THE ENLARGEMENT OF LIVERPOOL STREET Station, great eastern railway. No. IV.
Parcels Office.-It is due to the fact that the terminus of the Great Eastern Railway is on the low level that the "Parcels Office," which we now proceed to describe and illustrate, appears, when viewed from the platforms of the station, to be upstairs, or on the first floor, whereas the entrance to it from Bishopsgate-street is readily effected by means of a pair of inclines, one for ingress and the other for egress, of easy gradient, shown in the General Ptan of Figs. 4 and 5 . Tig. 1, at - , near its junction with Bishopsgate-street down to the entrance gates of the terminus of the Great Eastern Railway.
General plan.-The general plan in Fig. 1 represents, therefore, what may be called theground floor of the Parcels Office, which consists of a pair of central spans of 30 ft . each, a pair of covered approaches also of 30 ft ., situated forming a con of the main portion of the building, and street, and a pair of wings or returns of the same span of 30 ft . These dimensions are all measured in the direction of the lines of track-that is, in the direction of A A in Fig. 1. At the broad end of the office, the central spans in connected with the foot-bridge over part of the existing station by a fantail-shaped covered gallery. At the junction of the gallery or passage with the bridge the E E, there is another foot-bridge at right angles to at former, shown in section and elevation in Figs 6 and 7 . former, shown in section and elevation in Figs. 6 and 7 . congitudinally the bays or spans are situated between the double and spaced 5 ft . apart from centres. These bays vary in width from 42 ft . 3 din. to 51 ft . $5 \frac{1}{2} \mathrm{in}$, and 51 ft . $11 \frac{1}{2} \mathrm{in}$. at the respective ends of the tuilding. The inclined ap.
whole widening of the station were founded at the maximum depth, reaching down to the blue clay; but some of

Fig. B

4800

Made-up Ground

3700
Original Surface

Sandy. Clean Gravel

2300
Dirty Gravel
1950
1800 Yellow Clay
Blue Clay
the walls end lighter portions of the buildings fornd a solid
the walls ε nd lighter portions of the buildings found a solid
shown under one of the approaches in Fig. 2, which ran from the existing station to Bishopsgate-street, at a depth of 6 ft . below that of the foundations for the rest of the work. In Fig. 8 is a part longitudinal section of the ubway under the track and the platforms respectively, and Figs, 11 and 12 show the corresponding cross secin section under the rail level, the arch of the subway, which

is $11 \frac{1}{2}$. in thickness, when underneath the platforms, as in Fig. 11, is replaced by rolled joists 1 ft . 6 in . deep, and small jack arches 9in. in depth of brick, as shown also in Fig. 8. The invert bas the same thicknees as the arch, and is set on a bed of cencrete 2 ft . thick and 18 ft . ide over all, including the side walls, which are each in. in thickness. A vertical section in Fig. 9 shows the intake or conect ift in diameter, laid in duplicate gas mains, which are $4 \mathrm{ft}$. in diameter, laid in duplicate, 18 in .
apart, and connected together as in Figs. 9 and $10 . ~ A n$

proaches already referred to are carried under arches which pierce the wedge-shaped site of the shops on the level of the street, shown in the Key Plan in our columns long line of shop frontage, above which are the offices long line of shop frontage, above which are the offices of the company, constitutin
sion in Bishopsgate-street.

General design.-From the general plan in Fig.1, cross section in Fig. 2, and longitudinal section in Fig. 3, the construction is as follows: Upon cast iron columns, double and single, are carried heavy wrought iron plate girders, unquestionably the best type to adopt for the support of a is ang, on and small crack or the in the arches might be a very serious, a warbouse for the storage of in a lose condition the is, in bulk has very fep ides of the amont, the weight it is possible to pile up on the floor. framed the cross $i r d e r s$ also the plate type them rest opos 31 lb . joists or jay or pass on to the details of the
Foundations.-The strata passed through before arriv ing at the blue clay were composed first of made-up ground consisting of the usual miscellaneous description found ager of earth, or the original surface of the ground Under neath this there is atritum of olean downward prosression by a clan gred, in downward progression by a bed of a somewhat dirtier deunderlies the gravel, and in its tum overlies the blue clay In Fig B e gravel, anmation In Fig. B the approximate respective depths and thickascertainable from the levels given at anch change in composition. All the columns and heavier parts of the
stratum been of a more rosky or harder character, and had it contained a smaller proportion of sand in it, a less depth might possibly have sufficed for some other parts tross structure.
Cross section.-A cross section of the Parcels Office along the line A A-in Fig. 1-is represented in Fig. 2, from which it will be perceived that the building itself consists of the two spans already mentioned, contained within its two side walls, and that both the ground and first-floor are intended to oarry loads of the maximum amount. It is no doubt for his reason that the cross plate girders carrying these loads derive no support from-that is, do not rest in any degree upon the side walls, but upon cast iron stanchions, as een in the cross section in Fig. 2. Above the first floor, where the weights to be provided for are comparatively

of a small amount, the floor girders and joists are supported in the usual manner by the walls of the building. Both the side approaches and wings or returns are roofed in and protected by a parapet plate girder, shown at P P, Gas Lighting and Coke Corder to carry the mains of the Gas lighting and Coke Company across the site of the widening, it was necessary to build a subway for them,
enlarged plan of the iron grating, 12 ft . by 6ft., is shown in Fig. 13.
Concrete, mortar, and bricks.-A bed of concrete 10 ft . by 10 ft . by 2 ft ., surmounted by four tiers of brick

footings, upon which is placed the bedstone 5 ft square and 2 ft . thick, forms the foundation for the single columns supporting in Fig. 2 the main girders

belonging to the two side approaches and fteir turns. According to the nature and situation of the work, so does the composition of the concrete slightly
part of Portland cement to six or seven parts of mixed of a particular section. These double columns rest upon gravel and sand, but in "bad spots" the proportion of cement is increased. Three descriptions of mortar have been used on the works:-(1) Lime mortar composed of one part of blue lias lime and two parts of sharp clean sand. (2) Cement mortar of the same proportions, substituting Portland cement for the blue lias lime. (3) Black mortar in which the ingredients are, one part of sand, one of ashes, and one of lime. This last description of mortar was largely used in the construction of the heavy retaining wall reaching from the station extension to the bridge at Skinner-street, which we shall hereafter describe and illustrate. The wall was built of old bricks

Abstract

bedstones having a superficial area in feet of 12 by

 10 and a thickness of 1 ft . 9 in . Five footing courses of brickwork, with a total height of 3 ft ., transfer the weight of the superstructure to a solid mass of concrete 21 ft . by 19 ft . and 3 ft . thick. For the footings in foundations, in the body or the backing of walls, ordinary stock bricks are used, but the description employed for the facing varies in different parts of the works. Thus, the walls of the Parcels Office are faced for a height of about 4 ft . 6 in . from the level of the side approaches with Staffordshire blue bricks, and above that level with Leicester bricks. Again, the two new side walls of the extension are builtfrom centre to centre, are $9 \mathrm{ft} .11 \frac{1}{2} \mathrm{in}$. in length, or mea sured from top of the bedstone, 11 ft . $5 \frac{1}{2} \mathrm{in}$., have an external diameter of 2 ft . and a thickness of metal of 3 in At the lower extremity each column is widened ou so as to form a flange having a diameter of 2 ft , and a thickness of $3 \frac{1}{4} \mathrm{in}$., and bolted down to the bed or base plate by twelve bolts spaced 12 in . apart and of a diameter of $1 \frac{3}{8} \mathrm{in}$.-Fig. 16. These base plates are of cast iron and oval in shape, with conjugate diameters of 7 ft . and 5 ft . respectively, as in Fig. 15. In Fig. 17 there is an enlarged plan and section of the base plates, which are 1 ft .6 in . in total height, have a thickness of top flange of $3 \frac{1}{1} \mathrm{in}$., equal to that of the lower flange of the columns to which they are bolted, a thickness in the body of 3 in., while in the lower flange the same dimen sion tapers from 3 in . to $2 \frac{1}{2} \mathrm{in}$. at the circumference, which has a rib or fillet $6 \frac{1}{2}$ in. deep throughout. Six lewis bolts - Figs. 15 and $17-1 \frac{1}{4} \mathrm{in}$. in diamete: and 1 ft . 2 in . long hold down the base plate of each column to the concrete foundation, and are screwed home by a nut and washer 5 in . in diameter and 8 in . thick. Cast iron struts of the form and dimensions shown in Figs. 14-19 are used to brace the twin columns together in the figure of a couple of St. Andrew crosses, and are 8in. wide at the centre, $5 \frac{1}{2} \mathrm{in}$. at the ends, and $1 \frac{1}{2} \mathrm{in}$. in uniform thickness. These braces are bolted to the columns by two bolts $1 \frac{3}{8}$ in in diameter and two of 1 in . in diameter, spaced 7 in . and 9 in . apart, and where the attachment occurs the columns are thickened out from 3 in . to $5 \frac{1}{4} \mathrm{in}$.-Figs. 17-19. The capitals of the double columns, which have a space of 2 ft . 2 in . between them, are surmounted and connected by a "table girder" of cast iron 3 ft . 6 in . in total depth -shown in elevation on Fig. 14, and in plan and section in Figs. 20 and 21. It is 8 ft . in total length, 2 ft . 10in. in width, and 3in. in thickness in the centre rib or web, and in both the upper and lower flanges, which are of very different forms-Fig.21. The former is a simple horizontal flange, but the latter is provided with two vertical or side plates, as they would be called in girders of wrought iron, which have a depth of 1 ft .8 in . and a thickness of 3 in . at their junction with the horizontal portion of the flange, tapering at the open ends to 2in. Four bolts $1 \frac{1}{2} \mathrm{in}$. in diameter connect the table girder with the capitals of the columns. Upon the vertical stanchions -Fig. 14-23ft. $3 \frac{1}{2} \mathrm{in}$. in total height, is carried the second floor of the building. They have a plain base and capital, or, rather, an upper and lower flange, measuring 3 ft . by 2 ft . 10 in ., by $3 \frac{1}{2} \mathrm{in}$. in thickness, and are 2 ft . in outside dimensions on all four faces, as shown in cross-section in Fig. 22. The principal or centre rib is $2 \frac{1}{2} i n$. thick, the two interior and two exterior ribs 2 in . at the broader end, tapering to $1 \frac{3}{3} \mathrm{in}$. at the extremities. For a length of 10 ft . of the upper part of the stanchions, two ribs or projecting fillets are cast $2 \frac{1}{2} \mathrm{in}$. in depth and 7 in . apart from inside edges. The stanchions are bolted to the upper flange of the table girder by four bolts $1 \frac{3}{8} \mathrm{in}$. in diameter. It should be mentioned that all the flanges of the cast iron girder work, columns, stanchions, and in every instance in which two separate parts are bolted together, the surfaces are all accurately and truly planed, so as to ensure a uniform and even bearing area. In the erection of large workshops for the numerous branches of mechanical engineering, the advantages of employing twin columns has been long recognised. Strength, compactness, simplicity, durability, large bearing surface, and comparative cheapness, are among their principal characteristics. When several shops are erected parallel to one another, with or without partitions, the double columns can be connected by girders, as in the building under notice, which can further be made to act as rail bearers, or, in fact, as rails themselves, upon which gantries can run to hoist and shift whatever may be required in the shops below. All these operations can be carried on without in any way interfering with the single columns which support the roof principals.

GERMAN EXHIBITS AT THE ANTWERP INTERNATIONAL EXHIBITION.
(From our Special Commissioner.)

Probably the largest makers of wire rope and electric cables on the Continent are Messrs. Felten and Guil leaume, of Mülheim. At Antwerp their exhibit o all classes of wire rope is not only larger than that of any other firm, but is one of the most important installations in the German section. Commencing with various gauges iron and steel wire, plain and galvanised, they next show different sorts of copper and brass wire, including some specimens of high conductivity for telephones. Beside these, they exhibit two descriptions of a special make of wire. One of them, which they call "compound," consists of a core of steel and an outer covering of copper or brass. By this means a wire is obtained possessing the elasticity and tensile strength of steel with the con ductivity of copper. The other special wire is made in the same manner, but of two different classes of bronze. The inner part consists of a wire capable of standing great breaking strain, and this is covered with a metal o high conductivity. As there is very little difference in the composition of the metal in the two sorts of bronze they are affected in the same manner by variations o temperature, and the result of this method of manu facture is a wire with qualities possessed by no homo genous wire of any description. The exhibitors say that it is more particularly noticeable for its extreme flexibility. Tests are given of the conductivity, elongation and breaking strain of the copper and brass wire which are exhibited. The breaking strain of the stee wires is also given; one of these, made of crucible steel, is stated to have supported a strain of 185 tons to the square inch. They also show some very fine brass and steel wire looking like silk. This is used chiefly for sewing silk neckties, and for making up fancy work
As this firm started the manufacture of galvanised iron wire in 1853, and had then for many years been engaged in making wire rope, they are able-from their own pro ducts-to show the changes and developments which
THE ENLARGEMENT OF LIVERPOOL STREET STATION-PARCELS OFFICE Mr. John wilson, m. inst. c.e., engineer (For description see paje 813)

have taken place in all classes of wire cables. In those made of galvanised wire for shipping, \&c., very thick wire was used in the earlier ones, and gradually finer in cables of more recent date. The same may be said of mining cables, of which-both round and flat-a good historical collection is shown. But the most interesting part of Messrs. Felten and Guilleaume's exhibit consists in their electric appliances. Commencing with single wires coated with india-rubber or gutta-percha, and not otherwise protected, they show how wires have been grouped; how steel wire has succeeded iron for sheath ing, and how special preparations of caoutchouc-such as okonite, kerite, \&c.-have been introduced as insulators. Their latest improvements consist in insulating by means of prepared paper, and using wire of Z section for sheath
ing. Fig. 1 shows two wires with a flat strip of paper

between them, twisted together and then covered by a band of paper. In Fig. 2 the strip of paper is in the
form of a cross; it serves to separate four wires, which form of a cross; it serves to separate four wires, which
are twisted and covered as in Fig. 1. These groups of are twisted and covered as in Fig. . These groups of lead or other protecting material as may be desired. Besides lightness and cheapness, the use of paper has
other advantages. The small quantity of air which is necesother advantages. The small quantity of air which is neces-
sarily cnclosed when the paper is twisted, helps to insulate sarily enclosed when the paper is twisted, helps to insulate
and increases the conductivity of the wire; and by the use of different coloured paper, it is easier when making joints or repairs to distinguish to which circuit a wire belongs. Telephone cables of this description have recently been put down in Zome, Munich, and St. Petersburg. The Z-shaped
wire was first introduced for wire rope tramways, wire was first introduced for wire rope tramways,
but it is now used for other purposes. Figs. 3 and 4 show a submarine long. distance telephone cable.
The group of four wires, insulated by paper, as described a a leather sheath, and then covered with
 made by the Elmore's of copper pipes, bends, \&c., is largest piece is a pipe 17 ft . long, 15 in. external diameter, $\frac{1}{3}$ in. metal. They also show examples of the application oin. metal. They also show examples of the application
of the Elmore process in covering worn iron hydraulic press pistons, pump plungers, and other similar pieces with copper.
place-the Machinery Hall; but there are two exhibits place-cthe Machinery Hall; but there are two exhibits of machinery in the main building worth noticing. The
firet is that of Messrs Huck and Co., of Bielefeld. They manufacture various descriptions of lifting and traversing jacks, differential and other pulleys. One peculiarity in their lifting jacks is a safety brake, by which the pressure been lifted can be lowered at any desired speed. The lifting handle turns a small ratchet wheel on the outside of the machine ; this wheel is hollow, and contains a strong spiral spring which presses against its inner cirmain shaft. When the handle is turned, the pressure of
mater the spring causes the ratchet wheel to revolve. On ceas ing eel from going back, whilst the pressure of the spring is enough to keep the shaft from turning. A slight turn of the handle backwards lessens the pressure of the turn sufficiently to allow the weight to descend, but directly the handle is released, the spring tightens and the downward movement is arrested. In another form of jack, there are two tooth-wheels on the same shaft as the pinion which drives the rack. These tooth-wheels are turned by 45 deg . to the other. By this means friction is lessened, the lifting is more regular, and jerks are avoided. The differential blocks shown by Messrs. Huck are powerful for their size. The gearing is of wrought iron, machine finished and case-hardened, and is all boxed in, the chain-
wheel only being outside; the casing, however, is made to open for oiling or cleaning.
Another useful appliance in this section is a measuring machine exhibited by Mr. J. H. Ermbter, of Neuss. It is intended for measuring and marking all sorts of woven materials, felt, wall-paper, \&c. The machine exhibited is up to 1000 metres, showing also $\frac{1}{4}$, $\frac{1}{2}$, and $\frac{3}{4}$ metres, or $10,20,30$, sc., centimetres. It resembles a small winch; the material to be measured is placed on a roll at one side, with one end passing over the main drum of the machine. A printing disc presses on this, and at each machine. A prind which dries immediately, can easily be removed, and will not injure silks and other thin textures of light shades. When marked, the material is rolled up at the other side of the machine. The marking disc can be put in and out of gear by a lever, or can in a few seconds be can be hand, foot, or steam. By employing this machine, can be hand, foot, or steam. By employing this machine,
the output of a cloth or linen factory can be measured the output of a cloth or linen factory can be measured
by unskilled persons, and without fear of error ; and it is especially useful as a check, for instance, in stocktaking
A clever arrangement of sliding windows is shown by
Mr. F. J. Schürmann, of Miuster. On the Continent Mr. F. J. Schürmann, of Münster. On the Continent they usually object to sash windows, because they can
only be opened half way, and also on account of the extra expense and trouble required for fitting sash lines, pulleys, and balance weights. But door windows have
also their inconveniences. When they open inwards, a
space must be kept clear for them; and they rarely shut tightly top and bottom. Besides this, they must either be wide open or entirely closed. An ordinary sliding window running in a groove would also have one of these windew running in a groove would also have one of these
defects; it would never shut tightly. The window exhibited is suspended ; each leaf hangs from two pulleyz, which run on a rail above. Either iron or wood can be used for the rail, and where there are shutters, as in the one shown, a bar of channel iron serves as in the one shown, a bar of channel iron serves
as a rail for both. Grooves are cut in the rail, and it is bent towards the casement, at the positions which the pulleys will assume, just before the which the pulleys wil assume, just betore the
window is closed. This causes the pulleys, and consequently the window, to make a three-fold motion ; it drops que depth of the groove, moves laterally, and towards the the depth of the groove, moves laterally, and towards the
frame. The edges of window and frame being cut on the level, this triple movement presses the window firmly against the frame, keeping out all rain or draught. When a strip of wood is used for the rail, the pulleys have indiarubber tires, to ensure their running noiselessly. To open the window, it is first lifted by a lever at the side, which moves the pulleys forward out of the groove ; and there is then no trouble in sliding it. The exhibitor says that this window can be supplied cheaper than door or sash windows of the same sed, thus keeping out the cold open, heavier glass can be used, thus keeping out the cold warehouse doors, railway carriage windows, and tram car doors. It was originally devised for a wooden summerhouse, but where used for a masonry building, a casing is required into which the panels can slide. This makes them more suitable for wooden buildings, such as are used in the United States, than for an average English or German brick-built house; though possibly some people may consider that they offer advantages which more than compensate for the disadvantage of having to provide a receptacle for the window, when open ; and there are many buildings, such as stables and stores, where there is no occasion for the glazed panel to be concealed when the window is open.
Switzerland has only one exhibit of interest to engi. neers. It is an apparatus for the manufacture of condensed milk, shown by Messrs. Sulzer Brothers, of Winterthur, whose exhibits of brewery plant at other exhibitions have several times been described in The copper pan, and the requisite quantity of sugar is then added to it. The second operation takes place in a closed copper, into which the mik is drawn from the open a vacuum pump, which exhausts the air in the copper This vessel is egg-shaped, and the sides are lagged with wood. It is heated by steam passing through two inde pendent copper worms, and also underneath a false pottom. The level of the milk is seen on a gauge glass, and steam is only admitted to those parts which are covered with milk so as to avoid over-heating and burning. There are also small cocks through which samples may be drawn, as well as thermometers at different levels, pressure gauges, \&c. When the milk is sufficiently evaporated, which requires four or five hours, it is drawn are forty the vacuum pump and passes to the coolers. These wrought iron tank. Spur wheels at the bottom of the tank cause the milk pans to revolve, whilst fixed rousers -which are let down into them-stir up the contents and keep the milk from becoming lumpy. Water flows through the tank, and when the cooling-which takes about an hour and a-half-is complete, the milk is ready to pack.

THE CARDIFF NEW WATERWORKS.
The Cardiff Corporation, after some unfortunate experiences of the private contract system, resolved to take into reservoirs which are now being rapidly proceeded with in the Breconshire mountains some forty miles northward of the town. A brief account of the opening of No. 2 reservoir was published in THE ENGINEER two years ago; but the of the undertaking. A recent visit to the scene of par tions shows that great progress has been mee opera interval with reservoir No. 1, and reveals at the same time a remarkable transformation in the face of the opinion Taff Vawr valley. Whatever differences o opinion there may have been as to the relative merits
of the site, only one view now prevails among engineers and all other visitors to the works, and they have come from the United States and many parts of the Continent. The gathering ground dips down from the crest of the Brecon Beacons mean raral basin at the head of the old river channel. The mean rainfall of the watershed is about 60 in . per annum, as in the valley the Birminam, the Liverpool works; 62 in at Thirlmere, 81tin in ary 10 in in wot in and $53 \frac{1}{2}$ in. at Woodhead, until now the main source of the eapacity of the three reservoir is:-No. 1, 335 million gallons; No. 2, 322 million gallons, and No. 3, 670 million gallons. No. 1 is expected to be com pleted in three years, and it is calculated that with No. 2 it will supply the needs of Cardiff, rapidly as the town is increas ing, for ten years. But meanwhile the excavation and embanking of the third reservoir will be commenced with more or less rapidity in proportion as the population of the borough approaches the standard of 280,000 , the estimated number in fifteen years time. The vast scheme, it should be added, has almost paid its own way, and as the greater, it will do so to an even grer of consumers, become the chairman of the Water Committee - Mr. According to Jones-it was anticipated that the cost of the undertain would be met by a rate of $2 \frac{1}{}$ d or 23 d . in the undertaking although, through unforeseen cirumstances, pound, and involved a much larger expenditure than was estimated, the rate has not exceeded 3d., which may diminish as time goes on and an advancing community makes greater demands upon the water supply. The most noteworthy features -see map, next page-of the work executed since last
personal direction of Mr. J. A. B. Williams, C.E., the water engineer, and the author of the whole design, are the main trench and the discharge tunnel. The main trench, undoubtedly the most important achievement so far, runs across the valley 1060 ft . in the open, and 1300 ft ., including the drivings, into the hillsides. The excavation in some places dips to 75 ft ., and is now finished, with a concrete bed resting on the solid water-tight rock. At its base the embankment is 400 ft . wide, narrowing to 30 ft . at the top, and the stone toes may also be said to be practically completed. So with the discharge tunnel, an admirable piece of work, which at present is used to carry off flood water, and wil when it is necessary to cleanse the bed. No inconsiderable amount of engineering skill and costly work, not obvious perhaps to those unfamiliar with the scene of old, were perhaps to those unfamiliar with the scene of old, wert Brecon and the other to Hirwain, in order to raise their level and widen the limits of the lake. The Corporation possess

CAF DIFF NEW WATER SUPPLY
excellent limestone quarries close to the reservoirs, and the stone and gravel for the concrete is obtained from the old plete establishment of engine repairing sheds, wagon-making shops, a fitting shop and smithy, and here all that is needed is done for the locomotives, the one hundred odd trucks, the eight portable engines, and sixteen cranes. Besides these are $7 \frac{1}{2}$ miles of Corporation railway to the village of Cefn, where many of the workmen live. For the accommodation of the remainder of the men a little township of well-built houses has arisen by the side of No. 1 reservoir, with a large general store, a post-office, a public readig-room, a schoo master on weekdays and a spiritual comforter on Sundays.

HARBOURS AND WATERWAYS.

Grand Caral.- At the half-yearly meeting of this company, held at Dublin, the chairman reported that the net profits for the year amounted to $£ 18,126$, which allowed of the payment of a dividend of $3 \frac{1}{3}$ per cent. The receipts from the carrying trade showed an increase of $£ 765$ over the previous year. cost of $£ 30,000$ for the navigation and $£ 2500$ for the plant and steamers. It is intended to build ten additional steamers more barges with steam power. A suggestion was brought forward at the meeting for an extension of the system in order to complete the 750 miles of the canal, which would connect the system with Belfast, Newry, Dublin, Waterford,

TURBINE AND PUMP, MANCHESTER SHIP CANAL
mR. C. L. HETT, BRIGG, ENGINEER

and Limerick. It was thought that this scheme was boyond the means of the company. The Danube.-Shortly before the close of the last session a report was presented to both Houses of Parliament on the further improvements made in the navigation of the Danube completion of the piers at the Sulina mouth, the depth of $20 \frac{1}{\mathrm{ft}}$. has been constantly maintained. At the close of last year it was determined to increase the depth to 231 ft , by constructing parallel dams between the piers to increase the scour and by dredging; a new powerful hopper dredger being now under construction for the purpose. When this increased depth is obtained vessels which at the present time have to complete their cargoes in the roads will be able to carry out their operations in the port of Sulina, and so avoid the delay which occurs when rough weather prevails and prevents the barges lying alongside the vessels. The cutting of a new channel between the eighth and eighteenth miles ommench in 180, which has suppressed three difficult last December at a cost under the original estimate of £152,000. It has now been decided to undertake another cutting 31 miles long between the thirty-first and thirtyseventh miles above Sulina, for the purpose of doing away with four bends and shortening the course of the river $\frac{1}{3}$ miles, at an estimated cost of $£ 96,000$. When the works were first commenced it was intended to secure a depth at low-water of 13 ft ., and this was attained by training and regulating the channel by groynes. In 1880 a new series of works was commenced with a view of securing 15 ft . and removing some of the worst bends. These works were completed in 1889, and the depth of 15 ft . was secured, the channel being shortened about two miles. These works were ar original astimast of the nuch greater than promised The works now in hand it is expected, will give a depth of 201 ft , along the whole of the Sulina branch when the river is at its medium height and at a season when the shipping is busiest. All the loans effected by the Commission for carrying out the improve-
ments have been paid off, the current income being sufficient to meet the expenses of the works now in hand in addition to the ordinary maintenance. The works have from the commencement been carried out under the direction of Sir Charles Hartley, Mr. Kuhl acting as resident engizeer.

MANCHESTER SHIP CANAL.-TURBINE AND PUMP AT TWENTY STEPS BRIDGE.

As promised in our issue of the 3rd of August, we now give an illustration and description of the pumping installation recently put down for the Manchester Ship Canal Company by Mr. Chas. Louis Hett, of the Turbine Foundry, Brigg. The plant is intended to keep the subways-which were made for the purpose of conveying the telegraph and telephone wires under the canal-clear of water, to enable the authorities to inspect the lines at any time. The motive water is obtained
from a 48 in. main, which connects two streams in the vicinity from the level of which to the ordinary level of the Sty, Canal there is a fall of she Hett's Hercules type, $C 0$ c.m diameter, with vertical shaft enclosed in steel case, and fitted with sluice valve for shat ting off the water for examination or repairs. The regulating gear of the turbine is mounted on the top of the case. The pump is driven by a belt from the turbine, and is a 6 in. Accessible type, designed to lift 600 gallons per minute, with 45 ft . lift, at a speed of 1220 revolutions per minute. The presence of the large pipes in the pump well necessitated making a special pump suitable for placing between the pipes, as shown in the illustration. The tail water flows into the Ship Canal through a culverts 3 ft . wide, and the pump also discharges into this culvert, the discharge pipe being fitted with a penstock and air pipe to enable the pump to be drawn from the delivery pip through occasions the water is body of the pump. The whole of the work cock fitted in the ut under the supervision of the compeng's engineers, and ceen found to fulfil its purpose admirably

THE FRENCH CRUISER ALGER

THE FRENCH CRUISERS ALGER AND ISLY.
The French Minister of Marine has this week ordered the despatch to China of the first-class cruisers Alger and Isly, with the instructions, and the Alger is to follow at once. Both vessels are complete in every respect, but present a very different appearance to that anticipated in their original designs, which was somewhat similar to the Tage-a heavilymasted cruiser, with large sail surface.
An engraving of the Alger, which we give on this page, is equally illustrative of her sister vessel the Isly, both having practically the same class and disposition of armament, of sponsons and deck plan. The Jean Bart is another ship of sponsons and deck plan. The Jean Bart is another ship of similar type. The engraving is taken from a photograph
obtained of the Alger, whilst she lay off, completing afloatas is the custom-at Toulon
The dimensions, \&c., of the Alger are as follows :-Length, $346 \mathrm{ft} . ;$ beam, 45 ft . 3 in .; draught, 19 ft . 6 in .; displacement, 4122 tons ; indicated horse-power, 8254 ; maximum speed, 1961 knots; coal capacity, 860 tons. The Alger has no vertical armoured protection, but a curved steel armoured deck runs from stem to stern, and this is 3 inin. thick-far
stouter than as allowed in our cruisers of equivalent disstouter than as allowed in our cruisers of equivalent displacement, the Astrea type. The armament of the Alger is, moreover, immeasurably more powerful than that of the Fox 51 in quik-firing -5 2in.-quick-firing guns as a main armament, against two and ten smaller quick-firers, with ten machine guns and four torpedo tubes. But what adds very considerably to the effective gun power of the Alger and Isly is the fact that all their eight heavy broadside guns are in protected sponsons, so thatan overwhelming end-onpower can beobtained when necessary. It has been recently advanced that an effective broadside fire is of greater value than end-on fire, and this must certainly be admitted as regards vessels which are designed for fighting in line of battle, as the effect produced by broadside firing from ships advancing in "line ahead," or "in column," as it would be expressed by landsmen, is absolutely crushing. We assume that the enemy is practically motionless, and expected to act, as a general rule, independently, so that her axially directed armament-after her speed-is her great her axial
The Alger and Isly have a high freeboard, in this respect resembling the four large cruisers which are doing such excellent work for the Japanese at this moment, and to the security afforded by the armoured deck. The conning towers are thickly armoured, and shelter decks are over all the upper desk gun positions. The fighting masts are of large size, with double staircases, and searoh lights in the upper tops, as may be seen in the engraving. The Isly attained a
speed of 16.8 knots with natural, and 18.1 knots with forced
draught, whilst her trials were being made in an exceptionally draught, whilst her trials were being made in an exceptionally heary sea ; hence she must be a good seaboat. The Jean Bart has already displayed excellent properties in this
respect. respect.
ful reinforcement to her already strong Ching a very powerful reinforcement to her already strong China squadron, and
that if her interests in the East demand such prompt and that if her interests in the East demand such prompt and
effective action, Great Britain ought not to be behindhand. The European community in Hong Kong, Shanghai, HanThe European community in Hong Kong, Tientsin, \&.c., consists practically of Englishmen, kow, and Tientsin, \&c., consists practically of Englishmen,
with a few Americans only, except at Tientsin, where they are numerous. The German and French merchants might
be counted upon one's fingers. It is, therefore, for us to see whether our naval strength in China is commensurate with our present interests. We do not think it is.

