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Investigations of Mars as a potential location for life often make the assumption that where ���

there are habitats, they will contain organisms. However, the observation of the ubiquitous ���

distribution of life in habitable environments on the Earth does not imply the presence of life ���

in Martian habitats. Although uninhabited habitats are extremely rare on the Earth, a lack of a �	�

productive photosynthetic biosphere on Mars to generate organic carbon and oxygen, thus �
�

providing a rapidly available redox couple for energy acquisition for life and/or a lack of ���

connectivity between potential habitats potentially increases the scope and abundance of ���

uninhabited habitats for much of the geological history of the planet. Uninhabited habitats ���

could have existed on Mars from the Noachian to the present-day in impact hydrothermal ���

systems, megaflood systems, lacustrine environments, transient melted permafrost, gullies ���

and local regions of volcanic activity; and there may be evidence for them in Martian ���

meteorites. Uninhabited habitats would provide control habitats to investigate the role of ���

biology in planetary-scale geochemical processes on the Earth and they would provide new ���

constraints on the habitability of Mars. Future robotic craft and samples returned from Mars �	�

will be able to directly determine if uninhabited habitats exist or existed on Mars.  �
�
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1. Introduction ���

All environments in the Universe can be placed into one of three categories, which can be ���

represented as a habitability ‘triad’ (Figure 1). An environment can be uninhabitable, either ���

because of a physical (e.g. extreme temperature) or chemical (e.g. high concentrations of ���

heavy metals) limitation, or the lack of a vital element required for life (e.g. nitrogen). ���

Uninhabitable environments are often easy to identify and include obvious candidates such as ���

the core of the Earth, the interior of the Sun and other similarly extreme locations. An ���

environment can be habitable and inhabited. Many inhabited habitats can be located and ���

observed on the surface and in the subsurface of the present-day Earth. Evidence for past �	�

inhabited habitats can be found in the rock record. The exact physical and chemical extremes �
�

that separate habitable from uninhabitable conditions are often undefined and subject to ���

revision based on new discoveries in biology. ���

 A third type of environment is one that is habitable, but uninhabited (Figure 1). Some ���

clarification on nomenclature is required to describe these places. They are distinct from ���

vacant ‘niches’ (Lawton, 1982; Chase and Leibold, 2003; Rohde, 2005; Lekevi�ius, 2009). A ���

niche is a functional definition of a specific set of energy and nutrient availabilities that could ���

be used by life. In a vacant niche they are unused. If a habitat has no life in it, it contains, by ���

definition, vacant niche(s).  ���

An uninhabited habitat could be described as a ‘vacant habitat’. Previously in the �	�

literature this term has been used to mean a habitat vacant of one particular species, but �
�

inhabited by other types of life (Thomas et al., 1992; Osborne et al., 2001). The habitats ���

discussed in this paper and previously (Cockell, 2011) are vacant habitats, but they are a ���

specific type of vacant habitat – a habitat devoid of any life at all.   ���

The term ‘uninhabited habitat’ more convincingly conveys a habitat that is not ���

inhabited (i.e. being actively used as a habitat) by any life. There are instances in the ���
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literature in which it has been used synonymously with ‘vacant habitat’ to mean a habitat ���

uninhabited by a specific species (Ohba et al., 1990; Bosakowski and Smith, 1997), but we ���

would like to propose here that it is adopted to mean a habitat without any life.  ���

The term, ‘lifeless habitat’, has been used to describe habitats in environments such as �	�

newly created lava flows (e.g. Gudmundsson, 1970). However, this term is problematic �
�

because uninhabited habitats on an inhabited planet could contain inactive life for which 	��

conditions are inappropriate for growth, for example the spores of an organism entrained 	��

from an inhabited region. Thus, an uninhabited habitat need not be lifeless. Similar problems 	��

are encountered with the term ‘sterile habitat’. 	��

The assessment of the extent of uninhabited habitats is conservative and bounded by 	��

what we know about life. Environments classified as uninhabitable, for instance, might be 	��

suitable for life with biochemistries that are yet to evolve; therefore these environments only 	��

appear uninhabitable. Thus, the set of uninhabited habitats that are catalogued is a minimum 	��

set. A potential example of a habitat that was empty of life on account of biochemical 		�

limitations might have been areas of the Earth’s early land masses before microorganisms 	
�

developed an ability to tolerate the extremes to be found there, such as desiccation 
��

(Battistuzzi and Hedges, 2009). However, in some cases, environments can be confidently 
��

said to be uninhabitable, regardless of potential biochemical adaptations. An example would 
��

be the centre of the Earth. 
��

 Any of the three types of planetary environment – uninhabitable, habitable and 
��

inhabited, and habitable but uninhabited – can be transient and they are can be 
��

interchangeable if environmental conditions alter in a particular location (certain 
��

uninhabitable environments such as the hot interior of some planets remain uninhabitable for 
��

the lifetime of a planet). For example, uninhabited habitats can become uninhabitable through 
	�

deterioration in conditions that drive the habitat outside of habitable conditions. Uninhabited 

�
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habitats can become inhabited by the influx of microorganismsm through the atmosphere or ����

in water, capable of growing in the habitat (Figure 1). ����

Discussions on uninhabited habitats are absent from the ecological or planetary ����

science literature probably because these environments are rare on the Earth, and where they ����

do occur, they are usually transitory (Cockell, 2011). Two factors account for this. Firstly, in ����

almost all habitats on the Earth that are connected to the photosynthetic biosphere on the ����

surface, and where physical and chemical conditions are conducive to microbial growth, there ����

are microorganisms. Carbon produced by photosynthesis, of which approximately 1 x 1016 ����

moles is synthesised per year (Field et al., 1998; Raven, 2009), leaches into available habitat ��	�

space and provides energy for microorganisms that use organics as an electron donor for ��
�

growth, or they ferment. Aerobic organisms use oxygen as an electron acceptor, which is also ����

produced as a waste product of photosynthesis. Thus, the pervasive availability of energy on ����

the Earth leads to the observation that most habitable spaces are colonized (Whitman et al., ����

