
Vortex: An Optimizing Compiler for Object-Oriented Languages

Jeffrey Dean, Greg DeFouw, David Grove, Vassily Litvinov, and Craig Chambers

Department of Computer Science and Engineering
University of Washington

Box 352350, Seattle, Washington 98195-2350 USA
{jdean, gdefouw, grove, vass, chambers}@cs.washington.edu

Abstract

Previously, techniques such as class hierarchy analysis and
profile-guided receiver class prediction have been
demonstrated to greatly improve the performance of
applications written in pure object-oriented languages, but the
degree to which these results are transferable to applications
written in hybrid languages has been unclear. In part to answer
this question, we have developed the Vortex compiler
infrastructure, a language-independent optimizing compiler
for object-oriented languages, with front-ends for Cecil, C++,
Java, and Modula-3. In this paper, we describe the Vortex
compiler’s intermediate language, internal structure, and
optimization suite, and then we report the results of
experiments assessing the effectiveness of different
combinations of optimizations on sizable applications across
these four languages. We characterize the benchmark
programs in terms of a collection of static and dynamic
metrics, intended to quantify aspects of the “object-oriented-
ness” of a program.

1 Introduction

In recent years, it has been demonstrated that intra- and
interprocedural static class analysis [Chambers & Ungar 90,
Plevyak & Chien 94, Agesen & Hölzle 95], class hierarchy
analysis [Dean et al. 95b], and profile-guided receiver class
prediction [Hölzle & Ungar 94, Grove et al. 95] can greatly
improve the performance of dynamically-typed, purely
object-oriented languages such as Cecil [Chambers 92,
Chambers 93], Self [Ungar & Smith 87], and Concurrent
Aggregates [Chien 93]. These techniques have been highly
effective in this context, since message sends are ubiquitous
and expensive; even the most primitive operations in these
languages are implemented via user defined methods and
dynamic dispatching. However, in statically-typed, hybrid
object-oriented languages such as C++ [Stroustrup 91] and

Modula-3 [Nelson 91], much of the normal execution of
programs involves non-object-oriented constructs, and
consequently the incidence of dynamically-dispatched calls is
much lower than in pure languages. Thus, is it unclear how
much overhead due to use of object-oriented features exists in
programs written in these languages, and it is unclear how
much benefit can be gained by applying advanced
optimizations of the object-oriented features to programs in
these languages. Java [Gosling et al. 96], a language
somewhere between C++ and Cecil in terms of its purity and
dependence on object-oriented features, offers another
interesting point in the language design space, and therefore
its need for advanced optimization techniques may be
different than both Cecil and C++.

In this paper, we present a study of the effectiveness of
advanced object-oriented-focused optimizations across a
range of object-oriented languages (C++, Modula-3, Java, and
Cecil). The study was conducted using the Vortex compiler, a
language-independent optimizing compiler for object-
oriented languages that we have designed and implemented.
By compiling all programs in these languages with a common
optimizing back-end, we can ensure that each program
receives comparable treatment and optimization effort.

The next section of this paper reviews the optimization
techniques included in Vortex. Section 3 describes the
structure of the Vortex compiler, focusing on the design of its
intermediate language and reporting on our experience in
building an optimizing compiler for a wide range of
languages. In Section 4 we describe the benchmark programs
used in this study. As part of this description, we define a
collection of static and dynamic metrics with which to
characterize the programs, and we use these metrics both to
better convey the internal structure of the programs and also to
attempt to predict when different optimization techniques are
likely to be most effective in improving an application’s
performance. Section 5 presents the performance results.
Section 6 describes related work, and we offer our conclusions
in Section 7.

2 Background

A compiler can replace a dynamic dispatch with a static call
whenever it can determine that a single method will be
invoked for all possible receiver classes of that call site. A
message send that is replaced by a call in this fashion has been
statically bound. Vortex uses five main techniques, described
in the following subsections, to statically bind message sends.
Without additional programming environment support,
interprocedural optimizations like class hierarchy analysis and
cross-module inlining preclude rapid turnaround after
incremental programming changes. Section 2.5 briefly
describes the selective recompilation mechanism provided by
Vortex to allow whole-program optimizations and day-to-day
application development to coexist.

2.1 Intraprocedural Class Analysis

Intraprocedural class analysis uses a standard iterative
dataflow approach to compute for each program expression a
set of classes such that any runtime value of the expression is
guaranteed to be an instance of one of the classes in the
computed set [Johnson 88, Chambers & Ungar 90]. The
analysis maintains a mapping from variables to sets of classes,
and propagates this mapping through the procedure’s control
flow graph. By default, variables map to the set of all possible
classes, but literals and the results of object allocations (new)
are mapped to singleton class sets. Class sets are combined
with set-union at control flow merge points, and class sets are
narrowed after a run-time class test conditional branch.

When a dynamically-dispatched message send is encountered,
this mapping is consulted to determine if the receiver of the
message is known to be a single class, or a bounded union of
classes. If only a single receiver class is possible, or if all
classes in a union invoke the same method, then the message
send can be statically bound. Because intraprocedural class
analysis has only local knowledge, it cannot statically bind a
message send if the receiver is known only to be an instance
of classC or some subclass ofC, since an unknown subclass
of C may provide an overriding definition of the target
method. This limitation implies that knowing the static type of
the receiver of a dynamically-dispatched message, as is the
case in statically-typed languages like C++, Modula-3, and
Java, is insufficient on its own to enable intraprocedural class
analysis to statically bind the message send, since the
possibility of an overriding method defined on a subclass
cannot be ruled out.

2.2 Class Hierarchy Analysis

Class hierarchy analysis [Dean et al. 95b] broadens the scope
of the information available to the compiler by giving it access
to all of the class and method declarations in the program.
Given this global knowledge of the class hierarchy, the

compiler can convert unbounded information of the form “a
variable holds an instance of some (unknown) subclass ofC”
into a bounded set of possible classes. Only bounded sets of
classes can provide useful information to the optimizer. Thus,
class hierarchy analysis addresses one of the key weakness of
intraprocedural class analysis by enabling the conversion of
unbounded sets of classes, derived from static type
declarations or from the method’s specialized formal
parameters, into bounded sets of classes.

2.3 Receiver Class Prediction

There are message sends that cannot be statically bound solely
through static analysis; some message sendsdo invoke more
than one method at run-time. However, it is still possible to
transform message sends of this type into a form that allows
inlining of at least a subset of the possible target methods.
Receiver class prediction is a simple local code transformation
that converts a dynamic dispatch into a run-time type-case
structure: one or more explicit in-line tests for particular
expected classes, each of which branches when successful to
a statically-bound or inlined version of the target method for
that class, possibly followed by a final dynamic dispatch to
handle any remaining unpredicted classes. Receiver class
prediction can be driven either by information hard-wired into
the compiler, as in early Smalltalk and Self implementations
[Deutsch & Schiffman 84, Chambers & Ungar 89], or by
profile-derived class distributions [Hölzle & Ungar 94, Grove
et al. 95], or by static examination of the program’s class
hierarchy [Chambers et al. 96]. We use the termexhaustive
class testing to refer to class-hierarchy-guided class testing,
and profile-guided class prediction to refer to class testing
based on dynamic profile information.

If a large number of receiver classes are possible at a call site,
testing for individual classes can be very expensive. However,
if the number of target methods is low, then run-timesubclass
tests can be inserted instead of class identity tests, leading to a
number of run-time tests on the order of the number of
possible methods rather than the number of possible classes.

It is quite common for a method to contain multiple message
sends to a single receiver value; for example, several messages
might be sent toself. If receiver class prediction is applied to
each of these message sends, redundant class tests will be
introduced. Splitting can eliminate these redundant tests by
duplicating paths through the control flow graph starting at
merges after one test and ending with the redundant test to be
eliminated [Chambers & Ungar 90].

2.4 Customization and Specialization

Customization and method specialization [Chambers & Ungar
89, Lea 90, Dean et al. 95a] are techniques that also can be
used to statically bind messages sent toself, by creating

multiple compiled copies of a single source method, each
specialized to particular receiver classes. However, since
Vortex does not support customization or specialization for
languages that use dispatch tables to implement message
sends (e.g., C++ and Modula-3), we do not consider this
technique in our study.

2.5 Selective Recompilation

Because of their global scope, interprocedural optimizations
like class hierarchy analysis and cross-module inlining can
introduce non-local dependencies in the compiled code, thus
preventing strict separate compilation. However, it is still
possible to achieve rapid turnaround after programming
changes if the implementation keeps track of these
dependencies and implements selective recompilation. The
Vortex compiler records the non-local effects of whole-
program optimization in a dependency graph, which is stored
in a persistent program database. When pieces of the source
program are modified, the dependency graph is consulted to
determine which object files must be recompiled. Our
experience with Vortex has been that incremental compilation
is quite practical, and that most programming changes result
in very few additional files being recompiled that were not
directly modified [Chambers et al. 95].

3 Vortex Compiler Infrastructure

The basic structure of the compiler is shown in Figure 1. Each
of the different front-ends does whatever parsing and
typechecking are appropriate for its input language, and then
translates the input into the Vortex compiler’s intermediate
language (IL), which is described in Section 3.1. The IL
representation of the program then proceeds through the
various stages of Vortex’s optimizer until code is generated;
this process is outlined in Section 3.2.

