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Introduction

RScheme is an object-oriented, extended version of the Scheme dialect of Lisp, principally a merger of

concepts from the Scheme language (see Revised^4 Report on Scheme) and the Dylan language (see

Dylan).

RScheme is freely redistributable, and offers  reasonable performance despite being quite portable.

Code written in RScheme can be compiled to C, and the C can then be compiled with a normal C

compiler to generate machine code.  By default, however, RScheme compiles to bytecodes which are

interpreted by a (runtime) virtual machine.  This ensures that compilation is fast and keeps code size

down.

To the casual user, RScheme appears to be an interpreted language.  You can type RScheme code at a

read-eval-print loop, and it executes the code and prints the result.  In reality, every expression you

type to the read-eval-print-loop is compiled and the resulting code is executed.  Since RScheme

compiles to bytecodes at runtime, the interaction is fast.

1.1.1. Overview
This book is  organized as reference material.  No special effort is made to guide the user through

programming in RScheme.  For this purpose, we highly recommend  Paul Wilson’s Introduction to

Scheme.

This book is intended as a general purpose user  guide[1]. The target audience for this part is

experienced programmers who wish to use RScheme as a language and system for fairly normal

programming tasks.  Included in this book are chapters describing the standard RScheme extensions 

– packages that ship with the distribution.

1.1.2. Conventions
In this book, we adopt certain usual typographical and stylistic conventions.  These are designed to

help the reader understand the meaning of a sequence of characters.

Content that is displayed like this is text that is likely to be typed literally into the system.   
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Program Structure

RScheme is a language with modules, and modules form the basis of a program’s structure.  That is, a

program is simply a collection of modules, together with an entry point[1]. Some modules are

required because the runtime system and application environment depend on their presence.  Most

modules, however, are optional, and are only included when necessary.

A module is primarily a name space for variables.  That is, a module contains a particular set of

mappings from names (identifiers) to variables (program definitions).  A module specifies its

interface in the form of its set of exported variables. Modules also specify which other modules they

depend on, or import.

The content of a module is structured as a set of definitions plus a sequence of  top-level expressions.

Definitions are used to create module variables, while top-level expressions are used to provide code

to be  executed when the module is loaded.

When RScheme starts up, by default it presents an interactive environment known as the read-eval-

print loop, or REPL for short.  It is so called because the basic  behavior of the REPL is to read an

expression, evaluate it, print the result of the evaluation (that is, the value returned by the expression),

and loop back to the beginning to do it again.  Unlike some interactive language environments,

RScheme doesn’t interpret the expressions in order to evaluate them.  Instead, the expressions are

compiled to bytecodes and the compile code is executed by the usual bytecode interpreter.

The evaluation of expressions by the REPL is intended to simulate the occurrence of forms in a

module.  

The system has access to several modules that are suitable for normal interactive use.  The default

module for interactive use is the user module.  Also available is the usual-inlines module.

Note that although we go to great lengths to simulate module semantics in interaction, receiving an

expression at a time makes this simulation imperfect.  For example, when all the definitions for a

module are conceptually seen at once, top-level expressions can reference variables that are defined

later in the source of the module.  This is impractical in the interactive environment because the user

expects the expressions to be executed  as soon as they are entered; the user would find it disturbing if

the system waited for later definitions to be encountered before the expressions are executed.

Since most definitions are simply means for defining variables whose values are the value returned by

evaluating expressions, expressions are the focus of most of this syntax description.

Like most languages, expressions in RScheme return a value.  Unlike many, however, (a) most

constructs are expressions, including control, block, and binding constructs, and (b) expressions may
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return more than one value or zero values.

Many expressions return very familiar values, although perhaps in an unfamiliar syntax:

(+ 1 2) ⇒ 3

In this book, we use the above typographical convention to indicate that the expression (+ 1 2), when

evaluated, returns the value 3.  More precisely, the string to the left of the arrow is intended to be a

prototypical expression as it might appear in a program, while the string to the right is the print form

of the object (value) returned when that expression is evaluated.

Note that the right hand side is the print form of the resulting object(s), and not the expression

necessary to create those objects.  In other words, the left hand side denotes a program, and the right

hand side denotes data.  The arrow may be regarded as the “evaluates to” operator.  

1.2.1. Lexical structure
Like most programming languages, RScheme has a lexical structure which underlies its syntactic

structure.

Table 1. Token examples

Example Description

whitespace; used to seperate tokens.   All the

ASCII whitespace characters are valid token

delimiters (ie, space, newline, carriage return,

form feed, vertical tab).

34 numbers

foo: keywords

foo symbols

"foo" strings

#t #f booleans

#key #rest syntactic keywords

#\f characters

(a b) lists

#(a b) vectors

'x quotation shorthand

`x quasiquotation shorthand

,x unquote shorthand

1.2.2. Naming conventions
The lexical flexibility for symbols in RScheme could be a curse if used indiscriminantly.  Therefore,

through experience and historical precedent, some conventions for variable names have been

developed.  (Note that in programs, identifiers are represented by what would be symbols in data)

Many permissible special characters are simply not used.  The period and percent sign are particularly
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discouraged[1]. This convention will be particularly important in RScheme because in an alternative

Java-like syntax (under development), many valid scheme symbols are not identifiers (due to the use

of special characters for operators).

Although RScheme is case sensitive, names are usually in all lower case with dashes to separate words.

Some specific naming conventions are used to distinguish different kinds of variables.

Table 2. Examples of identifiers following conventions

Identifier Description

*foo* normal, mutable module variable

<foo> class variable

foo function or special form

foo!

function or special form with side-effects

(pronounced “bang”,  as in set! which is read

“set-bang”) 

foo? predicate or boolean-returning function

$foo constant

With respect to the notational convention for side-effects, the use of an exclamation mark (!) suffix,

not all functions with side-effects are so marked.  This convention applies primarily to low-level

functions or functions whose primary purpose is to have side effects, such as vector-set! and delq!.

1.2.3. Expression Structure
Despite the apprent similarity between data and programs (their source representations are nearly

identical), not all data are valid expressions.

Expressions are defined recursively, as is usual for  programming language specifications.

1.2.3.1. Simple Expressions
1.2.3.1.1. Literals
The simplest expression is a literal expression.  Literal expressions are also known as self-evaluating

data, because the value of a literal expression is the corresponding datum.  Characters, strings,

numbers, booleans, and keywords are all valid literal expressions.

1 ⇒ 1

"foo" ⇒ "foo"

bob: ⇒ bob:

1.2.3.1.2. Variable References
The next simplest expression is the variable reference. An identifier is an expression which means

“look up and return the current value of the variable with this name”.

1.2.3.1.3. Procedure Calls
The third kind of expression is the function call, or combination. Syntactically, a function call

expression is an open parenthesis followed by one or more expressions followed by a close parenthesis.
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There must be at least one expression between the parentheses, because the value of the first

expression is the function to be called.  The remaining expressions are all evaluated and their values

are the arguments to the  function.

The earlier example expression, (+ 1 2)  illustrates the three kinds of expressions, in order of

execution: literal, variable reference, and procedure call.

1 and 2 are literal expressions which evaluate to the numbers 1 and 2, respectively.

Then, + is an expression which means “look up and return the value of the variable named +”.

Finally, the whole thing is a combination which means to call the procedure returned by the first

expression (typically, the value of the variable named + is a function which adds its arguments

together) with the arguments 1 and 2. The usual addition function would return 3 in this case.

1.2.3.2. Special Forms
The fourth kind of expression is really a large class of every other kind of expression, and are called

special forms.  Any identifier or parenthesized sequence of forms starting with an identifier is

potentially a special form.  The only way to tell is to know whether or not the variable named by the

identifier is a special form compiler[1].

1.2.3.2.1. Binding constructs
A useful common class of special forms are those used to introduce new program variables.  These are

known as binding constructs.

let, letrec, bind, et.al.

1.2.3.2.2. Conditional constructs
if, or, and, et.al.

1.2.3.2.3. Procedural abstraction
lambda.
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Data Types

RScheme has a rich set of data types for general programming.  Unlike in some hybrid lisp object

systems, all data types are part of a complete class hierarchy.  The RScheme data types are a superset

of standard Scheme’s required  data types.

NOTE: Until we finish filling in all this material, please look in R4RS for reference material.

1.3.1. Booleans
Standard scheme #t and #f.

1.3.2. Symbols
Standard scheme, except that symbols are case sensitive.

1.3.3. Numbers
Standard scheme required types – float and small integers.

1.3.4. Characters
Standard scheme with extensions.  You can write ascii control characters using their ascii control

character names, for example #\ff or #\esc. Some characters can be entered using different names,

such as #\newline which is also #\nl.

1.3.5. Strings
Standard Scheme, except with standard C string escapes (e.g., embed newline characters using \n)

1.3.6. Functions
Unlike some languages like Pascal, functions are regular data objects and can be stored in data

structures, extracted, and the result of a computation can be invoked like any other  function[1]

Note that the use of the term “function” does not imply anything in the sense of purely functional

languages.  The term is used here as in Dylan and C; functions can have side effects, and can return

zero or more values (unlike C and Java which only support returning zero or one values) 

1.3.7. Collections
1.3.7.1. Vectors
Standard Scheme.  See chapter on vectors.

1.3.7.2. Tables
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Constant-time mappings from keys to values.  See chapter on tables.  
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Flow of Control

All forward control flow in RScheme  is based on the if special form.  This form interprets all values

which are not the #f object as indicating true.  Hence:

(if #t 2 3) ⇒ 2 
(if #f 2 3) ⇒ 3 
(if 1 2 3) ⇒ 2 

In addition, RScheme implements the standard Scheme cond, case[1],  named let,  and do.

RScheme also supports exceptions for backward control flow. See in particular handler-case  and signal

in the chapter on exception handling.  
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Lists and pairs

Pairs and the empty list are the building blocks of programs that make heavy use of Lisp list-

processing style.   Pairs are composed to create lists.

The terminology used here and in R4RS are slightly different, in that we consider a list to be anything

that is either a pair or an empty list.  A proper list, on the other hand, is a list that is acyclic in the cdrs

and for which every cdr itself a proper list.  In contrast, R4RS defines a list to be what we call a proper

list.

1.5.1. Print representation
The print representation of a pair involves enclosing the contents in parentheses with a dot, or period,

seperating the car and cdr.  This print representation is referred to as a dotted pair. 

Since lists are common and involve repeated occurrences of pairs in cdr positions, a special case print

representation is available to these kinds of pairs.  In this case, the as long as the cdr of a pair is also a

list, the dot and recursive set of parentheses are elided.  Furthermore, if the cdr is the empty list, then

nothing is printed instead of “. ()”. Hence, a proper list is represented merely as the contents of the

list within parentheses.

(list 1 2 3) ⇒ (1 2 3)

1.5.2. Side-effects vs.  functional programming
RScheme, like Scheme itself, is a language with side-effects.  However, a “mostly functional” style is

encouraged.

Consider the two short lists, constructed as follows:

(set! a (list (make-bar 1) (make-foo 2)))
(set! b (list (make-baz 3) (make-baz 4)))

The resulting structure is as follows:

Figure 1. List structure after side-effects.
a b

<bar> <foo> <baz> <baz>

() ()

Call the return value of (append a b) c, and you have the following circumstance.  Note that the c and b

lists share structure 
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Figure 2. List after append
b

a

<bar> <foo> <baz> <baz>

c

() ()

On the other hand, if d is the result of calling (append!  a b), then the following figure applies.  Note

that the a and d lists share structure in this case, in addition to the same kind of shared structure with

the b list.

Figure 3. List after append!
d b

a

<bar> <foo> <baz> <baz>

()

1.5.3. Functions
cons function

Construct a new pair from two objects
(cons a b) ⇒ p

Arguments

a An instance of <object>

b An instance of <object>

Return Values

p An instance of <pair>

Description

This is the standard lisp constructor.  a will be the car of the resulting pair, while b will be the cdr.

car function
Get the car part of a pair.
(car p) ⇒ a

Arguments

p An instance of <pair>

Return Values

a An instance of <object>

Description

This is one of the two standard lisp accessors.

cdr function
Get the cdr part of a pair.
(cdr p) ⇒ b

Arguments

p An instance of <pair>

Return Values

b An instance of <object>

Description

This is the other of the two standard lisp accessors.

length function
Return the length of a list.
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(length l) ⇒ n
Arguments

l An instance of <list>

Return Values

n An instance of <fixnum>

Description

Computes the length of a well-structured list.  Signals an error if l is an acyclic improper list.  Never

returns if l is cyclic.[1]

append function
Appends some lists
(append l) ⇒ b

Arguments

l An instance of <list>

Return Values

b An instance of <list>

Description

Appends some lists (possibly zero of them) into one big list.  The resulting list shares structure with

the final given list.

NOTE: This means the all lists except the last are copied, so the cost in time and space of append is

proportional to the length of all the lists except the last, even if the last list is empty

append! function
Append some lists using side-effects.
(append! l) ⇒ b

Arguments

l An instance of <list>

Return Values

b An instance of <list>

Description

Like append, but side effects the tails of all but the last list in order to concatenate them.  Note however

that append! must still traverse each pair in the lists except the last, so this function still costs time

proportional to the length of the lists (except the last), though the space cost is zero.

pair? function
Test if an object is a pair.
(pair? x) ⇒ q

Arguments

x An instance of <object>

Return Values

q An instance of <boolean>

Description

Returns true if and only if x is a pair.

null? function
Test if an object is the empty list.
(null? x) ⇒ q

Arguments

x An instance of <object>

Return Values

q An instance of <boolean>
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Description

Returns true if and only if x is the empty list.

list? function
Test if an object is a proper list.
(list? x) ⇒ q

Arguments

x An instance of <object>

Return Values

q An instance of <boolean>

Description

Returns true if and only if x is a proper list – a sequence of zero or more cdr-linked pairs terminated

with the empty list.

In particular, list? does finish and returns #f on cyclic lists.  As a result, this function is fairly

expensive (quadratic on long lists, although optimized for short ones).

set-car! function
Set the car of a pair.
(set-car! p a) ⇒

Arguments

p An instance of <pair>

a An instance of <object>

Description

Side effects the given pair, p, so that its car is a. Returns no values.

set-cdr! function
Set the cdr of a pair.
(set-cdr! p b) ⇒

Arguments

p An instance of <pair>

b An instance of <object>

Description

Side effects the given pair, p, so that its cdr is b. Returns no values.

reverse function
Returns the reverse of a list.
(reverse l) ⇒ r

Arguments

l An instance of <list>

Return Values

r An instance of <list>

Description

Returns a new list which is the reverse of the given list.  Signals an error if l is not a proper list.

reverse! function
Reverses a list using side effects.
(reverse! l) ⇒ r

Arguments

l An instance of <list>

Return Values

r An instance of <list>
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Description

Accomplishes something list reverse, but does so by side-effecting l. Returns the new head of the list,

which was its tail.  Signals an error if l is not a proper list.

list-tail function
Returns the k-th cdr of a list.
(list-tail l k) ⇒ r

Arguments

l An instance of <list>

k An instance of <fixnum>

Return Values

r An instance of <list>

Description

Returns the k-th cdr of a given list.  Signals an error if the list is not long enough.
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Object System

By Robert Strandh

RScheme is a fully object-oriented language in that each RScheme object is an instance of some class.

Contrary to common languages such as C++ or Java in which methods are associated with classes, the

RScheme object system is based on generic functions much in the spirit of Dylan, which in turn is

based on the Common Lisp object system (CLOS).  

Every value in RScheme is an object.  That is, RScheme is "objects all the way down" rather than being

a hybrid language like C++ or most Lisp object systems–-the built-in R4RS Scheme data types are all

classes in the class hierarchy, as they should be.  Currently, only a simple object system with single

inheritance and single dispatching is supported.  The object system is approximately a subset of

TinyCLOS, with some Dylan-like extensions.

1.6.1. Classes
As mentioned above, every object in RScheme is an instance of a class.  For example, 123 and 12.3 are

both instances of the class named <number>, and "hello" and "hi there" are both instances of the class

<string>. 

Classes are organized into a hierarchy.  The top class of the hierarchy is called <object>. If some class A

is positioned immediately above some other class B in the hierarchy then we say that A is the

immediate superclass of B, and B is the immediate subclass of A. All classes above A in the hierarchy

are called (indirect) superclasses of B, and all classes below B in the hierarchy are called (indirect)

subclasses of A. The term subclass is used to mean direct or indirect sublcass, and the term superclass

is used to mean direct or indirect superclass.  A direct subclass B is said to inherit from its direct

superclass A, because instances of B automatically contain everything that instances of A contain, plus

information specific to B. An instance of a class B is also said to be an instance of every superclass

(direct or indirect) of B. An object, instance of B but not of any subclass of B, is said to be a direct

instance of B and an (indirect) instance of every superclass of B.

In the RScheme class hierarchy, each class has exactly one direct superclass (except <object> which has

none).  Another term for this kind of class organization is single inheritance.  

We mentioned above that 123 and 12.3 are both instances of the class <number>. To be more specific,

123 is a direct instance of the class named <fixnum> which is a subclass of <number>, and 12.3 is a

direct instance of the class named <double-float>  which is also a subclass of <number>. 

In some languages, for instance C++ and Java, classes exist only at compile time, and thus cannot be

manipulated as objects at runtime.  In other languages, for instance Smalltalk and RScheme, classes
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are themselves objects (and thus instances of some classes) in the same way numbers and strings are

objects.  If classes can be manipulated in the same way other objects are manipulated, then we say

that classes are first-class.  If an object is first-class, it can be given as values to a variable, passed as

an argument to a function, and returned as values of a function invocation.

Since classes are first-class objects, they do not necessarily have names.  It is convenient, however, to

be able to refer to classes by some name.  Indeed, above we already talked about the classes named

<object>, <number>, and <string>. In reality, these names are just names of ordinary global variables

whose values happen to be classes.  As a convention, we use angle brackets around variable names

whose values are classes.  

Most classes in RScheme are instances of the class named <<standard-class>>.  Classes of class objects

are called metaclasses.  Names of metaclasses are surrounded by double angle brackets as a

convention.  

The most convenient way of creating a class and giving it a name, is to use the macro define-class.

Here is the syntax:

define-class special
Defines a new class
(define-class name superclass class-opt slot-spec)

Arguments

name The name of the class being defined

superclass The parent class

class-opt A class option

slot-spec A slot specification

Description

This special form defines a new, immutable top-level variable with the given name, whose value is the

class object described by the superclass, class options, slot specifications.
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Input/Output

The input/output facilities of RScheme use the concept of a "port".  A port is a first-class RScheme

object that is passed (implicitly or explicitly) to the input/output functions.  

In RScheme, ports come in two varieties, namely input ports which are instances of <input-port>

and output ports that are instances of <output-port> [we don’t have input output ports?].

While some ports exist when RScheme is started, most have to be created explicitly by an open

operation.  The open operations thus create ports from other types of objects such as strings that

represent file names, or just strings that are themselves used for input or output.

RScheme ports usually buffer input/output for efficiency.  This means that you might not see the effect

of an output operation immediately.  Instead the output may be stored internally in a buffer associated

with the port and only written to the underlying device when the buffer is full, or as a result of an

explicit flush operation.

When all desired input/output has been accomplished from/to a particular port, you should close the

port.  Closing the port will free up resources of the operating system and flush the contents of the port.

1.7.1. Input port constructors
input-port? function

Checks whether an object is a input port.
(input-port? obj) ⇒ bool

Arguments

obj any RScheme object

Return Values

bool #t if the argument is an input port and #f otherwise

Description

This function tests whether the object given as argument is an instance of the class <input-port>.  If

so, it returns #t. Otherwise it returns #f.

current-input-port function
Returns the current default input port
(current-input-port) ⇒ input-port

Return Values

input-port An instance of <input-port>

Description

This function returns the input port used by default in some input operations such as read, read-char,

peek-char.
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open-input-file function
Creates an input port from a file name
(open-input-file string) ⇒ input-port

Arguments

string An instance of <string> representing a file name.

Return Values

input-port An instance of <input-port>

Description

This function creates a new input port from a file name.  This port can then subsequently be used in

input operations such as read, read-char, and peek-char.

with-input-from-file function
Redirect input from file
(with-input-from-file string proc) ⇒

Arguments

string An instance of <string> representing a file name

proc A function of one parameter

Description

This function creates a new input port from the file name in the string as in open-input-file.  It then

calls the procedure with the new port.  If the procedure returns, then the port will be closed as with

close-input-port.  If the procedure does not return, the port will not be closed until and unless it can

be shown that the port cannot be used for any input operations.

open-input-process function
Open a port to the output from a shell pipeline.
(open-input-process shell) ⇒ port

Arguments

shell An instance of <string>

Return Values

port An instance of <input-port>

Description

Creates a subprocess for executing shell via the OS’s shell interpreter, and returns an input port which

reads from the output of that subprocess.  The close-input-port method synchronizes  with the

subprocess.

Note that this procedure is named for the kind of object you get back (an input port), and not for the

behavior that shell process is expected to exhibit (ie, output).

close-input-port function
Close an input port
(close-input-port port) ⇒

Arguments

port An instance of <input-port>

Description

This function closes the input port given as argument.

read-char function
Read a character
(read-char) ⇒ char

Arguments

input-port An instance of <input-port>.  Default is the current input port.
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Return Values

char A character object or the EOF object if the input port is at end of file.

Description

This function reads one character from the input port given, or from the current input port if no

argument is given.  It return the character read as an RScheme ascii character object.  If there are no

more characters to read from the port then the EOF object is returned (the only one for which  eof-

object?  return #t).

peek-char function
Read a character without consuming it
(peek-char) ⇒ char

Arguments

input-port An instance of <input-port>.  Default is the current input port

Return Values

char A character object or the EOF object if the input port is at end of file.

Description

This function is similar to read-char in that it reads one character from the input port given, or from

the current input port if no argument is given.  However, the character read is not consumed and is

returned again by the next call to read-char or to peek-char.  If there are no more characters to read

from the port then the EOF object is returned.

char-ready? function
Check whether it is safe to read a character
(char-ready?) ⇒ bool

Arguments

input-port An instance of <input-port>. Default is the current input port

Return Values

bool #t or #f

Description

This function returns #t if a subsequent call to read-char on the port is guaranteed not to block.

Otherwise it returns #f.

read function
Read an S-expression
(read) ⇒ expr

Arguments

input-port An instance of <input-port>. Default is the current input port.

Return Values

expr The internal representation of the next expression on the port.

Description

This function is the RScheme expression parser.  It converts a sequence of characters on port to the

internal representation of an expression.  The value returned can be as simple as a character and as

complicated as a vector of almost arbitrary RScheme objects.  The object returned depends on the

sequence of characters, which must obey the syntactic conventions of RScheme.

output-port? function
Checks whether an object is a output port.
(output-port? obj) ⇒ bool

Arguments

obj Any RScheme object
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Return Values

bool #t if the argument is an output port and #f otherwise

Description

This function tests whether the object given as argument is an instance of the class <output-port>.  If

so, it returns #t.  Otherwise it returns #f.

current-output-port function
Returns the current default output port
(current-output-port) ⇒ output-port

Return Values

output-port An instance of <output-port>

Description

This function returns the output port used by default in some output operations such as write, write-

char, and display.

open-output-file function
Creates an output port from a file name
(open-output-file string) ⇒ output-port

Arguments

string An instance of <string> representing a file name.

Return Values

output-port An instance of <output-port>.

Description

This function creates a new output port from a file name.  This port can then subsequently be used in

output operations such as write, write-char, and display.

with-output-to-file function
Redirect output to a file
(with-output-to-file string thunk) ⇒

Arguments

string An instance of <string> representing a file name

thunk A procedure of no arguments

Description

This procedure creates a new output port referring to the  system file string, as does the procedure

open-output-file. It then calls the given thunk in a dynamic context such that the current output port is

the new output port.  If the procedure returns, then the port will be closed as with close-output-port.

If the procedure does not return, the port will not be closed until and unless it can be shown (as by the

reachability analysis done by the garbage collector) that the port cannot be used for any output

operations.

close-output-port function
Close an output port
(close-output-port port) ⇒

Arguments

port An instance of <output-port>

Description

Closes the output port port. Signals an error if the output port has already closed.  Certain

implementations may also signal an error if something goes wrong, like buffered data could not be

written to the media.

open-output-process function
Open a port to the input to a shell pipeline.
(open-output-process shell) ⇒ port
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Arguments

shell An instance of <string>

Return Values

port An instance of <output-port>

Description

NOTE: This procedure is named for the kind of object you get back (an input port), and not for the

behavior that shell process is expected to exhibit (ie, output).
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String Manipulation

RScheme has a wide variety of string manipulation functions, providing facilities that are useful to

normal programmers and going well beyond what’s available in R4RS.

Consider for example the following string:

Figure 4. Sample String

1
0

 
1

2
2

 
3

B
4

u
5

c
6

k
7

l
8

e
9

 
10

m
11

y
12

 
13

s
14

h
15

o
16

e
17 18

Note the numbering assigned to the characters in the string.  For purposes of array operations like

string-ref, since arrays are 0-based in Scheme, the referenced character is the character that would

make up a substring with an offset equal to the given index, and having length 1.

1.8.1. String operations
string-search function

Search a string
(string-search string item) ⇒ index

Arguments

string An instance of <string>.

item An item for which to search, a <char> or <string>.

offset The offset in string at which to start searching.  Defaults to 0.

Return Values

index An instance of <fixnum> if found, otherwise #f

Description

This function searches the given string for an occurrence of the item, which may be a string or a

character.

string-split function
Split a string into substrings
(string-split string delim) ⇒ list

Arguments

string An instance of <string>.

delim The delimitation on which to break string. May be a <string>, <char>, or a

<function>.

Return Values

list The list of substrings of string which are delimited by delim.

Description

This function breaks the string up into substrings delimited by delim, which may be a string, a
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character, or a procedure.

In the latter case, where delim is a procedure, delim is presumed to have the interface of a regular

expression search procedure.  That is, it must be a procedure of two arguments (a string and an

offset), and return two values if the pattern is found (the start and ending indexes) and no values or #f

if the pattern is not found.

(string-split "foo bar baz" #\space) ⇒ ("foo" "bar" "baz")

(string-split ".foo..bar...baz" #\.) ⇒ ("" "foo" "" "bar" "" "" "baz")

(define p (reg-expr->proc '(+ #\,)))

(string-split "foo,,bar,,,baz" p) ⇒ ("foo" "bar" "baz")

If the delimitation is by function, and the function matches  the empty string at some point in the

process of trying to delimit the input string, then an error is signalled.

string-join function
Join some strings
(string-join delim list) ⇒ string

Arguments

delim The delimiter to separate elements of list.

list A proper list of <string> instances.

Return Values

string An instance of <string>.

Description

This function does the reverse of string-split and joins together the elements of list with occurrences

of delim in between.  delim may be a character or a string.

