be produced by other against them; and taking this list as a basis, and the testimony of the select committee as evidence, we shall find that the Scott gun has not only held its own but comWhetely distanced all its competitors save the Fred uperiority over those of this last that we find ample confirmation of all that has been said in its favour as a weapon for naval use.

The report contains a vast mass of figures in the form of n appendix, and a general summary of the results obtained. An except in might, with strict propriety, be pared. We presume that a little "cooking" is unavoidable in these matters, however ; and in order to avoid complication, or the suspicion of favouritism, we prefer, for the present, to confine ourselves strictly to the consideration of the summary. We have already given sections of the guns, and the following description will supply all the "loading. They have solid steel tubes three inches thick, loading. They have solid steel tubes three inches thick, a solid forged breech piece, and external strengthening
coils. Their weight averages 149 ewt., and the length of bore is 10 ft . 6 in . Cammell's steel is used in Scott's, Lancaster's, and the Jeffrey and Britten guns, and
Firth's steel in the other. They are vented 5.75 in . from " the end of the bore, being the position to give the greatest "the end of the bore, being the position to
" initial velocity with a charge of 20 lb .
sponging was used for the first forty-five rounds, and
would, apparently, have sufficed to keep the guns clean ; but the loading of Lancaster's gun with a second supply "of shot became so difficult that a wet sponge had to be "used with that gun, and it was then used with the others also, so that all might be placed on an "equal footing." From this it is evident that Mr. Lancaster's gun failed in one very important point at guiding cradle on the muzzle of the gun, in order that the exact position in which only the shot will enter the bore may be secured. About 350 rounds have been fired from each piece, and the committee state that, as far as concerns the infliction of injury to the rifling, all the guns are on a perfect equality. As to easiness of loading, "The French "nothing to complain of in this respect' in Commander " nothing to complain of in this respect in Commander " more or less difficulty, and in some cases a metal rammer had to be used." None of the projectiles are liable to injury from knocking about, but the Lancaster should take he first place in this respect ; Commander Scott's first plan, second place; the French shot, on Palliser's system,
the third; and Scott's second plan the last. As Mr. Lancaster's oval shot have neither ribs, nor other projecions of any kind, they are in precisely the same condition as round shot. The rios on Scott's shot are cast in one with the mass of the projectile, and therefore, as they are broad and of little elevation, and without corners, they are not much worse off. The butions of the Palliser shot are certainly open to injury from hard knocks. In Scott's
second plan (not that, be it be observed, which he deems econd plan (not that, be it be observed, which he deems best) zinc ribs are inserted into dovetailed grooves, to pro-
tect the rifling, instead of small copper studs, and although these may possibly get knocked about a little by very rough usage, serious injury can scarcely be done them. In
fact, all the guns appear to be tolerably perfect in this respect.
The power of a gun to impart injury to armour plates depends, other things being equal, on the velocity of the
shot; and as plates of average thickness cannot be
punched at all at long ranges, we may proceed a step depends on the initial velocity of the shot; this velocity depends, cateris paribus, upon the charge of powder, the nature of the grooving, and the weight of the projectile. The faculty of imparting a high initial velocity is obviously the most valuable characteristic which a naval gun can possess. We find from the report that, to use the committee's own words, "the gun rifled on the French system has somewhat decidedly the lowest velocities, "and Mr. Lancaster's, on the whole, the highest. He is in every instance superior in this respect to Commander Scott, but is exceeded once by Mr. Jeffrey, and once by "Mr. Britten." To reduce this statement to its proper dimensions we may state simply that Mr. Jeffrey and Mr. Britten's shot being lead-coated, were found at an early period of the competition to be totally unsuitable for use with heavy charges, the lead being blown off in fragments, These systems were shot consequently erratic to a degree. Two of Commander Scott's rivals thus disposed of remains Commander Scotl's rivals that spose remains; but it so happens that shell break up in the bore of his gun from the peculiar nature of the strain to be any mistake we shall quote the words of the report:The Lancaster shells were found on recovery, with only one exception, to be split at the head, showing apparently, as has always been suspected, that in that system "the projectile has a great tendency to jam in the bore, " bringing severe pressure on the gun and projectile." I is but fair to add that, since these first shells were fired, Mr. Lancaster has produced others of a different pattern, from which better results were obtained. Still, "the castertee were unanimously of opinion that the Lantentr system should be rejected, on account of the the difficy crush in the bore, its inferior accuracy, and "the difriculty of loading." The competition is thus alled French systemgly narrow limits; and as the sonitial velocity to the is "somewhat decidedly inferior sisted that, in this particula the gon is "somewhat decidedly" the better of the two. The initial velocities of the two guns are given as follow :-with 25 lb . charges, cott, 1,094, French, 1,529ft. per second; with 201 l. Scottes, Scott, 1,502, French, 1,444; with 12 ib . charges, ing 110 lb . With round shot the difference is even mor distinctly marked. With 20 lb . and 12 lb . charges respec$2,162 \mathrm{ft}$, and $1,827 \mathrm{ft}$; while case of the Scott gun were same charges they fell to $2,081 \mathrm{ft}$. and $1,718 \mathrm{ft}$. per second These figures require no comment
So far we find that the Scott gan not only held its own but excelled its rivals on more than one important point. Frevtheless the committee have rejected it in favour of the said the mean reduced the average, at elevations varying from 2 deg. to 10 deg. Lanes ranges of 1,100 to 4,500 yards ; while that of the gun 3.6 yards Bnt while the elevation was confined to 2 deg. we find that the average deflection of the Scott gun reached but 2.03 yards, while that of the French gun reach $1 \cdot 1$ yards, and this, be it remembered, at ranges distinction here, and we shall not attempt it It must be borne in mind that the guns were not tested at sea but on land. Had the experiment been tried in the proper place -on a ship's deck-the results, such as they are, might required at sea. Even. In anywise greaterery is not practice at Simonasaki, on board the Leopard under Admiral Kuper ; and the superiority manifested by the French gun even in this respect is so trifling that it cannot for a moment be brought into comparison with the superior advantages in other respects possessed by the Scott gun We have hardly touched upon the relative merits of the prink, ever fested in competition whes, from the first moment mani systems, a superiority which may possibly be yet further developed by the introduction of those modification usually required in novel designs, and which, as it is, is sufficient to entitle it to the rank of the best 7 in . rifled naval gun yet constructed

patent law refining.

People will no doubt continue till the end of the chapter to allow their interests to obscure their judgment
But it is often amusing to see the naive earnestness with But it is often amusing to see the naive earnestness with which a man will sometimes forsake a conclusion to which he From a broad point of view the interests, for instance, of manufacturers and inventors might but this is unfortunately with buyers and sellers, or masters and servants. Veste interests will constantly ast ert themselves, and the coppe smiths of society will always cry that the Diana of the Ephesians is great. Capitalists with plant that may be depreciated by new schemes are not over anxious to appre ciate the schemer. A manufacturer has seldom any inte rest in superseding his own machine and plant, and his judgment is more or less warped by a constant attention to the cramped ideas of routine. A worthy capitalist of this kind need be no ill-natured man to feel vexed on waking ${ }^{1} p$ some fine morning to find a keen-eyed inventor whose rights he has to buy off. We also can sympathise with the worthy manufacturer. Yet that is no reason why we should sympathise with the attempt he might make to im prove the inventor off the face of the earth. But we ar obliged to hold Mr. 1.. A. Macfie, an eminent sugar refine Doubtless also a further and more subtle motive unconsciously lends its aid to Mr. Macfie's exertions. To be wealthy, and with perhaps plenty of time on one's hands,
and yet to live in ordinary retirement, is more than what some men can pat up with. Pseado-science now seems to
offer a ready means of some sort of distinction. We may thus, with every probability, trace to their origin "treatises on corpulence or on patent reform, and perhaps also a facetious work on the "Quadrature of the Cirele," by a fellow townsman of Mr. Macfie, who has pestered every distingaished mathematician in England with his ridiculous theory, and who is barefaced enough to print the notes, expressing mingled annoyance and contempt, which he has received in reply. Bat then the satisfaction of seeing one's name in print-of seeing one's name in the columns of a review, make any chance flagellation of such folly an operation of mingled pain and pleasure.
The text of Mr. Macfie's last sermon against patents isLong restrictions in the use of inventions, and obligation to make heavy payments to patentees, incompatible with the long duration of successful patents, and also to the amount of the royalties. We will now see the arguments amount of the royalties. We will now see the arguments
upon which he bases the objections he made before an assembly, the president of which-who, as a lawyer of the highest eminence, has probably devoted more time to the address that the exclusion of a patentee "from the monopoly he now enjoys is extremely hard to be distinguished Mr. Macfie, very obligingly, does not deny the right of " is his exclusive right." Rushing in where Lord Brougham feared to tread, he repeats the usual weak argument against drawing an analogy between patentright and copyright, which is founded on the supposition "that to grant exclucomposition." The meaning of this assertion is, we suppose, that the ideas of a previous author may be legally repeated if they be, at the same time, clothed in other words. An
action at law could probably not be broaght for mere plagiary ; but the same sort of thing may be done in mechanical invention, as it is possible to evade paying the patent-right on an invention by carrying it out with dif-
ferent means, mechanical or chemical. Neither the mere ferent means, mechanical or chemical. Neither the mere
ideas in a book can be absolutely protected from plagiarism by the law of copyright, nor can the mere principle of a patented invention be even legally protected by patent-
right. We then find that he speaks of the mannfactarer right. We then find that he speaks of the manufacturer the enjoyment of Mr. Macfie's doubtlessly very excellent sugar, unless we are able to pay its trade price; and we
should have to wait still longer than fourteen years, unless we were before enabled to pay for it. A patent has also its market price, and its value is regulated by the laws of supply and demand, just as with any other commodity. The worthy author then gives a full rein to his eloquence, successively asserting that a patent monopoly is "despotic,"
"erratic," "retarding," " preposterous," "illogical", "inquisitorial," " unnatural," "cruel," "extravagant,"" "partial," and, lastly "irremediable; for equal treatment is
morally impossible at home and abroad." As a proof how superficially Mr. Maefie has really studied the subject, he says that "only some states grant patents at all." In
Europe these few exceptions are Switzerland and Turkeyin the first case a little republic split up into a number of barbarous state, which one would have a despotic and semibeen at least the last in Europe to be cited as an example mingham; that the only Swiss invention he knew of was that of the alpenstock; and even in Turkey exclusive privileges are granted to inventors by means of the Sultan's Wirman.

With courage and perseverance worthy of a better cause, our author repeats "as still in his opinion practi-
cable and "expedient" the proposal submitted Edinburgh meeting of the Social Science Congress, viz., "to grant national rewards in money." A competent sum. This agreeable ittle arrangement-which Mr. Mactie dignifies with the title of "a system "-" would "sweep away [of course] every hindrance to the immediate "enjayment by every one of every invention." It would, facturers, and the manufacturing lamb would calmly lia down with the inventive panther. This proposal is so
childish and impracticable that we had believed it to be long ago torn up to the last shred. It is not improbable that a patent tribunal will be instituted in this country for deciding on the novelty of any invention it is proposed to
patent; but there are objections and difficulties to be encountered in forming a tribunal with even this limited scope. To leave such questions to the decision of lawyers would
only be a change from one bad system to another. A only be a change from one bad system to another. A
tribanal of practical men will in any case have to be appointed, with all its members disconnected with trade, as a jury chosen from men actually engaged in manufacturing would often have a direct interest against a patent right.
We must confess that we should be rather chary of, for instance, trusting to Mr. Macfie's decision in an important improvement for refining sugar, while quite willing to believe that he would do his best to be disinterested. Again, there are some trades, such as that of working up india-
rubber, in which only very few people are engaged, and of which but few therefore have a practical knowledge. All these difficulties would bave to be overcome by a tribunal formed to take only novelty into consideration. merely novelty, but also utility, merit, and many financial points. For our own part, we should prefer not being such a number of golden apples of discord. Would Mr. Bessemer have carried out his steel-making process without ment grant? We may state that Mr. Bessemer wovernprevented by chance from publicly declaring at the was only prevented by chance from publicly declaring at the meeting
of the Social Science Section of the British Association at Birmingham that, without the patent laws, there would be no such thing as the Bessemer process. And, in any case,
what tribunal would have had the courage to grant Mr. Bessemer the $£ 100,000$ per annum he is now very deservedly earning in royalties .
But even Mr. Macfie is without hope that he will live to witness a patent millennium-that "happy year of release." He therefore purposes to grant patents, "such
as heretofore (not resisting any reformation that may appear expedient), but to enact that, on the demand of any manufacturer, after three years of monopoly, any invention may be valued - not, of course, on the basis of originality, the cost incurred in working it out, its advantage, \&c.; ; whereupon it shall be lawful for a Patent Board to extingaish the grant in any of the following should be obliged to keep in all cases where his fees from any individuals exceed $£ 100$ per annum) show that he has already received in fees the valuation price.
manufacturers and others buy as much as will matre manuacturers and others buy as mach as wil make the price up. 3. If the State pay the remainder of the price, inues our worthy sugar-refiner, "I would include a condition that any one may obtain exemption for himself, or " his firm, by paying, say, a tenth of the price." It is seen that ail Mr. Macies proposals, reasonable as they appear at first from a manufacturer's point of view, are based on
the practical possibility of forming a suitable tribunal for the just examination, not merely of the originality and incurred in working it out; the merit and energy displayed by the patentee in putting it on the market, and the thousand and one other points involved in the matter. W all know what enormous difficulty-amounting in som cases to impossibility-our courts of law, at least at present,
have in answering the single question whether a patent have in answering the single question whether a patent
be valid or not, be novel or not. But here a com be valid or not, be novel or not. But here a com-
plete bunch of connected questions have to be answered And supposing that the probably impossible feat of forming a sound tribunal of the kind could be over come, Mr. Macfie's proposition amounts to neither more nor less than granting a manufacturer the right to bring an aetion against any successful patentee whose invention he
covets. Who is to fee the counsel and the train of scien tific witnesse is to fee the counsel and the train of scienpatenteesses who would have to be called upon by the turers? The monish his case against that of the manufac the expenses, just as the more valuable a patent now is, the greater-and, therefore, necessarily the more expensive $\square_{\text {Privy }}^{\text {the }}$ opposition made before the Judicial Committee of the cause which is agroungt beforelongation. Like any other the ultimate decision will very much depend upon the ability with which it is conducted, more especially when as here, the decision will be as to a greater or less amount the meney, and not as to the existence or non-existence of Mr. Mache's suggestions are doubtless well been read by us with an attention all the greater that it obscurities of style demanded a concentrated attention without which it would have been unintelligible.
have, indeed, come to the conclusion that the author's sugar than in refining our laws. Shouid, however, Mr. Macfie have any spare time on his hands next year, we would propose as the text of his next sermon before the Social Science Congress-"Title deeds for the long pospayments to the owners of house property, incompatible with the free and fair rights of man.'