THE DAIRY SHOW.

The nineteenth annual Show, held under the auspices of the British Dairy Farmers' Association, opened on Tuesday and closed to-day, and amongst the varied and miscellaneous exhibits we noticed as usual various mechanical appliances intended to improve, facilitate, and accelerate the production, treatment, transport, and utilisation of dairy produce. the is not necessary to chronicle the continued appearance of rather to note the direction the mechanical mind das taken in the way of producing novelties for the betterment of the dairy industry during the past year. No great activity has been exhibited during this period in these matters, and what has been done is principally in the improvement of the separation of cream, \&c., from milk, centrifugally. The Dairy Supply Co., London, in this direction have made the discs of their "Alpha" separator of a steeper angle, and claim thereby to increase the separating capacity without any increase in the power required for working; whilst to a small pattern of separator, the "Humming Bird," they have applied a strap and ratchet gear, the strap being alternately pulled and allowed to recoil as in some well-known toys, and a a ridiculously small amount of exertion, the operator casually chatting and answering questions, while the stream of separated milk and cream run regularly from their respective spouts. The Dairy Outfit Co., London, now place within their separator a $1 \frac{1}{8}$ in. thick metal cylinder or drum, for large sizes, made of aluminium. This cylinder is perforated with holes inclining upwards at an angle of 55 deg . in their passage from the outer to the inner surface of cylinder; the stream of milk directed in the usual way, passes up between the periphery of the revolving vessel and the cylinder, the cream passing through the perforations to the inner side of the cylinder, where four wings or blades, provided for the purpose, cause it to pass upwards to be discharged from the cream spout. The
use of this honeycombed cylinder is stated to increase the use of this honeycombed cylinder is stated to increase the
efficiency to such an extent as to permit of seventy-five eficiency to such an extent as to permit of seventy-five
gallons per hour being separated by means of a small hand gallons per hour being separated by means of a small hand
machine. This novelty is known as the "Empress" cream separator, and gained a silver medal. These and various modifications in centrifugal testing machines for stimating equality of milk, cream, and butter, are to be seen in number. In the latter graduated tubes containing the milk, cream or melted butter are attached by their neeks to a centrifugal machine, and are whirled round. When the separation is achieved the thickness of the various layers is measured, and the proportion of each constituent is determined. To avoid fracture of these tubes in some cases it is found advantageous to have them immersed in water when whirling. A churn, exhibited by S. Cheeld, of Chesham, consists of an open round vessel-a tub, in fact-which is made to revoive on a table whilst suspended in a socket in a cross piece. Rest to moirt anpored is an iron rod which can its lower end carries two an more vertical blades his rod at laterally so as to nearly reach the wall of the revolving vessel The cream when run in is dashed against these blades, and is rapidly converted into butter or butter-milk. This is called the "E.C. churn." It makes butter with considerable rapidity and with a very small expenditure of power, and for this it gained an award in the butter-making contests. The
same maker has also a butter dryer on the same principle, which, by changing the parts, can be readily converted into a Messparatus.
farmer's. A. A. Lister and Co., of Dursley, Gloucester, exhibit a farmer's separator plant which they call the "Farmer's Rig." "Alexandra" a steam generator, a steam turbine, and an "Alexandra" separator. The steam generator is an elaborated cauldron with fireplace and ash-pit below, and with a wrought iron flue-pipe. The boiler is very small and neatly arranged and the steam turbine makes a very compact arrange menlicable than the ordinary arrangements invore ging therally of an engine as it of cinary arrangements nvolving the use inseparable from the establishment and sustaining of an engine, and therefore less space is required, less primary cost, less renewals, and besides no belting; by it, too, 1500 gallons of milk can be separated with the consumption of 28 lb . of coal; and the cauldron can be used for cooking cattle food, the steam for warming the milk as it passes to the separator, and sundry other purposes on a farm. For warming the milk a steam chamber is provided below the feeding cistern. Above this is a false bottom with an opening on the side farthest from the outhow tap; this false bottom rests on of the steam chamber on its way to the tap; hence the top is only warmed as it fows to the separar thence the milk remaining unchanged in temperature, a desirable factor for successful working.
Thomas Bradford and Co., London and Manchester, exhibit a cast iron churn on their fish-back principle. This material was selected to overcome difficulties arising from expansion and contraction of wooden churns in warm climates, and it is stated, and has been verified at the Show, that perfect butter can be made in the cast iron churn, and curiously enough the more rusty the interior of the churn the more rust istorily does it do its work, provided always that the rust is clean, the product of a good scalding rinse, with the time water, ald a week Thext churning, wher the interval be a day or
Messrs Pond and Son London, stained bro
efrigerator, which tal tubes, so arranged that the cold water entering at tho traverses the whole length of each tube in succession until it leaves the apparatus at the end of the uppermost tube. The milk runs down the outside of these tubes, first encountering the upper ones, finally passing over the lowest and coolest tube before leaving the refrigerator.
There are various vehicles and other appliances that have received awards and attracted some attention, but for reasons already stated do not call for our special notice. The Disc Churn, for instance, is again somewhat prominent; is now
mounted differently, and has obtained some successes in the mounted differently, and
We see that steam is making due progress in aiding dairy operations, and we are rather surprised not to see some exhibit illustrating the application of electricity in the dairy more especially after the recent demonstration witnessed at Mr. James Blyth's dairy at Stansted, Essex. There the driven separator and various butter-making machines are Messrs. F. H. shunt-wound 1 -horse power motor, made by minute it is controlled co., runuing at 1800 revolutions per hafting transmitting the power is coupled direct the srmature of the motor, is lin. in ciampled and runs the the level of the floor. The power for driving the motor is derived from accumulator, which besides furnish motor is various parts of the demesne; the accumulators are charged

THE BENT STEEL STERN FRAME OF THE S.S. LINLITHGOW

from an Edison-Hopkinson shunt-wound dynamo, driven by one of Marshall's semi-portable compound engines, 12 nominal horse-power. The whole was installed by Messrs. Pritchetts time of our visit it certainly was working well, and therefore we are surprised not to see any electrical aids for the dairy we are surpri
at the Show.

CAST STEEL STERN FRAMES.
The above engraving is from a photograph of the stern of the s.s. Linlithgow, and affords a remarkable illustration of the value of cast steel stern frames. The s.s. Linlithgow, 3137 tons iessrs. Raeburn and Verel, Glasgow, is a vesse S Swan and Hunter, Wallsend-on-Tyne, and was fitted with a cast steel stern frame made by John Spencer and Sons. The vessel left Messrs. Swan and Hunter's yard in the early part of this year. On her voyage she went ashore at cocanada, Bay of Bengal, and wisted her stern frame as shown in the photograph, after which she was towed to back about 8 ft , into position, snd the vessel is now returning to London with full cargo.

PROGRESS OF BESSEMER STEEL.
Considering the general position of the trade of the country, it augurs well for the vitality of the Bessemer steel year should be about 3t per cent. larger than in corresponding period of 1893. It is true the increase is by no means large, but it is decidedly better than the decline that might reasonably have been expected. The 784,712 tons of the closing half of last year have become 810,392 tons, or an augmentation of 25,680 tons. The details given by the British Iron Trade Association in their official report issued a few days back on this subject are, when examined, both instructive and suggestive. In the first place, it is clear that the material is already being used for much more than rails. In 1882 practically the whole of the ingots produced were made into rails, whist at the present time considerably ther purposes. Another point to be observed shout the statistics is the small proportion of available steel-producing plant that is being utilised.
Of the 104 Bessemer converters built in the kingdom, only 60 were at work at the end of June. The relative positions of the various districts with regard to ingot productions are as follows :-1, North-East Coast; 2, South Wales; 3, West Cumberland; 4, Sheffield; 5, Lancashire and Cheshire; 6 , Staffordshire and Scotland. The proportion of basic to acid ingots in tbe Bessemer or pneumatic process, which in the
first half of 1893 was 127,998 tons to 656,774 tons, has risen
in the corresponding period of the present year to the following : $-178,736$ tons to 631,656 tons. This being so, we should expect that the acid process should be in vogue where good
hematite pigs are near at hand, or easily obtainable, than hematite pigs are near at hand, or easily obtainable, than has made 181,839 tons; West Cumberland, 158,930 tons ; and has made 181,839 tons; West Cumberland, 158,930 tons ; and
Lancashire and Cheshire, 104,532 tons-all of acid. The presence of and proximity to good pig iron in the southernmost portions of Yorkshire is also reflected in the 107,214 tons of acid Bessemer steel ingots made in Sheffield and its locality. On the other hand, in the North of Yorkshire, the presence and almost exclusive use of inexpensive phosphoric ores is shown by the North-East production being 129,142 tons of basic steel ingots, against only 73,141 tons of acid.

The Institution of Civil Engineers.-The rebuilding of the Institution of Civil Engineers will not affect the place of meeting, as such arrangements have been made as will allow of the theatre
and reception rooms under to be retained for use during the approaching session.
Port Manchester.-The result of a consideration of circulars issued by the Manchester Canal Company urging the advantages
of chartering to and from Manchester has been to cause Baltic men amongst others, to ask sundry questions, some of which are given in Fair Play as follows:- What advantage do merchants gain in sending consignments up the canal ?-Was not the freight last year ${ }_{3}^{12}$ d. per pound more than to Liverpool, although steamers paid no canal dues? Is not the carriage by rail from Liverpool to
Manchester the same as this difference, i,e, Manchester the same as this difference, i.e., $\frac{1}{32} \mathrm{~d}$. per pound? (It
was stated so some months ago.)-Does not an importer prefer to land at Liverpool and have the advantage of the prefer to land at Liverpool and have the advantage of the
market there if it cost bim no more to send his goods on to Manchester eventually ? - Does not the spinner prefer to buy in small lots in Liverpool?-What amount of combination is necessary to get such buying altered to induce people to import cotton
they cannot see beforehand, and without the choice of an assortment, it may be ?-If spinners buy in large bulks, where will they ment, it may be - -If spinners buy in large bulks, where will they
store them?-Can Manchester offer facilities with as low rates of insurance ?-It must be remembered that an expensive equip-
ment is necessary for storage warehouses to enable ment is necessary for storage warehouses to enable goods to be
received in them and delivered out quickly. - What cargoes received in them and delivered out quickly.-What cargoes
which usually come in bulk has Manchester a market for ? Timber, grain, and cotton, perbaps.-Does she crush seed like Hull, refine sugar like the Clyde, or weave jute like Dundee? Does she expect that general cargoes will be sent up to the canal and distributed thence when Liverpool has so many lines of steamers, railways, canals, \&c., available, and does not
need to send consignments for other ports up to Manchester and need to send consignments for other ports up to Manchester and
bring them down again?-As to outward business, bas Manchester bring them down again - As to outward business, has Manchester
any bulk cargoes ?-How many of coal has she shipped? Can she offer iron in the bottom of versels loading general cargo, as many other ports do ; or are her principal exports light rather than heavy cargo, which ought to go in last rather than first?-These are a sample of questions which Baltic men and others would like to have answered before they can estimate how many steamers can
be chartered for Manchester-profitably, of course. The busines might be done magnificently, like the Balaclava charge and the making of the Manchester Canal. But will it pay? That is the
question.

WAVERLEY STATION, EDINBURGH
The completion of the tunnels under the Mound, in Edinburgh, which was recently accomplished, is another step Railway Company's system in traversing the capital of Railway Company's system in traversing the capital of
Scotland. The opening of the Tay and Forth Bridges has Scotland.
led to great congestion of the traffic in Edinburgh, and the widening now in active progress is not being carried out a moment too soon. The piercing of the Mound has not been unattended with anxiety, for the material is " made" earth throughout, the Mound being an artificial bank connecting the northern and southern portions of the city, and carrying the valuable buildings of the Scottish Royal Academy, which had necessarily to be guarded from any possible damage from the excavations to be carried out beneath them. The widening has been accomplished by driving a single-line new tunnel is lined throughout with cast iron segments having an external diameter of 18 ft . 6 in . The grouting has been performed with Arden lime Greathead's patent grouting plant being employed for its injection.
Compressed air has been employed throughout the work, which was commenced in August, 1893. The maximum air pressure attained was 20 lb . per square inch above atmosphere, and the average working pressure may be stated at about 15 lb . per square inch above atmosphere. Thirteen rams of 4 in . diameter operated the shield with a pressure ranging about one ton per square inch. Hand pumps were provided for giving pressure. The excavation was carried on ployed per shift being about twenty number of men employed per shift being about twenty. The air-lock, which iron cylinder 12 ft . long and 6 ft diameter, The sements were lifted into position by hand, no tackle being employed. Each ring is composed of thirteen segments and a 9 in . key piece, the segments being 1 ft .6 in . wide, and 7 in . deep over the flange. Both back and flanges of the segments are $1 \frac{3}{3} \mathrm{in}$, in thickness, and are connected and stiffened by fourteen stout brackets or feathers in each casting. The number of bolt holes in the long and short sides is six and three respectively, and 1 sin. bolts are employed throughout. The brackets or feathers in the long and short sides are 18 in . and 1, in. thick respectively. A special feature to be noted in planed on every face, and thnels is that the segments are planed on every face, and that no recess is left on the inner portion of the segments of each tunnel are filled withe lower flush to the full depth of the flanges. The faces of the tunnels are elliptical in formsto correspond with these of the existing tunnel, and are built of handsome and substantia dressed freestone
The work has long been looked for with interest by those who travel northward frequently, and especially since the accident which happened near the station about two years ago It has been carried out by Mr. Geo. Talbot, under instructions from the engineers of the North British Railway Company.

TRIPLE EXPANSION ENGINE-FRIKART'S SYSTEM.
We illustrate on page 322 a triple expansion engine, which is now being shown by Messrs. John Cockerill and Co., at the Antwerp Exhibition. In no country has the rotary valve, which is the main feature of the Corliss system, found more favour than in Belgium. All the large horizontal engines exhibited at Antwerp have valves of the Corliss type, though each manufacturer has a different method for regulating the admission and cut-off which he considers superior to that
low-pressure, $3 \mathrm{ft} .1_{8}^{3} \mathrm{in}$. The length of stroke is 3 ft .117 in . and the number of revolutions is eighty,
The chief characteristic of the Frikart valve is that by it any degree of cut-off from 0 to 75 per cent., or even more if necessary, can be obtained with a single excentric, as the highest importance to be able to prolong the admission, as by this means the power of the machine to deal with extreme cases is greatly augmented. For instance, it may be required to exert increased power; or the pressure in the boiler may
fall, either accidentally or because the fires are being allowed
tion, the point f will be raised also, and the points e and g will undergo a corresponding angular movement round D whilst continuing to follow the horizontal movements of the describe the the consequence being that the point finger c will describe the dotted curve M^{1}. The point 10 of this latter curve is exactly at the extremity of the trigger plate. The rip would therefore take place at the dead point.
For an intermediate position of the sleeve, the point d will describe an intermediate curve between m and m^{1}, and the finger c will describe a curve between M and M; and thus, 0 to 0.70 . The admission of cylinder is fixed and regulated by hand; the cut-off of the cylinder is fixed and regulated by
Fig. 1 is from a photograph showing the high-pressureand in termediate cylinders, which are arranged as in a tandem engine. The low-pressure cylinder drives a crank on the opposite side of the fly-wheel from the other two. The condenser and air pump are behind the low-pressure cylinder, and in a line with it. All three cylinders are steam-jacketed; the steam for the jacket of the high-pressure cylinder is direct from the boiler, that for the intermediate from the reservoir or steam chest between it and the high-pressure, and that for the lowpressure cylinder from the other reservoir between the inter reservoirs are under the floor, and the water which ondenses in the jackets is drawn off by three separate pumps, and returned to the boiler. The engine has been designed for an effective horse-power of 600.

THE "SIMPLEX" EMERGENCY GRIP, FOR CRANES AND WINCHES
The engravings below illustrate a new form of selfsustaining device for application to cranes and winches to
prevent the too-common accidents with the handles of prevent the too-common accidents with the handles of down of the load. Fig. 2 of the engravings shows the grip as applied to a derrick or slate-quarry crane; and Fig. 1

shows the details of the grip. Upon the first motion spindle of the winch is fixed a friction wheel, into which gears an excentric friction roller or cam, carried by the handle shown in Fig. 1. The roller thus forms an excentric circular wedge, which will permit the friction wheel on the first motion shaft to run freely one way, but jams or fixes it in the other. The excentric roller and the lever, together with a friction clutch definite position by two links, which connect them to a cross-

EMERGENCY GRIP APPLIED TO CRANE-FIG. 2
bar of the frame of the crane or winch. A-Fig. 1-is a cast iron sheave turned with friction grooves on the periphery.
Ihis is fixed to the first-motion or handle shaft, and into this friction sheave works the cam-shaped part of the friction lever H, which is held in position by side plates, see Fig. 2. By lifting the handle, the cam is taken out of gear, and the friction clutch band may be used for lowering the load. The "Simplex" grip is readily applied to existing winches, and is made, under the patent of Messrs. Beckett and Roberts, by Messrs. De Winton and Co., of the Union Ironworks, Carnarvon.

The Incorporated Association of Municipal and County Evoineers. - The eighteenth voluntary pass examination of canBoard carried out by this Association was held at the Council House, Birmingham, on Friday and Saturday, the 5th and 6th of October. Eighteen candidates presented themselves for examination, the written portion of which was taken on the first day. The greater part of the second day was occupied with the viva voce por-
tion of the examination. The examiners were: as applied to Municipal Work, Edward Pritchard, M. Inst, C.E of Birmingham and London, past president. (2) Building Construction, W. George Laws, M. Inst. C.E., City Engineer, Newcastle-onTyne, past president. (3) Sanitary Science, A. M. Fowler. M. Inst. C.E., of Manchester, President. (4) Public Health Law, Joseph Lobley, M. Inst. C.E., Borough Engineer, Hanley, past April, 1895.

RAILWAY MATTERS

Railway construction in China is entirely suspended. IT is proposed to construct a new line of railway between indsor and Henley
The Philadelphia postal authorities are considering the question
in that city.

All of the bridges which were destroyed during the forest fires in Northern Wisconsin and Minnesosta bave been rebuilt,
and trafic has been resumed on all the roads.

It has been decided to use petroleum as locomotive fuel on the Baltic railroad, which is significant, because this line is
almost the most distant of any in Russia from the oil wells. Great reservoirs are to be built in St.. Petersbbrg and Reval and
three other stations, which will hold in the aggregate about three other static
$5,000,000$ gallons.
The railway recently opened at Kiew, in Russia, is the first electric railway that has been constructed in that country. It is about two miles long, with grades as high as 9 per cent. The
generators, which are two 30 -kilowatt machines, are of German make, and are driven by Otto g g
track is laid with stringer rails.
Three new mogul locomotives for the Erie and Wyoming Valley Railroad, with 56 in. drivors, weigbing about
56.2 tons, have recently been delivered from the Bald win Locomotive works. They have three 17 in . by 24 in , cylinders, set on an
incline, so as to allow the middle one to drive the main axle just inside the right driver, all being connected at a main deg.,
to give continuous effort on account of the heavy grades on the
road.
The Melbourne Tramways Company has been experimenting with tar as fuel. The tar is kept in a liquid condition by
means of exhaust steam pipes, which are coiled in the tanks, and means of exhaust steam pipes, which are coiled in to tanks, and
is pumped to the feed tanos, which are situated above the boilers. It is led from the tanks through a large strainer, before it is
delivered to the furnaces through a 2in. pipe. The tar is mixed in theivered to the furnaces through a ith steam, and both tarand ande. stam pipes are provided
the bite
with flexible joints at the furnace door-plate, so that they can be with hlexible joints at the furnace door-plate, so
easily swung back as the furnace door is opened.
The official statistics of the working of French tramways in 1893 give particulars of the operations of light railways
and tramways worked either by steam, electricity, or animal power. Of light railways guaranteed by the State there are
645 kiloms. in operation. The liitht railways not garanteed by 645 kiloms. in operation. The light railways not guaranteed by
the State comprise 288 kiloms. of Sine. Of tramways proper there
are 100 kiloms. worked by steam, electricity, compressed air, or

In a recent number of the Revue Geinerale des Chemins de Fer, the results of a number of tests to determine the stoam
consumption of loomotives per indicated horse-powet per hour
are
inven by M. Dasdonits. In five trips the speed averaged from are given by M. Dasdouits. In five trips the speed averaged from
37.2 to 04 miles per hour, and the areage consumption of water
25.61 lib. per indicated horse-power per hour. M. Desdouits believes. ber experimenteds warrant him in in concluading that ins inmple
elgines the best results are obtained with a working pressure of engines the best results are obtained with a working pressure of
about 142 bib, with a cut--off at one-fifth the stroke, and with the
Information from an American source reaches us of a novel method of removing rusty bolts from locomotive frames,
viz, by gun fire. A Apecial gun was made from an old crank pin
10in. Iong and 5 in. diameter, bored with a 2in. hole about sin. doep. Thie gun stood on the lower barof the frame, being blocked
up to bring it near enough to the bolt which was to be fired out.
ubout tin, from the muzzle, a tin. vent hole was bored to relieve the About tin. from the muzzile, a a in. vent thole was bored to relieve the
internal presure when the projectile, which was in the form of a ram 8in. long, turned to an easy working fit in the 2in. bore,
has done its work. With loss than $\frac{1}{2}$ oz. of gonpowder, a litin. bolt was driven out with no more
the preliminary setting of the gun.
AN appropriation of $£ 30,000$ has been made by the United States Congress for the preliminary work on a ship railway
to be constructed trrough the Dalles. on the Columbia River, in
Oregoo. The car that will be used will be 40ft. or 50 年, in bread
 vessel floated over it; the car will then be raised by a hydranlic
lift some oftt above the water level to the height of the land
track and the car run toon it. The Amerivan Engineer says this track and the car run upon it. The Amerivan Engineer says this
land track will consist of four or five railway tracks of standard
ganges, and there will be no curves sharper than 2 deg. Mr. Edaund Pearse Burd held inquiries at Nottingham and Leicester on Tuesday and Wednesday, on behalf of the
Local Goverment Board, as to the demolition of houses by the
Manchester, Sheffield, and Lincolnshire Railway Company in the Local Government Board, as to the demolition of houses by the
Manchester, Sheffield, and Lincolnshire Railway Company in the
construction of their line to London. At Nottingham Sir S. S . G . construction of their line to London. At Nottingham Sir S. G.
Jobsnon stated bat some eight or ten years ago there arose an
exceedingly wild bailding speculation in that town. Land went up exceeningly wild building eseculation in that town. Land Land went ap
in price, houses were placed upon it, and the town became so over-
built that there were at one time fully 6000 empty houses. The built that there were at one time fully 6000 empty bouses. The
line of railway, so far as it passed throug the central parts of the
town, would involve the destruction of a lot of insanitary property town, would involve the destruction of a lot of insanitary property
which had been condemned long ago a A large number of insani-
tary houses will also be demolished at Leicester.
The Berlin local authorities have decided to call upon the Grand Berlin Horse Tramway Company to proceed at once
with the vork of laying a tramway from Reichenbergerstrasse to to
Treptow, as otherwise the project will be paseed over to another
 constructed in Berlin from the Wienerstrasse via Wienerbriucke
and Kippenicker Weg to Treppow. The Berlin municipality bave
also sent a deputation to Dresden to see Mr. Langen's electric tramway there. The Berliner Elektricitits-Gesellschaft has formu-
 current for lighting and motors. The Elektricititts.Geselilschaft
"Union, of Berlin, have ben negotiating with the Elbing
Municipality to build an electric tramway in that town. The first town in Europe to substitute electricity com-
pletely for other methods of propulsion upon the tramways is pletely for other methods of propulsion upon the tramways is
Havre, where the new sastem of tramars has lately been inHavre, where the new system of tramcars has lately been in-
augrarated. Three lines, of a total length of 14 kiloms., have
slready been constructed, and a fourth is now being laid down. The system employed is the overhead contact by copper wires
carried at a height of 6 m . 50 cm . upon metallic posts placed at carried at a height of 6 m .50 cm . upon metallio posts placed at
about 40 metres apart. There are 506 of these posts of tube steel,
which are also utilised for carrying arc lamps, of which eighty five have so far been erected. It is expected that lampsp will be placed
shortly over the whole length of the lines. This installation has shortly over the whole lonth of the lines. This installation has
been corried out the Compagnie Thomson-Houston. The cars
are forty in number, and are each capable of carrying fifty passengers. Some of the cars have two motors, while carrying majority
have only one ; these motors are geared directly on to the axle, and every care bas been taken to protect them from the dust and damp. The power is supplied by the Societte de de 1 Eoergie Elec-
trique, whoses station is sitanted in the contro of the etown. Their plant includos at present thr
worked by a Faroot engine.

NOTES AND MEMORANDA

The mean density of the earth found by Professor Poynting is $5^{\circ} 49$. Professor Boys' result is 5.53 . A RULE given by Mr. Preece for comparing the costs of
gas and electricity for lighting is as follows
Gas at three shilings per thousand cubic feet equals electricity at six
per kilowatt-hour," or in otber words the factor is about six.
In the city of Tokio and elsewhere in Japan wooden water-pipes have been in use for over 200 years. Pipes of 6 in.
internal diameter and less are made from tree trunks bored out larger ones are usually square, and are formed of planks fitted larger one
together.
AN attempt made in Sweden to produce an extra strong cast iron, in order to reduce the thickness of shrapnel shells, so
that the capacity of the chamber within them can be increased produced a series of castings giving an average tensile strength o The firm which makes the castings guarantees a strength of $17 \cdot 8$ long tons per square inch
In the return of the gas testings for the week ending 6th October, Mr. W. J. Dibdin, F.I C., enters as the higbest mean
illuminating power that of the Tooley-street district supply, South illuminating power that of the Tooley-street district supply, South
Metropoitan Gas Company, which was 170 candles. The lowest bering found at the Chelsea, Holloway, and Hampstead districts,
Gas Light and Coke Company, and the Old Ford district, ComGeing Light and Coke Company, and the o.
mercial Gas Company, which were all $16 \cdot 1$.
Polished steel surfaces as saws, chisels, bits, \&c., can be rendered rust-proof by making a preparation as follows: Take
one-half ounce camphor, dissolved in one pound of melted lard, take off the scoum, and mix in as much black lead-graphite-as will give it an iron colour. Clean the tools, and smear with this
mixture. After twenty four hours rub clean with a soft linen cloth. The tools will keep clean for montbs under ordinary cir-

A crromo-phorographic camera, by which a quiek a z zetrope apparatus, so as to ogive an animated reproduction of a a coetrope apparate, has been invented by M. George Demeny. The
moving
problem to be solved is the same as that of Edison's kinetograph, but M. Dameny's apparatus is much simpler than Edison's, besides being. portable. The instrument can be seen at
American Import Office, 368 , Rue Saint Honore, Paris.
In a paper recently read before the Paris Academy of Sciences M. Henri Moissan states that aluminium can be saturated with nitrogen by passing a ourrent of the atter through a bath of
the molten aluminium, and that such saturation bas considerable effect upon the physical properties of the commercial metal, reduc-
ing the elastic limit from 476 tons-of 2240 lb . -per square inch to 4.13 , and reducing the breaking stress from 698 to 6.10 tons per square inch. The elongation also drops from 9 per cent. to 6 per
cent. The presence of more carbon than is ordinarily found in
tht the commer
elongation.
M. Forster, of the Berlin Observatory, has communicarried on simultaneousiy for twenty months past at Kasan in Rassia, Marburg in Germany, and Betblehem in Pennsysyvania.
The object was to study the question of the supposed oscillation of The object was to study the question of the supposed oscillation of
the axis of rotation of the earth. From about 10,000 observations it appears that the pole or end of the axis has an osillation fol
lowing a spiral traced from west to east. The rate of oscillation is variable, at the present time it is decreasing. It appears, how-
ever, that the actual extent of this movement is very small, not xceeding fifteen metres.
Professor Kennedy recently stated that before the Edison and Swan lamp patent expired, and when current was sold at 8d. per unit, an 8-candle power glow lamp cost almost td. per
hour of actual lighting, whereas at the present price of tlow lamp,
and taking current at 'dd. per Board of Trade onit, the 8-candle power lamp costs dd. per actual hour of lightitg. Professor
Kennedy estimates the averace life of glow lamps at 500 to 600 Kennedy estimates the average life of glow lamps at 500 to 600
hours of actuan lighting. The earning capacity of lamps in private
houses, hotels, and shops is, according to Professor Kennedy, inversely as the above order. The number of lamps of 8 -candle
power installed in London in 1893 was $9,666,000$.
In a recent paper in the Comptes Rendus on "Geodesy
and its Relations with Geology," by M. H. Faye, the author says: - It its Relations with Geology," by M. H. Faye, the autbor says: tions; this is probably dua to the more rapid cooling of the crust
of the earth beneath extensive seas, as evidenced by the low tem perature of water -1 dex. dens. or 2 deag, . - at depthas at which the tem-
perature is about 133 deg. in land. perature is about 133 deg. in land. The greater average density
owing to the lower temperature accounts for the bigher value of owing to the lower temperature accounts for the bigher value o
the constant at sea, notwithstanding the replacement of so much solid matter by the specifically lighter water. The autuor tuen
draws attention to the need of aid from geologists in the further
elucidation of the reasons for variations in the constant of fraty
AN improvement in the manufacture of plumbago or graphite has been described in a recent patent specification
Graphite crushed and passed through a sieve of from 120 to 150 meshes per inch, is stirred into a saturated solution of alum o alaminium sulphate at 212 deg. Fab.; steatite is then added, and
more water if required. After mixiog, excess of water is evapo more water antil a consistency suited to grinding in a chilled steel or
rated
other mixer is obtained. More gre other mixer is obtained. More graphite may here be added; then,
after thorough grinding, the material may be compressed into cakes for household use, or is ready for the manufacture of pencils
or crucibles. The average formula for the mixture is : Graphite or crucibles. The average formula for the mixture is: Grapbite
$80 ;$ steatite, soapptone, or talc, 14 ; alum, $6 ;$ but this varies several different kinds of graphite have to be employed, the riches severbon in first mixed into the alum solution. By this process
in carbites previously regarded as incapable of being compacted are
graphites graphites previously regarded as incapable of being compacted are
utilisable, and are improved in polishing power ; for pencils, the material may be hard wittout being brittle, and black withou beicg sort; while crucuibes made firom
once harder, more durable, and lighter.
A solution of copper sulphate does not conform generally expressed. It has been shown by Gray that the metallic deposit is heavier the bigher the current density and the lower the temperature, an explanation being given in the fact that
copper disolves to a very appreciabie, although a variable, amount in solutions of copper sulphate. According to Schuster, it it
probably the atmosperic oxygen present in the solution tha
cases causes this chemical corrosion. In view of this, W. Gannon has
songht tiscover whether there is any differe weights of the two deposits in two copper voltameters, one of which
is placed is placed in a vacuum. Freshly made neutral copper sulphate
solution was employed, and the electrolysis in one case was solution was employed, and the electrolysis in one case was con-
ducted first under reduced pressure, with the resalt that a heavier uocted first under reduced pressure, with the result that a heavie
deposit was thrown down than was the case in a similar experiment the pressure being that of the atmosphere ; but the percentage
difference was not constant. The Electrical Revieco says the addition of a little sulphuric acid to the voltameters caused this differ ence to be constant within experimental error. Under this condi-
tion, for current densities above 001 ampère per square centimetro tion, for current densities above 001 ampere per square centimetre
of active cathode, there is bo practical difference in weight between
the two deposity, but for the two deposits, but for lower densities the "vacuum deposit" is
very appreciably higher than the "air deposit.

