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Abstract. In this paper we present a brief overview on Hadamard, Khatri-

Rao, Kronecker and several related non-simple matrix products and their prop-
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gebraic results.
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1. Introduction

Matrices and matrix operations are studied and applied in many areas such as
engineering, natural and social sciences. Books written on these topics include
Berman et al. (1989), Barnett (1990), Lütkepohl (1996), Schott (1997), Magnus
and Neudecker (1999), Hogben (2006), Schmidt and Trenkler (2006), and espe-
cially Bernstein (2005) with a number of referred books classified as for different
areas in the preface. In this paper, we will in particular overview briefly results
(with practical applications) involving several non-simple matrix products, as they
play a very important role nowadays and deserve to receive such attention.

The Hadamard (or Schur) and Kronecker products are studied and applied
widely in matrix theory, statistics, system theory and other areas; see, e.g. Styan
(1973), Neudecker and Liu (1995), Neudecker and Satorra (1995), Trenkler (1995),
Rao and Rao (1998), Zhang (1999), Liu (2000a, 2000b) and Van Trees (2002). Horn
(1990) presents an excellent survey focusing on the Hadamard product. Magnus
and Neudecker (1999) include basic results and statistical applications involving
Hadamard or Kronecker products. An equality connection between the Hadamard
and Kronecker products seems to be firstly used by e.g. Browne (1974), Pukelsheim
(1977) and Faliva (1983). Trenkler (2001, 2002) and Neudecker and Trenkler (2005,
2006a) study the Kronecker and vector cross products.

For partitioned matrices, the Khatri-Rao product, viewed as a generalized Hada-
mard product, is discussed and used by e.g. Khatri and Rao (1968), Rao (1970),
Rao and Kleffe (1988), Horn and Mathias (1992), Liu (1995, 1999, 2002a), Rao
and Rao (1998), and Yang (2002a, 2002b, 2003, 2005) and his co-authors. The
Tracy-Singh product, as a generalized Kronecker product, is studied by e.g. Singh
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(1972), Tracy and Singh (1972), Hyland and Collins (1989), Tracy and Jinadasa
(1989) and Koning et al. (1991). A connection between the Khatri-Rao and Tracy-
Singh products and several results involving these two products of positive definite
matrices with statistical applications are given by Liu (1999).

In the present paper, we make an attempt to provide a brief overview on some se-
lected results recently obtained on the Hadamard, Khatri-Rao, Kronecker and other
products, and do not intend to present a complete list of all the existing results.
We stress that the Khatri-Rao product has significant applications and potential in
many areas, including matrices, mathematics, statistics (including psychometrics
and econometrics), and signal processing systems. Further attention and studies
on the Khatri-Rao product will prove to be useful. In Section 2, we introduce the
definitions of the Hadamard, Kronecker, Khatri-Rao, Tracy-Singh and vector cross
products, and the Khatri-Rao and Tracy-Singh sums, with basic relations among
the products. In Section 3, we present some equalities and inequalities involving
positive definite matrices. We collect both well-known and existing but not widely-
known inequalities involving the Hadamard product; on the other hand, the results
can not be extended to cover the Khatri-Rao product. We collect several known
inequalities involving the Khatri-Rao product and results involving the Kronecker
and vector cross products, including those to be used in Section 4. Finally we com-
pile some applications of the results involving the Khatri-Rao product, as examples
to illustrate how the results can be used in various areas.

2. Basic results

We give the definitions of these matrix products and established relations among
them. We deal with only real matrices in this paper.

2.1. Definitions. Consider matrices A = (aij) and C = (cij) of order m× n and
B = (bkl) of order p×q. Let A = (Aij) be partitioned with Aij of order mi×nj as
the (i, j)th block submatrix and B = (Bkl) be partitioned with Bkl of order pk× ql

as the (k, l)th block submatrix (
∑

mi = m,
∑

nj = n,
∑

pk = p and
∑

ql = q).
The definitions of the matrix products or sums of A and B are given as follows.

2.1.1. Hadamard product.

A¯C = (aijcij)ij ,(1)

where aijcij is a scalar and A¯C is of order m× n.

2.1.2. Kronecker product.

A⊗B = (aijB)ij ,(2)

where aijB is of order p× q and A⊗B is of order mp× nq.

2.1.3. Khatri-Rao product.

A ∗B = (Aij ⊗Bij)ij ,(3)

where Aij ⊗Bij is of order mipi×njqj and A ∗B is of order (
∑

mipi)× (
∑

njqj).

2.1.4. Tracy-Singh product.

A on B = (Aij on B)ij = ((Aij ⊗Bkl)kl)ij ,(4)

where Aij ⊗Bkl is of order mipk×njql, Aij on B is of order mip×njq and A on B
is of order mp× nq.
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2.1.5. Khatri-Rao sum.

