Vortex: An Optimizing Compiler for Object-Oriented Languages

Jeffrey Dean, Greg DeFouw, David Grove, Vassily Litvinov, and Craig Chambers

Department of Computer Science and Engineering
University of Washington
Box 352350, Seattle, Washington 98195-2350 USA
{jdean, gdefouw, grove, vass, chambers}@cs.washington.edu

Abstract Modula-3 [Nelson 91], much of the normal execution of
programs involves non-object-oriented constructs, and

tly the incid fd ically-dispatched calls i
profile-guided receiver class prediction have beerconsequeny © Incidence of cynamicaly-dispatched ca’s IS

) much lower than in pure languages. Thus, is it unclear how
demonstrated to greatly improve the performance o .) L
applications written in pure object-oriented languages, but th™U¢h overhead due to use of object-oriented features exists in
degree to which these results are transferable to applicatioPrograms written in these languages, and it is unclear how
written in hybrid languages has been unclespart to answer much benefit can be gained by applying advanced
this question, we have developed thertex compiler optimizations of the object-oriented features to programs in
infrastructure, a language-independent optimizing compilethese languages. Java [Gosling et al. 96], a language
for object-oriented languages, with front-ends for Cecil, C++somewhere between C++ and Cecil in terms of its purity and

Java, and Modula-3. In this papeve describe thedrtex gependence on object-oriented featurestersf another

C‘”T‘p!'e"? |ntermed|ate language, internal structure, an(interesting point in the language design space, and therefore
optimization suite, and then we report the results of

experiments assessing the feefiveness of diérent its need for advanced optimization techniques may be

combinations of optimizations on sizable applications acrosdifferent than both Cecil and C++.

these four languages. eV characterize the benchmark))
programs in terms of a collection of static and dynamic" this paperwe present a study of thefesftiveness of

metrics, intended to quantify aspects of the “object-oriented@dvanced object-oriented-focused optimizations across a

Previously techniques such as class hierarchy analysis an

ness” of a program. range of object-oriented languages (C++, Modula-3, Java, and
) Cecil). The study was conducted using tloet® compilera
1 Introduction language-independent optimizing compiler for object-

oriented languages that we have designed and implemented.
By compiling all programs in these languages with a common
optimizing back-end, we can ensure that each program
receives comparable treatment and optimizati€ortef

In recent years, it has been demonstrated that intra- ar
interprocedural static class analysis [Chambers & Ungar 9(
Plevyak & Chien 94, Agesen & Holzle 95], class hierarchy
analysis [Dean et al. 95b], and profile-guided receiver clas

prediction [Holzle & Ungar 94, Grove et al. 95] can greatlyThe next section of this paper reviews the optimization
improve the performance of dynamically-typed, purelytechniques; included in ovtex. Section 3 describes the

object-oriented languages such as Cecil [Chambers 9‘structure of the dftex compilerfocusing on the design of its
Chambers 93], Self [Ungar & Smith 87], and Concurrent. P 9 9

. . . intermediate language and reporting on our experience in
Aggregates [Chien 93]. These techniques have been high g g p g . P
T) . .~ bpuilding an optimizing compiler for a wide range of
effective in this context, since message sends are ubiquitol . .
. L . . languages. In Section 4 we describe the benchmark programs
and expensive; even the most primitive operations in thes 4 in this StUdVvA ¢ of this d it defi
languages are implemented via user defined methods gUsed In this SWAYAS part of this descriplion, we detine a

dynamic dispatching. Howevein statically-typed, hybrid C(}:Ilectlon. of r?temc and dynamic metrlchs with whlch t(:1
object-oriented languages such as C++ [Stroustrup 91] archaracterize the programs, and we use these metrics both to
better convey the internal structure of the programs and also to

attempt to predict when dérent optimization techniques are
likely to be most déctive in improving an applicatios’
performance. Section 5 presents the performance results.
Section 6 describes related work, and wWerajur conclusions

in Section 7.

2 Background compiler can convert unbounded information of the form “a
variable holds an instance of some (unknown) subclaG$ of

A compller.can replace a_dynamlc d|spatch with a statl_c Ca‘into a bounded set of possible classes. Only bounded sets of
whenever it can determine that a single method will be

. . . . classes can provide useful information to the optimikleus,
invoked for all possible receiver classes of that call site. £

. T . class hierarchy analysis addresses one of the key weakness of
message send that is replaced by a call in this fashion has be.

i . . . ~ intraprocedural class analysis by enabling the conversion of
statically bound Vortex uses five main techniques, described . .
;) . . : unbounded sets of classes, derived from static type
in the following subsections, to statically bind message send . , o

} e i) declarations or from the methsd specialized formal

Without additional programming environment support, .
. S . i ' parameters, into bounded sets of classes.
interprocedural optimizations like class hierarchy analysis an
cross-module inlining preclude rapid turnaround after2.3 Receiver Class Prediction
incremental programming changes. Section 2.5 briefly
describes the selective recompilation mechanism provided t
Vortex to allow whole-program optimizations and day-to-day
application development to coexist.

There are message sends that cannot be statically bound solely
through static analysis; some message sdadsvoke more

than one method at run-time. Howevitris still possible to
transform message sends of this type into a form that allows
2.1 Intraprocedural Class Analysis inlining of at least a subset of the possiblegearmethods.
Receiver class prediction is a simple local code transformation
that converts a dynamic dispatch into a run-time type-case
structure: one or more explicit in-line tests for particular
expected classes, each of which branches when successful to
a statically-bound or inlined version of thegar method for

that class, possibly followed by a final dynamic dispatch to
handle any remaining unpredicted classes. Receiver class
prediction can be driven either by information hard-wired into
the compileras in early Smalltalk and Self implementations
[Deutsch & Schifman 84, Chambers & Ungar 89], or by
profile-derived class distributions [Hoélzle & Ungar 94, Grove

et al. 95], or by static examination of the progmrolass
hierarchy [Chambers et al. 96].eWise the ternexhaustive
When a dynamically-dispatched message send is encounterclass testingo refer to class-hierarchy-guided class testing,
this mapping is consulted to determine if the receiver of thand profile-guided class jediction to refer to class testing
message is known to be a single class, or a bounded unionbased on dynamic profile information.

classes. If only a single receiver class is possible, or if a
classes in a union invoke the same method, then the mess:
send can be statically bound. Because intraprocedural cla
analysis has only local knowledge, it cannot statically bind &
message send if the receiver is known only to be an instan
of classC or some subclass @f, since an unknown subclass
of C may provide an overriding definition of the gat
method. This limitation implies that knowing the static type oflt is quite common for a method to contain multiple message
the receiver of a dynamically-dispatched message, as is tlsends to a single receiver value; for example, several messages
case in statically-typed languages like C++, Modula-3, animight be sent tself. If receiver class prediction is applied to
Java, is insdicient on its own to enable intraprocedural classeach of these message sends, redundant class tests will be
analysis to statically bind the message send, since ttintroduced. Splitting can eliminate these redundant tests by
possibility of an overriding method defined on a subclasduplicating paths through the control flow graph starting at
cannot be ruled out. memges after one test and ending with the redundant test to be
eliminated [Chambers & Ungar 90].

Intraprocedural class analysis uses a standard iteratiy
dataflow approach to compute for each program expression
set of classes such that any runtime value of the expression
guaranteed to be an instance of one of the classes in t
computed set [Johnson 88, Chambers & Ungar 90]. Th
analysis maintains a mapping from variables to sets of classe
and propagates this mapping through the proceslamitrol
flow graph. By default, variables map to the set of all possibls
classes, but literals and the results of object allocatioews)(
are mapped to singleton class sets. Class sets are combir
with set-union at control flow mge points, and class sets are
narrowed after a run-time class test conditional branch.

If a lamge number of receiver classes are possible at a call site,
testing for individual classes can be very expensive. However

if the number of taget methods is loythen run-timesubclass

tests can be inserted instead of class identity tests, leading to a
number of run-time tests on the order of the number of
possible methods rather than the number of possible classes.