(string-join #\.  '("foo" "bar" "baz")) ⇒ "foo.bar.baz"

(string-join ".." '("hi" "there" "bob")) ⇒ "hi..there..bob"

1.8.2. Character sets and tables
Different parts of the system make frequent use of character class testing.  For example, the lexical

analyzer defines some character classes that are used to tokenize scheme data and programs.  Also,

the regular expression facility can use character sets to match characters.

1.8.3. Regular Expressions

RScheme comes with a regular expression facility, accessible as the regex module.  This module

provides a regular expression compiler; regular expressions in a structured scheme-like syntax are

compiled into functions which know how to search for their pattern.

Compiling a regular expression is relatively expensive, so it is best to factor out the operation

whenever convenient.

The returned procedure takes one or two arguments.  It’s first argument is the string to search for

itself in.  The second (optional) argument is the offset at which to start looking, which defaults to 0.

Regular expressions are composed of the following operators:

Table 3. Regular Expression Operators
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form example

<char> #\a

<string> "foo"

<symbol> space

eos eos

(or P1 ...) (or #\a space)

(seq P1 ...) (seq #\a #\b)

(+ P) (+ space)

(* P) (* alpha)

(?  P) (?  #\x)

(range C1 C2) (range #\a #\z)

(not P) (not space)

(save P) (save (+ (not #\,)))

(let N P) (let id (+ alpha))

(prefix P) (prefix #\a)

(suffix P) (suffix #\.)

(entire P) (entire "foo")

1.8.3.1. Functions
reg-expr->proc function

Compiles a regular expression
(reg-expr->proc expr) ⇒ proc list

Arguments

expr A regular expression.

Return Values

proc An instance of <function>.

list A list describing the proc’s return values.

Description

This function compiles a regular expression into a callable object.  The valid forms of regular

expressions are given in the table at the beginning of this section.

The second return value, list, describes the values that will be returned from proc when it finds a

match.  The first element is always the symbol substring, indicating that the proc returns the start and

end index of the substring that matched.  The remaining elements are the names from each

occurrence of a let form in expr, indicating the strings returned for each use of let. let’s without

names are assigned integer names 1, 2, 3, ... [really, save is the appopriate choice for unnamed let’s]

(reg-expr->proc  '(seq (+ space)  (let w (+ alpha)))) #{#[<procedure>]} ⇒ (substring w)

If the proc finds a match, it return two values – the start and end index of the substring that matched 

– plus one string for each let construct in the regular expression.
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Since the proc returns multiple values, the bind construct may be used to capture the multiple values.

(define q (reg-expr->proc '(seq (+ #\*) (save (+ alpha)))))

(define str "...***hello there")

(q str) ⇒ 3 ⇒ 11 ⇒ "hello"

(substring str 3 11) ⇒ "***hello"

(bind ((s e w (q str)))  w) ⇒ "hello"

unformat->proc function
Constructs an “unformat” procedure
(unformat->proc format-string) ⇒ proc

Arguments

format-string A format string.

anywhere? An optional <boolean>. Default value is #f.

Return Values

proc An instance of <function>.

Description

This function constructs a procedure which will do the inverse of format when applied to a string.

However, the format-string can only contain the following format specifiers, and no modifiers are

currently supported:

specifier meaning

~s

consume as much input as possible and interpret

it using read.

~a

consume as much input as possible, returning it

as a string.

~d

consume a sequence of digit and dot characters

and interpret it using string->number.

The way this function (usually) works is by using the format string to build a regular expression,

using the regex binding facility to extract  substrings corresponding to the format specifiers in format-

string. The function returned by this function invokes the regular expression matcher on it’s

argument, and, if it matches, maps the appropriate interpretation procedures (e.g., string->number)

over the substrings.  

If the returned function does not find a match, it returns no values.  

If the format string contains no format characters, then an error is signaled by unformat->proc, since

there will be no way to distinguish success from failure cases of invocations of proc.

If anywhere? is #t, then the returned procedure will try to find something that matches anywhere

inside the argument string.  In addition, it will return two additional values (the first two), which are

the start and ending offset in it’s given string of the substring that matched.  Otherwise, by default, 

the returned procedure will require an exact match between the format string and it’s argument

string.

(define p (unformat->proc "foo(~d,~a)"))

p #{a <function>}
(p "blah")

(p "foo(10,hello)") ⇒ 10 ⇒ "hello"
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As usual, you can use bind to capture the multiple values from proc.

1.8.3.2. Examples
The following examples illustrate the basic behavior of the regular expression module.

Example 1. Regular Expression Examples

(define p (reg-expr->proc '(+ alpha)))

(p "1 2 Buckle my shoe") ⇒ 4 ⇒ 10

(define p2 (reg-expr->proc '(let x (+ alpha))))

(p2 "5 6 pick up sticks") ⇒ 4 ⇒ 8 ⇒ "pick"

(p2 "5 6 pick up sticks" 8) ⇒ 9 ⇒ 11 ⇒ "up"
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Vectors

The <vector> class corresponds to the vector type, and is essentially an array which can contain

arbitrary scheme objects.  The size of a vector is fixed when the vector is created.

The functions make-vector and vector are used to create vectors, and the elements are accessed using

vector-ref and vector-set!.

In addition to the required scheme operations, RScheme defines many functions which allow vectors

to be used where lists might otherwise be used.  

Since vectors are arrays, with constant-time element access, they have different performance

characteristics than lists.  For example, finding the length of a vector is a constant-time operation,

compared to a list for which it  takes time proportional to the length of the list.  On the other hand,

adding an element to the front of a list is a constant time operation, wheras it is a linear-time

operation for vectors.

Vectors read like lists, except with a # at the beginning.  For example,

#(1 2 3)
#()

1.9.1. Vector operations
vector-append function

Concatenates a sequence of vectors
(vector-append vector) ⇒ result-vector

Arguments

vector Instances of <vector>.

Return Values

result-vector An instance of <vector>.

Description

This function appends a sequence of vectors together into one vector.  The returned vector has all the

elements of the given vectors, in order.  Hence, the length of the returned vector is the sum of the

lengths of the given vectors.

subvector function
Creates a subvector
(subvector vec start) ⇒ result

Arguments

vec An instance of <vector>.

start An instance of <fixnum>.
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end An instance of <fixnum>. Optional.  Default  value is the length of the vector.

Return Values

result An instance of <vector>.

Description

This function is to vectors what substring is for strings.

vector-map function
Maps a function over a vector
(vector-map proc vec) ⇒ result

Arguments

proc An instance of <function>.

vec An instance of <vector>.

Return Values

result An instance of <vector>.

Description

This function is to vectors what map is to lists.

The length of result is the minimum of the lengths of the vec arguments.  Hence, if one of vec is an

empty vector (having 0 length), then an empty vector is returned and proc is never called.

(define x '#(1 2 3))

(define y '#(10 20 30))

(vector-map + x y) ⇒ #(11 22 33)

(define z '#(8 9))

(vector-map + y z) ⇒ #(18 19)

vector-for-each function
Applies a function to elements of a vector
(vector-for-each proc vector) ⇒ object ...

Arguments

proc An instance of <function>.

vector Instances of <vector>.

Return Values

object Instances of <object>.

Description

This function is to vectors what for-each is to lists.

In particular, the procedure proc is called with  corresponding vector elements, in order (up to the

length of the shortest vector.) Also, vector-for-each returns whatever the last call to proc returns[1].
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Tables

RScheme provides an implementation of hash tables, both generic and specialized for certain kinds of

keys.  The hash table facilities are provided by the tables module.

top[0]=>,(use tables)
top[1]=>(define t (make-table))
value := t
top[2]=>t
value := #[<generic-table> @080f_605b]

The <table> class is the abstract class of collections which map an explicit set of keys to values.   The

only concrete subclasses of <table> are subclasses of the class <hash-table>.

Hash tables are created using the make-table function.

1.10.1.  Table operations
make-table function

Constructs a new hash table
(make-table test-fn hash-fn) ⇒ table

Arguments

test-fn A function of two arguments that returns a boolean, and representing the

equality predicate for the hash table.

hash-fn A function of one argument, which will be a table key, that returns the <fixnum>

hash value.

Return Values

table The freshly allocated hash table.

Description

This function creates a new hash table with the given test and hash functions.  If the test function and

hash function are chosen from a particular set of common pairs, then a specialized class of hash table

may be returned.

The test-fn is a function of two arguments which will be used to test if two keys are equal.  The first

argument will always be a key already in the table, and the second argument will be a key being

sought.  The function should return #f if and only if the keys are not equal.  As usual, returning

anything else is considered to indicate that the keys are equal.

The hash-fn is a procedure of one argument which is used to compute a hash code from a key.  The

return value of the procedure must be a <fixnum>. As usual for hashing techniques, the hash-fn must

return an identical value for keys that are equal according to the test-fn.  Also as usual, the efficiency

of a particular table depends on the even distribution in number space of the hash codes for the keys

in the table.
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This function will detect certain special cases and return an appropriate specialized subclass of <hash-

table>, so whenever appropriate for the application, one of the following combinations should be used:

test function hash function specialized class

eq? symbol->hash <symbol-table>

eq? integer->hash <hash-integer-table>

eq? identity <integer-table>

string=? string->hash <string-table>

string-ci=? string-ci->hash <string-ci-table>

eq? any <eq-table>

table-lookup generic
Searches a table for the given key
(table-lookup table key) ⇒ value

Arguments

table An instance of <table> to be searched

key The key for which to search.  Must be an instance of the key class appropriate for

the given table.

Return Values

value The value associated with given key, or #f if the key is not present in the table[1].

Description

This generic function on tables is used to search for the presence of a given key in a table.

The given key must be compatible with the table, or an error is signalled.

The following method searches a generic hash table (ie, with arbitrary test and hash functions) for the

given key.

The given key is first handed to the table’s hash function to compute a hash code.  If the hash function

does not return a <fixnum>, then an error is signalled.

The hash code is then sought in the table; if found, then the test function is called with two

arguments, the first being the key in the table that has the same hash code, and the second being the

key given to table-lookup. If that function returns non-#f, then the two keys are considered equal and a

“table hit” has occurred.

Methods

(table-lookup generic-table key) ⇒ value

table-key-present? generic
Checks a table for the presence of a given key
(table-key-present? table key) ⇒ boolean

Arguments

table An instance of <table> to be searched

key The key for which to search.  Must be an instance of the key class appropriate for

the given table.

Return Values

boolean #t if the key is present, #f otherwise.
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Description

This generic function on tables is used to check for the presence of a given key in a table.  This

function is similar to table-lookup, but it returns a boolean indicator rather than the value associated

with the key.  Hence, it is of primary use for tables that may contain #f as a value.

table-insert! generic
Associates a key with a value in a table
(table-insert! table key value) ⇒ prev-value

Arguments

table An instance of <table> to be extended

key The key to insert.

value The value to be associated with the key.

Return Values

prev-value The value previously associated with given key, or #f if the key was not present in

the table.

Description

This generic function on tables is used to insert entries into a table.

The given key must be compatible with the table, or an error is signalled.

table-remove! generic
Removes a given key from a table
(table-remove! table key) ⇒ value

Arguments

table An instance of <table> to be modified.

key The key to remove

Return Values

value The value that was associated with key, or #f if the key was not present in the

table.

Description

This generic function on tables is used to remove entries from a table.

The given key must be compatible with the table, or an error is signalled.

If the given key is not present in the table, then #f is returned.  No error is signalled in this case.

table-size generic
Computes the number of keys in the table.
(table-size table) ⇒ integer

Arguments

table An instance of <table>.

Return Values

integer The number of entries in the table.

Description

This generic function on tables returns the size of the table, which in particular will be the number of

elements in the collections returned by key-sequence and value-sequence.

key-sequence generic
Returns a sequence of table keys
(key-sequence table) ⇒ list

Arguments
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table An instance of <table>

Return Values

list An instance of <list>

Description

This function extracts the set of keys from a <table> in the form of a sequence.  The length of the

returned list is exactly the size of the table as reported by table-size. 

The order of returned keys in the list is not specified, except to say that it is the same order as the

values returned by value-sequence.

value-sequence generic
Returns a sequence of table values
(value-sequence table) ⇒ sequence

Arguments

table An instance of <table>

Return Values

sequence An instance of <list>

Description

This function extracts the set of values from a <table> in the form of a sequence.  The length of the

returned sequence is exactly the size of the table as reported by table-size.

In the current implementation, the returned sequence is a list.  However, future versions may return a

vector instead.

The order of returned value in the sequence is not specified, except to say that it is the same order as

the values returned by key-sequence.

table-for-each function
Applies a procedure to entries in a hash table
(table-for-each table proc) ⇒

Arguments

table An instance of <hash-table>.

proc An instance of <function>.

Description

This function applies a given procedure to the entries in a hash table.  The procedure proc must accept

3 arguments, which will be, for each entry in the hash table, the hash code, the key, and the associated

value.

The number of calls to the procedure will equal the table size (modulo the following statement:)

The behavior of the iteration is not specified if the table is updated while the iteration is taking place.
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Pathnames

RScheme provides a pathname abstraction which provides some insulation against the different

representation of path names on different operating systems.  This facility is only concerned with the

naming of files, not with the actual files and directories in the system.

The basic support provided is the notion of a directory, a base filename, and an extension.

The canonical representation is that of Unix pathnames of the general form foo/bar/baz.scm. In this

case, foo/bar is the directory, baz is the base filename, and scm is the extension.

If there are multiple periods in the part after the directory, the last separates the filename from the

extension (hence the filename part can contain periods).  Periods inside directory names are not

treated specially.

The directory notion also includes the notion of “up” a directory (the .. directory in unix and MS-

DOS.) A canonicalized directory will consist of zero or more “up”s  followed by zero or more directory

names.  The canonicalization process removes occurrences of the form foo/.., so an “up” will never

occur in the middle of a directory pathname object.

1.11.1. Functions
string->file function

Creates a pathname object naming a file
(string->file string) ⇒ filename

Arguments

string An instance of <string>.

Return Values

filename An instance of <file-name>.

Description

This function parses the given string in canonical filename notation (unix style) into a structured

<file-name> instance.

string->dir function
Creates a pathname object naming a directory
(string->dir string) ⇒ dirname

Arguments

string An instance of <string>.

Return Values

dir-name An instance of <directory-name>.

Description

This function parses the given string into an internal <directory-name> object.  This involves
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recognizing "up" (..) entries and removing them when possible, and recognizing root directory

indicators.

pathname->string generic
Converts a pathname object to the corresponding string
(pathname->string pathname) ⇒ string

Arguments

pathname A pathname object (an instance of <file-name>  or <directory-name>)

Return Values

string The string form of the pathname.

Description

This generic function is applied to a pathname to recover the string representation of the pathname.

Directory names are returned with a trailing slash.

(define p (string->file "foo/bar/baz.scm"))

(pathname->string p) ⇒ "foo/bar/baz.scm"

(pathname->string (file-directory p)) ⇒ "foo/bar/"

The returned string does not expand any special root locations.  See also pathname->os-path.

file-directory generic
Accesses the directory part of a pathname
(file-directory pathname) ⇒ dirname

Arguments

pathname A pathname object (an instance of <file-name>)

Return Values

dirname An instance of <directory-name>.

Description

The methods on this generic function extract the directory portion of pathname objects.

file-within-dir function
Compute the name of the file within it’s directory
(file-within-dir pathname) ⇒ string

Arguments

pathname A pathname object (an instance of <file-name>)

Return Values

string An instance of <string>.

Description

This function returns the name of the file represented by the given pathname object within it’s

directory.  That is, if the pathname is foo/bar/baz.scm, then the file is within the foo/bar directory (see

file-directory) and the file name within the directory is baz.scm.

extension-related-path function
Compute the pathname of a "related" file
(extension-related-path pathname extension) ⇒ new-pathname

Arguments

pathname A pathname object (an instance of <file-name>).

extension A string.

Return Values

new-pathname An instance of <file-name>.

Description

This function computes and returns the pathname of a file that is “close” to the file denoted by the
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given pathname, differing (possibly) only in it’s extension.

(define f (string->file "stuff/quux.c"))

(extension-related-path f "o") #{filename stuff/quux.o}
append-path function

Append a pathname onto a directory
(append-path dirname filename) ⇒ new-filename

Arguments

dirname A directory name (an instance of <directory-name>).

filename A file name (an instance of <file-name>).

Return Values

new-filename An instance of <file-name>.

Description

This function computes the pathname that results when the given filename is interpreted relative to

the given dirname.

If filename is an absolute path, then it is returned.  Otherwise, a new file name object is constructed.

append-dirs function
Append two directory pathnames.
(append-dirs dir1 dir2) ⇒ dir3

Arguments

dir1 A directory name (an instance of <directory-name>).

dir2 A directory name (an instance of <directory-name>).

Return Values

dir2 A directory name (an instance of <directory-name>).

Description

This function is analagous to append-path, but works on a directory as it’s right-hand-side argument.

That is, the function computes the directory referred to when dir2 is interpreted relative to dir1.

If dir2 is an absolute path, then it is returned.  Otherwise, a new directory-name object is constructed.

pathname->os-path generic
Converts a pathname object to the corresponding string
(pathname->os-path pathname) ⇒ string

Arguments

pathname A pathname object (an instance of <file-name>  or <directory-name>)

Return Values

string The string form of the pathname.

Description

This generic function is applied to a pathname to  compute the native representation of the given path,

suitable to passing to functions that actually operate on the file system, such as open-input-file and

stat.

In unix, directory names are returned without a trailing slash.

Special root locations are expanded to their current value.

1.11.2. Example usage
The following examples illustrate the basic usage.
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Example 2. Filename Examples

(define f (string->file "foo/bar/baz.scm")) 
f #{filename foo/bar/baz.scm}
(file-within-dir f) ⇒ "baz.scm"

(extension-related-path f "o") #{filename foo/bar/baz.o} 
(define d (file-directory f)) 
d #{dirname foo/bar/} 
(append-path d (string->file "INDEX")) #{filename foo/bar/INDEX} 
(append-path d (string->file "../INDEX")) #{filename foo/INDEX} 
(append-dirs d (string->dir "../CVS")) #{dirname foo/CVS/}
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Exception handling

The exception handling model of RScheme is based on that of Dylan(TM).  All exceptions are

represented by instances of a condition class, <condition>.

1.12.1. Overview
Exception handling is a language feature available in RScheme which supports to the development of

more robust programs by providing a uniform mechanism for error dispatching.  This facility is also

used by RScheme’s built-in error recognition as well, so error management is uniform across built-in

and application-level error conditions.

1.12.2. Forms
Error conditions are injected into the dispatching system by the signal or error function.  These two

functions operate similarly; the only difference is that error never returns, wheras signal may return,

depending on the handler that is in place.

On the receiving end, errors are caught by functions and bodies introduced by the handler-case and

handler-bind forms.  The former is more commonly used, but imposes the semantics of terminating

handlers. handler-bind is more flexible, and can support calling semantics for its handlers.

signal function
Signal a condition
(signal condition) ⇒ object ...

(signal message arg) ⇒ object ...
Arguments

condition A condition object (an instance of <condition>).

format-string An instance of <string>.

Return Values

object An object.

Description

This function submits a condition object to the exception handling system for delivery.  The

appropriate exception handler is invoked to handle the condition.

In the interactive environment, the default condition handler supplied by the read-eval-print loop will

catch any condition not otherwise caught and create a “break” loop.

If the recovery protocol of the condition permits returning, and a handler returns, then the values it

returns are returned from the call to signal. See also error if no recovery is permitted.
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The second form of the function is a convenient interface to creating instances of <simple-warning> with

the given message and arguments.

error function
Signal a non-recoverable condition
(error condition)

(error message arg)
Arguments

condition A condition object (an instance of <condition>).

format-string An instance of <string>.

Description

This function signals a condition from which no recovery is possible.  If the signal handler returns,

then another error is signalled (a recovery protocol failure).  Hence, this function never returns.

In the interactive environment, the default condition handler supplied by the read-eval-print loop will

catch any condition not otherwise caught and create a “break” loop.

The second form of the function is a convenient interface to creating instances of <simple-error> with

the given message and arguments.

handler-case special
Catches signalled exceptions and aborts computation
(handler-case expr class body)

Arguments

expr An expression to be evaluated

class A subclass of <condition>.

var The name for a binding in the corresponding body forms.

body A sequence of expressions.

Description

handler-case establishes exception handlers for the duration of the execution of expr. 

If during the execution of expr, a condition is signalled, and the condition is an instance of  the class of

one of the handler clauses, then the corresponding body forms are executed.  In this case, the  value(s)

of the handler-case is the value(s) of the last body form in the handler clause.  Furthermore,  during the

execution of the body forms, the handlers established by this handler-case are no longer active (the

handler taking control unwinds the dynamic stack to this point before executing the body forms).

If the condition: keyword is used in a clause, then the condition object is bound to a variable var with

the body forms in it’s scope.

The clauses are checked in the order they are given in the  handler-case.

If no condition is signalled during the execution of expr, then the values of the entire handler-case are

the values returned by  the expr.

handler-bind special
Establishes signal handlers
(handler-bind class function body)

Arguments

class A subclass of <condition>.
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function A function of two arguments.

body A sequence of expressions.

Description

This special form arranges for the body forms to be evaluated in a context in which the given function

is the handler for the set of conditions specified by the class and it’s subclasses.

That is, if a condition is signalled during the execution of the body forms, and the condition object is a

general instance of class, then the function is called with two arguments.

The first argument is the condition object that was signalled, which will be an instance of class.

The second argument is the “next handler” procedure, which is a procedure of no arguments which,

when called, will arrange to invoke the next outermost handler.  

The next-handler procedure may be used to be more selective in which conditions to handle, by

invoking it if the function chooses not to handle the condition.

The function is called in the context of the signalling expression.  In particular, the handling context

established by this handler-bind and any interior handler-bind’s will still be in force.  Hence, if a

condition which is an instance of class is signalled within the execution of function, then function may

be called again (and will be, if an interior handler-bind does not handle the condition).

1.12.3. Example usage
Consider the following definitions:

(define (foo x)
  (if (not (symbol? x))
      (error "not a symbol"))
  (cons x x))

(define (bar y)
  (handler-case
    (foo y)
   ((<condition>)
    y)))

The bar procedure calls foo procedure in a context in which errors are caught.  If foo signals a condition

(as it will if its argument is not a symbol), then bar catches the condition and returns bar’s argument

instead of whatever foo returns.

Example 3. Examples using exception handlers

(bar 'x) ⇒ (x . x) 
(bar 3) ⇒ 3
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The Module System and the Module Compiler

1.13.1. Introduction and Terminology
It is good practice to divide a large program into smaller units that can be independently understood.

Such units are called modules.  RScheme has full support for modules.

Traditionally, there are two different purposes of modules.  The first and least interesting purpose is to

function as a unit of compilation.  Early versions of Fortran already supported separate compilation of

this type of module.  The second and most interesting purpose of a module is to encapsulate related

data and functions with a restricted view from the outside.  Typically, modules are used to hide

implementation details of some abstract data type that can only be used by other modules (called the

client modules) through a well-defined set of functions called the interface of the abstract data type.

In RScheme a module is both a unit of separate compilation and a unit of encapsulation.  Currently,

only the off-line compiler (or module compiler) rsc can create a module.

You may think of a module as an augmented top-level environment mapping names to variables,

macros, or special forms (collectively called bindings).  Bindings are not first-class objects so you

cannot manipulate them the way you manipulate other RScheme objects such as numbers and strings.

In addition to the collection of bindings, a module contains information about which bindings are

visible from the outside (exported) and which bindings are purely local to the module.  Finally, a

module contains information about what other modules are needed by the module (called the

imported modules).

When a module M imports a module N, the top-level environment of M is augmented with the name-

to-binding mappings of N that are exported.  RScheme provides functionality to give different names

of these bindings from those used by N, so that both M and N share the same bindings, but under

different names.  This renaming is useful when you need to avoid name clashes between modules.  

The collection of modules together with the imports relation  in a program form a directed acyclic

graph.  In other words, it is not possible for modules to be mutually imported.  

1.13.2. Organization of a Module
A module is organized as a collection of source files (extension  .scm) and a module control file

(extension .mcf).  The source files are logically concatenated by the module compiler so that there is no

encapsulation between different source files in a module.  The module control file indicates the order

of the concatenation of the source files.  This order may be important, since a binding, such as a

macro, may be created in one file and used in another.[1]
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The source files are ordinary RScheme files that can be understood by the interactive on-line

compiler.  Typically, you would use the procedure load to add the contents of these source files to your

interactive RScheme environement during the development phase.  Loading the source files does not

involve the module compiler at all.  Instead the on-line interactive compiler translates the source to

some interal form (e.g.  bytecodes) that can be executed relatively fast.  The on-line interactive

compiler is faster than the off-line module compiler, so that in a phase of frequent modifications to

source code you can rapidly test new versions of your code.  However, the off-line compiler produced

much faster executable code, so that when you are reasonably sure that your program is bug-free, you

typically use the off-line module compiler on your code in order to produce fast executable code.  

1.13.3. Compilation and its Semantics
We have already used the concept of loading above.  The compiler introduces some other concepts that

need to be understood in order for the compilation process to make sense.  

Compiling a module involves translating the source code in the source files to a different format that is

no longer in the form of source code.  The off-line module compiler puts the result of this translation

in a file called the module image file (extension .mif).

The module index (.mx) file contains various names that are important to the linker, in particular

module entry points and a list of dynamically linked (extension .so) files.  The module index file and

the module image file are both logically part of the "object code" generated by the compiler and

should always be manipulated together.  In particular, they should both be installed in the same

directory.

The contents of this module image file can then be added to your interactive RScheme enviroment in a

way similar to loading described above.  Conceptually, this process is divided into two steps, the link

step and the import step.  Linking simply takes the module image file and incorporates it into the

interactive RScheme enviroment without making any connection between the linked module and the

current module.  Linking is just the extension, at runtime, of the set of modules present in the heap;

the system starts out with a set of default modules already present and linked.  Importing, on the

other hand, simply binds  names in the current module to the exported variables of the imported

module.

In the interactive RScheme environment, you typically use the command ,(use module) to import a

module,  where module is the name (in the form of a symbol) of a module.  The module image file is

formed by adding a .mif extension to the string form of the symbol.  Recall that forms that start with a

comma are conceptually executed outside the interactive environment.  The command ,(use foo) will

first check whether the module foo has already been linked.  If not, then it tries to find the module

image file and link it.  If it cannot find the module image file, an error message is given.  If the module

is already linked, or if the module file was found and successfully linked, the ,(use foo) command will

procede to the population step and add the exported top-level bindings to the interactive RScheme

environment.  

Conceptually, the meaning of the linking step is similar to the meaning of loading source.  It is during

the linking step that top-level forms in the source code (i.e.  the .scm files that were mentioned during

compilation) are conceptually evaluated in order.  We say ‘‘conceptually’’ because the compiler is free

to replace this top-level evaluation by something more efficient provided that the effect in the

interactive RScheme environment is the same.  The most important such transformation that the

compiler does is to convert each lambda expression to machine code that has the same effect as the
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lambda expression itself, except that it is much faster.  

use replcmd
Import module to current environment.
(unquote module)

Description

The use REPL command is used to import the exported variables of other modules.  module gives the

name of the module whose variables are to be bound in the current environment.