The usual way of adding a new source language to the Vortex
back-end is to reuse an existing public-domain or commercial
front-end, and modify it to output the Vortex IL. For C++, we
started with the Edison Design Group’s C++ Front End
[EDG], a commercial product used as the front-end for many
industrial C++ compilers. For Modula-3, we modified the
front-end from the freely-available DEC SRC Modula-3
implementation [SRC]. For Java, we first use Sun’s javac Java
compiler program [JDK] (invoked with the-O flag to perform
as much optimization as possible in the existing front-end, to
avoid overstating the benefits of Vortex’s optimizations) to
translate Java source programs into Java bytecodes, and then
we modified thejavap bytecode “disassembler” to convert to
Vortex IL. Since no public-domain or commercial Cecil front-
ends were available, we developed one from scratch.

3.1 The Vortex Intermediate Language

The Vortex intermediate language is the interface between the
different language front-ends and the compiler back-end, and
as such, it must allow the front-ends to describe the structure
of a program in such a way that the optimizations described in
Section 2 can be performed. In particular, many existing
compilers for object-oriented languages (such as the DEC
SRC Modula-3 implementation) translate input programs into
a generic low-level form, where the object-oriented features
have been translated into sequences of standard imperative
constructs. This enables traditional back-ends to cope with the
new features, but it blocks analyses and optimizations that
need higher-level information about the original language
constructs. The Vortex intermediate language supports both
traditional lower-level operations and selected higher-level
operations making things such as message sends, field
accesses, run-time type tests, and object creations explicit.
Individual language front-ends can choose high-level or low-
level translations for their language features. As Vortex
optimization phases proceed, higher-level constructs are
successively expanded into lower-level constructs, until code
generation takes place. The rest of this section describes the
primary global declarations and the kinds of executable
statements supported by the Vortex IL

3.1.1 Classes and the Inheritance Hierarchy

Vortex represents the program’s classes as a directed acyclic
graph. The inheritance structure of the program is
communicated to the back-end by declaring each class and the
(possibly empty) list of superclasses from which it inherits.
The back-end supports multiple, non-replicating inheritance
(virtual inheritance in C++ terms). We currently rely on the
language front-end to handle other forms of inheritance, such
as replicating (non-virtual) inheritance in C++, although the
back-end could be extended to support other models of
inheritance as well. A sample class declaration in the Vortex
IL is:

class Square isa Rhombus, Quadrilateral;

To implement lookup rules for operations such as method
lookup and instance variable lookup, Vortex treats the
inheritance graph as a partial order, choosing the most specific
match according to the partial order and reporting an
ambiguity otherwise. This partial ordering implements the
simple rule that children override parents, which was derived
from the Cecil language semantics [Chambers 93]. This can
accommodate a wide range of languages whose semantics
either match these or that have static typechecking rules that
are more restrictive. For example, C++ has a stricter treatment
of ambiguities, but C++’s static typechecker ensures that no
programs with ambiguities according to C++’s rules produce
IL code. Vortex’s semantics are sufficient to handle the

inheritance rules for single-inheritance languages such as
Java, Modula-3, and Smalltalk [Goldberg & Robson 83], and
to handle multiple-inheritance languages such as Cecil, C++,
and Trellis [Schaffert et al. 85]. However, some languages use
other rules for method lookup (such as CLOS, which uses a
left-to-right ordering of parents for resolving ambiguities
[Bobrow et al. 88]), and compiling such languages would
require adding back-end support for more generally
computing the required partial order from the inheritance
graph.

C++ and Modula-3 support parameterized classes and/or
methods (templates in C++ and generic modules in Modula-
3). Currently, the front-ends for these languages expand away
the templates, so Vortex sees only unparameterized classes
and methods. This strategy is in keeping with how other
compilers implement these languages, but it does prevent
Vortex from performing optimizations to share code across
template instantiations where possible.

3.1.2 Instance Variables and Representations

Classes can have many different possible representations,
depending on how their instance variables are laid out and
other factors such as alignment, padding, and the sizes of
numeric data types. Representation decisions must be made at
some level, and Vortex supports two strategies: either the
front-end can lay out classes and structures completely, or they
can provide information about instance variables to the back-
end and allow the back-end to make layout decisions. Each
approach has advantages and disadvantages. Having the front-
end perform class layout, which is the approach we have

JavaC++ Modula-3Cecil

C code gen. SPARC code gen.

Traditional Optimizations

profile-guided optimizations
cross-module inline expansion

Program DatabaseHigh-level Optimizations
source code

interprocedural summaries
recompilation dependencies

profile data

program

static analyses

Vortex IL

Front-ends

Vortex back end

Figure 1: Vortex Architecture

chosen for the C++ and Modula-3 front-ends, preserves
compatibility with separately-compiled code that uses the
same layout rules and avoids having to encode class layout
rules for these languages in the back-end. However, having the
back-end perform class layout, which is the approach we have
chosen for the Cecil and Java front-ends, supports higher-level
analysis of object structures (such as better alias analysis) and
opens the opportunity for optimizations that rearrange data
representations. (Recent work has shown that these can have
substantial performance impact in the context of both Modula-
3 [Fernandez 95] and ML [Shao & Appel 95, Tarditi et al. 96].)

If the front-end makes representation decisions, objects are
described as a generic array of bytes of a particular size. Low-
level pointer operations are used to implement instance
variable accesses, and object allocation is implemented in
terms ofmalloc-type byte allocators. On the other hand, if
the back-end makes representation decisions, then the front-
end declares the instance variables of a class, including their
representations, and instance variable accesses and object
allocations are represented directly in the IL. Array accesses
similarly have both low-level (pointer-based) and high-level
(direct) forms.

Some languages, including Cecil, C++, Java, and Trellis,
allow an instance variable to be declared immutable, and the
Vortex IL supports this annotation on instance variable
declarations. Knowing an instance variable is immutable
allows the optimizer to retain its knowledge about the instance
variable’s value, if any, across calls. For languages that use
low-level accesses to instance variables, Vortex IL allows load

instructions to be marked as from immutable locations,
enabling similar preservation of knowledge about that
memory location. This low-level form works even if the
memory location is only invariant in some contexts. For
example, in C++, “vtbl” words of objects are unchanged
outside of their constructor methods [Stroustrup 87].

The Vortex IL supports global variable declarations. A
declaration specifies a representation and optionally the initial
value for the variable (even if the variable is an aggregate data
type).

3.1.3 Methods and Procedures

The Vortex IL uses a notion of a generic function [Bobrow et
al. 88] to unify the concepts of procedures, methods, and
multi-methods. Each call or message maps to a single generic
function. A generic function contains a set of dynamically-
overloaded methods, with each method indicating where in
the program’s class hierarchy it is attached. A regular
procedure is modeled as a singleton generic function whose
sole method is attached to the (perhaps implicit) root of the
inheritance graph, while several singly- and/or multiply-
dispatched methods may be grouped together in one generic
function. Static overloading as in C++ and Java is resolved by
the front-end using a “name mangling” technique to encode
the static argument types in the name of the message being
sent; only dynamic overloading remains in the Vortex IL.
Method lookup and inlining work uniformly over this generic
function and method model.

A procedure or method implementation is communicated to
the back-end via amethod definition in the Vortex IL, which
specifies the method’s name, a list of formal arguments and
representations, a return representation, and a body of code
made up of Vortex IL statements (see Section 3.1.4 below). To
indicate where a method is placed in the inheritance hierarchy,
a separateassociate declaration is produced by the front-
end that names the generic function and the tuple of argument
class specializers for the method. Singly-dispatched methods
will have non-any specializers only on the receiver argument;
multi-methods may specialize any of their arguments. To
illustrate how method and associate declarations fit
together, consider the following C++ class:

class Square: Rhombus, Quadrilateral {
virtual void draw(int color);

};

If draw were introduced in theShape base class, the front-
end might generate the following IL declarations:

class Square isa Rhombus, Quadrilateral;

method draw__6Square_int(this,color):void
{... IL code for draw...}

associate draw__6Square_int with
draw__5Shape_int(@Square, @any);

All methods that are part of the same generic function share
the same message name in their associate declarations.

Initially, we had a single construct in the IL that subsumed
both method andassociate declarations. However, we
changed this when we began work on the Modula-3 front-end,
since Modula-3 allows arbitrary procedures to be used as
methods, perhaps in multiple places. Also, giving each
method a unique name separate from the generic function’s
allows direct non-dispatched calls to methods to be
represented easily.

3.1.4 IL Statements

Executable code in the Vortex IL is represented as a series of
three-address statements [Aho et al. 86], including the usual
complement of arithmetic, logical, pointer, branching
(conditional, unconditional, and indexed), and direct and
indirect procedure call-related statements. In addition, a
number of higher-level object-oriented notions are reified in
the Vortex IL, allowing the optimizer to more easily reason
about them:

• Message sends. Message sends are a high-level operation
in the Vortex IL that provide sufficient information for the
back-end to perform optimizations like class hierarchy
analysis and receiver-class prediction. As an example,
consider the following C++ code:

Shape* s = ...;
s->draw(color);

This send ofdraw might be translated into the
following Vortex IL statement:

send draw__5Shape_int(s, color);

Subsection 3.1.5 describes two strategies for how
Vortex implements asend statement.

