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ABSTRACT

Statistical imaging atlases allow for integration of information from multiple patient studies collected across
different image scales and modalities, such as multi-parametric (MP) MRI and histology, providing population
statistics regarding a specific pathology within a single canonical representation. Such atlases are particularly
valuable in the identification and validation of meaningful imaging signatures for disease characterization in vivo
within a population. Despite the high incidence of prostate cancer, an imaging atlas focused on different anatomic
structures of the prostate, i.e. an anatomic atlas, has yet to be constructed. In this work we introduce a novel
framework for MRI atlas construction that uses an iterative, anatomically constrained registration (AnCoR)
scheme to enable the proper alignment of the prostate (Pr) and central gland (CG) boundaries. Our current
implementation uses endorectal, 1.5T or 3T, T2-weighted MRI from 51 patients with biopsy confirmed cancer;
however, the prostate atlas is seamlessly extensible to include additional MRI parameters. In our cohort, radical
prostatectomy is performed following MP-MR image acquisition; thus ground truth annotations for prostate
cancer are available from the histological specimens. Once mapped onto MP-MRI through elastic registration
of histological slices to corresponding T2-w MRI slices, the annotations are utilized by the AnCoR framework
to characterize the 3D statistical distribution of cancer per anatomic structure. Such distributions are useful for
guiding biopsies toward regions of higher cancer likelihood and understanding imaging profiles for disease extent
in vivo. We evaluate our approach via the Dice similarity coefficient (DSC) for different anatomic structures
(delineated by expert radiologists): Pr, CG and peripheral zone (PZ). The AnCoR-based atlas had a CG DSC of
90.36%, and Pr DSC of 89.37%. Moreover, we evaluated the deviation of anatomic landmarks, the urethra and
veromontanum, and found 3.64 mm and respectively 4.31 mm. Alternative strategies that use only the T2-w
MRI or the prostate surface to drive the registration were implemented as comparative approaches. The AnCoR
framework outperformed the alternative strategies by providing the lowest landmark deviations.

Keywords: anatomic atlas, prostate, prostate cancer, 3D distribution, imaging signature in vivo, probabilistic
atlas, image guided biopsy, histology ground truth for cancer

1. INTRODUCTION

Population-based descriptions of organ anatomy and pathology are constructed as statistical atlases by in-
tegrating information from multiple patients into a single canonical, 3D representation.1,2 Imaging atlases
are particularly valuable as they integrate multi-modal data, including non-invasive radiologic imaging such as
multi-parametric (MP) MRI or histological specimens with disease annotation.

Anatomic atlases have been constructed for various organs including the lung,3 heart,4 and brain.1,2 Despite
the high incidence of prostate cancer (CaP),5 an atlas capturing the different anatomic structures of the prostate
(Pr), i.e. a 3D anatomic atlas, has, to the best of our knowledge, not yet been proposed. Such an atlas is
essential as anatomic structures of the prostate can vary significantly in appearance on MRI. Anatomically, the
prostate is divided into three zones: the central, transitional and peripheral zones. As the separation between
the central and transitional zones is not visible on MRI, we consider them a unique anatomic region known as the
central gland (CG). The peripheral zone (PZ) appears hyperintense on MRI while the CG and tumor appears
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hypointense. Furthermore, it has been showed6 that CaP can have different MRI profiles on multi-parameteric
(MP) MRI depending on the anatomic location of the pathology within the prostate7 hence, prostate atlases
should maintain separation of the anatomic structures.

Various authors8–11 have attempted to generate a cancer probability atlas using a prostate surface registration
on histological data. Yet, no anatomic constraints were considered and the cancer probability was defined on the
ex vivo data. The excision of the prostate induces additional artifacts through fixation and the lack of adjacent
anatomical constraints limits the usefulness of such atlases for in vivo imaging data.

Similarly, Betrouni et. al. used surface registration to constrain the CG and PZ in building a region-based
model of the prostate.12 In the latter paper, the MRI intensity of the anatomic structures is treated as a constant
and is estimated as an average of MRI intensities, thus neglecting the information from the individual pixels.
Martin et. al.13 defined a probabilistic atlas of the prostate for automatic segmentation on T2-w MRI, yet
distinction is not made between the different anatomic regions.

