
Computing Crossing Numbers

Dissertation

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

der Technischen Universität Dortmund
an der Fakultät für Informatik

von

Markus Chimani

Dortmund
2008

Tag der mündlichen Prüfung:
24.11.2008

Dekan:
Prof. Dr. Peter Buchholz

Gutachter:
Prof. Dr. Petra Mutzel, Technische Universität Dortmund
Prof. Dr. Martin Skutella, Technische Universität Berlin

i

Abstract

The graph theoretic problem of crossing numbers has been around for over
60 years, but still very little is known about this simple, yet intricate non-
planarity measure. The question is easy to state: Given a graph, draw it
in the plane with the minimum number of edge crossings. A lot of research
has been devoted to giving an answer to this question, not only by graph
theoreticians, but also by computer scientists. The crossing number is central
to areas like chip design and automatic graph drawing. While there are
algorithms to solve the problem heuristically, we know that it is in general
NP-complete. Furthermore, we do not know if the problem is efficiently
approximable, except for some special cases.

In this thesis, we tackle the problem using Mathematical Programming.
We show how to formulate the crossing number problem as systems of linear
inequalities, and discuss how to solve these formulations for reasonably sized
graphs to provable optimality in acceptable time—despite its theoretical com-
plexity class. We present non-standard branch-and-cut-and-price techniques
to achieve this goal, and introduce an efficient preprocessing algorithm, also
valid for other traditional non-planarity measures. We discuss extensions of
these ideas to related crossing number variants arising in practice, and show
a practical application of a formerly purely theoretic crossing number deriva-
tive.

The thesis also contains an extensive experimental study of the formu-
lations and algorithms presented herein, and an outlook on its applicability
for graph theoretic questions regarding the crossing numbers of special graph
classes.

ii

Zusammenfassung

Das Kreuzungszahlproblem wird von Graphentheoretikern seit über 60 Jahren
betrachtet, jedoch ist noch immer sehr wenig über dieses einfache und zugleich
hochkomplizierte Maß der Nichtplanarität bekannt. Die Aufgabenstellung ist
simpel: Gegeben ein Graph, zeichnen Sie ihn mit der kleinstmöglichen Anzahl
an Kantenkreuzungen. Nicht nur Graphentheoretiker sondern auch Informati-
ker beschäftigten sich ausgiebig mit dieser Aufgabe, denn es handelt sich dabei
um ein zentrales Konzept im Chipdesign und im automatischen Graphen-
zeichnen. Zwar existieren Algorithmen um das Problem heuristisch zu lösen,
jedoch wissen wir, dass es im Allgemeinen NP-vollständig ist. Darüberhinaus
ist auch unbekannt, ob sich das Problem, außer in Spezialfällen, effizient ap-
proximieren lässt.

In dieser Dissertation, versuchen wir das Problem mit Hilfe der Mathema-
tischen Programmierung zu lösen. Wir zeigen, wie man das Kreuzungszahl-
problem als verschiedene Systeme von linearen Ungleichungen formulieren
kann und diskutieren wie man diese Formulierungen für nicht allzu große
Graphen beweisbar optimal und in akzeptabler Zeit lösen kann—unabhängig
von seiner formalen Komplexitätsklasse. Wir stellen dazu benötigte maßge-
schneiderte Branch-and-Cut-and-Price Techniken vor, und präsentieren einen
effizienten Algorithmus zur Vorverarbeitung; dieser ist auch für andere tra-
ditionelle Maße der Nichtplanarität geeignet. Wir diskutieren Erweiterungen
unserer Ideen für verwandte Kreuzungszahlkonzepte die in der Praxis auf-
treten, und zeigen eine praktische Anwendung eines vormals rein theoretisch
behandelten Kreuzungszahl-Derivats auf.

Diese Arbeit enthält auch eine ausführliche experimentelle Studie der
präsentierten Formulierungen und Algorithmen, sowie einen Ausblick über
deren mögliche Nutzung für graphentheoretische Fragen bezüglich der Kreu-
zungszahlen von speziellen Graphenklassen.

iii

Acknowledgements

I want to thank my advisor Prof. Petra Mutzel for giving me the opportunity
to do research in a wonderful scientific environment; for introducing me to
the topic of crossing minimization, which became one of my dearest research
passions; for offering the possibilities and freedom to pursue multiple research
areas, which may have been a distraction from the topic of this very thesis,
but much more was it a fruitful and worthwhile experience in the long run;
for funding conference trips and introducing me to established researchers;
and most of all, for knowing when to offer freedom and when to help with
comments and ideas.

I want to thank the Chair XI for Algorithm Engineering at TU Dortmund
for relaxing coffee breaks that made long hours worthwhile and refreshing; I
want to thank especially our secretary Gundel Jankord for taking a lot of orga-
nizational stuff from our shoulders. I also want to thank in particular Petra’s
research group I had the pleasure to be a part of, for all the interesting scien-
tific discussions and collaborations. Thank you, Carsten Gutwenger, Maria
Kandyba, Karsten Klein, Wolfgang Paul, and Hoi-Ming Wong. I also want to
thank the co-authors of my papers for sharing their experience and knowledge,
in particular Michael Schulz for sharing my interest in weird crossing number
concepts and for having a great time. And thank you for proof-reading parts
of this thesis, Karsten, Wolfgang, and Michael.

I want to thank Prof. Ernst-Erich Doberkat, Petra, Prof. Martin Skutella,
and Henrik Björklund, for their readily willingness to serve in my defense
commission, commenting on my thesis, and making it surprisingly easy to find
a date when everybody was able to attend. In particular, I want to thank
Martin, who served as my second examiner, for carefully working through
my thesis and for his gracious comments regarding it; and for taking it upon
himself to attend my defense even though this required traveling long hours
between Berlin and Dortmund for this only reason.

I want to thank my family, in particular my parents, for supporting me
in all concievable ways from when I was young, up to now. And last but not
least, I want to thank Maria, for putting up with me during the last weeks
when I was notoriously stressed. I love you.

Markus Chimani
Dortmund, 2008

iv

Motivational Example

Three drawings of the same graph with 51, 12, and 4 crossings, respectively.
Most aesthetic criteria like few edge bends, uniform edge lengths, or a small
drawing area would favor the first two drawings, while the last drawing is
preferable with respect to the number of edge crossings.

v

Notation

For quick reference, we list common notations, abbreviations, and naming
schemata used throughout this thesis.

Common Variables
s, t, u, v nodes
e, f, g, h edges/arcs
G,H graphs
U, V,W set of nodes
A,E, F set of edges/arcs
w(·) (integral) edge weights
Γ embedding of a graph
D drawing of a graph
ϕ face in an embedding/drawing of a graph
ψ hyperedge/hyperarc
Ψ set of hyperedges/hyperarcs
H = (V,Ψ) hypergraph
G = (V, E) simultaneous graph
S, T SPR-tree of a graph
ν, µ, η nodes of an SPR-tree
CP,R set of edge pairs
x, y, z, χ variable vectors in an ILP
x̄, ȳ, z̄, χ̄ assignments to variable vectors in an ILP
x̃, ỹ, z̃, χ̃ 0/1-assignments to variable vectors in an ILP

vi

Notation, Operators, Generators, etc.
(u, v) directed arc from u to v
{u, v} undirected edge between u and v

(u→ v) path from u to v
V (G), E(G), A(G) the nodes, edges, and arcs of the graph G, respectively
e the undirected edge {u, v} for an arc e = (u, v)
−→e , −→e G for e = {u, v}, the directed arc (u, v) or (v, u) in G, if

unique
G[W], G[F] subgraph of G induced by the node set W , or by the

edge/arc set F , respectively
G+v, G−v, G+e,
G− e

The graph G with/without the node v or edge/arc e,
respectively

S{k} all unordered k-tuples of pairwise disjoint elements of
S

S〈k〉 all ordered k-tuples of pairwise disjoint elements of S
{e; f1, f2, . . .} {{e, f1}, {e, f2}, . . .}
GTν the skeleton graph corresponding to the node ν in the

SPR-tree T
G[`] the graph obtained from G by replacing each edge by

a chain of length `

G[z̄], G[x̄, ȳ] partial planarization of G realizing the crossings spec-
ified by z̄ or (x̄, ȳ)

H � G, H �W G H is a minor of G (only merging nodes of W)
mincutst(G) size of a minimium st-cut in G

X(e)
∑

f :{e,f}∈CP xe,f
X(v)

∑
{e,f}∈CP:v∈e xe,f

vii

Considered Non-planarity Measures
cr(G) (traditional) crossing number. minimum number of

edge crossings required to obtain a planar drawing.
scr(G) simple crossing number. at most one crossing per edge.
pcr(G) pairwise crossing number. we count only the pairs of

crossing edges, independent on how often these pairs cross
each other.

ocr(G) odd crossing number. we count only pairs of edges which
cross each other an odd number of times.

mcr(G) minor(-monotone) crossing number. the smallest
cr(H) among all graphs H with G � H.

mcrW (G) W -restricted minor(-monotone) crossing number.
the smallest cr(H) among all graphs H with G �W H.

phcr(G) point-based hypergraph crossing number. hyperedges
are represented by stars.

thcr(G) tree-based hypergraph crossing number. hyperedges
are represented by trees.

ccr(C) circuit crossing number. crossing number of an electrical
circuit C.

simcr(G) simultaneous crossing number. crossing number of a
simultaneous graph.

bcr(G) bimodal crossing number. crossing number when the in-
and out-going arcs of each node have to be drawn consecu-
tively.

skew(G) skewness. minimum number of edges to remove, in order
to obtain a planar subgraph.

thick(G) thickness. minimum number of planar subgraphs that,
when merged, give G.

coarse(G) coarseness. maximum number of edge-disjoint non-planar
subgraphs.

genus(G) genus. minimum genus g such that the graph can be embed-
ded on an oriented surface of genus g (number of “handles
on a sphere”) without crossings.

viii

Contents

Abstract . i
Zusammenfassung . ii
Acknowledgements . iii
Motivational Example . iv
Notation . v

I Introduction 1

1 Introduction 3
1.1 Overview on this thesis . 4

2 Preliminaries: Graph Theory 7
2.1 Graphs . 7
2.2 Planarity . 10
2.3 Crossing Number . 12

3 Preliminaries: Integer Linear Programs 19

II Theory & Algorithmics 23

4 Preprocessing 25
4.1 Traditional Preprocessing . 25
4.2 Non-planar Core Reduction . 26

4.2.1 SPR-trees . 26
4.2.2 Supplemental: Compatibility with SPQR-trees 29
4.2.3 Defining the Non-planar Core 33
4.2.4 Computing the Non-planar Core 36
4.2.5 Non-planar Core and Crossing Number 41

4.3 Digression: Non-Planar Core for Other Non-planarity Measures 45
4.3.1 Skewness . 45
4.3.2 Thickness . 48
4.3.3 Coarseness . 51
4.3.4 Genus . 53

ix

x CONTENTS

5 0/1-ILPs for the Crossing Number Problem 57
5.1 General Concepts . 57
5.2 Subdivision-based 0/1-ILP . 59
5.3 Ordering-based 0/1-ILP . 63

5.3.1 Triangle Constraints . 67
5.4 Facets in the Crossing Number Polytope 68

5.4.1 Proving strategy . 71
5.4.2 K5-constraints in Kn . 72
5.4.3 Km-constraints in Kn 75
5.4.4 K3,3-constraints in Kn,m 78
5.4.5 K3,3-constraints in Kn 81

5.5 Comparison between the ILPs 86

6 Solving the 0/1-ILPs 89
6.1 Common Framework . 89

6.1.1 Rounding the Fractional Solution 92
6.1.2 Kuratowski Separation 93
6.1.3 Branching Strategies . 96
6.1.4 Column Generation . 97

6.2 Algebraic Pricing for Secm . 98
6.3 Combinatorial Column Generation for Secm 99
6.4 Combinatorial Column Generation for Oecm 101

7 Crossing Number Variants 103
7.1 Simple Crossing Number . 103
7.2 Minor and Hypergraph Crossing Number 104

7.2.1 Definitions . 104
7.2.2 Relationship and Observations 107
7.2.3 Edge and Node Insertion Results 108
7.2.4 Edge and Node Insertion Details 110
7.2.5 Heuristic Crossing Minimization 113
7.2.6 Exact Crossing Minimization 114
7.2.7 Application: Electrical Wiring Schemes 115

7.3 Simultaneous Crossing Number 118
7.3.1 Definitions . 119
7.3.2 Bounds and Complexity 121
7.3.3 Preprocessing . 126
7.3.4 Heuristic Crossing Minimization 127
7.3.5 Exact Crossing Minimization & Testing Planarity . . . 128

7.4 Further Crossing Numbers . 130

III Experiments & Outlook 133
Explanatory Note . 135

CONTENTS xi

8 Experiments: Crossing Number 137
8.1 The Rome Graph Library . 137
8.2 Non-Planar Core Reduction . 138
8.3 Exact Crossing Minimization 141
8.4 Comparison with Heuristic . 157

9 Experiments: Other Crossing Numbers 163
9.1 Minor and Hypergraph Crossing Number 163
9.2 Simultaneous Crossing Number 170

10 Solving Special Graph Classes 173
10.1 General Concepts . 174
10.2 Special Classes . 175

10.2.1 Complete Graphs . 175
10.2.2 Toroidal Grids . 177
10.2.3 Generalized Petersen Graphs 179

10.3 Current Results . 180
10.4 Extracting Proofs . 183

11 Conclusion and Outlook 187

IV Backmatter 191

Curriculum Vitae 193

Bibliography 198

Index 211

xii CONTENTS

Part I

Introduction

1

Chapter 1

Introduction

crossing: (Graph Theory)
The point in the plane where the im-
ages of two edges of a drawn graph
intersect.

Assume we are given a relationship diagram: It shows various people;
people that know each other are connected by lines. We want to draw such a
diagram nicely on a piece of paper, cf. Figure 1.1. In our drawing, we would
like to have as few line crossings as possible, since such crossings make the
diagram hard to read. How many crossings are inevitable in our drawing?

In terms of graph theory, the diagram is called graph, the people in the
diagram are nodes, the lines between people are edges, and we want to draw
this graph in the plane. The crossing number of a graph is a very intuitive
notion for measuring the non-planarity of a graph. Informally, the crossing
number problem is quite easy to formulate: Given a graph, draw it in the
plane with a minimum number of edge crossings.