MISCELLANEA.

A survey of the Sea of Marmora has been undertaken by the Russian naval anthorities in consequence of the submarine
disturbances supposed to have been produced in that sea by the secent earthquakes.
The first German ironclad built in the new Dantzic dockyards will be launched this month. It belongs to the Sieg-
fried class, the armament consisting of three 36 -ton guns. The fried class, the armament consisting of three 36 -ton guns. The
indicated horse-power is 4800 , and the displacement tonnage

Expertments with the Sims-Edison steering torpedo are to be made in the Bosphorus. This weapon gave such good results when recently tried at Toulon, that the Ottoman Govern-
ment are thinking of adopting it for the protection of their water-
ment
A new twin-screw steamer, named the Alma, built for the London and South-Western Company's fast passenger and mail Glasgow. Her length is 270 ft ., breadth 34 ft ., and gross tonnage
bout 1100 .
We have received the second edition of Mr. L. B. Wells' canal map of England and Wales. The names of many
unctions of canals owned by different companies have been added, and a few additional miles of waterways shown, bringing up the total to 3935 miles.
The Admiralty have directed that trials are to be made on the new torpedo boats and torpedo destroyers on their
delivery from the contractors, to test the flaming of the funnels when steaming. It is expected that with careful stoking this evil
which would render a night attack impossible, can be prevented. the constraction of of those mail boats which will serve as auxiliary cruisers in time of war, and the other for the accommodation of ironclads of the
largest sizz. The docks are to be built in the northern portion of

The Local Government Board have given their sanction to a loan of $£ 11,500$ for the sewerage and sewage disposal
of Bracknell. The sewage will be purified by irrigation, on $22 \frac{1}{2}$
acres of land. acres of land. There are to be two small pumping stations,
worked by oil engines. The engineer to the scheme is Mr. W. H. Radford, C.E., Nottingham.
A curious accident has happened at Boston, U.S.A. A man, while cleaning an arc lamp at the top of a high mast, received
the full strength of the current and was killed instantaneously. His body was suspended from the wires for half an hour. When men were put to work to remove it one of them came in contact with it,
and was thrown head foremost on the sidewalk. He was dashed
with such violence with such
afterwards.
The Halcyon torpedo gunboat, constructed at Devon seriously. A crack nearly a foot in length has been disconered in her high-pressure cylinder. The Admiralty had intended that she
should represent her class in a series of experimental trials to ascertain the most suitable type of propeller for torpedo gunboats of the same tonnage. The vessel's mas.
weeks ago accepted from the contractors.

A statement to be taken cum grano is to the effect that two Russian engineers contemplate making an attempt to raise the
sunken battleship Victoria, owing to their recently achieved success in raising, by means of air balloons, a vessel sunk in 30 ft . of water near Varsovie. In the case of the Victoria, it is said, ten
air vessels will be used, each of a capacity of 60,000 cubic feet. The question which immediately occurs to us is, how are these
vessels to be attached to the ship? 30ft. of water is one thing, vessels to be attache
and 450 ft . is another.
Messrs. John and Henry Gwynne, of Hammersmith, have entered upon a contract with the Mersey Docks and Harbour Boardensing pumping engines to raise the level of water in the
Canada Huskisson dock system. This makes the fourth large installation fitted up by Messrs. J. and H. Gwynne for the same authority, which will have within the dock estate "Invincible"
plant equal to a combined capacity of 4000 tons of water per

A series of experiments is being conducted on board the first-class battleship Revenge at Spithead, with a view to
determine the precise advantage obtained by the new bilge keels which are being fitted to all the vessels of the Royal . Sovereign and steadiness by her double bottom being filled with water, and her bunkers with coal. The four barbette guns, each weighing list of twelve and a-half degrees, and this was increased to fifteen when the crew were assembled on the side to which the guns were severe test, by removing both the coal and the water, and adopting the same method of carrying out the test. At the conclusion of the trials the Revenge will be docked, and bilge keels affixed to
her bottom, and she will then undergo the same experiments as

We have received from Messrs. Edgar Allen and Co., Sheffield, a pamphlet containing particulars of, and reports upon,
their dynamo magnet steel castings. The reports are by Mr. Gisbert Kapp, M. Inst. C.E., Professor Ewing, and Profeesor castings were equal and now are superior to wrought iron forgings tested their materials, and his great experience in dynamo design and construction enabled him to make use of this magnet steel,
and to pronounce an autboritative opinion upon it. He found it eeter than wrought iron forgings in many cases, and some which magnet steel he bad previously met with. The pamphlet we have received is accompanied by permeability curves by Mr. Kapp, and
Professors Ewing and Jamieson, and will be found of considerable interest by those who are concerned with the construction of large
magnets of any kind, and who are interested in the magnetio magnets of any kind, and who are
efficiency of materials to be employed.
The new German third-class cruiser, provisionally Wilbelmshaven. She is, according to the Times, 246 ft , long by 33 ft . 6in. broad, and at a mean draught of l5ft. will displace 1640
tons. There are twin screws, and engines working up to power, which will give the vessel an extreme speed of 16 knots. $3 \cdot 96 \mathrm{in}$-- 40 -pounders-quick-firers, four machine guns, and two torpedo-launching tubes. A few days later at the same yard the
keel plates will be laid of the new first-class battleship which is to take the place of the now almost obsolete Preussen, a vessel twenty-
one years old. The new ironlad will be a reproduction of the
Wörth, with, however, slight modifications, and will be constructed to carry four 1lin. breech-loading guns of 40 calibres, two 1 lin
breech-loading guns of 35 calibres, breech-loading guns of 35 calibres, six 3.9 in . quick-firing guns of
35 calibres, eight $3 \cdot 4 \mathrm{in}$. quick-firing guns of 30 calibres, two 2.3 in .
boat guns, and eight $\cdot 3$ lin. maching guns. boat gans, and eight 31 lin . machine gans. Her extreme speed,
with forced draught and at 111 revolutions, will, it is anticipated,
be 17.2 knots, 10,230 indicated

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER

CONTENTS.

Tax Exainikr, O.tober 12th, 1894.

TO CORRESPONDENTS.

Registered Telegraphic Address. "ENGINEER NEWSPAPER

ALUMINIUM BRONZE Pipes
 sure, the diame
October 6 th.

mebtings next werk.

 by the Presideut, F. H. Pearron.

DEATH.

O. Ausurt sust, suddenly, at

EATH.
(Ayces, S. A., W. H. Morrow,

THE ENGINEER.

OCTOBER 12, 1894.

the uncertainties of science.
Some months ago we reviewed an important book, "The Science of Mechanics," by Dr. Ernst Mach, professor of physics in the University of Prague. That book gave sufficient evidence that its author is a very advanced thinker-a man with small respect for authority in science. In the Monist for October we find a lengthy tion of Energy," which will supply food for thought to everyone interested in physics. This paper is remarkable in various ways. Thus, at the outset, we have actually an attempt at a definition of the word Energy. "The most multifarious physical changes, thermal, electrical chemical, and so forth, may be brought about by mechani cal work, says Dr. Mach. When such alterations are reversed they yield anew the mechanical work in exactly
the quantity which was required for the production of the part reversed. This is the principle of the conservation of energy ; " energy" being the term which has gradually come into use for that "indestructible something" of which the advanced physicist can find no better definition for a word in everybody's mouth than that it is an "indestructible something." It is not work, but work is its that we are concerned, but with his methods. These appear to us to be altogether admirable. He is not appear to state ideas, or to give definitions; he goes much further. He asks where did the ideas-or as we prefer to call them, concepts-of physics come from? and the result of his investigations casts a curious light into very obscure regions. As to the doctrine or concept of from? And he proceeds, to asks where a come by no means so simple as it appears, and that indeed it is in no way easy to prove that energy is really purpose to follow him through his arguments: for the present we are considering only his conclusions, Page by page we find the words, "Not proven.
He takes argument after argument, authority after authority, and shows that there is a reason why each and all break down somewhere or in some point. He shows that one of the strongest arguments in its favour is based on the assumed impossibility of producing "perpetual motion," which assumption is in turn based on another, that all forms of energy are modes of motion, concerning which he says, "Intelligible as it is, therefore, that the efforts of thinkers have always been bent upon the 'reduction of all physical processes to the motion of atoms,' it must yet be affirmed that this is a chimerical ideal. This ideal has often played an effective part in popular lectures, but in the workshop of the serious inquirer it has discharged scarcely the least function."
We have said enough, perhaps, on this point to show what manner of thought Dr. Mach puts before his readers on one question. But he is much more audacious in his method of dealing with thermodynamics, and to his views on the subject we direct particular attent whach did and did not teach, and he explains very clearly the nature and truth of the work done by the Thomsons, Joule, Mayer, and others. It having been shown that then is not a substance, the question was asked- Hat mode of motion that has been accepted implicitly for years by students as demonstrably true. Dr. Mach hastens to prove that it is not demonstrably true at all, and, more suo, he asks: Where did the concept originate? "The generally accepted notion of a caloric, or heat-stuff If the quantity of heat can be increased and diminished, people said, heat cannot be a substance, but must be a motion. The subordinate part of this statement has become much more popular than all the rest of the doctrine of energy. But we may convince ourselves tial as was formerly its conception as a substance. Both ideas were favoured or impeded solely by accidental historical circumstances. It does not follow that heat is not a substance from the fact that a mechanical equivalent exists for quantity of heat. We will make his clear sometimes put to me:-Is there a mechanical equivalent of electricity, as there is a mechanical equivalent of heat ? Yes, and no. There is no mechanical equiva quantity of heat, because the same quantity of electricity has a very different capacity for work, according to the circumstances in which it is placed; but there is a mechanical equivalent of electrical energy. Let us ask another question. Ts there a mechanical equivalent o water? No. Not there is a mechanical equivalent of weight of water multiplied by its distance of descent.
Dr. Mach here explicitly states a circumstance which must be taken count with in all attempts to identify heat and electricity. That is to say, our existing concepts and definitions based upon those of heat and electricity are fundamentally different. Once more Dr. Mach asks why reason is purely historical, wholly conventional, and whe is still more important, is wholly indifferent," This he proceeds to prove, and concludes his argument with the following pregnant statement:- "When we wonder, therefore, at the discovery that heat is motion, we wonder at something that was never discovered. It is perfectly whether we think of heat as a substance or not. The fact is heat behaves in some connections like a substance in others not. Heat is latent in steam as oxygen is latent
in water." We have quoted at considerable length, because without quotation we have found it impossible to do full justice to Dr. Mach's vews. Ed ene however, to left essentials unnoticed. The broad fact, however, to which we would direct attention, is that a man of Dr. Mach's attainments should advance opinions which are so directly opposed to a great deal of the teaching of the present day. He brings fundamental modern conceptons of heat to the test and he finds them unsatisfactory. The very root of thermodynamics becomes under his hands one of the uncertainties of science. Our readers will find in the remarkable letter by Col. Basevi, which we print this week, another example of the uncertain oothold which men find in this path of science. It has often been stated that though men believe in the kinetic theory of gases, they know it is not true. Col. Basevi dvances arguments which make it more difficuit to believe in it than ever. On all sides we find men inquiring, thinking, revising, and on all sides upsetting received theories and notions concerning the nature of things and processes. Such inquiries are no doubt distasteful to many persons, but they mean progress so long as they are conducted in a proper spirit. Yet the student of science will do well to bear in mind the words of a ery eminent lecturer of physiology. "The statements have made to you, gentlemen, I have every reason to elieve to be wholly untrue, but you must learn them, because if you do not you will not be able to pass your examinations.

canalisation of rivers.

When in classic days a river conducted itself in such a manner as to become a source of danger to the people nd lands adjacent toits banks, its behaviour was attri The hydraulics of rivers are assumed to be under similar he hydraulics of Although the French simar proverb, Rien n'est sacré pour un sapeur, and it must lso be admitted that the modern engineer has no par. icular regard for ancient fluvial deities, yet he is not indisposed to try gentle mesures when dealing with their wayward changes As a proof that the belief in a preciding genin prevails among eatern people, may be ding genius prevails among eastern people, may be ridges threw their shadows over the sacred streams of Hindustan, bouquets and garlands of flowers were freely dropped from the locomotive, as an offering to the river rod, into the waters below. Apart alike from ancient nythology and Hindoo superstition, there is one fact, hich in connection with our subject cannot be overooked. It is the universal consensus of hydraulic ongineers that in projecting works for the improvement rivers, the natural physical features of the wateratters nothing for what especial purpose the particular matters nothing for what especial purpose the particular
works may be undertaken, whether for irrigation, drainage, prevention of floods, canalisation or water supply. That ivers resent-so to speak-the alteration or diversion of their natural beds, has been shown by more than one example in India. There are not wanting instances in which, after a new cut has been made, bridged over, and the water let in, the river in one night has returned to its former channel and breached the embankment, leaving the new waterway high and dry. It is clearly preferable -in popular language-to coax than to force a river.
While engineering works belonging and even essential the canalisation of a river are frequently common to of that operation is that it is undertaken, if not altogether, yet always in the interest of navigation. A river may be onsidered to be canalised when its normal condition be low water has been so altered by the carrying out of works in its channel as to permit of its navigation by boats which were previously unable to ascend it. This definition applies more particularly to the tidal compartment of a river, but if least depth be substituted for low water, it will be sufficiently correct for the upper, or river compartment proper. Some engineers regard the term canalisation as inappropriate to the improvement or rivers unless executed under certain conditions. They navigable stream in which the works undertaken to guide and regulate the channel are solely of acrtaker which will allow of its contours being preserved by the scouring action of the water. A curious example of the self-canalisation of a river was afforded some years ago through the agency of flood waters, which ultimately culminated in the establishment of a new outfall for the Vistula. An accumulation of ice, attended by a consequent damming back of the water, led to the blocking-up of the stream leading to the existing outlet. The obstruction continued to increase, until the pressure became so great as to break through a protecting embankment. The result of this "directing the great sources of power in Nature "was, contrary to what generally obtains, eminently satisfactory. It constituted a self-made "river navigation," and, as will be seen, was in every sense conducive to "the use and convenience of man." It appears hat, previously to this fortuitously favourable incident, mended the execution of works the very raison d'étre of which was, with the addition of other artificial measures, oo secure the accomplishment of what Nature had so forcible method of forming felicitous though somewhat enabled a long reach of it to be canalised to great advantage. Subsequently lock gates were constructed advanunction of the main ctream were constracted near the anction of the main stream and the self-created branch formerly devolving outfall, which now fulfils the duty affording a passage to the ie, which, brought down by the waters higher up stream, finds its way eventually to the waters In a strategic point of view the works thus opportunely thrust upon the Government have been equally productive of good, as they very materially contribute to a successful defence of Dantzic in the event of The chief invested by a hostile army.
The chief difference between a canal and the canalisa-
tion of a river is that whereas the former, in the strict sense of the term, is wholly artificial, the latter is not. It is, however, rare that a canal, during its entire course rom one end to the other, comes under this definition. In some parts of its route it usually utilises the services navigable, and also freely avails itself of the extensive area of waterway afforded by the lakes which intersect its path. A familiar instance is afforded by the Caledonian Canal, very much out of date at the present time, which has thirty-eight miles of lake navigation. Most of the
principal French canals are constructed in order to effect junction of two separate river systems-such as the Rhône and Rhine, the Loire and the Saône, the Scheldt and the Somme, and the Seine and the Rhône. In Italy we have the Cavour Canal uniting the Po and the Tessin. In America there are canals forming a continuous waterway between individual rivers, between separate lakes,
and also between lakes and rivers-as, for example, between the Potomac and the Ohio, the Delaware and the Hudson, Lake Erie and the same river, and Lake Michigan and the Illinois. Lake Ontario, in Canada, stream is, by similar means, placed in communication with the Ottawa. This compound system of navigation is not restricted solely to inland or fresh water canals, but extends as well to those of a maritime character.
The Suez Canal has a portion of its course through the The Suez Can
As a rule the chief point to be attained in the canalisation of a river is to increase the available draught of water, and in nine cases out of ten it becomes necessary to attack the bed of the stream. Something, no doubt, which consist in training, regulating, widening, and otherwise generally improving the course of the river, but it is rare that even a combination of these ameliorating measures will of themselves be effectual in producing the highest possible degree of navigability. Given a as sufficient for the purposes of navigation required, the object, after having once constructed it, is to maintain it.
In those cases in which "collateral operations," assisted solely by the natural scouring power of the stream, are sufficient to ensure the constancy of the necessary conditions, the river, although rendered navigable by these means, is not, as has been already stated, considered to
be canalised in the full and distinct signification of the term. It is evident, therefore, that the canalisation of a river goes far beyond the mere control and regulation of its course and current, and simply furnishing facilities
for navigation. The channel of a river, in which the bed for navigation. The channel of a river, in which the bed or one in which all natural erosion has ceased, can be rendered navigable to a certain extent by the construction
of the somewhat minor engineering works already of the somewhat minor engineering works already
instanced. It is true that even with these favourable conditions of a regular and normal volume of water, and with an assured stability of channel, both in dimensions and configuration, the question of floods arises, which
has more immediate relation, not to the lowest, but to the has more immediate relation, not to the lowest, but to the This constitutes one of the three vertical data to be observed by the engineer engaged in works of the de-
scription under notice. The other two are the highest scription under notice. The other two are the highest
flood and the lowest drought level. Unless the process flood and the lowest drought level. Unless the process
of denudation, or natural erosion has ceased to take effect the bed of the river channel remains unstable, and may shift at any time in obedience to lowal action. Under
these circumstances, it is not advisable to trust to minor these circumstances, it is not advisable to rust wa miwor
works to ensure the regular navigation of the waterway, as although successful at first, they are extremely unlikely to prove of any permanent value. The only method by
which the navigation of a river can be improved, under which the navigation of a river can be improved, under
these conditions, in a substantial and durable manner, is these conditions,
by canalisation.

Experience has determined, although the conclusion appears a little irrational, that straight reaches, except of comparatively insignificant lengths, are not to be recom-
mended. As a consequence, therefore, in those examples in which the original shore lines are rectilineal, or nearly so, it becomes necessary to alter them. But in adopting a different system of setting out, it is, in accordance with
the principle laid down at the commencement of our article, incumbent upon the engineer to retain, as nearly as circumstances will permit, the existing conditions of the banks. The chief feature of one of the new systems introduced on the Continent consists in the abandonment
of the arc of a circle and the employment of a curve inof the arc of a circle and the employment of a curve increasing in curvature from the tangent points towards
the middle, and increasing again from this point to the following tangent.
In addition to the construction of the locks, dams, and other necessary works, the canalisation proper of a river
is always accompanied by dredging operations, frequently upon a scale of considerable magnitude. When the inequalities have been levelled and a new channel created, in order that its course should be accurately maintained,
the trace of it should be set out, not by straight lines and res of circles, which always present more or less abrupt changes of direction, but by ares of a curve termed by
French engineers sinusoide. The great extent in the French engineers sinusoide. The great extent in the
variation of the radius of this curve, and the continuity which it presents in this variation, has been the cause of it having been very much adopted abroad in the canalisation of rivers, and in instances where the rectification of the normal configuration of the channels was con-
cerned. It was so employed in connection with the works attending the improvement of the river Rhone. It may be noticed that this is also the curve which would graphically represent the variations in the currents, enerated under certain conditions in a single coil.
It is unnecessary to mention examples of the canalisation of rivers. Our own Mersey, Weaver, and other streams were canalised, after a fashion, more than a
century and a half ago. But there is one example which we shall quote, not mere'y on account of
its importance and magnitude, but for the practical bearing it has upon the subject of our article,
and the explicitness with which it corroborates the and the explicitness with which it corroborates the
real meaning we have attached to the title. We refer to "The Danube Regulation Works," described and illustrated in The Engineer of June and July last. Without needlessly recapitulating, it may be stated that the two fold object in view was, first, to do away with the small depth at low water; and secondly, to check the high
velocities, so as ultimately to ensure free navigation velocities, so as ultimately to ensure free navigation
through the cataracts of the Lower Danube. To accomplish this result it is of the Lower Danube. To accomchannel through the cataracts with a bottom width of 200 ft . and a depth of nearly 7 ft . below the lowest drought level. During the construction of the canal through the Iron Gate this depth was increased to 10 ft . The manner in which the canalisation of this portion of the Lower Danube was effected, and the machines employed in executing the different works, point out unmistakeably ordinarily applicable to the mere training or improvement ordinarily
of a river.
the drought in scotland.
The past month of September has been the driest experienced north of the Tweed for over a century, particularly in the West of Scotland, where the total rainfall for the month averaged only seventeen hundredths of an inch. Such
abnormal dryness, in a district notorious for a too abundant rainfall at all seasons of the year, has naturally had a potent influence on the water supply. The wet weather generally prevailing during the summer has enabled the large towns to
face the autumn scarcity with full reservoirs, and such places have not suffered appreciably, but smaller towns in many parts of the country have been put to considerable straits, while the numerous residential places on the Firth of Clyde ere almost without exception left without potable water riggan to Campbelton on the other, an acute water famine prevailed, neeessitating the departure of visitors, and entailing great hardship on the natives, who were reduced to
carting scanty supplies from distant lochs and streams. Nothing approaching such an universal scarcity has been experienced since these towns and villages came into existence remarkable drought, which tested the resources of the great towns and cities severely. It appears, then, that the dry
spell of last month possessed some unusual features, causing it to be specially felt by placees depending on a direct hill
supply for water. On turning to the records of the Ben Nevis summit observatory, we find that last month had the smallest rainfall of any month since the observatory was built in 1883. Under usual conditions the rainfall at the summit of the mountain greatly exceeds that at the sea level, but during the past month it was for the first time on record less on the explaingble by the ontinuation of north ond winds during the whole month, at once explains the rapid failure of the water supplies of Clydeside towns. These places are usually situated at the base of a range of hills with an elevation of from ifteen hundred to two thousand feet,
The waters of some streams are impounded by banking across the mouth of the glen through which it flows, a firstclass water supply, equal to all ordinary requirements, being
thus obtained at a very moderate expenditure. During seven months of the year the mountain stream could supply five times the water required, and even in dry weather copiAtlantic breezes keep the supply abundant. When, however, a continuation of dry winds is experienced, so that even on the top of Ben Nevis no moisture is condensed for weeks at is extre is evident that the system of water supply described large. This, for the failure, unless the storage capacity is so that when the feeding stream dries up the stored supply is speedily exhausted. The remedy is obviously increased
storage capacity, and though such a phenomenally dry September as the last is not likely to recur speedily, the abso-
lute failure of water supply, or even its probability, is so lute failure of water supply, or eeven its probability, is so
serious a calamity that the authorities of the places which have suffiered cannot afford to disregard its possibility.
The case of Helensburgh, the only residential town on the Firth of Clyde which has not suffered from water famine during the recent drought, shows the advantage of sufficient storage capacity. During the remarkably dry summer of
1887 , this town suffered unpleasantly from the long continued dry weather. The main feeding stream of the supply system, the Ballyvoulin Burn, dried up completely, and the one reservoir above the town, in spite of a very restricted supply to the inhabitants, threatened to give out altogether, a con-
tingency which would have necessitated the carting of water a distance of six miles from Looh Lomond. The magnates took the lesson to heart, and on the advice of Mr. Wilson, that at the trebled their reservoir capacity, a full three months' supply still in store.
british machinery in russia.
According to recent Foreign-office reports, the introduc tion of English cotton, spinning and weaving machinery into the previous year, and extensive orders for delivery during the present year were taken by English firms. It is generally supposed by those thoroughly competent to form an opinion on the subject, that the reduction of the duty on cotton not likely to incroase the demand for the same, the reductio being inconsiderable. As this kind of machinery is not made in Russia, it must be imported to the extent of local require ments. Owing to the comparative lightness, the duty does not bear very heavily on it, as in the case of boilers, paper-
making machinery, steam engines, \&c. Although all cotton making machinery, steam engines, \&o. Although all cotton
spinning machinery came as formerly from England, the dyeinasen district of Germany securedi dyeing, printing, and finishing machinery, which use price of German machinery, but another and more important alter their machinery to suit the convenience, and often merely the caprice, of the Russian buyer whenever they can possibly do so. Several new mills for spinning combed woo were built, but the machinery for them was ordered in Alsace
instead of in England, Tha importation of paper-making
machinery
checked machinery, now principally German, was somewhat
checked last summer by the enormous increase in
the duties levied differentially, when it was of German manufacture. The outlook for the present year under the reduced duties has stimulated the importation, and there is overy appearance of a great increase in it. British threshing Russian farmers, and the demand for sets last jear was so great and sudden, that intending buyers whocame to Moscow not only were unable to make any purchases, but could no get their orders executed in England. The general conclu sions are that although British machinery makers fully sustain their reputation for high-class articles, Russia and
Germany sccure more business than they did previously. Germany sєcure more business than they did previously.
For mill engines, Switzerland, a new and dangerous rival, is coming to the front. Millowners who formerly bought xclusively in England, placed several orders with Swis Prices, freight, and duty pre about the same, whether the machinery comes from England or Switzerland, but Swiss their engines for the work performed, which pleases Russian buyers.

shipbuilding in france.

The new law which increases the premium upon vessels onstructed in France is said to have given a very great stimulus to the native shipbuilding industry. We referred where enough contracts have been entered into to keep th here enough contracts have been entered into to keop the similar success bas been achieved at Nantes, where the con-
sine struction of a maritime canal, and the deepening of the port have allowed of vessels drawing more than 6 metres of water ascending thereto. Last week the launching of the
ruiser Descartes, the first war vessel constructed at Nantes, was made the occasion of a general holiday, and in the peeches which followed the ceremony the directors and othe officials of the Société des Chantiers de la Loire spoke of the great possibilities that were now opened up to Nantes as a
shipbuilding centre. The Descartes has a length, over all, of 96 metres, and a a displacement of 4000 tons. It will be where it will receive a powerful armament. Besides this where it will receive a powerful armament. Besides this
vessel the Societé des Chantiers de la Loire have other vessels in hand for the marine, including the armoured coast
defence vessel Valmy, the first-class battleship Massena and he cruiser d'Assas. They have also building four larg sailing vessels, of which three of 4200 tons each are to be constructed for MM. Bordes, of Bordeaux. The company the 3000 hands emploged at Nantes, St. Nazaire, and St. Denis will be kept busily engaged fora long time to come. This result exceedingly low freights, and it is thought that as these become more profitable a still further impulse will be given to the native shipbuilding industry. According to the builders this result could not possibly have been attained if
foreign-made vessels continued to rcceive the half premium but the owners themselves entertain the contrary opinion, a the consider that the premium hardly compensates them for he increased cost of the vessels.

LITERATURE

Ueber Vorkommen und Gewinnung der nutzbaren Mineralien in der Sildafrikanischen Republik Totaniscaal-unter
besonderer Berilcksichtigunq des Goldberbaues. By Bergrath Schmeisser. Dietrich Reimer, Berlin. 1894. The work now before us, which is practically an account of the gold mines and other mineral industries of the Transvaal, is certainly in many respects the most valuable
contribution that has yet appeared to the already ample iterature devoted to this subject. Besides the importance to which its intrinsic merits entitle it, it deserves special
attention from Englishmen, seeing that it is fraught with number of instructive and incisive lessons for us, which e should do well to take to heart.
It appears that the Prussian Government, having that the gold supply of the world is rapidly falling below is requirements, resolved to send a mining engineer to he Transvaal to investigate the position and probable development of the gold production of that country.
Herr Schmeisser was accordingly sent out, and the book now before us is the result of his studies. Although British interests in the Transvaal are beyond compari on, more important than German, and the ties that eaching than the somewhat indirect Prussian connection with that part of the world, yet we find the German Government freely taking upon itself the duty of study-
ing this new goldfield, whilst our Government ing this new goldfeld, whilst our Government has never even thought of such a thing, and probably never will, all our knowledge of African gola mining being due to
private initiative. It is evident that the German Govern ment does not consider that it has done its whole duty to the mining industry of the country, when a local post-
master has been appointed inspector of mines; nor does it look upon a successful political of mines; nor does o a trained scientist for the carrying out of such duties In England, however, we do things differently, and the attitude of our Government towards mining and manu facturing industries cannot but suggest the reflection that whilst party Government has its adva
Not only does Herr Schmeisser's book teach us a lesson in its mode of inception; it is equally instructive in its mode of execution, and is an admirable example of German thoroughness. The first chapter is of merely general interest, giving a brief account of the geograpby,
history, and constitution of the Transvaal. With the history, and constitution of the Transvaal. With the second chapter, the geognosy and geological description ccount Transvaal, and of their relations to each other. Although necessarily still very imperfect, this sketch gives an excellent outline of the broad geological features; and though errors of detail doubtless exist, the author's general conclusions will probably be found to be correct
when fuller details are available for a systematic study of
the subject. Herr Schmeisser has not only utilised the observations made by others, he has contributed largely to our knowledge of Transvaal geology by his own
researches. researches.
Commencing with the lowest sedimentary formation, the Swazischists, and the gold veins contained therein, it
is worth while noting that he looks upon the Sheba ree is worth while noting that he looks upon the Sheba reef
as a true reef, whilst most previous writers on this subject as a true reef, whilst most previous writers on this subject
seem rather to have held the view that it is an altered bed. seem rather to have held the view that it is an altered bed.
His opinion on this reef may be gathered from the following quotations: "The footwall is sharply defined, the hang ing wall less so, because the deposit is more or less united
to the quartzite which forms the hanging wall. Midway between the two walls, a well marked fissure like a false hanging wall traverses the entire deposit.
Fragments of the country rock from the hanging wall side are of common occurrence in the body of the vein. its great width, and the presence of large horses of the
hanging country rock, justify the inference that this is a hanging country rock, justify the inference that this is a
composite vein, that is to say, a vein formed by the simultaneous opening of several fissures within narrow limits, and the destruction of a part of the rock-masses that
separated them." The various other gold districts in which veins in the Swazischists are being worked, namely, Komati, Selati, Letaba, Molotsi, Houtboschberg, Marabastad, are all dismissed in a few words, commensurate
with their present trifling importance, and then the gol districts of the Kaap series of rocks are approached, the first place in which is naturally taken by the Witwaters-
rand deposits. Herr Schmeisser is careful to point out that these are bedded deposits, although in describing each bed, he subjoins the name of the "reef ", by which it is
conventionally known. The entire "reef " series is fully described, and a capital table given of the various mining companies in the order in which they are situated along exhaustive scientific description of the constitution of the famous Witwatersrand conglomerate. According to our author these are true quartz conglomerates, the pebbles being cemented by a mass of granules of the same quartz
held together by a binding material of greyish-blue or green colour when undecomposed. The quartz pebbles consist but rarely of individual crystals; they are mostly rather coarsely crystaline, rarees the granules showing no definite system of
gates, tom co-ordination. The quartz contains but few solid incluin approximately parallel planes, so as to give sections of the quartz a streaked appearance. The microscopic
structure of these pebbles, as well as their frequently flattened outlines, point to strong mechanical action, in all probability due to pressure, the effects of which contains, in addition to small grains of quartz, the following minerals :-Pyrites, magnetite, zircon, rutile, In one specimen tourmaline was found. The pyrites, the most abundant mineral next to the quartz, is a
primary constituent of the conglomerate. The gold is a secondary component, and is not of alluvial origin, as is
shown by its crystalline form, and the mode of its distribution in the conglomerates-it never occurs, properl speaking, enclosed in the quartz. When it is found in
the pebbles it is always in a thin fissure or seam in them. It is evident from the above synopsis that the results of this research have given data of great value in deter-
mining the probable permanence in depth of the Witmining the probable permanence in depth of the Wit-
watersrand auriferous conglomerate beds. Herr Schmeisser's calculations as to the probable duration of the working of, and the amount of gold available in the best published in the German "Reichsanzeiger" for February, 1894, and were almost immediately translated into English. The results of these calculations will
probably be fresh in the memory of our readers, and we need not therefore refer to them again.
The remaining goldfields of the Kaap formation, namely, those at Klerksdorp, Vryhied, and Lydenburg are briefly described; the latter perhaps not quite so fully as their geological, apart from their industrial, importance might seem to merit. There is also a brief account of the coal
seams that are worked in certain of the Karroo formations, and amention of other mineral occurrences-notably those of silver-closes this valuable chapter.
The third chapter comprises an account of the mode of extracting the various metals and minerals. It contains a
short but fairly correct history of the rise and progress of mining in the Transvaal, and an excellent summary of previous legislation on the subject and of the existing gold law. system of stamping and gold extraction. This is perhaps the weakest portion of the whole book, as many details of importance are omitted, and a few inaccuracies have crept that during 1893 there were, that the author estimates of stamps at work in the Rand, and that their average crushing capacity was three tons per head per diem. He his his paragraph on this subject with the pregnant remark
that "the Huntington mill at the Wolverdon Gold Mines near Klerksdorp only ran for two days." A few pages are
devoted to an account of chlorination and of the cyanide process. The description of the latter is good, but contains nothing novel. With regard to the machinery employed on these fields, our author states:-"The whole of the colosssal requirements of the Transvaal as regards machinery is supplied by English and American manufacturers; but few German manufacturers or contractors are represented in Johannesburg. Hence, English and execute the orders, but are compelled to obtain assistance
from Germany. The Buckau Machine Works were lately building a 600 -horse power driving engine to the order of Messrs. Fraser and Chalmers, of Chicago, for the stamp mill of the City and Suburban Gold Mines, near Johannes. burg." The italics are our own.