2. BRIEF OVERVIEW

In this work we introduce an iterative, constrained registration (AnCoR) scheme for the construction of a
population-based atlas of the anatomic structures of the prostate. Moreover, the approach allows us to charac-
terize the CaP spatial distribution. The MP-MRI data considered in our study was collected prior to radical
prostatectomy. Also ex vivo histological specimens with ground truth CaP annotations are available from 23
subjects. Histology-MRI fusion allowed the mapping of the cancer annotation to MP-MRI.14 While not explicitly
addressed in this work, the precise mapping of tumor extent onto preoperative imaging and the resulting imaging
atlas will allow for determination of imaging markers for CaP appearance in vivo.6

Although atlases are often used for segmentation13 of the prostate, the newly presented prostate atlas serves
to characterize 3D spatial extent of cancer within different spatial regions in the prostate. Previous prostate
atlases8–12 either ignore image intensities or lack anatomic constraints and therefore are not true anatomic
atlases. Unlike previous work15 that defined a 2D distribution, our cancer probability distribution characterizes
the 3D spatial location of cancer and explicitly considers multiple anatomic regions.

The remainder of the paper is organized as following. First we discuss the novel contributions of this paper.
Then follows the materials and methods section, where the methodology of the AnCoR framework is described
along with the metrics used to evaluate the atlas framework. In our results section we provide quantitative
evaluation of the prostate imaging atlas and the 3D extent of the cancer located within the volume. The article
concludes with a discussion of the findings in the context of image-guided biopsy and future directions.

3. NOVEL CONTRIBUTIONS

Our work brings the following novel contributions:

1. To our knowledge, the anatomic prostate atlas presented in this paper is the first of its kind, in that the
anatomy of the prostatic zones are explicitly considered in an MRI atlas.

2. In order to model the anatomic constraints, we implemented and identified optimal parameters for a novel
scoring function that incorporates both MRI intensity and a regularization constraint on the surface of
anatomic regions.

3. The atlas allows for resolvability of the spatial distribution of cancer relative to the anatomic structures in
the prostate.

4. METHODS

4.1 Atlas building framework

The anatomic constrained registration (AnCoR) framework uses an iterative procedure that progressively updates
the atlas as the datasets become more accurately aligned. The procedure starts with simple centering of the
individual glands and are finalized by a deformable registration (Figure 1). As the various steps are executed,
different performance metrics are used to assess the accuracy of the registration (Section 5.5). A summary of
the notations and abbreviations used in this paper are presented in Table 1.



Symbol Definition

AA Atlas construction through AnCoR framework
AI Atlas construction through MRI intensity registra-

tion
A Reference template in registration
X Subject dataset
XT X with applied transform T
ψ Scoring function
ψS Surface term of the scoring function
ψI Image intensity term of the scoring function
I2 Mutual information (MI)
w weight of the surface misalignment terms

Table 1. Symbols and notations employed in this paper.

4.2 Inter-subject Registration

Inter-subject registration is at the core of the framework and ensures that a subject’s imaging dataset is aligned
to the reference template, which can be either another subject’s dataset, or, as presented here, the statistical
atlas representing an average of multiple datasets. In general, a registration technique seeks to identify the
transformation that aligns two datasets A and X while optimizing a cost function ψ. Hence, the optimal
transformation is calculated as

Tmax = argmax
T

ψ(A,XT)

where XT represents the transformed image of the dataset X , A is the reference template and ψ quantifies
the similarity between the A and XT. In the AnCoR framework, the transform T progressively encodes more
complex transformations, ranging from centering and scaling to deformable transformation.

In general, an affine transform is defined by 9 parameters representing the 3D translation, 3D rotation and
3D scaling. Centering and scaling, which are particular cases of affine transformations are applied first; this is
followed by a general affine transformation. Moreover, free form deformation (FFD)16 is employed to elastically
align the datasets subsequent to the affine transformation step. FFD optimizes the location of control points
that are initially distributed uniformly on a 3D grid, while 3D B-splines are used to interpolate between these
control points.

4.3 Modeling Anatomic Constraints

The cost function optimized by the AnCoR framework incorporates an image intensity similarity term and surface
alignment term

ψ(A,X ) = ψI(A,X ) +
n∑

r=1

wr · ψr
S(A,X ),

where ψI(A,X ) assesses the similarity of image intensities between A and X while ψi
S(A,X ) quantifies the

alignment of the anatomic structure r = 1..n in the datasets A and X , and wr is the empirical weight of the
anatomic structure r. In this work, we consider n = 2 anatomic regions, the Pr and CG. More specifically ψS

may also be estimated based on the mean squared error:

ψS(A,X ) = − 1

N
·
∑
c∈C

[A(c)−X (c)]2

where N is the number of voxels, and c represents the cth voxel of the grid C in the volume A,X . The goal of
the metric is to maximize the image intensity while maximizing the alignment of the anatomic structures.