2.2 Class Hierarchy Analysis

Class hierarchy analysis [Dean et al. 95b] broadens the 3002'4 Customization and Specialization

of the information available to the compiler by giving it accessCustomization and method specialization [Chambers & Ungar
to all of the class and method declarations in the progran89, Lea 90, Dean et al. 95a] are techniques that also can be
Given this global knowledge of the class hierarcthe used to statically bind messages sentetf, by creating

multiple compiled copies of a single source method, eac3.1 The Vortex Intermediate Language
specialized to particular receiver classes. Howeserce
Vortex does not support customization or specialization fo
languages that use dispatch tables to implement messa
sends (e.g., C++ and Modula-3), we do not consider thi
technique in our study

The \brtex intermediate language is the interface between the
different language front-ends and the compiler back-end, and
as such, it must allow the front-ends to describe the structure
of a program in such a way that the optimizations described in
Section 2 can be performed. In particularany existing
compilers for object-oriented languages (such as the DEC
SRC Modula-3 implementation) translate input programs into
a generic low-level form, where the object-oriented features
have been translated into sequences of standard imperative
constructs. This enables traditional back-ends to cope with the
new features, but it blocks analyses and optimizations that
need highetevel information about the original language
constructs. The a&ftex intermediate language supports both
traditional lowerlevel operations and selected higlerel
operations making things such as message sends, field
accesses, run-time type tests, and object creations explicit.
Individual language front-ends can choose high-level or low-
level translations for their language features. Amrtéx
optimization phases proceed, higherel constructs are
successively expanded into lowevel constructs, until code
generation takes place. The rest of this section describes the
primary global declarations and the kinds of executable
statements supported by theriéx IL

2.5 Selective Recompilation

Because of their global scope, interprocedural optimization
like class hierarchy analysis and cross-module inlining cal
introduce non-local dependencies in the compiled code, tht
preventing strict separate compilation. Howeveris still
possible to achieve rapid turnaround after programming
changes if the implementation keeps track of thest
dependencies and implements selective recompilation. Tt
Vortex compiler records the non-localfesits of whole-
program optimization in a dependency graph, which is store
in a persistent program database. When pieces of the sout
program are modified, the dependency graph is consulted
determine which object files must be recompiled. Our
experience with dfrtex has been that incremental compilation
is quite practical, and that most programming changes rest
in very few additional files being recompiled that were not
directly modified [Chambers et al. 95].

3.1.1 Classes and the Inheritance Hierarchy

3 Vortex Compller Infrastructure Vortex represents the progrartlasses as a directed acyclic

graph. The inheritance structure of the program is
communicated to the back-end by declaring each class and the
(possibly empty) list of superclasses from which it inherits.
The back-end supports multiple, non-replicating inheritance
(virtual inheritance in C++ terms). &\turrently rely on the
language front-end to handle other forms of inheritance, such
as replicating (non-virtual) inheritance in C++, although the
back-end could be extended to support other models of
inheritance as well. A sample class declaration in tréeY

ILis:

The basic structure of the compiler is shown in Figure 1. Eac
of the diferent front-ends does whatever parsing anc
typechecking are appropriate for its input language, and the
translates the input into theoNex compilers intermediate
language (IL), which is described in Section 3.1. The IL
representation of the program then proceeds through tt
various stages ofdrtex’s optimizer until code is generated;
this process is outlined in Section 3.2.

The usual way of adding a new source language todhex/
back-end is to reuse an existing public-domain or commerci: ¢l ass Square isa Rnonbus, Quadrilateral;
front-end, and modify it to output theolex IL. For C++, we To implement lookup rules for operations such as method
started with the Edison Design GrosipC++ Front End lookup and instance variable lookuporiéx treats the
[EDG], a commercial product used as the front-end for maninheritance graph as a partial ordg#roosing the most specific
industrial C++ compilers. For Modula-3, we modified the match according to the partial order and reporting an
front-end from the freely-available DEC SRC Modula-3 ambiguity otherwise. This partial ordering implements the
implementation [SRC]. For Java, we first use Sjavac Java simple rule that children override parents, which was derived
compiler program [JDK] (invoked with theDflag to perform from the Cecil language semantics [Chambers 93]. This can
as much optimization as possible in the existing front-end, taccommodate a wide range of languages whose semantics
avoid overstating the benefits obiex’s optimizations) to either match these or that have static typechecking rules that
translate Java source programs into Java bytecodes, and ttare more restrictive. For example, C++ has a stricter treatment
we modified thgavap bytecode “disassembler” to convert to of ambiguities, but C+§' static typechecker ensures that no
Vortex IL. Since no public-domain or commercial Cecil front- programs with ambiguities according to Cs-+ules produce
ends were available, we developed one from scratch. IL code. \rtex’s semantics are didient to handle the

Modula-3 Java

Saii Front-end
\ / ront-ends

-——— VortexIL @ === e e e e e e e — — ————
Vortex back end

Cecll

High-level Optimizations Program Database
static analyses source code
profile-guided optimizations interprocedural summaries
cross-module inline expansion recompilation dependencies

profile data

| Traditional Optimizations |

/

| C code gen. | | SPARC code gen. |

Cprogram >

Figure 1: Vortex Architecture

inheritance rules for single-inheritance languages such ehosen for the C++ and Modula-3 front-ends, preserves
Java, Modula-3, and Smalltalk [Goldge® Robson 83], and compatibility with separately-compiled code that uses the
to handle multiple-inheritance languages such as Cecil, C+-same layout rules and avoids having to encode class layout
and Tellis [Schafert et al. 85]. Howevesome languages use rules for these languages in the back-end. Howaesing the

other rules for method lookup (such as CLOS, which uses back-end perform class layout, which is the approach we have
left-to-right ordering of parents for resolving ambiguities chosen for the Cecil and Java front-ends, supports highelr
[Bobrow et al. 88]), and compiling such languages woulcanalysis of object structures (such as better alias analysis) and
require adding back-end support for more generallyopens the opportunity for optimizations that rearrange data
computing the required partial order from the inheritancerepresentations. (Recent work has shown that these can have
graph. substantial performance impact in the context of both Modula-

C++ and Modula-3 support parameterized classes and/<3 [Fernandez 95] and ML [Shao & Appel 9%yt et al. 96].)

methods (templates in C++ and generic modules in Modulét he front-end makes representation decisions, objects are
3). Currently the front-ends for these languages expand awagescried as a generic array of bytes of a particular size. Low-
the templates, so_cMex sees gnl_y unpargmetgrized classegyg| pointer operations are used to implement instance
and methods. This strategy is in keeping with how othe, aijapie accesses, and object allocation is implemented in
compilers implement these languages, but it does preveye mg ofmm | oc-type byte allocators. On the other hand, if
Vortex from performing optimizations to share code acrosihe pack-end makes representation decisions, then the front-
template instantiations where possible. end declares the instance variables of a class, including their
representations, and instance variable accesses and object
allocations are represented directly in the IL. Array accesses

Classes can have many feient possible representations, gimijarly have both low-level (pointdrased) and high-level
depending on how their instance variables are laid out angjrect) forms.

other factors such as alignment, padding, and the sizes

numeric data types. Representation decisions must be madeSome languages, including Cecil, C++, Java, anallig,
some level, and &ftex supports two strategies: either theallow an instance variable to be declared immutable, and the
front-end can lay out classes and structures completelyey ~ Vortex IL supports this annotation on instance variable
can provide information about instance variables to the bacldeclarations. Knowing an instance variable is immutable
end and allow the back-end to make layout decisions. Eacallows the optimizer to retain its knowledge about the instance
approach has advantages and disadvantages. Having the frcvariables value, if anyacross calls. For languages that use
end perform class layout, which is the approach we havlow-level accesses to instance variables{éx IL allows load

3.1.2 Instance Variables and Representations

instructions to be marked as from immutable locationsAll methods that are part of the same generic function share
enabling similar preservation of knowledge about thaithe same message name in their associate declarations.
memory location. This low-level form works even if the
memory location is only invariant in some contexts. For
example, in C++, “vtbl” words of objects are unchanged
outside of their constructor methods [Stroustrup 87].

Initially, we had a single construct in the IL that subsumed
both net hod andassoci at e declarations. Howevgmwe
changed this when we began work on the Modula-3 front-end,
since Modula-3 allows arbitrary procedures to be used as
The \ortex IL supports global variable declarations. A methods, perhaps in multiple places. Also, giving each
declaration specifies a representation and optionally the initimethod a unique name separate from the generic furstion’
value for the variable (even if the variable is an aggregate daallows direct non-dispatched calls to methods to be
type). represented easily

3.1.3 Methods and Procedures 3.1.4

The \ortex IL uses a notion of a generic function [Bobrow etgyecytable code in theodtex IL is represented as a series of

al. 8f8] to unify the concepts of procedures, mgthods, aNthree-address statements [Aho et al. 86], including the usual
multi-methods. Each call or message maps to a single genecomplement of arithmetic, logical, pointetbranching

function. A generic function contains a set of dynamica”y'(conditional, unconditional, and indexed), and direct and
overloaded methods, with each method indicating where iingirect procedure call-related statements. In addition, a

IL Statements

the programs class hierarchy it is attached. A regularnymber of highefevel object-oriented notions are reified in
procedure is modeled as a singleton generic function whosine \prtex IL, allowing the optimizer to more easily reason
sole method is attached to the (perhaps implicit) root of thypout them:

inheritance graph, while several singly- and/or multiply-
dispatched methods may be grouped together in one gene
function. Static overloading as in C++ and Java is resolved b
the front-end using a “name mangling” technique to encod:
the static agument types in the name of the message bein
sent; only dynamic overloading remains in thertex IL.
Method lookup and inlining work uniformly over this generic
function and method model.