The origin of the problem was described by Turán in his “Note of Wel-
come” in the first issue of the Journal of Graph Theory [139]: While working
in a labor camp during World War II, he noted that crossings of the rails

Figure 1.1: Two different drawings of a relationship diagram. While the left one
has 3 edge crossings, the one on the right realizes the minimum crossing number of 1.

3

4 CHAPTER 1. INTRODUCTION

between kilns and storage yards caused the trucks to jump the rails. Mini-
mizing these crossings corresponds to the crossing minimization problem for
a complete bipartite graph Kn,m.

Since then, the problem has received lively attention, see [137] for an
overview and [140] for an extensive bibliography: Graph theoreticians enjoy
the problem for its intriguing clearness and analytical hardness, and the prob-
lem lies at the heart of areas like VLSI design and automatic graph drawing.
Purchase [126] even showed in a study that it is one of the most important
criteria for the comprehensibility of drawn graphs. Nonetheless, although a
lot of research has been conducted, most fundamental questions remain unan-
swered. For example, the exact crossing number of complete bipartite graphs,
for which Turán originally asked, is still unknown for general graph sizes.

From the algorithmic point of view, the problem is known to be NP-
complete, which means it is extremely unlikely that there exists a polynomial
algorithm to find the crossing number of a given graph. The problem is even
hard in the sense that concepts like its approximability are still unknown and
until know, the practically best way of solving the problem was by heuristics.

1.1 Overview on this thesis

In this thesis we present how to solve the crossing number problem to prov-
able optimality, using integer linear programming techniques. Formally, the
thesis is structured into four parts: Part I is a general introduction to the
thesis’ topic and summarizes the necessary preliminaries and notations used
throughout this thesis; the final Part IV contains the author’s CV, references,
and an index.

The main content is contained in Part II. In Chapter 4, we discuss novel
strong preprocessing routines also valid for other non-planarity measures than
only the crossing number. We will then introduce two different ILP ap-
proaches to solve the problem for real-world graphs in Chapter 5, and discuss
some of their polyhedral properties. The following Chapter 6 describes how
we can solve these models to provable optimality. We will also discuss alter-
native variants of the crossing number and solution strategies for them, see
Chapter 7.

Part III reports on experiments and gives an outlook on ongoing research.
Nearly all described approaches have been implemented, and we are therefore
able to see their effectiveness in practice; this is summarized in Chapter 8
and 9 for the traditional crossing number and for variants of it, respectively.
In Chapter 10, we give an extended outlook regarding the crossing number
computation for special graph classes that are interesting from the graph
theoretical point of view. We conclude with a summary and final outlook in
Chapter 11.

The content of this thesis is largely based on the following original papers:

1.1. OVERVIEW ON THIS THESIS 5

• Non-Planar Core Reduction [29] (Section 4.2, 4.3);

• Subdivision-based Crossing Minimization ILP [23, 30] (Section 5.2, 6.1–
6.3);

• Ordering-based Crossing Minimization ILP [37] (Section 5.3, 6.1, 6.4);

• Minor and Hypergraph Crossing Number [28] (Section 7.2); and

• Simultaneous Crossing Number [35] (Section 7.3).

Furthermore, this thesis contains yet unpublished results regarding:

• the simple definition of SPR-trees and its compatibility with SPQR-
trees (Section 4.2.1, 4.2.2);

• the non-planar core reduction in the context of the graph genus (Sec-
tion 4.3.4);

• the class of triangle inequalities for Oecm (Section 5.3.1);

• the facet-defining properties of Kuratowski constraints (Section 5.4);

• the application of hypergraph crossing minimization for electrical circuit
design (Section 7.2.7); and

• the consideration of special graph classes (Chapter 10).

To give a more focused thesis, we only briefly discuss the efficient extraction
method of multiple Kuratowski subdivisions [39], and refer to the full pa-
per for details. Furthermore, we will not discuss the author’s related crossing
number research regarding the minimum cut properties of planarizations [31],
upward crossing minimization [33], the polynomial solution for vertex inser-
tion [32], nor its applicability for approximating the crossing number of apex
graphs [34].

6 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries: Graph Theory

crossing: (Handicraft)
A painting technique whereby
freshly applied paint is rebrushed
at right angles to the direction of
application and then rebrushed
at right angles again to provide
even distribution of paint over the
surface.

As this thesis is focused on the crossing number of graphs, this section
outlines the necessary prerequisits and serves to define the exact notation we
will use throughout this work. The basic definitions are based on Diestel [47]
and Harary [84].

2.1 Graphs

We use the following generator function for notational simplicity. Let S be
any set. Then

S{k} := {S′ ⊆ S | |S′| = k}

is the set of all unordered k-tuples with pairwise disjoint elements of S, and

S〈k〉 := {(a1, . . . , ak) | ∀1 ≤ i < j ≤ k : ai, aj ∈ S ∧ ai 6= aj}

is the set of all ordered k-tuples with pairwise disjoint elements of S.
A graph G is a 2-tuple of a set of vertices—or nodes—V and a collection

of structures connecting these vertices. We can define a variety of graph types
based on the exact definition of these connectors.

Simple undirected graph, G = (V,E). The edges E ⊆ V {2} are unordered
2-tuples of vertices. Let e = {u, v} ∈ E; we say e is incident to u and
v, and two edges or nodes are adjacent if they share a common node

7

8 CHAPTER 2. PRELIMINARIES: GRAPH THEORY

or edge, respectively. All nodes N(v) adjacent to some node v ∈ V are
called neighbors of v. We define the degree deg(v) as the number of
edges incident to v.

Simple directed graph, G = (V,A). The arcs A ⊆ V 〈2〉 are ordered 2-
tuples of vertices. Let e = (u, v) ∈ E, we say e is directed from its
source node src(e) := u to its target node trgt(e) := v. Two arcs which
have both nodes in common are reversals of each other. We define the
in-degree deg−(v) and the out-degree deg+(v) as the number of arcs
having v as their target or source node, respectively.

Multi-graph with self-loops. Sometimes it can be interesting to consider
graphs where E or A are not simple sets but multi-sets, i.e., we allow
edges or arcs to appear multiple times. Also, we may allow self-loops,
i.e., edges or arcs where the two incident nodes are identical. In the
following we will almost exclusively deal with simple graphs, i.e., graphs
without multi-edges and self-loops. In the case of crossing numbers
we can efficiently deal with non-simple graphs by a straight-forward
transformation, described later in this section.

Hypergraph H = (V,Ψ). A generalization of traditional undirected graphs
are undirected hypergraphs, where traditional edges are replaced by
hyperedges: we have Ψ ⊆

⋃|V |
i=2 V

{i}, i.e., a hyperedge is a subset of V of
any size larger than 1. Analogously, we can define directed hypergraphs
by using hyperarcs: we have Ψ ⊆ {(ψsrc, ψtrgt) | ∅ ⊂ ψsrc, ψtrgt ⊂ V ∧
ψsrc ∩ ψtrgt = ∅}, i.e., each hyperarc consists of a 2-tuple of non-empty
disjoint vertex subsets specifying its source and target nodes.

If we are given a graph G without explicitly specifying its vertices and con-
nectors, we can use V (G), E(G), and A(G) to obtain its set of vertices, edges
or arcs, respectively.

Orientation. We say a directed graph H = (V,A) is an orientation of
an undirected graph G = (V,E), if for each edge {u, v} ∈ E, A contains
exactly one of its directed versions, i.e., |{(u, v), (v, u)} ∩ A| = 1. We call
G the shadow of H. We therefore define the operations (u, v) := {u, v} to
obtain an undirected edge from an arc, and the inverse

−−−→
{u, v}H to obtain the

unique directed arc in H which is incident to u and v; we may omit the graph
specification if it is clear from the context.

Path and Cycle. A path (u → v) of length k in a simple graph is a con-
nected sequence p = 〈e1, e2, . . . , ek〉 of disjoint sequentially connected edges
or arcs in that graph: In the directed case, we have src(e1) = u, trgt(ek) = v,
and trgt(ei) = src(ei+1) for all 1 ≤ i < k. For an undirected graph G, we can
find an orientation H such that 〈−→e1

H ,−→e2
H , . . . ,−→ekH〉 is a path in H. If u = v,

2.1. GRAPHS 9

and therefore k ≥ 3 in undirected graphs, we call the path a cycle. If all the
nodes on a path are pairwise disjoint, we call it a simple path. If all nodes
of a cycle are pairwise disjoint, except for the identical start and end node,
we call it a simple cycle. A simple path where all inner nodes, i.e., the nodes
incident to two edges or arcs of the path, have degree 2 is called a chain.

Let G = (V,E) be an undirected graph in the following. Although the defini-
tions given below are for undirected graphs, they can be applied analogously
to directed graphs.

Subgraph. A graph G′ = (V ′, E′) is a subgraph of G, denoted by G′ ⊆ G,
if V ′ ⊆ V and E′ ⊆ E. The fact that the edges of E′ only connect vertices of
V ′ follows from G′ being a valid graph. We define an edge-induced subgraph
G[E′] := (V [E′], E′) with V [E′] :=

⋃
e∈E′ e, i.e., the subgraph that contains

exactly the edges E′ and all incident vertices. Inversely, we can define a
node-induced subgraph G[V ′] := (V ′, E[V ′]) with E[V ′] := {e ∈ E | e ⊆ V ′},
i.e., the subgraph that contains exactly the nodes V ′ and all edges of G that
connect nodes of V ′.

An alternative specification of subgraphs is via exclusion of certain nodes
or edges. We write G − v and G − e to denote the subgraphs obtained by
removing the node v or the edge e, respectively. Inversely, we define G + v
and G+ e as the graphs obtained by introducing v or e, respectively.

A third alternative to specify a subgraph is by defining it as an antipode to
some other subgraph. If G′ ⊆ G, we say Ḡ′ := G[E\E(G′)] is the complement
of G′ with respect to G, i.e., Ḡ′ contains exactly the edges in G but not in G′.

Connectedness and Trees. The graph G is connected if there exists a
path between every pair of nodes. If it is not connected, it consists of several
connected components, i.e., the maximal subgraphs that are connected. A
connected graph without a cycle is called tree, a non-connected graph without
a cycle is called forest , as its connected components form trees.

Generally, G is k-connected (k < |V |) if the removal of less than k nodes
cannot disconnect the graph. I.e., G[V \W] is connected for all node sets W ⊂
V with |W | < k. A 2-connected graph is also known as a biconnected graph.
If a graph is connected but not biconnected, it consists of several biconnected
components (blocks), i.e., the maximal subgraphs that are biconnected.

Blocks are attached to each other through cut vertices, i.e., vertices that
are part of two or more blocks. The removal of a cut vertex would make the
remaining graph disconnected. Given a connected graph G, we can define a
special Block-Cut-structure B of G as the graph that contains a node of type
B for each block of G, and a node of type C for each cut vertex in G. There
is an edge between a B-node and a C-node if and only if the respective block
contains the respective cut vertex. We call this structure BC-tree, as it is
easy to see that the structure forms a tree: Assume there would be a cycle,

10 CHAPTER 2. PRELIMINARIES: GRAPH THEORY

then the deletion of a single vertex could not disconnect any two cut vertices
or blocks in that cycle, and hence all these elements would be part of a single
larger biconnected component.

Analogous to cut vertices, we can define separation pairs in biconnected
components B as the set of two vertices whose removal makes B disconnected.
Graphs without a separation pair are by definition 3-connected, also known
as triconnected .

Subdivision and Minor. We say that H is a minor of G, denoted by
H � G, if H can be obtained from G by a series of vertex deletions (including
all its incident edges) and edge contractions: An edge e = {u, v} is contracted
by merging its two incident nodes into one that becomes adjacent to all former
neighbors of u and v. We obtain a subdivision G′ of G by replacing all edges
of G by chains of length at least 1. Let G′′ be any graph with G′ ⊆ G′′. G is
said to be a topological minor of G′′.

Complete Graphs. Special graphs of further interest are the complete
graphs Kn := (V, V {2}) with |V | = n, i.e., simple graphs with n vertices that
contain all possible edges. A graph is bipartite if we can partition its node set
into two disjoint sets V1 and V2 such that each edge connects nodes of different
partition sets. We define complete bipartite graphs Kn,m = (V1 ∪ V2, {{u, v} |
u ∈ V1, v ∈ V2}) with |V1| = n and |V2| = m, i.e., bipartite graphs with n and
m nodes per partition set, respectively, that contain all possible edges.

2.2 Planarity

A drawing D of a graph G on the plane is a one-to-one mapping of each
vertex to a point in R2, and each edge to a simple open curve between its
two endpoints. A curve is not allowed to contain other vertices than its two
endpoints. A crossing is a common point of two curves, other than their
endpoints. We only consider drawings where there are no common points of
more than two curves, other than their endpoints.

Embedding. Assume the given graph G = (V,E) can be drawn without
any crossings. We say the graph is planar and each drawing of G which
requires no crossings is a planar drawing. We can define equivalence classes of
such planar drawings called combinatorial embeddings, also known as planar
rotation systems. A combinatorial embedding Γ of G gives, for each vertex
v ∈ V , the cyclic orderings of the edges E(v) := {e ∈ E|v ∈ e} around v.
Any drawing realizing Γ on a sphere defines faces, i.e., regions bounded by
edges. Formally, a face is represented as the cyclic sequence of its bounding
edges, whereby an edge is listed twice if the region touches both sides of the
edge. The special property is that there is a one-to-one mapping between

2.2. PLANARITY 11

Figure 2.1: An embedded graph G (circular vertices and solid edges) and its dual
GD (square nodes and dashed edges).

a combinatorial embedding Γ and the set of faces arising from any drawing
realizing Γ.

Realizing a combinatorial embedding in the plane can be seen as choosing
any face on the sphere—subsequently called outer face—, cutting this face
out of the sphere, and flattening the former sphere which is now topologically
equivalent to a disc. Then, each edge-bounded region is called an inner
face, and the outer face is the only unbounded region in the drawing. A
combinatorial embedding together with the selection of some outer face is
called planar embedding .