The AnCoR framework is developed as an iterative registration procedure comprised of several steps (Fig-
ure 1):



1. Segmentation of anatomic structures (Pr, CG, PZ, vrethra and verumontanum) was done by an expert
radiologist based on the T2-w MRI while the cancer extend was delineated by an expert pathologist on the
H&E stained histology slices.

2. Preprocessing of the image intensities is performed to remove bias field artifacts17 and outliers in MRI
intensity.

3. Create atlas by centering and scaling all subjects in the cohort. The centering was performed to bring all
datasets to a common center, while the scaling was needed to correct for the large variations in Pr size in
the population. For the scaling, the volume of the bounding box surrounding the prostate was computed
and restrained to a constant 90cm3 which is a reasonable upper bound of maximal prostate sizes, and an
identical scaling factor was applied on the X, Y and Z axes.

This simple affine transform is performed to bring all datasets into a common reference frame without
performing a registration to a particular subject, which may potentially bias the reference. This initial
transformation allows for the creation of a first reference template by averaging all datasets in the cohort
and thereby generating an initial approximate statistical atlas.

4. Affine registration with anatomic constraints is then performed between the datasets in the cohort and the
reference template obtained during the previous step. Datasets in the cohort are averaged following affine
registration to create the new reference template and an updated statistical atlas.

5. The deformable registration attempts to elastically align the different anatomic regions. Similarly to the
previous step, the statistical atlas is updated by averaging the aligned datasets.

6. Anatomic structure and landmarks, other than the constrained terms, are updated with each additional
optimized transformation.

5. EXPERIMENTAL DESIGN

The AnCoR framework is applied to create an anatomic statistical atlas of the prostate, in which we constrain Pr
and CG, and use the anatomic structures (Pr, CG and PZ) and anatomic landmarks (urethra, verumontanum)
to evaluate the performance of the atlas building framework.

5.1 Data

The current atlas was built based on endorectal T2-w MRI from 51 subjects with biopsy confirmed CaP diagnosis;
however, the prostate atlas is seamlessly extensible to include additional modalities, such as dynamic contrast
enhanced MRI. The datasets haveM ′×M ′×M voxels, whereM ′ ∈ {400, 512} andM ranges between 32 and 56,
with dimensions of 0.27-0.40 mm in the XY plane and 2.2-3.0 mm in the Z plane. The datasets were collected
at two different institutions, at 1.5 Tesla for 7 subjects and 3.0 Tesla for the remaining 43 subjects. Figure 1
shows the MRI from different subjects, for which the CG, Pr and CaP are highlighted. The illustrated datasets
are representative of the natural variation of the prostate in the cohort in terms of gland size, shape, and MRI
intensity in the different anatomic regions.

An expert radiologist manually annotated the Pr, CG and PZ for 51 patients, as well as the urethra and
verumontanum for 11 subjects. The annotations were done based on the T2-w MRI using 3D Slicer.18

5.2 Mapping CaP from histology onto MRI

The cancer extent was delineated by an expert pathologist on digitalized ex vivo whole mount sections from 23
patient studies. The CaP delineation was then mapped through the registration of histology slices and MRI
using an approach originally introduced by Chappelow et al.14 The latter used deformable registration based
on B-splines in order to register corresponding histological 2D images and the MRI slices in which the prostate
was segmented. Such correspondences were obtained from an expert radiologist by judicious inspection of two
different data types for similar anatomic landmarks. For instance, anatomic feature such as the location of the
urethra/veromontanum or benign prostatic hyperplasia (BPH) were considered. In the next step, the segmented
prostates from both MRI and histology are automatically aligned using free form deformation (FFD)16 with MI
as a scoring function.



Figure 1. AnCoR Flowchart. (1) Manually segment anatomic regions: prostate (white, yellow), and central gland (red,
pink); (2) Map cancer (blue) from histology to MP-MRI14 ; (3) Perform affine registration constraining Pr and CG bound-
aries; (4) Update atlas by averaging T2-w MRI from (3) and use as registration fixed image; perform FFD registration,
constraining both Pr and CG using equal weights; (5) Identify cancer spatial distribution.