"tie imperial railway" scheme.

Is calling the attention of our readers to one of the most remarkable railway schemes ever projected, we wish to express any decided opinion whatever on its merits, That is a question which only time can decide. In the fact that the scheme is gigantic, that if carried out it must nvove the expenditure of enormous sums, and materiall sufficient reason for affording railway companies, we fin It is evident, too, that the mind which has originated the idea possesses considerable power, for the details have apparently been worked out with a care and forethought Which impart a certain weight to the project. It is,
indeed, impossible to read a species of prospectus which has recently found its way into somewhat limited circulation, without perceiving that we have not a dream, but something which may become a tangible reality to deal
with. We feel that it is possible that the idea may be with. We feel that it is possible that the idea may be
carried out, but we feel it much as a generation jast passing carried out, but we feel it much as a generation jast passing
away may have felt about the railway system itself at the time when Stephenson's road between Manchester an Liverpool had been open for a few months. Fortunes will certainly be made and lost before the Imperial Railway of ardent speculators will think twice before embarking on an enterprise which cannot fail to involve an immediate ex penditure nearly unparalleled in the history of railway construction.
As the affair stands at present, the projectors-whosoever they may be-contemplate the construction of three great lines of railway extending from a central station on the Holyhead, Edinburgh, and Glasgow. The grand principle to be observed in the construction of these lines is complete isolation. They are intended to unite termini, not contiguous districts or towns. Nor are they to assimi late in any way with existing lines. They will have distinct gauge, and no connection whatever will exist, or be permitted to exist, between them and other lines. The
first section will consist of a railway seventy-five miles long, uniting the metropolis withDover Harbour. Crossing long, uniting the metropolis with Dover Harbour. Crossing
the Thames between Somerset House and the Temple, it will proceed in the most direct route possible to Dover On this section there will be no intermediate stations. The second section will be a railway 240 miles in length,
uniting London with Holyhead. On it there will be but two intermediate stations, one at Stratford-on-Avon, and
one at Shrewsbury. The third section will be a railway one at Shrewsbury. The third section will be a railway
435 miles long, uniting London with Edinburgh and Glasgow. On this section it is proposed to provide four
stations, at Nottingham, Leeds, Carlisle, and at Peeble stations, at Nottingham, Leeds, Carlisle, and at Peeble gauge of all the lines will be seven feet, this width being adopted at once to permit the use of engines of maximum puxurio to secare salety at excessive speds, and to enabl accommodation till proy passengers. The line will be absolutely devoted to the transport of passengers, mails, and possibly troops; and no ac
dation will be provided for any other kind of traffic
It will be seen that, according to this programme, we diate stations, and neither junctions nor sidings amount of accommodation provided for the public at large would therefore be reduced within very narrow limits; but, on the other hand, the most serious ele ment of the danger attending express railway traffic would be completely eliminated, and a certain amount of The absence of junctions with first cost of construction The absence of junctions with their attendant conplica lines. The paramount object had in view in the of the lines. The paramount object had in wiow in costrac communication between the metropolis, and distan eas communication between the metropolis and distant part that not less than six trains shall leave London and arrive there each day on each section, and that the medium speed shall be 60 miles per hour, stoppages included. Thus the time to be occupied in going to Dover would be about Edinour and a quarter, Holy head four hours, and to Edinburgh and Glasgow six hours and tweny minute and six hours and three-quarters respectively. The fares are calculated at the following very moderate rates :-Lon-
don to Dover, Stratford, or Nottingham, first class, 12s.; second class, 8s. London to all other stations-First class stations-First class. Between each of the intermediate case would a higher fare than one pound be charged for first class passengers. Furthermore, there would be no thir class, the fares being below 1 d . per mile at the rates we rates of any kind
It is quite evident that such accommodation as this cannot be provided at a moderate sum; and we find, accord ingiy, that the cost of the line is estimated at the rate of thus, rolling stock and $£ 1,750,000$ for contingences. Without entering into details, we may state, generally, that revenue of $£ 2,584,000$ per annum is reckoned upon, from per cent for working expenses.
Regarded merely from an engineering point of view scheme from practical skill and scientific attainments of the members our profession are sufficient guarantee that works precisely similar to those which have already been executed well deny that $£ 35,000$ per mile is a very liberal estimat even a first-class broad gauge double line laid with steel rails. Speeds of 70 miles per hour hav been sometimes reached with moderate loads and powerful engines, but not without incurring heavy expenses. It is just at this point that a project, otherwise skilfully pre-
pared, breaks down. The working expenses could not pos sibly, as far as we can see, be kept within 40 per cent. of the receipts, as calculated. Engines weighing less than 40 to 44 tons would not be competent to the performance of the required work; and unless Mr. Rambottom's water trough system were extensively employed, tenders of ex cessive weight, holding possibly 3,000 gallons of water, speed of 60 to 65 miles per hour are certain to tell heavily on track, and even steel rails could not keep maintenance expenses within moderate limits. The consumption of fuel, too, could not fail to be heavy-as much possibly as 45 lb , or 50 lb , per mile run; while the weight of the train of the pay to lor short-would bear a very moderate proportionto that of the engine. In order that the lines might b be indispensable to render them as nearly dead level as possible, the speed being already so high that nothing to be gained sy descending inclines, which absorb power not to be spared in effecting their ascent. This, of course in turn entails increased frst cost, and we are strongly of perial Rail, even under these conditions, before the 1m found expedient had been open many months it would be The maximum averag pace on the London and North-Western is at this moment under 40 miles.
Whether or no the scheme will ever be carried out it is, of course, impossible to determine in the absence of a special gift of prophecy. There is no reason to doubt that among one section of the community it would be regarded as disposed to regard it as something too bad to be brought to pass. Numbers would benetit largely, while certain of our railway companies would suffer not a little from a species of competition worse than anything which directors haunted the mind of the most timoros siderably were it necessary The list of possibilines con the whole matter that deserves to be termed a certainty which is simply, that a very large proportion of the proposed capital will find its way into the pockets of the lemen of the wig and gown before the first sod of the Imperial Railway is turned.

A Frexcs company has obtained leave to lay down the first rail-
way between Teheran and the popular shrine for pilgrims or way between Teheran and the popular shrine
holiday-makers, the tomb of Schah Abdel Azim
on Retaining walls.
By Arthur Jacob, B.A., Assoc. I.C.e.
In designing masonry works there is hardly any subject that presents itself more frequently than the retaining or revetment wall; and in some form or other, it is found to anter into almost every design. To the military engineer oless than to his civil brother, is the subject one of im nto the composition of works of defence; and our acknowedgments are due not only to our own military engineers but to foreign engineers, for much valuable information o his, as well as on other subjects. The subject is one that has received the fullest and most able treatment at the could possibly oceur ins, and ase are forery case that could possibly occur in practice are to be found in our text-
books. But the mathematical investigations of this and books. But the mathematical investigations of this and
many other questions of common occurrence in practice, unquestionably valuable as they are, in determining the principle involved, and establishing final rules applicable o practice, are it is believed, but rarely resorted to by practical engineers. Even when such examples have to b dealt with by those sufficiently acquainted with the-mathe matical mode of proceeding, they are generally decided without hesitation by some empirical rube, the resuit of
experience. Such a method may, and doubtless occasionally does, lead to accident from weakness, and not unfrequently to clumsy waste of material and expense. But it is not
clear that less of failure or clamsiness would result if every clear that less of failure or clumsiness would result if every
retaining wall were calculated with mathematical precision for in trutb, the data involved are so variable and imper fect, and the disturbing causes are of such a character as to neutralise, to a great extent, the accuracy of the investiga tion. With certain specific data theoretical accuracy can
always be attained, but the engineer, as a rule, knows nothing certainly either of the weight of the earth he has o sustain in position, or of the masonry that he intends to
adopt in doing so. These, and other data, he must assume adopt in doing so. These, and othe
before he enters on his calculations

It is not proposed now to regard more than with a cur sory glance, the principles involved in determining the strength of retaining walls to support earthwork. Such simple rules will be given, as it is hoped will serve-due regard being had to the peculiarities of each particular case
-to guide the less experienced in designing works of this class.

It must not be presumed that the failure and destruction of a retaining wall is necessarily due to the wall being of itself insufficiently strong. It may be quite heavy enough to resist the pressure of a bank, if due regard be had to
the mode of forming the earthwork, and to drainage ; but, if these points be not fairly considered thickness will probably give way sooner or later much care should, in fact, be devoted to the method of backing-up and draining a wall, as to the calculation of its retaining wall, properly so called, can be implicitly relied apon to stand. With the exception of one particular case assamption that they are to support a dry material-or one, at any rate, not permeated by water-and deposited gainst the wall. It is, of course, also presumed that the wall shall be of fair workmanship and materials, and, where these points cannot be relied upon, as is sometimes the case in ions of the w, some allow not unfrequently happened that retaining wall will have stood for a considerable number o years without showing any appearance of yielding, and yet give way suddenly and completely, without apparent he fact of the wall ean generally pressure, and never having been tried fully till the time of its destruction. Much apparent anomaly is observed in the way that retaining walls are found to fulfil the purpose
for which they are designed. Some will yield, while or which of less dimensions, will continue to stand. To ac count for such anomalous results the cause of the failure must be sought elsewhere than in the section of the wall. idered is that in which the pressure of water has to be counteracted; not indeed that the question in such a form belongs, strictly speaking, to the subject under notice; ; it, nevertheless, becomes absolutely the method of determining the strength of walls for certain positions. It not unfre quently happens, as in some hydraulic works, or with the wing-walls of aqueducts, that the infiltration from behind, ure as no retaining wall, properly so called, could be expected to bear. With this in view the engineer's limit of safety will be attained when the structure is designed to sustain the full hydrostatic pressure. The pressure of wuat to the area of that surface, multiplied by the depth of equal to the area of hat surface, multiphe water, and by the
its centre of gravity below the level of the wate its centre of gravity below the level of the water, and by the
weight of a unit of water. Generally speaking the unit adopted in calculations is a foot; and the unit of water being taken at a cubic foot, weighing $62 \cdot 5 \mathrm{lb}$., the resulting
product, from the multiplication of the three quantities, will give the pressure in pounds on the surface immersed et it be supposed for simplicity, that water to the depth of 10 ft . has to be sustained by a vertical rectangular wall. t is usual to take but 1 ft . length of the wall for the calculation, though it will not affect the result whether 1 ft . or 100 ft . be the length assumed. We then have the surface
under pressure $=10$ square feet, the depth of the centre of under pressure $=10$ square feet, the depth of the centre of
gravity
$=5 \mathrm{ft}$., and the weight of a cubic foot of water $=62.5 \mathrm{lb}$; the product of which quantities gives us $3,125 \mathrm{lb}$., the pressure on 1 ft . length of the wall. But this pressure is not the whole of the force tending to overturn into account. In the example under consideration, namely, that of a vertical plane, with one of its sides coinciding with the surface of the water, the whole of the pressure is
so distributed as to be equal to a single force acting at a
point one-third of the depth from the bottom. Thus the total force to be resisted by the wall is $3125 \times \frac{10}{3}=10416 \mathrm{lb}$.
It is evident that a certain weight of wall must be opposed to this overturning force; and as the height of the wall, and the length, are determined quantities; the thickness alone remains for adjustment. As a rectangular wail
in , upsetting is considered to turn upon a single point, in, upsetting is considered to turn upon a single point namely the outer line of the foot of the wall, there will be a certain amount of leverage to assist the wall in resisting
the pressure of the water. This leverage is the horizontal the pressure of the water. This leverage is the horizontal
distance of the centre of gravity of the wall from the turndistance of the centre of gravity of the wall from the turning point, and when the structure is rectangular and vervall' 's resistance will then be equal to the number of cubis jeet in one foot of its length, multiplied by the weight of a single cubo foot of masonry, and by half the thickness of the wall. Taking $w=$ the weight of a cubic foot of ess ${ }^{\prime}=$ a cube footor masonry, say 12 in.; $x=$ thicksimple stability will be fulfilled when