The definition of embeddings gives rise to the dual graph GD of some
graph G with respect to Γ, cf. Figure 2.1. The vertices of GD are the faces
defined by Γ. For each primal edge e we have a dual edge connecting the
two (not necessarily disjoint) faces that border e. In general, GD will be a
multi-graph with self-loops. Let ΓD be the embedding of GD implied by Γ.
Then the dual of GD with respect to ΓD is again G.

Note that combinatorial embeddings—planar rotation systems—can only
be defined for planar graphs and always allow a planar drawing realizing
them. In contrast to this, we can define arbitrary rotation systems, i.e.,
cyclic orderings of the edges around the vertices, that do not correspond to
planar drawings or not even to planar graphs.

Euler’s theorem. A central observation for planar simple graphs, going
back to Euler, is that they cannot have arbitrarily many edges. In fact, we
have |V |−|E|+ |Φ| = 2 for any planar embedding, where Φ denotes the set of
faces. For planar embeddings of simple planar graphs with at least 3 edges,
we can observe that each face is bordered by at least 3 edges, and each face
lies on the border of at most 2 faces. It follows that |E| ≤ 3|V |−6 for |V | ≥ 3.
Generally, we can say that in planar graphs |E| = O(|V |) and |Φ| = O(|V |).

Kuratowski’s theorem. A natural question is whether a given graph G
is planar. In 1930, Kuratowski [104] already categorized the class of planar
graphs as the graphs which do not contain a K5 or K3,3 subdivision as a

12 CHAPTER 2. PRELIMINARIES: GRAPH THEORY

subgraph. In other words, a graph G is non-planar if and only if K5 or K3,3

is a topological minor of G. Wagner [142] later strengthened this theorem by
showing that a graph G is non-planar if and only if K5 or K3,3 is a minor
of G. In the following, K5 and K3,3 subdivisions will be summarized under
the term Kuratowski subdivisions. We call the chains of such a subdivision
Kuratowski paths, and the nodes which remain after contracting these chains
into single edges Kuratowski nodes.

Planarity testing. Having the above classification, we now ask how we can
efficiently test membership to the class of planar graphs. The first polynomial
algorithm capable of testing planarity was due to Auslander and Parter [5] in
1961, and later corrected by Goldstein [69], which required O(|V |3) time. In
1964, Demoucron et al. [43] gave a relatively simple O(|V |2) algorithm and
Lempel et al. [107] presented another O(|V |2) algorithm three years later,
based on vertex addition. The latter became particularly important as Booth
and Luecker [16] in 1976 where able to reduce its runtime complexity to linear
time using PQ-trees and a linear-time st-numbering algorithm by Even and
Tarjan [55]. Before that, Hopcroft and Tarjan [89] in 1974 were the first to
present a linear time planarity testing algorithm, based on path addition.

Both these linear time algorithms are highly complex, and it is non-trivial
to obtain a planar embedding from them when planarity is detected: Linear
algorithms for this subsequent problem were introduced ten to twenty years
later by Chiba et al. [27] for the vertex addition algorithm and by Mehlhorn
and Mutzel [111] for the path addition algorithm.

Since these first algorithms, much effort was put into the development
of simpler algorithms with optimal runtime performance. The two currently
easiest and fastest [18] algorithms are both based on a DFS-traversal of the
graph and are due to de Fraysseix et al. [60, 61, 62] and Boyer and Myrvold [19,
20]. Both algorithms allow to easily obtain either a planar embedding if the
graph is indeed planar, or they return a Kuratowski subdivision as a witness of
the graph’s non-planarity. We will sketch the latter of these two algorithms in
Section 6.1.2 when considering an extension to it to efficiently extract multiple
such subdivisions at once.

2.3 Crossing Number

After deciding that a graph is non-planar, one might ask How non-planar is
it? The most common parameter to measure non-planarity is the crossing
number cr(G): the smallest number of crossings in any drawing of G. We
therefore obtain the decision problem Given some graph G and some integer
number k. Does there exist a drawing with at most k crossings? And we have
the corresponding optimization problem Given some graph G. What is the
smallest number of necessary crossings?

2.3. CROSSING NUMBER 13

These and related problems have been widely studied in the literature,
see [137] for an overview and [140] for an extensive bibliography. In the
following, we will restrict ourselves to simple undirected graphs. At the end
of this section, we will discuss why this is a sensible restriction.

Graph Theory. The decision variant of the crossing number problem was
shown to be NP-complete by Garey and Johnson [64] and remains NP-
complete for cubic graphs [85], i.e., for graphs where each vertex has exactly
degree 3. Not only is it a difficult problem from the perspective of complexity
theory, but also from the graph theoretical point of view: Even for seem-
ingly simple graph classes, calculating—or at least bounding—the crossing
number tends to be difficult. In particular, even for the classes of complete
and complete bipartite graphs—which have been the origin of crossing num-
ber research as described by Turán [139] over 60 years ago—we still do not
know a definitive formula which gives their crossing numbers. For both prob-
lems there are only two long-standing conjectures on their crossing number
by Zarankiewicz [147]—the proof in his paper was shown to be false in [79],
which reduced his theorem to a conjecture—and by Guy [80] for the complete
bipartite and the complete graphs, respectively.

The theoretic research on crossing numbers has divided into several di-
rections, trying to find some general idea to solve the original problem or
to improve the understanding of the fundamental difficulty of the concept.
Hence there are many papers on bounds and certain properties of crossing-
minimal drawings (e.g., [48, 125, 145]), on the crossing numbers of partic-
ular graph classes (see also Chapter 10) and their Cartesian products (e.g.,
[13, 106, 128, 148]), or on the crossing numbers with regard to oriented or
non-oriented surfaces of higher genus (e.g., [17, 68, 82, 87, 121, 135]). In
particular there is also a lot of research on “other” crossing numbers, i.e.,
where the concepts of crossings, allowed drawings or counting schemes are
modified. Some of these different crossing numbers come from a theoreti-
cal background and are often targeted to understand the traditional crossing
number better [15, 119]; others originate from practical needs in graph draw-
ing applications [21, 25].

Algorithmics. The research on algorithms to solve the crossing number
problem has long been only devoted to heuristics. The currently best known
heuristic is the so-called planarization method , introduced in [6]: We start
with a planar subgraph G′ of G and reinsert the temporarily removed edges
one after another1. Thereby we try to insert the edge e with the smallest
number of edge crossings into the planar graph G′. The emerging crossings
are then replaced by dummy vertices, and hence the new graph G′′ is again

1The problem of inserting multiple edges simultaneously is NP-complete; experiments
with ILP-based algorithms suggest that the problem is also hard in practice. See [115, 149]
for details.

14 CHAPTER 2. PRELIMINARIES: GRAPH THEORY

planar, and we can insert the next edge into G′′. We call the graph G∗

resulting from the series of these insertions a planarization of G. Using any
planar drawing of G∗, we can obtain a drawing of G by substituting the
dummy vertices by edge crossings. This drawing then has exactly as many
crossings as there were dummy vertices in G∗. Generally, we define:

Definition 2.1 (Planarization). Given a non-planar graph G = (V,E) and
a planar graph P = (V ∪ VP , EP) with deg(v) = 4 for all v ∈ VP . We say P
is a planarization of G if there exists a drawing D of G in the plane with the
following property: When replacing the crossings in D by dummy nodes of
degree 4, we obtain a planar drawing of P .

The complexity of computing a planarization of a planar graph G plus some
edge e with the minimum number of dummy nodes is still an open problem.
Therefore, the planarization method considers the related edge insertion prob-
lem instead, i.e., the problem of inserting e into G such that a combinatorial
embedding of the resulting planarization P induces a planar rotation system
for G. In other words, we force all crossings to appear on the newly inserted
edge e.

If this induced planar rotation system is fixed, we can easily compute P
by finding a shortest path in the dual graph between faces incident to e’s
respective end nodes. If the induced combinatorial embedding is not fixed,
we can still solve the problem in linear time, using a more involved algorithm
by Gutwenger et al. [77], based on SPQR-trees. Such trees represent the
triconnected structures in a graph; we will describe them in more detail in
Section 4.2.

Despite many efforts, the problem’s hardness w.r.t. approximability is still
unknown. For the general crossing number problem, the best known polyno-
mial algorithm approximates not directly the crossing number but |V |+cr(G)
within a factor of log3 |V | [54], and is restricted to graphs with bounded
degree. The only constant factor approximations for cr(G) known are for
projective [68], almost-planar, and apex graphs, all under the restriction of
bounded degrees. Interestingly, both latter algorithms are two-fold in the
following sense: On one hand, there is the polynomial algorithm to solve the
edge insertion problem to optimality [77]; on the other hand it can be shown
that an optimal solution for this problem constitutes an approximation for
almost-planar graphs (i.e., graphs G with an edge e such that G−e is planar)
with bounded degree [86, 26]. Analogously, there is a recent polynomial algo-
rithm to solve the vertex insertion problem to optimality [32] (i.e., inserting
a star—a vertex plus incident edges—into an optimally chosen embedding of
a planar graph); it can be shown that an optimal solution for this problem
constitutes an approximation for apex graphs (i.e., graphs G with a vertex v
such that G− v is planar) with bounded degree [34].

Another advancement in algorithmic theory concerning the crossing num-
ber was spear-headed by Grohe [72], who showed in 2001 that the problem

2.3. CROSSING NUMBER 15

c
d

(a) Edges do not cross mul-
tiple times.

c

(b) Adjacent edges do not
cross.

c

(c) Edges do not cross
themselves.

Figure 2.2: Properties of a good drawing.

is fixed parameter tractable (FPT) in quadratic time, i.e., one can test in
quadratic time whether a graph can be drawn with at most k crossings, if k is
fixed. Clearly, the algorithm’s running time is exponentially dependent on k.
Also due to the high constants involved, this algorithm is of pure theoretical
interest. Recently, Kawarabayashi and Reed [95] showed that the problem
is even FPT in linear time; still the algorithm remains infeasible from the
practical point of view.

In this thesis we will especially focus on practical exact algorithms to
compute the crossing number of a graph, see Section 5 and 6. For this class
of algorithms, there have not been any other algorithms before, besides from
trivial enumeration schemes which become inapplicable even for very small
graphs.

Good Drawings and Non-simple Graphs. In the paragraphs above, we
restricted ourselves to simple undirected graphs. Clearly, we can also compute
the crossing number of directed graphs by considering their shadows, as long
as there are no special properties demanded for the drawing of the arcs. The
latter is the case for upward drawings of directed graphs, where all edges (or
at least as many edges as possible) have to be drawn in an upward fashion,
i.e., while tracing the curve from the source to the target node of a directed
arc, the vertical y-coordinate must monotonously increase. In this thesis, we
do not deal with such drawings.

We say a drawing of some graph G is a good drawing , if it satisfies the
three properties below, cf. Figure 2.2. It is important to recognize that any
crossing minimal drawing is in fact a good drawing.

Edges do not cross multiple times. Assume there is some crossing min-
imal drawing D in which the edges e = {ue, ve} and f = {uf , vf} cross
at least twice. Let c and d be any two crossing points between e and f .
Assume w.l.o.g. that ue and uf are closer to c than to d when tracing
along the respective edge curves. For e, we have the curve segments
e1 between ue and c, e2 between c and d, and e3 between d and ve.
Analogously, we have the segments f1, f2, f3 for f .

We can consider a modified drawing that results from rerouting e along

16 CHAPTER 2. PRELIMINARIES: GRAPH THEORY

〈e1, f2, e3〉 and f along 〈f1, e2, f3〉. Thereby, we displace e and f by an
arbitrarily small epsilon such that they do not coincide at c and d. We
get rid of these two crossings, while all other crossings in the drawing
remain as they were. Hence D was not crossing minimal.

Adjacent edges do not cross. Assume there would exist some crossing
minimal drawing D in which the adjacent edges e and f cross. Let
v = e ∩ f be the vertex incident to both edges. As we know that edges
do not cross multiple times, let c be the unique point where e and f
cross. Hence we have the curve segments e1 and f1 of e and f , respec-
tively, between v and c. And we have the segments e2 and f2 for the
respective remaining curves.

Analogously to above, we can reroute e along 〈f1, e2〉, and f along
〈e1, f2〉. By a small enough displacement around the touching point c,
and since the remainder of the drawing remains identical, we obtain a
drawing with one crossing less. This contradicts the crossing minimality
of D.

Edges do not cross themselves. Assume there is an edge {u, v} which
crosses itself at c, and therefore forms a loop. We can simply redraw the
edge using the segments between u and c and between c and v, getting
rid of the loop-segment and the crossing at c.

Considering self-loops, it is clear that they do not influence the crossing num-
ber: We can draw a graph without its self-loops first, and then add the loops
in arbitrarily small regions incident to the corresponding vertices.

If the given graph has multi-edges, we can observe that there will always
be a crossing minimal drawing where all the separate edges are routed along
the same curve, arbitrarily close to each other: Assume a drawing where two
edges with the same end nodes are routed differently. We can reroute the
edge involved in more crossings such that it runs parallel to the other edge,
choosing the rerouted edge arbitrarily if the number of crossings is equal. This
transformation does not increase the number of crossings. Hence, when given
a multi-graph Ḡ = (V, Ē), we can instead consider a simple graph G = (V,E)
which has a single edge for each pair of nodes connected by one or more
edges in Ē. Furthermore, we define integer edge weights w : E → N which
give the number of multi-edges corresponding to an edge of E. We then have
the weighted crossing number : The cost of a crossing between the edges e
and f is w(e) · w(f), since such a drawing will result in that many crossings
when transforming G back into Ḡ. The weighted crossing number then is not
the minimum number of crossings, but the minimum sum of crossing costs.
Note that the above observations on adjacent edges and multiple crossings
still hold for the weighted crossing number.

Interestingly, most algorithms for the traditional crossing number can
also be applied to the weighted problem variant. The need for the integer

2.3. CROSSING NUMBER 17

edge weights is further strengthened by the fact that certain preprocessing
strategies, in particular the non-planar core reduction described in Section 4.2,
work more efficiently when allowing such weights. The algorithms presented
herein, in particular also the exact approaches, all allow weighted edges.

18 CHAPTER 2. PRELIMINARIES: GRAPH THEORY

Chapter 3

Preliminaries: Integer Linear
Programs

crossing: (Religious Architecture)
That part of a cruciform church in
which the transepts intersect the
nave.