A procedure or method implementation is communicated t
the back-end via aet hod definition in the ¥drtex IL, which
specifies the methagl'name, a list of formal gmments and
representations, a return representation, and a body of co
made up of ¥rtex IL statements (see Section 3.1.4 below). T
indicate where a method is placed in the inheritance hierarch
a separatassoci at e declaration is produced by the front-
end that names the generic function and the tuplegofrant
class specializers for the method. Singly-dispatched methoc
will have nonany specializers only on the receivegament;
multi-methods may specialize any of theigaments. @
illustrate how net hod and associ at e declarations fit
together consider the following C++ class:

Rhonbus, Quadril ateral {
void draw(int color);

cl ass Square:
vi rtual

s
If dr aw were introduced in th8hape base class, the front-
end might generate the following IL declarations:

cl ass Square isa Rhonbus, Quadril ateral;

net hod draw__6Square_int(this,color):void
{ ... IL code for draw. .}

associ ate draw__6Square_int with
draw__5Shape_i nt (@quare, @ny);

* Message senddMessage sends are a high-level operation

in the \brtex IL that provide stitient information for the
back-end to perform optimizations like class hierarchy
analysis and receiwalass prediction. As an example,
consider the following C++ code:

Shape* s = .. .;

s->draw col or);
This send ofdraw might be translated into the
following Vortex IL statement:

send draw__5Shape_int(s, color);

Subsection 3.1.5 describes two strategies for how
Vortex implements aend statement.

Instance variable accessedor languages where the
front-end generates instance variable declarations and
expects the dftex back-end to perform object layout,
accesses to instance variables are represented with
instructions that specify the object being accessed, the
name of instance variable, and the name of the class
where the instance variable was declared (in case there
are instance variables with the same name but declared in
different classes). For example, consider the following
Java code:

Rectangle r = ...;

r.upper_left = 100;
This instance variable access is translated into the
following Vortex IL statement, assuming that the
upper _| ef t instance variable was introduced in the
Rect angl e class:

r.upper_l eft @ectangle := 100;

» Object allocations.A simplenew statement is supported when implementing a send in lowlewvel terms, we augment
to allocate objects of a particular class. Static clasthe send IL statement to include the feét of the class
analysis can determine the static type of the result of thiidentifier in the receiver object (e.qg., the location of the “vtbl”
statement exactly pointer in the object in C++), as well as the entry number to
« Run-time class tests.Vortex IL supports both class Use in the dispatch table. This information isfisignt to
identity tests and subclass tests as explicit comparisondenerate the appropriate code to call indirectly through the

For example: dispatch table.
IT s is_class Rectangle goto ...; Keeping the table generation in the front-ends has the
If s inherits_from Shape goto ...; advantage of not requiring the back-end to deal with the

The Java front-end outputs these tests to implemeicomplexities of dispatch table layout (which isfidiilt to do
dynamically-checked type casts. Although notin the presence of multiple inheritance), and it preserves
currently implemented in high-level form, the compatibility so that we can call separately-compiled code
Modula-3 front-end could also use these run-time testfrom our generated code. Howeyiéplaces some limitations
for its TYPECASE andNARROWfeatures. on the optimizations that the back-end can perform. In
Subsection 3.1.6 describes implementation strategieparticular because dispatch tables are not exposed at a high
for class tests. enough level, the back-end cannot perform optimizations that
« Type assertions Type assertions communicate static Would require generating drent dispatch tables. Examples
class information from the front-end to the back-end. Inof ~ such optimizations include customization and
general, a type assertion is a guarantee from the front-erspecialization [Chambers & Ungar 89, Lea 90, Dean et al. 95a]
to the back-end that a particular value holds an instancand converting a C++-style method from virtual to non-virtual
of a particular set of classes at a particular program pointO reduce the size of dispatch tables, when the back-end is able
Similarly to run-time class testspiex IL supports class to detect that the method is not overridden anywhere in the
identity and subclass assertions: program. Howeveitin the presence of class hierarchy analysis,
Vortex is able to streamline the virtual function calling
sequence for C++: by detecting portions of the class hierarchy
that do not use multiple inheritance, one pointer adjustment
per call can be eliminated.

assert_type r is_class Rectangl e;
assert_type s inherits_from Shape;

Class identity assertions are output by the front-end
when a language-level operation has just created
value that is known to be of a specific class (e.g.3 16
allocating a new object). Subclass assertions ar~ "™
output whenever the front-end has information abouror most languages, implementing a class identity test is
the static type of a value that might be useful to theiraightforward: load the class identifier from the object (at a
back-end optimizer (e.g., the static type of thegnguage-specific tsfet) and test it against a constant (derived
algyments of a method or the result of an instanc¢q, the class in a language-specific way). Howeve€++
variable access). this test is complicated by the fact that, in the presence of
3.1.5 Implementing Message Sends multiple inheritance, an object can have multiplefedént
“vtbl” addresses, each for ééfent statically-typed views of
the object [Stroustrup 87]. oT support C++-style class
identifiers efectively, the front-end annotates each class with
a mapping from static type views to the name of \tti#

) . “constant stored at thatfeét. The back-end then uses the
dynamically generate a piece of executable code per call Shnown static type of the object being tested to determine
that linearly tests for th& most common receiver classes,

falling back to a hash table lookup if the cache overflows. Th

PIC-based strategy is general, since it does not requilEfficient constant-time subclass testing can be implemented in
dispatch table layout algorithms, but it can be le§isiefit languages having only single inheritance with a load
than table-based implementations. instruction or two followed by a pair of comparisons. In
languages with multiple inheritance, subclass testing is more

Implementing Run-Time Class Tests

Vortex currently supports two implementation strategies fol
message sends, one based on dispatch tables and one base
polymorphic inline caches (PICs) [Holzle et al. 91]. For Cecil
and Java, we select the PIC-based implementation stratec

whichvtbl constant to compare against.

For C++ and Modula-3, we implement message sends usir

the language’ native table indexing strat drely onthe : . . . L .
guag g eAn y Trampoline functions are another technique for eliminating this

Ia.lnguage fr_ont-end to generate the appro_pria.te tables (i.¢ hointer adjustment in the common (non-multiple-inheritance) case,
virtual function tables in C++ and method suites in Modula-3) but they incur a higher cost when multiple inheritance is actually

For the back-end to produce the right table indexing sequen¢ used.

complex. In our ¥rtex implementation, we simply compute lowered by expanding them into sequences of simpler
an NxN boolean matrix of subclass relations, whires the operations. In this section we highlight some of the interesting
number of classes in the program. Thg>th entry indicates stages in this transformation.

whether or not the class with the uniquéiila subclass of the
class with idj. Alternative encodings of the subclassing
relationship are possible, representingfedént time-space
tradeofs; Ait-Kaci et al. provide a useful overview offefient
lattice operations that discusses many of these alternativ
[AK et al. 89].

A central piece of supporting infrastructure in this process is
Vortex’s iterative dataflow analysis framework. All of the
analyses and transformations rely on this framework to
manage the details of iterative dataflow: control flow graph
traversal, maging dataflow information at control flow
meges, fixed-point convgence testing for loops, and graph
transformations. Clients of the framework simply provide an

) analysis closure that encapsulates the appropriate flow
Many languages support some form of exceptional contrcynctions and an analysis-specific domain class that

flow: Modula-3 supports traditional exceptions, C++ and JaV‘impIements thecopy, meet, and reached_convergence
support object-based exceptions, and Cecil, like Smalltalk anyethods. (drtex's IDFA framework is similar in spirit to the
Self, has non-local returns that allow a nested closure to retu gy 4yjit system developed by Tjiang and Hennessy [Tjiang &

directly from its lexically-enclosing method. Thentéx IL Hennessy 92].) Analyses written separately usipgtex's
describes exceptions by treating calls and sends that can rag.a mework can also be composed so that they run together

3.1.7 Exceptions

exceptions as control flow branches, with the exceptione
return branch passing to an exception handler lalmeteX
supports two implementation strategies for exceptions: on
based on frame-by-frame propagation (using special retur
calling conventions and tests after each procedure call that c:
raise an exception), and one based on the languag#ime
systems setjmp/longjmp mechanism (where aetjmp is
performed when entering a “try” block andl@agjmp is

simultaneously thus alleviating potential phase-ordering
problems.
conditions under which the
optimizations will produce better results than repeated
applications of the original separate optimizations [Click &
Cooper 95].)

(Click and Cooper describe the theoretical
resulting combination of

The major phases inovtex’s compilation of a control flow

invoked to raise an exception). Cecil and Java use thgraph are:

propagation-based method, while Modula-3 uses its owi
setimp/longjmp-based mechanism; none of our C++
programs use exceptions.

Originally, we used a lowdevel form of exceptions for
Modula-3, with the front-end generating explicit calls to
setjmp to mark the beginning oFRY blocks. Howeverthe
Vortex optimizer was performing incorrect optimizations
because its dataflow analysis did not understand the stran
control flow that can be introduced in the presencegmp.

To avoid sacrificing optimization in the presence of
exceptions, which is the normal strategye opted to
introduce a high-level explicit form for specifying the possible
control flow in the presence of exceptions, anorték’s
dataflow analyses are left unhindered. Howgeversafely
compile programs that calketimp explicitly, \Vortex's
dataflow analyses should be modified to cope with its irregule
control flow under the assumption that explicit calls to
setjmp, other than for implementing exceptions, are likely to
be rare.