A ¦B = A ∗ Ip + Im ∗B,(5)

where A = (Aij) and B = (Bkl) are square matrices of respective order m×m and
p×p with Aij of order mi×mj and Bkl of order pk×pl, Ip and Im are compatibly
partitioned identity matrices, and A ¦B is of order (

∑
mipi)× (

∑
mipi).

2.1.6. Tracy-Singh sum.

A¤B = A on Ip + Im on B,(6)

where A = (Aij) and B = (Bkl) are square matrices of respective order m×m and
p×p with Aij of order mi×mj and Bkl of order pk×pl, Ip and Im are compatibly
partitioned identity matrices, and A¤B is of order mp×mp.

2.1.7. Vector cross product.

a× b = Tab,(7)

where a = (a1, a2, a3)′ and b = (b1, b2, b3)′ are real vectors, and

Ta =




0 −a3 a2

a3 0 −a1

−a2 a1 0


 .

For (1) through (4) see e.g. Liu (1999). For (3) introduced in the column-wise
partitioned case, see Khatri and Rao (1968) and Rao and Rao (1998). For (5) and
(6) see Al Zhour and Kilicman (2006b). For (7), see Trenkler (1998, 2001, 2002)
and Neudecker and Trenkler (2005, 2006a).

Note that there are various different names and symbols used in the literature for
the five products mentioned above; e.g. block Kronecker products by Koning et al.
(1991) and Horn and Mathias (1992), in addition to some other matrix products.
In particular, the Tracy-Singh product is the same as one of the block Kronecker
products and the Hadamard product is the Schur product. Further, the Khatri-Rao
and Tracy-Singh products share some similarities with, but also are quite different
from, the Hadamard and Kronecker products, respectively. Certainly the connec-
tions and differences need attention, and we refer these to e.g. Koning et al. (1991),
Horn and Mathias (1992), Wei and Zhang (2000) and Yang (2003, 2005) regarding
matrix sizes, partitions and operational properties for these matrix products. In
the next subsection, we report some relations connecting the products.

2.2. Relations.

2.2.1. Hadamard and Kronecker products. It is known that the Hadamard
product of two matrices is the principal submatrix of the Kronecker product of the
two matrices. This relation can be expressed in an equation as follows.

Lemma 1. For A and C of the same order m× n we have

A¯C = J′1(A⊗C)J2,(8)

where J1 is the selection matrix of order m2 ×m and J2 is the selection matrix of
order n2 × n.
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For this relation, see e.g. Faliva (1983) and Liu (1999). For J with properties
including J′J = I and applications, see e.g. Browne (1974), Pukelsheim (1977),
Liu (1995), Liu and Neudecker (1996), Neudecker et al. (1995a, b), Neudecker and
Liu (2001a, b) and Schott (1997, p. 267). We next present the relation between
Khatri-Rao and Tracy-Singh products which extends the above.

2.2.2. Khatri-Rao and Tracy-Singh products. Without loss of generality, we
consider here 2× 2 block matrices

A =
(

A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
,(9)

where A, A11, A12, A21, A22, B, B11, B12, B21 and B22 are m × n, m1 × n1,
m1×n2, m2×n1, m2×n2, p×q, p1×q1, p1×q2, p2×q1 and p2×q2 (m1 +m2 = m,
n1 + n2 = n, p1 + p2 = p and q1 + q2 = q) matrices respectively.

Further,

M =
(

M11 M12

M′
12 M22

)
, N =

(
N11 N12

N′
12 N22

)
,(10)

where M, M11, M22, N, N11 and N22 are m×m, m1×m1, m2×m2, p×p, p1×p1

and p2 × p2 symmetric matrices respectively, and M12 and N12 are m1 ×m2 and
p1 × p2 matrices respectively.

Define the following selection matrices Z1 of order k1× r and Z2 of order k2× s:

Z1 =
(

I11 011 021 0
0 0 0 I21

)′
, Z2 =

(
I12 012 022 0
0 0 0 I22

)′
,(11)

where Z′1Z1 = I1 and Z′2Z2 = I2 with I11, I21, I12, I22, I1 and I2 being m1p1×m1p1,
m2p2×m2p2, n1q1×n1q1, n2q2×n2q2, r× r and s× s identity matrices (k1 = mp,
k2 = nq, m = m1 + m2, n = n1 + n2, p = p1 + p2, q = q1 + q2, r = m1p1 + m2p2

and s = n1q1 + n2q2), and 011, 021, 012 and 022 being m1p1×m1p2, m1p1×m2p1,
n1q1 × n1q2 and n1q1 × n2q1 matrices of zeros.