If the named module is not currently linked, the system will attempt to locate the corresponding mif

file and link the module, before importing it.

rsc unix
Compile a module.

Description

This unix command compiles a module, using the control and component instructions in the module

control file given by file. The module’s files are taken to be relative to file, not the current working

directory.
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Command-Line Interface

The RScheme executable program in a unix-like environment accepts several switches, options, and

arguments.

When the system starts up, the first thing it does is load the system image. When RScheme is

configured, a default location for the system image is defined, and that location is compiled into the

executable image.  In particular, the image is sought in $INSTALL_DIR/resource/system.img, where

$INSTALL_DIR is the installation directory for RScheme.

After loading the system image, the internal start function is called which executes the initialization

procedures and then calls the current main function with the command line arguments in a list.

1.14.1. System Argument Processing
The C initialization code and the built in (system) start funcion interpret some but not all command

arguments.  The command-line arguments understood by the C initialization code will be shared by

all “executable” images.

The following flags are processed by the system initialization code:

Table 4. Command-line Interface Flags defined for the RScheme executable environment.  See also the
following table.

flag meaning

- -version Print out the version and exit.

-image Use an alternate system image file.

-q Suppress output of greetings.

-qimage Use an alternate system image file and suppress.

-script Suppress output of greetings and set script mode.

-bcitrace

Turn on tracing of bytecodes; the system must have been

configured with the - -enable-debug flag to make use of this

flag.

-abt

Turn on apply backtrace tracing from the start.  Useful in

some cases when turning it on at runtime (using ,fg-abt)

doesn’t work.

1.14.2. REPL Argument Processing
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As built, the main function comes form the repl module, which interprets the arguments as flags and

names of files to be loaded.  The following flags are understood:

Table 5. RScheme Shell Flags

flag meaning

-c path Save bootable image.

-c.repl path Save bootable image with REPL’s main as the main function.

-- Interpret remaining arguments as application arguments.

-exit Exit successfully.

-e expr Evaluate expression expr.

-m [module=]file

Link module module from mif at file. If module is not

specified, the name will be the base name in file.

+module Import module module

The default behavior is to interpret each of the other command-line arguments as the name of a file to

load.

[unify this...] When we start the RScheme system, we can use command-line arguments to

incorporate compiled modules and to execute expressions, and possibly to save the resulting image to

an image file.  The general syntax of the rs command is described above.

Each module-or-eval-argument is handled in the order given on the command line and can be -m

foo.mif, +foo, or -e expr.  Using -m foo.mif means that the code for the module foo is loaded into

RScheme, but the exported variables in foo are not made visible until a ,(use foo) command is

executed.  Using +foo means that the module is loaded in the same way as with -m foo.mif, but in

addition the exported variables in foo are made visible to the current module as if ,(use foo) had been

typed.  Using -e expr means evaluating an RScheme expression.  Thus rs +foo is rougly equivalent to

rs -m foo.mif -e ",(use foo)", but -e can of course be used to evaluate any valid RScheme expression.

Finally, the argument -c file.img saves the RScheme image resulting from the other arguments.
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Compiling to C

By Robert Strandh

The normal mode of operation (called strategy) of the off-line module compiler is to generate

bytecodes.  But there is another strategy which consists of generating C code which then is compiled

with the ordinary C compiler to generate object code.

In this section, we describe the steps necessary to take in order for rsc to generate C code, or a mixture

between C code and bytecodes.  We also describe how to compile this C code and how to integrate it

with the RScheme system.

As mentioned before, the off-line module compiler is invoked like this for ordinary user modules: %

rsc -p foo.mcf

where -p means "package" and where foo1.mcf, foo2.mcf etc are the module control files for modules

foo1 and foo2 respectively.

In the default case where the strategy is to compile to bytecodes, rsc generates two files for each

module, the module image file (extension .mif) and the module index file (extension .mx).  

When the off-line module compiler compiles the Scheme code of a module, it uses a default strategy.

If the option -ccode is given to rsc the default strategy is to generate C code, otherwise (if no argument

-ccode has been given) the default strategy is to generate bytecodes.  The default strategy can then be

overridden for a sequence of top-level forms in the Scheme code.  For that purpose, you use the

special form (%strategy strategy form ...).  Here strategy can be either ccode or bytecode.  The forms

are typically top-level procedure definitions, but can be any top-level forms.  

If any form is compiled with strategy ccode, whether by command-line options or the use of the

%strategy special form, then the off-line module compiler generates a number of files in addition to

the module image file and the module index file.  The compiler puts these additional files in the

directory indicated by the outdir element in the module descriptor [is that what we called it?] in the

module control file.  

[why, btw is the extension .mx and not .mxf, or, alternatively, why are the extensions .mcf and .mif

and not just .mc and .mi.  I mean you use .c for a C file, not .cf.  The fact that it is a file is kind of

implicit, no?]

For the module as a whole, the compiler generates a Makefile, two header files and a C file.  The

Makefile is used by the Unix make command to generate the object code for the module.  For module

foo, the header files will be called foo.h and foo_p.h.  The file foo.h is the ordinary header file that can

be used by a client module to access exported symbols in the module, and foo_p.h is the so-called

private header file containing declarations that should only be used by other parts of the module to
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access data that is morally but not technically private to the module.  The C file is called foo_l.c and is

called the linkage file.  This file contains C code needed to link the module to the RScheme system.

In addition to the files associated with the module as a whole, the compiler generates one C file for

each Scheme file (extension .scm) that is part of the module (recall that the Scheme files of a module

are listed in the files clause in the module control file) [is this true: and that contains at least one form

to be compiled with the ccode strategy].  For Scheme file foo.scm, the name of this file is foo.c.  This

file is where the compiler puts the code for each form that needs to be translated to C.

Next, you have to decide whether you want to incorporate the module code by static or dynamic

linking into your RScheme system.  Static linking makes the RScheme executable bigger but the start-

up time will be shorter.  Dynamic linking is more flexible in that you can decide for each execution of

your RScheme system whether you need the module or not.  

1.15.1. Incorporation of object code using static linking
For static linking, the next step is to generate object (extension .o) code for the entire module from the

C files.  To do that, you use the Unix make command in the directory (outdir) where the compiler put

the Makefile, the header files, and the C files.  

Before you use the make command, however, you need to figure out where your RScheme system is

installed.  Usually, this place will be something like /usr/local/lib/rs/VER where VER is something like

0.7.2. This location is referred to as the install directory.  However, since it is possible to change the

install directory when the RScheme system is compiled, you may have to consult the person who did

this installation as to the exact location to give here.  

Supposing that the install directory is /usr/local/lib/rs/0.7.2, you type make

INSTALL_DIR=/usr/local/lib/rs/0.7.2  to the Unix shell.  This make command will generate a single file

foo.o (where foo is the name of the module) [the bug is that it actually generates bar.o where bar is the

name of the directory (outdir?)]

As part of the static linking process, you now have to build a new version of the rs command that, in

addition to all the normal files, also contains the file foo.o.

But before you link the final executable, you have to make sure that the top-level forms of your module

are executed when the RScheme system starts.  To accomplish that, you have to inform the RScheme

start-up code of the existance of your module.  

To understand how this mechanism works, we need to describe the way the RScheme system is

organized.  The bulk of the functionality of RScheme is assembled in a Unix library called librs.a

which is installed in /usr/local/lib/rs/0.7.1 (for version 0.7.1).  The only thing that has been left out of

librs.a is the file that contains the main program.  This file is called shell.c.  The RSheme system is

built from the file shell.o (shell.c compiled) and the library librs.a.  The file shell.c contains, in

addition to the main program, a vector of module descriptors of modules to be initalized when

RScheme starts up.  The descriptor of your module must be in this list.  

The easiest way to integrate your module is to copy the shell.c file into the directory where you module

object code foo.o lives.  Next, you have to modify the shell.c file using your favorite text editor.  Here is

the general structure of shell.c:

static struct module_descr *std_modules[] =
{
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  STD_MODULES_DECL
};
...
main()
{
  ...
}

To insert your own modules (say) foo1 and foo2 into this file, you need to modify it to look like this:

...
#include "foo1.h"
#include "foo2.h"
...
static struct module_descr *std_modules[] =
{
  &module_foo1,
  &module_foo2,
  STD_MODULES_DECL
};
...
main()
{
  ...
}

The order between the entries of the table is not significant as the initialization code is executed in the

order determined by the dependencies between modules, not by the order in this vector.

Now that you have a modified shell.c, you can finally create the modified version of the rs command.

We recommend that you call it somthing other than rs so as to avoid confusion.  Here is the general

structure of the command to use

% cc -I /usr/local/lib/rs/0.7.1/include 
             -I the-directory-in-which-the-module-lives
     shell.c
     -L /usr/local/lib/rs/0.7.1/lib
     -o name-of-final-executable

While the resulting executable file contains the machine code for the forms compiled with strategy

ccode, it does not contain forms compiled with strategy bytecode, nor other information that is kept

in the module image file and the module index file.  

So in order to use your module from RScheme, you still have to say ,(use foo) if foo is the name of the

module.  Alternatively, you can use the same method as we used for pure bytecode in order to create a

new RScheme image in which the module is fully incorporated.  Supposing you gave the name rsf to

the name of the final executable containing object code for you module, you can now do:

% rsf -m foo.mif -c foo.img

to create an image foo.img in which all of your module exists.  If you want your executable rsf to

behave like the executable rs (except with more functionality), i.e., with a read-eval-print loop, you

can do:

% rsf -m foo.mif -c.repl foo.img

The option -c.module indicates that the procedure  called main is taken from the module module.  The

module is not imported, however.  -c means to use the main from the current environment.

To start the new system with the new image, use:
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% rsf -image foo.img

1.15.2. Incorporation of object code using dynamic linking
Using dynamic linking instead of static linking to incorporate your module into RScheme is slightly

more complicated.  

First, you have to make sure you RScheme command rs was linked with a flag to ld indicating that the

dynamic linker can use symbols in the executable to resolve unresolved symbols in dynamically

linked code.  The name of this flag varies between systems.  On GNU/Linux, it is -rdynamic.

If rs was not built with this flag, you first have to rebuild it.  Normally, if the object code is still around,

you only have to redo the final link stage.  

Next, you have to modify the Makefile generated by the off-line module compiler.  You have to inform

the C compiler to generate position independent code for all the C files of your module.  This is

necessary because the exact position of the final executable code may vary from one execution of the

system to another.  The exact form of this flag varies from system to system, but for the GNU C

compiler it is -fPIC. In addition to informing the C compiler about position independent code, you

have to tell the linker to generate a dynamically linkable library rather than just an object file, so

instead of foo.o you obtain libfoo.so.  Again the way to do this varies from system to system.

At this point you are almost done.  You don’t need to recompile the RScheme executable, only make

sure that it can find your file libfoo.so.  If your module is generally useful, you may want to install it

together with other modules delivered with RScheme in the directory for this purpose (usually

/usr/local/lib/rs/0.7.1/resource/modules).  For application-specific modules, you simply need to make

sure the directory in which the module is installed is in RScheme’s search path for dynamically linked

modules[1].  
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Thread System

doc/chaps/threads.sgml 1.4 (2004-06-24 13:03:12)

RScheme supports user-level threads portably, even on operating systems that don’t have threads at

all.  RScheme multiplexes several user threads onto one OS-level process.  These threads appear to be

preemptive from the normal user’s point of view.  (For example, nonblocking I/O is used so that  one

thread reading from the network doesn’t block the whole process; the reading thread actually issues a

nonblocking read request and a thread switch activates a waiting thread.)

When threads support is compiled in, the REPL comes up by default running in a thread.  In this case,

the ,tl directive will list all the threads in the system with their state, total run time, and the kind of

object they are blocked on, if any.  For example:

top[0]=>,tl
     0 [main]       RUN    46.2 ms   
     1 [finalize]   BLOCK  27 us      #[<mailbox> "finalize"]
     2 [monitor]    BLOCK  54 us      #[<mailbox> "signal"]

Synchronous exceptions (e.g., taking the car of 3) still generate a break loop in the thread causing the

exception (typically the REPL thread itself).

NOTE: Need to talk about the backstop handler

However, when running a threaded REPL, an asynchronous interrupt  (as from ^C) will suspend the

current thread group and create a new "break" thread group for a new REPL:

top[1]=>^C
** 0: Interrupt received: (SIGINT . #[<time> Thu Jul 17 16:21:00 2003])
break[0]=>,tl
     0 [main]       SUSP   50 ms     
     1 [finalize]   BLOCK  27 us      #[<mailbox> "finalize"]
     2 [monitor]    BLOCK  3.1 ms     #[<mailbox> "signal"]
     3 [break]      RUN    1.68 ms   

When the break loop ends (as by EOF, or ^D), the suspended thread group is resumed.

In order to maintain thread progress, the low-level system call I/O and other blocking system calls

should not normally be used (e.g., fd-read, fd-write, socket-accept, wait-for) since they will typically

block the entire RScheme process waiting for the operation to complete.  

The threads system uses select() internally to manage multiple outstanding non-blocking I/O

requests.   Therefore, when interacting with “slow” devices such as the network, use the appropriate

procedures described in this chapter to create safe objects.  See section §16.4 for more details.

NOTE: The procedures defined in this chapter are available from the rs.sys.threads.manager

module.
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1.16.1. Thread Objects
The make-thread procedure is used to create threads.  The system maintains a notion of thread groups,

which is a hierarchy of thread sets.  You can also determine what thread is currently running, and its

thread group.  

make-thread function
Create a new thread.
(make-thread thunk [name] [group]) ⇒ thread

Arguments

thunk An instance of <procedure>

name An instance of <string>

group An instance of <thread-group>

Return Values

thread An instance of <thread>

Description

Creates and returns a new thread of control.

The optional name provides a convenient way of referring to the thread to the user.  If not supplied, the

name defaults to "thread".

The optional group allows the new thread to be created as a member of a thread group other than the

current thread group.  Since a thread’s group cannot be changed once created, this is the only way to

create a thread running in a different group.

The newly created thread is initially suspended, with a suspend count of 1.  Use thread-resume to make

the thread available for execution.

The behavior of the thread is to invoke the given thunk. When thunk returns, the thread enters the

complete state and thread-join returns (all) the values returned by thunk.

current-thread-group function
Return the thread group of the current thread.
(current-thread-group) ⇒ group

Return Values

group An instance of <thread-group>

Description

Returns the current thread group, which is to say, the thread group of the current thread.

current-thread function
Return the currently running thread.
(current-thread) ⇒ thread

Return Values

thread An instance of <thread>

Description

Returns the currently running thread.

thread-suspend function
Suspend a thread.
(thread-suspend thread) ⇒

Arguments

thread An instance of <thread>
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Description

Increments the suspend count of the given thread. This makes the thread ineligible for execution until

a corresponding thread-resume is invoked.

If thread is the current thread, this procedure does not return until the corresponding thread-resume is

invoked.  

If thread is another, currently running, thread  (i.e., in a SMP context), this procedure blocks until the

target thread has stopped running (which should be fairly soon).  [1]

thread-resume function
Resume a thread.
(thread-resume thread) ⇒

Arguments

thread An instance of <thread>

Description

Decrements the suspend count of the thread.  If the suspend count becomes zero, the thread is eligible

to execute (unless it was blocked on something, that is).

If the thread already has a zero suspend count, this procedure has no effect.

thread-sleep function
Sleeps the current thread for sec seconds.
(thread-sleep sec) ⇒

Arguments

ms An instance of <real> denoting the number of seconds to sleep

Description

The current thread blocks for approximately sec seconds, which may be a fractional quantity.  That is,

the current thread is marked as sleeping and after sec seconds have passed (real time), it is marked as

runnable.  When exactly the thread runs after it gets marked runnable is subject to other dynamics,

especially the number and priority of other threads that are runnable.

1.16.2. Synchronization
make-mailbox function

Create an empty mailbox.
(make-mailbox) ⇒ mbox

Return Values

mbox An instance of <mailbox>

Description

Creates and returns a new, empty mailbox.  Mailboxes are the basic building block for high-level

synchronization in RScheme threads.  They are unbounded, synchronized FIFO queues which can

pass arbitrary Scheme objects from sender to receiver.

send-message! function
Send a message to a mailbox.
(send-message! mbox item) ⇒

Arguments

mbox An instance of <mailbox>

item An instance of <object>

Description

This procedure enqueues item as a message in mbox. Since mailboxes are unbounded queues, this
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procedure never blocks.  Messages are inserted in order.

receive-message! function
Receive a message from a mailbox.
(receive-message! mbox) ⇒ item

Arguments

mbox An instance of <mailbox>

Return Values

item An instance of <object>

Description

This procedure extracts the next message from mbox. If nothing is available, the thread blocks until a

corresponding message is enqueued.  Multiple waiters on a single mailbox are queued in FCFS order.

make-send-rights function
Extract send rights from mailbox.
(make-send-rights mailbox) ⇒ mbox

Arguments

mailbox An instance of <mailbox>

Return Values

mbox An instance of <mailbox-send-rights>

Description

Extracts only send rights from the given mailbox, returning a (possibly shared) handle to the

underlying mailbox containing only send rights.  Messages sent to mbox go to the underlying mailbox,

but messages may not be received from mbox. (Attempting to do so signals a <only-send-rights>

condition.)

NOTE: This is implemented using a proxy wrapper class for mailboxes.  The send-message!

primitive knows how to indirect through the proxy wrapper.

NOTE: This is not currently implemented.

make-semaphore function
Create a new semaphore object, with initial count of n.
(make-semaphore n) ⇒ sem

Arguments

n An instance of <integer>

Return Values

sem An instance of <semaphore>

Description

Creates a new semaphore synchronization object, with an initial count of n. If omitted, n defaults to 0.

semaphore-signal function
Increment semaphore count.
(semaphore-signal sem) ⇒

Arguments

sem An instance of <semaphore>

Description

Increments the semaphore counter, unblocking exactly one thread if any threads are blocked on a

semaphore-wait.

semaphore-wait function
Decrement semaphore count, blocking if negative.
(semaphore-wait sem) ⇒
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Arguments

sem An instance of <semaphore>

Description

Decrements the semaphore counter, blocking the current thread if the count becomes negative.

thread-join function
Synchronize with a thread.
(thread-join thread) ⇒ result

Arguments

thread An instance of <thread>

Return Values

result Instances of <object>

Description

This procedure waits for the given thread to complete, and then returns the values returned by it.  If

the target thread exits without generating results (ie, by signalling an exception), then this procedure

signals a <thread-died> exception.

1.16.3. High Level Programming
future special

Evaluate an expression in background.
(future expr) ⇒ future

Arguments

expr An expression

Return Values

future An instance of <future>

Description

This special form starts the evaluation of an expression whose value will be needed in the future.  Use

force to synchronize with the future value.

force function
Await value.
(force future) ⇒ item ...

Arguments

future An instance of <future>

Return Values

item Instances of <object>

Description

Awaits the values from the parallel computation.  Blocks until the future evaluation completes.  If the

future expression signals an exception, this procedure signals a <thread-died> exception.

NOTE: Maybe we should signal the same exception from the force. That would mean that the

exception’s stack and the current stack are from two different threads.  This probably

breaks lots of stuff.  And what about restarting after the exception?

1.16.4. Thread Safe Input and Output
open-server-socket function

Create a TCP server (listening) socket
(open-server-socket port) ⇒ socket

Arguments

port An instance of <fixnum> or <inet-socket-addr>
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Return Values

socket An instance of <server-socket>

Description

Creates a socket object which listens on the given port.

If the port argument is an integer, then it represents a TCP port number and in which case the socket

is bound to IN_ADDR_ANY and the socket will accept connections on any IP address.  The port

argument may also be a <inet-socket-addr>, in which case the socket will accept connections only on

the particular IP address and port.

accept-client function
Accept a connection.
(accept-client serversock) ⇒ peersock

Arguments

serversock An instance of <server-socket>

Return Values

peersock An instance of <responder-socket>

Description

Accepts the next connection from the socket.

open-client-socket function
Create a TCP client socket
(open-client-socket addr [name]) ⇒ socket

(open-client-socket host port) ⇒ socket
Arguments

addr An instance of <inet-socket-addr>

name Optional; an instance of <object>

host An instance of <string>

port An instance of <fixnum>

Return Values

socket An instance of <initiator-socket>

Description

Creates a socket object connected to a remote server.

close method
Close a TCP socket
(close socket) ⇒

Arguments

socket An instance of <peer-socket> or <server-socket>

Description

Close a TCP socket.
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Internet Connectivity

RScheme provides some basic procedures for building internet-aware applications, including both

clients and servers.  Additional packages provide specialized procedures for implementing particular

internet protocols, such as ident, HTTP, and X.

1.17.1. Server-side Procedures
inet-server function

Create an internet server.
(inet-server port) ⇒ fd

Arguments

port An IP port as a <fixnum>, or a socket address as a <inet-socket-addr>.

Return Values

fd An instance of <fixnum>

Description

This procedure establishes a socket on the given port  to listen for IP connections.  If the port is a

number, then connections to any IP address on the local machine will be accepted.  Otherwise, only

connections to the IP address and port specified in the <inet-socket-addr> will be accepted.

The listen queue is set to 3.

NOTE: If threads are being used, the open-server-socket (p.61) function is preferred.

make-service function
Create a service.
(make-service fd) ⇒ service

Arguments

fd An instance of <fixnum>

Return Values

service An instance of <service>

Description

This procedure arranges to listen for connections on fd, which was presumably created using

something like inet-server. Use get-next-client to dequeue connecting clients.

get-next-client function
Get the next client connecting to a service.
(get-next-client service) ⇒ fd peer

Arguments

service An instance of <server>

Return Values

fd An instance of <fixnum>
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peer An instance of <socket-addr>

Description

This procedure extracts the next client connecting to service. It returns the socket, fd, and the peer

socket name.

inet-client function
Connect to an internet server.
(inet-client host port) ⇒ fd

Arguments

host An instance of <hostspec>

port An instance of <fixnum>

Return Values

fd An instance of <fixnum>

Description

This procedure establishes a TCP/IP (stream) connection to the the given port on the given host. The

host may be specified as either a <string> or a <inet-addr>.  If host is a <string>, it is resolved using

string->hostaddr.

string->hostaddr function
Resolve a host name or dotted IP address.
(string->hostaddr spec) ⇒ host

Arguments

spec An instance of <string>

Return Values

host An instance of <inet-addr>

Description

This procedure converts a string into a <inet-addr>. If the first character of the string is a digit, then the

string is interpreted as a dotted IP address (e.g., 204.71.200.72).  Otherwise, it is interpreted as a host

name and resolved using gethostbyname.

If the host name cannot be found, or it has no address, or if the resolver library encounters some other

error, a <resolver-error> condition is signalled.

remote-port-owner function
Use ident protocol to find the remote owner of a socket.
(remote-port-owner fd) ⇒ type info

Arguments

fd An instance of <fixnum>, the file descriptor for the local socket.

Return Values

type An instance of <string> 

info An instance of <string>

Description

This procedure contacts the ident server on the machine which is the peer of the given socket.  If a

recognizable ident response is returned, the response type and additional info are returned as two

values.

(define svc (make-service (inet-server 5050)))

(remote-port-owner (get-next-client svc)) ⇒ "USERID" ⇒ "UNIX : dkolbly"

If the peer host is not running an ident server, this procedure signals an error (an <os-error>,
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"Connection refused").
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Debugging in RScheme

Debugging RScheme programs is in some ways both simpler and more difficult than debugging

programs in a traditional language like C.

It is more difficult because the tools available are different than those that the typical C programmer is

familiar with, such as gdb.

However, it is also easier, because RScheme is a much more dynamic system.  Because RScheme is

usually used (at least during program development) in an interactive mode, the developer can interact

with the running program even more concretely than the most advanced features of a traditional

debugger like gdb.

For example, in RScheme, you can redefine procedures interactively without having to reload your

entire program.

(Unfortunately, not all kinds of objects can be redefined  sans repurcussion.  Class objects, for

example, often have pointers to them stored in various places, such as superclass links and in

functions and slots that have type restrictions on the class.  Since redefining a class amounts to

assigning a new value (a distinct class object) to the class variable  of the given name, pointers to the

old class will remain in the system, typically necessitating recompiling the definitions of many

functions and any subclasses, as well as clearing out any data structures that may have instances of

the old class)

In addition to the ability to interact with the target program directly, RScheme also provides some

more traditional debugging facilities.

trace replcmd
Trace function entry and exit.
(unquote function)

Description

This debugging command causes the named function(s) to be traced.  That is, the function is

reconfigured to print out it’s arguments and return values when it is called.

Tracing is turned off using the no-break command.

break replcmd
Break on function entry.
(unquote function)

Description

The break debugging command is similar to the trace command, except instead of printing out the

function arguments when it is called, it creates a break-level read-eval-print loop, BRK.
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Within that loop, the debug command return may be used to cause the break’ed function call to return

a specific value.  The continue command may also be used to resume execution of the function.

The breakpoint can be removed using the no-break command.

no-break replcmd
Remove tracing or breakpoint on a function.
(no-break function)

Description

Turn of breaking on the given function.

abt replcmd
Print backtrace of function calls.
(abt)

Description

Show a backtrace of applications.

bt replcmd
Print continuation chain (stack).
(bt)

Description

Show a backtrace of applications.
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Calendar

This package (module calendar) provides basic date manipulation  functions.

date->string function
Convert a date object into string format (YYYY.MM.DD)
(date->string date) ⇒ str

Arguments

date An instance of <date>

Return Values

str An instance of <string>

Description

This function converts the given date object, date, into a string in the default format, e.g., 1997.09.14.

string->date function
Parse a date in standard format (YYYY.MM.DD) into a date object
(string->date string) ⇒ date

Arguments

string An instance of <string>

Return Values

date An instance of <date>

Description

This function is the inverse of date->string, parsing a string representation of a date into the

corresponding date object.

ymd->date function
Convert a day in separate year, month, and day to a date object.
(ymd->date year month day) ⇒ date

Arguments

year An instance of <fixnum>

month An instance of <fixnum>

day An instance of <fixnum>

Return Values

date An instance of <date>

Description

This function computes the date object corresponding to the given year, month, and day in the

Gregorian calendar.

(ymd->date 1997 9 14) ⇒ 1997.09.14

(date->day (ymd->date 1997 9 14)) ⇒ 729281

date->ymd function
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Returns the parts of a date in the Gregorian calendar.
(date->ymd date) ⇒ year month day

Arguments

date An instance of <date>

Return Values

year An instance of <fixnum>

month An instance of <fixnum>

day An instance of <fixnum>

Description

date->ymd is the inverse of ymd->date (as you might guess from the name), and returns the broken out

year, month,  and day for a given date object.

date+ function
Compute a new date relative to a given date.
(date+ date days) ⇒ new-date

Arguments

date An instance of <date>

days An instance of <fixnum>

Return Values

new-date An instance of <date>

Description

This function returns the date which is days away from the given date. If days is negative, then a

preceding date is returned.