• Instance variable accesses. For languages where the
front-end generates instance variable declarations and
expects the Vortex back-end to perform object layout,
accesses to instance variables are represented with
instructions that specify the object being accessed, the
name of instance variable, and the name of the class
where the instance variable was declared (in case there
are instance variables with the same name but declared in
different classes). For example, consider the following
Java code:

Rectangle r = ...;
r.upper_left = 100;

This instance variable access is translated into the
following Vortex IL statement, assuming that the
upper_left instance variable was introduced in the
Rectangle class:

r.upper_left@Rectangle := 100;

• Object allocations. A simplenew statement is supported
to allocate objects of a particular class. Static class
analysis can determine the static type of the result of this
statement exactly.

• Run-time class tests. Vortex IL supports both class
identity tests and subclass tests as explicit comparisons.
For example:

if s is_class Rectangle goto ...;

if s inherits_from Shape goto ...;

The Java front-end outputs these tests to implement
dynamically-checked type casts. Although not
currently implemented in high-level form, the
Modula-3 front-end could also use these run-time tests
for itsTYPECASE andNARROW features.

Subsection 3.1.6 describes implementation strategies
for class tests.

• Type assertions. Type assertions communicate static
class information from the front-end to the back-end. In
general, a type assertion is a guarantee from the front-end
to the back-end that a particular value holds an instance
of a particular set of classes at a particular program point.
Similarly to run-time class tests, Vortex IL supports class
identity and subclass assertions:

assert_type r is_class Rectangle;

assert_type s inherits_from Shape;

Class identity assertions are output by the front-ends
when a language-level operation has just created a
value that is known to be of a specific class (e.g.,
allocating a new object). Subclass assertions are
output whenever the front-end has information about
the static type of a value that might be useful to the
back-end optimizer (e.g., the static type of the
arguments of a method or the result of an instance
variable access).

3.1.5 Implementing Message Sends

Vortex currently supports two implementation strategies for
message sends, one based on dispatch tables and one based on
polymorphic inline caches (PICs) [Hölzle et al. 91]. For Cecil
and Java, we select the PIC-based implementation strategy:
dynamically generate a piece of executable code per call site
that linearly tests for theN most common receiver classes,
falling back to a hash table lookup if the cache overflows. The
PIC-based strategy is general, since it does not require
dispatch table layout algorithms, but it can be less efficient
than table-based implementations.

For C++ and Modula-3, we implement message sends using
the language’s native table indexing strategy, and rely on the
language front-end to generate the appropriate tables (i.e.,
virtual function tables in C++ and method suites in Modula-3).
For the back-end to produce the right table indexing sequence

when implementing a send in lower-level terms, we augment
the send IL statement to include the offset of the class
identifier in the receiver object (e.g., the location of the “vtbl”
pointer in the object in C++), as well as the entry number to
use in the dispatch table. This information is sufficient to
generate the appropriate code to call indirectly through the
dispatch table.

Keeping the table generation in the front-ends has the
advantage of not requiring the back-end to deal with the
complexities of dispatch table layout (which is difficult to do
in the presence of multiple inheritance), and it preserves
compatibility so that we can call separately-compiled code
from our generated code. However, it places some limitations
on the optimizations that the back-end can perform. In
particular, because dispatch tables are not exposed at a high
enough level, the back-end cannot perform optimizations that
would require generating different dispatch tables. Examples
of such optimizations include customization and
specialization [Chambers & Ungar 89, Lea 90, Dean et al. 95a]
and converting a C++-style method from virtual to non-virtual
to reduce the size of dispatch tables, when the back-end is able
to detect that the method is not overridden anywhere in the
program. However, in the presence of class hierarchy analysis,
Vortex is able to streamline the virtual function calling
sequence for C++: by detecting portions of the class hierarchy
that do not use multiple inheritance, one pointer adjustment
per call can be eliminated.*

3.1.6 Implementing Run-Time Class Tests

For most languages, implementing a class identity test is
straightforward: load the class identifier from the object (at a
language-specific offset) and test it against a constant (derived
from the class in a language-specific way). However, in C++
this test is complicated by the fact that, in the presence of
multiple inheritance, an object can have multiple different
“vtbl” addresses, each for different statically-typed views of
the object [Stroustrup 87]. To support C++-style class
identifiers effectively, the front-end annotates each class with
a mapping from static type views to the name of thevtbl
constant stored at that offset. The back-end then uses the
known static type of the object being tested to determine
whichvtbl constant to compare against.

Efficient constant-time subclass testing can be implemented in
languages having only single inheritance with a load
instruction or two followed by a pair of comparisons. In
languages with multiple inheritance, subclass testing is more

* Trampoline functions are another technique for eliminating this
pointer adjustment in the common (non-multiple-inheritance) case,
but they incur a higher cost when multiple inheritance is actually
used.

complex. In our Vortex implementation, we simply compute
an N×N boolean matrix of subclass relations, whereN is the
number of classes in the program. The <i,j>th entry indicates
whether or not the class with the unique idi is a subclass of the
class with id j. Alternative encodings of the subclassing
relationship are possible, representing different time-space
tradeoffs; Aït-Kaciet al. provide a useful overview of efficient
lattice operations that discusses many of these alternatives
[AK et al. 89].

3.1.7 Exceptions

Many languages support some form of exceptional control
flow: Modula-3 supports traditional exceptions, C++ and Java
support object-based exceptions, and Cecil, like Smalltalk and
Self, has non-local returns that allow a nested closure to return
directly from its lexically-enclosing method. The Vortex IL
describes exceptions by treating calls and sends that can raise
exceptions as control flow branches, with the exceptional
return branch passing to an exception handler label. Vortex
supports two implementation strategies for exceptions: one
based on frame-by-frame propagation (using special return
calling conventions and tests after each procedure call that can
raise an exception), and one based on the language’s runtime
system’s setjmp/longjmp mechanism (where asetjmp is
performed when entering a “try” block and alongjmp is
invoked to raise an exception). Cecil and Java use the
propagation-based method, while Modula-3 uses its own
setjmp/longjmp-based mechanism; none of our C++
programs use exceptions.

Originally, we used a lower-level form of exceptions for
Modula-3, with the front-end generating explicit calls to
setjmp to mark the beginning ofTRY blocks. However, the
Vortex optimizer was performing incorrect optimizations
because its dataflow analysis did not understand the strange
control flow that can be introduced in the presence ofsetjmp.
To avoid sacrificing optimization in the presence of
exceptions, which is the normal strategy, we opted to
introduce a high-level explicit form for specifying the possible
control flow in the presence of exceptions, and Vortex’s
dataflow analyses are left unhindered. However, to safely
compile programs that callsetjmp explicitly, Vortex’s
dataflow analyses should be modified to cope with its irregular
control flow, under the assumption that explicit calls to
setjmp, other than for implementing exceptions, are likely to
be rare.

3.2 Optimization Phases

Vortex takes the IL representation of the program produced by
one of its front-ends and performs a series of analyses and
transformations on its way to generating optimized target
code. As part of this process, high-level IL operations are

lowered by expanding them into sequences of simpler
operations. In this section we highlight some of the interesting
stages in this transformation.

A central piece of supporting infrastructure in this process is
Vortex’s iterative dataflow analysis framework. All of the
analyses and transformations rely on this framework to
manage the details of iterative dataflow: control flow graph
traversal, merging dataflow information at control flow
merges, fixed-point convergence testing for loops, and graph
transformations. Clients of the framework simply provide an
analysis closure that encapsulates the appropriate flow
functions and an analysis-specific domain class that
implements thecopy, meet, and reached_convergence
methods. (Vortex’s IDFA framework is similar in spirit to the
Sharlit system developed by Tjiang and Hennessy [Tjiang &
Hennessy 92].) Analyses written separately using Vortex’s
framework can also be composed so that they run together
simultaneously, thus alleviating potential phase-ordering
problems. (Click and Cooper describe the theoretical
conditions under which the resulting combination of
optimizations will produce better results than repeated
applications of the original separate optimizations [Click &
Cooper 95].)

The major phases in Vortex’s compilation of a control flow
graph are:

• Loop identification: A dominator-based algorithm
identifies the loops and the loop nesting structure of the
procedure being compiled. (Vortex alternatively allows
front-ends to provide this information directly, avoiding
recomputing it in the back-end.) Vortex’s IDFA
framework currently requires that control flow graphs be
reducible (roughly, have a single entry node) [Aho et al.
86]; the loop identification pass detects irreducible flow
graphs and reports them as errors.

• Object-oriented optimizations: This phase utilizes the
iterative dataflow analysis framework’s composer
interface to run a number of separately-written
optimization passes simultaneously, thus potentially
arriving at a better final fixed-point due to the synergistic
relationships among the passes. Intraprocedural class
analysis, class hierarchy analysis, profile-guided receiver
class prediction, inlining, splitting, must-alias analysis,
and an enhanced common subexpression elimination
(CSE) pass all run in parallel. In addition to standard CSE
transformations, the enhanced CSE pass also performs
constant and copy propagation, constant folding,
simplification of arithmetic operations, and elimination
of redundant load and store operations. Because inlining
is included as an integral part of the combined pass, when
a routine is inlined it is immediately optimized. This

allows the callee to be fully optimized in the context of its
caller and for the downstream code of the caller to benefit
from any information gained by inlining the callee
[Chambers & Ungar 90].