In particular, if k = ki, mi = ni and pi = qi, i = 1, 2 in (11), we have

Z = Z1 = Z2,(12)

where Z is the k × r selection matrix such that Z′Z = I.

Lemma 2. For A and B partitioned as in (9) and M and N partitioned as in
(10), we have

A ∗B = Z′1(A on B)Z2,(13)
M ∗N = Z′(M on N)Z.(14)

Note that the basic idea for (13) and (14) in the above-mentioned case for 2× 2
block matrices A and B can be generalised to a multiple case for s×t block matrices
A = (Aij) and B where i = 1, . . . , s, j = 1, . . . , t and s, t > 2; see e.g. Cao et al.
(2002) and Yang (2002b). Further, the symmetric partition of square matrices with
s = t > 2, considered as in e.g. Koning et al. (1991), Horn and Mathias (1992) and
Wei and Zhang (2000) are particularly useful. Clearly M and N in (10) for which
(14) holds can be partitioned as s × s block matrices, s > 2, and corresponding
results involving M and N can be given. To study results involving the Khatri-Rao
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product generalised from those involving the Hadamard product, it is convenient
to consider s > 2.

2.2.3. Tracy-Singh and Kronecker products. The following is well estab-
lished.

Lemma 3. For the Tracy-Singh and Kronecker products, we have

A on B = P′1(A⊗B)P2,(15)

where Pi (i = 1, 2) is a permutation matrix.

This result has been given independently; see e.g. Koning et al. (1991), Horn
and Mathias (1992) and Wei and Zhang (2000).

2.2.4. Khatri-Rao and Kronecker products. The following is a consequence
of Lemma 3.

Lemma 4. For the Khatri-Rao and Kronecker products, we have

A ∗B = Q′
1(A⊗B)Q2,(16)

where Qi is a selection matrix such that Qi = PiZi, Pi is as in Lemma 3 and Zi

is as in Lemma 2 (i = 1, 2).

2.2.5. Column-wise partitioned case. As a special case, we consider A and B
with the same number of columns but not necessarily the same number of rows;
i.e., A = (a1, . . . ,an) and B = (b1, . . . ,bn), where ai and bi are the ith columns
of A and B respectively, i = 1, . . . , n.

A ∗B = (A on B)Z2,(17)
J′1(A ∗C) = (A¯C), for A and C of the same size(18)

where Z2 is the same as above, J1 = (e1, . . . , en)′ is an n2×n selection matrix and
ei is the ith unit vector, i = 1, . . . , n. When the Kronecker product is considered,
instead of the Khatri-Rao product in (17), as a special case we have

A ∗B = (A⊗B)J2.(19)

For its applications, see e.g. Lev-Ari (2005).

2.2.6. Kronecker and vector cross products. There is a close connection be-
tween the vector cross product and the Kronecker product; see Trenkler (2001).
Define

E1 = (e2e′1 + e3e′2, e3e′3 − e1e′1, −e1e′2 − e2e′3),
E2 = e1e′3 − e2e′2 + e3e′1,

where ei is a 3× 1 unit vector, E1 is a 3× 9 matrix and E2 is a 3× 3 matrix. Then

a× b = E1(I3 ⊗E2)(b⊗ a) = E1(b⊗E2a)(20)

or alternatively

a× b = −E1(I3 ⊗E2)(a⊗ b) = −E1(a⊗E2b).

We will next consider some equalities and inequalities. Hereafter, we write M ≥
P in the Löwner ordering sense meaning that M−P ≥ 0 is non-negative definite,
for symmetric matrices M and P of the same order. Let ()+ indicate the Moore-
Penrose inverse of the matrix. Denote H0 = HH+, for H a non-negative definite
matrix.
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3. Equalities and inequalities

Here we select some equalities and inequalities. For further results, see the
references cited afterwards.

3.1. Equalities. We select three simple but important results.

Theorem 1. For A, B, D and E compatibly partitioned, we have

(A + B) ∗D = A ∗D + B ∗D,(21)
(A ∗B) ∗D = A ∗ (B ∗D),(22)

(A ∗B)¯ (D ∗E) = (A¯D) ∗ (B¯E).(23)

See e.g. Liu (1999).

Theorem 2. For the column-wise partitioned case,

(C⊗D)(A ∗B) = CA ∗DB(24)
(A ∗B)′(A ∗B) = A′A¯B′B,(25)

(A ∗B)+ = [(A′A)¯ (B′B)]+(A ∗B)′,(26)
vec(AXB) = (B′ ⊗A) vec(X) = (B′ ∗A) vecd(X),(27)

where vec denotes the vectorization operator which transforms a matrix into a vector
by stacking the columns of the matrix one underneath the other, vecd indicates the
vectorization operator which selects only the diagonal elements of the matrix into a
vector, and the Moore-Penrose inverse in (26) becomes the ordinary inverse when
both A and B are of full column rank.