$x=\sqrt{\frac{w h^{2}}{3 w^{1}}}$
The thickness of the wall $=4 \mathrm{ft}$. 4 in . of course a rectangular section of wall would not be found generally applicable in practice, nor would it be expedient dimensions of a retaining wall ind, to the minimum that would sustain the pressure ore margin of safety must be allowed to cover inferi taken of cohesion, which, if the wall be founded on rock or concrete, may be assumed to add to its stability about $36,000 \mathrm{lb}$. for every square foot of base. In addition to this, practice seems to indicate an increase on the calculated thickness, and in the example the mean width might be augmented to 5 ft ., the stability being further increased by altering the section from a rectangle, to a battering wall with oftets section from
A good general rule for the dimensions of a wall designed top width $=0.3$, middle do. $=0.5$, bottom do. $=0.7$, the height being represented by unity
Proceeding to the consideration of walls for the support of dry earth, it will be found that the question is one that will in general require the engineer to exercise his judgment; to determine what angle of repose he will base his
calculation upon. The natural slopes assumed by earths of calculation upon. The natural slopes assumed by earths of
different tenacity are so varions, that an average figure annot be adopted with safety; the calcalation of pressure rom earth in fact, depending as it does essentially on this point, and a disregard of it will lead to very doub by different The following are a few of the slopes assumed by different
materials,
but it is probable that the engineer's judgment materials, but it is probable that the engineer's judgment
will be of more service then any tabie in deciding the will be of more

Dry sand, clay, and mixed eartl

Damp clay

Shingle and gravel

It has been ascertained, that when a It has been ascertained, that when the top wall sushorizontal, the meximum horizontal pressure to which it an be subjected will be reached when the plane of fracure of the earth bisects the angle, that would be formed were the eath to slope from the foot of the wall backwards the ustural inelination. This fact is somewhat strik ge; for it would appear at first sight and was for long ing; for it would appear at frst sight, and was for long ssumed, that the angle of fracture ought to coincide with the lly the case. If we suppose the angle made between the sloping plane and the vertical to be bisected, the prism he sloping plane and he the bisecting plecte and the prism fill iil, represent he mass, he pressum one the zontal topped bank is capable of exerting, it is usually the point to be determined
The following formula, in which $\mathrm{P}=$ the pressure sought in pounds ; $w=$ the weight of cabic foot of the bank, also in ponds, $h=$ the height of the wal in feet; and $c=$ the angle contained between the natural slope of the earth and
the back of the wall, or the complement of the angle of the back of the wall, or the complement of the angle of When the top of the bank is horizontal

$$
\mathrm{P}=\frac{w h^{2}}{2} \tan .^{2} \frac{1}{2} c
$$

Having calculated the pressure of the earth, the next consideration will be, what weight of wall will suffice to
ustain it; and the method of arriving at this is similar, sustain it; and the method of arriving at this is similar, for the most part, to that adopted for water. Taking as alove, the moment of the wall to resist the pressure; the

It being observed that the centre of pressure is in this case also, equal to $\frac{1}{3}$ of the height of the wall. Solving for x he thickness of the wall, we have-
$x=\sqrt{\frac{w h^{2} \tan ^{2} \frac{1}{3} c}{3 w^{\prime}}}$
and, if the weight of a cubic foot of earth be taken equal to a cubic foot of the wall, the value will be-
$x=\sqrt{\frac{h^{2} \tan ^{2} \frac{1}{2} c}{3}}$
which would give a thickness of 2.69 ft . for a rectangular wall supporting a bank of earth; the angle of repose being taken at 40 deg. The average weight of brickwork, and ordinary clay, will generally be nearly the same; but, if great accuracy be desired, and the respective weights of
he materials be known, the first of the two formulæ must be used
(Tobe eminued)

THE ROUQUAYROL SELF-REGULATING DIVING APPARATUS
Whise the French and English navies were on their late visit to Plymouth, a lieutenant in the Imperial navy, M. Denayrouse, provided with an introduction to our Admiralty, was allowad to make practical trials on board our ships of a new diving apparatus. Many of the seamen on board the present men-ot.war are accustomed to the use of the ordinary diving apparatus, which has to be often employed in cleaning the ships' bottoms, and for other submarine purposes. Bat these men, though of course provided with the uyual daring and bodily strength of the English sailor, refused to descend in the new-fangled apparatus. Fortunately for Lieatenant Denayrouse, ho was enabled to call apon the services of bis comrades in the French frigate, the Magenta, as some hundred of his diving apparatus have been ior some time used on board the Imperial navy, and more especially the Magenta. And when the English sailors, to their surprise, saw their Freneh rivals remain comfortably beneath the surface of the water for more than half an hour, by means of the apparatus we are going to describe, they exelaimed that what Frenchmen could do for half an hour Englishmen could do for two hours. From that time, M. Denayreuse had no lack of English volunteers in carrying out trials which have alre ady led to important orders from our Admiralty for his diving apparatus. The importance of a really good and easy plan of the kind is such, both to our royal and mercantile navies, more especially as no preventive means have yet been discovered for keeping ships' bottoms clean, that we make no apology in calling to our aid a number of
avention.*
The aim
The aim of the apparatus, like that of any other diving apparatus, is necessarily to furnish air to a man placed in an unbreathable medium, of a pressure either equal to, or lower than, that of the atmosphere. When a man dives under water, his organs of respiration undergo a pressure increasing with the depth. The air furnished him ought thus to be at a pressore equal to that which he undergoes; at a lower pressure than that of the higher medium his chest might be crushed in, at a m his lungs wor the In the ordinary apparatus, the diver, surrounded with an a.r and water-tight covering, breathes the air pressed into it by a force pump. By means of a valve he can let off any excess of air, if necessary ; while his supply may be increased by setting in action a signal agreed upon with the men working the pumps. It is clear that the lungs and other organs of the diver may be thus affected by the varistions of the alternative movement of the pumps, however much this action may be diminished by the usual plan of using three pumps worked by as many cranks on a shaft regulated by a fly-wheel.
Now the new apparatus embodies a principle which renders the diver quite independent of the puisations of the air from the pumps. The supply of air to his lungs is in fact regulated by the action of the lungs themselves, just as the slide valve of a steam engine lets in the steam to the piston by the indirect means of the piston itself. The pressure of the air delivered is at that of the medium surrounding the diver, being determined in a selfacting manner, also by means of the apparatus itself. One while a lieltertion in whergits the diver to eary a wit or carry down with him, on his back, like a knapsack, and to a given
depth, the supply of air required for about half an hour without any connection with the pumps.
The following skeleton diagrams are intended to explain the principle of the apparatus divested of its practical details. Leaving out the pumps, the entire appuate by thanishing air to
the diver, in successive supplies regulated by action lungs, and at pressures mainly regulated by the action of the medium surrounding the apparatus, may be said to be completely

able leather, of a larger diameter. A self-tightening joint is plive formed on a somewhat similar principleto theordinary self-adjusting collar of a hydraulic press. It is seen that this joint allows the top of the cass to rise, as when the interior exceeds the outside pressure , and vice versa. The reservoir R and the air chamber B communicate by a small hole, closed by a conical valvo opening from above. This forms the air valve, and, similarly
in the centre of the apparatus, the self. adjusting cover carries a guided stem, the axis of which is prolonged from that
in then

of the air valve. The inhaling tabe \mathbf{T} takes the air from the chamber B, and with the mouth of the diver. At A is hich ophaust valve, side to the outside.
 of air, in communica-
or
pumps; of another vessel B, itself communicating with the reseroir by means of a valve; of a self-adjusting cover
The apparatus thus arranged gives out, as we shall show further n, a current of air at a constant pressure. The inhaling pipe T pparatus on his back, the compressed air keeps the conical alve on its seat. The cover of the air chamber has, above and below it, air at one atmosphere, and everything is in equilibrio. As soon as the workiaen has placed the breathing pipe T between his teeth (his nose being closed by any ordiary mans) he inhles portion of the air contained he plate: ${ }^{\text {a }}$ the in he plate cover. The stem, fixed to the cover, and thus pressing eservoir, then open, rushes forth into the chamber, then into the pipe, lastly into the lungs of the operator, and thus re-establishes he equilibrium. The action of respiration having ceased, the reservoir, shutting off the communication between the reservoir and the air chamber. The stem again forces up the plate, and so on. By, in fact, respiring from the tube T, the pressure of the air is diminished in the chamber B, the cover being pressed down, carrying with it the air valve, which opens and lets the air into the upper chamber. When the air is exbausted, the valve then opens under the action of the lungs and lets the air out
The different things with which the diver must necessarily be provided consist, first, of a "regulator," of the kind we have been describing, furnished with a breathing tabe, and also, if he has to communicate with the pumps, with a feed pipe; secondly, of an apparatus for closing ths mouth; of another for closing the nose ; lastly, of a pair of cast iro so water would be inconve ient to the divers, they are clothed in an india rubber dress with nient the divers, they are clold water, but withou, inyly dress can therefore get torn without any danger.
We will now describe these different parts more in detail. As we bave said, the principal apparatus, which we have called the air chamber. The air reservoir is made either of iron or steel plate, about three-eighths thick, in order to resist the pressure of plate, about three-eighths and to, at the same time, obtsin an apparatus of sufficient weight. The air is let in through a copper socket screwed in on the right hand side of the regulator, when placed on the back of the workman. This gland also carries a small valve, which can be closed by the inside pressure in case that the feed pipe from the pumps should get broken. The air chamber is cold-soldered on the air reservoir, and both are tinned inside to prevent rusting. It is also made with two holes, in which are respectively soldered the sockets for the breathing tube, and the valve through which it is exhaled. The air valve, placed in the centre of the air chamber, is the most important detail of the apparatus. It is made of aluminium
bronze, and it consists of several parts the valve seating, the valve and its stem, the spindle and its different adjarcts, shown in Fig. 3 .
The spindle of the cover at the top, intended to open the valve when the cover descends, and to allow its shutting when the cover rises, is evidently not always in contact with the valve. The covering plate has a narrow range of action, but yet rather longer than that of the valve; that is to say, when the valve rises up against its seat the plati can still also rise up beyona a determiby regulating the apparatus. It thus hap pens that when the air is being exhausted perativo this air begins by raising the plate from the lungs of the operativo the range the action of the cover ceases, and the exhaled air is forced through the air chamber out at the exhaling valve and into the water. By regulating the upward range of the cover the exhaled air, mixing with the fresh nir from the regulator, is breathed over a second time. It is found in practice that a considerable economy of air, unattended with any inconvenience to the diver, is thus obtained.
The solid brass seating is made six-sided, in order to take a crew key, and the inside is tapped for the seat of the valve itself; this small valve is conical, and ts seat is made with four slits at its base, so that the air gets freely under the mushroom. The spindle attached to the covering plate, and used to regulate the aiternative action of the valve, as we have explained, must necessarily exercise great infuence on the consumption of
the sir ; the screwed part of this stern spindle carries the cover. the air; the screwed part of this stern spindle carries the cover. The joint of the cover is generally made of very pure the plate by copper screws, and on the air chamber by means of a copper hoop, the segments of which are tightered by apparas finger nut. To the inbaling pipe is attached the apparatus for
closing the mouth; the air being inhaled passing through the centre of this mask. It is made of an oval plate of valcanised indiaubber, with two projections inside, which are to be seized by the teeth. The air could only penetrate into the mouth during the action of inhaling, but the external pressure itself applies the elastic substance strongly against the teeth and face, forming a her-
metic joint. The exhaling valve is made of metic joint. The exhalin
two thin plates of vulcanised india-rubber,
stuck together longitudinally, aud fixed to stuck together longitudinally, and fixed to one of the brass sockets in the air-
chamber. It is clear that the least effort f the lungs drives out the plates, thu aking a way for the air; but that, as soon
 the ellort ceases, the regulator thus composed is kept, like a knapsack. The whole
of the man by two india-rubber braces, so arranged that,