3.2 Optimization Phases

Vortex takes the IL representation of the program produced k
one of its front-ends and performs a series of analyses ai
transformations on its way to generating optimizedetar

code. As part of this process, high-level IL operations art

» Loop identification A dominatorbased algorithm
identifies the loops and the loop nesting structure of the
procedure being compiled. gktex alternatively allows
front-ends to provide this information directBvoiding
recomputing it in the back-end.) oiex’s IDFA
framework currently requires that control flow graphs be
reducible (roughlyhave a single entry node) [Aho et al.
86]; the loop identification pass detects irreducible flow
graphs and reports them as errors.

» Object-oriented optimizationsThis phase utilizes the
iterative dataflow analysis framewaosk’ composer
interface to run a number of separately-written
optimization passes simultaneoyslthus potentially
arriving at a better final fixed-point due to the sygistic
relationships among the passes. Intraprocedural class
analysis, class hierarchy analysis, profile-guided receiver
class prediction, inlining, splitting, must-alias analysis,
and an enhanced common subexpression elimination
(CSE) pass all run in parallel. In addition to standard CSE
transformations, the enhanced CSE pass also performs
constant and copy propagation, constant folding,
simplification of arithmetic operations, and elimination
of redundant load and store operations. Because inlining
is included as an integral part of the combined pass, when
a routine is inlined it is immediately optimized. This

allows the callee to be fully optimized in the context of its « The original Cecil compiler was geared towards a
caller and for the downstream code of the caller to benef language with a type-safe, pure data model. Fote¥,

from any information gained by inlining the callee we needed to do significant retrofitting to support non-
[Chambers & Ungar 90]. word-sized datatypes, uncontrolled pointers, structures
 Closure optimizations:Partial dead code elimination and arrays with non-scalar elements, and so on.

delays closure object creations until absolutely necessaigsih Modula-3 and Java had nicely-modularized existing
(hopefully removing them entirely from the common qn ends that presented a good interface for compiling into
case paths) and environments are marked to be €ithy,e \prtex IL: DEC SRC Modula-3 supports a separate code-
heap-allocated or stack-allocated. This phase has ryenerator interface, which we added a new implementation of,
effect in languages lacking closures or nested procedure,ng java defines a bytecoded intermediate language that we
» Lowering t High-level operations like table sends andtranslated in a straightforward way into thertéx IL. DEC
class tests are expanded into an equivalent sequence SRC Modula-3 code-generator interface includes only low-
lower level operations. All accesses to variables definelevel operations, so we had to augment the interface with high-
in lexically-enclosing scopes are expanded into arlevel operations; Jav&' bytecodes are already at the
explicit series of loads. appropriate level for dftex.

e Standad optimizations A suite of traditional
optimizations such as CSE (again, since new
opportunities for optimization have been exposed during
the lowering phase), dead store elimination, and dea
assignment elimination are applied.

EDG’s C++ front-end was also reasonably modwd#though

we had to start with an annotated parse tree and implement

intermediate code generation to tretéx IL. The complexity

and size of the C++ language made this a mofieuif task

than the other two languages, but the real obstacle to gathering

+ C code generatianif Vortex is generating C code, then and compiling C++ applications wittoxtex is that there is no
code is produced now and compilation ends. Thewell-defined C++ language in common use: each program we
generated C code is portable across platforms with thgathered would only compile on a subset of compilers, or used
same word size. Otherwise the following additional compilerspecific extensions, or used a version of the language
stages occur: that was diferent than what EDG’front-end expected. This

« Lowering I Remaining high-level nodes and complex Situation makes it quite di€ult to do compiler research for
operators are expanded. After this second lowerinC++.
phase, most IL operations can be implemented in a sing|

oo ! A final difficulty is that some C compilers cannot cope with
machine instruction.

the C code ¥rtex produces. Whad to go to some lengths to

« Standad optimizationsepeated produce C code that did not have functions or basic blocks that

« Low-level optimizations Graph coloring-based were too long or to produce files that had too many global
intraprocedural register allocation and instructionsymbols. Machine-generated programs have quiterelift
scheduling. characteristics than human-generated programs, and we

encountered the same kinds of problems as other researchers

+ Assembly code generation N .
in trying to compile our output.

3.3 Experience

Vortex originally was a Cecil-specific compiléut over the 4 Metrics for Descnbmg Object-Orlented

last year or so we reworked it to be more language Programs

independent. Starting with Cecil first had both benefits ani programs structure and the degree to which it uses object-
drawbacks: oriented language features, such as inheritance and message
» The original Cecil compiler already supported a set oisends, have a profound impact on thieaiveness of high-

sophisticated optimizations aimed at a powerful set olevel optimizations such as class hierarchy analysis,
language features, such as multiple dispatching, multiplexhaustive class testing, and profile-guided receiver class
inheritance, and closures. Since the other languages vprediction. Therefore, before we present our experimental
compile mostly have subsets of Cexibbject-oriented assessment of these techniques, we first define several metrics
language features, only a few small changes were needfor describing object-oriented programs and use them to
for the \brtex compiler;associ at e declarations are characterize our benchmark suite. These metrics attempt to
one enhancement of the original Cecil compiéerd we quantify interesting properties of the programhternal
had to generalize Cedl'exception handling support to structure as well as predict how much an application can be
cover what is used in Modula-3 and Java. expected to benefit from a particular optimization.

4.1 Metric Definitions 95]. Due to space constraints, we only use the “first class

. .) same” metric here.
We considered a number of faéifent metrics for

characterizing our applications. After evaluating how well4.2 Applying the Metrics
they captured the underlying program structure and usage we applied the metrics defined in the previous section to a
object-oriented language features, we selected the followingymper of medium-to-lge applications written in Cecil,
metrics as being the most illuminating: Java, Modula-3, and C++.able 1 summarizes several

« Number of Immediate Pants Measures the number of distinguishing language features.

immediate parents of each class in the program; indicate

the degree to which multiple inheritance is utilized. Table 1: Language Characteristics

* Number of Immediate Childn Measures the number of . All .

. ; : . Object . Multiple
classes that directly inherit from each class in thglLanguage Model Typing |(Methods Inheritance?
program; indicates the branching factor (breadth) ant Virtual? '
“bushiness” of the class hierarchies.

Cecil Pure Dynamic? |Yes Yes
* Maximum Distance to Root of Inheritance Hieay:. - .
The longest path from each class to the root of it{Java Mostly ~|Mostly Yes Yes
inheritance hierarchy; indicates the depth of the clas pure static
hierarchies used by the program. Modula-3 ||Hybrid |Static Yes No
* Number of Applicable Methodsleasures the number of o4+ Hybrid |Static No Yes

applicable methods at a dynamically-dispatched call site
optionally weighted by the execution frequency of the

call site. Class hierarchy analysis works well whengelar L2 . .

b f call sites h inal licabl thod result, the optimizer ignores static type declarations and
num ero ca. Sites have a_smge app Icable metho ensures type-safety through dynamic checks where
while exhaustive class testing applies when a few needed.

methods are possible at a call site. b. fi nal methods cannot be overridden, although they can

» Class Est EfficiencyMeasures the fraction of calls at a override other methqu. . .
c. Java supports multiple subtyping although only single

call si.te that.go to the most common receiver class at th: code inheritance. Our number-of-parents metric indicates
call site, weighted by the execution frequency of the cal the total number of supertypes and superclasses of a class.
site. This histogram will always be a subset of the one¢
representing the dynamic number of applicable methodseyerg) of these language characteristics haveya iapact
at a call site. Profile-guided receiver class prediction caly, the efectiveness of the object-oriented optimizations.
work well if the most common class at a call site is muctgecayse of the much higher frequency of message sends in
more common than cher classes; S|m|lar|ty_between th|pure languages compared to hybrid languages, the impact of
histogram and the histogram for the dynamic number oihe gpject-oriented optimizations is much more dramatic.
applicable methods implies that dynamically-importantgiatic type declarations are excellent fodder for class
call sites are dominated by a single receiver class. hierarchy analysis, so one would expect it to be mdeetéfe

« Average Cycles Between Message Sehtssures the in statically-typed languages.

average number of cycles elapsed between messaTgple 2 describes the application suite and presents the results
sends. As this value increases, we expect the overeyg applying the metrics to the programse se histograms to
performance impact of the optimizations to decrease. yjsyally display the metrics; the height of each bar represents
the percentage of all elements whose metric value corresponds
to the barsx-coordinate For C++, we also examined a version
of two of the benchmarks where we hand-modified the
programs to make all methods virtual, to explore an alternative
programming style; these two benchmarks are identified with
an-av suffix.

a. Cecil allows mixing statically- and dynamically-typed
code, and running the static typechecker is optional. As a

Bieman and Zhao also used the first three of these metrics (a
some additional ones) in their study of inheritance in C++
applications [Bieman & Zhao 95]. They utilized the metrics to
assess the amount of code reuse through inheritancgé lar
C++ programs; in contrast, we are interested in characterizir
how the structure of the inheritance hierarcligas the need
for optimization. In previous work, we applied several metriccAll of our benchmarks are substantial in size, with all at least
to measure the peakedness and stability of the profile data us10,000 lines and most over 20,000. The Cecil programs have
to drive profile-guided receiver class prediction [Grove et althe lagest and deepest class libraries, wjftvac and