For (24) and (25), see e.g. Rao and Rao (1998). For (25), see also Bro (1998).
For (26) and (27), see e.g. Lev-Ari (2005).

3.2. Inequalities involving Hadamard product. The results presented here
should be useful.

Theorem 3. For n × n positive definite matrices A and D, and n × n positive
definite correlation matrices B and C, we have

I ≤ A¯A−1 ≤ λ2 + µ2

2λµ
I,(28)

2λ1/2µ1/2

λ + µ
I ≤ B1/2 ¯C1/2 ≤ I,(29)

2 tr(A¯D) ≤ tr(A¯A + D¯D),(30)

where I is the n × n identity matrix, and λ and µ are positive numbers such that
the eigenvalues of A, B and C are contained in the interval [λ, µ].

For the first relationship in (28) and its applications see e.g. Horn (1990) and
Schott (1997, pp. 275-276), and for the second see Liu (1995). For an extension
with more items added into the middle of the inequalities (28), see e.g. Bernstein
(2005, pp. 333-341). For the second relationship in (29) see Zhang (2000), and for
the first see Liu (2002b, 2003). For (30), see Neudecker and Liu (1993). For more
results and applications involving the Hadamard product, see e.g. Styan (1973),
Visick (1990, 1998, 2000), Neudecker et al. (1995), Zhang (1999) and Liu (2000a,
2000b, 2001).
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3.3. Inequalities involving Kronecker product. The Kronecker product is the
most widely used. We present an elegant result.

Theorem 4. For non-negative matrices A and B we have

A⊗A ≥ B⊗B is equivalent to A ≥ B.(31)

This is established as an Econometric Theory problem and solution; see Neudecker
and Satorra (1995) with the sufficient condition, Trenkler (1995) with the nec-
essary and sufficient condition using a result given by Baksalary et al. (1992),
and Neudecker and Liu (1995) with the necessary condition. A special case is
A = E(zz′), B = (Ez)(Ez)′ and A−B = D(z), where E and D denote expected
value and covariance matrix, respectively, of a random variable z. Note that if we
consider only the sufficient condition, the inequality still holds when the Kronecker
product is replaced by the Hadamard product. For both results involving the two
products, see e.g. Bernstein (2005, p. 336).

The Kronecker product has been studied by Neudecker (1969), has been covered
by two reviews (Henderson and Searle (1979, 1981)), is involved in Jacobian matri-
ces and matrix calculus (Mathai (1997) and Magnus and Neudecker (1999)), and is
very recently used by several authors (see e.g. Bernstein (2005), Neudecker (2006),
Neudecker and Trenkler (2006b), and Schmidt and Trenkler (2006)).

3.4. Inequalities involving Khatri-Rao product. We select the following in-
equalities.

Theorem 5. Let A and B be partitioned as in (1). Then

A′A ∗B′B ≥ (A′ ∗B′)(A ∗B).(32)

This extends a result involving the Hadamard product, which can be found in
Amemiya (1985).

Theorem 6. Let M ≥ P ≥ 0, N ≥ Q ≥ 0, and M, P, N and Q be compatibly
partitioned matrices. Then

M ∗N ≥ P ∗Q ≥ 0.(33)

Let M be partitioned as in (2) with M11 ≥ 0 and M22 ≥ 0. Then

M ∗M ≥ 0 is equivalent to M ≥ 0.(34)

Let M ≥ 0 such that M11 > 0 and M22 > 0. Then

N > 0 implies M ∗N > 0.(35)

If M ≥ 0 and M11 = M12 = M22, then

M ∗N > 0 is equivalent to M11 > 0 and N > 0.(36)

Theorem 7. Let M > 0 and N > 0 be m×m and p× p positive definite matrices
partitioned as in (2), I an r × r identity matrix, r = m1p1 + m2p2, m = m1 + m2,
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p = p1 + p2 and k = mp. Then

(M ∗N)−1 ≤ M−1 ∗N−1;(37)

M−1 ∗N−1 ≤ (λ1 + λk)2

4λ1λk
(M ∗N)−1;(38)

M ∗N− (M−1 ∗N−1)−1 ≤ (
√

λ1 −
√

λk)2I;(39)
(M ∗N)2 ≤ M2 ∗N2;(40)

M2 ∗N2 ≤ (λ1 + λk)2

4λ1λk
.(M ∗N)2;(41)

(M ∗N)2 −M2 ∗N2 ≤ 1
4
(λ1 − λk)2I;(42)

M ∗N ≤ (M2 ∗N2)1/2;(43)

(M2 ∗N2)1/2 ≤ λ1 + λk

2
√

λ1λk

M ∗N;(44)

(M2 ∗N2)1/2 −M ∗N ≤ (λ1 − λk)2

4(λ1 + λk)
I,(45)

where λ1 ≥ · · · ≥ λk are the eigenvalues of M on N of order k × k.