Fig. 6.
Nose Nipprss
(one-fourih
full size) two india-rubber braces, so arranged that,
by opening a single ring, the diver can, in case of His nostrils are closed with the steel nipper shown His nostrils are closed with the steel nipper shown in Fig. 6, the blades of which are faced with screw placed behind the joint. The two strings are tied behind the head, in order to keep the nippers from being lost should they chance to slip ottom of the water, it is necessary to attach weights (Fig. 7) to his feet. These soles are made of cast iron, weighing about 18 lb , each, and are fixed with straps, like skates. A spring heel-piece holds the
as on sole, so that, by pressthe man can disengage himself rom the weights withont stoopportance in practice. Lieutenant Denayrouse considers that the
 increased confidence thus given

themen is of great importance,

ane thereby afforded the Thus equipped with the single apparatus, clothed in a flannel dress as a protection against the cold, is quite reein his movements, and can instantly jump into the water to disengage a fouled screw or anchor, or to even stop up a hole made by a bullet. In less than a minute he can put on his
weighted soles, sling the regulator on his back like a knapsack, weighted soles, sling the regulator on his back like a knapsack,
and fix on the nippers for closing his nostrils. But in win ter, and generally in very cold climates, or when lengthy hydraulic works have to be done, the low temperathe may requir iver to be protected fro thas ans is is furnished with wristbands of pure vulcanised india-rubber; the ollar is The wristbands are tightened with elastic bracelets in a single piece, and the neck-band is fixed round the bottom of the mask with a copper collar kept by a single bolt. The mask of tinned iron is furnished with a strong piece of glass, through which passes the breathing pipe attached to the monthpiece. The man
thus breathes in the same way as if he had no dress ; but he must take the precaution of exhaling a few breaths of air into the mask, in order to place the air within it in equilibrio with the surrounding pressure. A small tap, fitted to the top of the mask, allows the diver to evacuate any air which may be in excess when
he rises in the water, and, therefore, with an attendant change in he rises in the water,
the extraneous pressur
As regards the capacity of the apparatus and the duration of pressures has a capacity of 8 litres, about one gallon three quarts. We the nir of the reservoir if it be not renewed, can be breathed by the diver till its pressure is lowered to that of the surrounding medium, or $1 \frac{1}{\frac{1}{2}}$ atmospheres. Eight litres of air at a pressure o 6 atmospheres represent 32 litres at $1 \frac{1}{2}$ atmospheres. The dive has thus at his disposal, before emptying the reservoir
$32-8=24$ litres of air ; or 30 respirations, of 0.8 litres. Th man under water has, therefore, a supply of air for two minute should the pamps cease to work, or the feed pipe get torn.
The reservoir of the high pressure apparatus can contain 35 litres, or nearly 7 gallons 3 quarts. If charged with 40 atmo spheres for a diver working under 15 metres, or 49 ft . of water, an we calculate on the same data, we shall find that he can uso This 25 itres, or more that This quantivy is sumer ping of 38 min . without it being necessary for the air reservoir to communicate with the pumps. This time can be still further lengthened out if the stroke of the cover b regulated in such wise as to
Such is the description of a bining remarkably ingenious and original features. In the con struction of its regulating apparatus is embodied the very tive movement. It is probably the first time that such a delicat organ as the lungs has been made to produce useful mechanic work of the kind. When the Rouquayrol regulator is in action panied with a corresponding rise and fall of the top plate, and the air bubbles formed in the water by the exhaled air rise with the regularity of a stop watch. The success of the two hundred appa ratus of the kind in the French and Dutch navies may be said tenant Denayrouse makes the following simple calculation in elucidation of the action of the regulator. When compressed air is let into the reservoir its elastic force closes the conical valve, and the pressure rises within this confined space. If we suppose weight K placed on the unity of surface of the cover, and that causes the valve to open, the compressed air will then rush int the air chamber, and, acting on the cover, will produce an effect tending to raise the weight K . Calling S the surface of the plate; s the surface of the conical valve; p the pressure in the reservoir ; p^{1} the pressure in the air chamber, then the mechanical
effort tend:ng to lower the cover is KS, and the resisting effort is There will be equilibrium when we have
whence
$K \mathrm{~S}=p^{\mathbf{1}} \mathrm{S}+p s^{\prime}$

It is therefore seen that if s be taken sufficiently small in relation to S-an easily realised condition between the two surfacesthere will be a pressure under the cover pretty nearly equal to that above it. If the air in the chamber be let out the pressure p diminishes, and the conical valve tends to open; but the air then penetrates under the cover and re-establishes the equilioriam. establishing a suitable relation between the weight K and the surfaces S and s . Substituting any numbers in this formula, it is seen that the air furnished to the lungs is almost exactly at the surrounding pressure, and that the action of breathing therefore occurs without effort; the lungs, in fact, only receive the exact quantity of air they require. In this calculation the weights of their low am can be at once seen, have been omitted on account ing of the apparatus.

According to the pressure of the air employed there are three kinds of the diving apparatus we have been describing. The aressure not exceeding 6 atmospberes. The medium-pressure
apparatus holds a supply of air compressed in advance to
pressure of not more than 20 atmospheres; while the high pressure reservoir contains a supply of compressed air at from found fo atmospheres. A practical means had thus to be pressure of from 30 to 40 atmospheres. The pumps employed by the inventors for these purposes embody several original features. The
 8) are fixed, and it from the beam which compress the air at tions. By this means covered with a layer of water, which is
found to prevent leakages, even under considerablepressures; water also keep the
air, which is obliged to pass through them, from being heated. A linders, worked by two men. can furnish two divers, working inder six metres of water, with sufficient air. The pressure gauge placed in the T-pipe is marked wre heby enabled to at once the depths. The men at the pumps are hereby enabled to at once ascertain the minimum pressure for the diffcrent depths of water.
With the high-pressure apparas a sompensateur by the inventors (Fig. 9). With one of these pumps Lieutenant Denay-

640

 tue Cohprasatima Comprashos Pupp, witi Fova Workixg Barrela

rouse states that 300 gallons of air can be compressed in from ten seldom, if ever, before obtained in practice. Four - a result but in the high-pressure machine. The first takes the air from the atmosphere; the second exhausts the air from the top of the first and so on in succession till the fourth. A little water pump, also worked by the beam, completes the arrangement. It takes the water from a backet, and sends a small quantity at each stroke of the beam to the piston of the first pump, as is seen in the figure. 3 atmospberes by the first eylinder, has its pressure carried to 6 atmospheres in the second; while the third cylinder raises the pressure to 16 atmospheres ; and lastly the fourth, exhausting frcm the third, furnishes air at 40 atmo spheres. As seen in the plan, the four cylinders are placed at such a distance from the centre beams that the effort exerted is the same at each end. By the use of four cylinders, instead of through the strobs The water from the little pump is also conveyed by means of the stream of air through the whole system, forming every where water joints against leakage, and keeping the air from getting heated. The fourth pump is in fact found to be as cool as the first.
The above account is mainly extracted from the work of M. Denayrouse, who appears to have brought the invention into a working shape, and that of M. Horesu. The latter states that he witnessed a man, with the apparatus on his back, swim and dive as if quite free. The additional weights and soles, tending to keep his body at the bottom of the water, were taken oif him, and the air reservoir, suspended from its ord on the kilogramme mora than the water it displaces. This excess of weight does not prevent the man's swimming, either on his belly or his back, but it suffices to lower him slowly as soon as he ceases his movements, and brings his arms close to his body. The foremost, rising up almost as easily as if he carried nothing. In the water where the experiments were conducted, which was six metres deep, he; was able to descend and remain at the bottom, Many experiments were officially tried in the Imperial Navy
before the present large number of these apparatus were ordered The report of the commission which, on board La Gloire, carried in the Imperial Navy, states that the apparatus "allow all sub marine works to be carried out with as great facility and security "as possible." It is further observed that Rouquayrol's apparatus does not require special divers as the "premier venu can use without any previous teaching. Similar opinions are expressed in the report made on board the frigate La Themis, with the additional remark that another of its advantages is the great simplicity of the apparatus, as, when the temperature allows it, the diver can tion, was tested with the port of Brest, and in which the apparatu favourable results. The members of the Brest coled to similarly that "the use of signalling for regulating the quantity of air not required. The pump itself may even be worked ity of air is and at intervals; it may even be demaged without crusing any danger to the diver, and without its being noticed by him With the ordinary diving apparatus it is indispensable that the covement of the pump be continuous and very regular, and "this result can only be attained in experienced hands." The conclusions arrived at by the Cherbourg commission are, that the diver, at whatever depth he may be, always inbales air at the pressure of the surrounding medium. The quantity he requires
is regulated ty the pley of his own lungs, independent of th. more or less continuous way in which the men at the pumps may breathing of the aner takes adace rege is that as long as the breathing of the aiver takes place regularly the bubbles of air rise and break up at the surface, and at sensibly equal intervals of time. Should these intervals be considerably increased or of the driver, the non-arrival of the air bubbles shows theathing not breathing, and that he must be at once taken up. On the contrary, with the ordinary apparatus, whatever may be the bodily state of the diver, the air is always escaping from the valve of the helmet. This advantage of the new apparatus is of considerable weigbt, as it can but greatly increase the con"fidence shown in it by all the men who have used it under water. They also observe that the lightness of the dress, used as a protection against the cold leaves more freedom to the movements of the submarine operative. These reports are all exceedingly interesting, and it each are most minutely and scientifically described apparatus.

THE PATENT JOURNAL

Condensed from the Journal of the Commissioners of Patents.

Grants of Provisional Protection for Six Months.

 stuffing box."-Petition recorded Foorneaux, Paris, 7 June, 1865 . (mprovements in checking or controlling the paymenswater, London and other public veheckeling or costrolling the payment of fares in cabJo-eph Leib, Boulevart Magenta, Paris. - Petition from Recorded Becker 4 th Augus 2039. Joix Petars, Jun., Rochdale, Lancashire, guat, 1865 .
 minm inm

 , miaw

 ments in the manafacture of bricks and other analogous materials,"
73 . RORER MACISTYRE CAMEROS and DUNCAN CAMRROS, Edinburgh, Mid-

 construction of compound cylinder, engines."-A communication from
Mathew Murray Jackson, Zurich, , Switzerland.
2593. JULUS HoMAN, The Grove, Camberwell, Surrey, "Improvements in 2593. Julus Hosas, The Grove, Camberwell, Surrey, "Improvements in
the construction of wrought iron girders."-Petitions recorded 7 th
October, 1865. October, 1865. Walssusx, Liverpool, " Improvements in apparatus for
2507. ReBkRT Wind
mangling and callendering."
2599. Tuouss Murs, Queen-street, Finsbury, London, "Improvements in
the manutacture of scent and smelling botles,"

 2611, MARK WALKRK, Mad Maneld, Nottinghamshire, "Improvements in
fyers used in doubling machines."

 or for other purposes,",
2621. MicuAKL HEsRY,

Invention Protected for Six Months by the Deposit of a

 lassachosetts, U.S." "Certain new and useful improvements in shirt
collars and bosoms "- communinatation from Celius Edgar Richards.
North Attleboro", Massachusetts, U.S. - Deposited and recorded 1:th
October, 1865.
atents on which the 8 tamp Duty of £50 has been Paid.
2804. Hexry Wickess, Tokentinose Yard, Bank, London.-A communic

2871. Jonn CLARK, Buchanan-street, Glasgow, Lanarkshire, N.B.-Dated
20th October, 1862 .
2834. Jous THOMAS COoks, Lelcester.-Dated 21st October, 1862.
2838. Gzoros Haskitise, Fleet-street, London.-A communication.-Date

tion.- Dated 4th November, 1862.
2854. Jous TURNBULL, Barnard Castle, Durham.--Dated 23rd October, 1862.
Patents on which the Stamp Daty of $£ 100$ has been Paid.
2321. Charles Wgst, Mornington-place, Camberwell New-road, London.-
Dated 18Lh October, 1858 .
2332. ALEXANDRR ALLAN

Notices to Proceed.
1441. Thomas Hallis Hoblys, Rickling, Essex
144. Thomas Hallis Hiotirs, Rickling, Etsex, "A new or improved
compound spherical rest for ornamental turning lathes." - Petition rcerded
 stuffing-box."- Petition recorded 7th June, 1865, "Boskl, Rue St. Appoline. Paris, "A new or improved
588. GAKTEx
method of obtaining or producing optical illusions." method of obtaining or producing optical illusion
1589. Georos Sperour, Collingwood-street, City-ro proved machine for curling or curving coilary and cuffs." An im
593. Writias JAMRS HIxos, Bayswater, London, "I permanent way of railways, and in locomotives applicable thereto."-
Petitions recorded 12ih June, 1865,
 Loose, near Maidstone, Kent, "Certain im
employed in and for the manufacture of paper.
600. CEAARLEs JAMEs Comer
 improved artificial fuel." - Petition recorded 13th June, 1865 .
COO6. CHARLEs De VENDEUVR, Caversham-road, Kentish Town, London,
"A new or improved apparatus for the purpose of stopping and easing
 sos, SN. GYoorges, Bloomsbury, London, "Improved arrangements for
opening and shuting carriage windows." hot Hzary Orison, Chelsea, Middlesex, "Improvements in multitubular
hot 624. Puiskas Lawrgicg and Gooros Jeryzrys, New York, U.S., "Im-
provements in copying preses." provements in copying preses.
1625. Joux HARTLIT, Otley, Yorkag
Petitions recorded 15th. June, 1865.
628. McCHAKL HzNR, Flieet.s.sreet, London, " Improvements in the method
of and apparatus for effecting and recording telegraphic
 6r3, Wighus Trevor WAxKLYs, Manchester, " Improvements in silk
winding machinev, part of the said improvements being aleo applicable
to eleaning and doubling machinev,"-Petitions recorded to cleaning asd
in. Avevs K Kusis, Brldge-street, Blackfriars. London, "Improvements in gunpowder for mining and war purposes.
Gustav Adolph Neumeyer, Dobitz, Saxony.
1637. Walitr Howes and Willias Burley, Birmingham, "Improvements in lamps for railway and otther carriagees, and in connecting lamps to
carriages, a part of which improvements may also be applied to handles for carriages,"
C3s. Grooroz PAyxs, Belmont Works, Battersea, Surrey, "Improvements in purifying cotton seed, ill", " Improvements in hydraulic motive power machinery."-Pettitions recorded 17th June, 1865 .
p63. Emik Dupory . Fayt Ironworks, Belgium, "An improved system of

 Coxon, Long Hedge-lane, New Sneinton, Notingham, " Improvements
in twist lace machines", Petition recorded 28th June 185.
 bobbins, or other similar articles "-Pctition recorded Sth July, 1865.
in91. JoskPII WIISos SwAs, Gateshead, Durham, "Improvements in the
proter production of printing surfaces by photographic "agencrovements in the
ing prints therofrom." Petifion recorded 6et July, 1855.