-l | [~ | - —lll- |-_-l -———— —
pua juol}
eeve 0LTT /0T |6¥8°0S €-8[NpoN ajew
— — - R <
" " T m I " g
Janoud c
(441 80T 6€ L6V'02 walosy L 1anoud D
w
1 — -:— = i L ! | | ||l—— || £-e|Npon
01 Z-e|npoN
6Ly Zey |SOT |S00°8T SU9AUOD | EWoIZW
e ._ - ...---._ — - el [— = B Areiqy| pis
00L'€T+ 18)idwod
ove GoYT |G9Z |00¥'Se ener oenel s
[R P R I —_— <
" " || - Areqy) ‘pis 9
002'2T+ loresauab
S91 8Y ¥2T |00Z'6 Jasted ener | dno-enel
- lll-I -llllll-- Illllllll— ||||II-I-II lll— U | e \Cm_ﬂ__ .Uuw ‘_w__QEOO
000'TT + Buiziwndo
16T 290°0T | 90€T |00S'89 X8MOA X9HOA
- l||I- l|||l||I- l||||||ll— el | | b lll— | | >_.®‘_Q__ ‘s O
- 000'TT + JaxoayodadAl | uaxoayd %
0.1 /89% |609 |000°0Z 199D -adhy || =
0 0I__ G 0 0T § 0T__S 0
+€| lﬂl-u-o 0 +m.h||lm|-- 0 +l||||||I-— 0 'L pumm ngi 0 +01 |||||I-I—o M||-F 0 Areiqi| ‘pis 18|npayos
000°‘TT + uononsul payos
L2T 00T 00T 00T 00T 00T oot| O¥9T |ZTZ |00%'C [eqo|o Jsul
FH+
(+0T'6"0 = X) °
spuss spoylew dlweuAg onels (+01'6"0=X) [(+0T'6"0=X) | (5°0=X%) 7 1t
bbessaw | a|qeoldde Ayoresaly ua Ip|iyo sjuaJed M =} 200
usamiaq X UM 10 1004 WO 1} areIpawiwl areIpawiwl S Q o mww_ uonduosaq | weiboid
S9J0A0 gpuas abessaw e Xa2ueISIp YlIm X YUm X YIM 2 m } "
abelsany | 1oy Aouaidiye (+0T'670 = X) S9SSB|D JO 9 | SOSSB|D J0 95 | SISSE|D JO % = o
1591 558 spoyilaw ajqedidde W
MM spuas abessaw Jo 9]
wn

suonduosag uoneolddy :z ajgel

+0T S 0

0

‘'spoylaw a|geoldde alow

L.—_H Buiney salis |[ed WoJ) JUSS ale 944G pue ‘spoylaw ajgedlidde g yim sals |[ed Wolj Juss ale oGy ‘poyrsw ajgedldde T Ajuo si

218U1 a1aym Salls [[ed e 1uas ate welbolid ay) Ag uas sabessaw ay) J0 9z Alybnol eyl smoys welbolsiy Siyl ewyauaq Xxiayl
00T 1o} spoylaw s|qesgaaspuas abessaw Jo Jaquinu alwreuAp ayl Buike|dsip weiboisiy ayi jo Adod pabBjua ue siybu ayl ol

-.—— - Joye|nwis wa} (@]
-sks Aiowaw T
€qT 08S GTT |00€‘02 USALID 8dell Ne-wisp| >
| | — ||- —_— . I-._ - i | - M.
Jlassed c
o1 116 61T |009‘TT 7ql 0osaly ne-xxi || 2
- bl) | |||-|l-ll- |||||| | I-— I = -
Jaziwndo pua
0ce LSZT |¥.€ |000'V9 -2eq 4INS Aspiod
_ — - - _ — - I- L] T - ™~ II.-_ - IIIlIl— I-
0.9 Zvs |8€z |0o0'ty 1a0en Aey uos ||~
— — . P +
| I | —- 11 —- LI LY || —— - - Jore|nwiis way +
-sAs Alowaw
T006 96¢€ GTIT |00€‘02 USAUp adell wispy
0L S - f@q [*QL S __ 04 [+QL S __ 0, [+0T S __ 0, [+OT S __99 S 0
i I | ! n
Jasred
GG 00T 00T 00 00T 00T 001| T6L 6TT |009°TT 1@l 09sai4 XXI
FH+
(+0T'6"0 = X) °
spuss spoyraw olweuiq onels (+0T'6"0=%) |(+0T'670=X) | (§70=X) 7 1
bbessaw | a|qeoldde Ayoresaly ua Ip|iyo sjuaJed M =} 500
usamiaq X UM 10 1004 WO 1} areIpawiwl areIpawiwl S Q o mmw_ uonduosaq | weiboid
S9J0A0 gpuas abessaw e Xa2ueISIp YlIm X YUm X YIM 2 m } "
abelsany | 1oy Aouaidiye (+0T'670 = X) S9SSB|D JO 9 | SOSSB|D J0 95 | SISSE|D JO % = o
1591 sse) spoyilaw ajqedidde W
MM spuas abessaw Jo 9 =]
wn

suonduosag uoneolddy :z ajgel

m2tom3 also having deep class hierarchies, but all the
programs excepprover have at least a hundred classes anc
400 methods. Cecil programs used multiple inheritance
moderate amount, and the Java programs used multip
subtyping some, but the C++ programs made little if any us
of multiple inheritance.

Examination of the static number of call sites with only one
applicable method would suggest that class hierarchy analys
could be dEctive in most of the benchmarks, but the version
weighted by dynamic execution frequency indicates
somewhat lower expected benefion andktsim-av buck this

[4

so thebase configuration in these languages uses only
gcc optimizations with no drtex- level optimizations.)

inline : base is augmented with cross-module inlining.

intra: inline is augmented with intraprocedural class
analysis, hard-wired class prediction for common
messages (for Cecil programs only), and splitting.

intra+CHA : intra is augmented with class hierarchy
analysis.

intra+CHA+exh : intra is augmented with class
hierarchy analysis and exhaustive class testing.

trend. As expected, the C++ all-virtual programs have mucl
greater number of call sites amenable to class hierarct
analysis than the regular versions of these benchmarks. Abc
half the benchmarks have significant numbers of messag:
with 2-3 applicable methods, indicating that exhaustive clas
testing could be beneficial (althougbrtéx does not support
this technique for C++ or Modula-3 yet). Since the histogram:
reporting the diciency of profile-guided class testing are
usually similar to the dynamic number of applicable methoc
histograms, profile-guided receiver class prediction looks
promising.

intra+profile : intra is augmented with profile-guided
receiver class prediction.

intra+CHA+profile : intra is augmented with class
hierarchy analysis and profile-guided receiver class
prediction.

intra+CHA+exh+profile : intra is augmented with
class hierarchy analysis, exhaustive class testing, and
profile-guided receiver class prediction.

In all Vortex configurations, C code was generated and then
compiled by gcc version 2.6.3 with options-O2
The number of cycles between dispatches suggests that Ce.msupersparc. By producing C code, and compiling it with
Java, and the all-virtual C++ programs can expect the greatéthe same compiler used in the native configuration for C++
impact from the optimizations, while Modula-3 programs canand Modula-3, we attempt to minimize distortions produced
expect the least benefits fromortex's message-level by aspects of dftex compilation that are orthogonal to the
optimizations. Vith Cecil, optimization of other run-time high-level optimizations we are interested in studying. For the
overhead between dispatches, such as closure creations «C++ and Modula-3 programs, with the exceptiorpodver
the extra cost of multi-method dispatching, will increase the(13%) andporky (39%), allbase times were within 8% of
observed impact ofdftex’s optimizations. their native time. The lage performance diérence between
thenative andbase configurations foporky are explained by
porky’s frequent assignments of small 4 and 8 byte structures.
Currently Vortex does not attempt to optimize structure
assignments, compiling them down to callsbtmopy. The
gcc compiler compiles down small structure assignments to a
» native : Program is compiled by a native languagesequence of inline loads and stores. For Modula-3base
compiler For C++ programs we ugg++ version 2.6.3 configuration is losing some performance relativedtive
with options-O2 -finline-functions -msupersparc; for ~ due to compilation to C; nested procedures in particular are
Modula-3 programs we use the DEC SRC Modula-3not implemented asfifiently in base as innative. For both
compiler (which uses a modified versiongafc version Java programs, theative (interpreted) version was about 6
2.6.3 as its back-end) with th®2 option. For Java the times slower thandftex’sbase configuration, demonstrating
native configuration runs th@va interpreter on the the performance advantage of compilation.
programs precompiled .class files. There is no separat
native configuration for Cecil programs, sincertéx is
currently the only Cecil compiler

5 Performance Studies

To assess the performance impact oft&’s object-oriented
optimizations, we compare the following configurations:

All run-time measurements are CPU times (user time + system
time) gathered on a lightly-loaded ARCStation-20/61 with
128MB RAM, taking the median ofllruns. \Ariations in
base: Program is compiled byovtex with the collection CPU time from run to run of 10% are normal for this machine.
of traditional optimizations described in Section 3.2 butFigure 2 presents selected application speedup data; the
without any inlining or optimization of dynamically- complete set of application execution times and the dynamic
dispatched messages or class tests. (For C++ arnumber of message sends during each program execution can
Modula-3, the combined CSE pass is not fully functional,be found in Appendix A.