The work concludes with a series of valuable tables, showing the output and financial position of the various Transvaal gold mines, and with a number of maps showing the general position and features of the various goldaields.
As we have already said, this is by far the best work on As we have already said, this is by far the best work on the subject we have yet seen, and perhaps the only one
that can be considered as a serious scientific book. There that can be considered as a serious scientific book. There
are, nevertheless, one or two points on which we are not are, nevertheless, one or two points on which we are not
at one with the author. We cannot, for instance, admire at one with the author. We cannot, for instance, admire
his inclusion of all weathered rocks within the comprehis inclusion of all weathered rocks within the compre-
hensive term of Laterite, the same name being applied hensive term of Laterite, the same name being applied
indiscriminately to weathered diorite and to weathered indiscriminately to weathered diorite and to weathered stratified rocks. Tt may be convenient to call the various deposits treated by hydraulicking at Spitz Kop, Rosshill, and Lisbon, Berlyn laterite, but it is certainly not scientific, and as regards the last-named property absolutely incorrect, even with the very elastic meaning here given to the word. Again, we cannot agree in the opinion here expresssd that closer concentration by mechanical means desira German system of close dressing- 1 s beyond doubt fluence. The author ascribes its absence to the ar not acquainted with ming enginers, who, he sations in their own country. We accurate not concerned in defending the American as against the German system of ore dress ing ; on the contrary, we hold the latter to be, generally speaking, the better. But in treating gold ores, too many dressing operations must be avoided if float gold is not to be lost, and we ourselves do not look for any improvement in the treatment of tailings in this direction. Nor do we agree with the condemnation of Frue Vanners, for the reason that they make only two classes and no middlings; this may not suit the ordinary concentrator, but it is, on the contrary, precisely what the gold miner wants. He only wants two classes-clean concentrates containing all the for , and clean tailings containing none. Experience so lar is against carrying dressing operations too far in the no doubt be found beneficial. Werger of sizing would that the attention of gold-mining engineers will be directed in the near future to the question of treating all the tailings direct as they leave the plates by some chemical process that shall remove the gold left in them after quite within the bounds of engineering science.
In conclusion, it remains only to say that all engineers are greatly indebted to Herr Schmeisser for having produced such an admirable work on a subject of general
interest, as well as to the German Government for having given the incentive to it, and as we are not likely to get anything of the kind done for us in this country, we hope it wil not be long before the work will appear in an English
dress that will make it readily accessible to the mass of English engineers who would be glad of an opportunity of studying it. It is, however, to be hoped that any English translation will be furnished with a good alphabetical
index; the absence of any index at all is a very serious index; the absence of any in
blemish on the present work.

Continuous Current Dymamos and Motors. By Frank P.
Cox. New York: The W. J. Johnston Co., Ld. Electric Light Fitting. By John W. UrquHart. London Crosby Lockwood and Son
Electro-Magnetism and the Construction of Dynamos. Vol. I.
By D. C. JICFsos. New York and London : Macmillan and Co. 1894.
The work upon dynamos by Mr. Cox is intended as an elementary treatise for students, and is really a valuable book. It deals with no particular type of machine, but is a general consideration of the laws governing the is not burdened with cuts of the external appearance of machines, but discusses the principles which underlie the design of the separate parts. It is only assumed elements of geometry. After describing the systems of measurement and the theory of the production of current, the author proceeds to calculations appertaining to the magnetic circuit, and deals first with the determination of the induction by the metbods of Gisbert Kapp and of Drs. J. and E. Hopkinson, of which the chapter, the theory of winding, losses, \&c., are discussed, and important use is made throughout of the system of plotting curves to represent results.
A good feature in the book is the practical application of the principles and formula which have been discussed to the actual design of dynamos and motors. The author supposes the case of a 200 -light dynamo required to develope 110 volts at a speed of 1500 revolutions per minute, and very clearly explains his method of calculathe The last two chapters of the book are devoted to subject which should be known for dynamo testing. In a table of belting, in the form of an appendix, we note that the author uses the word "strain" throughout where he means stress. The book should be of condynamo builders.
Mr. Jackson is the professor of electrical engineering in the University of Wisconsin, so that we are able to compare two American methods of treatment with one deliver. This work has been developed from the lectures struction by the author to his classes in dynamo contrated, and o special machines are described or illusAlternating work will be current with in a subsequent volume. A knowledge of the calculus and trigonometry is required to understand parts of this work
In his description of experimental methods for the determination of the magnetic properties of iron the author alludes to a modification of the Hopkinson apparatus made by a Mr. Burton for the laboratory of placed upon the yoke instead the magnetising coil being Ewing s work is followed, and the realts
plotted. Both this work and that of Mr. Cox are very
well printed. The author pays a great deal of attention to compensation for cross turns, and alludes to a number of difterent designs of winding. From the point of view of the Professor, he appears to desire to sort machines into families and species, and to fit each type with its
special formula. Perhaps it is too much to say that special formule. Perhaps it is too much to say that
some Professors are interested in the various types for some Professors are interested in the various types for
the sake of the pleasure of producing formula, but the the sake of the pleasure of producing formula, but the
commercial aspect of the question is distinctly absent commercial aspect of the question
from the greater part of the work.
from the greater part of the work.
Mr. Urquhart has written several books upon electrical subjects; they are descriptive works, not dealing with formula or analysis at all. No mathematical knowledge is needed to read them, and the author writes for the intelligent workman engaged in electric lighting, or training for it; he claims the book to be the notes of a practical electrician. We see that the usual allowance of breadth of belt is said to be lin. per horse-power, for belting moving at a speed of 1000 ft . per minute. This is certainly on the safe side, as few belts come up to this requirement in practice. The rule is stated to apply to belts from 3 in . to 12 in . in width. The brush-moving device spoken of as suggested by a Mr. R. Tatham was patented some years ago by Mr. Druitt Halpin, and we believe was used in several cases. The practical directions concerning care of the dynamo and attention to the commutator, re-wiring, \&ce., are well written, and the notes as to attention to alternators are very valuable to dynamo tenders. Ininstructions for testing the insulation of electric wiring, the author alludes only to the Wheatstone bridge method, and describes in detail the method of using the Silvertown set. Thisis, of course, very useful for telegraph work and cases in which a low poten. tial will eventually be used, but it is not nearly so satisfactory, in our opinion for circuits which will be supplied from the public mains, where a magneto machine and Evershed ohmmeter are distinctly preferable.
In his chapter upon the lighting of ships the author gives some useful hints, and recommends screw socket
lamps. We have often thought it strange that in the United Sta have often thought it strange that in the only type in use, while here the pin socket is almost the only one employed. The explanation adduced by some electricians, that screw socket holders tend to slack back from vibration, can have little point if this pattern is considered best for steamships.

BOOKS RECEIVED.

Tramarays, their Construction and Working. By D. Kinnear
Clark. London: Crosby Lockwood and Son. Recent Cotton Mill Construction and Engineering. By Joseph
Nasmith. Manchester and London: John Heywood. What is Heat A Peep into Nature's most Hidden Secrets, By
Frederick Hovenden, F. S., F.G.S., F. M. M.S. London: W. B. Whitting ham and Company.
Electric Lighte and Porer.
 Illustrated. London: Biggs and Company
Electric Transmission of Energy
Electric Transmision of Erergy and its Transformation, Sub-divi-
sion, and Distribution. A practical hand book. By Gisbert Kapp
M. Inst. C.E. London: Whittaker and Company,

the late mr. J. H. OSBORNE, C.E.

The death is announced at his residence, Summerseat, near Philadelphia, of Mr. John Humfrey Osborne, who has
been a prominent civil engineer in the United States for half a century. He was born in Dublin, September 30th, 1818, being thesecond son of R D. B. Osborne barrister-at and Lucy, Caulfeild, only daughter of John Humfrey, of Edwara Osborne, of Ashford, Kent, Lord Masendant of Sir 1583, and of his grandson, Thomas, first Duke of of London, Osborne was educated at Mr. Richard's school, Bathampton, and on leaving school travelled widely, visiting Australia among became confidention 1839 he went to the nited States, and engineer of the Philadelphia and Reading Railroad. From that time he threw himself ardently into the profession of engineering, and rose to be chief assistant in 1843. Three on tand Reading Railway, but resigned that position later struction with his brother, Mr. R. B. Osborne, in the con ing to the United States in 1850, he was appointed to the Ogdensburg and Lake Champlain Railway, and the next yea took charge of a portion of the construction of the Southside the Way in Mrginia. From 1852.3 he was superintendent of the Richmond and Danville Railway, and on resigning tha of construction of the Camden engineer and superintenden presented with a massive service of plate as a mark of the affection and esteem in which he was held. After theopening of Camden and Atlantic Railway in 1854 Mr. Osborne becameits general superintendent, but resigned four years later of the charge of the construction of the most difficult and Lebanon, Pennsylvania. In spite of great difficulties Mr. Osborne completed this work to the day and publicly received the congratulations and thanks of the president and
board of directors. In 1858 he also rebuilt the Quskak board of directors. In 1858 he also rebuilt the Quakake
Railway, uniting the Lehigh Valley, Black Creek branch, wailh the Catawissa Railway above Tamaqua, and with his
with brother, Mr. R. B. Osborne, made a survey for the continu also undertook with Mr. B B O come in 1873 he metrical survey for the Shenandoah Valley and Ohio Railway from Harrisonburg, Va., over the Great Northern and intervening mountains, crossing the Alleghanies into the Valley continued from time to time to take an active part in his profession to which he was most devoted, but for the past place Summerseat, between Philadelphia and New York-one of the oldest and most interesting residences in the United English gentleman, Captain Barclay, was the heado by an English gentleman, Captain Barclay, was the headquarters
of Washington before the battle of Trenton, and the rooms he occupied and in which he wrote many of his despatches are

CROSS SLEEPER PERMANENT WAY, BELGIAN STATE RAILWAYS

PERMANENT WAY: BELGIAN STATE RAILWAYS. OF the 2000 miles of line which form the system of the Belgian State Railways, 500 are called "International.," There is probably no European country which has more of Calais for than Belgium. Ostend has long been the rival Germany and Austria: whilst Antwerp, as the chief com mercial port of Central Europe, receives each year larger quantities of goods in transit for these countries. Traffic from Holland to France naturally passes through Belgium, as the pretext for a war between France and Prussia in 1868 has long been considered one of the main highways of Europe.
Before 1880, the rails used on all limes belonging to the Belgian Government weighed 76 lb . to the yard. The sleepers were of creosoted oak, half round, 10 in . diameter, and 8 ft .6 in . long, and there were ten of them to a 3oft. rail. Ordinary flat fish-plates were used, with four bolts. As the traffic
became heavier, it was requisite to increase the strength of became heavier, it was requisite to increase the strength of
the permanent way. The section of rail was not changed, the permanent way. The section of rail was not changed,
but in 1881 twelve sleepers were substituted for ten, and soon ofterwards angle fish-plates, instead of flat. Meanwhile the weight of the locomotives necessary for express trains was continually augmented, till, in 1885, engines were being used in which the load on each pair of driving wheels was fifteen tons. It was then decided that the permanent way on the sections carrying international express trains would require Engineer of the Belgian State Railways, was authorised to make an experiment, by re-laying two miles of the track between Antwerp and Brussels in whatever manner he thought best, using a rail which should weigh about 100 lb . per yard. He kept to the Vignolles section, but adopted a rail 58 in . high, $5 \frac{3}{3} \mathrm{in}$. flange, with head 22 in . wide, and weighing 105 lb . per yard.
some time M. Flamache decide had been carrying on for spikes, and that the form of screw shown in the drawing was spikes, and that the form of screw shown in the drawing was
the most suitable that he could adopt. It will be observed that the screw is cylindrical, not taper; that the pitch of the thread is $\frac{7}{2}$ in., which is unusually large for a screw whose diameter, measuring over the thread, is less than an inch and that, instead of the upper and under surfaces of the thread tapering equally, the former is almost horizontal. M. Flamache's experiments led him to believe that this form of thread not only held better, but did less damage to the grain of the wood, than when both sides of the thread
tapered equally. The conical shape given to the underside tapered equally. The conical shape given to the underside
of the head, he also considered to be advantageous to the stability of the line. The diameter of the sleepers has been increased from 10in. to 11in., and their average distance
 The rails are are plates between the rail and the sleeper - joints, there re plates between the rail and the sleeper
evel ; but on some parts of the system, and especially on the Brussels, Namur, Arlon, Sterpenich sections, there are inclines of 1 in 62 , and even several of 1 in 55 . On this branch, the weight of engine and tender is 83 , and sometimes 88 tons ; an increase of 40 per cent. over the weight of those formerly in use. It was calculated that a 951 lb . rail would be sufficient for these engines, but the 105 lb . was adopted to allow for rust, \&c.
The first section of two miles was put down on the Brussels and Antwerp line in May, 1886. In 1888 another
six miles was added to this, and as the new track was con-
sidered satisfactory, it has been substituted for the old at sidered satisfactory, it has been substituted for the old, at of 1892 part of the permanent way laid down in 1886 was taken up and examined. Several of the sleepers which, as far as could be judged by external appearance, seemed the worst, were sawn through the screw hole. In all of them the thread was in a perfect condition, though it is calculated that 170,000 trains had passed over that section of the line since the new track had been laid, including fifteen express trains daily, and heavy goods trains, frequently with wheels on the brake-vans worn into flats. Altogether M. Flamache
estimated that this test was equivalent to thirty years' work estimated that this test was equivalent to thirty years' work
on any average continental line. M. Léon Bika, Chief Engineer of the Belgion State Paiways says that they Engineer of the Belgian State Railways, says that they
continue to be thoroughly satisfied with the new road and that the duration of the sleepers is much longer than they had expected.

ON THE HEATING POWER OF SMOKE. By R. R. Tatlock, F.r.S.e , F.i.C., F.c.S.
IT appears to be generally undorstood that a large percentage most chimneys, and random statements have abeen made to the effect that the loss in heating power due to this passing away of 30 per cent. of the in smoky furnace gases may reach as high as show that the loss of any large percentage of combustible matter, and consequently of heating power, is quite out of the question. This may be proved in two ways (1) by calculation of the two sources of heating power as shown by an analysis of coal or dross
used for steam raising; and (2) by actual analssis of the furns gases for combustible solids and gases. In the following paper are given the results of these two methods of observation, the same dross being analysed and also employed as fuel in a works furnace, from which smoky gases were given off which were tested for combustible matter3.
(1) The following is the analysis of the dross employed :-

The points to be observed are the relative proportions of heating power-represented in the analysis by the number of pounds of water at 212 deg. Fab, capable of being evaporated to dryness by tar, \&c., and by fixed carbon. These are calculated according to Playfair's well-known formula, which was practically tested on coals intended for the British Navy, and which shows that while 1 lb . of fixed carbon is capable, when burned, of evaporating 13 lb . of water at 212 deg . Fah. to dryness, 1 lb . of the gas, tar, \&c., will
only evaporate 3.1 lb . From these figures it appears that in this nly evaporate 3.1 lb . From these figures it appears that in this
coal or dross the gas, tar, \&c., only contributes 15 per cent. of the total heat given out during the combustion, and that the fixed carbon produces the remainder, or 85 per cent. In coals with less of the former ingredients and more of the latter, which is commonly the case, the proportion given out by the volatile contituents would be considerably reduced. It is thus perfectly clear that even though the whole of the volatile matters-which can combustion, there could not possibly be a greater loss of heat than 15 per cent. of the whole, even in such an extreme case as this represents.
(2) An analysis was made of the furnace gases given off during
the burning of the dross, of which the results are given above,

Carbonic acid Carbonic oxide Carbonic oxide Hydrocarbons Nitrozen Oxygen.
 Gas very smoky. | Gases almost |
| :---: |

It has been asserted that carbonic oxide is given off in considerable quantity when much smoke is being produced, but it does not appear in this case ; and Hempel in his work on "Gas Analysis" comes to the conclusion that little or no combustible gases are present in furnace gases. In the volume referred to-page 205-
Hempel sayz, "Furnace gases usually contain only carbon dioxide oxygen, and nitrogen. All other gases are present in but very small amounts. In oft-repeated analyses the author has always found only traces of carbon monoxide, methane, and the heavy bydrocarbons." This is in complete accord with the analyses given above, and it may be taken for granted that the presence of carunusual occurrence. This is quite conclusive evidence that no appreciable loss of heat, even when the furnace gases are smoky can be attributed to the passing away of the products of imperfect combustion in the gaseous form at least.
That there is loss of combustible matter in the smoke is an undoubted fact, but the quantity seems also to be greatly
magnified in certain random statements. In the experiment referred to above the soot was also collected during $1 \frac{1}{3}$ hours with the following results :-

Carbonaceous matter

Total soot
Grains per 100
cubic feet of
$\begin{gathered}\text { cubic feet of } \\ \text { furnace gases. } \\ . . \\ 30.81\end{gathered}$
$\overline{51 \cdot 46}$
It will be observed that the soot collected consisted largely of mineral or incombustible matter. In several experiments to obtained, and the in furnace gases, similar results to these were results of this special test. To find come very close to the quoted was actually lost as smoke it will be necessary to know the matter was actually lost as smoke it will be necessary to know the numbe
of cubic feet of furnace gases given off by the combustion of one ton of the dross. If the percentage of carbonic acid in the furnace gases is taken at 5 per cent., the total volume of these given off from one ton dross would be about 940,000 cubic feet measured at the ordinary temperature and pressure, and this would contain 41 lb . of carbonaceous matter and 27 lb . of minera
matter. This would represent 1.83 per cent. of the volatile matter. This would represent 1.83 per cent. of the volatile
matters-gas, tar, \&c.-given in the analysis of the dross, and if from this is now calculated the heating power according to Playfair's formula, it will only come to 0057 . This figure, compared with the practical heating power- $7 \cdot 75$-of the dross, goes to show that the solid combustible matter of the smoke can only account for the very small percentage of 0.74 of the total heating power From the reoults of thes
From the results of these experiments it is evident that the loss belief in immense loss by this cause is simply a fallacy, and is decidedly not corroborated by experiment. In adopting methods of removing the smoke nuisance it must therefore be borne in mind that there is little or no gain in burning smoke, and that other methods of dealing with the problem, such as Dulier's Smok Absorption process, ought also to receive consideration

The Birmingham Association of Mechanical Engineers. The opening meeting of the session of the above Association was ham. The chair was taken by the president, Mr. E. Hazal, and ham. The chair was taken by the presid
there was a large attendance of members.

LANCASHIRE AND YORKSHIRE RAILWAY

VIDENING AT SALFORD.

To meet the demands of increased traffic, the Lancashire and Yorkshire Railway obtained parliamentary powers in 1890 for the widening of its line from Victoria Station Manchester, to Hope-street, Salford, a distance of about a demolition of existing house property which would require to be removed. As the route passes through a thickly-populated be removed. As the route passes through a thickly-populated
district, it has been found necessary to destroy about district, it has been found necessary to destroy about been utilised in the foundations of the new viaducts. We give a plan showing the portions which are now being pro
segmental arch in brickwork carrying the railway across the river Irwell. It has a square span of 102ft., and a skew span of 105 ft ., with a rise in the centre of 13 ft .6 in . The arch is composed of twelve half-brick rings of bue Staffordshire
bricks, with springers of Derbyshire gritstone. The abutments are founded on the solid rock, which was dressed with the help of cofferdams. As the centreing alone for an arch of mined to constitutes a work of soy constructing a model of the centreing to scale, and applying various loads. A wooden model, one-twelfth natural size, was made, having four ribs, as shown in the Figs. 3 and 4. This was loaded with rings of blue bricks laid dry, with the interstices filled with sand; additional layers of 'bricks were added until thirteen rings
as transportation was concerned. The tapering sections were laid the pipe trench and lined in situ with aydraus on of the section forming the bell for or spigot arge end of the section forming the bell for the smail or spigo
ond, the joint being made with the cement, and the outside of the pipe was also convered with the cement mortar to the depth of an
inch or more, all as far as possible at one operation, depending mew more, al as far as possible at one operation, teponding somewhat upon the sizo of the pipe, the location
conditions of the work, setting of the mortar, \&c.
The advantages claimed were a continuous pipe from end to end, no matter what its size or length, of uniform strength, lined with non-corrosive and protective, tasteosss, and frox acids in the soil n which it was laid, and atmospheric influences by the same or a similar cement covering. The projectors wholly ignored the difference in the co-efficients. of elasticity between the iron and cement,

ceeded with, embracing about ore-half of the projected undertaking. It will be seen that the Lancashire and Yorkshire Railway runs immediately alonggide of the Man-
chestar r and Liverpool branch of the London and NorthWestern Railway, which latter has its terminus at the Excbange Station, while the Lancashire and Yorkshire principal station is at Victoria. Covering an area of $7 \frac{1}{1}$
acres, Victoria Station forms a busy nucleus of traffic ; 1170 trains enter and leave it in one day, 350 of these by the lines which are now being widened. The original station of the shire and Y and Leeds Railwas, the forerunner of the Lanca Hunt's Bank being privately purchased by Mr. Sam Brooke the vice-chairman of the company, and presented by him to

Fig. 2
Fig. 4 .
FourRibs of the Centre

Shewing the
for Arch.
the railway company in August, 1838. The station wa opened on New Year's Day, 1844, and a junction with the 1880 and 1884 various extensions were made, and between now eight distinct platforms arranged in consecutive order from south to north, and dealing principally with traffic to and from the North of England and Scotland. The two chief arrival platforms are placed nearest themain approaches. The present widening passes over a number of small streets, necessitating an expensive construction. Between Victoria Station and the crossing of Chapel-street, a distance of about
half a mile, thirty-five brick arches have been built. They half a mile, thirty-five brick arches have been built. They
have generally a span of 28 ft , with a rise of 10 ft . The have generally a span of 28 ft , with a rise of 10ft. The
foundations are all carried down to the solid rock, which foundations are all carried down to the solid rock, which
was found at depths varying from 20 ft . to 4 ft . below the surface. The piers are mostly lateral extensions of the old

piers, and are built of common red bricks in lias lime mortar, or cement mortar, composed of one of cement bricks, and ashlar quoins are provided to the street abutments. The springers for the arches are specially made of blue brick, as recent experience has shown that in case of fire the blue brick is much less liable to damage than springers of stone, and, as most of the arches are closed in and glazed in the upper part to serve as stores, the danger of fire is one which it is necessary to guard against. The arches are constructed mostly in five half-brick rings, the two soffit rings brick. The spandrils are filled in with and the whole of the top surface is covered with 2in. of cement concrete and a layer of asphalte. A stone string this the parapet wall is built, battered on the face, and having ${ }^{\text {two }}$ plinth courses, as shown in Fig. 2. In order to prevent the brickwork from being damaged by drainage from the shown in the illustration, and run in with asphalte.
There are several steel bridges included in the undertaking, the largest having a span of 6sic., and of the cantilever type. The others possess no features of special interest. One
of the most interesting of the bridges is an unusually large
were borne by the model without any excessive deformation, and no fears were felt that the actual centreing would not be strong enough for its work. This confidence was happily
ustified, and the bridge takes rank amongst the largest brick arches that have been constructed.

RUSTLESS COATINGS FOR IRON AND STEEL.*
By M. P. Wood, New York City, Member of the Society. (Concluded from page 308.)
ONE of the most trying situations for the protection of his work that the engineer bas to deal with is in the exposure of wrought or cast iron water and gas pipes, through the cinder beds or fillings
from blast furnaces, rolling mills, \&c. Pitch compounds applied from blast furnaces, rolling mills, \&c. Pitch compounds applied
hot afford some measure of protection over that of the naked iron, but the creep of the pipes due to changes in the temperature of the fluids passing through them, and of the surrounding earth, the
concentrated action due to the sulphur in the cinder or ashes, the concentrated action due to the sulphur in the cinder or ashes, the
porous nature of the covering over the pipe and in which it is porous nature of the covering over the pipe and in which it is
embedded, allowing the ready access of air and moisture from the streets, ammonia, and other fumes and liquids due to the decomvibration caused by the passage of heavy trucks, railway trains, and kindred causes, combine to render the problem one not easy
of solution. A thick puddle of good clay of a thickness all around of at least one-balf the diameter of the pipe, and in case of pipes diameter of the pipe, if allowed to dry out well before covering in gives a good protection and aids materially whatever compound is applied externally to the pipe. I I dot know of any case where
the pipes coated with magnetic oxide by the Bower-Barff or any other process has been tried, but it seems to the writer that if demonstrated this is one, and it is not one of minor extent or importance. The rapid destruction of the wrought and cast iron mains, as well as the gal vanised iron and lead service pipes of our water
and gas distribution systems, by electrosis brought into action by the use of the system of pipes as a ready ground connection for our extended and fast multiplying lines of electrical service, is assuming so serious an aspect, particularly upon streets or serious consideration by all branches of the engineering fra-
ternity for some method of protection other than now in use ternity for some method of protection other than now in use.
So rapidly is the destruction progressing, that in many places So rapidly is the destruction progressing, that in many places
the utter prostration of the water and gas systems may be looked The utter prostration of the water and gas systems may be looked
for within the next decade. Pipes now affected, removed and replaced with new, but pass the corrosion further along to other and weaker points in the line, until the whole system is becoming honeycombed with points ready for failure on a little change in the ordinary working conditions. The roturn current from the single take for its passage back to the power house the pipe system contiguous to the line, instead of pring the ground wire connections provided for it. The use of the electric motor now contributing
so much to the comfort and conveniences of life in the form of so much to the comfort and conveniences of life in the form of
electrically-driven ventilators, pumps, elevators, and other small electricaliy-driven ventiators, pumps, elevators, and other small
powers, is rapidly extending the evil.' The remedy, if not provided by the electric light, heat, and power companies in the form of taking better or sole care of their product from its generation to tats extinguisment, will ere loog bo found in muloting them for
damages so heavy that the small margin now existing between the damages so heavy that the small margin now existing between the
dividend point and a receiver will be wiped out. dividend point and a receiver will be wiped out.
Some experiments
ond maill seale of the Bower-Barf magnetic appear to indicate its ample protective power. What it would develope upon an extended system of gas or water service remains to be tried. The iron pipes and connections, if protected by this process, would still leave the lead joints and lead service pipes ex-
posed to attack. Cement joints might obviate part of the evil, posed to attack. Cement joints might obviate part of the exil,
but would render the main pipe line too rigid in withstanding changes of temperature, and expansion joints are not to be considered in pipe lines of handreds of miles in extent. The electrical engineors as a body appear to have given this question only a sort
of a happy-go-lucky, or after-me-the-deluge consideration; but the of a happy-go-lucky, or after-me-the-delugo consideration; but the
hour is not far distant when they will be walking the floor crying, "what shall we do?" instead of their water and gas brother who is no having his innings. The protective power of lime mortar under certain conditions has been demonstrated by centuries of actual use; yet the facts thus established are too often ignored by the engineer of to-day. We do not have to turn back many pages of the record book of success and failure to find a remark-
able instance of the latter, in the utter collapse of the Baylise patent wrought iron water pipe, that a fow years ar was brought out as an indestractible, unperishable article with a bygienic
annex to take the plate annex, to take the place of cast iron pipe for water distribution.
The pipe in question was made of wrought iron from The pipe in question was made of wrought iron from 1 in, to pin.
or more in thickness, according to the size and pressure to which
it it was to be subjected ; formed and riveted together in the shop or lot of rolls, punches, 5ft. or more in length; these sections being tapering, and if
shipped were packed in nest form conveniently tand cheapty so bipped were packed in nest form conveniently and cheaply so far - Proesented at the Montroal meeting, June, 1894, of the American Society
depending upon the integrity of the lining to protect the iron from the water; this lining once broken admitted the water pressure to
the iron, the thin riveted joints of which it was impossible to caulk tight, the pressure thus reaching the external coating, which was unable to resist but a small head, cracked and flaked it off, and the
destruction of the whole line of destruction or tha
matter of course after but a short period of service, most if not all of the lines being abandoned and relaid with cast iron pipes inside of ten years. In general no attempt was made to coat the iron with zinc or any coating, or to remove the scale of manufacture.
When the pipe was thrown out of the trench finally and broken When the pipe was thrown out of the trench finally and broken
up, the outside coatiog came away, bringing with it the scale and xidation under it as a porous plaster on removal takes away all pipes with the main line gave no end of trouble to make and keep tight, and the whole system was a forcible illustration of the
importance of those "next to nothings" that so often escape the importance of those "next to nothings" that so often escape the attention of the best engineers, and bring no end of disappoint.-
ment to those who are financially responsible for the introduction ment to those
of the new idea.
Possibly the most extended application for a single purpose of the use of any process other tban paint for the preservation
of iron and steel exposed to atmospheric attack has been made at Philadelphia, Pa., in the construction of the iron work of the tower of the new City Hall, now under process of erection and nearly of the Tacony Iron and Metal Co., Tacony, Pa., contractor for the work, for the following data. The Scientific A merican also describes and illustrates the process in the following issues, the data for
which was also furnished by Mr. Schumann--October 22nd 189 which was also furnished by Mr. Schumann:-October 22nd, 1892, vol. 1xvii., No. $17:$ Aluminium Electro-Plating in Architecture."
September 9th, 1893, vol. Ixix. No. 11: "Electro-plating with September This, process is a double one. The first one is designed to protect the iron from rust by an electro-plating of copper of fourteen ounces per square foot of surface, and a finishing coat of an alloy of aluminium and tin of two and a-half ounces per square foot, for colour to harmonise with the stonework of the lower stories of the tower; also to prevent oxidation of the copper into a green
coating of verdigris. The process was adopted as a substitute for paint, the periodical renewals of which would cost 10,000 dols. per annum, the primary coat of which was to be boiling linseed oil,
in which all material was to be immersed until they had attained in which all material was to be immersed until they had attained
the temperature of the bath. The total weight of wrought and cast iron to be protected is about 500 tons, and comprises 100,000 squaro foof surface, the largest single pieces being sixteen These columns received the copper coating inside as well as outside. The outside cating, being most exposed, is a donble one, requiring two operations or baths, while the aluminium coat is given last as the protective coating to all beneath it. The cost of
the whole process varies from forty cents per square foot to dollar, depending upon the shape of the piece-simple plates, rods, angles, \&c., costing the least, while curved pieces with large logs, flanges with core holes, cost the most, the principal expense being
the cleaning, the greatest care being necessary to ensure good The capacity of the Tacony plant is about 250 square feet per twenty-four hours of from twelve to sixteen ounce per square foot manager of the plating works, has nearly doubled the capacity of
the plant, and avoids the trouble from 'l spit holes ", blow holes and the plant, and avoids the trouble from "spit holes," blow holes and stodgy places, that give a great deal of troubbe to search out and follows the peculiarities of galvanising, where the smallest needle. hole will be coated, but will not fill the crevice. Thet miniple tion to apply the process necessarily varies with the shape and size of the piece. Suitable cranes, trolleys, hoisting gear, trucks, \&c., being provided to handle one of the large columns
referred to, the operation of coating it is as follows referred to, the operation of coating it is as follows:-The
column is first immersed in a tank containing a strong solution column is first immersed in a tank containing a strong solution of
caustic soda, beated by a steam coil, and is boiled a number of hours to remove all the grease and oil due to the machining pro cess. It is then removed and thoroughly washed in water from hose, then placed in a second tapk and pickled with driluted a
sulphuric acid until all rust and seale are disoolved and losen sulpharic acid until all rust and scale are dissolved and loosened,
then thoroughly cleaned with steel brushes and water and goes to then thorougbly cleaned with steel brushes and water and goess to
the third tank containing the cyanido plating solution, and roceives int first coating of copper. It is then removed from the bath and
its transforred to another tank and given a coating of paraffine wax inside, thence to the fourth tank containing an ordinary copperplating solution, where it receives a heavy coating of
about sixteen ounces to the square foot
about sixteen ouncess to the square foot of surface. The
paraffin is then boiled off and the column enters the sixth or aluminium tank and receives a heavy deposit of aluminium sixth or three ounces per square foot. It is then well washed with pure water and is ready for erection. The columns and other pieces are brought into the electric cirenit by wires passing around them Inke slings, and attached to a conducting brass bar over the tank. foot is employed ; in the acid tank, 10 amperes ; and in the tanks