• Closure optimizations:Partial dead code elimination
delays closure object creations until absolutely necessary
(hopefully removing them entirely from the common
case paths) and environments are marked to be either
heap-allocated or stack-allocated. This phase has no
effect in languages lacking closures or nested procedures.

• Lowering I: High-level operations like table sends and
class tests are expanded into an equivalent sequence of
lower level operations. All accesses to variables defined
in lexically-enclosing scopes are expanded into an
explicit series of loads.

• Standard optimizations: A suite of traditional
optimizations such as CSE (again, since new
opportunities for optimization have been exposed during
the lowering phase), dead store elimination, and dead
assignment elimination are applied.

• C code generation: If Vortex is generating C code, then
code is produced now and compilation ends. The
generated C code is portable across platforms with the
same word size. Otherwise the following additional
stages occur:

• Lowering II: Remaining high-level nodes and complex
operators are expanded. After this second lowering
phase, most IL operations can be implemented in a single
machine instruction.

• Standard optimizations repeated.

• Low-level optimizations: Graph coloring-based
intraprocedural register allocation and instruction
scheduling.

• Assembly code generation.

3.3 Experience

Vortex originally was a Cecil-specific compiler, but over the
last year or so we reworked it to be more language-
independent. Starting with Cecil first had both benefits and
drawbacks:

• The original Cecil compiler already supported a set of
sophisticated optimizations aimed at a powerful set of
language features, such as multiple dispatching, multiple
inheritance, and closures. Since the other languages we
compile mostly have subsets of Cecil’s object-oriented
language features, only a few small changes were needed
for the Vortex compiler;associate declarations are
one enhancement of the original Cecil compiler, and we
had to generalize Cecil’s exception handling support to
cover what is used in Modula-3 and Java.

• The original Cecil compiler was geared towards a
language with a type-safe, pure data model. For Vortex,
we needed to do significant retrofitting to support non-
word-sized datatypes, uncontrolled pointers, structures
and arrays with non-scalar elements, and so on.

Both Modula-3 and Java had nicely-modularized existing
front-ends that presented a good interface for compiling into
the Vortex IL: DEC SRC Modula-3 supports a separate code-
generator interface, which we added a new implementation of,
and Java defines a bytecoded intermediate language that we
translated in a straightforward way into the Vortex IL. DEC
SRC Modula-3’s code-generator interface includes only low-
level operations, so we had to augment the interface with high-
level operations; Java’s bytecodes are already at the
appropriate level for Vortex.

EDG’s C++ front-end was also reasonably modular, although
we had to start with an annotated parse tree and implement
intermediate code generation to the Vortex IL. The complexity
and size of the C++ language made this a more difficult task
than the other two languages, but the real obstacle to gathering
and compiling C++ applications with Vortex is that there is no
well-defined C++ language in common use: each program we
gathered would only compile on a subset of compilers, or used
compiler-specific extensions, or used a version of the language
that was different than what EDG’s front-end expected. This
situation makes it quite difficult to do compiler research for
C++.

A final difficulty is that some C compilers cannot cope with
the C code Vortex produces. We had to go to some lengths to
produce C code that did not have functions or basic blocks that
were too long or to produce files that had too many global
symbols. Machine-generated programs have quite different
characteristics than human-generated programs, and we
encountered the same kinds of problems as other researchers
in trying to compile our output.

4 Metrics for Describing Object-Oriented
Programs

A program’s structure and the degree to which it uses object-
oriented language features, such as inheritance and message
sends, have a profound impact on the effectiveness of high-
level optimizations such as class hierarchy analysis,
exhaustive class testing, and profile-guided receiver class
prediction. Therefore, before we present our experimental
assessment of these techniques, we first define several metrics
for describing object-oriented programs and use them to
characterize our benchmark suite. These metrics attempt to
quantify interesting properties of the program’s internal
structure as well as predict how much an application can be
expected to benefit from a particular optimization.

4.1 Metric Definitions

We considered a number of different metrics for
characterizing our applications. After evaluating how well
they captured the underlying program structure and usage of
object-oriented language features, we selected the following
metrics as being the most illuminating:

• Number of Immediate Parents: Measures the number of
immediate parents of each class in the program; indicates
the degree to which multiple inheritance is utilized.

• Number of Immediate Children: Measures the number of
classes that directly inherit from each class in the
program; indicates the branching factor (breadth) and
“bushiness” of the class hierarchies.

• Maximum Distance to Root of Inheritance Hierarchy:
The longest path from each class to the root of its
inheritance hierarchy; indicates the depth of the class
hierarchies used by the program.

• Number of Applicable Methods: Measures the number of
applicable methods at a dynamically-dispatched call site,
optionally weighted by the execution frequency of the
call site. Class hierarchy analysis works well when a large
number of call sites have a single applicable method,
while exhaustive class testing applies when a few
methods are possible at a call site.

• Class Test Efficiency: Measures the fraction of calls at a
call site that go to the most common receiver class at that
call site, weighted by the execution frequency of the call
site. This histogram will always be a subset of the one
representing the dynamic number of applicable methods
at a call site. Profile-guided receiver class prediction can
work well if the most common class at a call site is much
more common than other classes; similarity between this
histogram and the histogram for the dynamic number of
applicable methods implies that dynamically-important
call sites are dominated by a single receiver class.

• Average Cycles Between Message Sends: Measures the
average number of cycles elapsed between message
sends. As this value increases, we expect the overall
performance impact of the optimizations to decrease.

Bieman and Zhao also used the first three of these metrics (and
some additional ones) in their study of inheritance in C++
applications [Bieman & Zhao 95]. They utilized the metrics to
assess the amount of code reuse through inheritance in large
C++ programs; in contrast, we are interested in characterizing
how the structure of the inheritance hierarchy affects the need
for optimization. In previous work, we applied several metrics
to measure the peakedness and stability of the profile data used
to drive profile-guided receiver class prediction [Grove et al.

95]. Due to space constraints, we only use the “first class
same” metric here.

4.2 Applying the Metrics

We applied the metrics defined in the previous section to a
number of medium-to-large applications written in Cecil,
Java, Modula-3, and C++. Table 1 summarizes several
distinguishing language features.

Several of these language characteristics have a large impact
on the effectiveness of the object-oriented optimizations.
Because of the much higher frequency of message sends in
pure languages compared to hybrid languages, the impact of
the object-oriented optimizations is much more dramatic.
Static type declarations are excellent fodder for class
hierarchy analysis, so one would expect it to be more effective
in statically-typed languages.

Table 2 describes the application suite and presents the results
of applying the metrics to the programs. We use histograms to
visually display the metrics; the height of each bar represents
the percentage of all elements whose metric value corresponds
to the bar’sx-coordinate For C++, we also examined a version
of two of the benchmarks where we hand-modified the
programs to make all methods virtual, to explore an alternative
programming style; these two benchmarks are identified with
an-av suffix.

All of our benchmarks are substantial in size, with all at least
10,000 lines and most over 20,000. The Cecil programs have
the largest and deepest class libraries, withjavac and

a. Cecil allows mixing statically- and dynamically-typed
code, and running the static typechecker is optional. As a
result, the optimizer ignores static type declarations and
ensures type-safety through dynamic checks where
needed.

b. final methods cannot be overridden, although they can
override other methods.

c. Java supports multiple subtyping although only single
code inheritance. Our number-of-parents metric indicates
the total number of supertypes and superclasses of a class.

Table 1: Language Characteristics

Language
Object
Model

Typing
All

Methods
Virtual?

Multiple
Inheritance?

Cecil Pure Dynamica Yes Yes

Java Mostly
pure

Mostly
static

Yesb Yesc

Modula-3 Hybrid Static Yes No

C++ Hybrid Static No Yes

Ta
bl

e
2:

 A
pp

lic
at

io
n

D
es

cr
ip

tio
ns

P
ro

gr
am

D
es

cr
ip

tio
n

Li
ne

s
of

C
od

e

of Classes

of Dispatched Methods

%
 o

f c
la

ss
es

w
ith

x
im

m
ed

ia
te

pa
re

nt
s

(x
 =

 0
..5

)

%
 o

f c
la

ss
es

w
ith

x
im

m
ed

ia
te

ch
ild

re
n

(x
 =

 0
..9

,1
0+

)

%
 o

f c
la

ss
es

w
ith

 d
is

ta
nc

e
x

fr
om

 r
oo

t o
f

hi
er

ar
ch

y
(x

 =
 0

..9
,1

0+
)

%
 o

f m
es

sa
ge

 s
en

ds
 w

ithx
ap

pl
ic

ab
le

 m
et

ho
ds

(x
 =

 0
..9

,1
0+

)

C
la

ss
 te

st
ef

fic
ie

nc
y

fo
r

m
es

sa
ge

 s
en

ds
w

ith
x

ap
pl

ic
ab

le
m

et
ho

ds
(x

 =
 0

..9
,1

0+
)