1998). Secondly, habitats on the Earth generally display connectivity, both through the ����

widespread presence of liquid water, and thus a hydrological cycle which distributes carbon ����

and microorganisms to newly formed habitats, and the distribution of carbon and ����

microorganisms though the atmosphere. ����

In this paper, we discuss the significance of uninhabited habitats on Mars, and their ����

implications for the search for life. ��	�

 ��
�

2. The Significance of Uninhabited Habitats  ����

If uninhabited habitats are discovered or suggested by robotic craft, what would be their ����

significance to science?  Terrestrial biological sciences would learn a substantial amount. For ����

example, geochemical processes on the Earth have been linked to life since the early Archean ����

when sulphur, carbon and iron cycles on the Earth, and other elements, were influenced by ����
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microorganisms (Canfield et al., 2006; Sleep and Bird, 2007; Lyons and Gill, 2010). ����

However, we lack a set of abiotic controls with which to develop an insight into the influence ����

and magnitude of these biological contributions. Abiotic and biological influences can ����

sometimes be separated, for example, by investigating fractionation patterns of certain ��	�

elements (Horita, 2005; Thomazo et al., 2009; Craddock and Dauphas, 2011), but, in the case ��
�

of iron, for example (Balci et al., 2006), these are not always effective at resolving the ����

biological contribution. ����

Uninhabited habitats in which geochemical processes occur without biota, but in ����

which the conditions approximate to environments in past or present terrestrial habitats, ����

would offer a new set of controlled comparisons. An example might be the weathering ����

interactions of water with rocks. Weathering rates on Mars have been investigated (e.g. ����

Hausrath et al., 2008). The application of these methods to the study of weathering in ����

uninhabited habitats could provide a better understanding of the rate of chemical reactions at ����

rock-water interfaces without the confounding effects of biology. These insights are vital for ��	�

improving understanding of the role of abiotic and biotic weathering in the carbonate-silicate ��
�

cycle on the Earth and more generally in global elemental cycles. Yet another example would ����

be ancient habitable hydrothermal systems on Mars where the study of mineral sequences and ����

deposition could be compared to identical systems in volcanic or impact environments on ����

present-day Earth that contain life, to unravel more completely the effects of biology on ����

hydrothermal mineral deposition and chemistry, thus improving our understanding of the role ����

of biota in extreme environment biogeochemistry.   ����

From an astrobiological perspective, the search for uninhabited habitats on Mars is an ����

essential task in understanding what controls the distribution of life in the Universe and what ����

conditions limit its distribution. For example, based on the empirical observation that all life ��	�

on Earth is linked to the presence of liquid water, it is widely assumed that where there is ��
�
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liquid water, there is life.  Although water is a necessary requirement for life, the presence of ����

water in habitable conditions does not imply the presence of life. The assumption that it does ����

is embedded within the wider assumption that where there are habitats there will be life, an ����

inductive inference based on empirical observation that this is the case for most environments ����

on the Earth. ����

Both of these generalizations are driving the search for life beyond Earth, especially ����

in the case of Mars (Irion, 2002; Hubbard et al., 2002; Mottl et al., 2007; Jones and ����

Lineweaver, 2010). However, there are several plausible scenarios by which uninhabited ����

habitats might exist on Mars, and they need to be considered as likely outcomes of our ��	�

exploration of the planet. These scenarios are derived from the categorisation in Cockell ��
�

(2011), ignoring the one that is not relevant to the search for life (a planet that is too young ����

for an origin of life, but where habitable environments exist), and are explored in detail ����

below. Finding uninhabited habitats on Mars would not be considered a negative result or a ����

strategic failure. On the contrary, such a finding would have profound relevance to our ����

understanding of life in the Universe.  ����

Finally, the discovery of extant uninhabited habitats on Mars would have implications ����

for planetary protection. The discovery of abundant uninhabited habitats on Mars would ����

suggest either that Mars is lifeless, or if it is inhabited, then there is a lack of connectivity ����

between available habitats. These conclusions might suggest that planetary protection ��	�

requirements could be dramatically relaxed. However, the introduction of life into an extant ��
�

uninhabited habitat by an unsterilized spacecraft would represent a type of destructive ����

sampling since future searches for life would need to avoid previously studied, but now ����

contaminated, uninhabited habitats. ����

By contrast, since an extant uninhabited habitat might achieve connectivity with ����

inhabited regions with an unknown probability, from a position of prudence they might be ����
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included within Mars ‘Special Regions’ (Kminek et al., 2010). Steps might be taken to ����

prevent their contamination to avoid losing the scientific value that these habitats can provide ����

and to reduce the probability of contaminating inhabited regions should a connection between ����

the uninhabited habitat and potentially inhabited habitats occur. ��	�

 ��
�

3. Uninhabited Habitats in the Solar System �	��

Uninhabited habitats are extremely rare on the Earth, but a few examples must be noted. One �	��

way to obtain an uninhabited habitat on the Earth is for an inhabited environment to be �	��

separated from the surface photosynthetic biosphere, sterilized and then for it to remain �	��

disconnected from the surface. One location where they can occur is the deep subsurface. �	��

There is some evidence for such habitats. An example is oils that have been sterilized in the �	��

deep subsurface and then cooled, for example in the Peace River and Athabasca tar sands in �	��

Alberta, Canada (Wilhelms et al., 2001; Adams et al., 2006; Larter et al., 2006), or deep-�	��

subsurface materials sterilized by an asteroid or comet impact and subsequently cooled �		�

(Cockell et al., 2009). �	
�

Uninhabited habitats on the Earth can potentially exist transiently where a geological �
��

disturbance occurs, producing a new, sterile substrate. A molten volcanic lava flow will �
��

eventually cool to below the upper temperature limit for life. There is likely to be a period �
��

between the instant at which the temperature drops below this limit and the instant at which �
��

the first microorganism land on the rock (Brock, 1973; Weber and King, 2010) and begins to �
��

be metabolically active. During this brief period the environment will be an uninhabited �
��

habitat and constitutes the very first stage of ecological primary succession. In most situations �
��

this period will be short because of the presence of airborne or waterborne microorganisms, �
��

which are delivered rapidly onto the surface of such substrates. However, the interior of the �
	�
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substrate, for example the inside of newly formed, but vesicular volcanic rocks, may well �

�

remain uninhabited for longer than the surface environment. ����

Newly arrived meteorites on the surface of the Earth, in the period between their fall ����

and their contamination by a terrestrial biota, are also transient uninhabited habitats. ����

Although uninhabited habitats are rare on the Earth, they may be more common on ����

other planetary bodies. Subsurface oceans of icy moons such as Europa (Marion et al., 2003; ����

Hand et al., 2007) and Enceladus (Parkinson et al., 2008; McKay et al., 2008) are examples ����

of candidate uninhabited habitats, although we do not know enough about the ����

physicochemical conditions within their putative oceans and/or subsurface water bodies to ����

know if they are habitable – or in fact, inhabited. In the coming decades, the study of ��	�

extrasolar planets (Léger et al., 1993; Wolstencroft and Raven, 2002; Segura et al., 2005; ��
�

Turnbull, 2008; Kaltenegger and Selsis, 2009) may provide potential candidate habitable, but ����

uninhabited planets.  ����

Of all planetary bodies in the Solar System, Mars shares the most similarities with ����

Earth, particularly as we retreat back in time, when conditions on the surface of the planet ����

allowed for the existence of lakes, rivers and other aqueous environments. This, combined ����

with a long-lasting active volcanism, and an intense impact history, increases the possibility ����

of habitat development on Mars, compatible with life.  ����

 ����

4. Uninhabited Habitats on Mars ��	�

Uninhabited habitats on Mars, and uninhabited habitats generally, can be split into two ��
�

categories: 1) A Mars devoid of life, but which has available habitats; and 2) A Mars with ����

life, but that possesses localised uninhabited habitats. At the time of writing we do not know ����

if Mars is inhabited, so the planet could fall into either one of these categories. In each ����

category the uninhabited habitats themselves are qualitatively similar (i.e. locations in which ����
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life could exist, but does not), the distinction is in the reasons for the existence of the ����

uninhabited habitats. In the first category, uninhabited habitats exist because there is no life at ����

all to take advantage of them; in the second category habitats are uninhabited because the life ����

on the planet is unable to access them. ����

We have numbered each scenario which might lead to uninhabited habitats (Figure 2) ��	�

and discuss each of them below. ��
�

 ����

4.1. Uninhabited Habitats on an Uninhabited Mars ����

There are four possible scenarios that could lead to the presence of uninhabited habitats on an ����

uninhabited Mars: ����

1. The origin of life is rare. Mars might have possessed habitable conditions for life, but life ����

never originated to take advantage of the conditions available because the origin of life is an ����

unusual event with a low statistical probability of occurring (Lal, 2008, Chela-Flores, 2007). ����

We do not know enough about the origin of life to assess this possibility quantitatively with ����

origin of life experiments (Cairns-Smith, 1982; Russell and Arendt, 2005; Brack, 2007; ��	�

Raulin, 2007). This scenario would be difficult to demonstrate until all of Mars had been ��
�

comprehensively explored for the presence of life, past and present. For example, habitable ����

conditions in ancient Noachian terrains that were exposed to water, but possess no evidence ����

of past life, could have been permanently separated from inhabited regions in the deep ����

subsurface. To demonstrate the scenario of a lifeless planet hosting uninhabited habitats ����

would require definitive demonstration that there is no life anywhere on Mars. ����

 This scenario assumes that life is not transferred into Martian uninhabited habitats ����

from Earth (Clark, 2001; Horneck et al., 2001a; Stöffler et al., 2007; Cockell, 2008). All the ����

scenarios for the presence of uninhabited habitats on an uninhabited Mars must assume that ����

the uninhabited habitats remain biogeographically isolated from the Earth.  ��	�
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The transfer of life from one planet to another in rocks (lithopanspermia) ejected by ��
�

asteroid and comet impacts has not been demonstrated. However, the survival of ����

microorganisms in impact shock experiments (Horneck et al., 2001b; Burchell et al., 2001, ����

2004), their longevity in space (Horneck et al., 1994) and low temperatures within meteorites ����

that have landed on the Earth, suggesting internal rock environments allowing organisms to ����

survive atmospheric transit (Fajardo-Cavaros et al., 2005) might suggest a plausible transfer ����

mechanism for life from Earth to Mars. Certainly rocks have been transferred between the ����

two planets (Gladman et al., 1996; Mileikowsky et al., 2000). Even if the transfer of life from ����

Earth to Mars occurred, local habitats might remain uninhabited even under a scenario of ����

active lithopanspermia. To assess this possibility would require more insight into whether ��	�

lithopanspermia between Earth and Mars has occurred and if it has, what the spatial ��
�

distribution of terrestrial organisms would be on the surface and subsurface of Mars from this ����

process. ����

2. The conditions for the origin of life did not exist. The origin of life might require some ����

prebiotic reactions to occur in very different conditions than those suitable for life, for ����

example in the interior of deep ocean hydrothermal vents, well above the upper temperature ����

limit for life (Holm, 1992; Huber and Wächterhäuser, 1997; Rushdi and Simoneit, 2001). If ����

such environments did not exist on Mars, then we could imagine that conditions could be ����

suitable for life, but local environments were never satisfactory for life to originate. On Mars, ����

acidic groundwater conditions during the Noachian (Squyres and Knoll, 2005) might have ��	�

precluded the origin of life, allowing for uninhabited habitats. This scenario also assumes that ��
�

life is not transferred into uninhabited habitats from Earth, similarly to the previous scenario. ����

3. The conditions for the origin of life existed, but they were too transient. A planet with ����

fluctuating environmental extremes might possess transient conditions suitable for the origin ����

of life and its propagation, but their duration is too short to allow for the emergence of life. ����
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On Mars, if early conditions were broadly hostile to an origin of life, acceptable conditions ����

for the origin of life may have come and gone without an origin of life occurring. We know ����

too little about the environments in which an origin of life can occur to know whether ����

uninhabited habitats might have existed on account of this scenario. This scenario again ����

assumes that life is not transferred into uninhabited habitats from Earth. ��	�

4. Life originated, but a cataclysm wiped out life and it never became re-established despite ��
�

the planet subsequently being favourable for life. An early Martian cataclysm is predicted �	��

from models (Gomes et al., 2005) and age determinations of meteorites and lunar rocks �	��

(Cohen et al., 2000). The latest model of planetary orbital movements, asteroid population �	��

and asteroid trajectory changes inferred from the planetary movements predicts that on Earth �	��

15±4 basin-sized and 30±5 Chicxulub-sized impact structures were formed within about 400 �	��

My during Late Heavy Bombardment in the Earth’s Archean (Bottke et al., 2011). Likewise, �	��

Noachian Mars would have been hit - to the extent that it might have been driven out of an �	��

originally circular orbit (Bottke et al., 2011). If existing life had been terminated by the Late �	��

Heavy Bombardment, leaving the entirety of Mars sterile, this would also require that life did �		�

not originate again (which could result from the scenarios described in 1 to 3 above) and that �	
�

there was no re-establishment of life from surviving organisms in space (Wells et al., 2003; �
��

Gladman et al., 2005). As for the Earth, it might be that even very heavy bombardments �
��

would leave deep-subsurface refugia where life could have persisted (Sleep and Zahnle, �
��

1998; Abramov and Mojzsis, 2009).  �
��

 �
��

4.2. Uninhabited Habitats on an Inhabited Mars �
��

Uninhabited habitats could exist on an inhabited Mars. There are four circumstances which �
��

would lead to these environments. In the first three of these scenarios, the longevity of an �
��

uninhabited habitat on present-day Mars would be expected to be much greater than on the �
	�
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present-day Earth because: 1) there is no large scale photosynthetic biosphere to generate �

�

carbon and oxygen distributed on a planetary scale to fuel organisms in newly formed habitat ����

space, and 2) there is not the same extent of connectivity between environments, either ����

through the hydrological cycle, or through the much more biologically detrimental ����

atmosphere. On early Mars, liquid water was more prevalent, which might have improved ����

hydrological connectivity between environments. ����

1. Inhabited habitats become sterilised and cut off from other inhabited regions, rendering ����

them uninhabited. Subsurface examples of this category exist on the present-day Earth, as ����

discussed earlier. On Mars, asteroid and comet impacts could create sterilized near-surface ����

conditions that remain disconnected from biota on the planet. ��	�

2. Habitable environments become available, but they are too transient to be colonized. An ��
�

example could be Martian periglacial terrains in which near-surface ice melted as a result of ����

climate fluctuations (e.g., Balme and Gallagher 2009). Other permafrost regions that do not ����

undergo cyclical thaw could also be subject to occasional melting, for example in small ����

asteroid and comet impacts, which could provide a short-lived liquid water habitat that might ����

be too short-lived for colonization to occur. For example, a hypothetical scenario (Figure 3) is ����

a subsurface Mars where a biota lives within deep fractures and aquifers. However, a lack of ����

connection with the surface environment; the hostile, desiccating environmental conditions, ����

which prevent atmospheric transport of organisms, and the lack of liquid water movement on ����

the surface connecting the newly-formed habitat to inhabited regions, could render a new ��	�

liquid water habitat uninhabited for its duration of its existence.  ��
�

3. New sterile materials are formed by geological processes such as asteroid and comet ����

impacts and volcanic eruptions. These environments are different from those in (2) in which ����

the habitat is transient. In this scenario the habitat is long-lived. These materials experience a ����

period when they are habitable, but uninhabited. Examples on the Earth include new lava ����
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flows. Although the period of being uninhabited is usually short on the Earth because of the ����

connectivity of new habitats with inhabited habitats through the atmospheric and waterborne ����

transport of microorganisms, the period of being uninhabited on Mars could be very large and ����

may be equal to the lifetime of the habitat itself.  ����

4. Habitats are available, but the biochemical systems required to deal with the physical or ��	�

chemical characteristics within them have not yet evolved. On Mars, a speculative scenario ��
�

that would fit this category would be a surface hydrothermal system which was uninhabitable ����

to organisms from a deep subsurface biosphere that were unadapted to high UV and ionizing ����

radiation, periodic desiccation on the Martian surface etc. ����

 ����

5. The SNC (Martian) meteorites – Evidence for Uninhabited Habitats? ����

Empirical evidence for uninhabited habitats might be sought in Martian meteorites collected ����

on the Earth. Of these, there are eight meteorites grouped as the nakhlites, and these are ����

olivine-clinopyroxene cumulates which formed at ~10-100 m depth from the Mars ground ����

surface, in a thick lava flow or intrusion (e.g. Bridges and Warren, 2006; Treiman, 2005; ��	�

Lentz et al., 1999).  The nakhlites have secondary alteration products (Bridges et al., 2001) ��
�

that suggest their alteration in a neutral hydrothermal system with temperatures less than 150 ����

°C.  Iron carbonate, iron phyllosilicate (smectite and serpentine) and an amorphous silicate ����

gel are present in veins and within the mesostasis of the nakhlites (Bridges et al. 2001; ����

Changela and Bridges, 2010).  Ten percent of the olivine in the Lafayette nakhlite – assumed ����

to be the sample nearest the fluid source at the base of the nakhlite pile – is composed of ����

fracture-filled secondary veins, with an average width of 15 µm.  K-Ar dating (Swindle et al., ����

2000) suggest that this alteration occurred �670 Ma ago and so at a relatively recent time in ����

Mars’ history.   ����
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Different nakhlites allow for a model of a putative, short-lived, rapidly cooled, ��	�

hydrothermal system to be developed (Changela and Bridges, 2010).  The rapid cooling as ��
�

evidenced by the metastable and sometimes amorphous assemblages, suggest rapid heating ����

and cooling in a short-lived event, probably associated with impact melting of buried ice.  ����

This fluid percolated upwards through the nakhlite pile, with limited compositional ����

fractionation e.g. Mg/Mg+Fe ratio of the silicate gel, and was terminated by evaporation of ����

soluble salts.   ����

The presence of liquid water in circulation with ultramafic rocks is potential evidence ����

for a habitat. Some workers have reported martian organics within the Nakhla meteorites and ����

hypothesised that they are the remnants of Martian biology (Gibson et al., 2006; McKay et ����

al., 2011). If this hypothesis is eventually accepted, then the hydrothermal system was ��	�

inhabited. The null hypothesis is that the nakhlite secondary minerals are candidates as ��
�

uninhabited habitats. ����

ALH84001 is a cumulate orthopyroxenite which crystallised 4.5 Ga and is thus a ����

fragment of the Noachian crust (Nyquist et al., 2001).  It contains ~1 vol% Ca-Mg carbonate ����

rosettes which are up to 250 µm size (Mittlefehldt, 1994).  These have been dated at ~4 Ga ����

(Turner et al., 1997; Corrigan and Harvey, 2004).  The majority of the research into this ����

carbonate has concluded that the rosettes formed at low temperature e.g. <100 oC (e.g. Van ����

Berk et al., 2011).  The near neutral fluid resulted from isochemical alteration of the ����

surrounding orthopyroxenite and cooled rapidly e.g. within months to produce metastable ����

carbonate assemblages (Bridges et al. 2001).  These carbonates have famously and ��	�

provocatively been attributed to the discussion of martian biological activity (McKay et al., ��
�

1996).  The key evidence was morphological e.g. bacteria-like shapes observed on mineral ����

surfaces and the morphology of magnetite grains on the carbonate rosette rims.  The biogenic ����

interpretation has been challenged.  For instance, the magnetite rims have been attributed to ����
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shock-induced alteration of the carbonate (Brearley, 1998; Bradley et al., 1998).  Thus a ����

‘null’ hypothesis for the ALH84001 carbonates is that they represent the mineral constituents ����

of an uninhabited habitat.   ����

 ����

6. Testing the Hypothesis ‘where there are habitats, there is life’ on Mars ����

The association of life with available habitats can be turned into a generalised hypothesis: ��	�

‘where there are habitats, there is life’, which is falsifiable by demonstrating the presence of ��
�

an uninhabited habitat in the location under study. The hypothesis is experimentally testable �	��

on Mars by using robotic craft or human explorers in situ to investigate the chemistry/organic �	��

chemistry of selected environments that are thought to be, or could have been, conducive to �	��

life, or by examining the interior of rocks and other materials returned to the Earth in Mars �	��

Sample Return (MSR). A demonstration of the presence of an uninhabited habitat would be �	��

to identify an environment with two characteristics: 1) By all available criteria, the �	��

environment is or was habitable: i.e. it contains or contained liquid water, a plausible energy �	��

source, nutrients, appropriate physicochemical conditions, 2) There are no associated �	��

organics or organic signatures that suggest the presence of a biota to take advantage of the �		�

habitat during the period it is proposed to be an uninhabited habitat. An uninhabited habitat �	
�

could contain meteoritic-derived organic carbon (Sephton, 2002), but it should not contain �
��

organics associated with metabolically active life. �
��

An uninhabited habitat could contain signatures of inactive life (for example dormant �
��

cells unable to grow in the environment that have been entrained from an inhabited location �
��

somewhere else). On Mars, the distinction between a habitat containing active life (an �
��

inhabited habitat) and an uninhabited habitat containing inactive life would be moot in the �
��

early stages of exploration, since either case would constitute the discovery of life. However, �
��

the distinction would be important in attempting to identify other locations on Mars where �
��
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life might be found or where it can propagate. There are obviously technical microbiological �
	�

complications in separating an inhabited habitat from an uninhabited habitat containing �

�

inactive life that turn on the ability to show that the organisms are active. ����

The interpretation of data must be approached with caution because experimental ����

measurements might misinterpret an uninhabited habitat for a place that is actually ����

uninhabitable.  Three potential misinterpretations could occur:  ����

1) An element essential for life might be missing. However, we know enough about ����

the required elements for life (i.e. C,H, N,O, P, S) and life’s requirement for water to make ����

reasonable assessments of the habitability of different environments that are examined ����

(Stoker et al., 2010). If these habitats are in contact with volcanic rocks, then other elements ����

(Mg, Ca, Na, K, P, S, Ni, Zn, etc) are likely to be available to life. The suite of elements in an ��	�

environment can be determined quite comprehensively by such methods as X-Ray ��
�

Fluorescence, X-Ray Diffraction, Raman and LIBS (Laser-Induced Breakdown ����

Spectroscopy). ����

2) There are elements or compounds present which are detrimental to life, but which ����

remain undetected. Although entirely novel toxic compounds that remain undetected cannot ����

be ruled out, the discovery of perchlorate (Hecht et al., 2009) shows how modern chemical ����

analytical approaches can successfully characterise Martian environments, even with respect ����

to unexpected chemicals. Nevertheless, new laboratory experiments to study the effects of the ����

environment on life might be required in the light of physico-chemical measurements ����

revealing the presence of unexpected chemicals. ��	�

 3) Toxic compounds might have existed in past environments but are now no longer ��
�

present. It is difficult to rule out this possibility, but the characterisation of the geochemistry ����

of a given Martian environment in the context of surrounding environments can provide a ����

comprehensive understanding of its past chemical composition. ����
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Other factors that influence habitability can also be assessed by robotic craft or ����

sample return. For instance, fractures and pore spaces within rocks are likely to provide ����

sheltered microenvironments where water availability might be improved or temperatures ����

ameliorated compared to macroclimatic conditions. These can be quantified using ����

microscopic imagers that allow for a more complete assessment of a microenvironment as a ����

habitable space. Radiation instruments can be used to quantify the radiation in situ impinging ��	�

on an environment and theoretical models can then be executed to calculate the radiation ��
�

environment within a given putative habitat space. Known microbial tolerances to these ����

inferred radiation regimens can then be used to assess whether the microenvironment is ����

habitable. Thus, spacecraft observations coupled to modelling and microbiological data can ����

be employed to assess whether an environment is an uninhabited habitat. ����

The determination of whether the environment supported life can be approached by a ����

search for organics or remains of life using a wide variety of analytical methods such as GC-����

MS, fluorescence, or lab-on-a-chip approaches.   ����

The detection of uninhabited habitats would greatly constrain conclusions about the ����

presence of life on past or present Mars. Today, the surface of Mars is cold, dry, and exposed ��	�

to sterilising doses of UV and ionising radiation. For that reason it is assumed to be ��
�

uninhabitable. This supposition still needs to be demonstrated on a planetary scale, and so far ����

it is only supported by results from the Viking landers, which searched for metabolically ����

active life in soils, but failed to find conclusive evidence for it. From a programmatic and ����

budgetary perspective, it would not be practical to search all the surface of Mars for life. ����

Uninhabited habitats might play a significant role in resolving this limitation. If carefully ����

selected environments on the surface or the subsurface of Mars (i.e. environments likely to ����

have been habitable in the recent past) are found to be uninhabited, then we might more ����

confidently conclude that life is absent on present-day Mars, without having to explore the ����
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whole planet. Similarly, if environments thought to have been habitable early in the history of ��	�

the planet do not contain any traces of past biological activity, we might more confidently ��
�

conclude that the surface of Mars has not been inhabited for most of its history. In both of ����

these cases, though, the hypothetical scenario in which life is present in some locations, but ����

biochemical adaptations have not evolved to allow it to colonize places considered to be ����

habitable from a terrestrial perspective, would have to be considered as a possible ����

explanation.  ����

 ����

7. Candidate Uninhabited Habitats ����

Uninhabited habitats could have existed at any time during Mars’ history. They include ����

potentially habitable environments in the water-rich past of Mars (Noachian lakes, impact ��	�

crater hydrothermal systems, river systems etc.) and present-day or recent environments ��
�

containing liquid water. Here we describe some examples of potential uninhabited habitats: ����

 ����

7.1 Recent or Present-Day Uninhabited Habitats ����

Habitats in the frozen polar regions.  ����

Very young uninhabited habitats could have been created as a result of the ~100 ka cyclical ����

variations in Mars’ obliquity (Laskar et al. 2004). Jakosky et al. (2003) examined the ����

conditions required to melt Martian polar ice in the past and concluded that during periods of ����

higher obliquity (>40°), average temperatures could have risen above -20 °C, creating ����

conditions for the melting of Martian polar ices, producing habitable environments. Such ��	�

obliquity conditions have occurred within the last few million years (Laskar et al. 2004). Any ��
�

liquid-water containing habitable environments produced by past obliquity changes are ����

potential uninhabited habitats. Melting of ice under different obliquity conditions has been ����

associated with many recent martian landforms in both polar and non-polar regions, including ����
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periglacial terrains (Balme and Gallagher 2009, Gallagher et al. 2011), fluvial-like gullies ����

(Costard et al. 2002) and thermokarst-like depressions (Soare et al. 2008). ����

 Stoker et al. (2010) provide a detailed habitability assessment for the Phoenix landing ����

site in the Martian northern polar region and conclude that it has the highest habitability ����

probability of any of the Martian landing sites so far examined. Nutrient sources, including C, ����

H, N, O, P and S compounds were identified. Energy sources could be sunlight or chemical ��	�

energy. The presence of perchlorate suggests the potential for lowered freezing point ��
�

solutions, although conductivity measurements did not record liquid water and perchlorate �	��

may be detrimental to life. However, periods of high obliquity might allow for transient �	��

liquid water to form (Zent, 2008; Stoker et al., 2010), generating short-lived uninhabited �	��

habitats.  �	��

 Mars analogue environments on Earth provide clues to possible recent habitats on �	��

Mars. For example, in terrestrial polar glacial systems, debris-rich ice layers are common �	��

even where basal ice temperatures are as low as -17 oC (Cuffey et al., 2000; Samyn et al., �	��

2005). The basal ice layers are characterized by alternating layers of debris-poor and debris-�	��

rich ice, similar to the North Polar Basal Unit (BU) on Mars. The increased surface area of �		�

fine-grained material in the basal ice debris is effective in trapping thin water films that are �	
�

liquid significantly below 0 oC (Price, 2007) and, combined with the ground-up mineral �
��

material, potentially provide significant energy sources and nutrients for microbial activity �
��

(Skidmore et al., 2000). Miteva et al. (2009) demonstrated cell counts at least two orders of �
��

magnitude higher in the debris-rich ice layers than the clean ice layers, and debris-rich layers �
��

can harbor obligately anaerobic organisms such as methanogens (Skidmore et al., 2000).  �
��

 �
��

Habitats in dry equatorial regions �
��
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With respect to drier regions on Mars, such as the equator and mid-latitudes, the Atacama �
��

Desert in Chile, serves as a useful case-study. The main limiting factor for life in the Atacama �
	�

is aridity. The low precipitation rates make the soil inhospitable, and it has been suggested �

�

that the extreme aridity of the core region of the Atacama causes the development of “Mars-����

like soils” (Navarro-Gonzalez et al., 2003), which share similarities with soils analysed by the ����

Viking landers. Despite the extremely dry conditions and the low concentrations of organics ����

in the soils, microorganisms are present (Connon et al., 2007; Lester et al., 2007), perhaps in ����

isolated islands of bacteria-rich soil (Bagaley, 2006). However, the presence of cells does not ����

imply that the soils are habitable. In fact, microbial activity in soils of the most arid regions ����

of the Atacama Desert has not yet been demonstrated.  ����

 An abundant and diverse microbial community has been described in the interior of ����

salt knobs found within the same arid core region where “Mars-like soils” occur (Wierzchos ��	�

et al., 2006; de los Rios et al., 2010). These salt knobs are colonized by photosynthetic and ��
�

heterotrophic bacteria and archaea. These organisms take advantage of the hygroscopic ����

properties of the salt, which result in the condensation of liquid water directly from the ����

atmosphere at the deliquescence point of the salt (Davila et al., 2008). Based on these studies, ����

it has been proposed that as environments become increasingly drier, life seeks refuge in ����

habitats that provide marginal amounts of water such as the interior of hygroscopic salts, and ����

that such substrates could have been habitable environments on Mars (Davila et al., 2010).  ����

 As one moves to slightly wetter (but still very dry) regions of the Atacama, new ����

habitats evolve such as the surface and interior of porous and translucent gypsum crusts ����

(Wierzchos et al., 2011). In still wetter regions, the hypolithic habitat (life under translucent ��	�

rocks), largely absent in the drier regions, becomes available (Warren-Rhodes et al., 2006). A ��
�

humidity transect along the Atacama Desert provides some constraints on the sorts of habitats ����
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(hygroscopic salts, the interior of porous and translucent rock, the underside of rocks, and ����

soils) that might be sites for the investigation of potentially uninhabited habitats on Mars.  ����

 ����

7.2 Past Uninhabited Habitats ����

Hot and hydrous habitats: Impact craters and volcanoes ����

In the early history of Mars there is a diversity of candidate uninhabited habitats. Of those, ����

impact craters are high priority places for the search for habitats, because a diversity of ����

processes, and therefore environments, is concentrated in a small space. First, an impact that ��	�

hits a water-bearing Martian target causes a series of changes in the target environment.  The ��
�

energy deposited causes compression, deformation, fracturing and the formation of the crater ����

itself (e.g., Melosh, 1989).  Following crater formation, the target rocks are hot, in large ����

impact structures impact-melt and melt breccias occur.  The temperature gradient between ����

centre of impact and the colder surroundings will initiate a hydrothermal system in the target ����

rock (Newsom, 1980; Rathbun and Squyres, 2002; Abramov and Kring, 2005), even if the ����

target is frozen (Barnhardt et al., 2010; Ivanov and Pierazzo, 2011).  The impact-generated ����

hydrothermal system might cause alteration, e.g. the formation of serpentine, chlorite, ����

smectite and other hydrous alteration phases (Schwenzer and Kring, 2009).  Moreover, the ����

dissolution of the target rock is capable of liberating elements such as Ca or Mg from the host ��	�

rock, and producing H2 in an ultramafic target (Zolotov et al., 2004; Schwenzer, 2011).  All ��
�

of those products could provide nutrients and energy sources for life (Varnes et al., 2003).  ����

To illustrate the importance of Martian impact-generated hydrothermal systems for ����

habitability, Toro Crater is an excellent example.  Marzo and coworkers (Marzo et al., 2010) ����

have provided a detailed investigation of this Hesperian crater, which is located at 71.8°E, ����

17.0°N on the western edge of Isidis Basin. Its age is estimated to be 3.6±0.1 Ga, but ����

resurfacing events have created younger surfaces within the crater.  Its central uplift exhibits ����
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brecciated target rock, and clast-poor and clast-rich impact melt deposits.  Two features ����

indicate the presence of post-impact generated hydrothermal activity: vent structures and ����

hydrated silicates occurring in and around the central uplift structure.  The vent structures ��	�

surround the central uplift on its eastern side.  The alteration minerals occur in discrete areas ��
�

in and around the central mound.  Marzo and coworkers map prehnite, opaline, smectite, and ����

chlorite.  The existence of such minerals changes the subsurface environment beyond the ����

period of (transient) water activity, because water storage and ion exchange capability are ����

introduced, enhancing the habitability of the site.  Thereafter, the geologic processes at Toro ����

Crater are restricted to sparse sedimentation depositing crater wall material in the crater moat ����

and additional eolian influx (Marzo et al., 2010).  In summary, cratering creates a variety of ����

habitable sites all within the limited area of the crater itself, which opens up multiple ����

possibilities for exploration to find potential habitats, and then explore them to discover if ����

they were uninhabited or inhabited. ��	�

Volcanoes provide many of the same features, illustrated by the Tharsis volcanic ��
�

region (Dohm et al., 2008), for which Schulze-Makuch et al. (2007) list a variety of target ����

sites for the exploration of endogenic-hydrothermal systems.  Channel networks promoted by ����

the topography, heated subsurface water, and potentially precipitation, provide further ����

conditions for the development of habitable environments.  Unlike impact crater cavities, ����

volcanoes do not offer the same potential for water catchment, but they provide topographic ����

highs that could enhance precipitation and thus surface water availability to uninhabited ����

habitats, a process that might be ongoing on present-day Mars (Maltagliati et al., 2007).   ����

 ����

Martian sediments  ��	�

OMEGA (Mars Express) and CRISM (Mars Reconaissance Orbiter MRO) spectrometers ��
�

have found widespread evidence of water/rock interaction in the ancient highlands, with ����
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hydrous minerals found within craters, or possibly associated with impact processes.  The ����

hydrated silica/altered glass, zeolite, chlorite and smectite within impact craters are evidence ����

of aqueous alteration (Mustard et al., 2008; Ehlmann et al., 2009).  Other ancient Mars ����

features indicate persistent standing water, such as Eberswalde Delta imaged by MRO and ����

CRISM (Moore et al., 2003).  The foresets of the Eberswalde Delta contain phyllosilicates ����

(McKeown et al., 2011).  Such deposits may in turn be related to impacts events (Irwin, ����

2011). Moreover, the post-impact history of large impact-craters can include the formation of ����

a crater lake (Newsom et al., 1996; Newsom, 2010).  Water from a hydrothermal system ��	�

might be discharged and groundwater might flow in.  The lake, while a habitat in itself, might ��
�

produce sediments and mineral precipitation, creating additional, new habitable places.  One �	��

example for an impact crater with an extended post-impact hydrous activity is Gale Crater �	��

(Cabrol et al., 1999).  This crater might have been filled by water inflow from the north and �	��

hosted a standing body of water for over two billion years (Cabrol et al., 1999).  Jezero �	��

Crater, located south of Nili Fossae, can be seen in context with the above mentioned �	��

Eberswalde Crater Delta, because it, too, hosts deltaic deposits.  Those contain phyllosilicates �	��

which are interpreted to be sourced from the Nili Fossae region and have high preservation �	��

potential for organic material (Ehlmann et al., 2008).  Thus, impact lakes, lake deposits and �	��

fluviatile sediments in crater catchments offer additional habitats that could be plausible �		�

candidates for the search for uninhabited habitats.   �	
�

Other ancient sediments deposited from water have also been described on Mars by �
��

the Opportunity Lander.  The festoon-bedded sequence that the rover encountered is believed �
��

to have formed in an ephemeral, playa lake-type environment (Grotzinger et al., 2005).  A �
��

significant proportion of the layered deposits imaged in the ancient highlands by high �
��

resolution cameras from Viking onwards may consist of aqueous-formed deposits and may be �
��

candidate uninhabited habitats. �
��
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 �
��

Summary �
��

There is a diversity of scenarios on an inhabited or uninhabited Mars that would create �
	�

conditions for uninhabited habitats. The possibility of near-surface transient liquid water is �

�

the most plausible scenario for uninhabited habitats on the present-day or in recent history of ����

Mars, but in its past Mars might also have hosted these habitats in environments including ����

craters and volcanic regions. Martian meteorites might provide empirical evidence for ����

uninhabited habitats, but in-situ exploration and sample return will also allow for the ����

elucidation of their existence. Uninhabited habitats would tell us much about the role of ����

biology in shaping planetary geochemical processes, but they would also raise new questions ����

in planetary protection. ����
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Figure legends 
���

Figure 1. A habitability ‘triad’. Any planetary environment can be split into one of three 
���

categories: 1) uninhabitable, 2) habitable and 3) habitable, but uninhabited. The three types of 
���

environment are interchangeable as environmental conditions at a particular location change. 
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Figure 2. A categorisation of conditions that could lead to uninhabited habitats on Mars. 
�
�

Each numbered scenario is described in the text. 
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Figure 3. A hypothetical scenario for how an uninhabited habitat could exist on the surface 
	��

of a planet such as Mars, even if that planet was inhabited in its subsurface. The uninhabited 
	��

habitat is illustrated in the form of transient melting of permafrost by an impact. However, 
	��

the scenario is applicable to any habitat that is isolated from inhabited regions or where the 
	��

rate of transfer of organisms towards the habitat is sufficiently slow to render it uninhabited 
		�

for significant periods of time. 
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