For Theorems 5 through 7, see Liu (1999); Albert’s theorem (see e.g. Albert
(1969) and Bekker and Neudecker (1989)) plays a role in the proof. A number of
studies on extensions and further related results including necessary and sufficient
conditions for some inequalities to become equalities have already been made; see
e.g. Brualdi (1999), Yang (2002b, 2005), Feng and Yang (2002), Han and Liu (2002),
Liu (2002a, 2002b), Yang et al. (2002), Zhang et al. (2002a, 2002b), Civciv and
Türkmen (2005) and Al Zhour and Kilicman (2006a, 2006b).

3.5. Results involving Schur complement. Consider positive definite matrices
A of size m ×m and B of size p × p. Let A(α, β) denote a sub-matrix of α rows
and β columns taken from A and A(α, α) = A(α). Assume that |α1| = k, |α2| = s,
α′1 = {1, . . . ,m} − α1, α′2 = {1, . . . , p} − α2, and

A =
(

A(α1) A(α1, α
′
1)

A(α1, α
′
1)
′ A(α′1)

)
,(46)

B =
(

B(α2) B(α2, α
′
2)

B(α2, α
′
2)
′ B(α′2)

)
.(47)

For non-singular A(α1), its Schur complement is defined as A/α1 = A(α′1) −
A(α′1, α1)A(α1)−1A(α1, α

′
1).

Theorem 8.

(A ∗B)−1/(α1 ⊗ α2) ≤ [(A ∗B)/(α1 ⊗ α2)]−1

≤ (A−1 ∗B−1)/(α1 ⊗ α2)
≤ (A/α1)−1 ⊗ (B/α2)−1.(48)

For these inequalities with necessary and sufficient conditions for them to be-
come tight, see Yang and Feng (2000). For further considerations, extensions and
related results, see Yang (2002a, 2003) and Zhou and Wang (2006). In particular,
a chain inequality involving principal and complementary sub-matrices which ele-
gantly sharpens (37) is given by Yang (2003). For a general introduction to the
Schur complement and collection of recent work and applications, see Zhang (2005).



168 S. LIU AND G. TRENKLER

3.6. Results involving Tracy-Singh product. The two results given here cor-
respond to the results involving the Khatri-Rao product.

Theorem 9. For A, B, D and E compatibly partitioned, we have

(A on B)(D on E) = (AD) on (BE),(49)
(A on B)+ = A+ on B+ for the Moore-Penrose inverse.(50)

Theorem 10. Let M ≥ P ≥ 0, N ≥ Q ≥ 0, and M, P, N and Q be compatibly
partitioned matrices. Then

M on N ≥ P on Q ≥ 0,(51)
M onM ≥ P on P is equivalent to M ≥ P.(52)

The last one corresponds to (31) for the Kronecker product. See e.g. Liu (1999).

3.7. Results involving vector cross product. Let again a = (a1, a2, a3)′ and
b = (b1, b2, b3)′ be real vectors. Then

a× b = Tab,(53)

where

Ta =




0 −a3 a2

a3 0 −a1

−a2 a1 0


 .

The matrix Ta can be written as

Ta = a3(e2e′1 − e1e′2) + a2(e1e′3 − e3e′1) + a1(e3e′2 − e2e′3)

with ej being the jth unit vector of size 3× 1. From this it follows that

Ta =
3∑

j=1

ajTej .

The vector cross product can also be calculated by determinants:

a× b =
(

det
(

a2 b2

a3 b3

)
, det

(
a3 b3

a1 b1

)
, det

(
a1 b1

a2 b2

))′
.

As the product is used in Physics and in Engineering, we now list some further
properties.
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Theorem 11. For a, b, c, d of size 3× 1 and scalars α and β, we have

Tαa+βb = αTa + βTb,(54)
Tab = −Tba,(55)
Ta = −T′a,(56)

Taa = 0,(57)
TaTb = ba′ − a′bI3,(58)

(TaTb)′ = TbTa,(59)
TaTbTc = Tacb′ − b′cTa,(60)
TaTbTa = −a′bTa,(61)
TaTaTa = −a′aTa,(62)

c′Tab = a′Tbc = b′Tca = −c′Tba = −b′Tac = −a′Tcb,(63)
TaTbc = (a′c)b− (a′b)c = a× (b× c), Grassmann’s Identity(64)

(Tab)′(Tcd) = (a′c)(b′d)− (a′d)(b′c), Lagrange’s Identity
= (a× b)′(c× d),(65)

TTab = ba′ − ab′ = TaTb −TbTa,(66)

Ta
+ = − 1

a′a
Ta, if a 6= 0.(67)

Note that c′Tab is just the scalar triple product (abc) = (a×b)′c. For these and
more results, see Trenkler (1998, 2001, 2002), Gross et al. (1999, 2001), Neudecker
et al. (2003) and Neudecker and Trenkler (2005, 2006a). For further properties, we
refer to Bernstein (2005, Fact 3.5.25).