1865. Georar baldwin Woodrurr. Cheapside, London, "Improvements in
the construction of binders for sewiog machines."-Petition recorded 4th
 apparatus for adjusting levels and other instruments,"-A communica-
tion from Carl Johann Reinhart Jahns, Berlin, Yrussia.-Petition record 9th August, 1885.
 Avguat, 1865.
OSS WHLLAM BUsokr, Southampton-buildings, Chancery-lane, London, Apparatus or means for ascertaining the quaity and condition of grain
and sed."-A communication from Cristian Joseph Schmitz, Raeren,
near Aix-la-Chapelle, Prussia- Petition recorded 14th Aupuut, 1865.

432. Wilias Tursgr and Samurl Shore, Tunnicliffe Mill, and WilhisM
Haluwkle Rochale, Lancashire, "Improvements in cards used in
cariling engines and other similar machinery"-Petition recorded 23 rd
 Boston, Massachusetts, U.S., " "Certain new and useful improvements in
shirt collars and bosoms." Manication from Celius Edgar
Richards, North Attleboro", Massachusetts, U.S.-Petition reconded 12th
Oetober, 1865. And notice is hereby further given, that all persons having an interest in
opposing any one of such applications, are at liberty to leave particulars in opposing any one of such applications, are at liberty to leave particulars in
Writing of their objections to such applications, at the said office of tbe
Commissioners, within twenty-one days after the date of the Gazette (and Commissioners, within twenty-one days after
of the Journal) in which this notice is issued.

** Specifcations will be forwarded by post on receipt of the amount
of price and postane. Sums exceeding $5 s$, must be remitted by Pots.
office Order, made payale at the Postofice, 5 , High Holborn, or Mr.
Benuet Woodcroft, har Majesty's Patont Oflice.

ABSTRACTS OF SPECIFICATIONS.

The following descriptions are made from Abstracts prepared expressly for
TaI Exainker, at the oflce of her Majesty's Commissioners of Patents.
Class 1.-PRIME MOVERS.
Including Fixed Steam and other Engines, Horse, Wind, and Water
Mills, Gearing, Boilers, Fittings, $\ddagger \mathrm{cc}$. 05. J. Piscribeck, Reading, "Engines worked by heated air or gases." The objects of these improvements are to effect greater economy and to
increaso the power obtained from engines in which atmospheric air and gases are exploded inside the cyllinder by means of an electric spark, or by
any other method. To carry out this invention the inventor connects tho any other method. To carry out this invention the inventor connects tho
exhaust or discharge pipe of the cylinder with a condensing chamber in a
similar manner to that employed in ordinary condensing steam engines. similar manner to that employed in ordinary condensing stean engines.
The heated ani is condensed in the chamber ry a j jet of cold water, nad by by
this means a vacuum is produced in the cylinder ; the ordinary air pump is this means a vacuum is produced in the cylinder; the or
used to discharge the injection water.- Not proceded woit

Herch, 1865. Tnstead or placing fire-bars in the flue or flaes for supporting the fire, the
patentees employ hollow fire-box, having in in any convenient number
of vertical tubes, open at the top to the fire and at the bottom to the ash
ho hole, the said tobes being round, rectangular, or of any other suitablese aphe.
To the said fire-box and boiler they connect pipes through which the water oill pass into the firc-boox and circulate therein, so thate the heated surface
of the,fire-box and exterior of the vertical tubes sall give add of the fire-box and exterior of the vertical tubes shall give additional heat to
the water, and at the same time keep the box at a lower temperature than the water, and at the same time keep the box at a lower temperatuye than
the ordinary fire-bars, and thereby prevent the clinkers from sticking.
They also place one or more movable metal heat spreaders bel ind the They also place one or more movable metal heat spreaders beli ind the
bridge, and in the back part of the flue or flues, in order to cau-e the heat and flame to radiate and impinge upon the inner circumference of the flue
or flues, and in order to cmable the beat spreaders to cause as litte ohstruc.
tion as posible thoy make their surfaces facing the fire of a spherical or

Clas8 2.-TRANSPORT

Including Railways and Plant, Road-Making, Steam Vessels, Nfa-
chinery and Fittings, Sailing Vessels, Boats, Carriages, Carts, chinery and
Harness, $\dot{\text { fo }}$.

In carrying out these improvements the patentee casts tha steel in a being formed by a plate, upon which he rests or securgs the mould moox
which is of such shape in its interior as to form a casting resembling a soidd railway wheel with a part atteched to one side representing tio axle at the
outside of the wheel, which is placed in a vertical position in relle plate forming the bottom of the mould. That part of the mould box orming the upper side of the tire as it is cast is coned from the part forming
the periphery of tho tire to the vertical stalk representiog the axle, which cone form of the mould allows a f free escape for the ang or axases when
casting, and gives the casting an additional thickness to allow for the con solidation of the metal in the subsequent process.
representig the axle extends he casing head to the molten metal when poured ine tire, so as to give a head in coasting, but forms the part where the shriokage of the metal will
occur called piping, but as this stalk need only be made use occur called piping, but as this stalk need only be made use of to facilitate
the proces of mannfacture, and is subsequently removed, that portion of
the castiog intended to form the tire is as sound of steel. The casting thus madd is is as sext heated as a casting can be made
stalk a handle may be secured, by which the intended tire cand to it lated, the edge or periphery, of which is brought between swazase of a
suitable form, acting by pressure or percusion, so as to consolidate the metal. The casting is then placed upon a flat block or a swanse of s sitable
shape, having a hole in its centre to receive the stalk, and is consolidated
hy another flat surface or swage by pressure of percussion, then a punch is brought upon the centre of the part of the metal to which the stalk is is attechene percussion, or the stiving out that
or bored out and the be turned 895. G. GRERKIIII, Hapurheypleted in the usual manner.
in connection with raileway hoists." "- Meted Shanism Jor propelling wagon This invention relates to transferring the wagons or trucks from the
permanent way of railways to the platform of the hoists employed in con permanent way of railways to the platform of the hoists cmployed in con-
nection witin such permanent ways, and consists in the employment and uection witn such permanent ways, and consists in the employment and
use of drums and pulleys supported in suitable bearings fixed to the side
of the hoist, and driven by the engine working the hoist, or with engine; these drums have coiled round them ropes or chains which pas
round pulleyn or blocks fixed at suitable dita arranged so that, by coupling the ends of the said ropes or chaiss to the
wagoous or trucks, they may be drawn along the rails and transferred to the plat form of the hoist, or vire versa, by coupling the ends of the ropes
the truck or wagon; whe placed upou the turniable it is reversed in orde
that it may that it may be transferred by the aforesaid means to the platform of the
hoist. The drums or pulleys round which the ropes or chains are coile
are shaft.-Not proceeded with. 916. G. R. Stephesson and G. H. Pmpps, Great George-street, Wistmingter,
"Contruction of locomotive engines and railivay carriages for factitating their passages round curves."-A cons. Dated 31st March and framing of locomosists of such a combination of the axles, axle boxes apy of the axles of such engiues or carriages to which the invention may t of any carved portion of railway on which the saide enginee or carringes may
be working, and thus facilitating the passing round such curve. This object
may be working, and tisus facilitating the passing round such corve. This objec
may be accomplished by conneeting the axxe boxes to the side framing o
any engine or carriage by means of radisl links so placed that whenev
through through the action of the curve the axle, and with it the axle boxes, undergo
any end-on motion with respect to the frame, the axle is also forced by th any end-on motion with respect to the frame, the axle is also forced by the
action of the radial linkp to undergo the requisite amount of angular
motion to plant it at or near to a direction radial to the curve of the rail-way.-Not proceded with.

923. R. A. Brooman, Flect-strect, London, "Strcet railioays." - communi cation.-Dated 1 st Apri, 1865 .

a curved under side, adapted to and rest rails of an iron bar formed with surface of a sleceper, the rail to and resting upon a corresponding convex
nith standing sides or edges, being s.ectionalth a curved upper surface thickerin the middle than at the edges, and sufficiently strong where the wheels run upon the rails, while the thitner and slantink sidesg or edgere the
only sufficiently thick to guide the wheel flanges, and form a cap to protect
the sleeper. When laid upon the sleeper the rails are to be secured
the rail becoming imbedded in the aleeper, and both the rails and the joint
plate direct of any water that fals son the rails, thereby keeping the upper
sarface of the sleeper, as well wat the portion under the joint plates, as dry
as possible.- Not proceded with.
930. P. Hakslsis, Wobura-place, Ruseellenguave, London, "Navigable
 Vot proceded wihn. Aprii, 1865

This invention can

Class 3.-FABRICS.
Including Machinery and Mechanical Operations connected with Preparing, Manufacturing, Printing, Dyeing, and Dressing Fabrics, ${ }^{\text {co }}$ c.
887 . E. and F. A. Lxiou, Mancheater, " Apparatus wed in carding cotton 887. E. and F. A. Lxiou, Manchester, "Apparatus wed
or other fibrous substances."-Dated $29 t h$ March, 1865.
889. R. HoLroyo and J. H. Botron, Mancheater, "Apparalus for drying Trarps of cotton, de."一Dated 29th March, 1865
to their surface during their paysage over ollere, op whilie in mothion in the
manner described. Secondy, the novel arrangement and combination of the ceambers, heating apparatus, flues, and rollers for effectligg the said
object, as described.
901. A. TurssR, Leicecter. "Machinery for voinding yarns or threads on to
Thills, spools, oond obbins."- Dated 30 oth March, 1865.
The patentee claims, First, the mechanical arrangements shown and The patentee claims, First, the mechanical arrangements shown and with uniform tension. Secondly, the mechanical arrangements described for winding taper or conical bobbins, whereby the thrad as it is wound on
to the bobbin is made to cross and reecros, and thus to lock each previous
layer of thread, which will thus be prevented from falling off the bobbin layer of thread, which will thus oe prevented from falling off the
or getting entangled, but can be drawn off with ease and regularity.

The object of this invention isto dispense with the emery beam, and consists The object of this inventionisto
in using an ordinary woon beam or roller on whithe the cmery beath, is and consen up as
it us woven, and to prevent it slipping the patentee arrunges an apparatus
to cause an additional rod to press upon the beam or roller, and thus keep
uo to cause an additional rod to press uppon the beam or this ro adjust itself to the
it in a tiant and regular position, but to allow this
increasing diameter of the cloth as it is taken up he attaches a rod to the
iforesid apparatus, and connects it by a slide to another apparatus in the aforesaid apparatus, and connects it by a slide to another apparatus in the
framing of the loom. Part of hisa
ing opparatus consists of two brackets resting on a frame or lever, and having each a slot which clips a rim wheel,
and are kept up to their phaces by springs. As the cloth increases in
diameter, the rod opon it rises and the other rod in depressed, so as to give a gradually diminishing stroke to the frame or lever which carries the
slotted brackets, and gives a gradually decreasing speed to the taking-up
motion. Maylt, J. Kxort, and W. Dexsis, Moreley, Lancashire, "Mules
919. W. Mpyil,
F for spnning cotion, dec."-Dated 1et April, 1865 . This invention relates to certain mechanism in connection with the head-
stock of the mule, and is designed to prevent the exesesive strain upon the driving strap gearing and bands of the mule during the time the backing-
off frictional gearing is coming finto operation, by which means the wear off frictional gearing is coming into operation, by which means the wear
and tear of the said parts is diminished. The improvements consist in a
novel construction and arrangement of mechanism for effecting the said purpose, which mechanism consists of a discr revolving in bearings securred
to the head-stock of the mule, and provided with an adjustable stad or pro-
jection, which, as the disc revolves, comes into contact with and forces back oue eud of a bell-crank lever, the opposite end of which becomes raised and
gives a vertical lift to a sliding pate. This siling plate before being lifted gives a vertical lift to a sliding plate. This sliding plate before being lifted
is interposed between the stud which actuates ihe mechanism of the back-
ing-ff frictional gearing and the lever of the frictional gearing, so that, ing-ff irictional gearing and the lever of the frictional gearing, so that,
while interposed, it prevents the said geariug coming into operation too
soon, so as to prevent the excessive strain ; the said gearing should not operate until the run out or'forwardaction of the mule carriage is complete,
at which time the sliding plate is inted dy the aforesaid meenanism. which
thus aliows the backing off irictional gearing to come into operation. - Not

In carrying out this invention the parts or the apparatus are so combined
that a number of supports carrying runners and spindies for winding on are
each set at an equal distance from a common centre upon or attached to a each set at an equal distance from a common centre upon or attached to a
circular tabie or frame. Arms carrying spindles for revinding are also
attached to the same table, and so arranked that, while the silk or fabric is in process of winding from the skein, the same action and roller set in
motion the spindles tor re-winding. Sinultaneous motion to the whole of
the winding and re-winding rumners and spindles is given by a treadle and the winding and re-winding rumners and spindles is given by a treadle and
crank in connection with a Dand wheel carrying bands to the rollers; the axis of the band wheel turns in the centre of the circular table or frame.
A wheel carrying a regulator to each winding spindle is placed under the
circular table or frame, and action given to the same by cog wheels and a circular table or frame, and action piven to the same by cog wheels and a
cam connected with the axis of the band wheel. The circular table carrying
the runners and spindles is made to revolve and turn upon castors or the ramners and spindles is made to revolve and turn upon castors or
rumners attached to a stand supporting such circular table.- Not proceded
A. W. PgARCF, Dundee, "Looms for weaving."-Dated 1st Apri, 1885.
invention reiates to a certain new arrangement of the parts of looms used for weaving which are employed to give motion to the pick stick,
wherey the shutte is caused to triverse the wap. The chief part of the
arrangement consists in causing the cam, whereby motion is communicated arrangemekt stick, to move the conical roller in a direction the reverse of that to the pick stick, to move the conical roller in a direction the reverse of that
at present employed. The shaft upon which the cam is fixed sioves or
revolves in the same direction as formerly, but the hhaft carrying the
friction roller upon which the cam or tappet strikes is arranged on the friction roller upon which the cam or tappet strikes is arranged on the
reverse xide of the cam, the reciprocating motion of the cam being thus communicated lirect to the apper side of the roller. Instead of this frietion
roller upon which the cam or tappet strikes being 6xed upon the vertical
shaft, by which in existing arrangenents of picking motion the notion of
the cam is transmitied to the pick , tick, it is is in the present arrang ment shaft, by which in existing arrapgements of picking motion the notion of
the cam is transmitied to the pick stick, it is is the present arrang ment
attached to a short reciprocating shaft, this latter being connected by a link attached to a short reciprocating shaft, this latter being connected by a link
to a short crank on tbe picking shaf, by the intervention of which t.e
motion of the rod and picking movement takes place in the same direction
as formerly. as formerly.