This section only gives a brief overview on the key concepts of linear
and integer linear programming and corresponding solving strategies. We
thereby restrict ourselves to the minimum required in the course of this thesis.
The definitions are based on the books by Nemhauser and Wolsey [117],
Schrijver [134], and Wolsey [144], all of which give a much more in-depth
theoretical background on this topic.

The crossing number problem and related problems studied in this thesis
belong to the class of combinatorial optimization problems. Linear programs
and integer linear programs proved to be useful tools to solve many kinds
of optimization problems. Especially the latter turned out to be particularly
applicable for combinatorial optimization problems: many such problems can
be reformulated as (integer) linear programs and then solved as such.

A linear program (LP) is a system of linear inequalities and a linear ob-
jective function. Canonically we write

min{cx : Ax ≤ b, x ≥ 0} (LP)

where A is a m×n matrix, c an n-dimensional row vector, b an m-dimensional
column vector, and x an n-dimensional column vector of variables1. We say,
c is the cost vector, A the constraint matrix and b the right-hand side. The

1In most textbooks, the canonical form for LPs are maximization problems, but the
transformation into a minimization problem is easily possible by multiplying c by −1. For
consistency, we will use the latter problem type in this overview, since this thesis exclusively
deals with minimization problems.

19

20 CHAPTER 3. PRELIMINARIES: INTEGER LINEAR PROGRAMS

inequality Aix ≤ bi, where Ai is the ith row of A is called a constraint . All
points x̄ ≥ 0 which satisfy Ax̄ ≤ b are feasible solutions to the LP, and the
objective is to find a feasible solution x∗ which minimizes cx∗. The probably
most important fact for LPs is that the feasible solutions—given there are
any—form a convex polyhedron in the n-dimensional space. In the following,
we will only consider LPs with bounded polyhedrons, i.e., polytopes.

We have an integer linear program (ILP) when we add the restriction that
all variables have to take integer values:

min{cx : Ax ≤ b, x ≥ 0 integer}. (ILP)

In the following we will only consider ILPs arising from combinatorial opti-
mization, i.e., we have a finite set of feasible solutions.

When we require only some but not all variables to be integer, we obtain a
mixed integer linear program (MIP). When we require all variables to be not
only integer but either 0 or 1, we have a 0/1-integer linear program (0/1-ILP),
also known as binary integer linear program (BIP):

min {cx : Ax ≤ b, x ∈ {0, 1}n} . (0/1-ILP)

The ILPs considered in this thesis will all belong to the latter class.
Solving (polynomially sized) LPs is a very well studied topic and can be

done in polynomial time, using quite intricate methods such as the ellipsoid
method or interior point methods. Usually, most LP-solvers use the Simplex
algorithm (or variants thereof); although it has an exponential running time
in the worst-case, it is in practice not only the simplest but in particular the
fastest algorithm to solve linear programs. On the other hand, solving general
ILPs, MIPs, and 0/1-ILPs is NP-hard. Furthermore, in many applications we
deal with exponentially sized constraint matrices. Therefore, several solution
strategies have been devised, which allow to find optimal or provably near-
optimal solutions for many such problems and real-world problem instances.

Cutting Planes. Let S be the (finite) set of all integer feasible solutions to
some ILP. A usual approach is to consider not only S, but a convex polyhedron
in n-dimensional space containing all points S. It can be shown that solving
an ILP over S is equivalent to solving an LP with the same objective function
over the polyhedron given by the convex hull of S. Unfortunately, it is in
general not possible to give a polynomially sized description of this convex
hull, hence we use polyhedra which are larger and contain the convex hull.

The most commonly considered polyhedron corresponds to the LP relax-
ation, i.e., the LP resulting from ignoring the integrality constraints. In case
of a 0/1-ILP, we obtain the relaxation

min {cx : Ax ≤ b,0 ≤ x ≤ 1} . (LP relaxation of a 0/1-ILP)

21

Clearly, each feasible solution of the original ILP is also feasible in its LP
relaxation. On the other hand, there are no additional integer feasible solu-
tions. By solving such an LP relaxation, we obtain a fractional solution. The
value of the objective function for this solution is a dual bound (a lower bound
in case of minimization, an upper bound in case of maximization) to the op-
timal ILP solution. Hence, if the fractional solution turns out to be integral
for all variables, we found an optimal solution of the original ILP. If this is
not the case, one can try to identify valid cuts, also known as cutting planes,
i.e., constraints which do not influence the feasibility of any integer point but
“cut off” the current fractional solution from the feasible polyhedron. A lot
of research, starting in the 1950s by Dantzig et al. [41] and Gomory [70],
has been conducted on identifying integer-valid cuts. The concept of cuts
can be generalized by allowing the considered polyhedron to contain integer
points which are infeasible for the original ILP. This is particularly interesting
for ILPs where the constraint matrix contains too many (e.g., exponentially
many) rows, in order to solve the LP relaxation efficiently. Thereby we choose
only a subset of all constraints—the so-called active constraints—for the ini-
tially considered ILP model, and solve the corresponding LP relaxation. The
obtained solution then has to be checked whether it violates any original con-
straints not yet in the current model. The process of identifying such violated
constraints is called separation routine, and in many applications there exist
polynomial algorithms to check an exponentially sized set of inactive con-
straints. When one or more such violated constraints or integer-valid cuts
have been identified, they are added to the current model, and the problem
is resolved iteratively. The process stops when no more cuts can be found,
giving a hopefully strong dual bound for the original ILP.

Column Generation. Analogously to the concept of active and inactive
constraints, we can consider active and inactive variables. This approach is
particularly interesting when the constraint matrix contains too many (e.g.,
exponentially many) columns to solve efficiently, i.e., the ILP contains too
many variables, and most of these variables will be 0 in the optimal solution.

We start with a subset of variables, and consider all inactive variables—
the ones not in the current model—to be 0. After solving the corresponding
LP relaxation, one has to figure out if the objective function can be improved
by activating currently inactive variables. The concept of adding variables
like that is called column generation. Dantzig and Wolfe [42] presented a
general technique we call algebraic pricing2 that can be used to decide which
variables have a potential to be beneficial if included. The key idea is that
this decision is based purely on the reduced costs of the inactive variable;

2In the literature, the terms “pricing” and “column generation” are often used inter-
changeably. To clarify our distinction between the Dantzig-Wolfe machinery and other
strategies, we will use the term “algebraic pricing” for the former. See also Section 6.1.4
and the sections thereafter.

22 CHAPTER 3. PRELIMINARIES: INTEGER LINEAR PROGRAMS

in particular, we only have to look at the sign of these costs, cf. Section 6.2.
The pricing problem hence is to identify variables with negative reduced costs,
among the set of possibly exponentially many inactive variables.

In this thesis we will describe also another variant of column generation
which we call combinatorial column generation; thereby we do not use reduced
costs as the activation criterion, but some criterion based on graph theoretical
observations.

Branch-and-Bound. In general, both cutting planes and column genera-
tion will not yield optimal integer solutions. To solve ILPs to provable opti-
mality, the most common approach is to use branch-and-bound techniques.
In its pure form, the root node of the branch-and-bound tree corresponds to
solving the LP relaxation of the given ILP. We then select some variable—
e.g., one that has a fractional part near 0.5 in the solution—and generate two
subproblems: in one, the variable is fixed to 0, in the other it is fixed to 1. We
can recursively solve the corresponding LP relaxation for each subproblem,
etc. The process stops when an all-integer solution is found, and there are no
unsolved subproblems with a dual bound lower than that solution.

Usually, this approach is combined with some primal heuristic, i.e., a
traditional heuristic which gives primal bounds (i.e., upper bounds in mini-
mization problems). Often, these are LP-based heuristics, i.e., they take the
fractional solution of the current LP relaxation into account to guide the
heuristic. Note that whenever some LP relaxation in a branch-and-bound
node other than the root node gives an integer solution, this can also be
considered a heuristic solution.

The benefit of such (global) primal bounds is that we can prune all sub-
problems (and their subtrees in the branch-and-bound tree) which have a
lower bound greater or equal to this primal bound.

Branch-and-Cut(-and-Price). In 1991, Padberg and Rinaldi [122] com-
bined the cutting-plane approach with the branch-and-bound strategy, re-
sulting in a branch-and-cut algorithm. In such algorithms, we solve each
branch-and-bound node not using the pure LP relaxation of the full ILP, but
use cutting planes to obtain stronger bounds and deal with the probably oth-
erwise prohibitive number of constraints. Branch-and-cut algorithms turned
out to be very effective in practice, and lead to the most effective optimal
algorithms in many applications, cf. e.g. [4, 36, 108], sometimes even beating
non-optimal meta-heuristics in terms of running time.

The conceptual idea of branch-and-cut can be reused to give branch-and-
price algorithms—by combining branch-and-bound with column generation
techniques at the nodes—and the full combination of all three techniques in
branch-and-cut-and-price algorithms.

Part II

Theory & Algorithmics

23

Chapter 4

Preprocessing

crossing: (Genetics)
The act of mixing different species
or varieties of animals or plants and
thus to produce hybrids.

Preprocessing means to shrink or decompose a given problem into one or
more smaller subproblems which are then easier to solve. There are several
preprocessing techniques available for the crossing number problem and re-
lated problems. The transformation from a multi-graph with self-loops into a
simple graph with edge weights can also be seen as a preprocessing strategy,
as it shrinks the instance by temporarily removing the self-loops and merg-
ing parallel edges such that only a single drawing-path for each bundle of
edges has to be computed. In the following, we will always consider a simple
undirected graph G = (V,E), possibly with integer edge weights w.

4.1 Traditional Preprocessing

Let C1, C2, . . . be the connected components of G. It is clear that we can
compute cr(G) =

∑
i cr(Ci) by computing the crossing numbers of these com-

ponents individually. Hence, in the following we will restrict ourselves to G
being connected.

Let B1, B2, . . . be the blocks of G. Again, we can compute cr(G) =∑
i cr(Bi) by considering the blocks individually. Since the blocks are edge-

disjoint, we clearly have
∑

i cr(Bi) ≤ cr(G); it remains to show that we can
realize a drawing D of G by pasting optimal drawings of the blocks together
without introducing additional crossings. Let D1,D2, . . . be optimal drawings
of the blocks on spheres. Hence, by selecting any appropriate face, we can
easily generate a drawing in the plane where any prespecified node lies on
the outer face. Hence our pasting algorithms works by iteratively building
a complete drawing D: We start with an arbitrary block and fix its planar

25

26 CHAPTER 4. PREPROCESSING

drawing by choosing an arbitrary outer face. We then iteratively take a not
yet drawn block Bi which has a node v in common with the current drawing
D. We choose an arbitrary face ϕ in D incident to v and select a planar
drawing D′i of Di where v lies on the outer face. We can then paste D′i into
ϕ of D, identifying the two images of v, without introducing any crossings.

Hence, in the following we can restrict ourselves to G being biconnected.

4.2 Non-planar Core Reduction

The following preprocessing scheme is based on the analysis of the tricon-
nected components of a graph. These components form a tree of linear size
which we will discuss in the following.

4.2.1 SPR-trees

The SPQR-tree was first defined by Di Battista and Tamassia [46], based
on prior work of Bienstock and Monma [12]. It makes use of the linear-time
algorithm to decompose a biconnected graph into its triconnected components
by Hopcroft and Tarjan [88], which has later been corrected by Gutwenger
and Mutzel [75]. SPQR-trees have been used in various applications mostly
in the context of planarity and triconnectivity. One of their main properties
is that they can be seen as a representation and enumeration tool for all
exponentially many planar embeddings of a graph, although these trees have
only linear size.

We will give an alternative but compatible definition to the one usually
used, cf. [46, 143]; this will simplify our data structure, without sacrificing
any of its important properties. We consider the SPQR-trees unrooted and
undirected; the original definition roots and directs the tree choosing any leaf
arbitrarily, which is not necessary in our context. The second modification
deals with the tree’s node types, which are S,P,Q, and R. While S-, P- and R-
nodes hold structural information of the graph, Q-nodes are only redundant
representations of the graph’s edges. We will omit the latter nodes, hence
technically defining an SPR-tree. Furthermore, our definition does not require
the definitions of separation pairs, split pairs, and maximal split pairs. For
the sake of completeness, the section after this one will prove the soundness
of our alternative definition. See Figure 4.1 for an example of an SPR-tree,
according to the following definition:

Definition 4.1 (SPR-tree). Let G = (V,E) be a biconnected graph with at
least three nodes. The SPR-tree T of G is the smallest tree satisfying the
following properties:

1. Each node ν in T corresponds to a skeleton GTν = (V Tν , E
T
ν) which is a

simplification of G, as certain subgraphs are replaced by single virtual

4.2. NON-PLANAR CORE REDUCTION 27

Figure 4.1: A graph (top left), its SPR-tree (top right), and its decomposition
showing the skeletons (bottom). Virtual edges are represented by dotted lines.

edges. (We may omit the superscript in our notation, if the considered
SPR-tree is clear from the context.)

2. The tree has three different node types with specific skeleton structure:

S: The skeleton is a simple cycle—it represents a serial component.

P: The skeleton consists of two vertices and multiple edges between
them—it represents a parallel component.

R: The skeleton is a simple triconnected graph. (Since planar tricon-
nected graphs have only a single combinatorial embedding and its
mirror, this structure was originally considered a rigid structure.)

3. For the edge {ν, µ} in T we have: Gν contains a virtual edge eµ which
represents the subgraph described by Gµ, and vice versa.

4. We can obtain the original graph G by iteratively merging the skeletons
of adjacent tree nodes: For the edge {ν, µ} in T , let eµ (eν) be the
virtual edge in ν (µ) representing the subgraph described by Gµ (Gν ,
respectively). Clearly, both edges eµ and eν connect the same nodes,
say u and v. We obtain a merged graph (Vν ∪Vµ, Eν ∪Eµ \ {eµ, eν}) by
glueing the graph together at u and v and removing eµ and eν .

The non-virtual edges in a skeleton are referred to as original edges.

28 CHAPTER 4. PREPROCESSING

Observation 4.2. Each original edge appears only once over all skeleton
graphs. Each virtual edge appears in exactly two skeleton graphs.

Observation 4.3. The SPR-tree does not contain any adjacent S-nodes. Nor
does it contain adjacent P-nodes.