Mr. Darling s improvements in the acid solutions enable copper to be deposited at the rate of twenty to twenty-five ounces por square foot in twenty-four hours, that is as malleable and
almost as smooth as rolled copper ; and copper deposits of an inch thick, or ten pounds per square foot, bave been made
in twenty-four bours. For rolled sheet iron andsteel, and in rods and
shapes whero the surface is free from sand.holes, eight to ten ounces of copper per square foot of surface will be sufficient, while on rough castiron or steel work fourteen to sixteen ounces will be required. These amounts are greatly in excess of those given in
books treatiog on electro-plating, but practical experience shows books treatiog on electro-plating, but, practical experience shows
that the above amounts are necessary to give a protection that will prevent any appearance of rust, and will last as logetion as the struc-
ure will stand. For inside work when the platiog is used more or effect than as a protection, zinc, tin, or aluminium is added to the copper bath to give a bronza appearance, and a coat of two or
three ounces to the square foot will suffica. TLe new Bourse uilding, to bo erected in Philadelphia, will bave examples, of both
inds of plating. The outside ironorok, windows frames, \&e, will electro-bronzed.
Corance, when copper plating to protect iron was first used,
the copperw was not deposited directly on the iron, but on a coating of varnish, rendered conducting with plumbago or powdered cop-
per, applied to the iron surface and allowed to dry. This was one to avoid the difficulties of cleaning the cast iron and the use varnish was dry and the plumbago applied, was placed directly in
the acid solution. This method gives a coating that is not firmly the acid solution. This method gives a coating that is not firmly
attached, and is liable to be torn off by meocanical injury. The lamp-posts of Paris and the beautiful fountains of the Place de la The method used in America deposits the copper directly on the the shape without detaching the copper deposit. As it is often asserted that aluminium cannot be deposited from an aqueous solution, the
following information, furnished by Mr. Darling, may prove of interest:-" Although aluminium is generally credited with infew qualities that would make it advantageous as an electro deposit action and retains a certain brightness for a long time, when it is deposited electrically from an aqueous solution, which deposit is of
necessity of a more or less porous nature, it soon tarnishes and action of the elements. But for a protective coat, say for copper
for which use it is used on the city hall tower, it answers very well, as the slight superficial oxidation that takes place protectst the metal
underneath from further attack, and the neutral colour that it as. underneath from further attack, and the neutral colour that it as
sumes harmonises well with the stone work of the tower. Aluminium is no doubt more difficult to doposit than any other of the
common metals. This is becanse of the high voltage necessary to decompose aqueous aluminium solutions, and the tendency to redissolve aftcr being deposited. We have not got the thermal data
required to calculate the potential difference or electro-motive force necessary to decompose the differont aqueous solutions of
aluminium, but reasoning from analogy, it must be several volts in each case, and as water requires only y m minimum electro-motive force
of $1 \cdot 5$ volts to decompose it, it would seem at first glance that a compound which requires over two volts for its decomposition in aqueous
solution would involve the decomposition of the water, and therefore would be impossible. But in reality this is not so, as may be
een in the case of the caustic soda, which requires over two volts.

 is high enough to decompose the higher compound, the current is
divided between them in some ratio decomposing them both, and 1 find by using a solution of aluminium that has but a slight dissolv-
ing effect on aluminium, with a density of current of eight amperres to the square foot, with a sufficient high voltage- $6 \frac{1}{2}$ to $7-$ gramme per hour per square foot, in a reguline state, and with
higher currents it can be deposited much quicker, but it will be in a pulverulent state, which does not adhere.
Recent improvements in this process for

or a proposed use of electro-copper plating for the protection of

 of movable and portable bathon, the depositise overrapping meansother, the entire hull being thus treated during construetion, or it may be applied to vessels already built. How effectual this, appli, cation for the parpose enamed may prove is a matter of some
owing to the diffuculty of thoroughly cleaning the surfaces to be cess. The irregular contour of the immersed partt of the ship being
pat plated in situ, as well as the porous nature of the copper deposit
requiring a heavier coating than is absoluty necessary for pro-
rection tection, and whether some insulating or protective compound
interposed between the copper and the metal of the ship will be required to prevent electrical action, all are questions to be settled laid plans of mice and men. II effectual the cost of application
at even the highest price named by the Tacony people, one dollar per square foot of surface, would be small hindrancee to to its general
and war vessel on its inside surfaces, as well as the outside surfaces, joints in the armour, and all pla
application of paint compounds.
Japanese lacquer. - The adaptableness of this natural vegetable
product to the preservation of metallic surfaces, as well as those of wood, paper, and other of metallic surfacese, as well as thoose has
the attention of enger received
andeers that the industrial importance of this method of cooting and protecting surfaces demander.
The general idea that its application is one of art, and is only adaptable to bric-...lrac, is wholly erroneous. The Japanese use it
for an infinite variety of purposes-acid tanks, coating the keels of ships, bighly finished coach and decorative panels, and articles for may be truly said that were it not for the bamboo and lacquer is no reason why the lacquer tree should not thrive in this country. Its sap, which is used as the material for all lacquer work, is a
natural eesence, and vastly superior to any varnishes used here. Unlike even copal, which is an artificial mixture of resin, fatty oils nature that hardens into a mirror-like smoothness, never splits nor crackss, and is of great durability. The art lacquer work of Japan
is essentially individual, and ought not to be treated as an undistinguishable whole. The superiority of the art work is due not only to the special merit of the material, but also to the
and
andil shown by the Japanese in the manipulation of
There is tray, or cabinet of commerce, and the exquisite lacs of the great Japanese artists as between a theatrical poster and a canvas of
Raphael. Each of the great masters of lacquer has created a style of his own, and has founded a school of which the traditions bave been kept alive by his successors for centuries. At the
Centennial Exhibition of 1876 , in the Japanese department there were exhibited plates, pans, sc., evidently of a common quality of some samples of a finer grade in trays and cabinet work that had been sunk in the sea over fifty years, and thoogh covered with
barnacles and other marine growths, were practically unharmed, so perfectly had they been protected by the lacquer. It seems as cheaply as maple sap has remained comparatively unknown in palpable protective purpose that nature evidently designed it to to
be used for. be used for.
and steel from the whole question of how best to protect iron wants and usages of to-day demand, seems to resolve itself into category of Don'ts, as the best metbod of answering it, to wit:-
Don't use anything but common iron. Don't have any scale on
that. Don't use anything but the best iron and steel. Don't polish
those. Don't paint it with anything but pure linseed oil and oxide of lead or graphite paints. Don't let the air get to it if it is damp Don't keep it from the air if the air is pare and dry. Don't let esea
air, sea water, acidulated or sulphorous, ammonial or other air, sea water, acidulated or sulphurous, ammonial or other
fumes and liquids bave access to it. Don't think it unnecessary to protect it in any case, because swords, armour, and other
bright articles of iron and steel have been found uninjured brigh articles of iron and steel have been found uninjured
by rust after an exposare of over 500 years with no
onther protection than that aftorded by the closed other protection than that afforded by the closed room in
which they were placed. Don't think your own product would not under the same conditions last as long as the piece of iron
that was walled into one of the burial chambers of the Pyramid, 3000 years ago. Don't put it into any location where it cannot
be inspected and its true condition ascertained at any time, think that magnetic oxide, electro-plating, enameling, or any other method of protection, will take the place of oonstant
inspection, even if the coating is fired on by a Columbiad. Don't imagine because Cleopatra's Needle has had to have a
coating of wax to protect it that it is not a good material to apply
to the stat aceounts be the governing factors in the case of protecting any metal superstructure on whose continuity and strength humg life
and safety depends. The old story and safety depends. The old story of "for want of a pail the
shoe was cast, the horse disabled, a battle and kingdom lost," finds too many parallels in the engineering practice of to-day, until in
some cases we seem to need protection from the engineer much as from the decay of the materials in which he experimente. Don't imagine that Macaulay's Now Zaalander, who has sketched
the ruins of England's power and greatness, and has come to th the ruins of Eogland's power and greatness, and bas come to the
New World to see how we bave fared from the gnawing teeth of time, will not trecognow amist the ruins of Our Statue of Liberty,
Brooklyn Bridge and other monument of ominous streaks and strains due to the corrosion, not only of iron "We are wiser in our genetration, and fear not, and can control
"Weat these forces that like the Arch. slumber not, nor sleep.

LETTERS TO THE EDITOR.

We do no
 hold ourselves responsible correspondente.)

the kinetic theory of gases.-maximum molecular
SIR, - According to the kinetic theory of gases, as at present nderstood, the velocities of the molecules of a gas vary from
nothing to velocities inconceivably great. On this point as least, nol writers on the ubject are unanimous. Maxwell's statement of
alt
the above theory is as follows ("Theory of Heat," page 316).
"It apears, then, that of the molecules composing the system It appears, then, that of the molecules composing the system
some are movin very slowly, a very few are movig with enor
mous velocities, and the rreater number with intermediate velociTieses." Two questions are naturamly suggested by the foregoing
tatatement, viz:
sti) What is the meaning of the words ": very fow"; and (2) What is the limit, if any, to the velocity which may be acquired by a molecule
Confining our attention
magine a place to the later question to be isolated in a vessel of that capacity. Now, if all but one of sions, then, by the law conservation of energy, the total energy of all the molecules
would be concentrated in this single one, and its velocity would become $v \vee n$, in which expression v is the mean velocity of the molecules and n their number. Now a cubic inch of hydrogen a
0 deg. C and at atmospheric pressure is supposed to contai $(3 \times 10=0)$ and the velocity of mean square is said to be about
6000 ft , or rather easy to calculate that the velocity of this siogle molecule,
hydrogen is the gas selected, would be considerably more tha seventeen thousand million miles a second, or more than eighty
five thousand times the velocity of light. If air instead of hydrogen , the velocity of the single molocual would tail have been, roughly speaking, twenty-one
thousand times the velocity of light. Enormously great as is this velocity, yet according to the present theory, unless some qualifica-
tion be introduced, it is not impossible, and indeed far higher tion be introduced, it is not impossible, and indeed far higher
velocities than this may very fairly be supposed to exist in an
enormon example, a thousand cubic yards of air, which is Consider, f volume when compared with the entire volume of the atmosphere.
One thousand cubic yards contain $46,656,000$ cubic inches. in a volume of air of this magnitude. if ony one molecule in every
vebocity
velt be quite possible, others save one remaining unchanged, it would have the enormous velocity above mentioned.
molecular velocities from another point of view, viz, that the kinetic energy they represent. This is rendered necessary,
since Lord Kelvin and others have demonstrated that molecules cannot be considered inconceivably small, molecule moving with half or a quarter, or even with
much smaller fraction of the velocity given above must b considered as a missile having a measurable quantity of kinetic
energy or stored-up work in it. ${ }^{\text {The }}$, kinetic energy or stored-up work in it. The kinetic energy contained in a
cubic inch of air at standard pressure and temperature neglection Co the present the internal energy of the molecules, is, according energy were to be concentrated in one molecule, as would happen
if it were moving with the velocity above mentioned, it is curiou to reflect on what the probable result of an impact from such missile might be on the human frame, for example. Imagine the
point to be broken cff a n needle and to be made to strike with the grain its velocity would be about 1800 ft . a second. It impossible to doubt that such a missile would penetrate a
considerable distance into one's body probably passing through the flesh and bone and whatever else came in its way. But a mole. point of is isedle. For it is the concentration of energy even the point of a needile. For t is the concentration of energy on a very
small surface, combined with bardness, that causes a needle point to penetrate with such facility. But the diameter of a molecule is
quite insignificant when compared with that of the finest pointed needle, and hardnees is one of the predicated characteristics of go remark in "The Rivals," that "a ball or two may pass clean that one of these rapid-moving molecules may pierce thro possible through the whole length of a nerre without causing one the least happened, although the slightest touch of the same nerve by any-
hat thing else would cause acuto pain? If these questions can be
answered in the affirmative, what are we to think of the effect of impact from such miksiles on inanimate objects - the glass windows mere framing of such questions, arising as they do of necessity
from the kinetic theory of gases, should be sufficient to make one hesitate to admit its truth without some modification of a nature to render the existence of these high velo
at the very least, extremely improbable.
So far only the translational energy of the molecules has been cules is also taken into account, the result is still more unfavour-
able to the theory. Clausius sapposes that the vibratory energy of
a molecule is proportional to its energy of transiation. In the case
 But a s I have already pointed out in a former letter-June 22 nd,
1894, page 542 -the vibratory energy of a molecule can be nothing else but its sensible heat or temperature. Hence molecules moving with the enormous velocity we have been considering must bave a
temperature many million times that of one standard temperature Now it is well known that a mere spark will cause an explosion in a mixture of hydrogen and oxygen. The abeolute temperature of
 moving with rather more than double the mean velocity to a temperature of 0 deg. C.. and atmospheric pressure, would have xygen entained this velocity inably mixture of byarogen and oxygon an explosion must inevitably take place. But such
velocities as these must occur frequently in even very small
volume volumes of gas; hence, under these conditions, spantaneous
oxplosions must occur immediately gases of this nature are mixed.
But this we know is explosions of gases, one's thoughts naturally turn to gonpowder
gital and other explosives of an a similar natare, the safe storage of which
would be rendered quite impossible under such conditions
und Enough has been said to show that there are strong chemieal reasons for supposing that there must be a limit, and that by no velocites above their mean value at deg. Co But here at once
we are confronted with a fresh dificulty. for if any variation at all is possible, that is, if on a collision occurring between two
molecules it is possible for the moleale velocity to have that velocity increascd, what is to prevent this
occurring again and agai and so occasionally, comparatively
speaking speaking, giving rise to velocities inconceivably great It sems
to me that only one solution to this problem is possible, and that
 of the atoms of a single molecule of a mixture of explosive gares is incessarily followed by an explosion. It is obvious, for example,
in the case of exygen and hydrogen that at least one molecule of each gas in proximity to each other must have its atoms separated
before two atoms of hydrogen can combine with one of ser If we suppose an explosion in a mixture of gases. to spread from
the atoms of dissociated molecules impinging against other then it is evident that to start the explosion the dissociated atoms ther for the parpose, and this necessary velocity my be considerably bigher than that caosed by what may be termed the
ordinary velocity of dissociation due to molecular collisions at ordimary velocity of dissociation due to molecular collisions at
ordinary temperatures. Considering this latter kind only, as no
cos loss of energy
sociated
admissible, the the transational energy of die.
must be equal to the combined kinetic and vibratory energies of the molecule immediately before dissocia-
tion takes place. But this will be modified by the mutual
ttraction attraction of the atoms tending to convert the translatory into
potential energy, which will, of course, in ins turn be available for
reconversion int kinetic energy when favonrable conditions occur If this view of the subject is correct a certain percentage of the total energy in a volume of gas must be always potential. Again,
if the evolocity of gas molecules is isimited in the manner described,
it at once accounts for the well. it at once accounts for the weli-nown act that air or other so-called
permanent gas cannot be made experimentally to radiate any ligbt correct, that in a mixture of explosive gases, such as hydrogen and oxygen, a very slow combination might take place between them low as not tox be observable, except in trials extending over lopg
C. E. BasEvi. folk-square, W.
ctober 6th.

labour and luxuries.

Sir, - Your correspondent "R. G. B." has yet to learn the rery
elements of political cocomy. In his letter of the 2nd instant he puts words into my mouth which I have not used, and mixes up
otbics and morals with political economy. Now political economy knows nothing of morals, It takes no account of them in any way
Whether a Government elerk or any one else is morally right or morally wrong in spending a sovereign on a bouquet is a question
which I have no desire to discuss ; whether a man who does not
 eliminate such considerations is pure political economy, and with that only in the first instance, at all events, will I Ideal.
I bave never said that the wearer of a bouquet was a "benefactor to a whole army of bricklayers, , arpenters, , glaziers, flower girls,
 were employed in making a sovereign's worth of cartridgee, or a
sovereign's worth of flowers, mattered nothing to those getting the sovereign ; the result was the same.; has fallen is a very common
The error into which "R. . . B. B."
one. It is embalmed in socialist ethics. It is the assumption that absolute property can be possessed in money by anyone. The who buries sovereigns in a hole is an exception, but I do not think
we ney we need troube oursilves witr, tais genteman. In the matero
money we are all distributors, and the most that can be said is that whoever holds money has, for the time being, the power of
saying into what channels it shall flow. Thus tor cypical Government clerk, possessed of a sovereign, may decide to
distribute it amovg gardeners ; or he may prefer to distribute it among wine growers; or he may devote it the the farmers by buying
meat and bread, or to the miners by buying coal. In any or either has to Let us take two men-one of these has one hundred pounds a-year, the other has one hundred thousand. The first distributes
his money wholly amon cc. The second has a larger range, and distributes his money
besides among coachbuilders, horse-breeders, florists, \&c. The result to the community in the end is better than it would have been if becauss emplosment is given over a much wider rarge. I do no
think itis necessary tod right, luxuries so called should not be produced under any circum.
stances. I suppose be will not go so far as to say this, but if he stances. I suppose he will not go so far as to say this, but if he
once admits that a luxury may be produced and paid for then he concedes my whole case, which is, that so far as the worker is con gold in some form or other. Whether the world at large would would not be better without certain so-called luxuries is a very heard it said that enormous sums are wasted on drowing tea, and on silk. To the political economist, however, there is really no sucl thing as waste in the expenditure of gold. The spender may not
get an adequate return for it, but the gold will do its work in tike world, no matter by whom it is spent
Your correspondent writes, "For the sake of our argument, let bas got bis monexy by cornering pork, wheat, or cottcn, and who
has
gives a smart function gives a smart function at his West End house, in which in the
course of an evening flowers are consumed to the extent of $£ 1500$. Let this sum be taken as representing the labour of thirty men-
in the shape of the aforesaid bricklayers, carpenters, gla iers, in the shape of the aforesaid bricklayers, carpenters, gla iers, \&c.

- for one year at 20. . per week. Then what really bappens is that
these thirty men have to do a year's work in order to get back
from your millionaire the $£ 1500$ which from your millionaire the $£ 1500$ which he took out of the pookets
of the public when he cornered his pork and raised the price on
them towards assisting in the production of the commodities of which he is a general conoumere, but actually taxed cone public."
I have ventured to quote him at length, because bs easy to select a better example of the confusion of mind which oxists among many worthy and excellent people on the subject
of value. In the first place, I may point out that your correspondent scarcely knows wat " makking a corner in pork" is, He
is evidently unaware of the fact that, generally spealk Io evidently unaware of the fact that, generally speak
iog, the pork cornered never had any existence at all
This cornering business, as practised in Chicago, for instance,
purely gambling. It purely gambling. It means nothing more than bulling and bear and such a price on such and such a day, and settling means
paying differences. But, for the sake of argument, I will admit that a man attempts to make a real corner in pork. To do this he
must buy pigs, and to get all the pigs into his own hands he
must pay more for them than his neighbours. The result is of of must pay more for them than his neiglbours. The result is, would otherwise bave got, and the most that can be said is that whatever that may mean. But this only for the moment. Th farmer now baving more money than he had before, proceeds at
once to buy extra boots, or hats, or ploughs. In the end the result is just the same as though no corner had been made. In fact, all vise a scheme by which one section or individual of a community is benefited without other sections sbaring in the good. Surely, for
instance, "R. G. B." will admit that cheap coal is a good thing.
The The miner suffers on the one hand, but on the otber he is a direct gainer. His wages may be less, but the necessaries of life are ail
cheapened and made more plentiful, and the whole community is
better Lst me quote one passage more:-"There is no escaping from
the fact that since commodities, be they flowers, carriages, dress, or what not, are only produced hy labour, thoss who consume
them withoot assisting in the production-directly or indirectlydo so entirely at the expense in labour of those who produce them;
and, in proportion as our social system permits of wealth being accumulated without equivalent lajour, in precisely the same proportion is the labour of the working classes increased beyond
what is requisite to produce the commodities they themselves consume, the balance between what they consume and what they
produce going to the idle ; this being the reason why idleness and produce going to to ide idle ; this being the reason why idleness and
luxury, are invariably found side by side with poverty and over-
works
We have here something so vague and intangible that it is dififi-
cult quite to understand what "R. G. B." means. I do not quite cutt quite o onnderstand what "R. G. B, means. If it is the quatter
know whether it is ethics or political economy.
the deductions drawn are entirely the deductions drawn are entirely wrong. No man works for
another, that is one fallacy. He always works for himself, unless indoed he is a slave. The miner does not thew coal for me, he hews it
that heo may get gold to spend on himself and his family. The soce procise equivalent of what he espends. This fallacy comes of
over return to our bouquet, and ask ourselves two questions. First, is it right or wrong in a politico-economical way to grow flowers?
Secondly, suppose that our Government clerk made for himself in his leisure hours a greenhouse, did all the bricklaying, painting, community at large than he did by buying the dooners?
In this case he would have a sovereign in his pocket. If he
 he did not bury it, bot spent it, say, on a a pair of boote, would the community really be better off than it actually was when the money
was spent on flowers? was spent on flowers?
Possibly it may be that I am myseif not a millionaire; on the contrary, I have to his pen again, is it too much to expect that he will so place his ideas on paper that we may know precisely what he wants to con-
vey? I am still terribly puzzled to "public out of whose pockets, \&c." Again, will he explain how the lot of those who do work? Would the match pirls at the East
End of Landon be better off if all the girls at the West End spent their days in making matches
Shall I be considered rude if I recommend "R. G. B," a severe
surse of Smith, Ricardo, and Mill before he writes again course of Smith, Ricardo, and Mill before he writes again
Oetober 8 th.

Sir, - Will "R. G. B." explain what he means by labour ? If he
had bad any experience of life in Chicago be would not talk so glibly about cornering pork. The mental and bodily work done by
the man-or, rather, by the men-who make, or attempt to make, a corner in anything is incredible. The anxiety, the excitement,
the wear and tear are o tremendous that if labour deserves payte wear and tear are so tremendous that if labour deserves pay
ment under any circumstances, the pork man ought to win
AMERICCOS
fortune.
The Langham, October 8th.
governing electric light engines.
Sris,-Is it not the case that where high-speed direct coupled engint importance, and quite apart space oceupied is of para-
mount
monld determine the ouse of that type mould determine the use of that type ? No doubt bigh rotative
speod conduces to good governing, but there are other types which
find a find a a
essential.
In suggesting the use of the "hit-and-miss " type of governor,
Ithink that both yourself and Mr. Robinson have overlooked some essential features of "alternator" driving, especially when the machine is one of high periodicity. In such cases to secure good
paralle running, it is essential that the speed of all the alternators having the same number of field poleses should be identical, and that the similar poles should occupy the same position with
reference to the armature coils in each machine. Should one alternator's phase lag or advance with reference to the others, then
a synchronising current will pass tending to quicken or slow the a synchronising, current will pass tending to quicken or slow the
particular machine. A heavy fly-wheel, whilst tonding to prevent particular machine. A heavy ils-wheel, whilst conding to provent
changes of speed would increase the dificulty of parallel running,
because it would introduce a larger moment of inertia that the synchronising currents will have to overcome e onless, of course,
the fly-wheel is of such enormous size and weight that the effec not the although the two machines may give the same mean nots, unless the engines as well as the may altornators are in in phase, a
vor
vor larger or smaller synchronising cu
different points on the orank path
Doos not tris point to two systems of governing each the best
for an alternating station? for In a station having its units all of the same size. The

1. In
governors on each unit to be as sensitive as practicable and to be of fufficient power to control the steam on all the units, in a a group
and the other governors being disconnected thus one unit would and the other governors being disconnected thus one unit would
be the "master" unit, the cranks being brougtt into unison and be the master unit, the
the loads adjustod by hand.
of the a station having units of varying sizz, all the governors to be closely when running separately, but having means by which they can be at will rendered sluggish. Then one governor, preferably on the largest unit, would be left sensitive, and the control
fine adjustment of the station would be by the largest unit.
of course I am assuming in case 2 that the rotative speed
with the sizs of each unit, but from this point of view does it not
appear that in ppear that in any alternating station the
thould be the same irrespective of its capacity Io short, I think that the governing arrangements of an particular station, especially if alternating, sbould be considered
with reference to the whole plant as far as and including the witchboard arrangements.
Perfect governing of an alternating station would consist then unit, but also in the maintenanes of simultaneous and equal mpulses on each alternator. Wou'd not the system of group
iontrol by one central governor enable alternators to be driven in control by one central g
parallel by gas engines ?

SIn, -We have read with considerable interest your article upon
Governing Electric Light Engines," "Governing Electric Light Eogines," and ggree in the main with "what appears to be needed is a governor which the moment the speed drops or rises -say 1 per cent.-will open the throttle valve
full or shut it absolutely, and will then by a series of very rapid alterations or oscillations, open and close it through smaller and maller arcs, until the new posi
attained." We beg to state that these conditions are perfectly fallilled
by the " Richardson Electric Regulator," which bas been used or some years, and that it will fully open the valve, or entirely closs it, beforo there has been any change in speed of the engine as it acts simultaneously with the turning on or shutting off of
the lamps. These advantages cannot be obtained with any kind of meccanaical governor, which must act after the change in spoed With the electric governor, it is also quite easy
to run the engine faster with a heavy load than with a light
one, its ened one, its speed changing directly witit the load, as it is increased
or decreased. It can equally well, however, be used for maintaining a constant speed, if a constant speed is required by the dynamo, force. This electrical governor is applicable to throttle valves fo working with a a current not exceeding that required for a 20 .candle power lamp. Your suggestion of a piston driven by an engine automatio gear, was tried by us many years ago; but though
acted fairly well with slight changes of load, and could produce constant speed of engine, it was much too slow in its action fo Heat changes.
Lincoln, October 5tb.

Robey and Co., Limited.

colonial locomotives.

SIR,-As a locomotive contractor I have read with interest the leading article in your issue oncolen sow that the American knows better what class of eogine
supply to Colonial roads than the Eoglish contractor. But, Sir, i it not the case that American contractors
freer hand in this matter than Eoglishmen?
Speaking from my own somewhat large experience, I can say
that a Colonial road of any magnitude almost invariably retaing consulting engineer, who issues the detail specificxtion and ver genarally the drawings of the engies which he may require, and
in any case certainly retains the entire control of testing the in any case certainly retains the entire control of testing the material, passing the drawings, \&c. Io other words, the contractor
has to do as he is told, and if the latter does venture to point out that of course in a most polite manner, to "mind his own business, and
ond not pretend to know better than the consulting engineer." For
example, you call special attention to the flexibility of the bearing springs which the Americans use su
levers compensating beams when the play of the axle-box in the guides
is limited and riaidy laid down ns it tenerally is by the tion. It is well known that the vertical play of the ax e- boxaallowed by American builders is very much in excess of usual
Eoglish practice; yet it is very rarely indeed that I have cog lish practice; yet it is very rarely indeed that I have over been
permitted to altor a specification in this respect, though I know perfectly well that with a small amount of play, and therefore stiff springs, the engine is sure to ride rough on a bad road.
I believe that were the average English locomotive allowed as free a hand as his American cousin, our Contractor gea to insinuate thach better adapted to their wants. I do not businese, but I think that locomotive builders are likely to know at least as mach, considering the years of experience they have had
solely devoted to this one particular class of engineering. Moreover, were they allowed a reer hand, so as trawings, engines might
far as possible their existing patterss and drat be turned out of equally goon design at a murh lower cost and in
much less time. So far as I have been able to find out whe Colonial road buys American engines it buys the American builders' standard; whereas, as I have already pointed oot, when it buys
English-built engines it employs a consulting engineer who elaborate specifications and drawings which must not be modified There would be no difficulty in giving endless examples of the above, but I will content myself with one which occurred in my
own works a short while back. I had in hand, at the same time, own works a ent
three different orders for locomotives, all the same type, siz3 and gauge, but the cylinders were of the following sizes :-14in. by
18ine, 14 in . by 19 in ., 14in. by $20 \mathrm{in}$. . There was also a few inches difference in the wheel base, and a fraction of a square foot
difference in the area of the fire grate No deviations were
pernitted permitted from any of the three specifications, which therefore
necessitated preparing three complete sets of patterns, drawings gauges, templates, \&c., where one ought to bave sufficed. You must therefore admit that the two opposing builders are not compar-
able one with another, and it is scariely fair on your part to saddle able one with another, and it is scarcely fair on your part to saddle
the English contractor with faults of design with which probably he had little or nothing to do. I I enclose my card, but for orvious
Kav. (easons prefer to sign myself
October 4 th.

aluminium torpedo boat.