3.8. Results involving Khatri-Rao sum. The following is a new result.

Theorem 12. For compatibly partitioned A, A−1, B and B−1 with eigenvalues
contained in the interval [λ, µ], we have

4I ≤ A ¦B−1 + A−1 ¦B ≤ 2(λ + µ)
λ1/2µ1/2

I.(68)

A special case is when the Khatri-Rao product becomes the Hadamard product
where the block sub-matrices are actually the elements themselves. This special
case generalizes Corollaries 4.1 and 4.2, both by Al Zhour and Kilicman (2006b).

4. Applications

The results involving the Hadamard product are in fact two examples of appli-
cations of the Hadamard product. Below we focus on the Khatri-Rao product.

4.1. Variances in Statistics and Econometrics. Sims et al. (1990) considered
estimation and hypothesis testing in linear time series regressions with unit roots.
Chambers et al. (1998) discussed limited information maximum likelihood estima-
tion for analysis of survey data. They derived respectively two variance matrices
each containing a Khatri-Rao product. We can find sufficient (and necessary) con-
ditions for the two covariance matrices to be strictly positive definite.

The first covariance matrix can written as

Ψ = Ω ∗W,
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where

Ω =
(

Σ Σ
Σ Σ

)
≥ 0, Σ ≥ 0,

W =
(

Γ1Γ′1 Γ1Γ′2
Γ2Γ′1 Γ2Γ′2

)
≥ 0, Γ1Γ′1 > 0.

For the definitions of the relevant submatrices above and detail background, see
Sims et al. (1990) and Banerjee et al. (1993). Obviously, (33) in Theorem 6 ensures
in an algebraic approach that Ψ ≥ 0, as Ω ≥ 0 and W ≥ 0. In practice, an
important question is to examine when Ψ > 0 is positive definite. By using (36)
in Theorem 6 we get the answer: Ψ > 0 is equivalent to Σ > 0 with W > 0, i.e.
Σ > 0 with Γ2Γ′2 − Γ2Γ′1(Γ1Γ′1)

−1Γ1Γ′2 > 0, as Γ1Γ′1 > 0 is assumed.

The second covariance matrix is

Λ = P ∗Q,

where

P =
(

R R
R In

)
≥ 0, Q =

(
h c′

c Σ

)
,

R = In − 1
N 1n1′n > 0, N > n + 1, h > 0 is a scalar, Σ > 0 is a (q + 1) × (q + 1)

variance matrix, and c is a (q + 1)× 1 vector.

Also, Chambers et al. (1998) used t1 = h− c′Σ−1c (which is a scalar), and gave
necessary details. We are interested in when Λ > 0. Based on (35) in Theorem 6,
we specify Λ > 0 if t1 > 0 which is equivalent to Q > 0 as Σ > 0 (Λ ≥ 0,Λ 6> 0, if
t1 = 0). Such a (sufficient) condition is useful and efficient because it is quite easy
to check.

4.2. Multi-way models and algorithms. In multivariate statistics, psychomet-
rics, engineering, food and chemical sciences, among other areas, multi-way data,
models and algorithms have received significant attention for about a decade. The
Khatri-Rao product plays an important role.

We start with a two-way bilinear or PCA (principal component analysis) model:
given data matrix X and the (same) column-dimension of loading matrices A and
B, fit the model X̂ = AB′ as the solution to minimize tr(X − AB′)′(X − AB′)
subject to A′A = D and B′B = I, where D is a diagonal matrix and I is an identity
matrix. As shown by Bro (1998, ch. 3), this model can be extended to one of the
three-way PARAFAC (PARAllel FACtor) models which is represented by using the
Khatri-Rao product in the column-wise partitioned case as follows

X = A(C ∗B)′ + E,

where X is the three-way data matrix, C∗B replaces B to reflect the same (parallel)
profiles only in different proportions for the model, and E is the approximation error
matrix. Here it is evident that the Khatri-Rao product makes model specification
easy and transparent, especially for high-order PARAFAC models. For example, a
four-way PARAFAC model can simply be written as

X = A(F ∗C ∗B)′ + E,

where F is the fourth mode loading matrix. Several extensions and variations of
the PARAFAC model and other models including PARAFAC2, PARATUCK2 and
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N-PLS (a general multi-way partial least squares regression) can be represented
using the Khatri-Rao product.