Proof. Assume there are two adjacent S-nodes ν and µ. When merging them
along their corresponding virtual edges, we obtain a graph which has the
structure required for an S-node. Hence we can introduce a single S-node
replacing ν and µ, obtaining a smaller SPR-tree, which is a contradiction to
the trees minimality. The analogous holds for P-nodes.

Lemma 4.4. The SPR-tree T of a biconnected graph G always exists.

Proof. Let G be the smallest graph which has to corresponding SPR-tree, i.e.,
its structure cannot be modeled by gluing S-, P- and R-skeletons together.
G cannot be triconnected—the SPR-tree would be a single R-node. Nor can
it have any triconnected component—attached to the rest of the graph by
some nodes u and v—as we could model the component via an R-node, and
replace it in G by an edge {u, v} which would give a smaller graph without
an SPR-tree. Since G is biconnected and has at least three nodes, we know
there is a cycle in G. Let 〈c1, B1, c2, B2, . . . , ck, Bk, c1〉 (k ≥ 3) be such a cycle
with ci (1 ≤ i ≤ k) being cut vertices, and Bi the blocks between them. The
blocks may be degenerated to single edges. Then we can model this cycle via
an S-node. The skeleton of this node is a cycle of k edges e1, . . . , ek: Edge ei
(1 ≤ i ≤ k) is the original edge of Bi if Bi is degenerated, or a virtual edge
representing Bi otherwise. If G cannot be represented by an SPR-tree, then
one of the blocks B1, . . . , Bk cannot be modeled by such a tree, which is a
contradiction to the minimality of G.

Lemma 4.5. The SPR-tree T of a biconnected graph G is unique.

Proof. Assume there would be two different SPR-trees T1 and T2. Since
both are minimal, they have the same size. Assume there is some R-node
with skeleton G′ = (V ′, E′) unique to T1, and assume w.l.o.g. that T2 does
not contain an R-node with a skeleton which has G′ as a subgraph. Since
G′ is triconnected and simple, we cannot find a separation pair. Hence we
cannot substitute any substructure of G′ via a single arc and still satisfy
Property 4 of the definition. Since the skeleton G′ is unique to T1, but T2

satisfies Property 4, T2 has to contain an R-node whose skeletonG′′ “overlaps”
G′, i.e., G′′ ∩G′ 6= ∅ and G′′ \G′ 6= ∅. Hence there is a connected component
C in G′′ but not in G′ which is attached to G′ via at least 3 nodes. Since
it is impossible for T1 to glue connected components attached to more than
two nodes to some other component (G′), T1 would not be a valid SPR-tree.
Hence we know that all R-nodes are both in T1 and T2.

Assume there is some P-node with skeleton G′ unique to T1 , and assume
w.l.o.g. that T2 does not contain a P-node with a skeleton which has G′ as

4.2. NON-PLANAR CORE REDUCTION 29

a subgraph. Let G′ have edges e1, . . . , ek between the nodes u and v. Since
T1 contains no adjacent P-nodes, we know the skeletons represented by any
virtual edge ei (1 ≤ i ≤ k) are either cycles or triconnected components. But
then, the substructure described by G′ can only be modeled in T2 by multiple
adjacent P-nodes—which does not happen in valid SPR-trees.

Hence, since T1 and T2 agree on the R- and P-nodes, they also agree on
the S-nodes, as they are non-adjacent and of equal number and therefore
uniquely defined.

We omit the proof of the linearity lemma, as it follows from the consistency
between our definition and the traditional SPQR-tree definition for which it
has been shown:

Lemma 4.6. The SPR-tree T of G has linear size in G and can be computed
in linear time.

4.2.2 Supplemental: Compatibility with SPQR-trees

In this section, we prove that our definition of SPR-trees is compatible to the
traditional definition of SPQR-trees—readers only interested in the reduction
strategy may safely skip this section. We will cite the definition given in [143],
describe the transformation between SPQR- and SPR-trees, and finally show
their consistency.

The following definitions from [143] are given verbatim (denoted by the
vertical line on the left-hand side border), only adjusted to match the nota-
tion used in this thesis and under omission of text explaining complementing
figures or non-crucial definitions and properties. The numbering scheme of
the definitions and observations is consistent with this thesis rather than with
the original source.

A pair {u, v} of vertices in a biconnected graph G is a split pair , if {u, v}
is a separation pair or {u, v} is an edge in G. A split component of a split
pair {u, v} is either an edge that connects u and v together with the vertices
u and v, or a maximal connected subgraph G′ of G such that removing the
vertices u and v does not disconnect G′. [. . .]

In the definition of SPQR-trees, we will need the notion of the split
graph of a split pair with respect to some edge e in a graph G. The split
graph of a split pair {u, v} is the union of all the split components of G
that do not contain the edge e. Informally, the split graph of the split pair
{u, v} is the part of the original graph that can only be reached from e via
u or v. [. . .]

We say that a split pair {u, v} is dominated by another split pair {x, y}
w.r.t. an edge e if the split graph of {u, v} w.r.t. e is a proper subgraph of
the split graph of {x, y} w.r.t. e. So if a split pair dominates another split

30 CHAPTER 4. PREPROCESSING

pair w.r.t. an edge, the dominated split pair can only be reached from the
edge by passing a vertex of the dominating split pair. [. . .]

Using the dominance relation on split pairs, we can define a maximal
split pair w.r.t. a certain edge e in a graph as a split pair that is not
dominated by any other split pair in the graph w.r.t. e. There may be
several maximal split pairs in a graph w.r.t. a certain edge. [. . .]

The nodes [of the SPQR-tree] have four different types (S, P, Q, and
R) that are explained in the definition below. Each node is associated with
a special graph which is called the skeleton of that node. We can think
of each skeleton as a simplified version of the original graph where some
subgraphs have been replaced by single edges.

The tree is constructed by recursively decomposing the original graph
into triconnected components. This decomposition starts with an arbitrary
edge of the graph which is called reference edge of the decomposition. The
node in the SPQR-tree corresponding to this edge will be the root of the
tree.

Definition 4.7 (Proto-SPQR-tree). Let G = (V,E) be a biconnected
[multi]graph and e = {s, t} ∈ E one of its edges. Get G′ be the graph
after deletion of the edge e (G′ = (V,E \ {e})). Then the Proto-SPQR-tree
T ′′ with reference edge e is defined as follows:

• Trivial case: G′ is a single edge. In this case, T ′ consists of just one
Q-node. The skeleton of this node is G itself (so it consists of two
vertices connected by two edges).

• Serial case: G′ is not biconnected and is not a single edge. So let v1

to vk−1 (with k > 1) be the cut vertices of G′. Since G is biconnected,
we know that the blocks of G′ must form a chain, so there are k blocks
B1 to Bk such that vi is only contained in the two blocks Bi and Bi+1

for 1 ≤ i ≤ k − 1. We assume that s is contained in B1 and t in Bk.
[. . .]

The root of T ′′ is an S-node µ where the skeleton S is a simple cycle
containing the vertices s, v1, . . . , vk−1, t in that order. The edge {s, t}
in S is the virtual edge of S. If we define v0 as s and vk as t, then the
edge e1 = {vi−1, vi} represents the block Bi in G for 1 ≤ i ≤ k. [. . .]

The children of µ are defined by graphs Gi that are constructed from
Bi by adding edge ei for 1 ≤ i ≤ k. Edge ei is the reference edge of
Gi. The k children of µ are the roots of the Proto-SPQR-trees for the
subgraphs Gi.

• Parallel case: The vertices s and t are a split pair of G′ with the
split components C1, . . . , Ck where k is at least two. [. . .] The root
of T ′′ is a P-node µ whose skeleton S consists of two vertices s and t

4.2. NON-PLANAR CORE REDUCTION 31

and the edges e1, . . . , ek+1. Edge ei for 1 ≤ i ≤ k represents subgraph
Ci while edge ek+1 is the virtual edge of the skeleton. [. . .]

The children of µ are defined by the graphs G1, . . . , Gk where Gi is
constructed from Ci by adding edge ei. The children of µ are the roots
of the Proto-SPQR-trees for the Gi where the reference edge is ei.

• Rigid case: Neither of the previous cases is applicable. So the pair
{s, t} is not a split pair of G′ with at least two split components
and G′ is biconnected. Then the root of T ′′ is an R-node µ. Let
{s1, t1}, . . . , {sk, tk} be the maximal split pairs of G with respect to
{s, t}. For each of these maximal split pairs {si, ti}, we define the
graph Ui as the split graph of {si, ti} with respect to {s, t}. [. . .]

The vertices in the skeleton S of µ are the vertices s and t together
with all vertices si and ti for 1 ≤ i ≤ k. Apart from the virtual edge
{s, t}, S contains k edges where edge ei connects the vertices si and
ti. Edge ei represents subgraph Ui for 1 ≤ i ≤ k. [. . .]

The children of µ are defined by the graphs G1, . . . , Gk where Gi is
constructed from Ui by adding edge ei. The children of µ are the roots
of the Proto-SPQR-trees of the Gi with reference edge ei.

Definition 4.8 (SPQR-tree). The SPQR-tree T ′ of a biconnected graph
G consists of a Q-node representing the reference edge e whose child is the
root of the Proto-SPQR-tree T ′′ for G with reference edge e.

We can observe the following properties of SPQR-trees, as given in [143].

Observation 4.9. All leaves of an SPQR-tree [. . .] are Q-nodes.

Observation 4.10. The skeletons of R-nodes are triconnected graphs.

Observation 4.11. Let G be a biconnected graph with at least two edges
and let T ′′ be the Proto-SPQR-tree of G w.r.t. reference edge e. Then there
is exactly one Q-node qi in T ′′ for each edge ei ∈ E \ {e} where ei is
contained in the skeleton Si of qi.

Observation 4.12. Let G be a biconnected graph and e1 and e2 two of
its edges. Let T ′1 be the SPQR-tree of G with reference edge e1 and T ′2 the
SPQR-tree of G with reference edge e2. Modifying T ′1 by making the Q-node
that represents e2 the root of the tree results in T ′2 .

The latter observation shows that the SPQR-tree is unique w.r.t. choosing
some Q-node as its root. Furthermore, the recursion of the above SPQR-tree
construction ensures:

32 CHAPTER 4. PREPROCESSING

Observation 4.13. The SPQR-tree as defined above has no adjacent S-nodes
and no adjacent P-nodes.

We define a transformation called Q-addition, in order to obtain a traditional
SPQR-tree from the SPR-tree T : In each Gν , we replace each original edge e
by a virtual edge eµ and insert a Q-node µ together with the tree edge {ν, µ}.
The skeleton Gµ thereby consists of the original edge e and a virtual edge with
the same start and end vertex as e which represents the rest of the graph. We
can root the tree arbitrarily by choosing any Q-node. We denote the resulting
tree by Q+

e (T), whereby e is the original edge in the root’s skeleton.
It is clear from the definitions and the Q-addition that both SPQR-tree

types are at least similar, as the structural properties of the skeletons coin-
cide. Furthermore, the SPQR-tree according to Definition 4.8 also satisfies
Property 4 of the SPR-tree definition 4.1, i.e., we can obtain the original
graph by merging the skeletons according to the tree structure. We will show
that the SPQR-tree definitions are equivalent.

Inversely to the Q-addition we can define the following Q-substraction
transformation: Start with the SPQR-tree T ′ according to Definition 4.8.
Consider T ′ undirected and prune all leaves, i.e., all Q-nodes (in the directed
tree, the Q-nodes are either the root or leaves). Finally, mark the virtual edges
which do not have a child anymore as original edges instead. We denote the
resulting graph by Q−(T ′).

Based on Observation 4.12 we can see:

Observation 4.14. Let T ′ be any SPQR-tree according to Definition 4.8.
The tree Q−(T ′) is unique and independent on the reference edge chosen for
T ′.

Observation 4.15. Let T be the SPR-tree according to Definition 4.1, and
let T ′ be an SPQR-tree according to Definition 4.8 w.r.t. an edge e′. Let e be
any edge of G. Applying the Q-substraction and the Q-addition sequentially
(or vice versa) gives the original tree:

Q+
e′(Q

−(T ′)) = T ′, Q−(Q+
e (T)) = T .

Observation 4.16. Let T ′ be an SPQR-tree according to Definition 4.8. The
tree Q−(T ′) satisfies the properties 1.–4. stated in the SPR-tree definition.

Lemma 4.17. Let T be the SPR-tree according to Definition 4.1, and let T ′
be an SPQR-tree according to Definition 4.8. The number of nodes in Q−(T ′)
is equal to the number of nodes in T .

Proof. Since T is minimal by definition, we have to show thatQ−(T ′) does not
require more nodes. Since the recursive definition of T ′ stops when finding a
triconnected graph, we know that it will not decompose them further. Hence
the number of R-nodes in T ′ cannot be larger than in T .

4.2. NON-PLANAR CORE REDUCTION 33

Analogous to the proof of Lemma 4.5, assume there is a P-node µ unique
to T . It has the skeleton G′ and the edges e1, . . . ek between u and v, none
of which represents another parallel component. Consider the recursive con-
struction of T ′, and consider the step where for the first time some edge ei
(1 ≤ i ≤ k) is selected as a reference edge. Note that this a situation has to
arise as {u, v} is a maximal split pair in G′ for any edge ei (substituting the
other edges by their respective skeletons). Assume w.l.o.g. i = 1. Then {u, v}
would be a split pair and we would thus construct a P-node with a skeleton
having the reference edge e1 and the parallel edge e2, . . . , ek. This node is
therefore equivalent to µ, which contradicts the uniqueness of µ to T .

Hence, T and T ′ agree on the R- and P-nodes. Therefore they also agree
on the S-nodes, since they are non-adjacent in T and T ′.

Putting everything together we can conclude:

Theorem 4.18. Let T be the SPR-tree according to Definition 4.1, and let
T ′ be any SPQR-tree according to Definition 4.8 w.r.t. edge e. We have

Q−(T ′) = T , Q+
e (T) = T ′.

Hence, the definitions 4.1 and 4.8 are compatible (with respect to undirected-
ness and the omission of the Q-nodes).

Proof. Due to Observation 4.16 and Lemma 4.17, we know that Q−(T ′) is a
valid SPR-tree. Since Lemma 4.5 guarantees that the SPR-tree is unique, we
have Q−(T ′) = T . The second equation then follows from Lemma 4.15.