Sir, -The accounts of this speedy little vessel have been most
nteresting, It will be noticed that is claimed from the use of the new metal, and it is further stated that the speed of a similar boat in steel would be 17 knots only.
But in your issue of December 11tb, 1891 , an account appears of an apparently preceisely similiar craft, namely, 0 aft. long by patt. beam, developing 300 indicated horse-power, also built by Messrs. Yarrow and Co., the mean speed of which, taken from six runs, is there
said to bave been 20.03 knots-the highest single run being piver as 2057 ; the difference in speed, therefore, between this craft and the new one of aluminium appears to be 0528 only, or roughly Aeaking, $\frac{1}{2}$ knot, and not 3 t knots.
Admitting that the figures 20558 are obtained from two hours
continuous steaming, and 20.03 from the mean of six mile runs only, calculations based, on the trials of a number of fast torpedo of the mile runs, and three hours' continuous steaming average difference reduced to 20.558 knots gives an increase of $\cdot 36$ of knot as the highest average mile speed above the longer time trial.
It is, therefore, to be presumed that the new boat could have developed at the most an additional $\frac{1}{\frac{1}{2}}$ knot if mile runs had beea diopted. So that, assuming the most favourable possible terms,
the total gain in speed works out at slightly $\begin{aligned} & \text { over } \\ & \bar{c} \\ & \text { of a }\end{aligned}$ knot, instead of $3 \hat{2}$ knots.
Whatever,
doubtloss it has some-when its price ceases to be practically proincrease in speed does not appear to be amongo minium Havock, as suggested in this week's daily press, is at present, at all events, quite chimerical.
It would be interesting to know what
It would be interesting to know what is the highost speed Messrs.
Yarrow consider this little boat could develope, in light trim, and Yarra mile. on a mile.
Ostober 8 th.

SIR,-As some of the statements that have been published in connection with the above subject are not quite accurate, and
may, therefore, be misleading. I sball esteem it a favour if you will kindly give publication to this letter in your next issne.
The price of 3 s . to 53 . por 1 lb , does not represent the price of the The price of 3s. to 53, par lib, does not represent the price of the
metal tiself, but that of angle irons, bars, tastings, \&ce of the
sitable aluminium alloy weed which is quite a different matter. Aluminium in ingots is now sold in the market at 18.9 9d. per 1b.; and taking into consideration that the weight of this metailding, this price really represents only 7 d . per lb . if compared with them. is quite true that the prime cost of this torpedo boat, or of any otber ship made of aluminium, will be somewhat greater
than that of the same sizdd ship built of steel, but the former with ongines of the same horse-power will attain much greater speed. With regard to the boat in question, a speed of 20 knots wes
obtained in place of 17 k knote, th's being the rate of the ordinary steel boats. It is therefore evident that an aluminium boat, for the same rate cf. speed, will require less horse-power, which means const time would fally in the consumption of fael, and this in a quite irrespective of the other advantages of aluminium for ship-
building purposes, which are fally explained in your interesting building
arliclo.
It ha
he production stated that we are not equal to other countries in it is quite true that none of this metal is now made in the United Kingdom, but there is absolutely no natural cause why it should
not be produced here as cheaply as in other countries. In fact, the British Alominium Company has been formed for this purpose, and is now completing arrangements for starting a large factory
for the production of aluminium in this country by electricity The raw material is to be found in Ireland in large quantities, and of good quality; water power for generating electricity can be
obtained quite as obeaply and conveniently as abroad a and by by by electricity which have been so successfully used in France, Switzorland, and the United Stateso of America, this company will
be able to produce the metal as cheaply in this country as else-

For The British Aluminium Company, Limited.

 , Vietoria-street, London, S.W.,.
October 9 th .

electrolytic sanitation.

Sir, - In your issoe of September 28th we notice an article
headed "Electrolytic Sanitation," in which you comment oz the Hermite process of disinfection. We must request you to allow us The commencement of the article a fow remarks upon this article. the subject, and we regret that this was not adhered to in your subsequent remarks. We fear to take up too much space in men-
tioning all the points which might be brought forward, and will therefore point out only one or two of the most striking statements with whico we do not agree
The article says "" Soawa
he article says, "Seawater is a wasteful material to choose in
the preparation of a bleaching and sterilising liquid" \& the preparation of a bleaching and sterilising liquid," \&c. We
venture to suggest that it is not proved that the organic matter in the salt water is the caase of the reduction in strength of the
electrolysed salt water when diluted. It is sofficient our mind electrolysed salt water when diluted. It is sonficient to our mind
that seawatercan be run up from no chlorine strength to 7 grammes that seawater ean be run pp from no colorine strength to 7 grammes
of chlorine per litre, with an average yield of 1 gramme per amperee hour, which, as you will see, is fairly good approximation of a theoretical yield.
We think the reference to "magical compounds" and "wand this subject or of the absolutety eithor with way proper treatment of which everythirg ourselves have never made any claim for any magical compound nor in fact have ever encouraged any mystery. Our simple state-
ment is that we can produce a disinfecting liquid of sufficient ment is that we can produce a issinecting liquid of sufficient
strength to sterilise sewage absolutely by electrolysing sea water strength to sterilise gewage absolutely by electrolysing sea water
with a yield of one gramme oi chlorine per ampere per hour, and that in our apparatus the neecessary electro-motive force does not
exceed 6 volts. Therefore with 1000 amperes $\times 6$ volts, we pro duce 1000 rammes of chlorine per hour
Anyone caring to work out the cost can do so from this data. The suggestion that a solution of bleaching powder could be dis-
tributed in the way that we propose to distribute our disinfectant is rather startling, and we do not think would be seriously considered by any engineer. We thivk it unnecessary to do more than point out that practically one-third of bleaching powder is all
that is useful, the remaining two-thirds, consisting of lime, would have to be got rid of. Anyone familiar with the working of paper
mills and bleach works will appreciate the difficulty of getting tid of the refuse. Imagine a large town supplied in this way, and osing many tons of bleaching powder per day. two thirds of which
they would have to dispose of otherwise than in the sewers. No suggestion is made as to how this difficulty is to be overcome, nor indeed is any practicable method proposed as to either mixing
and using this powder, nor of carrying on the proposed dioxydising
There is no possible comparison between the Hermite process and such a suggestion, because the one is workable and the other is
not. What can be simper than through an electrolyser and into the waters? Alowing continuousil nected witt the chemical trade might ask, where wo

3, Princes-mansions,
Westminster
68, Victoriasstreet, aterson and Cooper.
estminster, Lendon, S.W.
oetober 10th.

Condition of the thames

SIR, -I am pleased to see that you have brought to the notice
of your readers the condition of the river Thames at low water of your readers the condition of the river Thames at low water
near Kew Bridge, which bridge will no doubt be removed
shortly. The new bridge having fewer buttresses, will enble the water to flow out quicker than now.
In the year 1885 I was one of the competitors for the disposa way from London, and improved the Thames from Teddington to paragraph in my scheme. It runs as follows :-Residential propert adjoining the Thames at Teddington, Twickenham, Richmond the river being nearly dry and Putney are not healthy, owing to time, the tide being much more swifter than of old. The first
impediment to the tide flowing ofe was the removal of Bridge. At this old structure there was a fall of 5 ft . from the upper side to the lower side, five arches being blocked up for the
London Bridge Waterworks. The river on the upper side of the bridge presented the appearance of a lake-vide old prints. The next impediment to the flowing out of the Thames was the
removal of old Westminster Bridge with its numerous arches. The
next was the shoals at Waterloo Bridge
across the river near the bridge many times when a boy. The paragraph goes on to sa, now for
remove Old Battersea, Patney, and Kew Bridges, and the flats or shoals at Hammersmith, and you have done it. There will not be much water left in the river at the places indicated for several
hours per day. This was written over nine years ago, and now it hours per day. This was written over nine years ago, and now it
is a rality. If you lock the river at Putney, you will still bave
HENRY SookTon. The Glen, Chase Side, Eafield,
Middlesex, October 9th.
midland railway carriage steps and fittings.
SIr,-The Midland Railway Company is now running, on its express trains between Edinburgh and London, some carriages
which would be a diggrace to even a small railway company. The steps are a positive soorce of danger to the public, being of thin
iron barely the width of the carriage doors, so that should anyone slip between the carriage and the platform their legs must inevit-
ably be cut off by these knifelike appenages. These small ion steps are slippery, and a continuous wooden footboard should be
insisted on by the Board of Trade. The standard door handle adopted by the Midland Company is also about the worst that
could possibly be designed, and appears to have been banded down rom the old coaching days, it requires two forces to be expended
in its use, one to lift up and keep steady the movable ring and in its use, one to lift up and keep steady the movable ring and
another to turn it. This form of handle must cost more to make, and is not nearly so convenient as the cross handle in general use
by other companies. It is strange that the Midland Company should have gone out of their way to adopt as their standard
handle one so bideous in design and so inconvenient in use, and handle one so bideous in idesign and so inconvenient in use, and
one which, moreover, is not even automatic in its action, and
年 ven sman lock which are both convenient and automatic in their action, so that when pushed to they automatically lock themselves.
Of the different kinds in
simplest and bent. It is is used, Wen the Mered's patent is perbaps the Miso the new West Highland Railway, and I would suggest to the Midland Company that they adopt either this or some other
automatic door lock as their standard pattern. One would not expect so influential and go-ahead a company as the Midland to be so far behind the times in the matter of carriage fittings.
Constitutional Club, London, Constitutional Club, London
the theory of the steam engine.
SIR, - Mr. Maurice Cross's letter in your last issue appears more
explicit than his previous communications. In reply, first, as I have expready stated, Rankine refers to experiments made by Mr. C. W.
ald
Siemens as the basis of his statement that steam freely expanded becomes superheated. Scoondly, Mr. Cross seems to object to
wire-drawing being employed in investigating the results of free expansion. At the same time he lauds Joulo and Thompson's experiments on free expansion. This is
Joule and Thompson arrived at their conelusions by wire-drawing apparatus. Thirdy, be appears to regard steam, i.e, the the gaseous
form of water, as not a "permanent" gas, whereas it is quite as much a perrmane
I bave my own opinions as to the manner in which the "effici
ency" of a steam or other heat engine is most justly to be calculacted. This part of the correspondence or controversy I have no
wish to deal with, and will refrain from saying further than that wish to deal with, and will refrain from sayig further than that
I totally disagree with Mr. Croess's views in so far as 1 understand
HEXYY CHERPY 21, Festing-road, Patney, S.W.

AMERICAN ENGINEERING NEWS.

From our oun Correspondent.)

Nep passenger station.- A handsome station is now being tuilt by
the New York Central Railroad at Syracuse, to replace the old station. As this is a tbrovgh station the main building will be at the side of the tracks. This building will be 122ft. by 9 9ft. in plan
three storeys higb, with a steep pitched roof, and the tower will be threestoress sinare and soft. high, surmounted by a pyramidal roof. The
exterior will be of dark red sandstone, quarry faced, with dressed exterior will be of dark red sandstone, quarry faced, with dressed
stone facing, and the roof will be of Spanish tile. The main wait,

 end partitioned off for ticket offices for thesleeping car companies
baggage-room, 57 ft t. by 50 ft t ; trainmaster's oftice, 14 ft . by 18 ft . and a restaurant, 128 ft . by 28 ft . in the basement. From the main
hall a subway passes under the tracks, with steps to the main plat
 way offices. The building wil be beated by lify steam radators,
and lighted by 500 incandescent lamps, the light, hat, and power
plant being located in a separate building. The train shed will plant being located in a separate building. The train shed wil
cover seven tracks, four of which aro throgh main tracks, and the threes main plattorms wiil rails. There will be ticket inspectors' offices at each end of the
pild platform at the head of the stairways from the subway. The train shed will be 480 ft . long, and 128 ft . wide, with main roof trusses
110 ft . long, and a cantilever roof on the outer tide opposite the station building. The interior decoration and fittiogs will be very complete and elaborate.
Railuay statistics (CTicago, Miluraukee, and St. Paul Railuay).
In former letters I have piven details of the operating statistics of In former letters thave given details of the operating satistict respecting the results of operation of the Chicago, Milwaukee, and
St. Paul Railway-a system comprisigg 6147 miles-during the year ending June 30th, 1894. The dividends for that year aggregated 7 per cent. on the preference stock, and per cen. on
the common stock. The freigbt and passenger traffic and the total
earnings were less than for 1893 , but the freight and passenger earnings were less
revenue increased :-

Railuay statistics (Watach Railroad).-The following detailed operatiog sta
30th, $1894:-$

Miles per day per freight train	
No. of passenger trins per year..	
Miles per day per	
Passenger train miles ${ }^{\text {Pr }}$	
Repairs (dols)	8.34
Stores (dols.) ${ }^{\text {a }}$..	
en and fremen (dols.)	
Topang and aispatching	3
verage mileage per engin	
Average mileage per mo	
per	
er ton of coal .a .. ${ }^{\text {an }}$	
age number of 100	
Average earnings per freight car (cent	
Average expenses per frel	
crage number	
rage number of	
eenses per passeng	
Earmings per	
Earnings per mile (dols) "	85
Operating expenses per mile (dols.) ..	
Net earnings per mile (dols.)	
Tons of freight carried	
Rate per ton per mile (eents)	
Expenses per ton per mile (cents)	
Net earnings per ton per mile (cents)	
ght train mile	
Freight train carnings per mile cie	
Freight train neet earnings per mile (cen	95
Average lod	
Average freight train load (ton)	
Number of passengers carried $\because \ddot{\text { en }}$	210,281,487
Rato per passengor per mid	
,	
Net earnip	
Passenger train carnings per milo (cen	
mile (cents)	

Electricity for handling heavy guns. - Successful experiment turrets on warships have been carried out by the Ordnance Burean. Tests have been made on the double-turret monito Montank in turning the turrets and training the 10 in . guns.
device has been perfected by Captain Sampson, of the Bureau, device has been perfected by Captain Sampsob, of the Bureau, by
means of which one movement of a lever enables the rotary motion of the turret and the vertical motion of the gun to be done at the mo time, thus facilitating the work of training the gun, and the
rapidity of action is quicker than where steam power is used. I the experiments on the Montauk, the old-fashioned turrets were
moved easily and rapidy, and the guns were lowered or raised moved easily and rapidly, and the guns were lowered or raised and turned in the direction of the target at the expense of litth
nergy and without appreciable loss of time. The movement were more rapid than when steam is employed, and the accuracy vas greater. The advantages noted for the proposed new system were many. Chief among them were the ease and economy of the plan. Wires can readily be attacked to the dynamos of the main electric plant, and the power be thus tran buickly spliced or new one laid, and the firing go on without long interruption. There are no valves and other delicate gearing to get out of order and destroy the efficiency of the battery at a critival time. The present plan is to install the new system on the lowa and Brook yn. It is not intended to remove dranced in construction to sucb a stage as to make the change an expensive one.
Automatic malock signals. - Automatic block signals showing atic signals are normal position, which in a neration anty miles of double rack road. The signals are on the Hall system, with a circular ox or case and 18 in. circular opening, behind which appears red disc or the danger signal. Over this large opening is
maller one for the night signal. The electrical appliances are nclosed in the case, which is mounted on a post or upon an over bridge. A track circuit is used, and switches are nef a
the block signals. The blocks are from a quarter of to one mile long. There are no distant signals, but a train passing one "safety" until the train has gone 1500ft. further.
Souging machines.- Machines for cold swaging metal articles are being quate extensivily ased in the production of smain pieces
which large quantities are reaured, the work being done by pressure between revolving dies, the outer ends of wbich touch intermittently the faces of a floating ring of rollers in a circular frame concentric with the dies. The stock does not revolve, but the diee revolve around the stock. o shape from blanks the diameter of the shank of the needle, the machine requiring only to be supplied with blanks. Tubes can be swaged without the use of any mandril. Amongst the smallest and nost delicate work done are tubes for hypodermic syringes, whice
re of steel with a hole through them 0 015in. diameter whe nished. Another example of manall work is is in making "rolled
plate "wire for manufacturing jewellers. A cylindrical piece plate wire for manufacturing jewhers. is drawn in a drawing press from a flat blank the same as cart whole is then reduced by these swaging machines to such diameter as are suitatile for eye.glass chains, cc., some of it being swaged for bicycle frames, sc. is shown by the fact that steel tubing ${ }^{3}$ 3 in thick, lin, diameter, is reduced to $\frac{8}{8} \mathrm{in}$. diameter, and when the straight reduced portion of the tube is 6 in. to 10 in. long, about five
pieces per minute can be done. Tubes for bicycle frames are somepieces per minute can be done. Tubes for bicycee frames are some-
times reinforced at certain points requiring extra strength, and times reinforced at certain points requiring extra strengtb, and his is done by simply insertiog a short piece of soaller upon it. In the manufacture of bicycle spokes, the wire is taken from a coil, straightened, passed through the hollow spindle of a swaging machine and reduced to a proper diameter by swaging, but leaving unswaged sections at proper intervals, which, when sheared in two
at the middle, leaves the spokes large at each end for heading, at the middle, leaves the spokes large at each end for heading,
bending, and threading. All this is done continuously and auto. benticaly. Three tensile tests of swaged and unswaged wire-
maty
$0.07 c$ diameter-from the same coils, showed an increase for the former of 9,14 , and 1512 per cent. respectively, the two first being for crucible steel wire and the third for Bessemer steel wire.

Naval Engineer Appontrments. -The following appointments have been made at the Admiralty :-Engineors: W.
the Hebe, and Reginald W. Parry, to the Pembroke.
The Hermite Electrical Sanitation Procrss.-The Ipswich Town Council decided at their meeting on ednesday, the and resulted from the exceedingly favourable report submitted by the sewerage committee on the trials which have been made on the main sewers of the town during the last three months. We understand the permanent installation is to be proceeded with as rapidly
We hope in our next issue to give further details.

THE IRON, COAL, AND GENERAL TRADES OTHER DISTRIOTS.

(From our oun Correspondent.)

THe quarterly meetings of the iron trade have been beld this week ingham to-dayhursday. Taken altogether they have been fairly prolific of bealthy demand was present for iron and stcel of most descriptions and improved prices were here and there secured. A good sign ing to en is mece decare that they have latained large ing to hear makers declare that they have lately obtained large
orders. Marked bars were re-declared on the basis of $£ 7$ i 10 s. for ordinary branded qualities, and $£ 82$ s. 6d, for the L.W.R.O. pro duction of tho Round Oak Iron and Steel Company. Merchan bars were $£ 610 \mathrm{~s}$, and common bars $£ 510$ s. to $£ 515$. The official
prices of marked iron have not remained unaltered since January prices of marked iron have not remained unatered since January,
1893. Common bars as compared with a year ago are cheaper to Che extent of 5 s . to 7 s . 6 d . per ton, but this is explained by the advancing prices of all iron. A more justified comparison is tha with three montbs back, when common bars wero quted 20 s . An animated trade is being done in sheets, and it is not unikety that buefore
qualities of 24 w p. were to dey $£ 915 \mathrm{~s}$, to $£ 917 \mathrm{~s}$. 6 d ., but several makers wonld not entertain business at less than $£ 10$ for deliver miverpool fo.o.,., or $£ 10$ 2s. 6d. delivery London. Galvanising
sheets were strong at $£ 612 \mathrm{~s}$. 6 d . to $£ 615 \mathrm{~s}$., doubles, and $£ 75 \mathrm{~s}$. to
Lo £7 10s. trebles.
Sellers quoted cold rolled and close annealed sheets for japanners,
$£ 8$ to $£ 85$. doubles, and $£ 815$, to $£ 9$ lattens, while the eame $£ 8$ to $£ 85 s$. doubles, and $£ 8$ 15s. bo $£ 9$ lattens, while the eame
sheets in steel were $£ 85 \mathrm{~s}$. doubles, and $£ 9$ to $£ 95$. lattens Iron hoops were rather active at $£ 610 \mathrm{~s}$, though makers stated that as yet no large orders had been received from the United
States, as a reault of the passing of the American Tariff Bill. Gas Strip was rather slow at $£ 515 \mathrm{~s}$, thin strip $£ 610 \mathrm{~s}$., and locomotive boiler strip, either in boiler strip, either in iro or
recorded for steel strip for bedstead tubes.
Pig iron sellers recorded a steady business, and in many instances
contracts were concluded for delivery to the end of Native all-mine hot-blast pigs were 55s. to 60 s. per ton, medium vere in prominent request and agents quoted the foll Derbyshirer, 42s. 6d. to 43 s . ; Northamptons, 41s. 6d. to 42 s , an

 for No. 1 ; 47s., No. 2, and 46s. No. 3 .
Ournaces now blowing in the Midland and that the number of blast s follows :- - Derbyshire, 26 out of 52 built; South Staffordshire ire, 3 out of 4 built; Northampton, 12 out of 28 ; Lineolnshire 4 out of 21 ; Nottingham, 3 out of 4; and Shropehire, 4 out of 1 , but takin the entire furnaces of the United Kingdom, the returns are a decline of no fewer than 52 furnaces on three months back, he result mainly of the scotch
A spirited inquiry was noted for steel, and it is significant from resent taking place of this material than perhaps at any previous
date. Beessemor blooms and billest were equoted this week 444 s . net; Siemens qualities, $£ 46 \mathrm{~s}$, 6 d .; soft steel plates, suitable for
 bove thd price of
The steps which mining engineers will have to adopt to maintain niners were suggested by Mr. Alexander Smith, the new presiden of the South Staffordshire Institute of EDgineers, in his inaugural
address on Monday. More coal would have to be turned out for the same capital outlay, so as to spread the interest on fixed capital and standing eharges over a larger tonnage. This could be done in one or two ways, such as working two shifts and improve ments in machinery and other arrangements. Prominent among
the possible improvements were the introduction of mechanical oal-washing and coal-picking apparatus, for making the best
 system came into force greater preesure and responsibility would
be thrown upon mining engineers, and prompt thought should be be thrown upon mining engineers, and prompt thought should be
exercised by the profession as to how these new conditions were to exercise
be met.
The wages dispute in the wrought nail trade is likely to be settled by the masters paying the 1890 list, for which the men have been agitating. At least, the operatives believe that at the
adjourned joint conference which is to be held the employers will adjourned joint conference which is to be held the employers wil
be willing to concede these terms, and upon this understanding A company with a nominal capital of $£ 75,000$ has just been formed locally to take over the business of the Eaple Range and
Foundry Company, Aston, near Birmingham, cooking range and Foundry Company, Aston, near Birmingham, cooking range and
heating apparatus engineers. The object of the new limited conheating apparatus, engineers.
cern is to develope the present business, and it is said that the average profit for the last five
The goodwill, registered trade marks, brands, \&c., of the New British Iron Company, in liquidation, have been purchased by the
well-known firm of Messrs. N. Hingley and Sons, Netherton Iron Works, near Dudley. Messrs. Hingleys' mines adjoin those of the North British Iron Company, and are situated in the same beds of ture of "Lion" iron exactly as beretofore produced under that celebrated mark. "Lion" pig iron will also be made at Corn-
greaves' furnaces, and used in making bar and plate iron of the "Lion" brand. The rating of machinery assessment appeals $t y$ the Wolver-
hemper Quarter Sessions, have mostly been settled out of Court. Originally fifteen appeals were down for hearing, but only one of these,
and that not relating to a manufacturing business, has actually come for trial. In the other cases arrangements agreeable to It appellants have been consented to by the nion en of the borough will be a very large increase in the rateable value, and that although reductions have in numerous instances been allowed
on the original re-assessments, the net results will be most satis. on the original re-assessments, the net
factory from a ratepayer's point of view,

NOTES FROM LANOASHIRE.

(From our oron Correspondents.)

Manchester.-The tone throughout the engineering and iron industries of tha a very emphatic proof of the generally unsatio otherwise, and a very emphatic proof of the generaly unsatis
factory condition of trade is the fact that notwithstanding the ex cessively restricted production of pig iron, as shown by the recent returns of the number of furnaces in blast and the almost complete
absence of stocks of any weight, business seems to be impracticable absence of stocks of any weight, besiness seems
on anything like a remunerative basis. If there were any confidence whatever with regard to a revival of trade, the present position of stocks and the large number of furnaces oot of blast
could not help but give a stimulus to some substantial advance but there sems to a stimulus to some substantial adsiness again dragging on in the merest hand.to-mouth farsion, with prices
tonding in a downard direction. So far as the engineoring
industries are concerned, there is still no indication of any real
improvement; here and there, of course, business fluctuates, and improvement; here and, there, of course, insuinaess flion of anates. reand
in isolated cases more activity is reported, but generally astablishin 1solated cases more activity is reported, but generally e
ments continue but very indiff erontly employed, and new
generally is not coming
The Manchestor Iron Exchange on Tuesday was but thinly attended, and only a very slow business was reported either in
raw or manufactured material. For pig iron only the mot estricted inquiry is coming upon the market, and merchants and consumers are in many cases only taking partial deliveries of the
iron that was purchased doring the rush of buying a few weeks
bid an there having iron thrown on their hands, which they are showing ratber more anxiety to sell, even where they have to take tions remain nominally on the basis of 40 s . for forge to 42 s . foundry loss 22 at the works, but at these figures there is practically little o prices are easier if anything, one or two of the Lincolnsbir makers especially showing more disposition to entertain offers, and
forge qualities could be bought readily at 39s., with foundry numbers scarcel y averaging more than 40s. 6d., and quotations for oundry Derbyshire remaining nominally at 45s, up to 46s. net cash,
delivered Manchester. With regard to outside brands offering here, the continued scarcity of Scotch iron keeps up fully late
prices, Eglinton not being quoted under 49 s . to 49 s , 6d., and Glengarnock
but Middlesbrough could be bought at lower figures, makers who still hold to 455 s. 4d. net cash for good-named foundry brands, of the market, as there are ready sellers at quite 6 d . under this gure. differontly, and it is exceptional where manufacturers are abble to keop their forges running more than four days per week. Quoted
prices remain unchanged, but the tendency is towards less firmness. Delivered Machehester or LLiverpool, Lancoawhire and Norm-
Staffordshire bars remain at $£ 5$ 7s. 6d. to $£ 5$ Nos.; Lancashire and
St Staffordshire sheets, $£ 7$ to $£ 75 \mathrm{~s}$, ; and Lancashire hoops, $£ 517 \mathrm{~s}$. 6 d . for random, to $£ 62 \mathrm{ss}$, d . for special cot lengtbs. Nut and bolt
makers report only
buildors builders and boiler makers, being only quiet, and very low prices
bave to be taken to secure orders. With regard to bridge work,
 xcessively low figures.
The steel trade continues very quiet, with ordinary foundry basic billets, $£ 4$ net cash ; and steel boiler plates $£ 6$ 5s. per ton, delivered in this district.
In the metal market there is no change in quoted list rates for
manufactured goods, but buying manufactured goods, but buying goes on very slowly from hand to
month.
The Ashbury Rail way Carriage Company, Manchester, have just
secured orders for twenty-four complete bogie carriages of various clasese for the Ceylon Government Railways, and they are just now
busily busily employed upon another important order for ninety-two under-
frames, together with the ironwork and fittiogs, for various classes of carriages, for the Indian State Railways.
pleted extensive additions to their works, and have laid down special machine tools for the manufacture of their wrought iron pulleys with steel rims, which will about treble their capacity for
turning out their special class of work. I may add that the firm are very busc with orderss both oon home account and for sbip.
ment to all quarters of the globe, the oxceptional lightness, which ment to all quarters of the globe, the exceptional lightness, which
 the president, occapying the chair. The report presented showed
a continued increase of membersbip, and improvement as regards a continued increase of membersbip, and improvement as regards
the financial position of the Societ, the total membership being
now 230, as against 222 last year. The report, in reviewiog the now 230 , as against 222 last year. The report, in reviewing the
work of the session,made reference toseveral importantcontributions
on mining and geological subjecets. The President had opened the on mining and geological subjects. The President had opened the session with a very practical address on " Recent Improvements
in Mining Machinery and Appliances," this being followed by papers on ventilating and coal-cotting machinery, in which the cal appliances for the getting of cool, which so far had made
very
vittle progress in this conntry on the "South-Eastern Coalfield atributed an import, import paper and Mr. De Rence had given an interesting paper, with detailed sections, of a
boring for coal on the Freeholder' Estate, at Hazal Grove, which hat resulted in the finding of valuable seams of coal previogst thassumed. A matter of some importance which had
eoggaged the attention of the council during the session had been
the desirability or otherwise of the association ioining the ated Institution of Minisg Engineors, but with regard to this,
athe ${ }_{P}$ President, and Messrs. G. Pearce, John Gerrard, H. Speakman Mark Stirrup, vice-presidents ; Messrs. R., Clay, S. Garside, George Ridyard, H. A. Bolton, G. B. Harrison, D. H. F. Matthews, and
 ward, hon, auditors for the ensuing year. No really material improvement can be reported in the position
generally as regards the coal trade. In the better qualities of round coals, suitable for house-ire requirements, an increasing
business is being put through, and pits have in isolated cases been able to run about fall time, but in other doscriptions of fuel, only a very indifferent demand is reported to be coming
forward, and four days per week continues the general average that the pits are working, with supplies ample for requirements prices average about 11s. to toction. 11 d . for best qualities, 10 s . to at the poit moouth, but the top
prices, althourges stioll represent exceeptional than they have been recently. Only a very slow inquiry il
coming forward for steam and forge coals, which are readily
otain qualities at the pit mouth.
Egine fuel continues more or less of a drug in the market, and
some cases extremely low prices are taken to effect clearance in some cases extremely low prices are taken to effect clearance
sales ; common slack averages about 3 s . 6 d . to 4 ss ., good medium sit mouth.
pis During the past week there has been a falling-off in the weight
of business put through for shipment, this being chiefly due to the cessation of inquiries for Scotland, and there is a slight giving way
in prices, which do not average more than 8s. 6d to 9 s per ton for ordinary qualities of common round Biarroin.-There is still less activity to report in the hematite
 prompt sales are from hand to mouth. There has been a further
deocrease in stocks this week amounting to 417 tons, and stocks begioning of the year. Prices are depressed at 44s. 6d. to 45 s , for
 ing deliveries, and some improvement in shipments may be
expected
tained.
The . Latere is a quiet local demand. Lates are mainThe steel trade is still very quiet, except in three departments. steel castings, and it is expected there will be a fair trade during the winter months in tio-plate bars, but rails, havy as well as light, are in quiet demand, and there is bat little doing in billets and hoops, while the trade is almost absolutely nil in blooms, slabs,
and wire rods. The Bessemer departments generally are inactive. The shipbuilding and engineering trades are fairly well employed, hand. The Naval Construction and Armaments Company have booked an order from the London and North-Westera and the Lancashire and Yorkshire Railway companies for the building on a high-speed twin-screw passenger steamer for the Fleetwood and
Belfast service. Recent additions to this fleet have been made by Lsird's, of Birkenhead, and by Denny, of Dumbarton. In years service, but they were of the now discarded paddle type. Greater oconomy in working is secured by the twin-screw steamers, and
higher speeds are obtained.
higher speeds are obtained.
Shipping returns show
of pigping returns show an improvement this week. The exports of pig iron from West Coast ports during the week amount to
6793 tons, and of steel 6599 tons, compared with 4080 tons of pig iron and 4781 tons of steel in the corresponding week of last year,
an increase of 2713 tons of pig iron and of 1818 tons of steel. The aggregate shipments this year amount to 277,654 tons of pig iron
and 313,183 tons of steel, compared with 208,663 and 383,950 tons respectively in the corresponding period of last year, an increase
of 68,991 tons of pig iron and a decrease of 70,767 tons of steel. The demand for coal and coke is quiet, and prices are, generally spanking, easy
Throughout
ment, and many men coming into the district for work have to go It is reported that a new company is about to be formed to of silk.