Class 4.-AGRICULTURE.
Including Agricultural Engines, Windlasses, Implements, Flour
Mill, gic. 898. W. SAvonr, Gloucester, "Treatment of meal and the dreasing of flour."
Dmated 300 March, 1885 . ths purpose of cooling and maintaining the grain and the meilowing:- or orther
form of produce resulting from the process of grinding, cool, and so in the Torm of produce resuing irom the process of grinding, cool, and so in the
best condition for being economically manufactured, the patentee, instead
of making the metal casings of millstones of a single thickness of metal, makes a hollow or double casing for the purpose of containing water, which
be causes to circulate therebrough, and thereby the heat generated
 discharge pipes to cause the water to circulate round or through it, so that
when the meal iswues from between the stones it shall spread over the when the meal issues irom between toe stones it shall spread over the
upper surface of the ring. A brush ified on the runner stone to sweep
off the meal into the epout or shoot. In order to further carry out the heat-bbstracting process, instead of allowing the meal to be canvened from
the grinding stone or cooling rivg oiriect to the botter, he conducts it
by a suitale spout into a double or hollow trough, or a double or hollow
cylinder or tabe, which is so constructed that cylinder or tabe, which is so constructed that a flow or carrent of water
can be established therethrough, and may be fitted with a screw motor,
the threads of which may be cast or formed hollow around a hollow shaft the threads of which may be cast or formed hollow around a hollow shatt
or axis, through both of which a current of water may bo caused to pass it
any required velocity. Other means of carrying the meal along in any required velocity. Other means of carrying the meal along in
with the cold surfaces may be substituted for the worm or screw. 925. W. Gray, Shpheld, "Rolling or forging stet or werought ivon in bars
to be weed as beuteri or beating bara upon the drums concaves, or breast
plates of concaves in threehing machines."-Dated let April, 1865. Thates of concares in Uhrenhing machines. -Dated lat April, 1865 . iron by rolling or forgivg, thereby producing a much superior article in
toughnest, besides beigg barder, lighter, and stronger, and of much greater
durability than those which are now in use, which are merely cast;
in groving or fluting the suafsaces of such rolled steel or wrought iron
barr, as shown in the drawings, - Not proceded with. 927. R. Wiluscy, Pewwortham Pricory, Lancastor, "Apparatus for pre-
paring and anpplying food for cattle,"-Dated ist April, 1865.
This invention relates to a peculiar combination of machinery or appaThis invention relates to a peculiar combination of machinery or appa-
ratus for preparing and supplying food for catte, whereby a large numper
of cattie way tee fed with any particular quantity of food in a short space
of time. According to this invention it it proped ratus for preparing and supplying food for cattle, whereby a large numper
of cattie may be fed with any particular quantity of food in a short space
of time. According to this invention it it is proposed to combine a turanip-
cutter, or an oil cake or corn crusher or bruiser, or other like food proparer,
witha a wagon running along trams laid down inside the cattle shed. The with a wagon running along trams laid down inside the cattle shed. The
main swafo the tood preparing mechanism communicates by gearing with
one of the oxles of the wagon, so that on driving this shaft, in order to cut
the roots or otherwise prepare the food, the wagon will be simaltaneously
caused to travel along the trams. Along the side of the tramway there is
placed a feeding trough of a peculiar construction extending along the
entire length of the cattle shed or bouse; the back of this trough is made entire length of the cattle shed oo house ; the back of this trough is made
considerably higher than the front, so as to form a species of continuous considerably higher than the front, so as to form a species of continuou
shoot for directing the prepared food (which falls from the machine as it
travels along) into the bottom of the trough. The trough, which is of an travels along) into the bottom of the trough. The trough, which is of an
angular section, and may be usefulty employed irrespective of the machine
in some cases, is thus supplied with a regulated quantity of food distributed in some cases, is thus supplied with a regulated quantity of food distributed
easily from end to end. A rail is placed in front of the cattle and along the
side of the tramway, a little above the floor, to prevent the cattle bringing
their heads within the rang of the meln side of the tramway, a nitule above the floor, to prevent the cattle bringing
their heads within the range of the machine's coure, but at the same time
allowing sufficient space underneath for the cattle to feed out of the trough conveniently.- Not proceded with. Norsich, "Apparatus applicable to ma-
934. R. R. Riches and J. WATTs,
 mode of conninecting them. One form of knife or cottter interded to be used
has a cutting edge of a V form, or the lines of such cutting edge may be curvilinear instead of straight, and the knive or knives is or are mounted on a drum or carrier, the axis of which is at right angles to the line of
direction in which the material to be operated upon is fed through the
mouth of the machine ; the edge of the drum or knife carrier being thus presented to the mouth of the or machine, kniver wnith strarrier being instead of
putar cutting edges my also be used on a drum or carrier mounted in
angla angular cutting edges may also be used on a drum or carrier mounted in
the manner stated, and such knives may be fixed on the periphery of the
drum or carrier, either parallel with the axis of the same or thereto. The mouth of the machine is curved to suit the curvature of the
knife or knives. The drum or knife carrier may also be mounted wit knife or knives. The drum or knife carrier may also be mounted with it
axis at right angles to the line of direction above stated, when knives with the angular catting edged referred to are used. The invention relates,
the Second place, to the feeding apparatus, and consists in the use of
suitably formed cam fixed on tho axis of the drum or knife carrier, whic cam is caused by its revolution to act alternately on two friction rollers
which are mounted on a slotted connecting rod, the other end of which rod is connected to a pawl attached to a slotted lever working loosely on the
axis of one of the feeding rollers, on which a toothed wheel is fixed. The extent of movement of the pawl over the a toothed wheel is regulated by
shifting the end of the rod connected to the pawl nearer to or further from the axis of the feeding roller; and the pawl is double, so as to admit of ite
being turned over in order to work the ratchet wheel in the opposite diree-
tion when required. The invention consists, in the Third place, in the tion when required. The invention consists, in the Third place, in the
adaptation and application of a spring to one of the feeding rollers, or to the pressure plate, 年r the purpose of regulating the pressure on the man-
dril under operation as required. And the invention consists, Lastly, in
the adaptation and application the adaptation and application of a rotary screen of perforated wood or
metal over machines of the kind referred to, in order that long screenings
may fall may fall from the screen into the box of the machine and be
without the necessity of hand labour.- Not proceded with.
and and House Fititing, Warming, Ve, Thiluta, Draing Pipes,

 For the purpoere of tuis fivention bricks arofrat tormed by expresing

 to cuse il compleity to fill the molld.-Not proceded with.

illing the cup with shot. Projectiles and cartridges for or
in the manner hereinbefore described, but of a larger size.
Class 7.-FURNITURE AND CLOTHING,-None.
Class 8.-CHEMICAL.
Including Special Chemical and Pharmaceutical Preparations, Fuel
and Lightiting Materials, Preparation and Preservation of Food,
Brewing, Tanning, Bleaching, Dyying, Calico-Printing, Smelting, Grewing, Tanning, Bleaching, Dying Calico-Prin
Glass, Pottery, Cements, Paint, Paper, Manures, gc.
872. W. WALsi. Warrington, "spparatus employed in the concentration of
all solutions where quick or spedy concentration or evaporation is required"-Dated 28ih March, 1865.
This invention relates particulariy, to the manufacture of caustic sods
and potash, carbonate of soda and potash, chloride of sodium and potasxium, and potash, cirbonate of sodiand andytash, ehloride of osodum and potasxium,
or similar alkalies or acid solution, in which a quick concentration or
er evaporation ur essentialy necessary; but it is also applicable to ali soiutions
where a quick or spedy concentation or evaporation is required. For
this purpose the inventor places or fixes an agitator of any suitable construction in the pan or vessel in which the aforesaid alkalies and acid
solutions are required to be concentrated or evaporated, and be gives a
revolving motion to the sald agitator by placing or fixing to it a puiley to
revelvel revolve inside tho liquor or solution, over which pulley he passes a chain,
and extends it to a pulley on the line shaft above the pan or vessel. Ho
thus avolds the necessity of a cross shaft and stuffong-boxes outside the pan 874. A. D. Gascos, Paris, "A new febrifuge and digestive clixir."- 4 com-
munication.-Dated 2 sth March, 1855 . This iovention consists in the composition of a liquor which the patentee socotrine aloes or aloes pertollated; becondly, three drachms of zedoary,
thirdy, three drachms of
fithly Reventhly, three drachms of of theriaciacs. The whole is purachms of rhubarb;
infuse about fifteen days, when it is decanted and kept and left to
in 880. E. SAvaser, Wat Meriden, Connectiout, U.S., "Hardening and tempering
steel."- Dated 28 (h March, 1865 . This invention consists in the employment of solutions in which to
immerse the heated steel which possens a very high degree of conducting
character for heat, so that the utmost rapidity in the cooling will be character for heat, so that the utmost rapidity in the cooling will be
attained, for in this the trae theory of the operation appears to be involved.
Tbe patentee has discovered that metals having the greateat conducting power for heat, and which can be held chemically in solatetion, constitute
those solutions media, whereby results may be atained in hardening stel which have hitherto been whoily unattainable. Thus, he employs solutions
of sold, silver, copper, and otber meala, and the resuls obtaned are in the
direct ratio of the respective conducting powers of the metals and the
apecific gravity of the solution. 892 'R. Cullds, Jun., Putney, "Treating fatty matters,'-Dated $296 \hbar$ March, 1865.
In carrying out this invention the inventor submits the solid or semi
solid compounds of fats and lime produced in the saponification process to
 various waye, viz: - First, by arawing a current of superheated steam
tranough the mass of lime soap when the saponification has been effected in
an iron or other suitable evesel having a closed lid or cover, and when the
water used in the saponification has been withdrawn. Secondly, by placing the lime soap in one or a set of iron or clay retorts properiy set in
furvace, and there subjecting it to the furnace hea.. The presure pro-
duced by the vapour of water set free from the compound by the beat may be reguatod by a proper safety valve in connection with all the retorts in
operation. Thirdly, by placing the lime soap in an oven or reverberatory
furnace properly constructed, and there heatiog it to the temperature
desired. Not procieded 893. W. M. Foutre, Wotverhampton, "Reducing or preparing warte
animal matters for the purpose of employing te sand in the preparation This invention reates to the treatment of shoddy, woorlinen rags, leather,
or uther kinds of animal refuse, with a view to disintegrate the same, and
render it enaily reducible to powder, that being the form in which such nimal refuse is best adapted for use as a fertiliser. This result is accom-
plished by the deetruetion of the fibre without the use of acido or alkalies
which are usually employed for the purpose. The patentes attains lhis
object by employing solely superheated steam brought into direct contact
with the materialt to bet 899. W. Brookes, Chancery-lane, London, "Improved mode of rapidly
veducing, cementing, and melting iron and othe ores, allos slag or The object of this invention is to produce mallenbie iron Mar steel or or cast
iron directy from any kind of pulverined ron or other ore, and also from
iron slag, cinders, scoria, crust scales, oxidised cast or malleable iron turnings, or the residuum of pyrites. According to this invention the said
iron ore, sliak, cinders, or other maties, is first pulverised fine, and is then mixed with lime or oiner suitable flux. To this mixture is added pulverised
coal or charcoal, tar, or other carbonaceous matter, and when well mixed
together the mixture produced is reduced in a reducing or coll Urnace, either in a powder or after having been compressed, and when
reduced is introduced into a heating or melting furnace containing melted neutral or furnace slag or cinders, or slag obtained from the matters above
mentioned a aready melted by this proceess, and in a liquid state. The
cementing or reducing furnaces in which the reduction takes place are
situated on the side of the heating or melt furnaces containing retorts heated externalily and ind inclined towards the heating or melting furnace, so that the contents of the said cementing
furnacs may ready pass into the heating or melting furnace, or the
cementing furnaces may be formed with several compariments one above the other, and heated both above and below the soles. The melting or
heating furnace is of ordinary construction, the sole thereot being divided
into a aerics of crucibles or cavities, arranged beside the reducinz or cement. ing furnace, so that one of the said crucibles or cavities may receive the
recuced matter from two or more of the cementing furnaces; the said
crucibles or cavities contain meited neutral slag, or slag obtained from furasees or from matter already melted according, to this invention, in a
unelted state. The pulverised iron ore, cinders, or slag, mixed with a
suitable flux and charcoal, or other carbonaceous miater cementing furnaces, and is spread upon the sole thereof. It is left in the compartment of the said furvace, and is inspread over the soler of the said
lower compartment, and when sofficiently reduced it is pushed through the crucibles containing neutral or formelting furnace, where it fallig in in a melted state, the said
neutral or furnace slag preserving the reduced or cemented metal from neutral or furnace slag preserving the reduced or cemented metal from and may be removed from the heating or melting furnace for use.
900 . A. A. Croduct, Coleman-atrect, London, "Manufucture of sulphate of These improvements have for their object the obtaining a sulphate of
alomion with increased rapidity, economy, and quantity, conidered in
relatiou to the quantities of clay or other aluminous base and of acid operation and que time employed in obtaninitg the resultes. And tho unver
tion consists in employing sulphuric acid (oil of vitrol) diated to a limited
extent with water, and heated to a high degree of temperature to act upon the aluminous base.