4.2.3 Defining the Non-planar Core

Definition 4.19 (Planar 2-Component). Let s, t ∈ V be two distinct vertices,
and EH ⊂ E a proper subset of edges. We call the edge-induced subgraph
H = G[EH] a planar 2-component of G with contact points s and t, if H +
{s, t} (i.e., H plus the edge connecting the contact points) is planar and
V (H) ∩ V ′ = {s, t}. Thereby V ′ := V (G[E \ EH]) denotes the vertex set
of the graph induced by the edges not contained in H. For brevity, we also
call H a planar st-component. A single edge e = {s, t} is a trivial planar
st-component.

Intuitively, a planar st-component H is a subgraph that connects to the rest
of the graph only via its contact points. The 2-connectivity of G implies that
H + {s, t} is also 2-connected.

Definition 4.20 (Maximal Planar 2-Component). Let H be a non-trivial
planar 2-component of G. We call H a maximal planar 2-component of G, if
and only if there is no planar 2-component H∗ of G with H ⊂ H∗.

An important property of maximal planar 2-components is that they do not
overlap:

34 CHAPTER 4. PREPROCESSING

Lemma 4.21. All maximal planar 2-components of G are pairwise vertex
and edge disjoint, except for their contact points.

Proof. Consider two distinct maximal planar 2-components H1 and H2 with
contact points s1, t1 and s2, t2, respectively. Let

V̄ := (V (H1) ∩ V (H2)) \{s1, t1, s2, t2}

be the common vertices between the components, disregarding the contact
points, and assume that V̄ 6= ∅.

Since the components H1 and H2 are maximal, E1 := E(H1)\E(H2) and
E2 := E(H2)\E(H1) are non-empty sets, i.e., H2 contains edges not in H1

and vice versa. Since H2 is a planar 2-component, only its contact points are
incident to the rest of the graph. Hence E1 cannot contain edges incident to
V̄ . Analogously, neither can E2 contain any edges incident to V̄ .

Therefore, the edges in H1 and H2 incident to s1, t1 and s2, t2, respectively,
are in E(H1) ∩ E(H2). Thus H1 contains the contact points of H2 and vice
versa. Since they are both planar 2-components, they are only connected to
the rest of the graph via two contact points, hence the pairs of their respective
contact points have to be identical. But then, the union H1 ∪H2 would also
be a planar 2-component, which contradicts the maximality of H1 and H2.

When H1 and H2 are vertex disjoint, except for their contact points, they
are also edge disjoint, except for edges {s1, t1}, if s1 = s2 and t1 = t2. H1∪H2

would be a planar 2-component, which again contradicts the maximality of
H1 and H2.

The main idea of the core reduction is to replace each maximal planar st-
component by a single edge {s, t} of appropriate weight. We will analyze
such a maximal planar st-component H further, to obtain its suitable weight:

Definition 4.22 (Cut). A cut in H is a bipartition (W, W̄) of the vertices of
G. The capacity c(W, W̄) of the cut is the cardinality of the set E(W, W̄) of
all the edges connecting vertices in W with vertices in W̄ ; if we consider edge
weights, the capacity of the cut is the sum of the edge weights of E(W, W̄). We
call (W, W̄) an st-cut if s and t are in different sets of the cut. A minimum st-
cut is an st-cut of minimum capacity. We denote the capacity of a minimum
st-cut in H with mincuts,t(H).

For a planar embedding Γ of H + {s, t}, we define the traversing costs of
Γ with respect to {s, t} to be the shortest path in the dual graph of Γ that
connects the two faces adjacent to {s, t} without using the dual edge of {s, t}.
We call the corresponding list of primal edges a traversing path for s and t.
Gutwenger et al. [77] showed that the traversing costs are independent of the
choice of the embedding Γ of H. Hence, we define the traversing costs of H
with respect to {s, t} to be the traversing costs of an arbitrary embedding
Γ with respect to {s, t}. It is easy to see that a traversing path defines an
st-cut.

4.2. NON-PLANAR CORE REDUCTION 35

Figure 4.2: Proof of Lemma 4.24: selecting the edges h1, h2, . . . , h`.

Lemma 4.23. Let H be a planar st-component, and let Γ be an embedding
of H+{s, t}. If e1, . . . , ek is a traversing path of Γ with respect to {s, t}, then
there exists an st-cut (W, W̄) in H with E(W, W̄) = {e1, . . . , ek}.

Proof. By the definition of a traversing path, we can draw a Jordan curve
in a drawing realizing Γ that crosses exactly the edges e1, . . . , ek and divides
the plane into two regions: one region Rs containing s and one region Rt
containing t. Let W be the set of vertices in Rs and W̄ be the set of vertices
in Rt. Then, every edge in E′ := {e1, . . . , ek} connects a vertex in W with a
vertex in W̄ , and there is no edge in E \E′ that connects a vertex in W with
a vertex in W̄ . Hence, E′ = E(W, W̄) and (W, W̄) is an st-cut.

The following lemma shows that this st-cut is even a minimum st-cut.

Lemma 4.24. Let H be a planar st-component. Then, the traversing costs
of H with respect to {s, t} are equal to mincuts,t(H).

Proof. Let λ be the capacity of a minimum st-cut in H, and κ the traversing
costs of H with respect to {s, t}. By Lemma 4.23, we have λ ≤ κ. We have
to show that κ ≤ λ. Let Γ be an arbitrary embedding of H ′ := H + {s, t}
and let Γ∗ be the corresponding dual graph. Let (W, W̄) be a minimum
cut with s ∈ W and t ∈ W̄ . Since H is connected and the cut (W, W̄) is
minimal, removing the edges E(W, W̄) splits H into two connected graphs
Hs := H[W] and Ht := H[W̄]. We can write the edges in E(W, W̄) as
e1 = {s1, t1}, . . . , eλ = {sλ, tλ} such that si ∈ W and ti ∈ W̄ for 1 ≤ i ≤ λ.
Moreover, there is a path from s to si in Hs and from ti to t in Ht for every
1 ≤ i ≤ λ.

We show that the dual edges of (possibly a subset of) e1, . . . , eλ, and
{s, t} form a cycle ϕ0, 〈h∗1, ϕ1, h

∗
2, . . . , h

∗
` , ϕ`〉 in Γ∗. Here, h∗i denotes the dual

of the edge hi = ej (for some j), and ϕi denotes a face (i.e. a vertex in Γ∗).
Obviously, {s, t} is one of the edges hi. This implies that removing the edges

36 CHAPTER 4. PREPROCESSING

h1, . . . , h` splits H into two parts which must be Hs and Ht. It follows that
κ ≤ `− 1 ≤ λ and the lemma holds.

We start our construction with h1 := {s1, t1}. Let ϕ0 be the face right of
h1 and ϕ1 the face left of h1; compare Figure 4.2. Since H ′ is 2-connected, h1

is not a bridge1 and hence ϕ0 6= ϕ1. Since ϕ1 is also a cycle in H ′ and the cut
separates s1 and t1, there must be another edge h2 := {s2, t2} in E(W, W̄)
which is on ϕ1. Let ϕ2 be the face right of h2. We distinguish two cases. If ϕ2

is one of the faces ϕ0, ϕ1, then we have found a cycle in Γ∗ and we are done.
Otherwise, there must be an edge h3 ∈ E(W, W̄) with h3 6= h2 and h3 is on
ϕ2, since ϕ2 is a cycle. We can continue this construction until we end up
with an edge h` such that the left face of h` is one of the faces ϕ0, . . . , ϕ`−1.
The construction terminates, since E(W, W̄) is an st-cut.

Based on the above definitions and lemmata we define the non-planar core as
follows:

Definition 4.25 (Non-planar Core). The non-planar core core(G) = (C, w)
of G is a graph C with integer edge weights w such that C is a copy of G in
which each maximal planar st-component H of G is substituted with a merge
edge eH = {s, t} with weight w(eH) = mincuts,t(H), and each non-merge
edge e has weight w(e) = 1.

By Lemma 4.21, we get:

Corollary 4.26. The non-planar core of a graph G is well-defined and unique.

4.2.4 Computing the Non-planar Core

In the following, we will compute the non-planar core using SPR-trees; hence
the structure of the core’s SPR-tree is of main concern:

Observation 4.27. Let S be the SPR-tree of the non-planar core (C, w) of
G. Each leaf of S is an R-node with non-planar skeleton.

Proof. Since G, and therefore (C, w), is non-planar, S must contain a node
with non-planar skeleton. Suppose ν ∈ S is a leaf whose skeleton is planar.
Since S contains at least one further node, ν has exactly one adjacent node
µ in S. But then the expansion graph of the virtual edge of ν in Gµ is
planar and constitutes a planar 2-component. This is a contradiction to the
definition of the non-planar core. It follows that every leaf of S is a node with
non-planar skeleton. This must be an R-node, since only R-node skeletons
can be non-planar.

We give the pseudo code for computing the non-planar core (C, w) of a non-
planar graph G in Algorithm 1; Figure 4.3 gives an example of the performed

1A bridge is an edge whose removal would increase the number of connected components
in a graph.

4.2. NON-PLANAR CORE REDUCTION 37

Algorithm 1 Computation of the non-planar core.
Require: 2-connected, non-planar graph G = (V,E)
Ensure: non-planar core (C, w) of G

1: Let T be the SPR-tree of G
2: C := G
3: S := T
4: for all uninspected leaves ν of S do
5: if Gν is planar then
6: Let µ be the adjacent node of ν in S.
7: Let eν be the virtual edge in GSµ representing ν.
8: Remove ν from S: Substitute the subgraph represented by GSν by the

single merge edge eν in C.
9: end if

10: end for

11: for all ν ∈ S do
12: if ν is a P-node with multiple non-virtual edges F in GSν then
13: In C, merge the edges F into a single merge edge.
14: else if ν is S-node then
15: for all M := edges of a maximal path of non-virtual edges in GSν do
16: Let s and t be the end nodes of the path of F .
17: In C, merge the edges F into a single merge edge {s, t}.
18: end for
19: end if
20: end for

21: for all edges e ∈ C do
22: if e is a merge edge then
23: Let Te ⊂ T be the subtree which is represented by the merge edge e, i.e.,

the pruned subtree that was merged into e.
24: Let Ge be the graph corresponding to Te.
25: w(e) := traversing costs of Ge with respect to e
26: else
27: w(e) := 1
28: end if
29: end for

38 CHAPTER 4. PREPROCESSING

(a) Original graph G and its SPR-tree T .

(b) Graph and SPR-tree after pruning original leaves.

(c) Graph and SPR-tree after pruning all leaves.

(d) The non-planar-core (C, w) and its SPR-tree S obtained
after merging at S- and P-nodes.

Figure 4.3: Example of non-planar core reduction. In the SPR-trees, the small
circles represent original edges; merge edges are denoted by larger circles including
their weight; non-planar R-nodes are marked black. For the ease of understanding,
the weights are updated during the reduction, instead of afterwards, as it is done by
the algorithm.

4.2. NON-PLANAR CORE REDUCTION 39

reduction steps. The algorithm’s basic idea is as follows: We start with the
original graph G and its SPR-tree T (line 1–3), and transform both stepwise
into the resulting core and its SPR-tree. Thereby we introduce an additional
edge type—the merge edge—in addition to the original and virtual edges.
Such a merge edge is non-virtual in the context of the core’s SPR-tree S and
behaves like an original edge. It arises from merging subgraphs into a single
edge. Hence, a merge edge is virtual in the context of the original SPR-tree
T of G.

In the first loop (line 4–10), we prune the leaves of S as long as they
represent planar 2-components (i.e., S- and P-nodes, and planar R-nodes).
For each such leaf ν, the corresponding planar st-component is replaced by
a merge edge eν = {s, t} in C. Thereby, the SPR-tree shrinks by one node
(ν). Each pruning might introduce a new leaf which formerly was an inner
node of S. By holding the initial and the newly introduced leaves in a queue,
from which we iteratively extract the next uninspected leaf, this loop can be
performed in linear time.

The second loop (line 11–20) looks for remaining planar 2-components in
H: these may consist of multiple non-virtual edges within a common P-node
of S (line 12–13), or they form a chain of non-virtual edges within an S-node
of S (line 14–18).

Finally (line 21–29), for each merge edge e in the core graph we can
compute the traversing costs of the fully expanded component which was
(probably recursively) merged into e.

To prove the correctness of algorithm, we first need the following simple
observations:

Observation 4.28. Let H be a planar 2-component of G. Then, H remains
a planar 2-component

1. after replacing a planar st-component contained in H by an edge {s, t};
and

2. after replacing an edge {s, t} in H by a planar st-component.

Observation 4.29. After the first loop of Algorithm 1 (i.e., after line 10),
all leaves of S are non-planar R-nodes.

This is evident, since the loop is designed to prune all leaves as long as they
are planar. In the following lemmata we can now show that we only reduce the
core by non-trivial planar 2-components, and that in the end, the remaining
core does not contain any non-trivial planar 2-component anymore.

Lemma 4.30. Algorithm 1 substitutes only non-trivial planar 2-components
with merge edges.

Proof. This follows directly from the algorithm and its description above. In
the initial SPR-tree, each original edge is a trivial planar 2-component. We

40 CHAPTER 4. PREPROCESSING

show that it is an invariant of the algorithm that non-virtual edges represent
planar 2-components.

All modifications performed by the algorithm replace some substructure
with a merge edge in the core; furthermore, it is clear that the modifications
are such that C and S are always consistent with each other. We modify C
and S on three distinct places in the pseudo code:

Loop 1 – Pruning of S. We prune the node ν; since it is a leaf in S, we
know that all but one edge, say e, of its skeleton are non-virtual edges.
Clearly, µ is the node representing e. Let eν = {s, t} be the virtual
edge of ν in GSµ . If GSν is planar, we could clearly substitute it for eν
in GSµ , where it would be a planar st-component. Since µ represents
the whole graph, ν represents a non-trivial planar 2-component in G.
Hence it can be substituted with a merge edge, representing the planar
2-component.

Loop 2 – Merging at P-nodes. Clearly, a multi-set of edges, all incident
to two distinct vertices s and t, form a planar st-component. The algo-
rithm inspects all P-nodes to find such sets. It merges them into a single
new merge edge, which represents a non-trivial planar st-component.