12+ Cecill 2.0+ Java
] KX
10+]
] K 1.5+
2 g S o]
sy
2] e 3]
Q i RXDOKX] Q 1
L 64 Pedotelede R L 1.0
o j PSR XA b Q -
n] KRN RS 0 .
1 ISR S
44 &P K _
] KPS KX
] 5 0.57
2 __ K X 4
i : 0.0 : ,
instrsched typechecker vortex java-cup javac
1.5 C++ 1.5+ Modula-3
2 1.0 — g 10
e] J e
))
) i)
jo [o
wn J n]
0.5 0.5
0.0 . - - . — 0.0
ixx ixx-av ktsim ktsim-av eon porky m2tom3 prover m3fe

Figure 2: These graphs show application speedup relative toatbe configuration of the applica- = base-av
tion. For the two all-virtual C++ programs, speedups are relative toatee configuration of the [l inline
original application, and an additional bagse-av, is shown. The impact of augmenting the i
CHA, andi-CHA-exh configurations with profile-guided class prediction is shown by the addition I-CHA

. .) - - . i-CHA-exh
height of the cross-hatched portion of each bar. For some configurations, the impact of profile a5 profile
was negligble, and thus is not visible above.
As expected, dftex's optimizations had the st impact on indirect cost of increasing the amount of inlining, and thus
the Cecil programs, improving their performance by an ordeincreasing the amount of time spent in other compilation
of magnitude over thdase configuration. Profile-guided Phases. For these programs, we found that the majority of the
class prediction was the single most important optimizatiorcompile time increase was attributable to other compilation
for Cecil, but each technique resulted in a non-trivialphases being faced with d¢mr control flow graphs after
improvement. Although less spectacular than the Cecil resultin|ining. In the worst case, observed for a subset of the non-
many of the C++ and Java programs obtained speedups on icecil programs, compilation time doubled betwbase and
order of 25-35%, withiava-cup achieving an 80% speedup; inline, and doubled again betweistine and any of the other
m2tom3 showed the layest speedup of the Modula-3
programs, gaining about 5% from cross-module inlining anc
an additional 4% from the object-oriented optimizations. In
the non-Cecil programs, class hierarchy analysis was moicompilation eficiency and so the magnitude of the compile
effective than profile-guided class prediction. time increases may not be indicative of what would be seen if
these techniques were implemented in a production compiler

The performance gains obtained by applying thes¢
optimizations do not come without cost; both compile time/" contrast, code space costs were modest. For the C++

and compiled code space typically increase as a resuPrograms, compiled code space grew by 3% to 20% over the
Compile time increases can be broken into two componentbase configuration. For the other three languages, code space
the direct cost of performing the analysis/optimization and thichanges ranged from -10% to +4% obase.

more optimized configurations. Howey¥ortex is a research
compiler designed for ease of extension rather than

The failure ofprover andm3fe to benefit more substantially Their system works by first combining a C++ program
from these optimizations was foreshadowed by the averaccomposed of multiple source files to produce a single,
cycles between message sends metric (1522 and 24:monolithic C++ file. This file is then fed into their optimizer
respectively): those two Modula-3 programs spend little oiwhich works as a source-to-source transformation, producing
their time performing dynamic dispatching. Overall, theanother C++ file (that has been optimized with some
dynamic number of applicable methods metric was a goocombination of class hierarchy analysis and profile-guided
predictor of the déctiveness of class hierarchy analysis. Thereceiverclass prediction). Finallythis single file is compiled
three programs which saw the smallest reduction in messawith a native C++ compiler to produce the final program
sends if3fe, porky, andeon), also had the smallest dynamic executable. One major tfence with the dttex approach is
percentage of call sites with a single applicable methocthat they leave inlining to be done by the host C++ compiler
However this metric was not a perfect predictasim looked rather than performing it in conjunction with class hierarchy
very similar toeon, but a lage fraction of its message sends analysis and class prediction. This has tifieceébf preventing
were eliminated by class hierarchy analysis. The class tetheir preprocessor from analyzing the to-be-inlined callee in
efficiency metric was suggestive of thefeetiveness of the context of its call site, and analyzing the rest of the caller
receiver class prediction, but was not always accurate becauusing static class information derived from the callee. This
Vortex only inserts class tests based on profile informatiolack of integration also biases their results on tiiecef of
when the taget method is small enough to be inlined, and thecombining class hierarchy analysis with profile-guided
metric does not acount for ggat method size. receiver class prediction because the bodies of methods that
. .) . .. are inlined via class hierarchy analysis do not benefit from

In addition to improving the performance of existing - . . .

L) L)) class prediction, thus making class hierarchy analysis appear
applications, high-level optimizations like class h|erarchyto be less déctive than it actually would be in a fully

analysis and receiver class prediction can reduce the need . . .
o . integrated implementation. On the two benchmarks we have
programmers to hand-optimize their programs. For example.

)) . in common ikx andporky), Vortex was able to eliminate a
the version oktsim that was provided to us had been hand- . . .
- . . ; larger percentage of the virtual functions calls and achieved
optimized by manually removing all virtual function calls

. : . . mamginally better speedups. Finalltheir system does not

from the common execution paths. This version compilec . - . :

. . . . support selective recompilation, since their source-to-source
without class hierarchy analysis performed slightly worse thal - . . .

. . 7) . transformation starts by combining the entire program into a

the all-virtual version optimized automatically with class _.)

. . single C++ source file.
hierarchy analysis.

Bacon and Sweeney examined théeafveness of three
6 Related Work purely static techniques for replacing virtual function calls
with direct calls in C++, one used when there was only one
method with a particular name (andjament type signature)
in the program, class hierarchy analysis, and rapid type
analysis (an extension of class hierarchy analysis that prunes
unreachable classes and methods in parallel with computing
the possible tgets of call sites) [Bacon & Sweeney 96]. For
two of their five non-trivial benchmarks, ranging in size from
Calder and Grunwald consider several ways of optimizin¢5,000 to 17,500 lines, rapid type analysis statically-bound
dynamically-dispatched calls in C++ [Calder & Grunwald 94]. more calls than class hierarchy analysis. They did not look at
They examined some characteristics of the class distributiorthe efectiveness of run-time class testing (driven by either
of several C++ programs and found that although the potentiiclass hierarchy analysis or execution profiles), nor did they
polymorphism was high, the distributions seen at individuareport bottom-line impact on execution time due to their
call sites were strongly peaked, suggesting that profile-guidetransformations. They do report that rapid type analysis
receiver class prediction would payf.dflowever they only shrinks the size of the generated programs substantially
simulated the éécts of converting indirect calls to direct calls
(ignoring other benefits such as inlining), and they did not tes
this hypothesis by implementing class prediction in a
compilet

Several other projects have worked on implementing an
assessing advanced optimizations for hybrid language:
Calder & Grunwald, Aigner & Holzle, Bacon & Sweenagd
Pande & Rder have looked at optimizing C++, and
Fernandez and Diwan, Moss, & McKinley have looked at
optimizing Modula-3.

Pande and Wler apply aggressive interprocedural context-
sensitive pointer analysis to statically-bind virtual function
call sites in C++ [Pande &\Rler 94]. Their results (in terms

of the number of dynamically-dispatched call sites that are
Aigner and Holzle implemented a prototype system tcstatically bound) appear good, but their current benchmark
compare class hierarchy analysis and profile-guided reeeivesuite is made up of programs of less than 1000 lines, so it is
class prediction for C++ programs [Aigner & Holzle 96]. unclear how the quality and cost of their analysis will scale to

larger, more realistic C++ programs. Also, they do not reporthave in common. Diwags’ system also does not support
the bottom-line run-time performance impact of theirselective recompilation after programming changes.

optimizations. .
Agesen and Holzle compared thefeefiveness of the

Fernandez developed an optimizing Modula-3 system theCartesian Product interprocedural class analysis algorithm
performs class hierarchy analysis, inlining, and procedurlAgesen 95] with profile-guided receiver class prediction
specialization at link-time [Fernandez 95]. Her system delay[H0lzle & Ungar 94] for Self programs [Agesen & Holzle 95,

all code generation until link time: the compiler does a simpléAgesen & Halzle 96]. In work related to our work in this
translation of each source file to an intermediateP@per they extrapolated their results to a hypothetical hybrid
representation, and the linker combines these IR files arlanguage, Self++, by ignoring the influence of messages sent
generates code for the entire program. Her optimizations wet0 objects that would be primitive datatypes in a hybrid
able to statically-bind between 2% and 79% of the indirecl@nguage, concluding that the contributions made by both
calls and to reduce the number of instructions executed by :OPtimization techniques (in terms of percentage of dispatches
11% in a suite of Modula-3 benchmark programs (Compare‘eliminated) would be substantially reduced in hybrid
to the output of an unoptimizing compiler). Because thelanguages. Our work can be viewed as real experimental data
linking step has become a bottleneck, her system perfornfOr @ range of real languages to support their general
only limited, basic-block level optimization; there is no Prediction about hybrid languages.