The Khatri-Rao product is also useful in the algorithms for estimating the pa-
rameters. As an example, consider now the (error-free) three-way PARAFAC model

X = A(C ∗B)′.

To estimate A,B and C, an alternating least squares algorithm can be used (oth-
erwise to estimate the parameters simultaneously using least squares is a rather
difficult nonlinear problem); see Bro (1998, pp. 57-65). To illustrate how powerful
the Khatri-Rao product is, we just take one step of the loop for the algorithm.
That is: we initialize B and C for X = AZ′, i.e. (69); we then find the conditional
estimate A = XZ(Z′Z)+; see Box 5 given by Bro (1998, p. 63). Here we point out
that Z′Z = C′C¯B′B can be obtained by using (25) and its Moore-Penrose inverse
(Z′Z)+ = (C′C ¯ B′B)+ by (26). The same idea applies to higher-order models.
Consider e.g. a four-way model with Z = F∗C∗B. Then Z′Z = F′F¯C′C¯B′B
using (25). Clearly such expressions for Z′Z and its Moore-Penrose inverse involv-
ing the Khatri-Rao product indeed allow efficient computations. Bro (1998, p. 65)
notes that the calculations can be done efficiently, though if implemented in MAT-
LAB (1998 or earlier), such expressions would need to be compiled or rewritten
in a vectorial way to function efficiently. Bro (1998, p. 64) also presents a nice
result for using an existing PARAFAC model on new data. In such a situation,
we are interested in estimating the scores of one or several new samples. With B
and C given from the prior obtained model, the solution to the problem is sim-
ply a least squares problem and can be easily given by using (27). We refer to Bro
(1998) for details of these algorithms and other issues and results with applications.

For further detailed and more results on multi-way data, PARAFAC models, al-
gorithms, validation and constraints, and on other associated models, data analysis
and applications in psychometrics, signal processing, chemometrics and food sci-
ences, see e.g. Bro (1998), Ten Berge and Sidiropoulos (2002), Jiang and Sidiropou-
los (2004), Smilde et al. (2004) and Tomasi and Bro (2006).

4.3. Linear matrix equations. Linear matrix equations show up in a variety of
mathematics, physics and engineering problems, including linear system analysis,
modelling of non-stationary covariances and multi-static antenna array processing.
For example, the generalized Lyapunov equation

AXB′ + CXD′ = Q

has been used to characterize structured covariance matrices, and to construct ef-
ficient matrix factorization and inversion algorithms; see e.g. Lev-Ari (2005). The
following equation is studied by Lev-Ari (2005) which is of somewhat different
flavour taken in multi-static antenna array processing applications. An unknown
medium is probed by transmitting energy into it from a multi-element antenna ar-
ray, and recording the scattered signal received by (another) multi-element antenna
array. The resulting measurements are arranged into a matrix

H = GrecXG′
tr,(69)

where the l × l multi-static data matrix H = (hij), hij is the response (at a sin-
gle frequency) from the jth transmitting element to the ith receiving element, the
l × l unknown matrix X = diag(τi) is diagonal with τi as scattering coefficients,
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Grec = (grec(χ1), . . . , grec(χl)), Gtr = (gtr(χ1), . . . , gtr(χl)), χi indicates the scat-
ter locations, gtr(χi) (resp. grec(χ1)) is the steering vector associated with wave
propagation between the transmitting (resp. receiving) array and the ith scatterer,
i, j = 1, . . . , l, where l is the number of point scatterers. We now have to find our
solution to linear matrix equation (69) with respect to X. First we use (27) to get

vec(H) = (Gtr ⊗Grec) vec(X)
= (Gtr ⊗Grec)J vecd(X)
= (Gtr ∗Grec) vecd(X)

and then use (25) and (26) to get

vecd(X) = [(Gtr ∗Grec)′(Gtr ∗Grec)]−1(Gtr ∗Grec)′ vec(H)
= [(G′

trGtr)¯ (G′
recGrec)]−1(Gtr ∗Grec)′ vec(H)

= [(G′
trGtr)¯ (G′

recGrec)]−1 vecd(G′
recHGtr).(70)

As pointed by Lev-Ari (2005), the above solution is much more efficient than the
one using the following well-known formula:

vec(X) = [(Gtr ⊗Grec)′(Gtr ⊗Grec)]−1(Gtr ⊗Grec)′ vec(H),

as most of the elements of X in this solution are useless except for the diagonal ele-
ments which only are needed. Note that (G′

trGtr)¯ (G′
recGrec) in (70) is invertible

as both Grec and Gtr have full column rank, except in very rare pathological cases
where we have to use the Moore-Penrose inverse instead.