Loop 2 – Merging at S-nodes. Clearly, a chain of edges connecting two
vertices s and t, form a planar st-component. The algorithm inspects
all S-nodes to find such chains. It merges all consecutive non-virtual
edges into a single new merge edge, which represents a non-trivial planar
st-component.

Lemma 4.31. Algorithm 1 substitutes all maximal planar 2-components by
merge edges.

Proof. Assume that there exists a non-trivial planar 2-component H in C. Let
s and t be the contact points of H. Let H ′ := H + {s, t} be the component
augmented by the edge {s, t}. We distinguish between three cases:

Case 1: H ′ forms the complete GSν of some node ν ∈ S. Since all leaves of
S are non-planar, ν has to be an inner node, and is therefore adjacent
to at least two other nodes in the SPR-tree. Furthermore, there are at
least two disjoint paths in S leading from ν to two distinct non-planar
leaves µ∗ and η∗. Let µ and η be the SPR-tree nodes adjacent to ν
on these paths, respectively, and let eµ and eη be the virtual edges in
GSν representing µ and η, respectively. Vice versa, let fµ and fη be the
virtual edges in GSµ and GSη corresponding to ν, respectively. Hence
in GSµ , the component represented by fµ is non-planar due to the non-
planarity of η∗; analogously in GSη , the component represented by fη is
non-planar due to the non-planarity of µ∗. In all other nodes adjacent
to ν, ν is non-planar due to µ∗ and η∗. Hence H ′ cannot resemble a
planar st-component in G.

4.2. NON-PLANAR CORE REDUCTION 41

Case 2: H ′ is a subgraph of GSν of some node ν in S. Let H be chosen
in such a way that it is the smallest among all non-trivial planar 2-
components in C. Since H ′ is connected to the rest of the graph only
via the contact points s and t, we know that H ′ cannot be 3-connected;
it would resemble a complete R-node (Case (1)). Hence, and due to our
minimality assumption, H can only be either a chain of (two) edges,
connecting s and t, or a set of (two) edges, each incident to s and t.
Since the algorithm merges all such constructs in the second loop, H
cannot exist.

Case 3: H ′ is contained in multiple skeleton graphs of S. Due to the maxi-
mality property of the SPR-tree nodes, there has to exist a non-trivial
subcomponent H0 of H, for which H0 + {s, t} is completely contained
within a single tree node ν. Its nonexistence has been shown above.

Theorem 4.32. Let G = (V,E) be a 2-connected graph. The non-planar
core of G and the corresponding edge weights can be computed in O(|V |+ |E|)
time.

Proof. The correctness of Algorithm 1 is given by Lemma 4.30, Lemma 4.31,
and the fact that the edge weights are computed correctly. We achieve linear
running time, since constructing an SPR-tree, testing planarity, and comput-
ing traversing costs [77] takes only linear time.

4.2.5 Non-planar Core and Crossing Number

We show that the crossing number of G is exactly the weighted crossing
number of the non-planar core (C, w) of G. Therefore we start with the
following lemma. It allows us to restrict the crossings in which the edges of
a planar 2-component may be involved so that we can still obtain a crossing
minimal drawing of G. A similar result has been reported by Širáň in [141].
However, as pointed out in [31], the proof given by Širáň is not correct.

Lemma 4.33. Let H = (VH , EH) be a planar st-component of G = (V,E).
There exists a crossing minimal drawing D∗ of G such that the induced draw-
ing D∗H of H has the following properties:

1. D∗H contains no crossings;

2. s and t lie in a common face ϕst of D∗H ;

3. all vertices in V \ VH are drawn in the region of D∗ defined by ϕst; and

4. there exists a set F ⊆ EH with |F | = mincuts,t(H) such that any edge
e ∈ E \ EH may only cross through all edges of F , or through none of
EH .

42 CHAPTER 4. PREPROCESSING

G'

s

t

H[W]

H[W]
_

φ1 φ2

φ3
φ4

φ5

Figure 4.4: Proof of Lemma 4.33: final drawing D∗ of G where p = 〈ϕ1, ϕ2, . . . , ϕ5〉
is the shortest path in Γ∗P ′ .

Proof. Let G′ := G[E \ EH] be the graph that results from cutting H out of
G. Let D be an arbitrary, crossing minimal drawing of G, and let DH and
D′ be the induced drawing of H and G′, respectively. We denote with P ′ the
planarized representation of G′ induced by D′, i.e., the planar graph obtained
from D′ by replacing edge crossings with dummy vertices. Let ΓP ′ be the
corresponding embedding of P and Γ∗P ′ the dual graph of ΓP ′ .

Let 〈ϕ1, . . . , ϕk+1〉 be the faces (dual nodes) of the shortest path p in Γ∗P ′
that connects an adjacent face of s with an adjacent face of t. There are
λ := mincuts,t(H) edge disjoint paths from s to t in H. Each of these λ paths
crosses at least k edges of G′ in the drawing D. Hence, there are at least λ · k
crossings between edges in H and edges in G′. We denote with Ep the set of
primal edges of the edges of p. Let D∗H be a planar drawing of H in which
s and t lie in the same face ϕst, and let F be the edges in a traversing path
in D∗H with respect to s and t. By Lemma 4.24, there is a minimum st-cut
(W, W̄) with E(W, W̄) = F , and thus |F | = λ. We can combine D′ and D∗H
by placing the drawing of H[W] in face ϕ1 and the drawing of H[W̄] in ϕk+1,
such that all the edges in Ep cross all the edges in F ; see Figure 4.4. It is easy
to verify that the conditions 1.–4. hold for the resulting drawing D∗.

The following theorem shows that it is sufficient to compute the crossing
number of the non-planar core.

Theorem 4.34. Let G be a 2-connected graph, and let (C, w) be its non-
planar core. Then,

cr(G) = cr(C, w).

4.2. NON-PLANAR CORE REDUCTION 43

Figure 4.5: Application of the core reduction to the crossing number.

Proof. “≤” Let DC be a drawing of C with minimum crossing weight. For
each merge edge e = {s, t} ∈ C, we replace e by a planar drawing De
of the corresponding planar st-component so that all edges that cross e
in DC cross the edges in a traversing path in De with respect to {s, t}.
Since w(e) is equal to the traversing costs of De with respect to {s, t}
by definition, replacing all merge edges in this way leads to a drawing
of G with cr(C, w) crossings, and hence cr(G) ≤ cr(C, w).

“≥” On the other hand, let D be a crossing minimal drawing of G. For
each merge edge e = {s, t} ∈ C, we modify D in the following way. Let
H be the planar st-component corresponding to e, and let G′ be the
rest of the graph. By Lemma 4.33, we obtain another crossing minimal
drawing of G if we replace the drawing of H with a planar drawing DH
of H such that all edges of G′ that cross edges in H will cross the edges
in E(W, W̄), where (W, W̄) is a minimum st-cut in H. If we replace DH
with an edge e = {s, t} with weight w(e) := |E(W, W̄)| = mincuts,t(H),
we obtain a drawing with the same crossing weight.

By replacing all merge edges in that way, we obtain a drawing of C
whose crossing weight is the crossing number of G. It follows that
cr(G) ≥ cr(C, w), and hence the theorem holds.

Figure 4.5 continues the example introduced in Figure 4.3; it shows a crossing
minimal drawing of the core and the induced crossing minimal drawing of the
original graph.

Further Reduction. It is a straight-forward idea to try to restrain the
computation of the crossing number to the skeletons of non-planar R-nodes
individually. To do this, it would be necessary to be able to merge two
components with the following properties:

1. Both components have exactly two vertices, say s and t, in common.

44 CHAPTER 4. PREPROCESSING

5 7

(a) Crossing minimal (component-wise): 10 and 4. (b) Crossing minimal (as a whole):
13.

Figure 4.6: Incorrectness of calculating crossing number for non-planar skeletons
separately.

2. Each component is—if augmented with a virtual edge {s, t}—non-planar
and 3-connected.

3. The crossing number of the merged component is the sum of the crossing
numbers of the components.

Observation 4.35. Let R be the set of non-planar R-nodes of the SPR-tree
of some core graph (C, w). For ν ∈ R, let Gν be the skeleton of ν and cν the
corresponding weight function, where each virtual edge has the weight of the
minimum st-cut through the represented component. In general,

cr(G) 6=
∑
ν∈R

cr(Gν , wν).

Proof. Figure 4.6(a) shows an example and thus this decomposition approach
fails. We see two components and their crossing minimal embedding, with
regards to the minimum st-cut of their counterpart that defines the weight of
the virtual edge. The two components have unique minimum st-cuts, denoted
by dashed lines.

The minimum st-cut of the left component is 7, and the minimum st-cut
of the right one is 5. The minimum crossing numbers of the left and right
components are 10 and 4, respectively, summing up to 14. The minimum
crossing number of the merged result is only 2 · 4 + 5 = 13 (Figure 4.6(b)).
The reason is that we have edges that partially cross through the counterpart
component.

4.3. NON-PLANAR CORE FOR OTHER MEASURES 45

4.3 Digression: Non-Planar Core for Other Non-
planarity Measures

The non-planar core reduction cannot only be applied with respect to the
traditional crossing number. In the following section, we will show that the
core or similar concepts also constitute a valid preprocessing for other non-
planarity measures, which are not directly related to the crossing number
concept.

4.3.1 Skewness

A well-known NP-complete problem in the context of non-planar graphs is
the Maximum Planar Subgraph (MPS) problem. Thereby we are given a non-
planar graph and ask for a planar subgraph with the largest edge cardinality
possible. For weighted graphs, we analogously ask for a planar subgraph with
largest total weight.

This optimization problem can be turned into a decision problem by asking
if there is a planar subgraph with k edges, for some parameter k. Anyhow, we
can observe that we can ask the question also the other way around: Given
a non-planar graph G, can we obtain a planar graph by deleting no more
than k′ edges? The smallest such k′ for which we can obtain such a planar
subgraph is called the skewness of G, and is denoted by skew(G). Clearly,
by solving the MPS problem, we obtain the skewness of the graph, and vice
versa.

Probably the first mention of skewness is by Kotzig [100], where he proved
formulas to directly compute the skewness of special graph classes like com-
plete and complete bipartite graphs. Since then, there has been research on
the skewness/MPS problem, partly for special graph classes, reaching from
heuristics, over approximation algorithms, to exact ILP approaches [92, 93,
113].

Interestingly, the non-planar core (C, w) has the property of preserving
the skewness of the original graph, i.e.,

Theorem 4.36. Let G be a 2-connected graph, and let (C, w) be its non-
planar core. Then,

skew(G) = skew(C, w).

In order to prove this theorem we will first show the following lemma that
establishes our main argument.

Lemma 4.37. Let G = (V,E) be a non-planar, 2-connected graph, H =
(VH , EH) a planar st-component of G, and P = (V,EP) a maximum planar
subgraph of G. Then, either H ⊆ P , or |EH\EP | = mincuts,t(H).

Proof. We distinguish two cases.

46 CHAPTER 4. PREPROCESSING

Case 1: There is a path from s to t in P which consists only of edges of H.
Consider an embedding Γ of P . If we cut out H from Γ, then s and t lie
on a common face of the resulting embedding Γ′. On the other hand,
we can construct an embedding ΓH of H in which s and t lie on the
external face. Inserting ΓH into Γ′ yields a planar embedding of P ∪H.
Since P is a maximum planar subgraph of G and H ⊆ G, it follows that
H ⊆ P .

Case 2: There is no such path from s to t. It follows that H ′ = (VH , EH ∩
EP), the subcomponent of H contained in P , has at least two con-
nected components, one containing s, and the other one containing t.
Hence, it contains at most |EH | − mincuts,t(H) edges, which implies
mincuts,t(H) ≤ |EH | − |EH ∩ EP | = |EH\EP |.
On the other hand, we can construct an embedding of H with s and t
on the external face, and remove the mincuts,t(H) edges in a traversing
path of H with respect to {s, t}. This yields an embedding Γ with
two connected components Hs and Ht with s ∈ Hs and t ∈ Ht. Let
G′ = G[E \ EH] be the rest of the graph. Since Hs has only s in
common with G′ and Ht has only t in common with G′, we can insert Γ
into any embedding of G′ ∩ P while preserving planarity. This implies
that |EH\EP | ≤ mincuts,t(H) and the lemma holds.

Using this lemma, we can show that the non-planar core reduction is invariant
with respect to skewness.

Proof of Theorem 4.36. Let G = (V,E) and C = (VC , EC).

“≤” Let PC = (VC , EP) be a maximum weight planar subgraph of C, and
let D be a drawing of PC . We have skew(C, w) = w(EC) − w(EP). We
show that we can construct a planar subgraph P ′ = (V,E′) of G with
|E| − |E′| = skew(C, w).

We consider a maximal planar st-component H of G. Let e = {s, t}
be the corresponding merge edge in C, and let DH be a planar drawing
of H in which both s and t lie in the external face. If e is in PC , we
can replace e with the drawing DH and the resulting drawing remains
planar. If e is not in PC , we remove the edges of a traversing path of
H with respect to {s, t} from DH . This yields a drawing D′H with two
connected components, one containing s, and the other one containing t.
Obviously, we can add the drawing D′H to D while preserving planarity,
and we removed exactly w(e) = mincuts,t(H) edges from G.

We perform this operation for each merge edge and finally end up with
a drawing of a planar subgraph P ′ = (V,E′) of G with |E| − |E′| =
skew(C, w).

4.3. NON-PLANAR CORE FOR OTHER MEASURES 47

Figure 4.7: Application of the core reduction to the skewness.

“≥” Let P = (V,EP) be a maximum planar subgraph of G. We have
skew(G) = |E| − |EP |. We show that we can construct a planar sub-
graph PC = (VC , E′) of C with w(EC)− w(E′) = skew(G).

Consider a maximal planar st-component H of G. By Lemma 4.37, we
know that eitherH is completely contained in P , or exactly mincuts,t(H)
many edges of H are not in EP . In the first case, we know that an st-
path is in P , and hence replacing H by the corresponding edge {s, t}
preserves planarity. In the second case, the corresponding merge edge
e = {s, t} with weight w(e) = mincuts,t(H) will not be in PC .

Constructing PC by performing this operation for each maximal pla-
nar 2-component obviously yields a planar subgraph (VC , E′) of C with
w(EC \ E′) = skew(G).