(define t (ymd->date 1997 9 14))

(date+ t 3) ⇒ 1997.09.17

(date+ t -14) ⇒ 1997.08.31

date=? function
Compare dates
(date=? date1 date2) ⇒ val

(date>? date1 date2) ⇒ val

(date>=? date1 date2) ⇒ val

(date<? date1 date2) ⇒ val

(date<=? date1 date2) ⇒ val
Arguments

date1 An instance of <date>

date2 An instance of <date>

Return Values

val An instance of <boolean>

Description

These functions compare dates, based on the ordering of days.

(define td (ymd->date 1997 9 14))

(define tm (ymd->date 1997 9 15))

(date<?  td tm) ⇒ #t

(date>=?  td td) ⇒ #t

date->time function
Compute the time on a particular day
(date->time date secs) ⇒ time
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Arguments

date An instance of <date>

secs An instance of <fixnum>

Return Values

time An instance of <time>

Description

Returns the time corresponding to the given number of seconds, secs, since midnight GMT on the

given date.

Because of the representation of time objects (from the syscalls module, btw), date must refer to

January 1, 1970, or later.

date->weekday function
The day of the week on which the date falls.
(date->weekday date) ⇒ weekday

Arguments

date An instance of <date>

Return Values

weekday An instance of <symbol>

Description

Returns a symbol representing the day of the week on which the given date falls.  In particular, returns

exactly on of: sunday,  monday,  tuesday,  wednesday,  thursday,  friday,  saturday.

date->week function
Breaks a date into week number and day of week.
(date->week date) ⇒ week day-of-week

Arguments

date An instance of <date>

Return Values

week An instance of <fixnum>

day-of-week An instance of <fixnum>

Description

This function factors a given date into it’s week and day-of-week components.  The second return

value, day-of-week, is in the range 0 to 6 (inclusive), indicating the weekdays Sunday through

Saturday.

week->date function
Compute the date for a given week and day of week.
(week->date week day-of-week) ⇒ date

Arguments

week An instance of <fixnum>

day-of-week An instance of <fixnum>

Return Values

date An instance of <date>

Description

This function returns the date corresponding to the given day of the week.

The following example shows how one might use date->week and week->date to find the Sunday before a

given date.
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(define td (ymd->date 1997 9 13))

(date->week td) ⇒ 104182 ⇒ 6

(week->date 104182 0) ⇒ 1997.09.07

short-weekday-name function
Return the short (English) names for date quantities
(short-weekday-name weekday) ⇒ name

(short-month-name month) ⇒ name
Arguments

month An instance of <fixnum>

Return Values

name An instance of <string>

Description

short-weekday-name maps weekday symbols,  as returned by date->weekday, to their short (3-character)

English name.

short-month-name does the same for month numbers (1-12) and month names.
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Persistent Object Store

The persistent object store module (rs.db.rstore) is an implementation based on the concept of

pointer swizzling at page-fault time as described in Paul Wilson’s Pointer Swizzling at Page-Fault

Time. This allows the system to access databases larger than the virtual memory of the machine, and

with efficient translation costs (pages are faulted in and translated on-demand, and once faulted,

incur no additional run-time overhead).

The underlying storage for the object store is log-structured (and, in fact, currently no mechanism

exists to automatically or incrementally compact the log).  Only one file is used to store all the

information in an object store, and that file is called the backing store file.

The interior structure of an object store – that is, the  data structures which are stored – are

determined completely by the application program.  This facility provides access to a single value per

persistent store, the root object, which is read using the root-object function and written using the

commit function.

1.20.1. Creating and Accessing an Object Store
The life cycle of an object store starts off with it’s creation (obviously).  A newly created object store

has no contents, and takes up about 600 bytes in the backing store.  The initial root object is #f.

Thereafter, a sequence of commit operations take place, each establishing a (possibly) new root object.

Each commit copies all dirty pages (pages modified since the last commit) to the end of the backing

store file, and then writes out a commit record which  describes the state of the object store.

An existing object store is accessed using the open-persistent-store function.

1.20.2. Commit Records
A commit record describes the state of the object store; each commit operation writes out a new

commit record.  A previous state of the store can even be accessed (in read mode) by specifying  the

location of the commit record to use when the store is opened.

1.20.3. Defining Pivot Points
It is usually necessary to allow objects within an object store to point to objects that are part of the

“program”, such as  standard class objects (recall that everything is an object, and every object has a

class.  Furthermore, the representation is such that objects that are actually in the heap have actual

pointers to their class objects.  Hence, in order to have, for example, a vector located in the persistent

store, it is necessary to somehow allow that object to point to the (single) <vector> class object.
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Furthermore, since the location in memory of built-in class objects may change from process to

process, a different object naming scheme must be employed to resolve the references to built-in or

other application objects.)

The mechanism that this module provides to allow persistent objects to refer to transient objects (but

in a persistent way) is called pivots.

The application defines a sequence of pivot objects with well-known names (they are defined in

collections on “indirect pages” – see setup-indirect-page);  the system automatically resolves references

to such objects when a page is loaded, and recognizes references to them when a page is written out.

The next time the application opens an object store, it configures the same sequence of pivot objects –

then, a page that is loaded will correctly resolve to the corresponding application object.

Under normal circumstances, this module provides a pre-defined collection of pivots for the standard

built-in classes such (for example) as the <vector> and <pair> class objects.

1.20.4. Reachability-based Persistence
When the persistence system is writing out a page, if it encounters a pointer to a transient object that

is not a pivot, then something must be done – after all, a persistent page cannot have a pointer to a

transient object except as allowed by the pivot mechanism.

The default behavior depends on what kind of object it is.  Most normal data-structuring objects will

be implicitly copied into the store (ie, made persistent).  These are objects like lists,  vectors, strings,

regular application objects, etc.  Because of this, the basic persistence metaphor is one of reachability-

based persistence; that is, the root object and any object reachable from it will be made persistent.  

One consequence of copying objects into the store to make them persistent is that object identity of

transient objects is lost across a commit.  If you hold on to a pointer to a transient object which is

reachable from the root of the store, then after the commit, that pointer will no longer refer to the

object within the store.   [Need a picture here!] 

Symbols are turned into pivots, in order to preserve the usual meaning of symbols (so that when the

image is later loaded, the symbols will maintain the correct object identity.)

A class object that is encountered, however, probably denotes an application error – presumably either

a failure to declare the class as a pivot, or the installation of an unexpected kind of object into the

persistent data structure.  (Note that class objects can’t be automatically turned into pivots the way

symbols can, because there isn’t a well-known, fixed way of naming them.)

1.20.5. Functions Reference
open-persistent-store function

Opens an existing store
(open-persistent-store path) ⇒ pstore

Arguments

path An instance of <string> denoting the  path to the backing store file.

Return Values

pstore An instance of <persistent-store>.

Description

This function opens a backing store file and prepares it for access.  The file is opened for writing, and

is locked in exclusive mode.
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If another process (or this process) already has the file open in exclusive mode, then an error is

signalled.

create-persistent-store function
Creates a new persistent store
(create-persistent-store path) ⇒ pstore

Arguments

path An instance of <string> denoting the  path to the backing store file.

Return Values

pstore An instance of <persistent-store>.

Description

This function is much like open-persistent-store, except that the file is created.  

If a file at path already exists, its contents are overwritten with the new object store’s log.

root-object function
Return the root object for a persistent store
(root-object pstore) ⇒ object

Description

This procedure extracts a pointer to the object last named as the root object of the repository.  The

root object may be changed with set-root-object!.

commit function
Commit changes to persistent store
(commit pstore) ⇒ locator

Arguments

pstore An instance of <persistent-store>. 

object An instance of <object>. Optional; default is to not change the root object.

Return Values

locator An object describing the location of the commit record (currently an instance of

<pair>).

Description

This procedure synchronizes the in-memory object store with the representation on disk.  It uses the

fsync system call to ensure the data has been pushed onto disk.  [We should support a faster
mode, where all we protect against is the program crashing, in which case we
don’t need to fsycn.]

setup-indirect-page function
Configure a page of pivot objects
(setup-indirect-page pstore page-num vector) ⇒

Arguments

pstore An instance of <persistent-store>. 

page-num An instance of <fixnum>. 

vector An instance of <vector>.

Description

This function configures an “indirect page” in the persistent store’s address space.  An indirect page is

used to hold pivot objects.  Each indirect page can hold up to 64 pivot objects, which in this case are

the objects referenced by the elements of vector.

The page-num is which page to configure with pivot objects.  Page numbers 0-63 are reserved for use
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by the system[1],  and page numbers 64-255 are available for the application.

If more pivot pages are needed, they may be obtained with the alloc-indirect-pages function.

alloc-indirect-pages function
Allocate some indirect page numbers
(alloc-indirect-pages pstore num-pages) ⇒ first-page

Arguments

pstore An instance of <persistent-store>. 

num-pages An instance of <fixnum>.

Return Values

first-page An instance of <fixnum>.

Description

If the well-known indirect page numbers (0-255) are insufficient for an applications needs, more page

numbers may be obtained using this function, which allocates blocks of indirect page numbers.
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PostgresQL Interface

This chapter describes the RScheme interface to the PostgresQL Data Base Management System

(formerly known as Postgres95).  The interface (glue) functionality is contained in an RScheme

package, pg95, which provides a single module by the same name[1].

1.21.1. Initialization
In order to make use of a PostresQL database, you must establish a connection to it.  You may connect

to databases on other hosts or on ports other than the default by specifying appropriate keywords to

the postgres-connect function.

1.21.2. Commands
Commands are submitted to the database using the pg95-exec-command

1.21.3. Queries
This section describes how queries are made.

1.21.4. Errors
All the glue functions that interface to the database check for error conditions.  An error condition

that arises is manifest as the signalling of a <pg95-error>, which is a kind of <error>.

Most functions will signal a <pg95-exec-error, which indicates an error in the execution of a query or

command.  The other case is a <pg95-connect-error>, which denotes an error attempting to connect the

the database.  (The reason for the distinction is that in the latter case, a connection exists and can be

used to identify the error.  In the latter case, no valid connection exists.)

1.21.5. Object mappings
The pg95 module has functions for interpreting tuples and rows of tables as objects in the RScheme

object system.  This is done by making use of PostgresQL type introspection techniques and RScheme

class introspection.

The general rule is that as long as the the name of the class slots are the same as the names of the tuple

fields, then the mapper can fill in the appropriate slots.  The slot with name oid can be used to refer to

the PostgresQL object id.  [give details, esp.  as regards value mappings and special 
cases]

1.21.6. Functions Reference
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postgres-connect function
Connect to Postgres95 server
(postgres-connect database host port opts tty) ⇒ cnxn

Arguments

database An instance of <string>

host An instance of <string>

port An instance of <string>

opts An instance of <string>

tty An instance of <string>

Return Values

cnxn An instance of <pg95-connection>

Description

This function creates a connection to the PG95 database with the name database. If the connection

cannot be established (ie, because of network, installation, or authentication problems), an error is

signalled.

(postgres-connect "foo") #{a <pg95-connection>}
(postgres-connect "bar" host: "dbsrv.bar.com") #{a <pg95-connection>}

pg95-connect function
Underlying function to connect to PG95
(pg95-connect host port opts tty database) ⇒ cnxn

Arguments

host An instance of <string>

port An instance of <string>

opts An instance of <string>

tty An instance of <string>

database An instance of <string>

Return Values

cnxn An instance of <pg95-connection>

Description

This function, like postgres-connect, connects to a postgres 95 database.  However, the arguments are

explicit rather than being keywords.  The string arguments should be empty strings if the intention is

to pass NULL to the PQsetdb() function (which is the default).

pg95-exec-command function
Execute a command against the database.
(pg95-exec-command cnxn command) ⇒ result

Arguments

cnxn An instance of <pg95-connection>

command An instance of <string>

Return Values

result An instance of <object>

Description

This function executes a command (as opposed to a query) against the database.  Common

commands are things like "create table" and "insert into".
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The value returned is either an integer object id, in the case of insertions, or #f.

pg95-with-tuples function
Execute a query (like "select") against the database
(pg95-with-tuples cnxn command proc) ⇒ result

Arguments

cnxn An instance of <pg95-connection>

command An instance of <string>

proc An instance of <function>

Return Values

result An instance of <object>

Description

This function executes a query (as opposed to a command)  against the database.  The given proc is

called with three arguments, which are respectively, the query result object (an instance of <pg95-

result>), the number of tuples in the result, and the number of fields in each tuple (both <fixnum>s).

When the function returns, the C result object is cleared (freed?).

pg95-field-names function
Get the names of the fields in a result’s tuples.
(pg95-field-names result first-index index-limit) ⇒ names

Arguments

result An instance of <pg95-result>

first-index An instance of <fixnum>

index-limit An instance of <fixnum>

Return Values

names An instance of <list>

Description

This function extracts the names of the fields that are present in the tuples of a result.  first-index is

typically 0, while index-limit is typically the number of fields.  This would return a list of all the field

names in the result.

pg95-field-number function
Determine which field has a given name.
(pg95-field-number result name) ⇒ field-num

Arguments

result An instance of <pg95-result>

name An instance of <string>

Return Values

field-num An instance of <fixnum>

Description

This function looks up the given name in the fields of a result, returning the index of the field, field-

num (0-based).

pg95-field-size function
Get the size of the given field.
(pg95-field-size result field-num) ⇒ size

Arguments

result An instance of <pg95-result>
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field-num An instance of <fixnum>

Return Values

size An instance of <fixnum>, or #f

Description

Returns the size of the given field in the result structure, where fields are named by index, field-num.

Returns #f instead of a size if the field has negative size (indicating what, again,...?)

pg95-field-type function
Get the PG95 type id for the values in the given field.
(pg95-field-type result field-num) ⇒ type-id

Arguments

result An instance of <pg95-result>

field-num An instance of <fixnum>

Return Values

type-id An instance of (<fixnum>)

Description

Returns the PG95 type id (which is an oid in the pg_type table) for the given field (field-num) in a result

structure.

pg95-get-value function
Get the value of a particular field in a particular tuple of a result.
(pg95-get-value result tuple-num field-num) ⇒ value

Arguments

result An instance of <pg95-result>

tuple-num An instance of <fixnum>

field-num An instance of <fixnum>

Return Values

value An instance of <string>, or #f

Description

Returns the value of a particular field in a particular tuple of a result array.  The value returned is a

string representation, and will be #f if the value of the field is null.

pg95-type function
Get the type name for a given PG95 type id.
(pg95-type cnxn type-id) ⇒ type-name

Arguments

cnxn An instance of <pg95-connection>

type-id An instance of <fixnum>

Return Values

type-name An instance of <symbol>

Description

Looks up the given type id (an OID in the pg_type table) and returns the corresponding type name

(typname column).

To improve performance, the results of the lookup are cached in a hash table associated with the

connection.

table->list function
Return all the rows of a table as a list of objects.
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(table->list cnxn table-name class) ⇒ table-rows
Arguments

cnxn An instance of <pg95-connection>

table-name An instance of <string>

class An instance of <<class>>

Return Values

table-rows An instance of <list>

Description

Builds objects (instances of class) for the entire contents the database table named table-name.

Returns the contents of the table as a list of those objects.  The length of the list is the number of rows

in the table.

oid->instance function
Return the identified row as an instance.
(oid->instance cnxn table-name class oid) ⇒ instance

Arguments

cnxn An instance of <pg95-connection>

table-name An instance of <string>

class An instance of <<class>>

oid An instance of <fixnum>

Return Values

instance An instance of class

Description

Builds a single object (instance of class) from the row in table table-name with the given object id, oid.

In PostgresQL, every row (tuple) in the entire system has a unique identity.  This is like object identity.

(And, like object identity  encoded in pointers, may be reused for a new row after the row is deleted).

make-extractor function
Create a tuple extractor function.
(make-extractor class cnxn result num-fields) ⇒ extractor

Arguments

class An instance of <<class>>

cnxn An instance of <pg95-connection>

result An instance of <pg95-result>

num-fields An instance of <fixnum>

Return Values

extractor An instance of <function>

Description

Compiles an extraction plan and returns a function which uses  the plan to extract the ith tuple of the

given result.  The function returned is a function of one argument, which is the tuple number.  That

function returns an instance of class.
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HTML and HTTP

One of the many uses to which RScheme has been put is as an application server for building intranet

and internet web servers.   There are several modules which are used to make the construction of web

servers and web-based services convenient.  The rs.net.html module provides basic procedures for

generating HTML programmatically.  

1.22.1. HTML
Most web-enabled facilities have a strong requirement for the dynamic generation of HTML. RScheme

meets this need by supplying procedures for producing marked-up output.  One distinguishing

characteristic of RScheme’s approach to  generating dynamic HTML is that the markup is passed

"out-of-band" using a specialized <output-port> so that normal output can be automatically escaped.  

For example, if you are generating a fragment of HTML dynamically, you do not need to worry about

whether or not the text you’re generating contains HTML special characters like ’<’ or ’&’.  Consider

this program fragment:

(define (gen-user-name (fullname <string>) (email <string>))
  (bold (display fullname))
  (display " <")
  (emph (display email))
  (display ">"))

The gen-user-name procedure need not be concerned about whether the  fullname might contain

characters special to HTML, as in "Alice & Bob".   An in displaying the "<" and ">" email address

delimiters, the programmer need not recall that these should appear as "&lt;" and "&gt;" in HTML –

the system will automatically substitute the correct translation.  

1.22.2. Web Server Support
RScheme’s strengths are best revealed when it can be the web server itself.  

1.22.2.1. Connecting the service
To build an actual web server, the first thing to do is to hook up a protocol interpreter to an

appropriate TCP/IP socket.  

1.22.2.2. Session Management
Facilities are included to manage sessions in two ways: using cookies, and using virtual subspaces.

We could also support the hidden-variable approach, but that is too inconvenient to deploy services

based on it and there is no apparent advantage, so we leave that as an exercise for the user.  

1.22.2.3. Web spaces
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An web server built using rs.net.http has an internal representation of the shape of the web space it

serves.  This space is structured mostly as a tree, reflecting the hierarchy of a URL. 

When a request comes in, the server starts at the "web root" and walks down the tree, following links

labelled by the elements in the request.  For example, if a request for the object "/pub/build/0.7.3.1"

comes in (as, for example, from the URL "http://www.rscheme.org/pub/build/0.7.3.1"), then the

system will start at the root, follow the "pub" link from there, follow the "build" link from that

location, and finally deliver the request to the result of following the "0.7.3.1" link from there.  

1.22.2.4. Forms (POST)
A web-enabled service likely has a need to put data into the system.  This is typically done with the

HTTP POST method.  

1.22.2.5. Queries (GET)
Sometimes it is convenient to encode a request as part of the URL. This shows up as a ’?’ after the last

element in the URL path, as in "/pub/inspect?cr=123", which is a reference to the queryable resource

"/pub/inspect" with the parameter "cr" with a value of "123".  

As a matter of convention, I reserve this notation for side-effect-free operations (hence, I call them

"queries").  For operations which update some persistent representation, I use POST. 

1.22.2.6. Authentication and Security
Some portions of the web space may be protected.  There is built-in support for using HTTP-based

authentication as well as identd-based authentication.  

A protected web node has a value for the protect property.  When the web space traversal procedure

gets to such a node, the generic function check-protection is invoked on the value of the protect

property.  Typically, this value will  be an instance of <http-protection>, which has a method for doing

basic authentication.

(define *confidential* 
  (make <http-protection>
        in-realm: "ABC Inc."
        password-check-proc: my-password-ok?
        use-identd: '("*.abc.com")))

The check-protection method will signal an appropriate condition if the request does not satisfy the

security constraints.  In the case of HTTP authorization, using in-realm, this condition may be an

<http-error> with code 401 (Unauthorized), with appropriate headers to elicit authorization from the

web client and/or user.  

1.22.3. Web Client Support
There are also facilities for building http clients.  This is useful if some service is being deployed over

an underlying HTTP protocol, or if one is building a web browser or web-crawling agent of some sort.

1.22.4. CGI Support
If RScheme is being used to augment an existing web server via the standard service process interface,

CGI, there are facilities to assist in parsing the CGI environment.  
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1.22.5. Extended Example
In this extended example, we will go walk the development of a web-enabled service for source code

control and build tracking.  This example is taken from the system and facilities used in the

development of RScheme itself.  

1.22.5.1. Object Analysis
The first step in building a web-enabled service is to understand the domain.  This means

understanding what the conceptual objects are, what their relationships are, and what procedures or

operations are to be web-enabled.  

For this example application, the domain is that of source code control and build tracking.  The

objects are things like virtual filesystems, source files, filesystem snapshots, groups, users, change

requests, and builds.  

The are several kinds of relationships among these objects; filesystems contain files, files are owned by

groups and users, files changes are motivated by change requests, etc.  

Builds use the source from filesystems at a particular snapshots.  

1.22.5.2. Web-Enabling Analysis
The next step is to design the web space.  This involves understanding how the conceptual objects

map onto web pages, how their relationships map onto links among those pages, and how the

operations and procedures are appropriately represented using forms.  

For this application, I chose a fairly direct mapping of application objects to web pages; each object is

represented by a single page in the web space, with top-level web space links encoding type

information.  

For example, the page that describes change request 803 has the path /cr/803. 

Since some of the objects being mapped are files, we get what appears to be a virtual filesystem of

metadata published on the web.  For example, the page describing the file /handc/configure.in in the

filesystem rs-0.7 is located at /fs/rs-0.7/file/handc/configure.in. It isn’t necessary to use file names in

this case – the equivalent of inode numbers could be used as well – but using the file names

corresponds more closely with the an intuition about the shape of the web space.  
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POSIX System Call Interface

All the material in this chapter is available from the syscalls module, which is an add-on package

(since not all systems support this functionality).

1.23.1. Time Functions
epoch-seconds->time function

Returns the time object which is the given number of seconds
(epoch-seconds->time secs) ⇒ time

Arguments

secs An instance of <number>

Return Values

time An instance of <time>

Description

Returns the time corresponding to the given number of seconds since the Unix Epoch (January 1,

1970).

interval->string function
Format an interval into a string.
(interval->string dt) ⇒ string

Arguments

dt An instance of <interval>

Return Values

string An instance of <string>

Description

Returns a string representing the length of the interval.  This function chooses units that are

appropriate for the  length of the interval.  For example, 90000 seconds would be rendered as 1.04 days

("1.04 d") whereas 0.9 seconds would be rendered as "900 ms".

time+interval function
Adds an interval to a time.
(time+interval t1 dt1) ⇒ t2

Arguments

t1 An instance of <time>

dt1 An instance of <interval>

Return Values

t2 An instance of <time>

Description

Returns a new time which is dt later than the given time.  (dt may be negative, in which case the
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returned time is earlier)

interval+interval function
Adds two intervals.
(interval+interval dt1 dt2) ⇒ dt3

Arguments

dt1 An instance of <interval>

dt2 An instance of <interval>

Return Values

dt3 An instance of <interval>

Description

Returns a new interval which is the sum of the given intervals.

interval-interval function
Interval difference.
(interval-interval dt1 dt2) ⇒ dt3

Arguments

dt1 An instance of <interval>

dt2 An instance of <interval>

Return Values

dt3 An instance of <interval>

Description

Subtracts the given intervals, dt1 minus dt2.

negative-interval function
Compute negative interval.
(negative-interval dt1) ⇒ dt3

Arguments

dt1 An instance of <interval>

Return Values

dt3 An instance of <interval>

Description

Equivalent to (interval-interval (seconds->interval 0) dt1).

time-time function
Compute the interval between two times.
(time-time t1 t2) ⇒ delta

Arguments

t1 An instance of <time>

t2 An instance of <time>

Return Values

delta An instance of <interval>

Description

Returns an interval representing the difference in the given times.

time<? function
Time comparison.
(time<? t1 t2) ⇒ cmp

(time<=? t1 t2) ⇒ cmp

(time>? t1 t2) ⇒ cmp

(time>=? t1 t2) ⇒ cmp
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(time=? t1 t2) ⇒ cmp
Arguments

t1 An instance of <time>

t2 An instance of <time>

Return Values

cmp An instance of <boolean>

Description

Compares two times.

clock-thunk function
Measure the execution time (as by clock()) of a function.
(clock-thunk thunk) ⇒ elapsed

Arguments

thunk An instance of <function>

Return Values

elapsed An instance of <interval>

Description

Measure the execution time (as by clock()) of a function.  The clock() function supposedly measures

CPU (process) time, not wall clock time.

time-thunk function
Measure the wall-clock execution time of a function.
(time-thunk thunk) ⇒ elapsed

Arguments

thunk An instance of <function>

Return Values

elapsed An instance of <interval>

Description

this function uses time, the elapsed interval is in wall clock time, not process time.

clock function
Return the process clock.
(clock) ⇒ t

Return Values

t An instance of <interval>

Description

Return the time since process start as by clock().

time function
Return the current time.
(time) ⇒ t

Return Values

t An instance of <time>

Description

Return the current time as by gettimeofday().

day->time function
Construct a time from a day and seconds within the day.
(day->time day sec) ⇒ t

Arguments

day An instance of <fixnum>

sec An instance of <fixnum>
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Return Values

t An instance of <time>

Description

Construct a time based on the day and the seconds (CUT) within the day.  The day is a number based

at 1/1/1, so that 1/1/70 is day number 719163.  [doesn’t work if day < 719163, because times are unix

based]

time-again! function
Save current time into object.
(time-again! t) ⇒

Arguments

t An instance of <time>

Description

Side effect t with the current time.

time->calendar function
Get calendar point for given time.
(time->calendar t local?) ⇒ year month monthday

hour min sec yearday weekday
Arguments

t An instance of <time>

local? An instance of <boolean>

Return Values

year An instance of <fixnum>

month An instance of <fixnum>

monthday An instance of <fixnum>

hour An instance of <fixnum>

min An instance of <fixnum>

sec An instance of <fixnum>

yearday An instance of <fixnum>

weekday An instance of <fixnum>

Description

Gets the calendar information for the given time.

time->string function
Render a time to a string.
(time->string t fmt local) ⇒ str

Arguments

t An instance of <time>

fmt An instance of <string>

local An instance of <boolean>

Return Values

str An instance of <string>

Description

Formats t into a string.  fmt is optional, as is local. Default fmt is as by ctime().
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seconds->interval function
Convert number of seconds to interval.
(seconds->interval sec) ⇒ dt

Arguments

sec An instance of <real>

Return Values

dt An instance of <interval>

Description

Create an interval corresponding to given number of seconds.

time->epoch-seconds function
Convert time to number of seconds since epoch.
(time->epoch-seconds t) ⇒ sec

Arguments

t An instance of <time>

Return Values

sec An instance of <real>

Description

Reverse of epoch-seconds->time.

interval->seconds function
Get number of seconds in interval.
(interval->seconds dt) ⇒ sec

Arguments

dt An instance of <interval>

Return Values

sec An instance of <real>

Description

Converts an interval to a number of seconds.