comparison of her approach to that achieved using a moi
optimizing compiler Our benchmark suites share tirever
and m3fe programs. Eernandez reports that her ver§|or1 Sour studies using dftex have provided some initial data on
class_hlerarchy analy5|§ removes roughly 79% of the mdlrechow well advanced optimizations for object-oriented
calls inprover and 5§% im3fe, while we §ee only 20% an.d languages impact the performance of sizeable programs
0% drops, respectivelyfor our class hierarchy analysis. written in a variety of languages, ranging from a very pure
However the DEC SRC Modula-3 front-end by default language (Cecil) to low-level hybrid languages (C++), with
mplements all cross-_quule_procedure calls, even norja s and Modula-3 providing intermediate points in the
dispatched calls,. as indirect jumpsc.).'ﬁonstruct a more language design space. As shown previousipgrams in
reasona_ble baseline system, we modified our Modula-3 fr(_)”dynamically-typed, purely object-oriented languages can
end to implement regular Modula-3 procedure calls USiNtpeeq yp by an order of magnitude through the application of
direct jumps. Since Fernandez uses the unmodified Modula:gstimizations for message sends and closures. New results in
front-end,_h.er|nd|re_ct.jump reductions appear to include thosy,:q study show that programs written in statically-typed,
for the trivially-optimizable cross-module procedure Ca”s*hybrid languages can also achieve significant speed-ups, on
overstating the ééctiveness of her system at optimizing yhe order of 25-35%, with little cost in compiled code space
dynamically-dispatched method calls. (although rtex’s research prototype nature leads to long
compilation times). Our study benefits from using a common
optimizing compiler back-end applying essentially the same
suite of optimizations uniformly across all languages,
providing a “level playing field” on which to compare the
effectiveness of optimizations across programs and languages.

7 Conclusions

Diwan, Moss, and McKinley developed a whole-program
optimizer for Modula-3 incorporating class hierarchy analysis
(which they call type hierarchy analysis), intraprocedural anc
interprocedural class analysis, and a simple, monovariant hei
analysis to compute class sets for instance variables [Diwan
al. 96]. They analyzed these algorithms on a range of ModulaVortex has been a good infrastructure for research on
3 programs, and their results indicate that class hierarctoptimizations for object-oriented languages. By translating
analysis obtains nearly all of the benefit of the more powerfudifferent languages into a common intermediate language that
analyses (ignoring the possibility of sends NWJLL, a still retains high-level information such as the location of
distinguished object in Modula-3 that results in an errormessage sends, optimizations can be written once rather than
whenever a message is sent to it). They present performanseparately for each language. The supporting dataflow
results indicating less than a 2% performance increase, in pzanalysis frameworks indftex make it much easier to add new
because their system does no optimizations based on toptimizations. \drtex’s dependency mechanisms to support
information computed by the analyses other than convertinselective recompilation help to make interprocedural or
message sends into direct calls; in particulhey do not whole-program optimizations practical in a normal program
perform inlining. Our bottom-line speedup results for Modula-development environment. In the future, we hope to add
3 programs echo their limited gains, although our speedufadditional language front-ends (such as Smalltalk and ML)
appear slightly lager on the one benchmarknZtom3) we and additional optimizations (such as interprocedural class

analysis, alias analysis, and data representation and laycReferences

optimizations) to grtex. [Agesen & Holzle 95|0le Agesen and Urs Holzle. Type Feed-
back vs. Concrete Type Analysis: A Comparison of Optimiza-

It may seem thataftex is an ideal platform for comparing the tion Techniques for Object-Oriented Languages. In

performance of languages, for instance assessing how ti SOPSLA'9S Conference Proceedingsges 91-107, Austin,

_ Tx, October 1995.
performance of Cecil compares to C++. Howgsach cross- [Agesen & Holzle 960le Agesen and Urs Hdlzle. Dynamic vs.

language comparisons are extremelsiclift to perform well. Static Optimization Techniques for Object-Oriented Languag-
First, realistically lage programs need to be written in each ©€S-Theory and Practice of Object Systers), 1996.

language being compared; to date, we know of only smalAgesen 95p|e_Agesen. The Cartesian Product_AIgorithm: Sim-
bench ks of | h i hat h b | ple and Prt_emse Type Inference of Parametric Polymorphism.
enchmarks of less than 1,000 lines that have been translat | proceedings ECOOP '95harhus, Denmark, August 1995.

into several dferent object-oriented languages. Second, ¢ Springer-Verlag.
decision must be made as to whether identical algorithms ar[Aho et al. 86JAlfred V. Aho, Ravi Sethi, and Jeffrey. Uliman.

language features should be used in thiemift languages ggmggggsi;g’rﬁzpllegégechmques, and Todisdison-Wes-

(adopting a least-common-denominator style), or whether th[Aigner & Holzle 96]Gerald Aigner and Urs Holzle. Eliminating
programs should be written using the best or most commao Virtual Function Calls in C++ Programs. IRroceedings
programming style for each language. The former strateg ECOOP '96 Linz, Austria, August 1996. Springer-Verlag.

may produce more closely comparable results, but the latt/AK €t @l 89]Hassan Ait-Kaci, Robert Boyer, Patrick Lincoln,
and Roger Nasr. Efficient Implementation of Lattice Opera-

strategy may better reflect the expected performance of tt tjons. ACM Transactions on Programming Languages and
typical program in each language.eWave not tried to Systems11(1):115-146, January 1989.
perform cross-language comparisons to this extent. If suc[Bacon & Sweeney 96DavidF. Bacon and Petér. Sweeney.

benchmarks were developed. howevesrtex might be an Fast Static Analysis of C++ Virtual Function Calls.O®PS-
enchmarks were developed, howe e 9 ea LA’96 Conference ProceedingSan Jose, CA, October 1996.

excellent test-bed for uniformly optimizing each of the [Bieman & Zhao 95amesVl. Bieman and Josephinga Zhao.

language-specific versions. Reuse Through Inheritance: A Quantitative Study of C++ Soft-
ware. InProceedings of the Symposium on Software Reusabil-

Acknowledgments ity. ACM SIGSOFT, August 1995. Software Engineering
Notes.

This researchs supported in part by an NSF grant (number CCR-[Bobrow et al. 88D. G. Bobrow, L.G. DeMichiel, RP. Gabriel,

9503741), an NSF oaung Investigator ward (number CCR- S.E. Keene, GKiczales, and DA. Moon. Common Lisp Ob-
9457767), an NSF Research Initiationvakd (number CCR- ject System Specification X3J1SIGPLAN Notices28(Spe-

cial Issue), September 1988.
9210990), a grant from the f@e of Naval Research (contract [Calder & Grunwald 94Brad Calder and Dirk Grunwald. Reduc-

number N00014-94-11B6), and gifts from Sun Microsystems, " ing Indirect Function Call Overhead in C++ Program<Cam-
IBM, Xerox FARC, Pure Software, and Edison Design Grap. ference Record of POPL '94: 21st ACM SIGPLAN-SIGACT
would also like to especially thank the groups responsible fo Symposium on Principles of Programming Languagegies
developing the basis for several of our language front-ends 397-408, Portland, Oregon, January 1994.

Edison Design Group for donating their C++ Front End product[Chambe'rS & Ungar 89fraig Chambers and David Ungar. Cus-

. . o tomization: Optimizing Compiler Technology for Self, A Dy-
Digital Equipment Corporatios’ System Research Center for namically-Typed Object-Oriented Programming Language.

producing DEC SRG' Modula-3 implementation, and Sun SIGPLAN Notices24(7):146-160, July 1989. Proceedings
Microsystems for producing the Java Development Kit. Urs of the ACM SIGPLAN '89 Conference on Programming Lan-

Holzle provided useful feedback on an earlier version of thic 9439€ Design and Implgmentaﬂon)
paper We are grateful to Gerald Aignebavid Detlefs, Amer [Chambers & Ungar 90Fraig Chambers and David Ungar. Iter-

. . . ative Type Analysis and Extended Message Splitting: Optimiz-
Diwan, Mary Fernandez, Urs Hblzle, Dennis Leed Romerand ing Dynamically-Typed Object-Oriented PrograiBtGPLAN

Peter Shirley for providing us with benchmark programs, and t¢ Notices 25(6):150-164, June 1990 .Rnoceedings of the ACM
Luca Cardelli for pointing us at Scott Hudserjava-cup SIGPLAN '90 Conference on Programming Language Design
program. and Implementatian

[Chambers 92Craig Chambers. Object-Oriented Multi-Methods
An initial release of the &ftex compiler and its Cecil front-end is in Cecil. In O.Lehrmann Madsen, editd?Pyoceedings ECOOP
currently available. Wexpect that the next release of the system 92, LNCS 615, pages 33-56, Utrecht, The Netherlands, June

planned for late 1996, will include the C++, Modula-3, and Jave 1992. Springer-Verlag.

) . . S [Chambers 93Craig Chambers. The Cecil Language: Specifica-
front-ends. More information about theoftex compiler is *“y "oy Rationale. Technical Report TR-93-03-05, Depart-

available via the \otld Wide Web at: ment of Computer Science and Engineering. University of
http://www.cs.washington.edu/research/projects/cecil Washington, March 1993.