4.4. Signal processing. Space-time coding techniques exploit the spatial diver-
sity afforded by multiple transmitting and receiving antennas to achieve reliable
transmission in scattering-rich environments. Sidiropoulos and Budampati (2002)
propose a broad new class of space-time codes based on the Khatri-Rao prod-
uct, KRST codes, for short. They report that KRST codes are linear block codes
designed to provide several benefits, which yield better performance than linear dis-
persion codes at high signal-to-noise ratio and than linear constellation precoding
codes using a lower order constellation. Consider the multi-antenna system with M
transmitting antennas and N receiving antennas. The wireless channel is assumed
to be quasi-static and flat fading. The discrete-time baseband-equivalent model for
the received data is given (when the channel is constant for at least K channel uses)
by

X =
√

ρ

M
HC + W,

where X is the N ×K received signal matrix, C is the M ×K transmitted code
matrix, W is the N × K additive noise matrix, H is the N ×M channel matrix
which has i.i.d. N(0, 1) entries being mutually independent from X and W, and ρ
is the signal-to-noise ratio. In Sidiropoulos and Budampati’s (2002) discussion, the
resulting transmitted code matrix is given by Ct = D(Θst)C′

0 (with the construc-
tion of C′

0 addressed) for the situation under study, and if the channel is assumed
to be constant for block time T the received data can be modelled as

Xt =
√

ρ

M
HCt + Wt

=
√

ρ

M
HD(Θst)C′

0 + Wt, t = 1, . . . , T.(71)
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For further specifications of the model and preliminaries, see e.g. Sidiropoulos and
Budampati (2002). Using the Khatri-Rao product and (27), for the channel as-
sumed to be constant for block time T we obtain the following (noiseless) vectorized
model

vecXt =
√

ρ

M
(C0 ∗H) vecd(D(Θst))

=
√

ρ

M
(C0 ∗H)Θst.(72)

Then using (26) the transmitted symbol vector st can be recovered by

st = (
√

ρ

M
(C0 ∗H)Θ)+ vecXt

= [
√

ρ

M
Θ′(C0 ∗H)′(C0 ∗H)Θ]+Θ′(C0 ∗H)′ vecXt

= [
√

ρ

M
Θ′(C′

0C0 ¯H′H)Θ]+Θ′(C0 ∗H)′ vecXt,(73)

for almost every H with the particular choice of C0, as Θ is a unitary M×M matrix.

Based on the Khatri-Rao product, Wang et al. (2006) consider a similar data
model and propose a novel Khatri-Rao unitary space-time modulation design. Their
idea is to use the Khatri-Rao product to obtain a decomposition result to find a
simplified maximum likelihood detection algorithm for their design. Upon the de-
composition the new detector needs to perform only a vector multiplication, instead
of a matrix multiplication which the original detector needs to perform. As reported
the new design does not require any computer search and can be applied to any
number of transmitting antennas, among other improvements.

Note that Sidiropoulos and Budampati (2002) have also made PARAFAC analy-
sis involving the Khatri-Rao product. For further studies on the Khatri-Rao prod-
uct used in signal processing problems, see also e.g. Yu and Petropulu (2006) and
others.

5. Concluding remarks

We have collected several basic results on the Hadamard, Khatri-Rao, Tracy-
Singh, Kronecker and vector cross products, and with the Khatri-Rao and Tracy-
Singh sums each as a variation of the Khatri-Rao and Tracy-Singh products, re-
spectively. As our attempt to draw attention to the matrix products, we have also
presented four examples involving particularly the Khatri-Rao product and its ap-
plications in not only statistics, econometrics and psychometrics, but also physics,
engineering, chemometrics and food sciences. However, we note that the majority of
applications of the Khatri-Rao product is still based on only the column-wise parti-
tioned situation. Note also that the Khatri-Rao and Tracy-Singh products cannot
be dealt with directly say by built-in functions in the commonly used computer
languages or packages so far, although the Kronecker and vector cross products can
be (MATLAB has a command kron for calculating the Kronecker product of two
matrices, and MAPLE has CrossProduct and MATHEMATICA has Cross both
for the vector cross product of two three-dimensional vectors; see e.g. Hogben, 2006,
pp. 71-4, 72-3 and 73-5). It is hoped to have a wider range of applications of the
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Khatri-Rao (in the matrix-wise partitioned case) and other products with a number
of supportive computer built-in functions or packages before long.
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