5.3 AnCoR framework for the construction of the prostate atlas

The scoring function ψ is defined as

ψ(A,X ) = I2(A,X ) + w · ψCG
S (A,X ) + w · ψPr

S (A,X ),

where X represents the 3D T2-w MRI of the subject while A represents the reference template, i.e. the altas
constructed at the previous step. In this current work, we choose MI to assess the MRI intensity similarity
and mean squared error (MSE) to evaluate the surface alignment. We set wCG = wPr = w to ensure an equal
influence of the surface boundary terms. This choice was made through empirical testing that suggested that
having differential weights was not necessary.

5.4 Experimental strategy

Table 2 summarizes the experiments performed here. The framework was used to build AI by setting w = 0 to
enable the registration based solely on T2-w MRI intensities (Experiment E1). Such experiment was considered
as a comparative strategy to test whether a combination of intensity and surface constrains in needed. Moreover,
as part of the experiment E1, we also compute the spatial extend of the CaP within the population.

In experiment E2, the AnCoR framework was employed to construct AA where both MRI intensity and
surface constraints are optimally weighted through the exploration of the parameter range in a sub-cohort(data
not shown).

Experiment Cohort size Description

E1. AA 51 Pr, Cg, PZ annotations
23 Ground truth CaP annotation from H&E slices

E2. AI 51 Pr, Cg, PZ annotations
Table 2. Subject cohorts used for the different experiments).



5.5 Evaluation measures

The constructed atlases, AA and AI , are evaluated through two performance metrics, the deviation between
landmarks and overlap between anatomic regions. As the core component of the atlas construction is inter-
subject registration, our metrics are estimated on landmarks and regions that are consistently discernible across
different subjects. Benign prostatic hyperplasia (BPH) nodules and calcification are typically used as landmarks
for intra-subject registration. However these are usually not consistent between different subjects and thus
cannot be employed here. Thus we choose the urethra and verumontanum as landmarks, and we expect that
these landmarks will be well aligned in AA. Note that the urethra shows up as a tubular curved shape that
crosses the prostate from base to apex while the verumontanum has a v-like shape visible on a few axial slices
that are located in mid-gland.

In order to compute the deviation between these anatomical landmarks, the 3D medial axes19 were first
computed and then the deviation between the medial axis points was estimated. The medial axis is defined
on a per slice basis, as the points at the interior of the annotated region, furthest away from the surface. For
two subjects X1 and X2, we estimated the deviation ||M1,M2|| of their medial axes M1 and M2 as the average
Euclidean distance between axial proximal points. The point Pi ∈ M1 is considered proximal to Pj ∈ M(X2) if
||Pi, Pj ||2 < ||Pi, Pk||2 where Pk is any point in M2 where j 6= k. Note, that if Pi is considered proximal to Pj

it does not imply that Pj is proximal to Pi. Thus, we estimate the deviation between the anatomic landmarks,
either the urethra or the verumontanum, of the subject X1 and X2 as

||X1,X2|| =
1

2
· (||M1,M2||+ ||M2,M1||),

The average deviation of the landmark within the cohort is estimated following each registration step as the
averaged inter-subject deviations for any possible pair-wise combination. For the n subjects X1, . . . ,Xn:

||X1, . . . ,Xn|| =
1

(n− 1)(n− 2)
·
∑∑
s1 6=s2

||Xs1 , Xs2 ||,

The Dice similarity coefficient (DSC) estimate the degree of overlap between two masks: DSC(X1,X2) =
2×|X1

⋂
X2|

|X1|+|X2| , where |X | represents the cardinality of set X .

To estimate the degree of overlap following the registration step, we computed the averaged DSC between
the subjects Xi, i = 1..n and the reference template A as

DSC(X1, . . . ,Xn) =
1

n

n∑
i=1

DSC(Xi,A),

The DSC is quantified from the binary mask of each anatomic region relative to the reference template A for
Pr, CG and PZ.

The scheme to build the atlas was implemented using the ITK framework20 and an evolutionary optimizer.
The cohort of 11 subjects with landmark annotations was utilized to perform an exhaustive exploration of the
parameter space (data not shown). Following this parameterization step, we choose w = 0.5 for the affine stage,
which allows for the contribution of the surfaces to be weighted significantly higher compared to just the image
intensities. It was found that the value of w = 0.05 yielded a reasonable tradeoff between landmark deviation
and optimal overlap for the deformable registration step.