Class 9.-ELECTRICITY
Including Electric, Magnetic, and Electro-magnetic Apparatus,
Electrical Apparatus, Galoanic Batteries, $\$ c$.
 This invention consists in an improved system of telegraphic apparatus,
allowing of calling and corresponding directly between all the statious of
the same circit with a single liee that is to eay, whatever may be the
position occupied by the station calied and the ealing station, they may position occupied by the station ealied and the ealing station, they may
call each othsr and correspond without its being necerarary to ank for com-
munication at the intermediate stations, without troubling the clerks a:
hese stations, and without even calliug thoir avention.

> Class 10.-MISCELLANEOUS.

four being a convenient number) combined or fitted together, and formed

 same. - Not proceded with.
816. L. L. Liss, Buckerbury. London, " Apparatur for securing the fram
carrying the Autinet in traveling bago."

 This invention consists in employing a raft or floating platiorm con
tructed with divitions or weils on the under surface, in order to give greai

 the other part having them in the contrary dircetion, or towards the letit hinad
837. J. A. SwAszr, Plymouth, "M Macitine for puiling

 Cor the said acavity may be construeted on the outide or the lantern for the
same purpose, and such hantera may or may not be provided with r f foctor.
The

 metal, wood, or any other suitable material, and which, for the oake mad opr
ability, It is preterred to hinge together In parts, so that it may be double

 communication with a central mould, and the motten metal which in
poured into the central moald is caused to fill those moulds simulta-
neously.

THE IRON, COAL, AND GENERAL TRADES OF DISTRICTS. (From our own Correspondent.)

 Is Wolverhampton, on Wedneesday, there was only a thin atten-
dance of the trade, and the busiiness transacted was comparatively satisfactory, and prices were firm for both pig and finished iron the trade, to enter into long contracts. Yesterday (Thursday) the reports brought to 'Change in Bir-
mingham from the differunt irouworks in South Staffordshire were Ior theets as as well as os plates, and which are unable to keept their
for Generally the works are well supplied with orders, yet the uumber to hand this week have been below that of last week. Aerable worth, one beiog for upwarts of 4,000 tons of plates ; buit the approval of makens in the present condition of the market. The North Staffordshire continues to receive valuable orders from Awerica, and the order-books of firms in that distrint are rapidiy
filling. Small orders only have reached South Staffordshire during
he ie past weet irom the suates, and they have been chiefly for strip
ron. Firat-class firms are very short of puddled iron, owing they beliove, to the policy of the puddlers, who will not allow stocks to be acquired. Through this short supply somo mille, for which tbere how very tautalisiug this statio of things is felt to be. The sbor
supply is immediately traceable, in some degree, to the reeolve more than five heats on the Saturday. The reduction of this one heat a week becomes serious when it is extended over a large num-
ber of pudd production on account of an alleged insufficient supply of underPigs are not selli.
Pigs are not selling widely, but the transactions that are taking quatations for more than three months' lorward delivery. Company" which is one of the schemes by which extra accommo-
dation at lower rates is hoped to bs obtained for irommasters and merchants doing business with London, is being liberally supported y2,000 required to enable the company to with a view to the making of the contemplated twenty-eight miles, is said to be promised, it is believed to be certain that the existing companies will soon have two rivals in committee This scheme is
sent out as requiring a capital of 8800,000 . The shares are $£ 10$ each, and half the subseriped capital is said to have been already Lene thas been obained. The prospectace zays:- "Ie being indis-
mensible that the support of the district shoald be maniested as
per acknowledging the necessity and advantage of a cheaper sy'tem of
freights for iron and other goods, it has bren suggested that, as the expense of proceedings (survey, kc.). preliminary to obtaining the
Act of Parliament, will amount to 42 , voo, or thereabouts, of which
 by a subscription to sbares to the amount (on the first deposit), or a guarrantee fund, the liability on which will be limited to the guarantee fuud will be entitited, upon the passiug of the Aet of Par-
limment, to a prelerence allotment in shares equivalent to the first
deposit
tion
Which
year-
lie on
commil
Lamy
Lome
some

ttee. At the
Palmerston
almerston took the
certain of which are especially interesting because of their appli-
cability to the necessity for the introduction of the South Staford shire and London scheme. His lordship said: " It is impossible to
overrate the importance of railways to auy country, and the effect -verrat the importance of ralonays this. The prosperity of our manufactures depends upon our beib by cheappess and quality. What is it that regulates the price next, the cost of carriage to the place where the articles are to be
sold; and, thirdly, the interest on the capital employed." "Th he the London market; and because the present cost is too higb
therefore are the ironmasters disposed, if necessary, to come forward in the $£ 1,000$ required of them in order that the steps may b mitiee of the Ironmasters' Asso ciation have not appended their names to the list of guarantors,
because they desire to stand unpledged to any new scheme until the whil way companies here have prono to them. which the fron trade are now making to them.
nd canal authorities took place in Birminghamtee and the railway Queen's Hotel. The iron trade were represented by its leading Dembere, and the London and North-Western and the Grea of Directors. The Grand Jeputation, from their ruspective board of Directors. The irasters laid a statement of their case before the
sented The meetiog. It comprised the facts whicn bave already appeared in
these columne. The discuseion which followed reaulted in the deputations promising to give the subject their early consideration.
Chere can be no doutt that the two railway companies and the canal ompany will agree upon a reduction, and it is not thought to be improbabis that 2 s. 6 . a ton will be taken off present rates. That, how-
ever, is at present parely conjectural. 1 t would not surprise su if it existing at the present time between the two railway companies and the canal company, by whom the carrying is now done, as to the
ferms which should respectively apply in the event of a reduction being determined upon. Some time ago the companies referred to
were not combined in their arrangements, and scarcely 10 . was the price charged for conveying a ton of iron from South Staffordshire to present rates were charged. At the reconciliation, however, it is canal carrier shauld charge 1s. a ton less than themselves, and the diference has ever since existed. Oat or doifrm nat belleved that the railway companies desire that a unitorm rate should be
determined upon, as well by the canal companies as themselves. ironmasters. even in respect of charges. That sum is not all that is Sourged upon a large quantity of the inished iron that is sent from
Southordshire to London. Upon hoops, sheets, and the like, which class of iron is characterised as "damageable, the companies Thisge an extra rate of 2 s .6 d a ton, making the total charge 20 s .
This rate, the ironmasters say, is excessive-much more than was prominently noticed carriers incar. The subject of complaint ailway authorities defended their charges by stating that claims or very heavy damages were often made upon them by ironmasters, company's possession. The ironmasters maintained that such claims which was the extra tarifi charged for iron conveyed from South air insuran masters notitied that they met the carriers unprejuticed, and with-
out having, up to that time, associated themselves with any opposing The second rival scheme, to which we have adverted above, is that their minds to apply for the full powers to make the connecting link Coal is improving in denand. In the East Worcestershire district The colliers are being kept in almost full employment.
The hardware trades of the West Midlands are in almost every department. The condition of the home demand is nevery way bealthy, and the inquiries from the foreign markets are large, the American demand especially being encouraging. The
West Indian and the Continental trade also remains good. In Woiverhampton briskness prevais is the leading branches. additionsl attention amonget the leading hardware firms of that Dresser to this part of the manufacturing world. Manufacturers or being yorgeously or profusely painted as beretofore, are now sent ham one a month; and he is expected to take the entire art and bas been engaged by two or three firms to meet certain of their
men once a month. At Bilston and Willenhail there is no change since our last; and in other parts of the enistrict trade is generally
setive. \quad Some symptoms of dissatisfaction are again observable amongst the nail-makers and the operatives employed in the chain都 South Stafordshir
irst Countess of Dudley with mee nonour a ments for receiving the appointed by the town council to carry out the necessary steps for The official report of the exports of British manufactures and produce in Setember will not be issued until next week, but we
may state that the tables will show a very large increase in the

WALES AND THE ADJOINING COUNTIES.
The Iron Thads or tar Dismacr: Slight Lull in the American Railuays determined upon: The Eastern Trade: : Idian Linthern
be Doubled: Brisk Continental Inquiry: The Home Trade Lolerably accive: Adoance of 2s. Gd. per ton in Pig Iron-TIS PLatis : 1s. Ad-
vance

 New Shares-Falube or Levick Axd Supson: Mecting of CreKallway: Rumoured Election of Mr. D. Gooch, MP P: Probable
Salary of he Chairman-Tus Prookroisas Acaisst tue Thedeona
Shoil Inó Company yor Alleged Ispaisgerents of the Mises inspec-
too Act : Dismissal of one Charge: Further adjournment.

been determined upon, and to carry out this it is clear that the
greater part of the suply of iron must come from Great Britain. greater part of the Boppay, Madras, and the other eastern markets continue small, and there is no doubt that it will take a long time
befure confidence is completely restored. The announcement made in a previous report that the existing Indian lines are to be doubled is confirmed, but no contracts have as yet been given out, and none
are expected until the commencement of the new year. There is a are expected until the commencement of the new year.
good inquiry for railway iron from Russia, Sweden, Italy, and other continental countries, and an occasional specitication is received on
colonial account In the home trade there is no change to report,
all branches being tolerably active, and there is a fair demad for nearly all descriptions and qualitites excepting plates. For pig iron
an advance of 2 . 6 . per ton is asked, and so independent are the an advance of 2 s . Gd. per ton is arked, and so independent are the
makers, in consequence of the large orders in hand, that they will book no transaction below the quoted prices.
Tin plates maintain previous quotations
asking 32 s. per box for charcoal, , . . .,., deliivered at Liverpool, being 1. 1 .
above what was determined upon at the Quarterly Meeting. There is now no scarcity of water at any of the works, and they are, as a
rule, in regular employ. The advance in quotations and the high rates for money have slightly affected the home demand, but not to
any appreciabie extent, as makers were previously so well supplied any appreci
with orders.
The steam and house coal trades are in a fairly satisfactory state.
House is in better demand on home and inland account, and the collieries are in more regular employ than for a long time. Loco-
motive coke commands an average inquiry, and the usual vitality is motive coke commmands an average
evinced at the Patent Fuel Works
.
Blaendare Collierr, Pontystypool, has justent passed into the hands of a
limited liability company, composed pist Liverpool capitalists. The company has been con got up privately, and
Mr. Wightman, the former Mr. Wightman, the former proprietor, will continue as manager.
It is announced that the Danraven coal has just been placed on the Admiralty list, a fact which cannot fail to considerably enhance the
value of the property. It will be remembered that this is one of the
collieries which onder the itle of the Dunraven Collheries Company (Lick compan
 tons iron, 31,150 tons preserved coal, and 6,844 tons coke. In 1864 ,
for the same period, the exports reached $1,090,49$ tons coal, and
sin
 demand during the summer months wis the cause of the slight
decrease this year as compared with 1884, but it is believed that in
the twelve months an increase will be shown. A considerable quantity of iron that was formerly shipped at the port is now taken
by rail to Liverpool and London for exportation, and this, cuppled with the limited American inquiry, exas reduced the exports from
136,060 tons in the first nine months of 1863 , to 119,104 tons in the same period this year.
The Gloucester Wagon Company (Limited) have issued the whole of their new share capital, the applications for shares being far in
excess of the number to be allotted. The cumpany's works are in fell employ, and the contracts in hand, together with the large
rentals coming in, will no doubt return to the shareholders handsome
dividends. The meeting, of the creditors. of Messrs. Levick and Simpson,
Blaina Ironworks, and Messrs. F. Levick and Co, London, which was to have been held last week, is adjourned for a month. Nothing
Las yet transpired as to what course the inspectors will reconmend. In Tre Exgineer of October 13 th. it was announced that there
was a rumor in this district that Mr. D. Gooch, M.P, was about to be elected chairman of the Great Western, Sir Watkin W. Wynn,
M.P., who is a life director, being disposed to vacate his seat at the
board in his favour, and thus qualify bim for election. The rumour is now fully, confirmed, in so far that Sir Watkin W. Wynn
has nominated Mr. Gooch to fill his seat at the board; but Mr. Gooch will not accept the position of chairman unless there is an
understanding that he should be elected a director by the shareholders. It is stated that a salary of from $£ 5,000$ to $£ 10,000$ a year will be paid to the future chairman. $\begin{aligned} & \text { The procedings instituted againt the Tredegar Iron Company for } \\ & \text { breaches of the Mines }\end{aligned}$ Inspection Act were resumed on Tuesday at a special petty session held at Tredegar. It will be remembered
that the case ior the prosecution was clused at the previous siting (see The Engineer of October 13th), and on Tuesday Mr. Smiti to the charges of recklessess brought ayainst Mr. Bevan, the
manager, and referred to the statitstics which had been produced,
and which proved that the number of fatal acciden and which proved that the number of fatal accidents at Tredegar
was far less, in proportion to the coal raised, than was the case in other districts. Mr. Brough, the Government inspector, visited the
collieries periodically, and he never found fault with the ventilation, toon were ample. The charge of not baving adequately ventilated
the colliery where the explosion took place therefure narrowed itself into a very small compass, and that was as to whether the heading where the gas accumulated was a working place within the meaning
of the Act on the day of the explosion. de held it was not a working place, as the evidence proved that cross timbers had been put
up, being the usual danger signal; proper fencing secured the
moutho mouth of the cross hole. It was proved beyond a doubt that the gas
was fired throug the recklessness of some one in disregardng
thess danger marks; and after taking all the circumstances into consiueration he contenced that the charge of inadequate
ventilation completely failed. Mr. Simons, in reply, held that the question raised by Mr James as to whether the theading was a work-
ing place or not on the morning of the explosion was a point of law
to be decided by a superior court. The facts adduced wy the prose co decided by a superior court. The facts adduced by the prose-
cution, that there had been an accumulation of gas, and that it was
nit imediately cleared as directed by the Act, were admitted, and
 Sinons applied for a case for the opinion of the Court of Queen Bench, which was granted. The second charge against the company
Was that of noi buv nt securely teoced oft the heading where gas
had accomalated, as piescribed by the rules uoder the Act of Pariament. The evidence was the same as in the previous case. Mr.
James annonnced that he had several wwitueses to call, and as it it
would be omposible to get through the evidence on Tuesday, the
procediogs was adjourned lor a lorchight.