A
ve

ra
ge

cy
cl

es
be

tw
ee

n
m

es
sa

ge
se

nd
s

S
ta

tic
D

yn
am

ic

Cecil

in
st

r
sc

he
d

G
lo

ba
l

in
st

ru
ct

io
n

sc
he

du
le

r

2,
40

0
+

 1
1,

00
0

st
d.

 li
br

ar
y

21
2

16
40

12
7

ty
pe

-
ch

ec
ke

r
C

ec
il

ty
pe

ch
ec

ke
r

20
,0

00
+

 1
1,

00
0

st
d.

 li
br

ar
y

60
9

46
87

17
0

vo
rt

ex
V

or
te

x
op

tim
iz

in
g

co
m

pi
le

r

68
,5

00
+

 1
1,

00
0

st
d.

 li
br

ar
y

13
06

10
,0

62
19

7

Java

ja
va

-c
up

Ja
va

 p
ar

se
r

ge
ne

ra
to

r
9,

20
0

+
12

,2
00

st
d.

 li
br

ar
y

12
4

48
4

16
5

ja
va

c
Ja

va
co

m
pi

le
r

25
,4

00
+

13
,7

00
st

d.
 li

br
ar

y

26
5

14
65

24
0

Modula-3

m
2t

om
3

C
on

ve
rt

s
M

od
ul

a-
2

to
M

od
ul

a-
3

18
,0

05
10

5
43

2
47

9

pr
ov

er
T

he
or

em
pr

ov
er

20
,4

97
39

10
8

15
22

m
3f

e
M

od
ul

a-
3

fr
on

t e
nd

50
,8

49
10

7
11

70
24

33

0

10
0

0
5

0
5

10
+

0

10
0

0
5

10
+

0

10
0

0
5

10
+

0

10
0

0
5

10
+

0

10
0

0
5

10
+

0

10
0

C++

ix
x

F
re

sc
o

ID
L

pa
rs

er
11

,6
00

11
9

79
1

57
5

kt
si

m
Tr

ac
e

dr
iv

en
m

em
or

y
sy

s-
te

m
 s

im
ul

at
or

20
,3

00
11

5
39

6
90

01

eo
n

R
ay

 tr
ac

er
43

,0
00

23
8

54
2

67
0

po
rk

y
S

U
IF

 b
ac

k-
en

d
op

tim
iz

er
64

,0
00

37
4

12
57

22
0

C++ All Virtual

ix
x-

av
fr

es
co

 ID
L

pa
rs

er
11

,6
00

11
9

97
7

14
6

kt
si

m
-a

v
Tr

ac
e

dr
iv

en
m

em
or

y
sy

s-
te

m
 s

im
ul

at
or

20
,3

00
11

5
58

0
15

3

Ta
bl

e
2:

 A
pp

lic
at

io
n

D
es

cr
ip

tio
ns

P
ro

gr
am

D
es

cr
ip

tio
n

Li
ne

s
of

C
od

e

of Classes

of Dispatched Methods

%
 o

f c
la

ss
es

w
ith

x
im

m
ed

ia
te

pa
re

nt
s

(x
 =

 0
..5

)

%
 o

f c
la

ss
es

w
ith

x
im

m
ed

ia
te

ch
ild

re
n

(x
 =

 0
..9

,1
0+

)

%
 o

f c
la

ss
es

w
ith

 d
is

ta
nc

e
x

fr
om

 r
oo

t o
f

hi
er

ar
ch

y
(x

 =
 0

..9
,1

0+
)

%
 o

f m
es

sa
ge

 s
en

ds
 w

ithx
ap

pl
ic

ab
le

 m
et

ho
ds

(x
 =

 0
..9

,1
0+

)

C
la

ss
 te

st
ef

fic
ie

nc
y

fo
r

m
es

sa
ge

 s
en

ds
w

ith
x

ap
pl

ic
ab

le
m

et
ho

ds
(x

 =
 0

..9
,1

0+
)

A
ve

ra
ge

cy
cl

es
be

tw
ee

n
m

es
sa

ge
se

nd
s

S
ta

tic
D

yn
am

ic

0

10
0

0
5

0
5

10
+

0

10
0

0
5

10
+

0

10
0

0
5

10
+

0

10
0

0
5

10
+

0

10
0

0
5

10
+

0

10
0

To
 th

e
rig

ht
 is

 a
n

en
la

rge
d

co
py

 o
f t

he
 h

is
to

gr
am

 d
is

pl
ay

in
g

th
e

dy
na

m
ic

 n
um

be
r

of
 m

es
sa

ge
 s

en
ds

 w
ith

x
ap

pl
ic

ab
le

 m
et

ho
ds

 fo
r

th
e

ix
x

be
nc

hm
ar

k.
 T

hi
s

hi
st

og
ra

m
 s

ho
w

s
th

at
 r

ou
gh

ly
 4

2%
 o

f t
he

 m
es

sa
ge

s
se

nt
 b

y
th

e
pr

og
ra

m
 a

re
 s

en
t a

t c
al

l s
ite

s
w

he
re

 th
er

e
is

 o
nl

y
1

ap
pl

ic
ab

le
 m

et
ho

d,
 4

5%
 a

re
 s

en
t f

ro
m

 c
al

l s
ite

s
w

ith
 2

 a
pp

lic
ab

le
 m

et
ho

ds
, a

nd
 5

%
 a

re
 s

en
t f

ro
m

 c
al

l s
ite

s
ha

vi
ng

 1
0

or
m

or
e

ap
pl

ic
ab

le
 m

et
ho

ds
.

0
5

10
+

0

10
0

m2tom3 also having deep class hierarchies, but all the
programs exceptprover have at least a hundred classes and
400 methods. Cecil programs used multiple inheritance a
moderate amount, and the Java programs used multiple
subtyping some, but the C++ programs made little if any use
of multiple inheritance.

Examination of the static number of call sites with only one
applicable method would suggest that class hierarchy analysis
could be effective in most of the benchmarks, but the version
weighted by dynamic execution frequency indicates a
somewhat lower expected benefit;eon andktsim-av buck this
trend. As expected, the C++ all-virtual programs have much
greater number of call sites amenable to class hierarchy
analysis than the regular versions of these benchmarks. About
half the benchmarks have significant numbers of messages
with 2-3 applicable methods, indicating that exhaustive class
testing could be beneficial (although Vortex does not support
this technique for C++ or Modula-3 yet). Since the histograms
reporting the efficiency of profile-guided class testing are
usually similar to the dynamic number of applicable method
histograms, profile-guided receiver class prediction looks
promising.

The number of cycles between dispatches suggests that Cecil,
Java, and the all-virtual C++ programs can expect the greatest
impact from the optimizations, while Modula-3 programs can
expect the least benefits from Vortex’s message-level
optimizations. With Cecil, optimization of other run-time
overhead between dispatches, such as closure creations and
the extra cost of multi-method dispatching, will increase the
observed impact of Vortex’s optimizations.

5 Performance Studies

To assess the performance impact of Vortex’s object-oriented
optimizations, we compare the following configurations:

• native : Program is compiled by a native language
compiler. For C++ programs we useg++ version 2.6.3
with options-O2 -finline-functions -msupersparc; for
Modula-3 programs we use the DEC SRC Modula-3
compiler (which uses a modified version ofgcc version
2.6.3 as its back-end) with the-O2 option. For Java the
native configuration runs thejava interpreter on the
program’s precompiled .class files. There is no separate
native configuration for Cecil programs, since Vortex is
currently the only Cecil compiler.

• base : Program is compiled by Vortex with the collection
of traditional optimizations described in Section 3.2 but
without any inlining or optimization of dynamically-
dispatched messages or class tests. (For C++ and
Modula-3, the combined CSE pass is not fully functional,

so thebase configuration in these languages uses only
gcc optimizations with no Vortex- level optimizations.)

• inline : base is augmented with cross-module inlining.

• intra : inline is augmented with intraprocedural class
analysis, hard-wired class prediction for common
messages (for Cecil programs only), and splitting.

• intra+CHA : intra is augmented with class hierarchy
analysis.

• intra+CHA+exh : intra is augmented with class
hierarchy analysis and exhaustive class testing.

• intra+profile : intra is augmented with profile-guided
receiver class prediction.

• intra+CHA+profile : intra is augmented with class
hierarchy analysis and profile-guided receiver class
prediction.

• intra+CHA+exh+profile : intra is augmented with
class hierarchy analysis, exhaustive class testing, and
profile-guided receiver class prediction.

In all Vortex configurations, C code was generated and then
compiled by gcc version 2.6.3 with options -O2
-msupersparc. By producing C code, and compiling it with
the same compiler used in the native configuration for C++
and Modula-3, we attempt to minimize distortions produced
by aspects of Vortex compilation that are orthogonal to the
high-level optimizations we are interested in studying. For the
C++ and Modula-3 programs, with the exception ofprover
(13%) andporky (39%), allbase times were within 8% of
their native time. The large performance difference between
thenative andbase configurations forporky are explained by
porky’s frequent assignments of small 4 and 8 byte structures.
Currently, Vortex does not attempt to optimize structure
assignments, compiling them down to calls tobcopy. The
gcc compiler compiles down small structure assignments to a
sequence of inline loads and stores. For Modula-3, ourbase
configuration is losing some performance relative tonative
due to compilation to C; nested procedures in particular are
not implemented as efficiently in base as innative. For both
Java programs, thenative (interpreted) version was about 6
times slower than Vortex’sbase configuration, demonstrating
the performance advantage of compilation.