1.23.2. File Descriptor Functions
fd-read primop

Read from an open file.
(fd-read fd buf offset len) ⇒ len

Arguments

fd An instance of <fixnum>

buf An instance of <string>

offset An instance of <fixnum>

len An instance of <fixnum>

Return Values

len An instance of <fixnum>

Description

Reads len bytes from an open file into buf at offset offset. Returns the number of bytes read, or #f on

error.

fd-write primop
Write to an open file.
(fd-write fd buf offset len) ⇒ len

Arguments
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fd An instance of <fixnum>

buf An instance of <string>

offset An instance of <fixnum>

len An instance of <fixnum>

Return Values

len An instance of <fixnum>

Description

Writes len bytes to an open file, taken from buf at offset offset. Returns the number of bytes written or

#f on error.

fd-close primop
Closes a file.
(fd-close fd) ⇒ ok

Arguments

fd An instance of <fixnum>

Return Values

ok An instance of <boolean>

Description

Closes an open file.

fd-open primop
Open a file.
(fd-open path mode perm) ⇒ fd

Arguments

path An instance of <string>

mode An instance of <fixnum>

perm An instance of <fixnum>

Return Values

fd An instance of <fixnum>

Description

Opens a file.  Get mode using make-fd-open-mode.  Construct perm using mode-list->bits.

fd-lseek primop
Seek in a file.
(fd-lseek fd offset whence) ⇒ offt

Arguments

fd An instance of <fixnum>

offset An instance of <fixnum>

whence An instance of <fixnum>

Return Values

offt An instance of <integer>

Description

Set pointer in file.  Returns new position relative to start.  [Note: only works with fixnums for now,

limiting usefulness to 500Mb files]

fd-dup primop
Duplicate a file descriptor.
(fd-dup fd) ⇒ fd2
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Arguments

fd An instance of <fixnum>

Return Values

fd2 An instance of <fixnum>

Description

Copies a file descriptor.  Returns the new fd.

fd-dup2 primop
Dups an fd to a particular fd.
(fd-dup2 fromfd tofd) ⇒ rc

Arguments

fromfd An instance of <fixnum>

tofd An instance of <fixnum>

Return Values

rc An instance of <fixnum>

Description

Copies a file descriptor to a particular one.  [Check dup2() for additional semantics like closing tofd or

not, etc.]

fd-stat function
Stat a file.
(fd-stat fd) ⇒ sb

Arguments

fd An instance of <fixnum>

Return Values

sb An instance of <stat-buf>

Description

Get status on an already open file.

fd-truncate primop
Truncate an open file.
(fd-truncate fd len) ⇒

Arguments

fd An instance of <fixnum>

len An instance of <integer>

Description

Sets the size of an open file.  Signals an instace of <os-error> if not successful.

1.23.3. Filesystem Functions
scandir function

Scan directory for entries.
(scandir path) ⇒ entries

Arguments

path An instance of <string>

Return Values

entries An instance of <list>

Description

Returns a list of entries in the directory.

rename function
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Rename a file.
(rename oldpath newpath) ⇒

Arguments

oldpath An instance of <string>

newpath An instance of <string>

Description

Changes a filename, like unix mv.

link function
Create a new link to a file.
(link existpath newpath) ⇒

Arguments

existpath An instance of <string>

newpath An instance of <string>

Description

Links a new entry to an old file, like unix ln.

symlink function
Create a symbolic link to a file.
(symlink existpath newpath) ⇒

Arguments

existpath An instance of <string>

newpath An instance of <string>

Description

Soft-links a new entry to an old file, like unix ln -s.

unlink function
Delete a link.
(unlink path) ⇒

Arguments

path An instance of <string>

Description

Removes a filesystem link, like unix rm.

rmdir function
Delete a directory.
(rmdir path) ⇒

Arguments

path An instance of <string>

Description

Removes an empty directory, like unix rmdir.

mode-list->bits function
Compute bits for mode list.
(mode-list->bits lst) ⇒ bits

Arguments

lst An instance of <list>

Return Values

bits An instance of <fixnum>

Description

Computes some mode bits using a list of symbols of the form mode/entity-action, where  entity is one of
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user, group, anyone, and action is one of read, write, or execute.  Also mode/set-user-id and mode/set-group-

id are understood.

chmod function
Changes permissions.
(chmod path mode) ⇒

Arguments

path An instance of <string>

mode An instance of <fixnum>

Description

Changes permissions on a file.  mode is from mode-list->bits.

chown function
Changes file ownership.
(chown path uid gid) ⇒

Arguments

path An instance of <string>

uid An instance of <fixnum>

gid An instance of <fixnum>

Description

Changes file ownership.  Probably requires root authority.

file-truncate primop
Truncate a file.
(file-truncate path len) ⇒

Arguments

path An instance of <string>

len An instance of <integer>

Description

Sets the size of the given file.   Signals an instace of <os-error> if not successful.

file-access? function
Check for file access.
(file-access? path mode) ⇒ ok

Arguments

path An instance of <string>

mode An instance of <fixnum>

Return Values

ok An instance of <boolean>

Description

Checks to see if the current process has the given kind of access to the given file.  Use access-mask to

construct mode.

1.23.4. stat Functions
stat function

Stat a file.
(stat path) ⇒ buf

Arguments

path An instance of <string>



Chapter 23. POSIX System Call Interface

96 RS-03-001 Rev. 0.7

Return Values

buf An instance of <stat-buf>

Description

Construct a stat buffer for the given file.  If path is a soft link, the file referred to is stat’ed.

lstat function
Stat a link.
(lstat path) ⇒ buf

Arguments

path An instance of <string>

Return Values

buf An instance of <stat-buf>

Description

Like stat, but gets status on the link itself if path refers to a symbolic link.

stat-type function
Get the type of the stat buffer.
(stat-type buf) ⇒ type

Arguments

buf An instance of <stat-buf>

Return Values

type An instance of <symbol>

Description

Returns a symbol indicating the type of the stat’ed file.  The returned symbol is one of directory,

regular,  fifo, character-special, or block-special.  #f may also  be returned if the type is not recognized

(ie, for symbol links stat’ed using lstat.)

stat-mode function
Get the mode of the stat’d file.
(stat-mode buf) ⇒ mode

Arguments

buf An instance of <stat-buf>

Return Values

mode An instance of <fixnum>

Description

Returns the mode bits for the given stat buffer.

stat-owner function
Get the owner of the file.
(stat-owner buf) ⇒ mode

Arguments

buf An instance of <stat-buf>

Return Values

mode An instance of <fixnum>

Description

Returns the owner id (uid) for the given stat buffer.

stat-eq? function
Check if two buffers refer to same object.
(stat-eq? a b) ⇒ same

Arguments

a An instance of <stat-buf>
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b An instance of <stat-buf>

Return Values

same An instance of <boolean>

Description

Checks to see if two stat buffers refer to the same filesystem object (ie, they are on the same device and

have the same inode.  Hence, this should probably be called stat-eqv? instead)

stat-id->hash function
Compute hash number for stat buffer.
(stat-id->hash b) ⇒ hash

Arguments

b An instance of <stat-buf>

Return Values

hash An instance of <fixnum>

Description

Computes a hash number for a stat buffer based on the identity of the stat’d file (ie, using the device

number and inode number).

stat-id-vector function
Return a vector of file identity info.
(stat-id-vector b) ⇒ info

Arguments

b An instance of <stat-buf>

Return Values

info An instance of <vector>

Description

Returns a four-element vector containing identity information for the given stat buffer.  The elements

are, in order, device high 16 bits, device number low 16 bits, inode high 16, and inode low 16.

stat-mtime function
Return mtime for stat buffer.
(stat-mtime b) ⇒ t

Arguments

b An instance of <stat-buf>

Return Values

t An instance of <time>

Description

Returns the mtime for the stat’d file.

stat-times function
Returns file times.
(stat-times b) ⇒ mtime atime ctime

Arguments

b An instance of <stat-buf>

Return Values

mtime An instance of <time>

atime An instance of <time>

ctime An instance of <time>

Description

Returns the three file times for the stat’d file; modification time, access time, and creation time.
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stat-size function
Returns file size.
(stat-size b) ⇒ size

Arguments

b An instance of <stat-buf>

Return Values

size An instance of <integer>

Description

Returns the size of the file in bytes.

stat-directory? function
Determine if a stat buffer belongs to a directory.
(stat-directory? sb) ⇒ result

Arguments

sb An instance of <stat-buf>

Return Values

result An instance of <boolean>

Description

Returns #t if the filesystem object whose stat buffer is sb is a directory.

stat-file? function
Determine if a stat buffer belongs to a file.
(stat-file? sb) ⇒ result

Arguments

sb An instance of <stat-buf>

Return Values

result An instance of <boolean>

Description

Returns #t if the filesystem object whose stat buffer is sb is a file object.

stat-access? function
Determine if an entity can access the stat’ed object in a given mode.
(stat-access? sb entity mode) ⇒ result

Arguments

sb An instance of <stat-buf>

entity An instance of <symbol>

mode An instance of <symbol>

Return Values

result An instance of <boolean>

Description

Where entity may be one of  owner,  group, or  world, and mode is one of  read,  write,  execute.

make-fd-open-mode function
Create an open mode for fd-open.
(make-fd-open-mode mainmode) ⇒ mode

Arguments

mainmode An instance of <symbol>

option Instances of <symbol>

Return Values

mode An instance of <fixnum>
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Description

Construct a unix "open" mode for use by fd-open. mainmode is one of  read,  write, and  read-write. The

options are taken from append,  create,  exclusive, and  truncate.

access-mask syntax
Create an access mask for file-access?.
(access-mask accessflag) ⇒ accessbits

Arguments

accessflag A name

Return Values

accessbits An instance of <fixnum>

Description

Creates an access mask for the access types  read,  write,  execute, and exist.

1.23.5. Network Functions
make-fd-set function

Create a file descriptor set for use by fd-select.
(make-fd-set reads writes exceptions) ⇒ set

Arguments

reads An instance of <list>

writes An instance of <list>

exceptions An instance of <list>

Return Values

set An instance of <fd-select-set>

Description

Constructs a file descriptor set (which is really made up of three sets, corresponding to watching for

readability, writability, and exceptions).  The resulting set can be used in the fd-select function.

fd-select function
Test for operations.
(fd-select delayms set) ⇒ readable writable

haveexception
Arguments

delayms An instance of <fixnum>

set An instance of <fd-select-set>

Return Values

readable An instance of <list>

writable An instance of <list>

haveexception An instance of <list>

Description

Uses the select() system function to determine which of the file descriptors in the given set can be

operated on.  Returns three lists of file descriptors.

set-socket-option function
Sets a socket option.
(set-socket-option fd level option value) ⇒

Arguments

fd An instance of <fixnum>
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level An instance of <symbol>

option An instance of <symbol>

value An instance of <object>

Description

Sets a socket option using setsockopt(). The required type of  value depends on the option being set.

get-socket-option function
Get a socket option value.
(get-socket-option fd level option) ⇒ value

Arguments

fd An instance of <fixnum>

level An instance of <symbol>

option An instance of <symbol>

Return Values

value An instance of <object>

Description

Gets the value of a socket option using getsockopt(). The returned type of value depends on the option

being set.

The valid values for level are:

Option Level

level/socket

level/ip

level/tcp

level/udp

The valid values for option are:
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Socket Option Value Type

socket/debug <boolean>

socket/reuse-addr <boolean>

socket/keep-alive <boolean>

socket/dont-route <boolean>

socket/linger <integer> or #f

socket/broadcast <boolean>

socket/oob-inline <boolean>

socket/send-buffer <integer>

socket/receive-buffer <integer>

socket/type <integer>

socket/error <integer>

inet-addr->string function
Render an internet address.
(inet-addr->string in) ⇒ str

Arguments

in An instance of <inet-addr>

Return Values

str An instance of <string>

Description

Renders an internet address in dotted list form (using inet_ntoa()).

string->inet-addr function
Create an internet address object.
(string->inet-addr ip) ⇒ in

Arguments

ip An instance of <string>

Return Values

in An instance of <inet-addr>

Description

Parses ip (in dotted quad format) and creates a <inet-addr> object.

make-inet-socket-addr function
Create an internet socket address.
(make-inet-socket-addr host port) ⇒ addr

Arguments

host An instance of <inet-addr>

port An instance of <fixnum>

Return Values

addr An instance of <inet-socket-addr>

Description

Creates a socket address using a host address and a port number.

inet-socket-addr-parts function
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Extract socket address parts.
(inet-socket-addr-parts addr) ⇒ in port

Arguments

addr An instance of <inet-socket-addr>

Return Values

in An instance of <inet-addr>

port An instance of <fixnum>

Description

Extracts the two parts (host and port) of an internet socket address.

socket-address-family->integer function
Identifiy socket address family.
(socket-address-family->integer fam-name) ⇒ fam

Arguments

fam-name An instance of <symbol>

Return Values

fam An instance of <fixnum>

Description

Find local name (integer) for socket address family.  Supports address-family/unix  and address-

family/internet.

socket-type->integer function
Identifiy socket type.
(socket-type->integer type-name) ⇒ type

Arguments

type-name An instance of <symbol>

Return Values

type An instance of <fixnum>

Description

Find local name (integer) for socket address type.  Supports socket-type/stream, socket-type/datagram.

and socket-type/raw.

socket-create function
Creates a socket.
(socket-create fam socket-type protocol) ⇒ fd

Arguments

fam An instance of <fixnum>

socket-type An instance of <fixnum>

protocol An instance of <fixnum>

Return Values

fd An instance of <fixnum>

Description

Opens a socket of the given type in the given address family, using the given protocol (protocol is

usually zero, which means the default protocol).

socket-listen function
Listen on a socket.
(socket-listen sock queue-length) ⇒ ok

Arguments

sock An instance of <fixnum>
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queue-length An instance of <fixnum>

Return Values

ok An instance of <boolean>

Description

Configure a socket for accepting connections.

socket-bind/unix function
Bind a socket to a unix address.
(socket-bind/unix sock path) ⇒ ok

Arguments

sock An instance of <fixnum>

path An instance of <string>

Return Values

ok An instance of <boolean>

Description

Binds the socket to a unix domain address.  A unix domain address is actually a filename that refers to

a special socket file.

socket-bind/inet function
Bind a socket to an internet address.
(socket-bind/inet sock port) ⇒ ok

Arguments

sock An instance of <fixnum>

port An instance of <fixnum>

Return Values

ok An instance of <boolean>

Description

Binds the socket to an internet socket address.

socket-bind/inet-sockaddr function
Bind a socket to a socket address (IP and port)
(socket-bind/inet-sockaddr sockfd sockaddr) ⇒

Arguments

sockfd An instance of <fixnum>

sockaddr An instance of <inet-socket-addr>

Description

Binds the socket specified by sockfd to an internet socket address, including the IP address and port

number.  This is useful when writing a server for a multi-homed host or host with IP aliases.  For

example, an HTTP server present on only one or a subset of IP addresses of a server.  This function

allows the application to bind to only one IP address, or bind different socket file descriptors to

different IP addresses.

socket-accept function
Accept a connection.
(socket-accept sock) ⇒ fd

Arguments

sock An instance of <fixnum>

Return Values

fd An instance of <fixnum>
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Description

Accepts the next connection from the socket (which was previously told to socket-listen.)

socket-connect/inet function
Connect to remote address.
(socket-connect/inet sock port hostid) ⇒ ok

Arguments

sock An instance of <fixnum>

port An instance of <fixnum>

hostid An instance of <string>

Return Values

ok An instance of <boolean>

Description

Connect the given socket to a remote address.

host-name->address function
Look up a host by name.
(host-name->address hostname) ⇒ addr aliases

Arguments

hostname An instance of <string>

Return Values

addr An instance of <string>

aliases An instance of <list>

Description

Look up a host name and return its address (dotted list format) and any aliases (aliases includes the

canonical name as the first element)

host-address->name function
Look up a host by address.
(host-address->name addr) ⇒ addr aliases

Arguments

addr An instance of <string>

Return Values

addr An instance of <string>

aliases An instance of <list>

Description

Returns the same thing as host-name->address, but looks up the host by address (internet dotted list

notation) instead.

recv-from function
Receive a packet.
(recv-from sock buf offset len peek? out-of-band? peer-class) ⇒ len peer

Arguments

sock An instance of <fixnum>

buf An instance of <string>

offset An instance of <fixnum>

len An instance of <fixnum>
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peek? An instance of <boolean>

out-of-band? An instance of <boolean>

peer-class An instance of <<class>>

Return Values

len An instance of <fixnum>

peer An instance of <sockaddr>

Description

Receive a packet from a datagram port.   Returns #f instead if an error occurred.

send-to function
Send a packet.
(send-to sock buf offset len out-of-band? to) ⇒ len

Arguments

sock An instance of <fixnum>

buf An instance of <string>

offset An instance of <fixnum>

len An instance of <fixnum>

out-of-band? An instance of <boolean>

to An instance of <sockaddr>

Return Values

len An instance of <fixnum>

Description

Sends a packet out a datagram socket.  Returns #f if an error occurred.

1.23.6. Miscellaneous
errno primop

Return errno.
(errno) ⇒ errno

Return Values

errno An instance of <fixnum>

Description

Return the last error.  Deprecated, but still needed as not everything signals errors (e.g., fd-open still

returns status info, which breaks w/threads)
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Unix System Interface

This chapter describes the functions available from the unixm module.

get-env function
Get an environment variable.
(get-env key) ⇒ val

Arguments

key An instance of <string>

Return Values

val An instance of <string-or-false>

Description

Get the value of an environment variable.  Returns #f if the variable is not defined.

set-env function
Set an environment variable.
(set-env key value) ⇒

Arguments

key An instance of <string>

value An instance of <string>

Description

Set the environment variable named key to the value value.

reset-env function
Replace process environment.
(reset-env lst) ⇒

Arguments

lst An instance of <list>

Description

Replaces the process environment with the contents of the given list, which is a list of key-value pairs.

unset-env function
Remove key from environment.
(unset-env key) ⇒

Arguments

key An instance of <string>

Description

Removes key from the process environment.

mkdir function
Create directory
(mkdir dir) ⇒
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Arguments

dir An instance of <string>

Description

Creates a directory (unix mkdir())

mkdirs function
Create directories
(mkdirs dir) ⇒ dir

Arguments

dir An instance of <string>

Return Values

dir An instance of <string>

Description

Creates dir and any non-existing parent directories.

system function
Invoke command using sh
(system str) ⇒ rc

Arguments

str An instance of <string>

Return Values

rc An instance of <integer>

Description

This is the standard unix system() function, which invokes the given command as by sh -c.

Returns the exit code of the subprocess.

getrusage function
Get process resource usage.
(getrusage) ⇒ usage

Return Values

usage An instance of <vector>

Description

Currently there is no way to get the rusage of a child process.

The vector contains 8 elements, which are: process user time (an <interval>), process system time

(an <interval>),  average memory (shared), average memory (unshared in data segment), input

operations, output operations, number of messages sent,  and number of messages received.

open-input-process* function
Open an input process.
(open-input-process* arg) ⇒ p

Arguments

arg An instance of <string>s

Return Values

p An instance of <input-port>

Description

This is functionally similar to open-input-process which uses popen(). However, this mechanism is more

direct in its invocation of the subprogram (since the subcommand is not invoked by sh.).  On the

downside, you can’t use shell expansions in the command, either.  Like the difference between 

‘fork/exec’ and ‘system’.

sleep function
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Sleep for the given amount of time.
(sleep sleep_time) ⇒

Arguments

sleep_time An instance of <number>

Description

Sleeps for the given number of seconds (may be a float if the system has usleep(), otherwise a rounds

it off to the nearest whole number of seconds)

fork function
Fork a new process
(fork) ⇒ pid

Return Values

pid An instance of <integer>

Description

Create a new process.  Returns the subprocess’s id in the parent, and #f in the child.

wait function
Wait for process completion.
(wait) ⇒ pid status

Return Values

pid An instance of <integer>

status An instance of <integer>

Description

Wait for a child process to complete.  If the wait() system  call returns -1, this function returns #f #f

instead.

wait-for function
Wait for a particular subprocess to complete.
(wait-for pid) ⇒ pid status

Arguments

pid An instance of <raw-int>

Return Values

pid An instance of <integer>

status An instance of <integer>

Description

Wait for the given process to complete.

getpid function
Get the current process id.
(getpid) ⇒ pid

Return Values

pid An instance of <integer>

Description

Returns the current process id.

getpgrp function
Get process group id.
(getpgrp) ⇒ pid

Return Values

pid An instance of <integer>

Description

Returns the process group id (the process id of the group leader?).
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getppid function
Get parent process id.
(getppid) ⇒ pid

Return Values

pid An instance of <integer>

Description

Returns the process id of this process’s parent

getuid function
Get user id.
(getuid) ⇒ uid

Return Values

uid An instance of <integer>

Description

Returns the user id of the owner of the current process.

geteuid function
Get effective user id.
(geteuid) ⇒ uid

Return Values

uid An instance of <integer>

Description

Returns the user id of the effective owner of the current process.

getlogin function
Get the name of the login user.
(getlogin) ⇒ login

Return Values

login An instance of <string>

Description

Returns the login name of the process’s owner, or #f if it cannot be determined.

getpw function
Get the password entry for the given entity.
(getpw who) ⇒ pwent

Arguments

who An instance of <string-or-fixnum>

Return Values

pwent An instance of <vector>

Description

Returns a vector describing the passwd entry for the given user.  who may be either a string, in which

case it is interpreted as a login name, or an integer, in which case it is interpreted as a user id.

Returns #f if the lookup fails.

The returned vector has 7 elements: The user login name, the user id, the user’s primary group id,

their home directory, their shell, their encrypted passwd, and their GECOS data.  Some data may not

be available, in which case #f is present in that slot.

exec* function
Transform current process into a new program.
(exec* path argv env) ⇒

Arguments

path An instance of <string>
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argv An instance of <vector>

env An instance of <vector>

Description

Tail-call a process.  This is a wrapper for the standard execve() system call, which transforms the

current process into a new program, supplying an explicit argv and environ to the new process.

Signals an error if the exec fails.

exec function
Exec a new program.
(exec path arg) ⇒

Arguments

path An instance of <string>

arg An instance of <string>s

Description

Execs a new program (a wrapper for the execv() system call).  The new program’s environment is the

same as the current process’s environment.

pipe function
Create a pipe pair.
(pipe) ⇒ fd1 fd2

Return Values

fd1 An instance of <integer>

fd2 An instance of <integer>

Description

Create a pair of file descriptors which are connected by a unix pipe.

kill function
Send a signal to a process.
(kill pid sig) ⇒ rc

Arguments

pid An instance of <fixnum>

sig An instance of <fixnum>

Return Values

rc An instance of <integer>

Description

Send the signal sig to the process pid.

hostname function
Determine the hostname of the current machine.
(hostname) ⇒ hostname

Return Values

hostname An instance of <string>

Description

Returns the hostname of the current machine (unix gethostname()).
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Introduction to RScheme Internals

This part of the book describes the internals of RScheme.

Most of this part, especially the higher level chapters, was written by Paul Wilson who inspired much

of the design of RScheme’s internals.
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Representation of Objects.

Since Scheme is a dynamically typed language, the type of an object must be possible to determine

from the object itself at runtime.  To accomplish that, we use tags.  

In the general case, an RScheme object is a pointer to some area of memory, and the type of the

object, which is usually a class, is part of the contents of that area of memory.

However, it is wasteful to represent objects this way.  Therefore, a different method is used for some

commonly used object types.  The method consists of marking the pointer itself (rather than the area

of memory it is pointing to) so that the type of the object can be determined directly from the pointer,

which is much faster since this operation does not require an additional memory access.  

Once we have tagged pointers, we realize that some simple objects need no area of memory at all.  The

entire object can be fully represented in the pointer itself.  This is the case for small integers, booleans,

characters, and some unique objects such as the EOF object used in input/output operations.  

In RScheme, all objects have a primary tag.  This tag is stored in the two least significant bits of the

pointer.  Thus, there are four possible values for the primary tag.  Currently, the tag 01 is unused and

reserved for future use.

RScheme data values are represented as two-bit, low-tagged 32-bit quantities.  This means that

RScheme values are generally 32 bits, where the low two bits is a primary tag that says what basic kind

of value it is, and the upper 30 bits holds either the actual value, or a pointer to a heap-allocated object

that is the actual value.

Every heap-allocated object, whether of a built-in type or a user-defined type has a header that says

exactly what kind of object it is.  This header includes a CLASS POINTER, which is a pointer to a class

object that represents that kind of object.

Plain, standard Scheme objects such as vectors and strings have class pointers–-unlike some systems,

there is NO DISTINCTION between objects that are plain Scheme values and objects that are instances

of classes.

In fact EVERY value in RScheme has a class, and there’s a primitive in the abstract instruction set that

will give you back a pointer to the class of an object, even if the object is a built-in immediate value.

For immediate values, this primitive looks in a special table to find the class pointer, preserving the

illusion that every object is allocated on the heap and has a header with a class pointer.

Notice that this small feature is important, in that it will allow us to implement a good object system

with a metaobject protocol efficiently with little or no compiler cooperation.
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2.2.1. Small Integers
A tag of 00 indicates that the object is a small signed integer.  We call such a number a fixnum

(abbreviation for fixed number).  On a 32 bit machine, fixnums are integers greater than or equal to -

2^29 and strictly less than 2^29.  A two’s complement representation of the fixnum is stored in the 30

most significant bits of the pointer.  Another way of expressing this is to say that a fixnum n is

represented by the machine integer N=4*n.

The choice of a tag of 00 for fixnums was not made arbitrarily.  Some very common operations on

fixnums become very simple if a tag of 00 is used.  We can use the ordinary machine instructions for

addition and subtraction.  Multiplication of two fixnums requires one of them to be shifted to the

right by two positions before the use of the ordinary machine multiplication operation.  Division of

two fixnums requires that we first use machine division and then shift the result to the left by two

positions.

In addition, no extra work is necessary to accomplish operations such as AND, OR, exclusive OR, and

shift.  The NOT operation has to be followed by a mask operation to make sure the last two bits are

zero.  

For most of the operations above we have to check for overflow so that we either can signal an error or

invoke code to convert the fixnum to some more appropriate representation.  RScheme currently does

not have bignums (arbitrary precision integers), so overflow only provokes an error.

Some architectures such as the SPARC have special instructions that work on tagged fixnums.  In a

single instruction cycle such instructions are able to verify that the tag is 00, apply the operation, and

verify that there is no overflow.  In the case of failed verification, these instructions provoke a

hardware trap that can then be converted into a software signal that can be captured so that the

appropriate conversion code can be invoked.  However, we currently do not use these instructions as it

would make the system less portable.  Instead we use explicit code for testing the error situations.

2.2.2. Immediate Objects
A tag of 10 indicates that the object is an immediate object (immob for short).  Immediate objects are

objects that like fixnums can be represented in the pointer itself, and therefore do not need

additionally allocated memory.  