[Chambers et al. 95Fraig Chambers, Jeffrey Dean, and David ceedings ECOOP '9Q1.NCS 512, pages 21-38, Geneva, Swit-
Grove. A Framework for Selective Recompilation in the Pres- zerland, July 15-19 1991. Springer-Verlag.
ence of Complex Intermodule Dependencieslith Interna-)))
tional Conference on Software Engineetirgeattle, WA, [JDK] Java Development Kit. Sun Microsystems Inc. http://ja-

April 1995. va.sun.com/.

[Chambers et al. 96Traig Chambers, Jeffrey Dean, and David [Johnson 88Ralph Johnson. TS: AN Optimizing Compiler for
Grove. Whole-Program Optimization of Object-Oriented Lan- Smalltalk. InProceedings OOPSLA '8pages 18-26, Novem-
guages. Technical Report TR-96-06-02, Department of Com ber 1988. Published as ACM SIGPLAN Notices, volume 23,
puter Science and Engineering. University of Washington number 11.

June 1996.
. . . [Lea 90]Doug Lea. Customization in C++. Rroceedings of the
[Chien 93]AndrewA. Chien.Concurrent Aggregates (CA): Sup- ~ 1990 Usenix C++ Conferenc&an Francisco, CA, April 1990.
porting Modularity in Massively-Parallel ProgramsMIT

Press, Cambridge, MA, 1993. [Nelson 91]Greg NelsonSystems Programming with Modula-3
[Click & Cooper 95[Cliff Click and KeithD. Cooper. Combining Prentice Hall, Englewood Cliffs, NJ, 1991.
Analyses, Combining Optimization&CM Transactions on [Pande & R
.) yder 94HemantD. Pande and Barbat Ryder.
Programming Languages and Systei®(2):181-196, March = gya4ic Type Determination for C++. Rroceedings of Sixth

1995. USENIX C++ Technical Conferenc&994.

[Dean et al. 95a]leffrey Dean, Craig Chambers, and David))
Grove. Selective Specialization for Object-Oriented Languag[Plevyak & Chien 94lohn Plevyak and Andred. Chien. Pre-

es.SIGPLAN Noticespages 93-102, June 1995.Aroceed- cise Concrete Type Inference for Object-Oriented Languages.
ings of the ACM SIGPLAN '95 Conference on Programming n Proceedings OOPSLA '9dages 324-340, Portland, OR,
Language Design and Implementation October 1994.

[Dean et al. 95bJeffrey Dean, David Grove, and Craig Cham- [Schaffert et al. 85Craig Schaffert, Topher Cooper, and Carrie
bers. Optimization of Object-Oriented Programs Using Static Wilpolt. Trellis Object-Based Environment, Language Refer-
Class Hierarchy Analysis. IRroceedings ECOOP '9%Aar- ence Manual. Technical Report DEC-TR-372, Digital Equip-
hus, Denmark, August 1995. Springer-Verlag. ment Corporation, November 1985.

[Deutsch & Schiffman 84L. Peter Deutsch and Allav. Schiff- [Shao & A
. : ppel 95Fhong Shao and Andrew Appel. A type-based
man. Efficient Implementation of the Smalltalk-80 System. In compiler foor Standard MLSIGPLAN Noticespages 116—

Conference Record of the Eleventh Annual ACM Symposiul 129, June 1995. IRroceedings of the ACM SIGPLAN '95 Con-

on Principles of Programming Languagesages 297-302, A .)
Salt Lake City, Utah, January 1984. Ii%rre]znce on Programming Language Design and Implementa

[Diwan et al. 96JAmer Diwan, Eliot Moss, and Kathryn McKin-) o)
ley. Simple and Effective Analysis of Statically-typed Object- [SRC] DEC SRC Modula-3 Implementation. Digital Equipment

Oriented Programs. IOOPSLA'96 Conference Proceedings ~ Corporation Systems Research Center. http://www.re-
San Jose, CA, October 1996. search.digital.com/SRC/modula-3/html/home.html.

[EDG] C++ Front End 2.28. Provided by Edison Design Group,[Stroustrup 87Bjarne Stroustrup. Multiple Inheritance for C++.
Inc. http://www.edg.com. In In Proceedings of the European Unix Users Group Confer-
[Fernandez 95Wary Fernandez. Simple and Effective Link-time ~ €nce '87 pages 189-207, Helsinki, Finland, May 1987.

Optimization of Modula-3 ProgramSIGPLAN Noticespages [Stroustrup 91Bjame StroustrupThe C++ Programming Lan-

103-115, June 1995. Rroceedings of the ACM SIGPLAN "95 guage (second editiorAddision-Wesley, Reading, MA, 1991.
Conference on Programming Language Design and Implemer

tation. [Tarditi et al. 96]David Tarditi, Greg Morrisett, Perry Cheng,
[Goldberg & Robson 83]Adele Goldberg and David Robson. Chris Stone, Bob Harper, and Peter Lee. TIL: A Type-Directed

Smalltalk-80: The Lanaguge and its Implementatiaddis- Compiler for ML. SIGPLAN Noticespages 181-192, May

ion-Wesley, Reading, MA, 1983. 1996. InProceedings of the ACM SIGPLAN '96 Conference on

[Gosling et al. 96James Gosling, Bill Joy, and Guy Stedlae Programming Language Design and Implementation

Java Language SpecificatioAddison-Wesley, Reading, MA, [Tjiang & Hennessy 92Bteven WK. Tjiang and Johh.. Hen-
1996. nessy. Sharlit — A Tool for Building Optimize&IGPLAN No-

[Grove et al. 95Pavid Grove, Jeffrey Dean, Charles Garrett, and tices 27(7):82-93, July 1992. IRroceedings of the ACM
Craig Chambers. Profile-Guided Receiver Class Prediction. I SIGPLAN '92 Conference on Programming Language Design
OOPSLA’95 Conference Proceedingages 108-123, Austin, and Implementation

TX, October 1995. [Ungar & Smith 87PDavid Ungar and Randeall. Smith. Self: The
[Holzle & Ungar 94]Urs Holzle and David Ungar. Optimizing ~ Power of Simplicity. IrProceedings OOPSLA '8pages 227—

Dynamically-Dispatched Calls with Run-Time Type Feed- 242, December 1987.

back. SIGPLAN Notices29(6):326—-336, June 1994. Rro-

ceedings of the ACM SIGPLAN ’'94 Conference on

Programming Language Design and Implementation

[Holzle et al. 91Urs Hdlzle, Craig Chambers, and David Ungar.
Optimizing Dynamically-Typed Object-Oriented Languages
With Polymorphic Inline Caches. In Rmerica, editorPro-

Appendix A Raw Data
Table 3: Execution Time (seconds)
. intra+ . intra+ intra+
Program native base inline intra 'gt:l: CHA+ Lnrt:)zre CHA+ Cel;l(ﬁ:
exh profile profile
instr sched 21.1 21.11 9.69 6.58 5.32 3.1 2.61 2.74
typechecker 333.82 338.82 103.44 64.79 50.55 33.84 30.08 29.78
vortex 3,617 3,617 1,500 903 700 615 515 486
java-cup 5.0 0.85 0.82 0.72 0.50 0.49 0.69 0.50 0.47
javac 62 10.21 10.02 9.70 8.43 8.17 9.17 8.32 8.08
m2tom3 23.50 23.42 22.29 21.87 21.36 21.91 21.92
prover 28.90 32.75 31.54 32.25 31.55 32.02 32.39
m3fe 21.90 22.78 2291 22.28 21.90 22.16 22.13
XX 0.86 0.92 0.80 0.79 0.70 0.74 0.70
ktsim 106.17 107.41 99.28 98.47 96.84 97.17 96.52
eon 76.22 82.60 70.54 65.39 63.78 64.12 64.41
porky 9.75 13.56 13.00 13.13 12.72 12.86 12.67
ixx-av 0.88 0.94 0.83 0.85 0.71 0.79 0.71
ktsim-av 113.60 116.67 107.73 108.24 100.60 107.42 98.98
Table 4: Dynamic Number of Message Sends (x1000)
. intra+ . intra+ intra+
Program native base inline intra 'gtLa; CHA+ :Onrtg;‘i; CHA+ Cel;l(ﬁ:
exh profile profile
instr sched 9,926 9,926 5,663 2,577 1,599 466 399 377
typechecker 117,899| 117,889 62,357 22,382 13,713 6,961 6,410 5,605
vortex 1,097,784 1,097,784| 617,005| 246,662 153,559| 124,909 90,153 71,686
java-cup 310 310 310 273 96 71 213 61 41
javac 2,555 2,555 2,555 2,093 965 814 1,586 725 691
m2tom3 2,804 2,804 2,804 2,710 844 1,736 798
prover 1,255 1,255 1,255 1,214 1,012 1,110 1,01
m3fe 564 564 564 564 564 427 427
iXX 96 96 96 96 56 4 4
ktsim 716 716 716 716 502 342 159
eon 7,401 7,401 7,401 7,401 6,861 3,402 3,402
porky 3,700 3,700 3,700 3,697 3,368 1,419 1,345
iXx-av 387 387 387 386 56 6 4
ktsim-av 45,803 45,803 45,803 45,803 502 44,168 159