THE SHEFFIELD DISTRICT.

Ths has been a very dull week in the steel and iron trades. There has been practically no movement reported. In all the
works visited during the last ten days the reply to inquiries has perceptible of any improvement in the demand either for railway material or for shipbuilding. Shipownors are discouraged at the
lowness of freights, which makes their business altogether unprofitable. As long as ship-carriage is thus so unsatisfactory it would
be unreasonabie to expect any new orders of consequence to be placed. Hematites run from 51s. to 52 s s. 6d. Por on, deliverce literally no business doing. Consumers bave quite sufficient
supplies for their requirements, and the absence of new work causes supplies for their requirements, and the absence of new work causes
them to hold their hands and keep back orders. The position of affairs is exceedingly unsatiefactory and disappointing, as a decided
change for the better, which was stimnlated by the revival of a month ago, was expected. The quotations for hematites, already iron of about 6 d per ton. Derbysbire ironsare also slightly reduced. Bessemer billets are at $£ 510$, bar iron is quoted at a similar
Gigure where the requirements reach any amount. In the manufacture of locomotives and other
makers, both in this and other districts, are finding German and Belgian competition get increasingly keen. Much of the work
which used to be done in this country is now also turned out by whici used to be done in this country is now also turned out by
native engineers in foreign markete. In several of our large rail. way material establisbments orders are daily expected for dency are now contemplated, which will involve an outlay of over
thirty millions sterling. of this work a considerable share is certain to come to Sheffield. At the same time the prices of finished
material have got to so low a point that it is doubtful whether in material have got to so low a point that it is doabtful whether in
home industry they cover the cost. In general cases orders are said to be taken for no other object than to keep the machinery employed against better times, and to keep their men at work.
The war between China and Japan has had the effect of suspending nearly all deliveries to these countries. Some pressing order execution in Sbeffield, and when the war is over it is expected military, but in marine and railway material. The revival
mita anticipated in the South American markets has not yet commenced,
and the general opinion amoogst our principal houses is that the improvement this year.
In the coal trade $6 d$. to 1 p per ton advance bas now been pretty generally obtained in housobold sorts. TTe long-continued mild
venther led to the belief that no advance would be made this weatber led to the belief that no advance would be made this
month, and merchants even yet are not buying to any extent, but dvances the arequaring rere money, and as the season
 connage is still being sent to the Humber ports, and the railway Barnsiley hards, 7 s . 9 d . to 8 s . 3 d . per ton ; Parkgate and other
 slack being quoted at 4s. 6 d . to 5 s . 6 d . per ton, pit slack from
s .6 d per ton. Coke is in rather better demand at from 9 s to

Coliiery extensions are procoeding briskly in South Yorkshiro,
Monday last Mr. George H. Turner, general manager of the On Monday last Mr. George H. Rurner, general manager of the
Midland Railway, cut the rirstoo of anew ooliery atGriemthorpe,
belonging to the Mitchell Main Colliery Company. The underbelonging to the Mitcheil Main Coliiery Company. The under.
taking is on to propery of Mr F. Sville Foljambe, of
Osberton Hall, who has granted a lease of about 3000 acres of coal, ying in such a direction that it will be connected with the work nd the Barnsley thick seam at a depth of about 500 yards. Th sinkings are to onsist of two shafts, each of a clear diameter of
19t土. inoside the tubbing. The coal is expected to be reached in
Wis. company, and the fresh enterprise in fall operation, the output weoted about one million tons per annum. The new colliery is con Mrincolnshire Railways. The sinking operations are in the hands on
Mr. Cbarles Walker, of Darfield, under the snpervision of Mr Mitchell, the engineer.
Som South and West Yorkshire had an interview with the oxecutive of the Soath YYorkshire Coalowners' Association, the object being to require their wages to be restored to 30 per cent.
above 1888 standard and to have the reductions returned. The men decline to submit to the reduction of one-fourth under the
decree of the Conciliation Board, on the ground that not being represented on the Board they are not bound by its decisions. The xecutive are to repor
ob beld next week
The return of coal sent to Hull from the Yorkshire collieries Shipping, shows that trade has been in a fairly cood condition with business as well up to what it usually is at this time of the year. The tonnage forwarded to that port last month amounted
in the aggregate to 263,000 tons, as compared with 42,992 tons for the corresponding period of 1893 , and 171,816 tons for September
of 1892. The reason of course for the return for September, 1893,
being so small was on account of the great coal strike, when
practically no business was done with the Humber ports. Out of practicaly no business was done with the Humber portio, completed three-quarters of the year the tonnage forwarded to Hpled was $1,5918,800$ tons, as compared with $1,049,480$ tons
for the same period of 1893 , and $1,695,408$ tons for the three quarters of 1892 . These figares, compared with those of 1893,
oxibitit an incerease of half a million toons, but contrasted
with those of 1892 a decrease of 103,000 tons is shown. with those of 1892 , a derease of 103,000 tons is shown.
The export trade has considerably advanced. Last month the figures were: coastwise, 19,945 tons ; and to foreign countries,
147,838 tons ; as against 75,607 tons in the same month of 1892 . 1a September of 1893 no. coal was exported coastwise, and only
624 tons sent away in all. The exports for the nine months of the year were:- $-1894,665,462$ tons ; 1893, 349,807 tons ; 1892, 635,089
Cone. the largest weight was Germany, with 45,458 tons. In the corresponding month of last year there was no coal sent to any foreign port except North Russia, and Sweden and Nor-
way. Last month Sweden and Norway took 37,674 tons ; North Russia, 29,680; Den
tons. Fon Sweden and Norway with 215,644 tons, North Russia occupying seocon placo with 140,158 tonn, Germany being third with 117,872
tons, and Holland fourth with 37,105 tons. The highest individual ,
 place is occupied by Manvers Main with 10,888 tons. Two col-
ieries in West Yorksbire take fourth and sixth place, and the fifth is occupied by a South Yorkshire colliery.
During the month of September there has been the serious decrease of $£ 20,298$ in hardware and cutlery. The increasing
countries for that month are Belgium, from $£ 5937$ to $£ 8103$; United States, from $£ 12,987$ to $£ 25,314$. This latter increase is due to the settlement of the tariff question. The markets which

 marketare Ressia- From
from $£ 28,181$ to $£ 30,477$, Germany , from $£ 82,426$ to $£ 82,905$; Hol-

 from $£ 200,093$ to $£ 177,643$; and British North America, from
$£ 75,295$ to $£ 52,225$. In steel anwrought there is a considerable improvement reported on
$£ 17,60$ to to $£ 33,115$; Germany, from $£ 11,834$, to $£ 30$, 158ssia, Frrance,
from $£ 6243$ to $£ 12,036$; United States, from $£ 11,704$ to $£ 32,361$. Decreases are shown by the following countries : - Sweden and
Norway, from $£ 3112$ to $£ 2499$; Donmark, from $£ 3884$ to $£ 3645$;
Holland from $£ 12815$ to $£ 768$, Holland, from £12,815 to $£ 7684$; British East Indies, from $£ 6394$
to $£ 3300$; Australasia, from $£ 4796$ to $£ 4593$; and British North America, from $£ 13,843$ to $£ 5995$. An advance is reported on the
nine months' working, the reviving markets including all except nine mod
Holland, United States, and British North America.

THE NORTH OF ENGLAND.

Thover it is generally held that the trade of the country bas producers, yet in this district at prosent the tendercy is rathere to other way, and what little improvement has been gained is dis appearing. Certainly the pig iron market has become very fat,
and buyers are few, while plenty of sellers are coming forward, though it is but right to say that these latter are not the producers themselves, but are people who have been spece-
lating and bought havily when prices were advancing, in the
oxpectation that the value of iron was When, however, prices took a turn downward, there was prices, but rather helped them down until now they are at least 6d. per ton below the best price that has generally been realised,
The unsettled state of foreign political affairs has made the iators timid, and there is not nearly so much confidenco in the mar-
eet that there was a fortnight ago. Business in this district also ket that there was a fortnight ago. Business in this district also is miners' strike there having almost ended, seeing that forty thouseventy thousand who came out more than three out of the urnaces bave bore plentiful the other nine of the blast There were nearly seventy in blast before the strike commenced. good deal of capital has been made in commercial reports of the sing any marked improvement in the demand for and prices of pig iron in other districts; ; but it ought to be taken into
account that the consumption of pig iron fell off likewise, seein that nearly all the finished iron and steel works in Scotland were
stopped, and did not require the pig iron. If cheap and adequate applies of rices of pig iron in other districts would have resulted.
Cieveland pig iron makers have had to reduce their quotations, their anxiety to realise, and this though foundry qualitities aro dmittedly scarce, so much so that only small lots can be furnished can dispose for prompt delivery. Most of the business in No. 3 this less than that will be 36 , per ton for prompt f.o.b. delivery, but was taken on Wednesday -as warrants all. round have became so
 close of last week were not below 36s., but on Tuasday they
dropped to 355 . 8d., and on Wednesday to 35s. 6d. In the face bis and of as large a fall in Sootch and hematite warrants, it conld hardly be expected that prices of makere iron could be kept
up. Very little iron is being taken out of the public stores,
whereas a large quantity might No. 3 is s o scarce, and that large shipments are being made. The exports have considerably improved to the Continent, but as this
the last month of the northern navigation season, the despatch of the iron cannot be delayed, and those who need to get exports from the Tees this month to Wednesday night were
30,035 tons, as compared with 21,50 tons last month, and 34,333 Cleveland foundry pig iron has declined to 35 s., to and grey forgewhich has once more become almost a drug on the market, there oought at 33s. 9d, a price which will not pay the producers.
If the old differences in prices were maintained, grey forge should be only 1s. cheaper than No. 3 , whereas it is 2 s . 3 d . cheaper; the
expense of producing it is the same. East Coast hematite pig iron
is also in better supply than demand, yet there are no
signs of the output being reduced, though makers' stock migns of the output being redued, though makers' stock
creases. Mixeding considerably, and the cost of production in creases. Mixed numbers can readily be bought at ptss. for promp
delivery, and even 42s. 9 d . is said to have been accepted delivery, and even 42s. 9d. is said to have been accepted,
Middlesbonough hematite warrants having fallen to 42 s . 3 d . buyers. Foreign ore is dearer, some sellers asking 12s. 3d. per ton for gooo
Rubio delivered on the Tees. Messrs. Cochrane and Co. are dis mantling a furnace at their Ormesby Ironworks, Middlesbrough
and they will have four built, of which three are now in blast. The accountants certify that the average realised price of Cleveland pig iron during the quarter ended September 30th wa
35s. 1.96 d . per ton, or 3.6 d . decrease upon the previous quarter a result which is disappointing, as most people had looked for a increase. seeing that the market quotations have been higher
being 35s. 6 .. In July, 35 s . 10 d. . in August, and 363 . 4d. in Sep
tember, the average for the guarter bein che tember, the average ofr the quarter being close uapon 3 s.s. 11 ld. It
is evident that the makers must bave had on hand a lot of low is evident that
priced contracts. Wares . Wages of blast furanacemen for the courrent
quarter have been reduced half of 1 per cent. They advance, and thus they some time ago asked that the sliding
scale, scale, which would according to their notice have terminated
the end of September, should be prolonged to the end of the ear.
Very little improvement can be reported in the finished iron and steel trades, but the prospects for rail makers are somewhat mor promising, as orders are likely soon to be given out for India, as
well as for railways at home. There seems also to be a brightening up in some of the markets abroad to which we have in past
years sent large quantities of railway materials. The quotation
for heary steel rails is $£ 312$. 6 d . net at works. Steel billets are for heary steel rails is $£ 312 \mathrm{~s}$. 6 d , net at works. Steel billets are
in good request, and several cargoes have been sent to the chester district by sea, it being cheaper to do that than to forwand by traic, have considerably reduced their rates, so that that litle lose the likely to be sent by way of the Ship Canal. The chief market for
steel billets is South Wales. The Darlington Steel and Ironworks have now been entirely closed, and 800 men thrown out of employ
ment. Steel ship plates are ouoted $£ 417 \mathrm{~s}$. 6 d . s steel hoiler
 A Staftordshire firm has been making inquiriries abont the iron-plate mills, but have been idle for several years. The situa-
tion of the establishment is good, being on the left bank of the
Tees ane shipyards not far away. three months, have this week recommenced operations, bot have
not yet found work for more than half the number they usually employ. W. Willans, of Dolforgan Hall, Kerry, electrical engi-
Mr.
Meer, has been accepted as the Liberal candidate for the Montgomery Boroughs. Mr. Willans was for many years engineering manager
at the Tees-side Iron and EEngine Works, Middlesbrougb, and since
then has then has had a good deal to do with the construction of the Liver
pool overread RRivany. The Skerne Steel and Wire Company,
Darlington, is about to be reconstructed. It is being wound voruntarily, so that the share capital may be reduced. The depres-
sion to consider the course now adopted to be desirable
A meeting of promoters held at Manchester has decided that the
Bil for the new through line between Manchester, Newcastle, and Glasgow shall be proceeded with in the parliamentary session o
1895, and Newcastle was chosen as the headquarters of the pro visional committee. A very fanourabe heporat on the proposed
line of route has been received from several engineers in the country. It is stated that the North-Eastern Railway Company
is contemplating the extension of the Richmond branch up the Swaledale Valley as far as Muker.
yet settled, and the men seem it progress since Aprit as overt orecde from their demands. They
seem to
decline to follow the example of the moulders, and allow their dis. pute with the employers to be adjudged by arbitration or concilia tion ; and nothing will content them but the full advance which
they demanded half a year ago. Some of the masters have obtained The district is suffering moulders' 'and engineerers, srraikes, and some steamers which might
have been completed four or five months ago are still waiting for their engines.
The newly
of Science at Newcastle were opened on Tuesday by the Mayor of It wastie. It is twenty-three years since the College was opened.
It
It erected, and the building will be oomplete when the north wing is
opened, on which occasion the King of the Belgians is to be invited
to perform the cerem 200-horse power was presented to the College on behalf of the president of the North-East Coast Institution of Engineers and
Shipbuilders. Shipbuilders.
On Tuesday, at the invitation of the Bishop of Durham, number of gentiemen representing labour and capital met at
Auckland Castle to talk over the limitation of competition with
regard to the "living regard to the "living wage" and cognate subjects. The conference
was private, but it is stated that Professor Marshall, who takes great interest in these subjects, gave those present the benefit o
his advice.

NOTES FROM SCOTLAND

(From our oon Correpondent.)

North of England, and merchants were thus able, wherever it was absolutely necessary, to carry out their engagements. Prices are
not very regular, but they may be expected to equalise themselves in the coarse of the next two or three weeks.
The shipments of iron and steel manufactured goods from Glasgow in the past week embraced sewing machines to the value
of no less than $£ 10,825$, of which the greater proportion went no less than $£ 10,825$, of which the greater proportion went to
be Continent; other machinery, $£ 7743$; steel goods, $£ 2456$; and miscellaneous iron goods, £11,792
The coal market is now asssming something like its usual appearance, although a few weeks must still elapse before the full
supply of coal will be attainable. Orders for cargoes from the North of England are now no longer given. On the other hand, the shipments of Scotch coals are on the increase, and the prices are
receding. In the Glasgow district the best all-round coal is quoted at 9 s., second quality 8 s., and dross 5 s. per ton.
Fife and a part of Stirling and the Lotbians still hold out, but the
men must now be fully aware that their cause is utterly hopeless.

WALES AND ADJOINING COUNTIES.

From our oron Correspondent.)

The colliers, having, iven in their notice, have now put aside, apparenty, all discossion for a time, and continue working very
regalarly, with the oxception of a fow partial strikes. The
General Federationists ane hower tunity slip by, and it may, be taken for granted that the comping
winter will see a lot of platform work, the agents lof the English rganisation making every effort to annex the Welsh colliers. I have spoken to influential men amongst the local colliers, and
though they cannot guarantee the action of the hauliers, they ppose any union with England.
The coal trade has entered upo
rouse very satisfactory comments. and the necessity of keeping the British fleet on the allert and coal trade, and coaling stations are, being well supplied. Some
large tonnages went out this week. The total last week from Cardiff ports, notwithstanding whe montlyy holiday, wae 2800,000
tons. I note that the great steamship and other companies are tons. 1 note that the great steamssip and other companies are
begining to make their arrangements for next year's contracts.
Tbe P. and O., as usual, are moving, and invite tenders for 120,000 tons. , as usual, are moving, and invite tenders 10 or
On 'Change Cardiff the prominent topic of conversation of late has been the prominent figuro at which contracts will be oftared
into, and from all I can glean, seeing what prices are had, and the into, and from all I can nlean, seing what prices are had, and the
frmmess of the market, and noting also the prospects and the possibilities of the future, a likely price will be from 11s. to 11s. 6 d . Aood authority on Change agrees with this, though if the
Foreign-ofice bibeame actively disturbed during the next week
or two, the higher figure might be exceeded. The latest quotations this week, Cardiff, are as follows :-Best
 demand is good. Best continues at 11s.; No. 3, Rhondda, 10s. 3d.
to 10s. 6d.; No. 2, Rhondda, 8s. 9d.; througb, 6s. 9d. to 7s.; small, Newport and Swansea coal exports remain good, and prices firm.
 the inquiry is good, and I hear, in respect of the latter, that
developments are likely at Hirwain on a large scale. Coke remains tolerably firm, and I note that the closed steel Works of Tredegar and Rhymney are busy in that direction.
Cyfarthfa in the fulness of its requirements lending a helping hand. Present quotations, Cardiff, are:- Furnace, 15 s . to 16 s . foundry,
17 s to 18 s .; special foundry, 20 s . to 20s. 6 d . Patent fuel is on Leady demand at last prices, 11s. to 11 s . 6 d . Swansea price,
0 s .6 d. to 11 s . Pitwood, 15s. 6 d . Cardiff; 17 s . Swansee. The steel trades is more of the nature of preparing for briskness than meeting in-
creased demands. The quantity of ore coming in and stocked of the principal works continues very large. So also in the make Western eidinge hes principally ten tons each, were sent away.
Inote that at these works the storing of pig iron has been im dred tons of refinery iron, which bad been stocked for years, hav also come under the Cyfartbfa tactics of putting everything to
good purpose. This iron was of excellent brand and to bring it ood purpose. Mhis iron was of excellent brand, and to bring
oaccount a short railway was put down, and the whole rapid ${ }_{\text {Pig iron }}$ continues to come in from Middlesbrough and Millom. nly two cargoes of rails have been despatched this week-one or
750 tons to Spain, and another, Great Western rails, to HighMarket quotations, Iron and Steel Exchange, Swansea, were as

 Block tin is down to $£ 695 \mathrm{ss}$. There have been large clearances of tin-plates against Swansea; but tonnage has not come in as
expected, or they would have been heavier. The total received rom works last week amounted to 66,167 boxes ; total shipped,
57,766 boxes, leaving stocks at 235,712 boxes The shipments of September were very satisfactory, 13,882 tons
the United States and 4374 tons to Russia, as against 9906 tons to the United States and 4374 tons to Russia, as against 9906 tons
to the States and 3817 to Batoum for September, 1893 . A good deal of satisfaction is felt at the healthy state of the there was an increase of 23,408 tons, and in exports. 35,216 tons.
During the month, in iron ore and in iron and steol, the increase in During the month, in iron ore and in iron and steel, the increase in
mports was large. Last week Swansea imported 1516 tons pig and 290 scrap steel, and a large quantity of tin-plate from the Monlearance had tonnage come in. As it was exports were confined
to 2470 tons to France, 1200 to Roumania, and 1000 tons to Algeria The great question now "on" at Cardiff is, Shall the Corpora-
tion acquire the Bute Docks and Penarth, possibly Barry, and tion acquire the Bute Docks and Penarth, possibly Barry, and
form a harbour much the same as Swansea ; but it would seem likely that while the Council are discussing payment to experts,
and ways and means generally, the opposition will grow stronger. Some of the moderate men hold, that with a costry waterwork hey have enough on their hands at present. On Wednesday it was stated on good authority, that the Taff Vale Railway Company has decieged
the date of my despatch this has not been corrected. The impression in Cardiffif is, that if the statement is right-and it seems -the Corporation will retire from the undertaking, In Swansea a water action, for which a claim of $£ 60,000$ was made, The ben settled for $£ 10,833$ by arbitration in London.
The first main line train was run by the Rhondda and Swansea

Tuesday, they baving first inspected the whole work of the railway, including the swing bridge over the Neath river. The connection
from the Rhondda is now unbroken with the exception of a few yards at Briton Ferry
The Llanelly Harbour Commissioners held an important meeting this week, and comments were passed on the diatory character
the Board of Trade in not sanctioning the improvements desired Doubtless this will take a practical form next week.
A conference of collier delegates is to be called to enter into the question of the use of carbonite instead of compressed gunpowder in blasting operations. It is contended that though the use of much, and that in consequence they should bave compensation The formation of a transport company for the Severn Navigation proceeding vigorously, and Sir W. T. Lewis has announced to the
romoter that the Bute Docks Board are prepared to support, nancially and otherwise, the scheme of a water transport company. In this, traders at Cardiff and Worcester are benefited, and the
building of suitable steamers will be one of the earliest efforts

NOTES FROM GERMANY

 (From an Comernt

 (From an Comernt}THE position of the iron and steel trade over here has in no wise altered since last week, a limited business being done in mos
departments, while quotations are rather fluctuating, and certainly anything but satisfactory. Quietness still prevails in most branches of the Silesian iron trade. Pig iron is in particularly weak request,
and the blast furnace works justly complain of the decreasing tendency in prices works jastly complain of the decreasing instances. In malleable iron very little is done just at present, and low quotations bave to be accopted
With reference to the Austro-Hungarian iron trade, nothing of
interest can be reported to have occurred since last week. Makers and manufacturers, on the whole, are well employed, though here and there a slackening off in demand has been noted lately.
Pig iron continues to be scarce, and there is generally much firm Pig iron continues to be searec, and there is generally much irm-
ness exhibited in prices. Few orders are coming in for bars, which
may be accounted for by the oxceeptionally brisk demand that was coming forward for that article in last puarter, when deaters as well as consumers were anxious to profit from the low prices then
ruling ; for the present there is little chance for ruling ; for the present there is little chance for an improvement
in demand, unless stocks should begin to decline. The steel trade is altogether in a poor condition, owing to the scarcity of orders are in comparatively fair employment, twenty express locomotives In France a rising demand can be noticed for almost all sorts of iron, though orders of weight are, as yet, rather scarce, but downthe contrary, there is a very firm tone perceptible in most departments. A hopeful feeling generally prevails, and in many quarters
the belief is ontertained that a fairly good winter's business will be
The Belgian iron trade begins to show slight signs of a revival, ever, makers "live in hope," the business actually done being of small weight, but the more sanguine persons are of opinion that
the worst is past, and that a general and lasting improvement is about to take place. Up to date both the raw and the finished irncorks are but, moderately engaged; export trade continues
uncommonly weak, and there are very few works that can boast of any forward orders. The Company Cockerill has been fortunate securing a pretty fair order for
Government at 147.50 . p.t. at works.
There is nothing
There is nothing new to note with regard to the RhenishWestphalian iron and steel industry. Some branches are tolerably
well employed, and the fact that prioes are rather firmly maintained is generally considered as a symptom of lasting improve ment. The quietness in the iron trade cannot fail to have a strong
influence on the iron ore market, and there is but little activity to be noted al the iro ore mines. since previous lettors no
 able iron market tolerably good accounts have been coming in upon
the week, thoogh little actual business is done in most branches ; but a good num airders not much has been done lately. A cood activity conty. In at the plate and sheet mills, but makers find it imposible to carry an advance in quotations. Foreign inquiry is dull, sheets only meeting with a pretty strong request. Drawn wire and wire nails
still show no sign of improvement, either in price or demand ; and still show no sign of improvement, either in price or demand; and
there is likewise a very weak tone to be noticed in the rivet busi ness. The ironfoundries and machine factories are only poosl employed, while a good activity continues at the wagon shops.
A concession for the building of a locomotive wagon and rail shop in Russia has been granted by the Russian Government to an American syndicate, under condition that twenty-four foreigners,
at the most, are to be employed, and that only Russian raw material is to be consumed
The following figures, showing the average prices of pig iron in the
 foundry pig is paid with 924 .; in Hungary, 90f. p.t. In Japan,
84f. p.t. is quoted; in Spain, 699. p.t.; in Noway, 69. p.t. In Luxemburg, 45f. p.t. is the price quoted; in Belgium, 51f.; and in
Bavaria, 57t. p.t. is paid. In the United States 7 Iff. p.t. is the
average price for foundry pig Prussia and France each. quoting average
61f. p.t.

Statue to Sir Whliam Pbarce.-A memorial statue of the late London, December 18th, 1888, was unveiled at Govan, Glasgow, on
Saturday, the 6th inst., by Lord Kelvin. The event took place in presence of a large concourse of spectators for most part
composed of the trades' societies belonging to Govan, and o employes in the shipbuilding, works. Besides Lord Kelvin,
there were present, Lady Kelvin, Lady Pearce, Sir Wm. George Council of Roberton, Sir James Bain, which has boen erected at a cost of some $£ 2$ L2000, defrayed by
public subscription, occupies a commanding and central position near the cross of Govan, the site having been given by Lady Pearce don, while the massive and lofty pedestal on which it stands is polished Peterhead granite, supplied by an Aberdeen firm. The pedestal alone weighs about 25 tons, and is 12 ft . 6 in . high. On the upper baso dado are four sunk moulded panels. for inscriptions and
memorial tablets. The statue represents the late baronet examin ing the plan of a ship, and the likeness fully maintains the reputa tion of the sculptor. A glass vase deposited inside the base of the under the deceased baronet's management, including the Arizon and Alaska, together with a full list of the vessels built during his time, a pamphiet entitied "The Building of a Ship;" a map of
the borough of Govan, photographed by the late baronet; curren coins of the realm, copies of newspapers, \&c. In unveiling th ing the late baronet, and said that by the statue now unveiled they $\begin{aligned} & \text { oune for } \\ & \text { doarce }\end{aligned}$
Per Pearce eollowed, Lord Kelvin, and formally handed over-on behall
of his mother-the title deeds of the ground on which the monu of his mother-the tite deeds of the ground on which the mona-

AMERICAN NOTES.

(From our own Correspondent.)
New York, October 5th. The expectation of the early, placing of large
orders for billets, pig iron, bridge plate, steel rails, and cast pipe has had a favourable effect on the pig market. Pig iron production is increasing
at the Soutb, and large sales were made this at the South, and large sales were made this week of mill irons at Ohio River points. Speci-
fications for considerable bridge workers expected fications for considerable bridge workers expected
in a few days. The anxiety for winter orders is leading to the shading of prices. Wire rods and barb wire are in good demand. The rush for
nail orders led to another cut of 5 cents. Sheet iron and boiler plates are doing better than for two months. Work will be hurried through on of the workmen to accept a 25 per cent. drop, a sufficient cut will be made to protect the bulk of the home trade, especially in ternes. Several large users of billets made offers this week for
three months' supplies, but acceptances have not three months' supplies, but acceptances have not been announced. Girder rails are active. The improve. The money markets are easy. For shop and factory work there is a gradual increase of orders, but no great expansion of trade is
probable until the opening of spring. probable until the opening of spring.

LAUNCHES AND TRIAL TRIPS.

The s.s. Turret Bell, turret deck steamer, whas inst., when a mean speed of $11 \pm$ knots was registered, her total deadweight capacity being
3800 tons on 19 ft. draught. She has been built 3800 tons on 191 ft . dranght. She has been built
by Messrs. William Doxford and Sons, of Sunderby Messrs. William Doxford and Sons, of Sunder
land, to the order of the Turret Steam Shipping and, to the order of the Turret Steam Shipping Company, Newcaste-Managers-and has received the highest
class in both British Corporation and BureauCo., managers-an
class in both Britit
Veritas Registries.

EXPERIMENTS ON THE DISINFEC TION OF TOWN SEWAGE WITH SULPHURIC ACID.*
By Dr. M. Ivanofr.

THE fact that the cholera-bacillus displays an intense susceptibility to the action of acids was
known to its discoverer, for Dr. Koch pointed out known to its discoverer, for Dr. Koch pointed out
that in the acid secretions of the stomach these bacilli speedily lose their vitality. The subsequent experiments of Kitasato have shown that cbloric acids to bouillon cultures destroy cholera germs in the course of a few hours ; and, lastly,
Messrs. Statzer and Burri have studied exhaus tively the effect upon these organisms of very dilute solutions of sulphuric acid. At the suggestion of Professor Pfuhl, the author undertook to investigate the action of dilute sulphuric acid upon cholera-bacteria when present in sewage
water. From the inception of his experiment he surmised that under these conditions the acid must be used in a more concentrated form than in the above cases, because the sewage water
invariably contains substances which would combine with the acid, and would thus, to some ascertained that the additional amount of acid rendered necessary on this account was buttrifling. The samples of sewage water were derived both from the Berlin and the Potsdam sewers, and were infected alternately with pure cultures of
the cholera-bacillus and with the fresh dejections of a cholera patient. The acid in the case of the Berlin sewage water was used in three degrees of strength: (1) as a 002 per cent. solution; (2) as
a 004 per cent. solution ; and (3) as a $0 \cdot 1$ per cent. solution. The conditions under which the author availed himself of microscopic observations as well as bacteriological tests. Four parallel series of experiments were carried out, and the results were in every case identical. The Pots-
dam sewage, which is three times as concentrated dam sewage, which is three times as concentrated viz., with $0.04,006,0.08$, and 0.12 per cent. solutions. It was found that in the case of the Berlin sewage the 004 per cent, solution of acid was fatal to the cholera-bacilli, but that with the
stronger sewage water of Potsdam the amount of acid needed was that present in the 0.08 per cent. solution. It is pointed out that, whereas previous to treatment the sewage water was faintly alkaline, the sample to which 0.08 per cent. of
acid had been added had a strongly acid reaction acid had been added had a strongly acid reaction
on being tested with litmus paper, and that such reaction may be regarded as an indication that the necessury doso of acid has been employed. This treatment is, with the exception of the use of lime, the cheapest system that can be adopted.