All run-time measurements are CPU times (user time + system
time) gathered on a lightly-loaded SPARCStation-20/61 with
128MB RAM, taking the median of 11 runs. Variations in
CPU time from run to run of 10% are normal for this machine.
Figure 2 presents selected application speedup data; the
complete set of application execution times and the dynamic
number of message sends during each program execution can
be found in Appendix A.

As expected, Vortex’s optimizations had the largest impact on
the Cecil programs, improving their performance by an order
of magnitude over thebase configuration. Profile-guided
class prediction was the single most important optimization
for Cecil, but each technique resulted in a non-trivial
improvement. Although less spectacular than the Cecil results,
many of the C++ and Java programs obtained speedups on the
order of 25-35%, withjava-cup achieving an 80% speedup;
m2tom3 showed the largest speedup of the Modula-3
programs, gaining about 5% from cross-module inlining and
an additional 4% from the object-oriented optimizations. In
the non-Cecil programs, class hierarchy analysis was more
effective than profile-guided class prediction.

The performance gains obtained by applying these
optimizations do not come without cost; both compile time
and compiled code space typically increase as a result.
Compile time increases can be broken into two components:
the direct cost of performing the analysis/optimization and the

Figure 2: These graphs show application speedup relative to thebase configuration of the applica-
tion. For the two all-virtual C++ programs, speedups are relative to thebase configuration of the
original application, and an additional bar,base-av, is shown. The impact of augmenting thei, i-
CHA, andi-CHA-exh configurations with profile-guided class prediction is shown by the additional
height of the cross-hatched portion of each bar. For some configurations, the impact of profile data
was negligble, and thus is not visible above.

instr-sched typechecker vortex
0

2

4

6

8

10

12
S

pe
ed

up
Cecil

java-cup javac
0.0

0.5

1.0

1.5

2.0

S
pe

ed
up

Java

ixx ixx-av ktsim ktsim-av eon porky
0.0

0.5

1.0

1.5

S
pe

ed
up

C++

m2tom3 m3fe
0.0

0.5

1.0

1.5

S
pe

ed
up

Modula-3

prover

base-av
inline
i
i-CHA
i-CHA-exh
x + profile

indirect cost of increasing the amount of inlining, and thus

increasing the amount of time spent in other compilation

phases. For these programs, we found that the majority of the

compile time increase was attributable to other compilation

phases being faced with larger control flow graphs after

inlining. In the worst case, observed for a subset of the non-

Cecil programs, compilation time doubled betweenbase and

inline, and doubled again betweeninline and any of the other

more optimized configurations. However, Vortex is a research

compiler, designed for ease of extension rather than

compilation efficiency, and so the magnitude of the compile

time increases may not be indicative of what would be seen if

these techniques were implemented in a production compiler.

In contrast, code space costs were modest. For the C++

programs, compiled code space grew by 3% to 20% over the

base configuration. For the other three languages, code space

changes ranged from -10% to +4% overbase.

The failure ofprover andm3fe to benefit more substantially
from these optimizations was foreshadowed by the average
cycles between message sends metric (1522 and 2433
respectively): those two Modula-3 programs spend little of
their time performing dynamic dispatching. Overall, the
dynamic number of applicable methods metric was a good
predictor of the effectiveness of class hierarchy analysis. The
three programs which saw the smallest reduction in message
sends (m3fe, porky, andeon), also had the smallest dynamic
percentage of call sites with a single applicable method.
However, this metric was not a perfect predictor;ktsim looked
very similar toeon, but a large fraction of its message sends
were eliminated by class hierarchy analysis. The class test
efficiency metric was suggestive of the effectiveness of
receiver class prediction, but was not always accurate because
Vortex only inserts class tests based on profile information
when the target method is small enough to be inlined, and the
metric does not acount for target method size.

In addition to improving the performance of existing
applications, high-level optimizations like class hierarchy
analysis and receiver class prediction can reduce the need for
programmers to hand-optimize their programs. For example,
the version ofktsim that was provided to us had been hand-
optimized by manually removing all virtual function calls
from the common execution paths. This version compiled
without class hierarchy analysis performed slightly worse than
the all-virtual version optimized automatically with class
hierarchy analysis.

6 Related Work

Several other projects have worked on implementing and
assessing advanced optimizations for hybrid languages:
Calder & Grunwald, Aigner & Hölzle, Bacon & Sweeney, and
Pande & Ryder have looked at optimizing C++, and
Fernandez and Diwan, Moss, & McKinley have looked at
optimizing Modula-3.

Calder and Grunwald consider several ways of optimizing
dynamically-dispatched calls in C++ [Calder & Grunwald 94].
They examined some characteristics of the class distributions
of several C++ programs and found that although the potential
polymorphism was high, the distributions seen at individual
call sites were strongly peaked, suggesting that profile-guided
receiver class prediction would pay off. However, they only
simulated the effects of converting indirect calls to direct calls
(ignoring other benefits such as inlining), and they did not test
this hypothesis by implementing class prediction in a
compiler.

Aigner and Hölzle implemented a prototype system to
compare class hierarchy analysis and profile-guided receiver-
class prediction for C++ programs [Aigner & Hölzle 96].

Their system works by first combining a C++ program
composed of multiple source files to produce a single,
monolithic C++ file. This file is then fed into their optimizer,
which works as a source-to-source transformation, producing
another C++ file (that has been optimized with some
combination of class hierarchy analysis and profile-guided
receiver-class prediction). Finally, this single file is compiled
with a native C++ compiler to produce the final program
executable. One major difference with the Vortex approach is
that they leave inlining to be done by the host C++ compiler,
rather than performing it in conjunction with class hierarchy
analysis and class prediction. This has the effect of preventing
their preprocessor from analyzing the to-be-inlined callee in
the context of its call site, and analyzing the rest of the caller
using static class information derived from the callee. This
lack of integration also biases their results on the effects of
combining class hierarchy analysis with profile-guided
receiver class prediction because the bodies of methods that
are inlined via class hierarchy analysis do not benefit from
class prediction, thus making class hierarchy analysis appear
to be less effective than it actually would be in a fully
integrated implementation. On the two benchmarks we have
in common (ixx andporky), Vortex was able to eliminate a
larger percentage of the virtual functions calls and achieved
marginally better speedups. Finally, their system does not
support selective recompilation, since their source-to-source
transformation starts by combining the entire program into a
single C++ source file.

Bacon and Sweeney examined the effectiveness of three
purely static techniques for replacing virtual function calls
with direct calls in C++, one used when there was only one
method with a particular name (and argument type signature)
in the program, class hierarchy analysis, and rapid type
analysis (an extension of class hierarchy analysis that prunes
unreachable classes and methods in parallel with computing
the possible targets of call sites) [Bacon & Sweeney 96]. For
two of their five non-trivial benchmarks, ranging in size from
5,000 to 17,500 lines, rapid type analysis statically-bound
more calls than class hierarchy analysis. They did not look at
the effectiveness of run-time class testing (driven by either
class hierarchy analysis or execution profiles), nor did they
report bottom-line impact on execution time due to their
transformations. They do report that rapid type analysis
shrinks the size of the generated programs substantially.

Pande and Ryder apply aggressive interprocedural context-
sensitive pointer analysis to statically-bind virtual function
call sites in C++ [Pande & Ryder 94]. Their results (in terms
of the number of dynamically-dispatched call sites that are
statically bound) appear good, but their current benchmark
suite is made up of programs of less than 1000 lines, so it is
unclear how the quality and cost of their analysis will scale to

larger, more realistic C++ programs. Also, they do not report
the bottom-line run-time performance impact of their
optimizations.

Fernandez developed an optimizing Modula-3 system that
performs class hierarchy analysis, inlining, and procedure
specialization at link-time [Fernandez 95]. Her system delays
all code generation until link time: the compiler does a simple
translation of each source file to an intermediate
representation, and the linker combines these IR files and
generates code for the entire program. Her optimizations were
able to statically-bind between 2% and 79% of the indirect
calls and to reduce the number of instructions executed by 3-
11% in a suite of Modula-3 benchmark programs (compared
to the output of an unoptimizing compiler). Because the
linking step has become a bottleneck, her system performs
only limited, basic-block level optimization; there is no
comparison of her approach to that achieved using a more
optimizing compiler. Our benchmark suites share theprover
and m3fe programs. Fernandez reports that her version of
class hierarchy analysis removes roughly 79% of the indirect
calls inprover and 56% inm3fe, while we see only 20% and
0% drops, respectively, for our class hierarchy analysis.
However, the DEC SRC Modula-3 front-end by default
implements all cross-module procedure calls, even non-
dispatched calls, as indirect jumps. To construct a more
reasonable baseline system, we modified our Modula-3 front-
end to implement regular Modula-3 procedure calls using
direct jumps. Since Fernandez uses the unmodified Modula-3
front-end, her indirect jump reductions appear to include those
for the trivially-optimizable cross-module procedure calls,
overstating the effectiveness of her system at optimizing
dynamically-dispatched method calls.