SCOTLAND-ITS TRADE AND OPERATIONS.
 buildisa Company (Limited).
During the past weal in piti iron, prices gradually advancing, and the market very buopant.
 The malleable ironworks are still full of orders. Plates are firm
hut remaining at old prices, while bar iron is slightly up in price.
They have as much work in hand as they can well turn out They have as much work in hand as they can well turn out
Messrs. Robert Duncan and Coo, shipbuilders, Port-Glasg haro just completed a contract with Robert Little, Esq., for the
baildiug of a sorew steamer of 750 tons for the Mediterranean trade; Rankiue and Blackmore, engineers, Greenock. Messrs. Caird and Coi, engineers and shipbuilders, Greenock, have completed a contract
with the Messrs. Burns, of Glasgow and Liverpool, to construct

Ior them a large paddle-wheel steamer to run between Glasgow and
Belfast, from the same model as the Buffalo, Wolf, and Llama. The Arabia, a steam vessel of 2,400 tons, which was originally built for
the Canard Company, by Messrs. Robert Steele and Company, shipbuilders, Greenock-and whinob,
been lying past in the Est India purchased by
immediately
The lectures in connection with the Glasgow Mechanics' Institulion were commenced for the season last week, the introductory
lecture on chemistry was delivered by Dr. Wallace, subject Cotton," and the natural philosophy class was opened by a lecture upen elect of the binstitution, occupied the chair. A fine screw steamship of 650 tons, named the Venezia, was launched on the $18 t h$ inst, by Messrs. Stephen and Sons, ship-
buildere, Kelvinhaugh, Glasgow, for Messrs. Handyside and Henderson; the engines are made snd are being put on board by the
Finnieeton Steamship Works Company, Glasgow. She is intended or the Mediterranean trade.
The Tarkish ram Abdul-Aziz, of which we gave an account last proceeded down channel for the purpose of testing her engines. So
soon as her fittings are completed, the official trial trip will take
place. $\begin{gathered}\text { Another of those magnificent steamships for which Messrs. Burns }\end{gathered}$ and MacIver bave become famous, was successfully launched for
them on the 19th inst, from the building yard of Alesers. James George Thomson, shiplonilders, Glazgow. Her principal dimension are as follow:-Length of keel and forerake, 300ft; breadil beaa, 39 at : depth, 26 hift The engines, which are oscillating an
geared, are 550 -horse power nomiual , with surface condensers, a The Erl-King, a screw steamer hu buidero. boilers by Messrs. A. and I. Inglis, engineers with engioes and Glaggow, made her official trial trip on the 20th inst., when the being equal to 1224 knots, or $14 \cdot 1$ miles per hour, on a mean hour over that contracted for. Her principal dimensions are:Length, 250 ft ; breadth, $34 \frac{\mathrm{fft}}{} \mathrm{ft}$. depth, 22 ft . 9 in . Her engines, which the run, gave an indicated power of 1,200 horses. She is fitted under canvas alone.
On Friday last the Mandigo, a screw steamer for the African Steamship Company, was launched from the building yard of Messrs. Rando ph,
Glaggow. She is 1,300 tons. On Saturday last the Marine Shipbuilding Company (Limited), road, near Greenock, a paddle steamer built with steel frames and plates. Her dimensions are :-Length, 2501 ft .; breadth, 28 ft ;
depth, 12 ft ; tonnage, 620 tons ; horse-power, 250 .
NOTES FROM THE NORTHERN AND EASTERN COUNTIES
Liverpoon: London and North. Western Railway-Noktr-EAstern
District: Milfield Engine Ironvorks: New Warelonuse at Sun-
 Yorkstize: Leds:
VALLEX of tae DENT
We commence, as usual, with Liverpool. The London and NorthWestern Railway Company are at the present time e..gaged in the
construction of works of very considerable magnitude at their several
Liser Liverpool stations. In consequence of the great and continuous increase
of traticic to and from Liverpool, both as regards passengers and goods the limited size of their present stations has been found altogether upon them. The enlargement of the Lime-street station, which is to accomplish the object aimed at, an immense outlay in the pur chase of property in the neighbourhood has necessarily had to be ing, very extensive alterations and re-arravgements are also going station of making an addition to the tunnel between Edge-bill and Wapping, as also in extensive alterations within the Park-lane entrance work now being executed, under the auspices of the company, is the line, a few miles beyond Warrington, this project involving nothing less than crosing the Mersey, opposite Runcorn, by an immense
bridge of gigantic proportions. It had long been felt by the Londo
nd North-Western and North-Western Company that the original route between this
town and London, by way of Warrington, was not only circuitous town and
but was
are alwa
bed belween Liverpoul and London is, at the point where it leaves the
bese ton Junction ; but the desirability of an independent route to London has made itself manifest on other grounds than those above-named, Preston and other places northwards, were so numerous that the Preston was constantly occapied, and the frequent detentions at the
liarrington Junction were not some respects dangerous. The company, therefore, had long
thought it of importance that a more direct and indepondent line between Liverpool and London was necessary, whereby the dis-
tance bet ween Liverpool and the metropolis would be reduced would be left more free and yoltered fool and Manchester lin Pocal traffic. The company, on more than one occasion, applied to cessful in carrying the bill which enabled them to embark in the great works now in progress. The line of which we are now speak-
ing commences close to the Ditton station of the company's Garthis and Waint it divingtorges Rriilway, about five miles beyond Girston.
from Garston line, being carried in direction of Ditton Marsb, by an embankment of about a mile in Marsh by a viaduct of fifty-nine arches, and thence proceeds ove West Bank, and after passing over six piers with openings of 60 oft,
in height, it approaches the north-east bank of the Mersey at Runcorn Ferry, which it crosses to Runcorn, by an enormous bridge con
sistig of traee wrought iron trellis girder openings,
305f. each width, and 75 ft . in height, on the under side of the egirders, abov
the level of the river at high water, thus admitting of any vesel ordinary size to pass under the bridge without any obstacle bein
iterposed. On the Lancashire as well as on the Cheshire side the river at Rancorn, these girders are supported by buge abutments
crowned with castellated turrets, rising to a height of nearly 40 ft. above the railway level, while in the river the girders are also sap post. Having castred over by immense stone piers, upon which they
reve Mersey to the Cheshire side at
Runcorn, the railvay is tarried Runcorn, by a viaduct carried forward through the town Dake of Bridgewater's canal, a short distance on the west the of a mile in length, which is being carried down to excavations and. embankments, and finally joins the maic Loudon then
and North-Western Railway at Preston Brook station, the entire length of the line being between twelve and thirteen miles, and the distance between Liverpool and
London by this line being reduced to the extent of eight miles. As
may be imagined from the foregoing description, the works on this
line, more especially the bridge over the Mersey, are of great mag nitude, and it is expected that they will not be completed in less
than two years from the present time. Mr. James Holme of this than two years from the present time. Mr. James Holme, of this
town, is the contractor for the Ditton embankment, which is no Nearly completed. For the rest of the works the contractors ar
nessrs. Brassey and Ogilvie, who are proceeding with the Messss. Brassey and Ogilvie, who are proceeding with the energy
and ractivity for which this eminent firm is so well known and dis-
tinguished. The viaduct over the Dition Marsh is almost completed linguished. The viaduct over the Ditton Marsh is almost complete,
nearly the whole of the fifty-nine arches having been
keyed in, as well as the thirty-two arches comprising the keyed ip, as well as the thirty-two arches comprising th
viaduct, passing through the tow of Rancornprisut th
monster bridge over the Mersey is an engineering undertaking of no monster bridge over the Mersey is an engineering undertaking of
ordinary character, and will necessarily occupy
amount of time and labour before it is finished. The workerabse however, being energetically carried forward, an enormous numbe of artisans in various departments being engaged upon them. That part of the bridge nearest completion is the Cheshire abutment,
which has already been carried to the level of the girders water mark, namely, seventy-five feet. The masonry of the Cheshire pier is also considerably advanced, and nearly ready to receive th but the coffer dams, both for the Lancashire abutment and also for the Lancashire pier, have been completed, and the excavation necessary before the masonry can be commenced is now going forward.
The piers of the six 60 -feet openings on the north bank of the river which we have already alluded, are also advanced to a considerable height above high water. The staging for fixing the girders is balks of timber. This staging has, to a great extent, been erected on the Cheshire side of the river
From the north-eastern district we learn that the Millield Engine Ironworks, Sunderland, will shortly be transferred into a limited William Gray will be directors. Mr. Close will bemanaging director, and his son secretary The shares have not come into market. They On Saturday a new warehouse at the South Dock, Sunderland, was opened for the warehousing of grain, by the lifting of the first batch of a cargo ot grain brought by the Verbena, of Whitby, from the house, the two friction hoists of the new one are worked. From all he facts that come under our notice, we are led to the conclusion that the north-eastern district is enjoying a large measure of solid
material prosperity. In the South Durham and Cleveland district here are now 14 blast furnaces building, of which 12 are nearly com pleted. The last return as to the position of the existing farnaces oxhibits the following results :--
Places and Owners.

At North Stockton the Rail Mill Company are just opening their With regard to the Sonth Yorkshire coal trade, it may be noted that there has been a very large tonnage over the South Yorkshire
system to Hexthorpe, both for the London and conntry markets, house coal is in especial demand for the metropolis. The trade to Grimsby for the northern ports will soon close, owing to the apas much as possible, and trade was never brisker than it is at this moment. The trade to Hall, via Kerdby, is also brisk. Coke is still in demand for the Lincolnshire iron district, in fact all that can made here is not sufficient, and large orders are goipg to the opening of the Trent and Ancholme line with great anxiety, as the and Barnetby. This of course will be remedied ss soon as the Trent and Ancholme opens. The men have been working steadily at the various collieries, but some of the colliery proprietors have had deputations from the workmen asking for an advance of wages. machine and tool makers are also busy, as is the lucomotive busiess, in which line a new company is shortly about to be lannched large demand for cutlery for America, and the orders for tools for hat market rather increase. From Canada there are only a few therim season orders. There are still pretty general complaints mall. The home markets contiuue to improve, so far as cars are tools, and plated ware are concerned. The stove-grate trade, as usual at this season, is becoming duller, and there is less doing in agricultural implements, except for the Australian market. The eavy trades are a shado more active in some branches, the railway in steel, but the foreign demand is still small. in steel, but the foreign demand is still small.
railway down the valley of the Dent.

The Credit Foncier and Moblier of England-A prospectus has just been put in circulation by the Credit Foncier and Mobilie to be allotted as follows :- 50,000 shares to the present shareholders and 50,000 sbares to the general public. When the above issue is $£ 20$ each, the subscribed capital will consist of 200,000 shares o reserve fund, $£ 500,000$; the dividend reserve fund, $£ 100,000$. The results of the operations of this company have been so satisfactory annum bas been declared, being the same dividend and bonus as wes paid for the previous half-year