Sigmens Brothers' Ellectrical Works, The last vacation visit of the Society of Engineers for the present year was made on Tuesday, when
the president, Mr. G. A. Good win, and about 70 nembers, inspected the electrical engineering and
cable works of Messrs. Siemens Brothers and Co., at Charlton. The first department visited was the new dynamo shop, which is fitted up with all the latest appliances for turning
out this class of work. Much interest was shown in the cable shop where deep sea and electric lighting cables are made. Some of the cables for the latter purpose are very beavily armoured for laying in the ground in Edinburgh without pipes or protecting channels. The central power and
lighting station attracted considerable attention, ighting station attracted considerable attention,
is nearly the whole of the works are now being driven by motors instead of scattered engines, and the engines have been taken out. The ing the current for driving machinery and lighting the works. The driving is done by 54 electric
motors distributed through the works. We shall refer more at length to this in another

[^0]
THE PATENT JOURNAL

 nesed from "The Illustrated Oficial Journal ofPatents."

Applleation for Letters Patent

 *When patents have been "communteated" thename and address of the communicating party are
printed in italics.

$$
26 \text { th September, } 1594 .
$$ 18,259. P

London
18,260. Producina Pristina Surfaces, H. Dade Full-sized Body Baths, A. Boots, East Boot, \&c., Lace Fasteners, A. e. Muller, Ger , Warp Flushino Threads, A. F. Craig and R Millar, Glasgow. ${ }^{\text {London. }}$
 Turvey, Kent.
, Lons. GAs Enoinss, J. W. Hartley and J. Kerr, London. 18,2ndon. Pank Brusers, J. L. Thomasson. Worcester.
18,27. Rendino Desks, J. Ballinger and J. Henshaw, 18, 272. Obinining Pure Phenols from Mixtures, L Lederer, Londo.
18, 278. ELerrio Moxors, J. Imray. - (La societe
Anonyme pour la Transmistion de la Force par
 Dulier, London. Bucsanszky, London. 277. Machines for Kneadino Dovor, T. Kade, London.
88,278. Typwriters, G. Royle, London.

1. . London.
18,280. Check Tills, R. Zabel, London.
18,281 . AUTOMATLC Fire-ARMs, F. R. von Mannlicher, London.
18, 282. Sensitisino Photooraphic Paper, O. Beadle, London. 18,284. Valves for Pumps, A. W. and Z. W. Daw, London.
18, 285. Process for Treatment of Mile, G. Gaertner, London. London.
Les. Secondary or Storaoe Batteries, c. Riordon, Liondon. Elsetric Motors, J. H. K. MeCollum, London.
18, 290 . View Finder for Photooraphic CAMERAs, H. Ransom and A. D. Thornton, London. C. Feldman, London. 18,293. Typewritino Machines, N. W. Hartwell, London.
8,294. Mariers' Compasses, J. Morton, London.
8,295 Decorated Lookina Glasses, E. M. Philz, 18,296. Improved Trubs, C. Lange, London.

27th September, 1894.

18,227 Vaughan, London.
18,290 .
 ham. 8,302 . 8,303. APPARATUS for SWINa ExERCIBE, C. Merington,
Lond 18 Lond. Tox, T. F. Edgeworth and J. F. Parsons,
Bristol. Bristol. Billiard Table Adjuster, G. C. Waterfield, 18,306. Taprstry Carpets, W. Wallace and R. Barclay,
 shire. Rasoe and Position Finders, W. M. Huskisson, Mantles for Incandescent GAs Liohts, H.
H. Manchester. Wraviso Aprariatos, W. Simpson and the Duplex Weaving Applianco Company, Manchester.
18, I1. Machine for Extractina Veoztable Fibazs,

18,314. Marise Sionallino, Ji. Wall, Liverpool.
18,35s, J. W. Mellor, Oidham.
18,31. Starnoz, Buidivas for Conl, T. Wrigley and
T. Taylor, Manchester. Grigioni, Liverpool. for Holdina Nekdes, G
$18,37$. ART Decoration M 18,317. Art Decoration, M. English, near Clevedon.
18,31. Rectroocting Motions, J. Sturrock,
Dundee. 18,319. Pisaenoer Guard for Ominibus, E. Pink, L8,320. Manines for Digaina Potators, J. Holt,
Cheshire. Cheshire.
8jablin. Aparatus for Tijitivo Casks, P. S. Lawless,
Dubin Dub. Skparatico Cream from Mile, J. v. Geary
Dublin 18,323. Close-jointing Chair Frames, J. Gaymond,

 Meldrum, , iverpool.
18,s28. DUPLEX TELEORAPHy, G. E. Fletcher, Stock port.
18,329. Dosestic Filters, W. H. Barr, Manchester.
18,330 . Reversible Ceoth,
 Nowbury.
18,333. Drivino Gear of Rear-drivina Cycless, w. J. E. Freeman and R. Thompson, London.

18,335. Boots and Stoss, F. Kennel, London.
18,336. UTILsiva TwoL PowER, W. J. Roberts and J.
R. Jones, Liverpool. 18, 336. UTILIsisa TwaL PowER, W. J. Roberts
R, Jones, Liverpol.
18,337. Frozen MEAT, J. Atherton, Liverpool.
 London.
18,340. Trousers, J. M. Forster, London.
18,34. Souss of Boors, F. Leigh and G. Padmore,
fun., London.

 2 18,

> | Lo |
| :---: |
| 18,3, |
| E | 18,

${ }_{18}{ }^{2}$,

18

18,347. Hixak Foldixa Splashboard, C. Irvine and
 Lis,49. Fam Handues for Cyoless, F. G. Bensly, Birmingham
18.350. TRAYs of WARDROBss,
G. W. Raikes, Birming
 18, London TREATMENT of STARCH, H. C. E. Wilmot, 18 350.
 L8,36i. PLintrs for Prixtino, G. Isaac, London.

$$
28 t_{u} \text { spptember, } 1894 \text {. }
$$

8, 362. Sp

3o2. Spu London. Bis. EAB

18, 363.
18, 364 .
London Lisos for Doors of Cessprts, \&c., G. Waller,

 18, O6si. Exvelops Book, E. H. Wilson.-(J. H. Hunter,
 London.
18,30 . Burtoxs for GLoves and Dressss, J. Paterson,
 72. Mingerimisino the Epreot of Shors, W. Powell, London. Buokle for Animal Harnsss, E. Roberts, port.
Thisivo Machinss for Boots, w. W. H. Dorman, Ititernal Combustion Enaines, w. J. Crossley, Rhester. Pumps, G. Marty, Manchester.
Roviny Puckive PLATE, H. F. Fuller, Dublin.
Sut Locko
 18,379, Cookisg and other Ovess, H. J. B. Holland Blackburn. 18,3si. Boor Protectors and the Uike, A. Smith

 18,38
18,38

18 | 18,3 |
| :---: |
| 18,2 |
| 18, |
| 1 |
| b |

 18, sss. Rallway Oarriook Seats, J. J. Duffy,
Dubin. WheELS for VEHioussi S. T. Richardson, A. nulwood, and R. Prrce, Birmingham. ${ }^{\text {Cum }}$. Apleby
ndon.

 18,3aifax. Disinveorisa Cistrenss, c. O. Williams and J.
Stotter, London.

ABer
18,400
18,40

 18,40
18,40
18,40

18 | 18,400 |
| :--- |
| 18,40 |
| J. |

 London.
Lond
Lon.
5,411. Dress Fastrxers, A. Turnor, London.
,412. Coar Trax, H. Ost, London.

London.
18, 17 .
Gnsholder

Birmingham. 18, 421. Drying and Atrina Clotuzs, C. Holmstrōm,
London.

TOinted State.) BLocks, A. J.

18, 440. Gas Wasmivo AppARarus, 8. Hersoy and Kirk.
ham, Hulett, and Chandler, Ld., London

 London.
18,43. Apparates for Usino Llevid Fusl, S. H. Terry,

29th Septenber, 1894.
18,45. Gas GexkRativo Plast, B. H. Thwaite,
 18,474. Exxisouvisisiso Lamps, w. Pearce and A. J. Mason, Birmingham.
18,448. Washiva Botis stoppers, F. A. Bird, Birmingham. 18,49 . Bracss ATtichuents, T. Walker and J. J. Glaggow, Birmingham.
18,40. OVoLE BRムKE ATtichanentr, A. Blackwell, Birmingham. ${ }^{451}$. Puxsxl, G. F. Fitter and J. Burley, Birming. ham. Ou Enorivss, P. P. Bedson and J. C. Hamilton, Glasgow.

 Birmingham.
8,460 . Rkrrameranons, T. Sharratt, Derby.

 chester. 18 ,

 mingham,
18,867 . Brovecs, J. Tallot, Wellington, Salop.
18,468. MAkivo Fkir Forais for Tors, T. M. Cockcroft, Leted. Manuracture of Lisolave, ac., J. Igleby, 18,470. Solss of Boors, Shors, and Slippkrs, W. L.

 18,477. Automatic Delivzry Machunss, E. P. Wieke,
 London.
$18,480$. ELectric Gasliontrks, W. N. Jaskey and E.

 London.
18,48. Boor, Shok, and Corser Laczs, D. G. Lowis,
London. Londion Apparatus for Unloadina Shirs, w. Parr,
London.

 18. Wiliks, Manchester. Iche

 Fryir Presses, E. Edwards,-(c. Heinle,

 R. FV. Wallaces China), T. Hill and A. D. Whitehead,
 London.
18,520. Manuracture of Alkaline Metalas, J. Pfleger,
London.

8,524, Son-pipzs for Watze cloants, F. Walsh,

18.531. Emprying Botroms of Bottles, H. C. Slingsby
Bradford. 18.532. And
Bradfordina Bekr Barrels, \&c., H. C. slingsby, 18533 Oarbiage for Beer Barrels, H. C. Sliogeby, 18 Brad. Cord.
Londontain PoLess, W. G. McMaster and J. Sinclair 18.535. Forinaces for Destroyina Ryyuse, J. Gill, Bradford.
18.536. Sprisoz for Weiohino Machines, W. H. Pen-
ning, Henfield. ning, Henfield.
18,537 , Lietid Drawina-ofr Apparatus, J. J. Clark 18,538. Fire Doors for Furnaces, D. B. Morison, 18533. Tox, J. W. Wood, Nottingham.
18 540. HANDLEs of Cycles, \&c., F.
mingham TUs, H. P. Miller 18,542. TElEGRAPH3, H. W. C. Cox and R. J. Crowley,
London. 18543 Liohring Pipss, G. E. Seymour and W. C.
Huaniball, Thetford. 18,54. RubBer STamp for Marking Goods, J. Howarth, 18,545. FAsteners for Belts, A. Dickson.-(R C. Dick 18,546. Raisisa Pies, E. Frost and G. Holbrook, Longport. Tire Valves, W. Bown, G. Capewell, and H.
W. D. Ingham, Birmingham. W. D. Ingham, Birmingham.
18,54s. ADDITIoNs to Tok-clips, J. Harrison, Birming.
ham. 18,549. Matriess to be Used as a Table, B. Franke
 ${ }^{\text {18, irmingham. Aviomatic Por for Cofree, dc., C. Martin, }}$ London.
18,553. PIPE Joists, F. W. Kent, London.
18,554. Box or PACKAOE for BuTTER, \&c., Lendon.
bury. Buliard Tables, H. H. Greaves and J. Salis-
burer. bury, Manchester.
18,556, SLATE Frams, D. Macdonald, London.
18,557. PARALEL RULERS, J. Thomas, London 18,557. Parallel Rulers, J. Thomas, London.
18,558. Copyno Preszs, C. J. Davison, London.
18,559. Electric Conductobs, London.
18,50. Chais-wheris, W. F. Taylor and G. J. Philpott,
London. London.
18,561. Puding Basik or Mould, J. W. Bray, jun ,
London. 18,562. Bosik Stegls and Whale-bones, J. Koehlhofer, 18,563. Metal Bedsteads, J. W. Hoyland and w. H. 18,564, GEArining Chains, C. J. Chubb and R. H. Seaton London.
London. Leners and Turnino-bolts, H. Carmont, ${ }_{18,566}$, Hoasse Collar, N. C. Lindsay and H. Stan18,557. Boxes for Preservino Butier, J. P. Boyd, 18,568. Wiren. London. 18,570. SPARK Destructors for Enaines, F. V. Hawley, London.
United PAstab Aard Boxes, P. M. Justice - (H Inman, 18,572. CAPs, M. Echneiders, London.
18,573, PRININO MAcHINEs, C. Pollard and G. Bray-
shaw, London 18,57w. Lobaiontina Devioe, A. J. Boult.-(E. Raikem, 18,575. GAA-FIRED Boilers, G. H. Taylor and C. B. 18,576. Crece Drivine, H. Osborne and J. W. Gaffney, 18,577, Making Continuoves Hais Felt, J. Newton, 18 London. Prodection of Colouring Matisrs, H. E.
Newton.- (The Farlenfabriken cormals F. Bayer and Co., Germany) Ges, w. Smith and H. Morriss,
18.59.. Drivina Gear,
London. London. Lichtenfold, London.
18581. Comb NED Thread Cutrer and Thimble, M. R.
Gray, London. Gray, London.
Reid, Opmas Glandon. 18,583 Drivina Gear for Cyoles, \&c., S. Smith,
18,584. Sand 18,5s5. Ball Bearixas, E. Frios and W. Hōpflingèr,
London.
 18,587. Pedals for Crcle 4 , C. Saigster and R. L. 18 588. New Condevsation Producrs. C. D. Abel-
(The Action Gesellachaft für Anilin Fabrikation, Germany.)
18,50. Chemical Industry Matrisrs, o. Imray.- (The Sasle, Suciterland.)
Che of Chemical Indiustry in Basle, Switzorland.)
18,590. Drvisa M iochanism for Vklocipges, F. v.
Megret, London. Megrot, London.
18,59R. Coolina and Freezina Machines, t. Hewitt,
London. London.
18,592. Extraction of Precious Metals, H. L. Sulman
and F. L. Teed, London. and F. L. Teed, London. . J. Boult.-(c. W. Baker,
18,503. STTAM BoLERs, A.
Unitel Slates.) 2nd October, 1894.
18,594. Mouthpieces of Tobacco Pifes, O. H. Smith, Loncon.
minge Basers for OIL Lamps, W. J. Charles, Birmingham.
18,596 . Power Transmittina Apparatus, G. J. Altham,
Manchester. 18.597. Guleer Traps, R. Greonwood, Manchester.
18,558, Hair CURLER, E. Hales and F. G. Hales, Bir-
mingham. mingham.
18,59. Fixivo Buckles, w. Plowman, London.
18,600. Grippiso Matr, 18,600. Gripping Materil., A. Pulbrok, London.
18,601. Golf Carrige, W. Simpson, Rdinburgh.
18,602. GREASE SEPARATING APPARATUs, W. J. Baker, Scarborough,
18,003. Constroction of OIL LAMPs, E. J. Shaw,
Walsall. 17,6aisall. Show STANDs, T. Pearson, Nottingham.
18,605. MATCH STRIKER, G. M. G. Partridge, Seaco Cheshire.
18,608. INER SoLEs of Boots and Shoes, W. Freeman,
Leicester. 18,607cester. CCEAssiso Foul Casks, O. Tilley, Leicester.
18,608. Mill FURNACE, W. Thompson, Gateshead. 18,608. Mil FUR FACE, W. Thompson, Gateshead.
18, 0.9 . VEHicLE Tres, R. Robinson and W. I. Smith,
Sheffeld. 18,610. Poostal Wrapper and Card, W. G. Thompson,
Sheffeld. 18,611. Looms, G. O. Draper, London.
18,612. LaMP3, J. W. White, Widnes.
18,612. LAMPs, J. W. White, Widnes.
18,6613. Escorcigove P. C.Jones, Guildford.
18,614. GAS Enaine Construetron, W. Olark,
Mon. Distachable Cycle Handle, H. Waterson,
18,615. Dirmingham.
Bis. 18,6i6. SAnitary Drais Trap, G. Francis and S. Rumboll, Leeds,
18,617. DoUbLE EveaLasses, R. A. Rossborough,
Glasgow. 18,.,18. Michine for Washing Gravel, W. Cooper,
Dublin. Dublin.
18,6i9. Razor Sharpening Apparatus, R. Howarth,
Wolverhampton.

18,620. Device for Opening Envelopes, P. Menzies,
Glasgow. 18,621. Expansion Drivino Clutches, H. Kitson and 18. Evan. Consice Polfers and Curtais Rinos, C. Hide,
worthing. 18.623. Bottling and Corkino Machises, E. W. Jenkins, Swansoa. Liverpool. Motion for Power Looms, T. Blackhurst, Darwen.
18,62. Claretres, S. Bright, London.
8,627 . Openina Windows, P. Burt, Gling
18,627. Openino Wispows, P. Burt, Glasgow
18 628. CYcle Bake, E. Cross, London. 18,669. Drisskrectivg APPARATVs, H. Barling and S.
Broomhead. London. 18630 Apparatus for Preppariso Fodder, A. F. Davis, London. B. Wiles, London. 18.63. Bortie STop
18,684. KNITINO MA, J. C. Grout, Liverpool. A. House, United States.) \quad 18.635. FLANoINo, so MAchine, W. P. Thompson.18,636. Fixina Lono Handles to Broosheade, G. R. Compton and C. F. Cooper, London.
18 637 . CuFr, T. G. Boulton, London.

18 637. CuFf, T. G. Boulton, London. 18.638. APPARATUS for use in BREWino, T. R. Todd,

 London.18,639. VELocipedes, G. Turner and J. M. H. Venour,
London. 18,64.. SAYETY LINEN Dryer, C. W. Spong, London.
18,641. Anerors, T. S. Forster, Sunderland. 18,64. Anchors, T. S. Forster, Sunderland.
$18,642$. Ampuntion for AIr, \&c., Guss, B. R. Banks, Croydon. Covers for Pnevmatic Tires, H. Paulsen.- (c. Maret, Germany)
18.644. SHow CARD, \&c., H. Goldenfarb, London.
18.65. BATINO NEEDLES for Wo M M , B. Blanikmeist 18,64. BAITINO NEEDLEs for Wo MMs, B. Blanikmeister
London. 18,646. Game of Billiards, N. Redler, London.
18,647. Hydratlio Thrust Bearino, T. Smalley, Essex.
18,648. Enoine Actuated by Explosion, E. M Foot,
London. London.
18,649. Pneumatic Separator for Ores, S. S. Allin,
London. London.
18,650. Hrpaulic Morors, W. Carter and the
Hydraulic Engineering Company, London. Hydraulic Engineering Company, London.
18,65. BINDNo PATKRN-CARD, V.' Dard, London.
18.652. GRAB or BCTKET for DREDOINO SAND, J. Batty, 18.652. Grab or Becket for Dredoino Bavd, J. Batty,
London.
18.65. Manufacture of Oheloths, C. Hopkinson, 18,653. Manufacture of Ohloloths, C. Hopkinson,
Lendon.
1854. Fastenina3 for Doors and Window, A. W. 18,654. FASTENiNa3 for Doors and Window, A. W.
Adams, London.
8,655. Bow SAW, G. Rushbrooke, London. 18,655. Bow SAw, G. Rushbrooke, London. London.
18,657. Heatina Apparatus, A. G. Paul and W. P.
8kifington, London. 8kiffington, London.
18,65s. Ball Brarivos, H. H. Lake -(A. C. Farns.
vorth, A. D. Kelley, H. G. Lee, and L. M. Sendelbach, United States)
18,659. Anole. measuring Inetruments, G. A. Rung, London.
18660 . Rims for Wheels of Cyoles, W. J. Goddard, London.
1861. ELzcraci Fosess, The Acme and Immisch Elec-
tric Works and E. F. Moy, London.
 Electric Works and E. F. Moy, London.
16,663 . Apparavis. for Liohtiva Buildisas, J. s. Roblin, London.
18.664. Heatrivo Systems, A. G. Paul, London.
18,665. Writiso Pens, W. Moseley and J. Lewis, London.
18,66. HANoEr for Shaptiva, J. O. Donner, London. Seamans, and Benedict, United Slates.)
18, 668 . Coverina for EARTHENWARE VESBLS, W. Gibson, Manchester.
18,669. PoTato Harvesters, J. N. Cocker, London.
18,670. Bath-ROOM SOAP-DBE, H. F. Robinson, Li,671. Disinfgeting Apparatus, V. B. Lennard, 18,07. Disinfecting Apparatus, V. B. Lendard,
Li, 672. Door Latches and Locks, J. McLachlan, 18,673. Elegtric Meceanism for Windina Clocks, H. F. Mouquin, London.
18,674. Holow Rivers, 18,674. Hollow Rivers, H. Dowler, London. 18,675. CyCLE SADDLES, H. A. Lamplugh, London
18,676. RUe Stapaps H. . . Lamplugh, London. 18,67. Apparatus for Producino Letrers on Bread,
R. . Shafer, London. London.
18,69. B Brinsa the Vapour of Mineral OiL, 8. Pitt. -(La Compapnie International pour lisxploitatio 18,6s0. WHEELS of CYcLess. A. C. Lebaupin, London.
18,6S1. Excludino Dust from Drawkrs, C. A. Grant, London.
18,68. Fowinating Compounds, H. Maxim, London.
18,683. Process of Nitratina Cesluviose, R. C. Echupp phaus London.
pitratina CelloLose, R. M. Echupp
, Mud-GVARD for Cycles, G. G. M. Hardingham,
 18,68. GER-CHAINS for Cycles, J. B. and J. B
Dunlop, jun., London. aman London.
8.688 . Automatic Bell for Cycles, London. Pedloy, Birmingham.
18.60. AUTomatic Grain Weiouers, H. Richardson, Lichfield.
18,69. Machinery for Spinnino, J. and R. S. Dawson,
Bradford. Bradford.
18, P92. Pnematic Tires, w. A. Rothwoll, Man chester.
18,693. Chimey Por, J. Fielden, Halifax.
$18,694$. Construction of Whek, W. Ives, 18,694. Construction of whel, W. Ives, Halifax.
18,695. Advertisiso Abranoemgnt, S. J. Henochsberg, Liverpool.
18,696. Issantaneous Switches, F. H. Starling,
N. 18,697. OYcless, A. King, Nottingham.
18,699. Sack-hoist for Thrabhino-machines, F. J. Burrell and T. Hibberd, jun., Thetford. 18,700. Door Sprinas, W. A. Gill and P. E. Ayton,
Birmingham.
18,70 L. Conbimation School Desks and Seats, A. Bruce, 18,70L. Combination School Desks
Dundee. MeCullagh, Dublin. STar, C. A. Moon and J. 8,703. MANTELBOARD, W. Davis, London.
W. Disers, E. P. Plenty, jun., and J. 18,705. Dredorr Rake, J. Hansard, Llanelly.
18,76. SAEEEY VALVE for Bollers, J. and Harker,
Bradford. 18,7707. Skcuring Oycle Pedals, W. H. Toussaint and W. E. Ginder, Birmingham.
18,708 MakINe ICEm DRINEs, H. W., S. M., and P.
Chinnery, Walthamstow. Chinnery, Walthamstow.
18,709. Axss, W. 8mith, Birmingham.
18,710. Now-sLIPrina Boot Protectoo,
18,710. Non-slipping Boot Protector, w. C. Pbillips, 18,711. Creatina Dravahts for Fires, R. C. Sayer Bristol.
18,712. Casks, A. J. Twyford, London. ,713. Whist Marker, O. J. Dury and W. B. March
ington, London.

18,714. Treadles for Rallway Stonals, J. G. Dixom 18,7ndon. Five-savina Compound, A. W. Summers, Bristol.
18,71. Pris Barrow, R. Malabar, Liverpool.
18,717. TAPS, S. Plumbly, Leicester.
18,718. Strakchrr, J. Lemann, London.
19,719. Propkllisa Apparatos for Ships;' T. Arm strong, London.
18,720, Pornable EAsEL, J. Ashford and H. A. Terry, Birmingham.
18,721. ORNAMENTINO 18,722. Firisa Ofy Flashing Sionals, J. G. W. Berck holtz, London. for Ladies' Dresses, F. Nusken, 18 Germany. Copino Apparatus, W. M. Williams, London. 18,725. Brcycles, J. W. Adams, Liverpool.
18,726. DRIvise GEAR for OyCles, H. A. Skinner, Manchester.
Is,727. Ditilina Sulphuric Acid, G. Krell, Liver 18728. Combino Machings, T. Kitson and A. Smith 18,729. Con.
Twicken
wicnham.
House and RUN, H. P. Boscher, 18,730. Braces, F. W. Duerdoth, London
18,73i. Covved Tubes, J. and G. H. McDougall, Bir 18 mingham. Construction of Roofs, A. Föppl, London.
18,733. DUPLEx-Yronted Picture Fhame, J. Webb, London London. Improved, Fire-orate, A. Chappell,
L, 735. Cyole Whele, W. Pirrie and M. J. Manning, London. Glasgow,
18,77. Fiyers for Spinnina Machines, J. P. Dalby 18.738. Bicycless, F. Mitton, Keighley.
18,739. "Plomb RuLzs," W.'Bryden, 8, 740. Fastenino Gabyentis N. S. Arthur, Edin 18,741. InJectors, W. Brierloy, Rochdale.
18,742. INTERNAL Combustion Enoings, W Bac, Collectors for Elzctric Conductors, A. H 18,744. Fixino Stereo Plates, dc., A. S. Coghill, 18,745. Reaction Turbings, A. C. E. Rateau, London.
$18,746$. SELF-FEEDINo DEvice for Bollers, G. Eustace, London.
8.74. CAps, M. Schneiders, London.
18,74. LAPB, M. Schneiders, London.
London. London.
18.749. ADVERTISEMENTe, S. Robson and B. Tottenham, London.
$18,750 \mathrm{Mechanism}$ for Propellina Oycless, H. O'Shea, 18,751. Suspenders, E. A. Gordon and E. G. Kerr, London.
18,752. Rail Fastenisas, T. H. Green, London.
18,753. TRANBMITINO TELEORAPH BIGNALS, J. M Mo Mahan, Londoo. TELEoraph
8,754. Transmission of Sionals, J. M. McMahar 18,754. Trinsmission of Signals, J. M. McMahar,
London.
18,755. Closino Electric Circuits, J. M. McMahan, 18.750. OLosino Electric Circuits, J. M. McMahan
London. Min6. Detachable Outer Cover for Tires, W. Moss, 18.757. IssoLATors, W. Parrott, A. Essinger, and T
 Krupp, Grusinverk, Germany.)
Is 759. Oocitilige and SEEAR УHARPENER, W. S. Free
man, London. man, London. 8,700 . Coverfor Bollers and Furnaces, A. E. Adams, 18,76L. Fastenina for Miners' Lamps, L. Lhoneux, London.
18,762. Tolier Mirbors, A. F. White, London. 18,763. Mudavard for Trousers, R. Raffety, London. 18,76. Cocks, H. L. Dculton, London.
18,75. PURTYNGG SEWAGE, W. E. Adeney and W. K.
Parry Parry, London.
18,766. Attaching Fasteners to Clothes, E. G. Fuller, London.
Lifithers, Sw. Bates, T. Harden, and O. L. Peard, London.

SELECTED AMERICAN PATENTS From the United States Patent Office Official Gazelte.
523,417 . Steam Enoing Indicator, H. A. Spiller, Claim, (1) An indicator provided with two pistons
having different areas, as set forth. (2) An indicator having airerent areas, as sot forth. (2) An indicator
provided with two pistons connecte together and
having different areas, with a cylinder having bores to

fit such pistons and connected together, and with an independent passage connected wrovided with two
as set forth. (3) An indiator prind
pistons jointed together and having different areas, pistons
as set forth.
523,486. Feed-water Fileter and Purifier and
Grease Trap, W. Rceves, London, England.-Filed March 1st, 1894 .
Caiter, the combination of a filter chamber a reservoir for receiving new charges of
filtering material, a charging door for said reservoir, 523,486

a communicating thoroughfare between said filter chamber and reservoir, and another thoroughare
independent of the fiter chamber between the
reservoir and the inlet pipe of the filter, substantially reservir and the inlet pipe of te filter, substantiany
as described for the purpose specified. (2) In a filter, the combination of a filter chamber having its influx
and efflux sides formed by strong grids covered on the entlux sides formed by strong grids covered on
that side which faces the flow of the liquid with gauze that side which faces the flow of the liquid with gauze
or the like of fine mesh and filled with absorbent
filtering material, a reservoir for receiving new
charges of filtering material, a charging door for said reservoir, a communicating thoroughfare between sasd filter chamber and reser voir, another thoroughfare
independent of the filter chamber betwe the Independent of the filter chamber between the
reservoir and the inlet pipe of the filter, a chamber reservoir and the inlet pipe of the filter, a chamber
containing a layer of zinc balls situated kelow said
filter chamber, a by-pass communicating with the filter chamber, a by-pass communicating with the
inlet and outlet pippes of the filter, and a filter
chamber in said by-pass, substanifilly as described chamber in said by-pass, su
and for the purpose specified.
523,633. Device yon Insertino or Renoviso Tubes
in Ordnance, M. Gledhill, Manchester, England. -
 Clain, -(1) The combination, with a built-up gun, screwed on the breech end of the outer tube or hoop of the gun, a piston c working in said cyliuder, a secket
esecured to the said piston and to the breech end of the liner, and a withdrawing rod g engaging the piston cat its rear end and the liner at its forwarc
stantially as described (2) The coll built-up gun, of a hydraulic apparatus comprising a

two-chambered cylinder b screwed on the breceh end ing in one of said chambers, a socket c for coupling
sad piston c with the rear end of the liner a, a piston sad piston c with the rear end of the liner a, a piston extending through the bore of the gun, said rod having a head g^{\prime} at its forward end engaging the muzzle end of the liner and a liner g^{2} at its rear end for connect-
ing the rod with the piston c^{2}, substantially as de-
scribed for the purpose specified 523,969. Balanckd Valve, J. A Bourgeat, Nen York,
N.Y.- Filed October 29th, 1890 . Claim. - (1) The combination with the admission valve, valve chest, working cylinder. and main steam
pipe and its throttle valve, of two iodependently
valve.controlled pipes connecte to valve-controlled pipes connected to the main steam
pipe, one on each side of the thrott'e valve and communicating through a reducing valve with the interior of the valve chest, substantially as and for the purposes
hereinbefore set forth. (2) In an engine operating by hereinbefore set forth. (2) In an engine operating by
fuid pressure, the combination of a working cylinder,

an admission valve, a pressure chest surrounding and
covering the admission valve, a throttle valve, two pipes, one on each side of the throttle valve and con
nected to the main nectod to the main pressure inlet pipe, in each of
which pipes is socated a hand valve, said pipos being
joined together beyond said valves, and a reducing joined together beyond said valves, and a reducing
valve, through which the pipe oining the two pipes
before mentioned passes into the pressure chest, sub. before mentioned passes
stantially as described.
524,044. Electric Pump, F. W. Merritt and A. K.
Ro, Duluth, Minn. - Filed November 6 th 1893 . Clain, -The combination of a pump cylinder provided with a reciprocatiog piston, a bar armature
attached directly to the piston-rod and provided in
the direction oo its longth with a number of coils, a
commutator carried by said armature and consisting

of a series of insulated contact plates arranged parallel with the axis of the armature and connected with
corresponding coils thereof, a series of field mngnets of alternately opposite polarity arranged parallel with
the movement ot the armature, and a switch arranged to reverse the current through the field or armature
coils at the end of each stroke of the armature, sub stantially as and for the purposes set forth.

[^0]: . "Proceodings," Institution of Civil Engineers,
 vol. $\mathbf{c x v}$, 1893-94.