6. EXPERIMENTAL RESULTS AND DISCUSSION

6.1 Experiment E1: AnCoR Atlas

The AnCoR Atlas AA is constructed based on the 51 subject cohort. Figures 2(d)-2(f) show the sections in AA

at the level of the prostate base. As expected, hypointense regions are observable in CG, while the PZ shows as a
hyperintense region. The outline of the urethra is more obviously discernible as well particularly in the midgland



(a) (b) (c)

(d) (e) (f)

Figure 2. Intensity statistical atlas as obtained in (a)-(c) AI , T2-w MRI intensity based registration without Pr and CG
constraints; (d)-(f) AA, AnCoR framework with equal contributions from CG and Pr; (a), (d) base; (b), (e) midgland
region; (c), (f) apex. The CG and Pr boundaries are more readily identifiable in AA compared to AI (see arrows in (b)
and (e)). Moreover, the urethra is more clearly discernible in AA relative to AI (see arrow in (c) and (f)).

and apex regions. Moreover, AA also includes a statistical shape model for the Pr, CG and Pz as indicated in
Figures 3.

The spacial distribution of cancer was estimated from the 23 subjects for which we have radical prostatectomy
specimens with annotated cancer. As expected, the highest frequency of cancer is present in the PZ rather close to
the neurovascular bundles.5 Yet, cancer is also often observed in CG towards the apex of the prostate (Figure 3).
The distribution of cancer is not symmetric, as already observed by Donohue and Miller.21

We were able to build not only a shape atlas of the prostatic regions (Figure 3(a)) as described by Betrouni
et. al.,12 but also an MRI intensity atlas (Figures 2(d)-2(f)).

6.2 Experiment E2: Comparative strategies

As a comparative strategy, we also evaluated the outcome of our framework in AI , where w = 0 and only the
T2-w MRI intensities drive the registration (Figure 2(a)-2(c)). As expected, the unconstrained atlas becomes
misaligned with the different anatomic regions as quantified by the lower DSC values for each region (Table 3).
Misalignment is also apparent qualitatively in Figure 2(b) when compared to Figure 2(e) (see arrows). Such
misalignment can be observed as a blurring effect, especially visible at the CG and PZ boundary and at the
region adjacent to the endorectal coil. Moreover such misalignments can also be visible close to the urethra as
indicated by arrows in Figures 2(f) and 2(c).

7. CONCLUDING REMARKS

We presented a novel anatomic atlas of the prostate from multi-parametric MRI. In this implementation we
constructed the atlas based on T2-w MRI, using an iterative registration scheme based on affine and elastic
registration. The registration was developed to ensure the proper central gland (CG) alignment with the goal
of generating an anatomically correct representation of the prostate. However, such an alignment of the CG



DSC (%) Deviation (mm)
Atlas Pr CG PZ Seminal

Vesicles
Neurovascular
Bundles

Urethra Veru-
montanum

Preprocessing 78.49 69.32 54.57 29.57 23.56 5.84 8.47
AI 83.21 77.16 67.82 37.24 28.07 5.64 6.47
AA 90.36 89.37 77.01 33.31 33.91 3.64 4.31

Table 3. Evaluation of AA and AI . DSC is shown as percentages, while deviations are measured in millimeters (mm).
The lowest landmark deviations are observed in AA. The preprocessing step refers to the translation that aligns all MRI
datasets at the geometric center of the prostate.

(a) (b) (c)

Figure 3. (a) 3D representation of the AnCoR atlasAA; CG, PZ and Pr are outlined in red, yellow, and respectively
transparent pink; (b)-(c) Cancer distribution in the prostate; Higher frequency of cancer is depicted in blue, while lower
frequency are shown in green.

can only be achieved with anatomical constraints, suggesting the need for a novel anatomically constrained
cost function to drive the registration. The atlas was built on a 51 subject cohort, from which only a subset (23
patients) had ex vivo histology specimens with cancer annotations that allowed us to characterize the distribution
of cancer within the different anatomic regions of the prostate. A registration based on MRI intensity alone had
difficulty aligning the anatomic regions as their boundaries are subtle, causing a blurring effect at the edges of
the anatomic regions in Figure 2.

Furthermore, our AnCoR framework provides a platform for the fusion of multi-modal data into a single
canonical representation. While not explicitly addressed in this work, the precise mapping of tumor extent
onto preoperative imaging should also allow for determination of imaging markers for CaP appearance in vivo
and might provide grounds for future localized treatment options. In fact this framework could be used to
integrate multi-modal, multi-scale imaging and molecular data by including additional MP-MRI protocols and
complementary proteomic and genomic marker information. Such a comprehensive atlas would allow for the
identification and validation of in vivo imaging markers for aggressive disease based on co-expression with other
molecular and histologic measurements. In the future, we plan to increase the cohort size to augment the
statistical power of the atlas.
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