Diwan, Moss, and McKinley developed a whole-program
optimizer for Modula-3 incorporating class hierarchy analysis
(which they call type hierarchy analysis), intraprocedural and
interprocedural class analysis, and a simple, monovariant heap
analysis to compute class sets for instance variables [Diwan et
al. 96]. They analyzed these algorithms on a range of Modula-
3 programs, and their results indicate that class hierarchy
analysis obtains nearly all of the benefit of the more powerful
analyses (ignoring the possibility of sends toNULL, a
distinguished object in Modula-3 that results in an error
whenever a message is sent to it). They present performance
results indicating less than a 2% performance increase, in part
because their system does no optimizations based on the
information computed by the analyses other than converting
message sends into direct calls; in particular, they do not
perform inlining. Our bottom-line speedup results for Modula-
3 programs echo their limited gains, although our speedups
appear slightly larger on the one benchmark (m2tom3) we

have in common. Diwan’s system also does not support
selective recompilation after programming changes.

Agesen and Hölzle compared the effectiveness of the
Cartesian Product interprocedural class analysis algorithm
[Agesen 95] with profile-guided receiver class prediction
[Hölzle & Ungar 94] for Self programs [Agesen & Hölzle 95,
Agesen & Hölzle 96]. In work related to our work in this
paper, they extrapolated their results to a hypothetical hybrid
language, Self++, by ignoring the influence of messages sent
to objects that would be primitive datatypes in a hybrid
language, concluding that the contributions made by both
optimization techniques (in terms of percentage of dispatches
eliminated) would be substantially reduced in hybrid
languages. Our work can be viewed as real experimental data
for a range of real languages to support their general
prediction about hybrid languages.

7 Conclusions

Our studies using Vortex have provided some initial data on
how well advanced optimizations for object-oriented
languages impact the performance of sizeable programs
written in a variety of languages, ranging from a very pure
language (Cecil) to low-level hybrid languages (C++), with
Java and Modula-3 providing intermediate points in the
language design space. As shown previously, programs in
dynamically-typed, purely object-oriented languages can
speed up by an order of magnitude through the application of
optimizations for message sends and closures. New results in
this study show that programs written in statically-typed,
hybrid languages can also achieve significant speed-ups, on
the order of 25-35%, with little cost in compiled code space
(although Vortex’s research prototype nature leads to long
compilation times). Our study benefits from using a common
optimizing compiler back-end applying essentially the same
suite of optimizations uniformly across all languages,
providing a “level playing field” on which to compare the
effectiveness of optimizations across programs and languages.

Vortex has been a good infrastructure for research on
optimizations for object-oriented languages. By translating
different languages into a common intermediate language that
still retains high-level information such as the location of
message sends, optimizations can be written once rather than
separately for each language. The supporting dataflow
analysis frameworks in Vortex make it much easier to add new
optimizations. Vortex’s dependency mechanisms to support
selective recompilation help to make interprocedural or
whole-program optimizations practical in a normal program
development environment. In the future, we hope to add
additional language front-ends (such as Smalltalk and ML)
and additional optimizations (such as interprocedural class

analysis, alias analysis, and data representation and layout

optimizations) to Vortex.

It may seem that Vortex is an ideal platform for comparing the

performance of languages, for instance assessing how the

performance of Cecil compares to C++. However, such cross-

language comparisons are extremely difficult to perform well.

First, realistically large programs need to be written in each

language being compared; to date, we know of only small

benchmarks of less than 1,000 lines that have been translated

into several different object-oriented languages. Second, a

decision must be made as to whether identical algorithms and

language features should be used in the different languages

(adopting a least-common-denominator style), or whether the

programs should be written using the best or most common

programming style for each language. The former strategy

may produce more closely comparable results, but the latter

strategy may better reflect the expected performance of the

typical program in each language. We have not tried to

perform cross-language comparisons to this extent. If such

benchmarks were developed, however, Vortex might be an

excellent test-bed for uniformly optimizing each of the

language-specific versions.

Acknowledgments

This researchis supported in part by an NSF grant (number CCR-
9503741), an NSF Young Investigator Award (number CCR-
9457767), an NSF Research Initiation Award (number CCR-
9210990), a grant from the Office of Naval Research (contract
number N00014-94-1-1136), and gifts from Sun Microsystems,
IBM, Xerox PARC, Pure Software, and Edison Design Group.We
would also like to especially thank the groups responsible for
developing the basis for several of our language front-ends:
Edison Design Group for donating their C++ Front End product,
Digital Equipment Corporation’s System Research Center for
producing DEC SRC’s Modula-3 implementation, and Sun
Microsystems for producing the Java Development Kit. Urs
Hölzle provided useful feedback on an earlier version of this
paper. We are grateful to Gerald Aigner, David Detlefs, Amer
Diwan, Mary Fernandez, Urs Hölzle, Dennis Lee, Ted Romer, and
Peter Shirley for providing us with benchmark programs, and to
Luca Cardelli for pointing us at Scott Hudson’s java-cup
program.

An initial release of the Vortex compiler and its Cecil front-end is
currently available. We expect that the next release of the system,
planned for late 1996, will include the C++, Modula-3, and Java
front-ends. More information about the Vortex compiler is
available via the World Wide Web at:

http://www.cs.washington.edu/research/projects/cecil

References
[Agesen & Hölzle 95]Ole Agesen and Urs Hölzle. Type Feed-

back vs. Concrete Type Analysis: A Comparison of Optimiza-
tion Techniques for Object-Oriented Languages. In
OOPSLA’95 Conference Proceedings, pages 91–107, Austin,
Tx, October 1995.

[Agesen & Hölzle 96]Ole Agesen and Urs Hölzle. Dynamic vs.
Static Optimization Techniques for Object-Oriented Languag-
es.Theory and Practice of Object Systems, 1(3), 1996.

[Agesen 95]Ole Agesen. The Cartesian Product Algorithm: Sim-
ple and Precise Type Inference of Parametric Polymorphism.
In Proceedings ECOOP ’95, Aarhus, Denmark, August 1995.
Springer-Verlag.

[Aho et al. 86]Alfred V. Aho, Ravi Sethi, and JeffreyD. Ullman.
Compilers: Principles, Techniques, and Tools. Addison-Wes-
ley, Reading, MA, 1986.

[Aigner & Hölzle 96]Gerald Aigner and Urs Hölzle. Eliminating
Virtual Function Calls in C++ Programs. InProceedings
ECOOP ’96, Linz, Austria, August 1996. Springer-Verlag.

[AK et al. 89] Hassan Aït-Kaci, Robert Boyer, Patrick Lincoln,
and Roger Nasr. Efficient Implementation of Lattice Opera-
tions. ACM Transactions on Programming Languages and
Systems, 11(1):115–146, January 1989.

[Bacon & Sweeney 96]DavidF. Bacon and PeterF. Sweeney.
Fast Static Analysis of C++ Virtual Function Calls. InOOPS-
LA’96 Conference Proceedings, San Jose, CA, October 1996.

[Bieman & Zhao 95]JamesM. Bieman and JosephineXia Zhao.
Reuse Through Inheritance: A Quantitative Study of C++ Soft-
ware. InProceedings of the Symposium on Software Reusabil-
ity. ACM SIGSOFT, August 1995. Software Engineering
Notes.

[Bobrow et al. 88]D. G. Bobrow, L.G. DeMichiel, R.P. Gabriel,
S.E. Keene, G.Kiczales, and D.A. Moon. Common Lisp Ob-
ject System Specification X3J13.SIGPLAN Notices, 28(Spe-
cial Issue), September 1988.

[Calder & Grunwald 94]Brad Calder and Dirk Grunwald. Reduc-
ing Indirect Function Call Overhead in C++ Programs. InCon-
ference Record of POPL ’94: 21st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages
397–408, Portland, Oregon, January 1994.

[Chambers & Ungar 89]Craig Chambers and David Ungar. Cus-
tomization: Optimizing Compiler Technology for Self, A Dy-
namically-Typed Object-Oriented Programming Language.
SIGPLAN Notices, 24(7):146–160, July 1989. InProceedings
of the ACM SIGPLAN ’89 Conference on Programming Lan-
guage Design and Implementation.

[Chambers & Ungar 90]Craig Chambers and David Ungar. Iter-
ative Type Analysis and Extended Message Splitting: Optimiz-
ing Dynamically-Typed Object-Oriented Programs.SIGPLAN
Notices, 25(6):150–164, June 1990. InProceedings of the ACM
SIGPLAN ’90 Conference on Programming Language Design
and Implementation.

[Chambers 92]Craig Chambers. Object-Oriented Multi-Methods
in Cecil. In O.Lehrmann Madsen, editor,Proceedings ECOOP
’92, LNCS 615, pages 33–56, Utrecht, The Netherlands, June
1992. Springer-Verlag.

[Chambers 93]Craig Chambers. The Cecil Language: Specifica-
tion and Rationale. Technical Report TR-93-03-05, Depart-
ment of Computer Science and Engineering. University of
Washington, March 1993.