Since there are many types of immediate objects, RScheme uses a secondary tag to distinguish

between those different types.  The secondary tag is located in the three bits immedately to the left

(less significant bits are to the right of more significant) of the primary tag.  

IMMEDIATE VALUES are the values that are represented directly within the upper 30 bits of a word.

Two different primary tags are used for immediate values–-one just for short integers, and another for

all other kinds of immediate values.  Integers have a primary tag of 00, which is convenient because it

turns out not to get in the way of most arithmetic operations.  (You don’t actually have to strip out the

tag to do integer addition for example, because the 00 tags of the operands will add together and form

a 00 tag in the low bits of the result.)

Other (non-integer) immediate values have a secondary tag saying what kind of noninteger

immediate value they are–-e.g., boolean, empty list, ASCII character.  This secondary tag is in the

next-to-lowest range of a few bits, just above the primary tag.  The remaining bits are available to store

the actual value, e.g., the ASCII code representing a character.
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2.2.2.1. Booleans
A secondary tag of 000 indicates that the object is of type Boolean, i.e., either #f or #t. The bit

immediately to the left of the secondary tag indicates whether the value is #t (1) or #f (0).  Thus, the

value #t is represented as the machine integer 34 (binary 100010) and the value #f is represented as

the machine integer 2 (binary 000010).

2.2.2.2. The Empty List
The empty list () is a commonly used immediate object which has a secondary tag of 001.  There is

only one such object so all bits to the left of the secondary tag are zero.

2.2.2.3. Ascii Characters
A secondary tag of 010 indicates an immediate object of type ascii characters.  The bits to the left of

the secondary tag represent the ascii code for the character.  In fact, there are not seven but eight

significant bits to the left of the secondary tag, so we can in fact represent more than the ascii alphabet

and cover the ISO-latin alphabets as well.

2.2.2.4. Unicode Characters
A secondary tag of 011 indicates an immediate object of type unicode character.  The sixteen bits to

the left or the secondary tag indicate the unicode of the character.

2.2.2.5. Unique Objects
A secondary tag of 100 indicates one of a number of unique objects.  Enough bits to the left of the

secondary tag are used to represent the particular unique object.  

2.2.2.5.1. No Value Object
A numeric value of these additional bits of 0 indicates that the object is the "no value object".  This

value is deprecated, since the Dylan convention is that no values should be interpreted as #f, the most

distinguished value.

2.2.2.5.2. Undefined Object
A numeric value of 1 indicates that the object is the "undefined" object.  This is used in some cases to

indicate a value which is not defined.  However, it’s use is deprecated, the tendency being instead to

define the appropriate return value.

2.2.2.5.3. Uninitialized Object
A numeric value of 2 indicates that the object is the "uninitialized"  object.  This is used as a marker

for storage that has not yet been initialized at the language level, such as slots of an object during it’s

construction process, and variables in a letrec before the final values are installed.

2.2.2.5.4. Unbound Object
A numeric value of 3 indicates that the object is the "unbound"  object.  This value is used by the

runtime system to detect references to unbound variables (because storage for top-level variables is

allocated by the compiler when the variable name is first seen, but before it may have been defined.

The compiler initialized the storage with #unbound, and the runtime system checks for this value at
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runtime, signalling an error if it is found}

2.2.2.5.5. Rest object
A numeric value of 4 indicates the "rest" object.  This object is used in function parameter lists to

indicate a rest parameter.  

2.2.2.5.6. Key object

2.2.2.5.7. All Keys object

2.2.2.5.8. Next object

2.2.2.5.9. Missing object

2.2.2.5.10. Debug trap object

2.2.2.6. Other secondary tags
Secondary tag values of 101, 110, and 111 are currently unused and reserved for future use.

2.2.3. Pointers
A primary tag of 11 indicates an RScheme pointer, i.e., an object that references some allocated area of

memory.  The machine address of the memory area allocated for the object is the the machine value of

the object except with the primary tag replaced by 00.  Thus, when we need to dereference such a

pointer, we must first remove the tag bits.  Fortunately, most modern machines have load instructions

that accomplish an addition of a small (signed) integer to the address before the memory access is

made.  By using such a load instruction with a value of -3, we are able to remove the tag and

dereference the pointer in a single machine instruction.

This means, for instance, that we can implement the car and cdr operations in a very efficient way.

The car operation would simply be a load instruction with an offset of -3, and the cdr operation a load

with an offset of +1.

Notice that for this system to work, the memory allocator must always return addresses that have the

low two bits set to 00.  Another way of putting this is that addresses should be aligned on a four-byte

boundary.  If we write our own allocator, this is not hard to accomplish.

On some modern architectures, load instructions that load 32-bit words require at least a 4-byte

alignment, so that an attempt to use a pointer with any of the low two bits set to load a 32-bit value

would result in a hardware trap.  On such architectures, the car and cdr operations don’t have to verify

that the tag is in fact 11.  Any attempt to use car or cdr (according to the definition above) with any

other tag would result in a trap.  

As explained above, objects with a tag of 11 always refer to some area of memory.  The memory

location referred to by this pointer (once the tag has been subtracted) is the first word of the object

itself, for instance the car field of a pair, or the first element of a vector.  But every such object also has

a header that precedes the first word.  This header contains two words of information, namely the size

of the object in bytes and a pointer to the class of which this object is an immediate instance.  Thus, in

order to find out the exact type of an object with a 11 primary tag, you first have to find its header and

then load the class pointer of that header.
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Runtime System

2.3.1. Virtual machine
Because part of the obligation of the virtual machine is to provide timely responsiveness in a user-

threaded environment, and the  basic design is not preemptive in the low level, the compiler and the

rest of the system conspire to ensure that execution does not procede indefinitely or for too long a

period without reaching a valid thread-switch point.

Garbage collection work is also done at these safe points, so the same guarantee ensures that garbage

collection can proceed in a sufficiently interleaved fashion.

Primitive operations (primops) can be invoked by C code and by the bytecode interpreter.

Furthermore, the system must reach safe points frequently so ensure progress on garbage collection

and timely thread switching.  Accordingly, a primop must execute in bounded time and space.  append

illustrates this; it is not a primitive and can’t be, because there is no guaranteed bound on how long it

would execute and many pairs it would allocate[1].

2.3.2. Bytecode Interpretation
In order to provide an efficient yet dynamic compilation environment, RScheme incorporates a

bytecode interpreter. The interpreter is not distinguished at the level of the runtime system calling

convention; that is, a function whose implementation is in bytecodes (ie, the execution of which

should proceed by interpreting bytecodes) is called the same way every other function is called.  It is

simply arranged that the pointer to code stored in the template of such a function is a pointer to the

bytecode interpreter itself.

The interpreter then  operates on a sequence of bytes (a bvec of class <bytecoded>) which constitute the

executable function body.

Figure 5. Closure Structure

2.3.3. Continuation Chain and the Dynamic Environment
The dynamic environment is used to track the values of dynamic variables such as the current input

port, exception handler chain, etc.  The use of fluid-let-style dynamic binding is deprecated because

of it’s poor interaction with a multi-threaded environment.  Instead, a thread state is maintained in

the thread_state_reg. The structure of the state is  that of a vector.  The first element of the vector is a
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chain of dynamic binding entries.  The remaining elements are the values of the direct dynamic

variables, which are suitable for  frequently accessed bindings.

There are three kinds of dynamic variable mechanisms:

1. direct, immutable variables (e.g., *input-port*) 

2. indirect variables (which may be mutable; the binding is the entry in the dynamic chain off

thread_state[0])

2.3.3.1. Stack cache
Of course, you don’t want to allocate all those continuation frames on the heap, since the live a short

amount of time and have a very stylized lifetime pattern (ie, almost always stack-like).

We take advantage of their stylized lifetime by allocated them in a stack cache.

2.3.4. C unit linkage
RScheme supports portable system image files.  Because the code pointers that are embedded in a

system image are intrinsicly system-dependent, a mechanism is required that allows code pointers to

be recognized, translated into a portable format, and later converted back into internal representation.

Code pointers occur in exactly the following two places:

1. In slot 0 of <template> objects.  

2. In slot 2 of <partial-continuation> objects.

The system recognizes these objects by their image mode, which are 4 and 5, respectively.

2.3.5. Register machine
[TODO]

2.3.6. Abstract Machine
RScheme is based on an abstract machine defined by a set of registers, data structuring conventions,

and primitive operations that are implemented as small fragments of C code.  This is not a virtual

machine in the sense of many Lisp and Smalltalk systems, which interpret their primitive instructions

at run time.  It is an abstract machine much like a high-level assembly language.

In one important sense, this abstract machine is lower level than most virtual machines for

dynamically-typed languages; the operations are statically typed using a very simple type system, and

the compiler in many cases can glue them together without type-checking code.  The compiler inserts

type checking primitives as necessary when values are truly dynamically typed, but it can often omit

type checking when it can be statically determined that the values returned by one expression are of

the type expected by the enclosing expression.  (We will discuss type declarations and simple bottom-

up type inference later.)

In another important sense, our abstract machine is higher-level than a conventional virtual machine.

Our abstract machine primitives are expressions that can be nested, rather than just statements that

are glued together.  

The RScheme REGISTERS are implemented as C global variables.  Depending on what C compiler is
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used, some of these variables may be mapped to hardware registers in the underlying machine (GNU

C supports this).

For most of the following, we will assume that we are executing RScheme code that has been compiled

to machine code via C. The threaded code observes the same conventions, because threaded code is

really just a bunch of closures of simple RScheme procedures.  When and if we switch to something

like a bytecode interpreter, the calling convention will not change–-a bytecoded procedure will be

represented as a closure of a normal RScheme procedure, which simply interprets the bytecodes.  The

calling convention is optimized for machine code, because we believe that most programs will spend

most of their time in machine code rather than interpreting bytecodes.  (If not, they’ll be slow anyway,

so it won’t matter much.) 

2.3.6.1. The basic registers
The basic registers are the environment register, the continuation register, the literals register, the

argument count register, and the register array.  Except for the argument count register, all these

registers hold tagged scheme values – never raw pointers or raw integers.

Conceptually, the program counter is another basic register, but we use the underlying machine’s

program counter for this; our strategy for compiling to C makes this simple.  There are some other

special-purpose registers which will be discussed later.

The environment register usually holds a pointer to the current heap-allocated lexical environment.

However, at the point of a procedure call, the runtime system uses the environment register to point to

the function being called[1] 

Of course, if the compiler does its job well, many environments won’t be allocated on the heap.  In this

case, the environment register will simply point to the chain of environment that are on the heap.  If

there are none, then the procedure need never load it’s environment pointer from its own closure.

The continuation register holds a pointer to the chain of partial continuations (of suspended callers)

of the currently executing procedure.

The argument count register is set by a caller to signify the number of arguments being passed.  On

entry to the procedure, the callee checks to see if it received the right number of arguments.  (If the

procedure can take extra arguments, it pushes those into an argument list.) The argument count

register always holds a raw integer, so there is no need for the garbage collector to know about it.  

2.3.6.1.1. The Register Array
The register array is a conceptually unbounded array of registers.  This array is used for passing

argument values, holding temporary values of intermediate expressions, and for register-allocating

local variables that do not need to be heap-allocated.

Registers are used starting at one end of the array and moving toward the other.  At any given point in

the execution of a program, the registers in use are a contiguous range starting at register 0.  Typically,

only the first few registers are used, and the ones nearest 0 are most heavily used.  This allows us to

allocate the first few registers in hardware registers (if the underlying C compiler supports that) and

get a large benefit from a few registers.

The fact that we use a contiguous, zero-based range of registers makes the interface between compiled

code and the garbage collector simple.  Hence, when garbage collection occurs, it is only necessary for

the GC to know how many registers are in use[1]. This lets it find the root pointers for garbage
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collection easily.  

2.3.6.1.2. Argument Passing
Arguments are passed in registers, and any reasonable number of arguments (up to 1000) can be

passed there.  At the moment of a procedure call, the only values in the register array are the

arguments to the call.  Any other register-allocated values will have been saved in a partial

continuation before the call.  For a tail call, no values need to be saved.  For a non-tail call, a

continuation is saved before computing the argument values for the call.

In the general case, the arguments to a procedure must be copied from the argument passing registers

into a heap-allocated environment when the procedure is entered, so that closures can capture that

environment and keep it live indefinitely.  For procedures that create no closures, this is not necessary,

and the argument variables can be left in the registers where they were passed.  We expect the latter  to

be a very common case, as roughly half of all calls are to small procedures at the leaves of the call

graph.

After entering the procedure, then, the arguments will be in the first few registers of the auxiliary

register file, or they will have been copied to the heap and no auxiliary registers will be in use.

Whichever is true, the remaining registers can be allocated consecutively to hold temporary values or

local variable bindings.

As mentioned above, the register array contains only values for the currently-executing procedure,

and any values needed by the caller will already have been saved in the continuation chain.  Despite

this stack-like pattern of usage (within a procedure), the compiler can statically resolve which register

is used for which temporary or local variable[1], and there is no need to use a stack pointer at run

time.  If the registers are mapped to hardware registers by the C compiler, accesses to them are

extremely fast.  

2.3.6.1.3. Local Variables
In the general case, local variables bindings (including argument bindings) are allocated on the heap,

in conventional environment  frames.  An environment frame contains a scope link, pointing to the

lexically-enclosing environment frame.

In favorable cases, the compiler can determine that variable bindings don’t really need to be allocated

on the heap; it can allocate them in registers, much like temporary values.

We currently use a simple rule for this.  For each binding contour, we construct a compile-time

binding environment frame, and if we allocate any of those variables on the heap, we allocate all of

them on the heap.   

2.3.6.1.4. Dynamic State Register
Used to store fluid variables ’n’ stuff.

2.3.6.2. AML Types (primtypes)
[TODO]

2.3.7. The Bytecode Interpreter
In adding interpreted code to our compiler-oriented system, we avoid adding any overhead at proc-

edure call time for native-code procedures.  We don’t have to check to see if something is native-coded

or compiled before calling it.  (Since performance critical stuff is supposed to be compiled to native
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code, we’d rather keep native-code calling fast even if it costs a little bit for interpreted code.)

It is straightforward to add interpreted representations to the basic system, allowing interpreted

procedures to call native-code procedures and vice versa.  All that’s necessary is that we make sure

that interpreted procedures look like compiled ones, with a template and a code pointer that points to

native code (e.g., a C function pointer in the usual setup).  For interpreted procedures, we simply

make sure that the code pointer always points to a special routine that invokes the interpreter, and that

the pointer to the actual interpreted code is stored in the template.  Thus calling an interpreted proc-

edure IS calling a native code procedure, whose action is to interpret some bytecodes (or whatever

interpreted representation we’re using) stored in the template as a literal.

Calling out of (and returning into) interpreted code can work the same way.  Whenever an interpreted

routine saves a continuation, the return address is a similar little routine that will resume interpreting

the interpreted representation.  To save the interpretive return address (i.e., the point within the

interpreted code to resume at), an integer is saved in the continuation as well, as though it were just

some normal intermediate value that needed to be saved.

The normal calling and returning conventions work fine for this.  From the "normal" point of view,

every interpreted procedure looks pretty similar, and the differences between them are just in the

literal data.

Notice that this works even if different interpreted routines use different interpreters.  There’s no

problem combining routines that use different interpreters–-they’re just procedures whose code

pointers point to different interpretive routines.

In fact, in the current implementation, the regular expression facility operates as just this sort of

alternative interpreter.  A compiled pattern is manifest as a function whose template contains a

pointer to a "program" which is a representation of a deterministic finite automaton for the regular

expression.  The code pointer is simply the interpreter for these specialized kinds of programs.
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Universal Code Interface

In this chapter, we discuss the interface that all code must conform to, whether compiled to bytecode

or to C code.  

2.4.1. Introduction
RScheme defines a register-based  virtual machine . In order not to confuse this virtual machine with

(say) the virtual machine that bytecode executes on, we call it the  universal code interface. The

universal code interface is defined in terms of standardized instructions on top of an ANSI C system.

Most registers of the universal code interface are stored in global C variables.  However, if you are

using the GNU C compiler on a machine with many registers, some of the registers will be stored in

hardware registers.

Executable machine code (compiled by the C compiler) is divided into  monotones . These monotones

roughly correspond to basic blocks  in the compiler literature.  But the smallest unit of execution you

can get a pointer to in C is a procedure.  Therefore, monotones are really C procedures.  In order to

avoid unbounded consumption of C stack space, RScheme contains a tight loop that calls monotones.

When the code of a monotone has determined the next monotone to execute it does not call it as a C

procedure, but instead returns its address so that the tight loop can call the new monotone in its place.

In C code, the type of a monotone procedure is jump_addr, which is a typedef for a function of zero

arguments returning a type_addr.  Since such a type is not possible to define directly in C, the return

type is realy void*, which is then converted to jump_addr through a cast.

RScheme does not use CPS conversion (Continuation Passing Style).  In CPS calls and returns look the

same; they are simply calls to a continuation.  In RScheme, we distinguish between calls and returns.

A call is always to a procedure which causes the first monotone of a procedure to be executed, whereas

returns are always to a what RScheme calls a  partial continuation , which causes some monotone

other than the first to be executed.

2.4.2. Structure of a C-compiled procedure
A C-compiled procedure is conceptually a closure, in that it consists of code to be executed and the

environment in which it was defined.  But things are a bit more complicated in reality.  In addition to

the code, there is some other information needed either by the RScheme runtime system, or by other

parts of the system, such as the code for reporting errors.  All this information can be devided into

two parts, one part that is specific to a particular closure, and another part that is shared between all

closures coming from the same source text.  

The specific part is just the environment of definition of the closure.  All other information is bundled
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up in what we call a   template . There is one template per Scheme procedure.  The template contains a

code pointer (jump_addr) to the first monotone of the procedure; a function descriptor (that we don’t

discuss here); a property list, holding among other things a name of the procedure; a pointer to the

bytecode instructions if it is a bytecoded procedure, and; an array of constans and top-level variables

that may be needed during the execution of the procedure.  

You can think of the Scheme special form "lambda" as taking the template for its body and the current

environment, creating a closure from them and returning the closure.

Notice that all code must conform to this structure, whether compiled to C, compiled to bytecodes, or

any other type of code that you might want to add to RScheme.  This is why we call it a universal code

interface.  

2.4.3. Registers of the universal code interface
The universal code interface defines a set of registers which is devided into a fixed part and a variable

part.  The fixed part contains the following registers:

literals register. contains the template of the procedure currently executing.

environment register. contains the environment of the procedure currently executing.  During a brief period it

contains the procedure about to be called.

continuation register. contains the partial continuation to be used when the current procedure needs to return

to its caller.

dynamic state register. (not discussed here)

argument count register. contains the number of arguments given to a newly called procedure.

All contain RScheme objects except the argument count register which contains and unsigned

machine integer.  

The variable part consists of a register file with registers named reg0, reg1, etc.  This register file is

conceptually unbounded in size, but in practice it is limited, currently to 1000 registers.  

2.4.4. Structure of a partial continuation
In order to fully understand the universal code interface, you must also understand the structure of a

partial continuation.

There are two parts to a partial continuation; the fixed part and the variable part.  The fixed part

contains four fields

envrionment register save. contains the contents of the environment register of the caller, so that when the

current procedure returns, this value can be re-established.

literals register save. contains the contents of the literals register of the caller, so that when the current proc-

edure returns, this value can be re-established.

return address. contains a value of type jump_addr indicating the monotone to be executed after the current

procedure returns.

continuation register save. contains the link to the next partial continuation of the continuation chain.
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The variable part contains all the temporary values needed by the continued execution of the caller.

These values are always saved from and restored to reg0, reg1, ..., regn-1 where n is the number of

such values stored in the partial continuation.

2.4.5. Procedure call/return interface
The main purpose of the universal code interface is to define how procedures are to call each other.  As

we already mentioned, this interface is independent of how the procedure is encoded, whether

bytecodes or compiled C code.

The call/return interface has several components used in different situations.  These components are

procedure prologue. The code at the start of the first monotone of a procedure 

procedure epilogue. Used when the executing code needs to return to its caller.

monotone prologue. The code at the start of monotones other than the first one of a procedure.

monotone epilogue. Further divided into (1) procedure call, used when the current code needs to call some

procedure, and (2) jump, used to transfer control to a diffrent monotone of the same procedure.  This

is used for merge points after a test, for instance.  

back jump. Used to transfer control to a previous monotone of the same procedure.  This is used for loops.

RScheme uses monotone transfer points to do thread switching and garbage collection.  Since no

procedure can execute for an unbounded period of time without executing either a procedure call or a

back jump, these are the instructions used to test for possible thread switching and garbage collection.

2.4.5.1. Procedure prologue
The procedure prologue assumes that registers reg0, reg1, ... regn-1 contain the arguments to the

procedure in the left-to-right order, and that the argument count register contains n, the number of

arguments given to the procedure.  It also assumes that the procedure itself is contained in the

environment register.  

First, the number of arguments is checked.  There are two versions depending on whether this proc-

edure has a rest argument or not.  If not, i.e., if the procedure takes a fixed number of arguments, the

argument count register is checked for equality with the number of arguments this procedure takes.

This test is accomplished by a C macro corresponding to a primitive operation of the universal code

interface, COUNT_ARGS(n).  If the procedure takes a rest argument, this step is somewhat different.

First the argument count register is checked so that it is greater than or equal to the number of fixed

arguments this procedure takes.  This test is accomplished by the instruction

COUNT_ARGS_AT_LEAST(n).  Next, all the non-fixed arguments must be put on a newly created list.

This is accomplished by the instruction COLLECT(n), where n is the number of fixed arguments.

COLLECT(n) takes registers regn, regn+1, ..., regm-1 where m is the total number of arguments as

indicated by the argument count register, and creates a list of their values.  This list is then put in

register regn.  For efficiency, the universal code interface also defines special instructions

COLLECTn() for some small values of n.

The second and final step of the prologue is necessary only of the execution of the procedure requires

the construction of an environment on the heap.  In that case, the environment is extracted from the

procedure itself (now in the environment register) and stored in the environment register, overwriting

the previous value.  There are two versions of this instruction depending on whether the procedure
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was defined in the global environment or not.  If it was, then the environment to be extracted is the

empty environment, in which case the instruction USE_EMPTY_ENVT is used.  Otherwise the

instruction USE_FUNCTION_ENVT is used.

2.4.5.2. Procedure epilogue
Since RScheme allows a procedure to return multiple values, the procedure epilogue must

communicate not only the return value(s) but also the number of return values.  

Prior to executing the procedur epilogue, the current procedure must make sure the return values are

contained in reg0, reg1, ..., regn-1 (for n return values).  A value of zero is allowed for the number of

return values in which case no register contains any valid value.

The first step of the procedure epilogue is to put n (the number of return values) in the argument

count register.  If n is zero, then the object #f (Scheme false) is stored in reg0.  By doing that we avoid

forcing the receiving procedure to test the argument count register in the case where it expects exactly

one return value.  

The next step is to extract the saved environment register from the partial continuation contained in

the continuation register and put it in the environment register.  This way, the environment of the

caller is restored.  

Next the saved literals register is extracted from the partial continuation contained in the continuation

register and put it in the literals register.  This way, the template of the caller is restored.

The fourth and final step is to extract the return address of the partial continuation contained in the

continuation register and "jump" to it.  Jumping to it, as indicated above, is done by actually returning

the value and let the monotone-calling loop call it.  That way the C stack frame of the current

monotone is removed.  Without this mechanism, we would not be able to support tail calls.  

The entire procedure epilogue is handled by an instruction of the universal code interface which

comes in two versions depending on whether the number of values to be returned is zero or greater

than zero.  For the zero case, the instruction is RETURN0().  For the other case, the instruction is

RETURN(n) where n is strictly greater than zero.  

2.4.5.3. Monotone prologue
The monotone prologue consists of the code that is executed immediately after the return of a callee.

At the beginning of this code, we thus know that register reg0 always contains a valid value.

Furthermore, the argument count register contains the number of arguments returned.

The first step of the monotone prologue is optional and used only when multiple values are returned.

In that case, the return values are padded with #f up to the number of return values expected.  This is

accomplished by the instruction PAD_WITH_FALSE(n), where n is the number of arguments

expected.  

The next step is also optional and used only when a variable number of arguments can be returned.

This situation can occur if the source code contains something like

(bind ((a b # rest r (f)))

i.e., the procedure f is called and it is expected to return at least two values.  Return values beyond the

second are put onto a list and stored in the variable r.  For this purpose, we use the instruction
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COLLECT(n) already defined in the procedure prologue.

Next, the return values need to be moved to a safe place so that the values of reg0, reg1, ..., regm-1 can

be restored from the partual continuation, where m is the number of valid temporaries stored in the

partial continuation by the previous monotone.  Currently, these values are simply moved to regm,

regm+1, ... as necessary.  

The final step of the monotone prologue is to restore the continuation.  Recall that the procedure

epilogue restored the environment register, and the literals register, but not the continuation register.

First the saved registers are restored to reg0, reg1, ..., regm-1.  Then the continuation register is

restored from the partial continuation, thereby removing the first element of the continuation chain.

This step is accomplished by the instruction RESTORE_CONT().

2.4.5.4. Monotone epilogue
As mentioned above a monotone can end in three different ways, with a procedure call, with a jump,

or with a back jump.

To prepare for the procedure call, the current procedure puts the arguments in registers reg0, reg1, ...,

regn-1 where n is the number of arguments.  Similarly, to prepare for a jump or a bjump, the current

procedure puts temporaries that need to be saved across monotone boudaries in reg0, reg1, ..., regn-1.

The code for a procedure call is accomplished by the instruction APPLY(n, expr) where expr is a C

expression that evaluates to a procedure (see below for a complete list of legal expressions).

The first step of the procedure call is to put n in the argument count register.

In the second step, the environment register is assigned to the procedure itself.  A check is made that

the object is a procedure.  If not, and error is signaled.  

Next, the literals register is set to the template of the procedure now in environment register.  

Finally the code pointer is extracted from the template, and the code pointer is "jumped" to.  Recall

that jumping is implemented as a return of the code pointer to the monotone calling loop.  

In the case of a jump, the instruction is JUMP(n, label), where n is the number of valid registers and

label is a jump_addr indicating the next monotone to execute.  For the jump epilogue, we do not have

to be concerned with consumption of C stack, so instead of going trough the monotone calling loop,

we can simply call the label directly and return its return value to the monotone calling loop.  

For back jumps we use the instruction BJUMP(n, label) which is similar to the JUMP instruction.

With back jumps we need to go through the monotone calling loop in order to avoid consuming C

stack space.

2.4.5.5. Continuation cache (or stack cache)
The RScheme universal code interface generates a large number of partial continuations.  In the

general case, these partial continuations must be allocated on the heap.  But always allocating these

continuations on the heap would generate much more garbage to be taken care of by the garbage

collector.  We avoid such additional garbage in many cases by using a continuation cache (or a stack

cache).  