[Chambers et al. 95]Craig Chambers, Jeffrey Dean, and David
Grove. A Framework for Selective Recompilation in the Pres-
ence of Complex Intermodule Dependencies. In17th Interna-
tional Conference on Software Engineering, Seattle, WA,
April 1995.

[Chambers et al. 96]Craig Chambers, Jeffrey Dean, and David
Grove. Whole-Program Optimization of Object-Oriented Lan-
guages. Technical Report TR-96-06-02, Department of Com-
puter Science and Engineering. University of Washington,
June 1996.

[Chien 93]AndrewA. Chien.Concurrent Aggregates (CA): Sup-
porting Modularity in Massively-Parallel Programs. MIT
Press, Cambridge, MA, 1993.

[Click & Cooper 95]Cliff Click and KeithD. Cooper. Combining
Analyses, Combining Optimizations.ACM Transactions on
Programming Languages and Systems, 17(2):181–196, March
1995.

[Dean et al. 95a]Jeffrey Dean, Craig Chambers, and David
Grove. Selective Specialization for Object-Oriented Languag-
es.SIGPLAN Notices, pages 93–102, June 1995. InProceed-
ings of the ACM SIGPLAN ’95 Conference on Programming
Language Design and Implementation.

[Dean et al. 95b]Jeffrey Dean, David Grove, and Craig Cham-
bers. Optimization of Object-Oriented Programs Using Static
Class Hierarchy Analysis. InProceedings ECOOP ’95, Aar-
hus, Denmark, August 1995. Springer-Verlag.

[Deutsch & Schiffman 84]L. Peter Deutsch and AllanM. Schiff-
man. Efficient Implementation of the Smalltalk-80 System. In
Conference Record of the Eleventh Annual ACM Symposium
on Principles of Programming Languages, pages 297–302,
Salt Lake City, Utah, January 1984.

[Diwan et al. 96]Amer Diwan, Eliot Moss, and Kathryn McKin-
ley. Simple and Effective Analysis of Statically-typed Object-
Oriented Programs. InOOPSLA’96 Conference Proceedings,
San Jose, CA, October 1996.

[EDG] C++ Front End 2.28. Provided by Edison Design Group,
Inc. http://www.edg.com.

[Fernandez 95]Mary Fernandez. Simple and Effective Link-time
Optimization of Modula-3 Programs.SIGPLAN Notices, pages
103–115, June 1995. InProceedings of the ACM SIGPLAN ’95
Conference on Programming Language Design and Implemen-
tation.

[Goldberg & Robson 83]Adele Goldberg and David Robson.
Smalltalk-80: The Lanaguge and its Implementation. Addis-
ion-Wesley, Reading, MA, 1983.

[Gosling et al. 96]James Gosling, Bill Joy, and Guy Steele.The
Java Language Specification. Addison-Wesley, Reading, MA,
1996.

[Grove et al. 95]David Grove, Jeffrey Dean, Charles Garrett, and
Craig Chambers. Profile-Guided Receiver Class Prediction. In
OOPSLA’95 Conference Proceedings, pages 108–123, Austin,
TX, October 1995.

[Hölzle & Ungar 94]Urs Hölzle and David Ungar. Optimizing
Dynamically-Dispatched Calls with Run-Time Type Feed-
back.SIGPLAN Notices, 29(6):326–336, June 1994. InPro-
ceedings of the ACM SIGPLAN ’94 Conference on
Programming Language Design and Implementation.

[Hölzle et al. 91]Urs Hölzle, Craig Chambers, and David Ungar.
Optimizing Dynamically-Typed Object-Oriented Languages
With Polymorphic Inline Caches. In P.America, editor,Pro-

ceedings ECOOP ’91, LNCS 512, pages 21–38, Geneva, Swit-
zerland, July 15-19 1991. Springer-Verlag.

[JDK] Java Development Kit. Sun Microsystems Inc. http://ja-
va.sun.com/.

[Johnson 88]Ralph Johnson. TS: AN Optimizing Compiler for
Smalltalk. InProceedings OOPSLA ’88, pages 18–26, Novem-
ber 1988. Published as ACM SIGPLAN Notices, volume 23,
number 11.

[Lea 90]Doug Lea. Customization in C++. InProceedings of the
1990 Usenix C++ Conference, San Francisco, CA, April 1990.

[Nelson 91]Greg Nelson.Systems Programming with Modula-3.
Prentice Hall, Englewood Cliffs, NJ, 1991.

[Pande & Ryder 94]HemantD. Pande and BarbaraG. Ryder.
Static Type Determination for C++. InProceedings of Sixth
USENIX C++ Technical Conference, 1994.

[Plevyak & Chien 94]John Plevyak and AndrewA. Chien. Pre-
cise Concrete Type Inference for Object-Oriented Languages.
In Proceedings OOPSLA ’94, pages 324–340, Portland, OR,
October 1994.

[Schaffert et al. 85]Craig Schaffert, Topher Cooper, and Carrie
Wilpolt. Trellis Object-Based Environment, Language Refer-
ence Manual. Technical Report DEC-TR-372, Digital Equip-
ment Corporation, November 1985.

[Shao & Appel 95]Zhong Shao and Andrew Appel. A type-based
compiler foor Standard ML.SIGPLAN Notices, pages 116–
129, June 1995. InProceedings of the ACM SIGPLAN ’95 Con-
ference on Programming Language Design and Implementa-
tion.

[SRC] DEC SRC Modula-3 Implementation. Digital Equipment
Corporation Systems Research Center. http://www.re-
search.digital.com/SRC/modula-3/html/home.html.

[Stroustrup 87]Bjarne Stroustrup. Multiple Inheritance for C++.
In In Proceedings of the European Unix Users Group Confer-
ence ’87, pages 189–207, Helsinki, Finland, May 1987.

[Stroustrup 91]Bjarne Stroustrup.The C++ Programming Lan-
guage (second edition). Addision-Wesley, Reading, MA, 1991.

[Tarditi et al. 96]David Tarditi, Greg Morrisett, Perry Cheng,
Chris Stone, Bob Harper, and Peter Lee. TIL: A Type-Directed
Compiler for ML. SIGPLAN Notices, pages 181–192, May
1996. InProceedings of the ACM SIGPLAN ’96 Conference on
Programming Language Design and Implementation.

[Tjiang & Hennessy 92]Steven W.K. Tjiang and JohnL. Hen-
nessy. Sharlit – A Tool for Building Optimizers.SIGPLAN No-
tices, 27(7):82–93, July 1992. InProceedings of the ACM
SIGPLAN ’92 Conference on Programming Language Design
and Implementation.

[Ungar & Smith 87]David Ungar and RandallB. Smith. Self: The
Power of Simplicity. InProceedings OOPSLA ’87, pages 227–
242, December 1987.

Appendix A Raw Data

Table 3: Execution Time (seconds)

Program native base inline intra
intra+
CHA

intra+
CHA+

exh

intra+
profile

intra+
CHA+
profile

intra+
CHA+
exh+

profile

instr sched 21.11 21.11 9.69 6.58 5.32 3.11 2.61 2.74

typechecker 333.82 338.82 103.44 64.79 50.55 33.84 30.08 29.78

vortex 3,617 3,617 1,500 903 700 615 515 486

java-cup 5.0 0.85 0.82 0.72 0.50 0.49 0.69 0.50 0.47

javac 62 10.21 10.02 9.70 8.43 8.17 9.17 8.32 8.08

m2tom3 23.50 23.42 22.29 21.87 21.36 21.91 21.92

prover 28.90 32.75 31.54 32.25 31.55 32.02 32.39

m3fe 21.90 22.78 22.91 22.28 21.90 22.16 22.13

ixx 0.86 0.92 0.80 0.79 0.70 0.74 0.70

ktsim 106.17 107.41 99.28 98.47 96.84 97.17 96.52

eon 76.22 82.60 70.54 65.39 63.78 64.12 64.41

porky 9.75 13.56 13.00 13.13 12.72 12.86 12.67

ixx-av 0.88 0.94 0.83 0.85 0.71 0.79 0.71

ktsim-av 113.60 116.67 107.73 108.24 100.60 107.42 98.98

Table 4: Dynamic Number of Message Sends (x1000)

Program native base inline intra
intra+
CHA

intra+
CHA+

exh

intra+
profile

intra+
CHA+
profile

intra+
CHA+
exh+

profile

instr sched 9,926 9,926 5,663 2,577 1,599 466 399 377

typechecker 117,899 117,889 62,357 22,382 13,713 6,961 6,410 5,605

vortex 1,097,784 1,097,784 617,005 246,662 153,559 124,909 90,153 71,686

java-cup 310 310 310 273 96 71 213 61 41

javac 2,555 2,555 2,555 2,093 965 814 1,586 725 691

m2tom3 2,804 2,804 2,804 2,710 844 1,736 798

prover 1,255 1,255 1,255 1,214 1,012 1,110 1,011

m3fe 564 564 564 564 564 427 427

ixx 96 96 96 96 56 4 4

ktsim 716 716 716 716 502 342 159

eon 7,401 7,401 7,401 7,401 6,861 3,402 3,402

porky 3,700 3,700 3,700 3,697 3,368 1,419 1,345

ixx-av 387 387 387 386 56 6 4

ktsim-av 45,803 45,803 45,803 45,803 502 44,168 159