The key observation here is that most continuations do not get captured by call/cc.  Thus, when the
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monotone prologue restores the continuation, usually the previous top of the chain is garbage.  

The continuation cache is a fixed size statically allocated array in the runtime system.  The size is

chosen so that the maximum size of a partial continuation (4 + the number of variable registers,

usually 1000) is always smaller than or equal to the cache.  Since normally, a partial continuation is

substantially smaller, several partial continuations can be stored in the cache.

The continuation chain looks like a stack, so we make it grow toward lower addresses.

The invariant we maintain is that the current top of the continuation chain is either in the cache, in

which case everything in the cache at a higher adddress is also part of some valid continuation, and

everything in the cache at lower addresses is unused, or else the top of the continuation chain is on the

heap, in which case the entire continuation cache is empty.

When we need to allocate a new partial continuation, we always allocate it in the cache.  There are

several cases.  Case 1: the top of the continuation chain is on the heap.  Then the cache is empty, so we

subtract the size of the partial continuation to be allocated from the size of the cache, which gives us

the address of the new partial continuation.  Case 2: teh top of the continuation chain is in the stack.

We now again have two cases Case 2a: the size of the partial continuation to be allocated is too large to

fit in what remains in the cache.  We then migrate (flush) the cache to the heap and we are back to

case 1.  Case 2b: the size of the partial continuation to be allocated is smaller than or equal to the the

remaining space in the cache.  We then subtract the size of the partial continuation to be allocated

from the current top of the continuation chain to obtain the address of the newly allocated partial

continuation.

The final part of maintaining our invariant has to do with continuation capture.  Whenever call/cc

captures a continuation, we have to migrate (flush) the cache to the heap.

2.4.6. Other instructions of the universal code interface
Monotone and procedure prologues and epilogues are necessary, but not sufficient for a complete

universal code interface.  We also need instructions for accessing and modifying the value of variable

bindings, for creating and destroying bindings, for primitive operations such as car and cdr, etc.

In this section, we discuss the remaining instruction, i.e., those not already mentioned in previous

sections.  We also discuss all valid expressions in instructions that take expression arguments.

2.4.6.1. Variations on apply
Previously, we mentioned the existance of the APPLY instruction used in monotone epilogues.  There

are actually two more versions of the APPLY instruction, each for a special case of known value of

what to apply.  

The instruction APPLYF(n, expr) is similar to APPLY(n, expr), except that it is known that the

expression evaluates to a procedure.  Thus, no code is emitted to check whether the value is a proc-

edure.

Similarly, the instruction APPLYG(n, expr) is used when the expression is known to evaluate to a

generic function.

2.4.6.2. Binding constructs
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The compiler tries to allocate local variables in registers (and save those registers in partial

continuations) if possible.  However, if a variable is assigned (using set!), in order to preserve Scheme

semanics, we need to allocate it in an environment on the heap.  

To create such environments, we use  binding blocks . A binding block corresponds to a  binding

contour  in the source language, such as a let or a letrec.  

In the universal code interface, a binding block starts with the instruction BEGIN_BIND(n), where n

is the number of new local variables to be created.  The exectution of this instruction allocates space

for a new frame of the environment.

Following the allocation are n instructions of the type BIND(i, expr), where i is the number of the

variable 0 <= i < n.  These instructions initialize the values of the new local variables to the value of

the corresponding expression (see below for valid expressions).

The binding block is terminated by the instruction END_BIND() which links the new frame of

environments to the top of the environment chain.

To indicate that a binding goes out of scope, we use the POP_ENVT() instruction which removes the

topmost frame of the environment chain.  

2.4.6.3. Assigning global and local variables
Two instructions handle assignment of variables.  

The instruction TLSET(k, expr) assigns the value of the expression to the k:th global variable.  The

value k is used as an index into the template of the current procedure.  The k:th literal of the template

is assumed to contain a top-level variable.  Actually the index into the template is k + 3 since there are

three slots at the beginning of the template that cannot be accessed this way.

The instructino LEXSET(f, k, expr) assigns the value of the expression to the corresponding local

(lexical) variable.  The value f is the frame number, where 0 is the topmost frame.  The value k is the

slot number within the frame, and expr is an expression that evaluates to the new value.  

2.4.6.4. Expressions
In addition to instructions, the universal code interface also has expressions.  Such expressions are

valid whenever an instruction or another expression takes an "expr" argument.

To access a literal such as a character string or a symbol mentioned in the program source code, we

use the LITERAL(k) expression.  The value is simply the k:th literal from the template of the current

procedure.

Similarly, to access the value of a top-level variable, we use the expression TLREF(k).  It assumes that

the k:th literal in the template is a top-level variable and returns its value.

To access a local (lexical) variable, we use the expression LEXREF(f, k) where f is the frame number

and k is the slot number within the frame.  

The expression CLOSURE(k) assumes that the k:th literal in the current template is another template

(that of the code of the closure to be created), and creates a closure from it and the current

environment.

A raw C integer can be used as an expression in some contexts, usually as arguments to primops (see
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below).

Finally, an expression can be of the form primop(expr1, ..., exprn), i.e.  an ordinary C function call

that implements some primitive operation.  For a complete list of primops, see the files bytcodes/*.dat

in the RScheme distribution.
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Compiler Representations

The RScheme compiler is organized into passes.  The first pass (called compile) translates the Scheme

source code to intermediate code (icode).  The second pass (called gen-aml) takes the intermediate

code and generates a notation called abstract machine language (AML).  The second pass is also

responsible for generating procedure templates (where literal data is stored).  Finally, depending on

the current target, the third pass generates byte codes or C code from the abstract machine language.

2.5.1. Intermediate Code
Intermediate code is a tree structure containing (mostly) instances of subclasses of the class <icode>.

Such tree structures correspond to Scheme expressions.  The base class contains the slots return-type

(indicating the type of the return value of the expression if any), vars-referenced (a set of all the

variables that were referenced in the subtree), and vars-captured (a set of all variables captured in a

lambda expression in the subtree).

The class <icode> has many subclasses that implement particular types of expressions.  These classes

have their names prefixed with “ic-” so that they will be easy to recognize.

The <ic-if> class implements a test.  It contains the slots condition, if-true, and if-false all of type

<icode> for the condition, the "then" part and the "else" part respectively.

The <ic-multi> class implements a sequence of expressions where all of the values are needed.  This

class is used to implement multiple-value constructs as well as combinations.  There is a single slot in

this class named args, which is a list of the expressions in the sequence.

The <ic-combo> class is used for combinations.  It has two slots, head and args.  The head slot is of type

<icode> and the args slot is of type <ic-multi>.

The <ic-primcall> class is similar to <ic-combo>. It also has two slots, head and args.  Here, however, the

head slot is of type <primop> (not a subclass of <icode>) and the args are of type <ic-combo>. 

The <ic-bind> class is used for binding constructs, including procedures (lambda expressions).  The

slots are init-expr (for a member of the let family, the init-expr is an <ic-multi>. A bind construct can

generate an arbitrary icode expr for the init-expr.) init-expr is #f for the binding contour for a proc-

edure),  vars (the formal variables, a list of <lexical-var>’s) body (the body of the binding construct or

the procedure), and envt (the environment).

The <ic-tl-ref> class implements references to top-level variables.  It has a single slot named var of

type <top-level-var> (not a subclass of <icode>).  

The <ic-lex-ref> class implements references to lexical variables.  It has a single slot named var of type

<lexical-var> (not a subclass of <icode>).  
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The <ic-tl-set> class represents an assignment to a top-level variable.  It has two slots, var (the

variable of type <top-level-var>) and rhs (for right-hand side) of type <icode> that represents the

expression to produce the value to be assigned to the variable.  

The <ic-lex-set> class is similar to <ic-tl-set> except that the assigment is to a lexical variable.  It has

two slots, var (the variable of type <lexical-var>) and rhs (for right-hand side) of type <icode> that

represents the expression to produce the value to be assigned to the variable.

The <ic-loop> class is the result of a named let provided that the let label is used only in tail position in

the body.  It has two slots, vars (the variables in the let), and body (the body of the let).  The compiler

tries optimistically to compile all named lets as loops.  If in doing so it finds that the let label is used in

non-tail position, it backtracks and recompiles the expression as a normal binding construct.  

The <ic-jump> class represents the tail recursive calls to the let label in the case where a named let was

possible to compile into a loop.  It has one slot named loop which is of type <ic-loop>, and which

represents the loop to jump to.

The <ic-lambda> class represents a lambda expression.  It has a single slot named procedure of type <ic-

procedure>. In fact, <ic-procedure> is not a subclass of <icode>. It is an independent class that contains

one slot named body (of type <ic-bind> (see above)).

Above, we used the classes <lexical-var> and <top-level-var> in constructs that involve variables.

These two classes are subclasses of the class <binding>. Futhermore, <lexical-var> objects contain a

boolean slot called ever-set?, keeping track of whether the variable is ever assigned to (this

information is used at by the gen-aml process to do register allocation).

2.5.2. Abstract Machine Language (AML)
Abstract machine language is the result of applying the procedure gen-aml to an object of type <icode>.

The level of abstraction of abstract machine language is similar to that of a high-level assembly

language.  The top-level abstract machine language object represents one Scheme procedure, and is

just a list of statments that are either ordinary statements or labels.  Labels indicate the beginning of

monotones, but monotones are not separate objects in abstract machine language.  Ordinary

statements contain expressions and expressions contain effective addresses.

If you are using the on-line compiler, you can see the resulting abstract machine language code for

each expression you type if you type ,aml at the top-level REPL-loop.  

Abstract machine language, unlike intermediate code is not represented by instances of classes.

Instead, ordinary Scheme lists are used in which the first element indicates the type of abstract

machine language object.  

An expression is a pair that contains type information in the car field and an untyped expression in

the cdr field.   

2.5.2.1. Statements

apply AML
Call a procedure.
(applyn e)

Description
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The expression should evaluate to a procedure which is applied to the first N registers.  A check is

emitted to verify that the value of the expression is indeed a procedure (in the C back end, if e is

known to evaluate to a procedure at compile-time, then the check is elided by use of the APPLYF

vinsn).

applyg AML
Call a generic function.
(applygn e)

Description

The expression is known to evaluate to a generic function, which is applied to the first N registers.  No

check is necessary to verify that the value of the expression is a procedure.

save AML
Save a continuation.
(saven)

Description

Create a continuation and save the first N registers in it.

restore AML
Restore the (rest of) a continuation.
(restoren)

Description

Restore the first N registers from the continuation and the continuation_reg itself (ie, perform the

caller’s restore obligation)

label AML
Label a section of code.
(labell)

Description

This statement is the monotone separator.  The label l is  either a symbol or integer that indicates the

start of a monotone.

return AML
Return from current procedure.
(returnn)

Description

Return the first N registers as values of the current procedure.

jump AML
Jump to another monotone.
(jumpn label)

Description

Transfer unconditionally to the monotone with the label indicated.  

bjump AML
Backwards jump.
(bjumpn label)

Description

Same as (jump N label), except the jump is "backwards", meaning it is safe to garbage collect or to

thread switch.

use-empty-envt AML
Procedure doesn’t use an (outer) environment.
(use-empty-envt)

Description

Put a null object in the environment register to be used as the parent of a new environment.  This
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statement is used by top-level procedures to create their environments of execution.

use-function-envt AML
Use captured (outer) environment.
(use-function-envt)

Description

Assuming the environment register contains the current procedure, extract from it its environment of

definition and put it in the environment register, replacing the previous value.  This statement is used

by nested (non top-level) procedures to create their environments of execution.

check= AML
Check for exactly n arguments.
(check=n)

Description

Check that the argument count register contains N. Signal an error otherwise.  

check>= AML
Check for at least n arguments.
(check>=n)

Description

Check that the argument count register contains at least N. Signal an error otherwise.

collect> AML
Collect arguments beyond a fixed n.
(collect>n)

Description

Create a list of all arguments in registers starting at N and up and put the created list in register N.

set-false< AML
Pad arguments fewer than n.
(set-false<n)

Description

Implement Dylan multiple-value return semantics.   When more values are requested than were

returned from the procedure call, fill in the rest with #f.

bind AML
Bind expression values into an environment frame.
(bindexpr ...)

Description

Create a new level of partial environments from the values of the expressions given.

unbind AML
Pop an environment frame.
(unbind)

Description

Remove the top partial environment.

if AML
Conditionally execute statements.
(ifs1 s2)

Description

The conditional statement.

do AML
Execute an expression.
(doexpr)

Description
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Convert an expression into a statement.

seq AML
Execute statements in sequence.
(seqstmt ...)

Description

Sequence of statements.

primop AML
Call a primitive procedure.
(primopop expr ...)

Description

Call the primop op with the values of the expressions as arguments.  This statement is used for

primops that do not have return values.  

set! AML
Side effect a location
(set!ea e)

Description

Assign the value of the expression to the effective address.

2.5.2.2. Effective addresses
An effective address is used to denote storage, and is of one of the following forms:

reg AML
Register n.
(regn)

Description

The top-level variable whose pointer is in the kth slot of the literal frame.

lexvar AML
Variable with lexical address f:s.
(lexvarf s)

Description

The lexical variable at offset (slot) s in frame (partial environment)  number f. 

tl-var AML
Top-level variable k.
(tl-vark)

Description

The top-level variable contained in slot k of the template.  [TODO: is this right?  I thought we used tlref

and tlset, like the C bindings]

2.5.2.3. Untyped expressions

literal AML
The literal in slot kth of the template.
(literalk)

Description

kth literal.

closure AML
Create a closure
(closurek)

Description

A closure created from the template in slot k of the template.  
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this-function AML
The current function object.
(this-function)

Description

The contents of the environment register.  Recall that this register contains a procedure for a brief

moment between the time it is called and the time it creates its own environment.

ref AML
Reference an effective address.
(refea)

Description

Convert an effective address to an expression.

seq AML
A sequence of expressions.
(seqexpr ...)

Description

Like C’s comma operator.

primop AML
Primop call
(primopop expr ...)

Description

Call the primop op with the values of the expressions as arguments.  This expression is used for

primops that have return values.  

immob AML
The immediate object with representation z.
(immobz)

Description

int AML
The integer with raw value z.
(intz)

Description

raw-bool AML
A raw boolean value
(raw-boolbool)

Description
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Garbage Collection

Garbage collection in RScheme is done at “safe points”. One of the benefits of RScheme’s safe-point

based garbage collection is that pointer finding can be precise without having to know the stack layout

and register/temporary representation of intermediate results.

To support [cite wilson92gcsurvey] garbage collection, it must be possible for the collector to find the

root set of pointers from which it traces to find all reachable data.  If variables were allocated in a

stack, we would need to be able to find all of the pointer variables in the stack so that we could trace

outward from them.  Our use of registers means that we only need to start at the registers and the

stack cache, and trace outward from there.  The tracer for the stack cache will find all the cached

continuations and a pointer to any heap-allocated overflow continuations.  The register scan will find

the heap continuations from the continuation register, if the stack cache is empty[1]. From these the

garbage collector will find all of the saved temporary values, and pointers to saved binding

environments.  Then it can continue tracing, to find all of the values of variables and follow those

outward until all live data are traced.

(For the moment, when we talk about finding the registers that are in use, we are talking about the

abstract machine registers.  The C compiler may also compile our code so that it use other registers,

and we assume for the moment that we can ignore those.  Later we will explain how certain

restrictions on our code generator do in fact allow us to ignore the registers allocated by the C

compiler.)

The collector must also be able to scan from the other registers, including the auxiliary registers

holding temporaries.  At any point where GC occurs, it must be able to determine how many registers

are in use, and decode their representations.  This is why we ensure that the values in these registers

are always in a tagged format, so that the collector can tell whether they are immediate values or

pointers that must be traced.  

2.6.1. Safe Points
We have chosen a "safe points" strategy for locating execution-model registers.  Rather than ensuring

that it’s safe to GC at any point in a program’s execution, we ensure that GC can only happen at certain

safe points.  For this to work, there must be a bound on the amount of allocation that can occur

between safe points, so that a safe point can always be reached before memory is completely

exhausted.  We keep some memory in reserve, so that if memory is "exhausted" (excluding this

reserve memory), we can set a flag and continue to operate until the next safe point, cutting into this

reserved space.  At each safe point, we check the flag to see if memory is exhausted; if so, we garbage

collect, restore our reserve space, and reset the flag before continuing execution.

To a first approximation, our strategy for ensuring that safe points occur frequently enough is to make
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every procedure call and backward branch a safe point.  A program cannot run indefinitely without

calling another procedure or branching backward–-the longest path of execution between safe points

is the longest forward path through a single procedure.  If a program sits in a loop, for example, at the

end of the loop it will reach a safe point before branching backward to begin the next iteration.  (If a

loop is coded as tail recursion, the tail calls that iterate the loop will also be safe points because they

are procedure calls.) 

2.6.2. Interrupts
Support for interrupts – asynchronous changes to program flow – is provided by making use of the

safe-point mechanism.  Essentially, at each safe point, an interrupt pending flag is checked.  If the flag

is set, a continuation is constructed using the runtime system’s knowledge of the number of slots live

in the register array (ie, using the arg_count_reg).  Then the runtime system makes a call to the system

interrupt handler.

Hence, the effect is that a conditional call to the interrupt handler is present at every monotone

boundary (safe point), with the runtime system inserting the conditional test and calls as part of its

quasi-interpretive loop.

Since we cannot control when actual operating system interrupts (“signals” in unix) occur[1], the idea

is to have the actual OS-level handler simply set the interrupt pending flag.

(In fact, the runtime system maintains a queue of pending interrupts.  Inserting an interrupt into the

queue causes the flag to be set assuming interrupts are not disabled at the scheme level.)

For example, at a timer interrupt, all that happens is the C interrupt handler records the fact that a

timer expired, and sets flags so that a Scheme interrupt will occur.  The Scheme-level interrupt

handler can then do all of the interesting processing, which might be to switch threads.

When a the scheme-level interrupt handler is called, scheme-level interrupts are automatically

disabled.  The continuation constructed by the runtime system will re-enable interrupts before

continuing the suspended code.  This ensures that multiple interrupts are not delivered all in a rapid

succession before the system can deal with it.  

2.6.3. Supporting Threads
With the interrupt mechanism described above in place, implementing threads becomes a simple

matter.  All that is necessary is to install a scheme-level handler for timer interrupts and set a timer.

When the handler is called, it can capture the current continuation, store it in a thread structure, and

invoke the continuation of the next thread to be run.

...

Supporting preemptive threads requires two things:

1. making sure that that every thread yields control frequently enough that it can’t "lock out"

other threads for too long, and

2. making sure that the GC still functions in the presence of suspended threads.

In the RScheme system, support for GC safe points and support for preemption are combined into a

single mechanism.  Safe points are also potential thread preeemption points.  In effect, the compiler
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turns preemptive multitasking into cooperative multitasking, by emitting extra instructions at safe

points so that a thread will voluntarily yield control if its time slice has expired.

Actually suspending a thread is easy, since we’ve already implemented support for first-class

continuations.  The code for thread switching begins by saving a continuation, which encapsulates the

state of the thread.  This can be saved in a thread-control block used by the scheduler.  After the thread

has been suspened, another thread is chosen, and it is resumed by calling the escape procedure that

represents its saved state.  

In order for it to be possible to garbage collect in the presence of threads, it must be possible for the

collector to decode the thread control blocks of all suspended threads, and trace outward from their

saved state.  We therefore ensure that threads are only suspended at safe points, so that if GC occurs,

all threads are in a safely traceable state.  We need only trace the scheduler’s list of suspended threads

(itself a normal, traceable Scheme data structure), and it follows that we will reach all live data.  

2.6.4. The cost of safe points
In principle, safe points probably slow a system down significantly.  For a very fast system that

compiles to machine code using a custom back-end, we would expect safe points to cost 5-10% in

execution time (at a guess), due to frequent checking overhead: at each procedure call or backward

branch, a flag must be checked and a conditional branch (not taken, in the usual case) executed.

(This overhead can be kept fairly low, even for small inner loops, by unrolling the loop a couple of

times to eliminate most of the backward branches.  For a high-performance system, such loop

unrolling is desirable anyway, to enhance conventional optimizations.)

For a system like RScheme, which is not likely to ever be that fast, the overhead is much smaller.  If

RScheme is a factor of two or so slower than an all-out high-performance system, the overhead will

only be a few percent.  We consider this well worth it, because it preserves the ability to use copying

collection and to layer RScheme atop persistent object stores.  
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Module System

A module consists of a set of imported interfaces, a set of definitions, and a set of exported interfaces.

One kind of definition is a sub-module definition, so modules can be hierarchically structured.  In

this case, an exported interface definition can include exported interface elements from a component

module.

The separately-compiling compiler (rsc) is capable of representing a module in a standalone file.  Such

a file consists of two separate data structure images.  The first data structure is metadata describing

what the dependent modules are.  The second data structure is a the contents of the module itself.

When a module is being linked, the process is to load the metadata structure, use that information to

locate the dependent bindings and constructs, and to establishing the load context for the second

image.  Thus, the actual module content is loaded and linked in a single step (although a follow-on

phase goes through the link-loaded image  and establishes other linkage connections, such as adding

methods to imported generic functions).
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The Build Process

The RScheme build process includes three main file system architectures and procedures for

transforming earlier  stages into later stages.

Because RScheme requires itself in order to build, the prerequisite for a build from sources (the first

step) is an existing version of RScheme.  Obviously, this is circular, since one cannot have an RScheme

without having built it, and if one cannot build it without having it, one is in trouble.  The circularity

is broken by allowing a previous version of RScheme to be used to build from sources.  This process is

called bootstrapping or cross compiling.

The cross compiler and the native compiler share much of the basic compiler code.  This means, in

turn, that much of the basic compiler must be written in the intersection of the two languages (source 

and target).

The main difference between the cross (boot?) compiler and the native compiler is that the cross

compiler does not deal with modules;  define-module forms are ignored.

The only purpose of the boot compiler is to compile the native compiler into an image suitable for

loading by the boot system.

The following figure shows the stages of processing:

Figure 6. Stages of processing in build from sources

2.8.1. Source Code
2.8.1.1. Source Files
[TODO... old content was all wrong anyway]

2.8.2. Distribution
The actual distribution of RScheme is usually in the form of a compressed tar file deposited on a well-

known FTP site.

The distribution tar file contains the results of running  configure and make dist on the source tree.

2.8.2.1. Distributed Files
[TODO]
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2.8.3. Install Tree
[TODO]

2.8.4. Free Association
There needs to be a little bit of explanation of what config does and what directories are installed into

by default.  It’s not enough to just give the command line stuff for normal installation–-people need to

know a little bit about what’s going on.

WARNING: I am trying to dump my knowledge in a slightly but not very structured way (I am more

concerned about writing what I know than about where I write it and how).  In

particular, some of this stuff is appropriate for users, some for developers, and some for

people intent on changing the RScheme builds, for their own whatever purposes (given

RScheme’s license, they can do whatever they like!)

2.8.4.1.  configure 
configure is a shell script created by the autoconf program based on a template configure.in, originally

written by Per Bothner and somewhat updated by me.

This shell script’s purpose is to ascertain the configuration of the  system on which RS is being built,

and create makefiles and other files as appropriate.

In particular, the configuration process involves several steps, orchestrated by the configure script

(roughly in order):

(All of this is relative to the src subdirectory of a distribution, since everything above there is related

to building from sources which is a totally different process.)

2.8.4.1.1. Determine properties of the target system.
This includes things like how big the word size is, what kind of OS it is (AIX, SunOS, Linux, etc.), and

the presence and/or functioning of various  semi-standard functions like getwd vs.  getcwd.

The result of this process is RScheme’s "platform.h" file, which tries to collect major platform

dependencies that are shared among all or most rscheme C code.  (This file is often called "config.h"

in other applications).  Furthermore, "platform.h" is generated by configure by filling in a template

called "config.h.in" (a DOS brokenism as you can see, but that’s Per’s name and the standard name)

platform.h is installed in install/include/rscheme/,  which is where header files are put that are needed

by the naescent compile as  well as external packages (the install/ directory is an direct image of what

will be installed in, by default, /usr/local/lib/rs/VERSION, where VERSION is something like 0.7-0.6.

The destination location can be overriden with a --prefix=PLACE flag to configure)

2.8.4.1.2. Rearrange components for compilation
The compile supports two configuration options, GC and RDLN. The cfg directory contains file

hierarchies corresponding to the available choices for these two options.  Despite what may be there,

however, the following options are all that are supported:

  --with-gc=rtgc    ;; select real-time garbage collector
  --with-gc=irc     ;; select irc collector
  --enable-readline ;; select GNU readline package support
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This part of the configuration step copies the corresponding cfg/ subdirectories into the top level, e.g.,

copies cfg/gc/irc/ into gc/, so the makefile doesn’t have to remember which was selected.

(the gc also specifies implicitly a choice for gcadapt, which is an adapater layer sitting between

common rscheme and the GC itself; this is to make plug-and-play with off-the-ftp-site GC’s easier)

2.8.4.1.3. collect together header files.  
Each subdirectory is able to provide header files for install/rscheme/include.  this step actually puts

them there before the compilation process.  If inlining has been selected (-DINLINES) then additional

files (.ci) are copied.  This copying is controlled by the include.lst and inlines.lst files in each 

subdirectory.

2.8.4.1.4. compute CFLAGS
Finish getting ready for compilation by computing appropriate values for the CFLAGS. This primarily

depends on whether optimization is enabled, inlining is enabled, whether hardware registers are in

use, etc.

2.8.4.1.5. construct preamble.mak 
Construct a "preamble.mak" which is included first-off by every subdirectory’s makefile.  This is the

file that contains the CFLAGS and CC definitions to be shared throughout the compile.  These

definitions are *ALSO* written to install/resource/buildenv/preamble.mak and

install/resource/buildenv/module.mak, which are available for inclusion by makefiles of external

packages.

rationale: RScheme is sensitive to compiling component modules the same way the runtime

environment (librs.a) is compiled.  For example, if hardware registers are in use, that had better be

known by the module being separately compiled.  Likewise with the choice of inlining.  Furthermore,

this configuration information has to be installed so you can delete the rscheme source tree and it’s

installation residue is sufficient to have a happy, functioning system.

2.8.5. Bootstrapping Process
[TODO]

2.8.6. Configuration Options Reference
2.8.6.1.  --enable-debug 
Enables the -bcitrace flag to rs, and the ,bci REPL command.  The former is useful primarily for

debugging the bootstrapping process.  The latter is useful for debugging obscure code generation

problems (though ,aml is really better for that.

2.8.6.2.  --enable-readline 
[TODO]

2.8.6.3.  --enable-dynamic-linking 
[TODO]

2.8.6.4.  --enable-profiling-hooks 
[TODO]
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2.8.6.5.  --enable-read-barrier 
[TODO]

2.8.6.6.  --enable-trace-signal-latency 
[TODO]

2.8.6.7.  --disable-utf-process-code 
[TODO]
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Glue and Safe Glue

2.9.1. Introduction
Sometimes it is necessary or simply more practical to use the C language to extend the functionality of

RScheme.  For instance, if you want to write an interface between RScheme and some existing C

library, it may be easier to just write the interface rather than rewriting the functionality entirely in

RScheme.  Another example would be when you want a particularly fast data structure accessible

from RScheme, but the details of which do not need to be directly accessible from RScheme.  In that

case, it may be a good idea to write the core of the code for the data structure in C and write an

interface to RScheme.  

Writing such an interface typically involves checking the types of arguments and translating those

arguments from RScheme objects to C values and then writing code that respects the conventions of

the RScheme runtime virtual machine in the body of the C function.  The runtime virual machine is

the topic of a different chapter [Universal Code Interface].  This chapter discusses ways of automating

argument type checking and translation.  

Typically, a C function implementing the functionality of an RScheme procedure must start by

verifying that the number of arguments given is compatible with the number of arguments accepted

by the procedure.  RScheme puts arguments in registers of the virtual machine, so there is no

correspondance between these arguments and the C arguments to the function you are writing.  Next,

the function must check that the type of each argument is indeed the type expected.  In some cases,

no checking needs to be done, for instance if the function implements insertion of an arbitrary

RScheme object into a container.  Since there are no restrictions on the type of object that can be

inserted, no checking needs to be performed.  Finally, before performing the very purpose of the

function, it may have to translate some of the arguments to C values.  For instance, suppose again that

we are implementing a container indexed by integers.  In order for the C code to know which position

to use, that RScheme value must be translated to a C integer before used for indexing (say) a C array.

We refer to the code that handles counting, typechecking, and translation of arguments as glue code or

just glue.  Glue comes in two varieties, unsafe and safe.  Safe glue is an additional layer on top of

unsafe glue.

A file containing glue code is a Scheme file (extension .scm) that will be processed by the off-line

module compiler.  But most of the contents of the file will be C code.  Recall that that off-line module

compiler translates RScheme source code to C code that respects the runtime virtual machine

conventions.  When the compiler sees glue code, it generates code for the argument processing but

does not process the C code at all, only copies it to the resulting C file.
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2.9.2. Unsafe Glue
To define unsafe glue code, use the macro define-glue as follows:

  (define-glue (procedure-name args ...)
  {
    /* arbitrary C code */
  })

When the resulting code is linked to the RScheme, procedure-name will be a module variable whose

value is an RScheme procedure.  With define-glue you don’t get any verification of the number and

types of the arguments.  You only get the ability to refer to the given arguments by convenient names.

So, for instance, if you wrote

  (define-glue (stretchable-array-insert array index value)
  {
     /* function body */
  })

you will have module variable called stretchable-array-insert and in the function body, array will be a

C variable that refers to the first argument given, index will be a C variable that refers to the second

argument, and value will be a C variable that refers to the third argument given.  But you still have to

check that exactly three arguments were passed, that the first is indeed a stretchable array, and that

the second is an integer.

The names of the arguments must respect the syntax of the C language, so for instance you can not

use names with hyphens, question marks, or other funny symbols.

The mechanism that allows you to refer to the arguments symbolically is simply the use of #define to

make an alias of the symbol to a particular register.  So in the case of stretchable-array-insert the

compiler would generate something like this: 

  #define array REG0
  #define index REG1
  #define value REG2

While this kind of alias is useful, it can also be confusing.  Consider if the following code were at the

end of the previous function:  

  REG0 = TRUE_OBJ;
  REG1 = array;
  RETURN(2);

In this example, we intended to return two values, the first is simply #t and the second, the array that

we were passed.  However, this code expands to: 

  REG0 = TRUE_OBJ;
  REG1 = REG0;
  RETURN(2);

so instead of #t and the array, the two values will both be #t. 

2.9.3. Templates
As we pointed out above, the name of the procedure given to define-glue will become a module

variable containing an RScheme procedure.  The environment of that procedure will be the global

environment of the module in which the define-glue is compiled.  Sometimes, however, that is not
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exactly what you want.  In many cases you would like to produce the effect that lambda has in Scheme

code, i.e., you would like to produce a closure on the fly from raw code and an environment of your

choice.  

In the RScheme virtual machine, a closure has two components, a template and an environment.  The

template is a table of constants and top-level variables used in the body of the code (hence it is

sometimes also called a literal frame).  The raw code itself is considered such a constant.  Actually, the

code is divided into monotones [see chapter on the rutime virtual machine], and only the code for the

first monotone – the procedure entry point – is in the template for the corresponding procedure.  

Thus, in order to define an object that can be used to produce a closure on the fly, you need the

corresponding template.  To accomplish this, use the keyword :template with define-glue,  like this: 

  (define-glue (procedure-name args ...) :template
  {
     /* arbitrary C code */
  })

So for our example, we would get: 

  (define-glue (stretchable-array-insert array index value) :template
  {
     /* C code */
  })

Now, the value of the module variable  stretchable-array-insert will be the template object itself and

not a complete procedure.  

2.9.4. Multiple Monotones
In the previous examples, we have assumed that a single monotone is sufficient to implement the

functionality you need.  In some cases that is true.  Sometimes, however, you may need several

monotones, in particular if you want to execute an unbounded loop, you may want to switch

monotones from time to time so that thread switching and garbage collection can occur (recall that

thread switching and garbage collection can only happen in between the execution of two

monotones).

To produce several monotones, you can write: 

  (define-glue (procedure-name args ...)
  {
     /* Code for first monotone */
  }
  ("label1" 
  {
     /* Code for another monotone */
  })
  ("label2"
  {
     /* Code for another monotone */
  })
  ...
  )

where "label1", "label2", etc are the labels of the additional monotones.  These labels can then be used

in the JUMP macro to transfer control from one monotone to another.  Notice that this feature can be

used independently of the :template feature.
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2.9.5. Literals
It is often necessary for the C code to refer to top-level variables or constants.  In RScheme, these

objects are stored in the procedure template, and at runtime a dedicated register contains a pointer to

the template of the procedure currently executing.

To put literals in the procedure template, you can write: 

  (define-glue (procedure-name args ...)
    literals: (litspec ...)
  {
     /* C code */
  })

where (litspec ...)  is a list of zero or more literal specifications.  The form of a literal specification is

either a list of the form  (& tlvar) where tlvar is the name of a top-level variable, or any expression that

can be evaluated at compile time.  In the latter case, the expression will usually be a constant such as a

number, a string literal, or a quoted list.  Since class names are usually known at compile time, you

can also put names of classes here so that when you access the corresponding slot, you get a class

object.  

2.9.6. Safe Glue
Safe glue is a layer on top of regular unsafe glue that provides argument counting, type checking, and

conversion.  The syntax is similar to that of regular unsafe glue except that parameters can be both

symbols and of the form (name type).  So, for example, in the example above we could have written: 

  (define-safe-glue (stretchable-array-insert
                        (array <stretchable-array>)
                        (index <fixnum>)
                        value)
  {
     /* C code */
  })

Here we would get an automatic check that three arguments were given plus a test that the first

argument is of type <stretchable-array> and the second argument is of type <fixnum>.

If in addition to the argument count and type checking, we would like automatic conversion to C, we

simply replace the regular class names above (<stretchable-array> and <fixnum>)  by special types that

provide this conversion.  A few of these special types are already built into define-safe-glue, but most

of the time you have to define your own as shown in the next section.  The existing special types are 

Table 6. Special Types For define-safe-glue

type name description

<raw-int> fixnum argument converted to a C int 

<raw-ascii-char> 

character argument converted to UINT_8 (roughly the same

as unsigned char)

<raw-string> string argument converted to char * 

So for instance, if we wanted the second argument to be converted to a C int, we could write 

  (define-safe-glue (stretchable-array-insert
                        (array <stretchable-array>)
                        (index <raw-int>)
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                        value)
  {
     /* C code */
  })

In this case, two identifiers, raw_index and index will be accessible to the C code of the body.  The

raw_index identifier is the value of the argument before conversion.  It is therefore an RScheme object.

The identifier index will be an ordinary C int.

NOTE: The raw_ prefix will be changed to a _obj suffix by CR 726.

2.9.7. Extending Safe Glue Types
The mechanism for checking and transforming arguments to glue procedures is extensible, allowing

the programmer to add new kinds of type checks and argument transformations.

The keywords type-handler: and type-view: are used to add new checks and transformations.  These

keywords are cumulative, with later instances overriding previous ones.

Having later type handlers override previous ones allows the programmer to write a macro definition

that adds new type handlers on top of an underlying safe-glue macro.  The order of macro expansion

will cause the higher-level definitions to be processed later.  For example, the syscalls module defines

a macro define-syscall-glue something like:

(define-macro (define-syscall-glue args . body)
  `(define-safe-glue ,args
     type-handler: (<time>
                    (direct-instance? <time>)
                    ("struct scheme_time *~a"
                    "PTR_TO_SCMTIME(~a)"))
     ,@body))

If you want to layer additional functionality on top of syscall glue in a subsequent module, you could

write an additional layer like so:

(define-macro (define-my-glue args . body)
  `(define-syscall-glue ,args
     type-handler: (<bob> (instance? <bob>))
     ,@body))

Now, when a use of define-my-glue is expanded, it will insert its type handlers and then invoke the

define-syscall-glue macro.  The latter macro will insert its own handlers before the handlers inserted

by define-my-glue. Hence, the higher-level handlers will occur later in the final, fully-expanded define-

glue.

2.9.7.1. Defining type handlers
A type handler is a rule that:

• describes how to determine if an object is a valid occurance of the given type, and 

• describes what views will be available to the glue code.

There are three ways the system knows how to generate code for checking the type of an argument:

• General instance membership, indicated by instance?. 

• Direct instance membership, indicated by direct-instance?. This considers only objects of
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exactly the given class to be compatible with the type restriction.  

• C predicates.  This allows an arbitrary C predicate to determine type conformance.  This is

used primarily for non-heap types, which are easier using predicates like FIXNUM_P than by

computing an appropriate class object and testing to see if that class object is the same as the

<fixnum> class object.

2.9.7.2. Defining views
A view is a description of a C variable that will be used by the glue code.  It is denoted by a list of two

or three format strings.  The format strings are applied to argument names to determine, respectively:

• the view variable declaration, 

• the view variable initializer, and 

• optionally, the view variable name

If the view variable name format string is omitted, it may be regarded as defaulting to "~a", meaning

that the view variable name is the same as the variable name.

For example, in defining a view for raw strings, the following is used: ("char *~a" "string_text(~a)") 

because views of character strings do not require multiple variables, the variable name is not

transformed.

What the above view tells the system is that when an argument x is specified to be a raw string, there

should be a C variable named x (by virtue of the identity name format string), of type char *, which is

initialized by calling string_text.

Because the elements of the list which define a view are format strings, they should each contain

exactly one substution of type ~a.
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Image I/O

[TODO]
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The Compiler

The RScheme compiler is designed to be relatively straightforward but relatively complete.  It is

intended to be easy enough to understand that it can be modified for a variety of purposes, but

complete enough to generate reasonably good code and serve as an illustration of basic issues in

compiling dynamic languages like Scheme and Dylan.  These features, combined with reasonable

documentation, should make it a good system for teaching and experimenting with techniques in

programming language design and implementation.

Parts of the design are intended to allow experimentation with particular implementation strategies

we find interesting, but mostly the design has been guided by an attempt to make things simple,

"right" and "clean", as long as that didn’t sacrifice portability and performance.  (Obviously, this is a

juggling act that involves the exercise of great taste and exquisite judgement, and it’s faintly possible

that someone might disagree with some of our design decisions.) One of our design principles has

been to attempt to do the 20% of the work that gets 80% of the performance benefit, and to try not to

slide down the slippery slope into a very complex compiler design.

One of the eventual goals of RScheme is to be a vehicle for implementing multiple languages.  Its

syntactic extension mechanism is integrated into the compiler in a principled way, and we intend to

extend this mechanism to turn the RScheme compiler into a highly programmable "open" compiler.

The front-end of the compiler will be reprogrammable according to a relatively simple and clear

protocol, exploiting a simple model of the front end of the compiler.  (If you’re familiar with the notion

of metaobject protocols, you can view this as a similar notion, but allowing the programmer to control

things like scope and typing, rather than just things like inheritance and dispatching.  The goal is to

let programmers extend or change the language in a principled way, or to reimplement parts of the

language and perform a variety of high-level optimizations without changing the guts of the

compiler.) Given this mechanism, it is also trivial to implement a facility for defining inline

procedures, because most of the work is just a simple special case of the work done for syntax

extension.

(Our lexically-scoped syntactic extension mechanism can achieve the functionality of Scheme’s

"hygeinic macros", but it does it by a very different mechanism, integrated with the normal scoping

mechanisms of a conventional Scheme compiler.  We believe that this is the "right" way to do it, since

most of the work done by conventional hygeinic macroexpansion is replication of the work done by

the normal scoping mechanisms in the compiler.  In principle, our system should require less

redundant code than a conventional macroexpansion prepass, and provide a more powerful

framework for compiler extensibility.  It can be viewed as an extension of the "syntactic closures"

concept of  Bawden and Rees, which we believe was a fundamentally superior approach to the earlier

"hygeinic macroexpansion" work by Kohlbecker et al.  and later work by Clinger and Rees.) 
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The compiler has two back ends: one that generates C code which can be compiled by a C compiler to

get machine language, and one that generates bytecodes.

Compiling to C is attractive for two main reasons:

• it is extremely portable.  We generate "nearly" machine-independent C, using typedefs and

#define’s to allow us to hide differences between C compilers.  (For example, we define our

own type "int32" that represents a 32-bit integer, which may be mapped onto an int or a long

int, whichever is 32 bits for that C compiler.)  

• it allows us to exploit the C compiler’s optimizations to some degree, especially register

allocation and instruction scheduling.  We can benefit from the C register allocator by

compiling nested Scheme expressions to nested C expressions in many common

circumstances.  The temporary values will then be handled by the C compiler, and allocated to

machine registers in most cases.

There are also two disadvantages of compiling to C, however:

• it’s not the ideal intermediate language for compling languages like Scheme, because of the

mismatch between the semantics of the two languages, and

• there is no portable, lighweight mechanism for compiling C code and linking the result into a

running system.  This is a problem in an interactive system, especially one that is intended to

be extremely portable.

The first problem is the price we pay for having a relatively simple, highly portable compiler.  It would

be significantly more work to use a conventional back end and retarget it for different platforms, even

given modern semi-automatic back end generators.  We settle for getting decent performance, rather

than striving to maximum performance.

The second problem we solve by having two back ends, one that generates machine code via C, and

one that compiles to  a bytecode representation for interpretation.  

2.11.1. Overview of compilation process and scope
[TODO]

2.11.2. Compilation Phases
The RScheme compiler is structured as two passes.  This does not include reading (which we view as

prior to actual compilation) or generating machine code from C code (which we view as an assembly-

like postpass); it refers only to the operation of the compiler proper.

Figure 7. Compiler Phases

Source
code

icodecompile gen-aml

C code
generator

Bytecode
generator

bytecodes

C code

aml

Each pass does some work on the way down the expression graph, and different work on the way up,

so there are effectively four distinct phases.  (The phases are conceptually distinct, but are interleaved

at run time because the compiler may return back up one part of the expression graph before calling
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itself recursively to go down the next part.)

The first phase of the compiler strongly resembles the operation of the example compiler in Paul

Wilson’s notes on Scheme compilation, and generates intermediate code called icode as output.  icode

is structured essentially as nested expressions, decorated with compile-time environments that make

scopes explicit, and the results of some simple analyses.  Icode is essentially a more horizontal

(explicit) representation of the source program, and does not make much commitment to low-level

implementation.  For example, local variables are represented as fields of compile-time environment

frames that represent the binding contours of the source program, without committing to whether the

runtime bindings of those variables will be allocated in registers or in heap allocated binding

environment frames.  (Similarly, the representations of a reference to a variable within an expression

does not commit to whether the reference will be implemented as a reference to a register or as an

indirection through the environment register and environment frame chain.)

The second phase of the compiler (called code-gen in the implementation) traverses the icode graph,

making decisions about register- and heap- allocation of variables, etc.  on the way down, and

generating abstract machine expression code on the way up.

2.11.3. Intermediate Code
[TODO]

2.11.4. Abstract Machine Language
The second phase of the compilation process generates abstract machine language on the way up.

This AML maps directly onto the operations for both the bytecoded and C back ends.

2.11.5. Code generation
“Code generation” in RScheme really refers to the generation of AML from intermediate code.  It is the

second of the two compilation phases.

2.11.6. Bytecoded back-end
A major component of AML is its nested expressions.  These expressions are mapped onto bytecodes

by using an “eval stack” in the bytecode interpreter.

Transofmring nested expressions into stack operations is a traditional introductory compiler problem.

Basically, the expression (represented as a tree) is traversed pre-order, emitting "push" bytecodes at

the leaves and primop invocations at the interior nodes.

For example, (+ 1 (* 2 x)) becomes:

• push 1 

• push 2 

• push x 

• TIMES 

• PLUS

2.11.7. C Back-end
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Compiling Scheme to C poses several special problems, because C compilers do not support garbage

collection, and because C’s stack discipline does not correspond to Scheme’s continuations.

When compiling a conventional language (such as Pascal or C++) to C, it is fairly straghtforward to

map the source language’s procedures onto C procedures, and the source language’s variables onto C

variables.

In the general case, Scheme variables cannot be mapped to C variables, because they must have

indefinite extent to support closures.  We therefore must implement our own binding environments in

terms of low-level C datatypes.

It would also be awkward to use C’s stack, for two reasons:

* continuation saving would require copying C’s stack, which may be expensive, and

* C does not support stack-scanning to find local variables.

These problems might be surmountable if we do not expect continuations to be heavily used (so that

it would be acceptable for them to be slow) and if we used conservative garbage collection.

Instead, we have chosen to implement our own register set and a conventional continuation chain.  In

the general case, we use C pretty much as a portable assembler.  (In certain important special cases,

however, we will take advantage of features of C to let us generate good code.) We implement our own

procedure-calling convention in terms of our registers and continuation chain; this convention is very

similar to those of high-performance compilers for Scheme and ML. 

2.11.7.1. Representing Code Addresses
At a procedure call, we will take a Scheme closure pointer, and extract the parts of the closure, and put

them in our basic registers.  The environment pointer is just a pointer to an environment frame,

which we put in the environment register so that the procedure will see the right variables when we

start executing its code.  Similarly, the template pointer is a pointer to a vector of information saved by

the compiler for the procedure’s use; we extract that from the closure and put it into the template

register.  We then extract the pointer to the actual code from the template, and start executing that.

In RScheme, the usual representation of the code pointer is a pointer to a C procedure.  To "branch" to

that code and start executing the procedure, we simply execute a C procedure call.

The C code generated for a Scheme procedure call is thus a few dereferences to accomplish the "setup"

of the Scheme environment, and a call to the C procedure that implements the code.

It’s not really quite that simple, though, because a Scheme procedure can’t generally be implemented

as a single C procedure.  For example, if the called procedure itself does a call, it must have a code

pointer to use as a return address, i.e., the address of the point in the procedure to return to.  This

must be saved in a continuation before a (non-tail) procedure call.  There is no way in (portable) C to

take the address of that return point within the corresponding C procedure.

We therefore break Scheme procedures up into multiple parts, each implemented by a C procedure.

Each return point in the Scheme procedure is represented as C function pointer, and "returning" into a

Scheme procedure is implemented as a call to the procedure that implements the next part of the

Scheme procedure.

We refer to the resulting sections of a Scheme procedure as "monotones", because they represent

forward-only executions of code between safe points.  They only execute in the forward direction.
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Because of the safe-points architecture, it is necessary to prevent unbounded looping within a

monotone to ensure garbage collection and timely thread switches.

However, this approach has two drawbacks: 

* What should be a simple branch to executable code is implemented as a C function call, which is

more expensive both in instructions executed and in code size.  (A simple C procedure call that passes

no arguments is only a few instructions, but that’s more than one instruction, and we do this

frequently.)

* C procedures do too much. In particular, calling a C procedure saves a return address on the C stack,

because C doesn’t let you specify that these are tail calls and don’t need to save their callers’ state.

This latter point is particularly annoying, because if we implement our Scheme naively, we will keep

performing C calls without performing C returns, and the return addresses will pile up until the stack

segment becomes huge and we exhaust memory (or swap space) and crash.

We therefore need an extra little trick to pop a return address off of the stack at each call.  (This basic

trick was invented by Guy Steele at MIT back in the 70’s, and recently refined and used in a C back end

for Standard ML of New Jersey by Tarditi et al.  at CMU. It was also apparently invented independently

by Dmitry Nizhegorodov in Moscow  around 1987 for a C-friendly Lisp called CLISP.)

The basic trick to accomplish this is to have a single C procedure which acts sort of like an interpretive

loop, and calls one monotone at a time.  The monotone executes AND RETURNS, and it is this single

looping procedure that actually calls the next monotone.  In this way, we ensure that the C stack just

oscillates up and down between two levels.  When a C procedure representing a Scheme monotone

ends with a (Scheme) procedure call, it performs the setup part of procedure call sequence (extracting

the environment and template pointers and putting them in the environment and template registers).

It then extracts the code pointer from the template and returns that value to its caller, the quasi-

interpretive loop.  The loop procedure accepts this return value, and does the (C) call the pointed-to C

procedure.  

2.11.7.2. Avoiding the Overhead of the Quasi-Interpretive Loop
There are ways of avoiding the quasi-interpretive loop, with different degrees of unportability.

One technique (used by the Glasgow Haskell compiler) is to use the C compiler to generate assembly

code, and then postprocess the assembly output to strip out the unneeded (C) call and return

instruction sequences, and replace them with labels.  The result can then be assembled, using the

labels to denote the addresses of the actual code sequences for the monotones.  This works very well

and avoids both runtime overhead and code bloat.  (For SPARCs, it also has the advantage that you

can strip out the pesky register-window stuff and just use one register window as though it were a

normal set of general-purpose register set.) Unfortunately, this requires customizing the

postprocessor for each platform, to recognize the calling and return sequences.

Another solution, which we have an experimental implementation of for RScheme, is to take

advantage of the GNU C compiler’s support for taking  the addresses of labels.  GNU C is an extended

version of C, where the address of a label can be taken as a kind of pointer value, and jumped to

directly without performing a normal calling sequence.  We simply insert labels and expressions that

take the addresses of labels, and use those to implement the saving of return addresses in

continuations, etc.
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This avoids the stacking of return addresses, and the need for the quasi-interpretive loop.

Unfortunately, it does not eliminate all of the code bloat, because the call and return sequences are

still there, even if they’re bypassed at run time.  (We expect to be able to get rid of most of this bloat by

compiling many monotones as a single procedure, but there’s still some bloat because we need some

executable code that extracts the labels from those large procedures.  We may be able to eliminate

most of the remaining bloat by being careful how we link C code, but we’re yet sure.) Also, it doesn’t

seem to work on some platforms (notably AIX), and we’re not sure yet exactly why not.  

2.11.8. Abstract Machine Instructions and C expressions
The abstract machine that we compile for is a language of nested expressions.  These expressions

include things like fetching the value of a variable, performing an integer multiply, performing a

floating-point multiply, pushing the current state onto the continuation chain as a partial

continuation, and so on.

We believe that it is very advantageous to have an abstract instruction set of TYPED, nested

expressions.  The compiler can recognize that the return value type of an expression is of the preferred

type for the expression that it’s nested in, and omit type checking.  In many cases, nested expressions

that do not involve procedure calls can be compiled directly to nested expressions in C, with no

runtime overhead for decoding or dispatching.

The type system used by the back end of the compiler is concerned with low-level concrete types, such

as raw integers, tagged integers, raw floats, tagged floats, pointers to objects that consist of tagged

slots, pointers to objects that consist of untagged bits, etc.  It is not the same as the type system that is

seen by the casual programmer, and it is supposed to be fairly independent of what language is

actually being implemented.  (E.g., you should be able to put a fairly efficient implementation of

Pascal on top of our compiler backend, with only minor changes.) It is not complicated–-just

complicated enough that simple operations can be mapped onto simple C expressions that map onto

simple (sequences of) machine instructions.  (Actually, it’s also independent of the fact that the

primitives are implemented in C–-you should be able to plug in a more conventional low-level code

generator.)

In attempting to compile to nested C expressions, the compiler uses a simple rule.  Any value that

clearly only exists during the execution of a monotone can be represented in the most efficient format.

Values that must be saved across monotones must be represented as full-fledged, tagged Scheme

values.

Naturally, this simple, bottom-up analysis and representation selection is very sensitive to whether

types are declared and whether procedures are inlined.  Expressions can only be compiled to nested C

expressions within a single monotone, so it pays to inline small procedures and to declare the types of

variables referenced within those expressions.  For example, relatively complex floating-point

expressions in the body of a loop may be compiled into code very similar to floating-point code

written directly in C, but calls to small, non-inlined procedures will incur both procedure calling and

type-checking overhead.  

2.11.8.1. Literals
Our compiler is smart enough to recognize that many simple literals can be represented as C literals

that will be encoded in the instruction stream, rather than fetched from the procedure template at run

time.  These include immediate values such as small integers, booleans, the empty list, and ASCII



Chapter 11. The Compiler

1672007-01-30 07:07

characters.  The binary representations of these values are encoded so that the upper bits are generally

zeroes, increasing the chances that a C compiler will be able to represent them as an operand to a

single instruction, which requires no extra instructions or memory fetches.  (The C #defines which

yield them are in terms of small integers, rather than full 32-bit values, and it is expected that the C

compiler will sign-extend these small values rather than representing them as full 32-bit constants.)  

2.11.8.2. Type Inference
Our compiler performs very simple bottom-up type inference, and the back end uses a simple static

type system for concrete types.  Each expression has a type; for literals, the type is obvious to the

compiler, and for local variables, type declarations can make it trivial.  (Currently, if you don’t declare

the type of a variable, our compiler won’t infer it; once variables’ types are inferred, however, it can

often infer the types of expressions operating on those variables.  It therefore pays to declare the types

of procedure arguments and let variables.)

Compound abstract machine expressions also may have several variants for different types of

arguments, so for example there is an integer + primitive and a floating-point + primitive.  If the

argument types match one of these definitions, the compiler chooses the appropriate opcode for that

variant, and the return type is known.

A simple framework for coercions of primitive types is also defined.  If the compiler can see that the

arguments to + are an integer and a float, for example it can compile that as a float + operation with a

coercion of the integer argument to a float.

For integers and floats, the compiler is biased towards efficient representations–-in its bottom-up

processing of the expressions, it attempts to keep the representations close to the native machine as

possible.  Floating point values are preferentially kept in a raw IEEE double representation, not a

boxed value on the heap referred to via a pointer.  Integer values are preferentially kept in a tagged

format, because the low-tagging representation does not cost much for common integer operations.

To do this analysis, the compiler makes a distinction between simple nested expressions within a

monotone, and values that can "escape" from a monotone due to a procedure call or backward branch.

2.11.8.2.1. Linkage issues
[TODO]