Figure 4.7 illustrates the reduction for our example graph by showing an
optimal solution for the core on the left, and the induced optimal solution
for the original graph on the right. Removing the two thick gray edges—each
with weight 1—leads to a maximum planar subgraph.

Further Reduction. Analogously to Observation 4.35 regarding the cross-
ing number, we can show that we cannot easily restrict ourselves to the non-
planar triconnected components of a graph to compute its skewness:

Observation 4.38. Let R be the set of non-planar R-nodes of the SPR-tree
of some core graph (C, w). For ν ∈ R, let Gν be the skeleton of ν and wν the
corresponding weight function, where each virtual edge has the weight of the
minimum st-cut through the represented component. In general,

skew(G) 6=
∑
ν∈R

skew(Gν , wν).

Proof. Figure 4.8(a) shows two components including the virtual edges with
the weights of their counterpart’s minimum st-cut. The shaded regions denote

48 CHAPTER 4. PREPROCESSING

410

(a) Skewness (component-wise): 1 and 4. (b) Skewness (as a whole): 4.

Figure 4.8: Incorrectness of calculating skewness for non-planar skeletons sepa-
rately.

dense, crossing-free, 3-connected subgraphs, similar to the ones in Figure 4.6.
The edges to be removed in order to get a planar subgraph are the drawn as
dashed lines.

The skewness of the left component is 1 (the choice between the two
possibilities is arbitrary). The skewness of the right component corresponds
to removing its virtual edge, and therefore has the value of 4. We can see
that we have one edge that has to be removed for both components, and
is therefore counted twice. The merged drawing has a skewness of only 4,
although the sum of the separate skewnesses would have suggested 1 + 4 = 5.
We cannot even find any set of edges which does not include the virtual edge,
has the size 5, and can be removed in order to get a planar subgraph.

4.3.2 Thickness

Definition 4.39 (Thickness). The thickness thick(G) of a graph G is the
minimum number of planar subgraphs G1, G2, . . . such that their union gives
the original graph, i.e.,

⋃thick(G)
i=1 Gi = G.

This definition was first given by Harary [83], asking for the thickness of K9.
The problem of identifying the thickness of a general graph was shown to
be NP-complete, but there are formulas to directly compute the thickness of
complete and complete bipartite graphs [3, 9, 10]. See [114] for a survey on
this non-planarity measure.

For the thickness, there is no need to consider edge weights in the core
graph. However, it is not correct to simply compute the thickness of the
non-planar core as defined before:

Observation 4.40. In general, thick(G) 6= thick(core(G)).

4.3. NON-PLANAR CORE FOR OTHER MEASURES 49

Proof. Consider the graph obtained from K9 by replacing each edge with a
chain of two edges, denoted by K [2]

9 . Then, K9 is the non-planar core of K [2]
9 .

While thick(K9) = 3, K [2]
9 has only thickness 2: The first subgraph contains

one edge of each chain, and the second subgraph contains the other edge of
each chain.

Therefore, we slightly modify C. We call a planar st-component H splittable
if it does not contain an edge {s, t}. We denote by core+(G) the graph
obtained from C by splitting every merge edge corresponding to a splittable
2-component into a 2-chain, i.e., a chain of two edges.

Theorem 4.41. Let G be a 2-connected graph, and let C′ = core+(G). Then,

thick(G) = thick(C′)

Proof. “≤” Let thick(C′) = k, and let G1, . . . , Gk be k pairwise edge disjoint
planar graphs with G1 ∪ . . . ∪Gk = C′. We consider a merge edge e =
{s, t} of the non-splitted non-planar core of G, and let H = (VH , EH)
be the corresponding planar st-component. If H is not splittable, then
e is contained in C′, and thus there is a subgraph, say Gi, containing
e. We replace e in Gi by H. It is easy to see that the resulting graph
remains planar.

Otherwise, H is splittable and e was split into two edges, say e1 = {s, d}
and e2 = {d, t}, in C′. Let Gi be the graph containing e1, and let Gj be
the graph containing e2. If i = j, then we replace e1 and e2 in Gi by H.
Otherwise, we split H into two edge disjoint graphs H1 and H2 in the
following way: Let E′ be the set of edges incident with s. Then, H1 is
the graph induced by E′, and H2 is the graph induced by EH \E′. Since
{s, t} is not an edge in H, neither t ∈ H1 nor s ∈ H2. We replace e1 by
H1 in Gi, and e2 by H2 in Gj . Each of these modifications preserves
planarity.

Applying these modifications to all merge edges of C constructs k planar
subgraphs of G whose union is G, and thus thick(G) ≤ k.

“≥” Let thick(G) = k, and let G1, . . . , Gk be k planar graphs with G1 ∪
. . . ∪ Gk = G. We consider a maximal planar st-component H. We
distinguish two cases:

(i) If there is a graph Gi such that Gi ∩ H contains a path between
s and t, then we remove all edges and vertices 6= s, t of H from
all graphs G1, . . . , Gk, and we add the edge e = {s, t} to Gi. If H
does not contain an edge {s, t}, then we also split e. Obviously,
Gi is still planar after these modifications.

50 CHAPTER 4. PREPROCESSING

(ii) Otherwise, we know that k ≥ 2, and therefore there are two graphs
Gi and Gj with i 6= j. First, we remove all edges and vertices
6= s, t of H from all graphs G1, . . . , Gk. Then, we add the edges
es = {s, d} to Gi and et = {d, t} to Gj , where d is a new dummy
vertex. If any of the end vertices of e1 (resp. e2) is not yet contained
in Gi (resp. Gj), we also add this vertex. Since d has degree 1 in
both Gi and Gj , the resulting graphs are planar.

Applying these modifications to all maximal planar 2-components con-
structs k planar graphs whose union is C′, and thus thick(G) ≥ thick(C′).

See Figure 4.7 again, for an example regarding the thickness. The two thick
gray edges that have to be removed to retrieve a planar subgraph form the
second subgraph, which leads to thick(C′) = thick(G) = 2.

Further Reduction. Having this modified core graph at hand, we can
even show a much stronger reduction in the context of graph thickness. The
central argument is:

Lemma 4.42. Let G = (V,E) be a 2-connected, non-planar graph, and let
H = (VH , EH) be a splittable maximal planar st-component of G. Then,

thick(G) = max(2, thick (G[E \ EH])) .

Proof. Let G′ = G[E \ EH]. If G′ is planar, we have thick(G′) = 1 and the
thickness of G is 2. Otherwise, let k = thick(G′) ≥ 2 and let G1, . . . , Gk be
planar subgraphs of G′ such that G1∪ . . .∪Gk = G′. We may assume w.l.o.g.
that s and t are both contained in G1 and G2. We have to show that there
are k subgraphs of G whose union yields G.

Since {s, t} /∈ H, we can split H into two edge induced subgraphs H1 =
H[E′] and H2 = H[EH \E′] of H, such that E′ consists of the edges incident
to s in H. Then, we add H1 to G1 and H2 to G2. Since H1 is only connected
with s in G1 and H2 is only connected with t in G2, both G1 and G2 remain
planar. Thus, we have constructed k planar subgraphs of G whose union
is G.

Since we know that the thickness of a non-planar graph G is at least 2,
we can simply remove splittable planar 2-components from the core of G.
The resulting graph may contain new planar 2-components, or may even
decompose into several blocks. We can treat the resulting blocks separately,
and apply the reduction method again until no further reduction is possible.

Based on this observation, we define a new graph reduction as follows.
We denote with β(G) the set of non-planar blocks of G, and with core−(G)
the non-planar core of G (without edge weights) in which every merge edge

4.3. NON-PLANAR CORE FOR OTHER MEASURES 51

corresponding to a splittable planar 2-component is removed. For a set of
non-planar, 2-connected graphs B, we define

Υ(B) :=
⋃
B∈B

β(core−(B)).

Υ(n)(·) denotes the n-fold application of the function Υ. We obtain the fol-
lowing theorem.

Theorem 4.43. Let G be a non-planar, 2-connected graph, and let n ∈ N be
an arbitrary integer. Then,

thick(G) = thick
(

Υ(n) ({G})
)
,

where thick(B) := maxB∈B thick(B) if B 6= ∅, and thick(B) := 2 otherwise.

In the example in Figure 4.3, we can remove the merge edges with weight 1
and 3, and obtain a planar graph. Hence, we directly have Υ(1)({G}) = ∅
and thick(G) = 2.

4.3.3 Coarseness

Definition 4.44 (Coarseness). The coarseness coarse(G) of a graph is the
maximum number of edge-disjoint non-planar subgraphs of G.

According to Harary [84], the origin of coarseness was a slip of tongue by Erdös
when explaining the concept of graph thickness. Nevertheless, Beineke, Guy,
and Chartrand started to study the problem and developed formulas and
bounds for complete and complete bipartite graphs [7, 8, 78, 81]. From the
point of algorithmics, not much is known about computing the coarseness
of a graph. Its complexity status is unknown, and there is no published
heuristic for the problem. An obvious approach for the latter is to iteratively
extract a Kuratowski subdivision; each such extraction can be done in linear
time [20, 60], cf. Section 6.1.2.

The definition of the coarseness of a graph can be reformulated in a rather
obvious way:

Observation 4.45. The coarseness of a graph G is the maximum number of
edge-disjoint Kuratowski subdivisions in G.

Thus, we can focus on edge-disjoint Kuratowski subdivisions. The following
lemma shows that a planar 2-component can only be (part of) a Kuratowski
path, but cannot include a Kuratowski node as an inner node. Hence it is
sufficient to represent this path by an edge within the core graph.

Lemma 4.46. Let H be a planar st-component of G, and let K be a Kura-
towski subdivision in G. Then, V (H) \ {s, t} contains no Kuratowski node
of K.

52 CHAPTER 4. PREPROCESSING

Figure 4.9: Application of the core reduction to the coarseness.

Proof. Let H = (VH , EH) and K = (VK , EK). Suppose H and K share a
vertex 6= s, t. Then, H also contains some edges of K, i.e., EH∩EK 6= ∅. Since
H is planar and K contains no cut vertex, both s and t must be contained in
K and K contains a vertex not contained in H. Hence, {s, t} is a separation
pair in K. Since K is a Kuratowski subdivision, the only possibility is that
{s, t} separates a subpath p (from s to t) from the rest of K. But then, only
p can be in H, since H + {s, t} is planar. It follows that H cannot contain a
Kuratowski node of K.

In the context of integer-weighted graphs, we have to extend the definition
of coarseness as the maximum number of subgraphs (and equivalently Ku-
ratowski subdivisions) of G such that each edge appears in at most w(e)
subgraphs. Using Observation 4.45 and Lemma 4.46, we can show that the
non-planar core is also invariant with respect to coarseness.

Theorem 4.47. Let G be a 2-connected graph, and let (C, w) be its non-
planar core. Then,

coarse(G) = coarse(C, w).

Proof. “≤” Let coarse(C, w) = k, and let K1, . . . ,Kk be k Kuratowski sub-
divisions in C such that each edge e′ of C appears in at most w(e′)
subdivisions.

Consider a merge edge e = {s, t} in C and let H be the correspond-
ing maximal planar st-component of G. By definition of the weighted
coarseness, e appears in at most w(e) of the k Kuratowski subdivisions.
On the other hand, there are w(e) edge disjoint st-paths p1, . . . , pw(e)

in H, since w(e) = mincuts,t(H). Hence, we can replace each occur-
rence of e in K1, . . . ,Kk by an st-path pi such that the resulting graphs
remain edge-disjoint.

Applying these modifications to every merge edge of C results in k
edge-disjoint Kuratowski subdivisions of G, and hence coarse(G) ≤

4.3. NON-PLANAR CORE FOR OTHER MEASURES 53

coarse(C, w).

“≥” Let coarse(G) = k, and let K1, . . . ,Kk be k edge-disjoint Kuratowski
subdivisions in G. Consider a planar st-component H in G. From
Lemma 4.46, we know for each Ki that E(H) ∩ E(Ki) is either empty
or an st-path in H. Since there are w(e) = mincuts,t(H) edge-disjoint
st-paths in H, we need at most w(e) copies of {s, t} in order to replace
all these st-paths by an edge {s, t}.
Applying these modifications to every maximal planar st-component
results in k Kuratowski subdivisions in C such that each edge e′ appears
in at most w(e′) subdivisions, and hence coarse(G) ≥ coarse(C, w).

See Figure 4.9 for the coarseness of our example graph. We find two edge-
disjoint non-planar graphs, since the vertical virtual edge has weight 2, and
can therefore be included into two distinct subgraphs. These subgraphs
directly induce two subgraphs in the original graph, and coarse(C, w) =
coarse(G) = 2.

Further Reduction. Also for the coarseness problem, we cannot simply
restrict ourselves to the non-planar R-nodes:

Observation 4.48. Let R be the set of non-planar R-nodes of the SPR-tree
of some core graph (C, w). For ν ∈ R, let Gν be the skeleton of ν and wν the
corresponding weight function, where each virtual edge has the weight of the
minimum st-cut through the represented component. In general,

coarse(G) 6=
∑
ν∈R

coarse(Gν , wν).

Proof. For the coarseness problem, the counter-example is even simpler, based
on two interweaved K3,3s; see Figure 4.10. No matter whether we allow the
use of the virtual edges within each component or not—leading to two times
coarseness 1 or 0, respectively—we will never come up with the correct overall
coarseness of 1.

4.3.4 Genus

To define the genus of a graph, we first have to discuss some topological
definitions of surfaces that we will recapitulate here briefly. In-depth discus-
sions of this topic can be found in any book on topological graph theory; an
introduction to the topic can be found, e.g., in [47].

Definition 4.49 (Surface). A surface S is a compact connected 2-manifold
without boundary. Intuitively, that is a topological space in which every point
has a neighborhood homeomorphic to the Euclidean plane R2, and each point
on S can be reached from any other point on S by moving along S.

54 CHAPTER 4. PREPROCESSING

2 2

(a) Coarseness (component-wise): 1 and 1. (b) Coarseness (as a whole): 1.

Figure 4.10: Incorrectness of calculating coarseness for non-planar skeletons sepa-
rately.

All surfaces can be categorized regarding their homeomorphisms. Disregard-
ing cross-caps, which introduce unorientable surfaces, we will only consider
orientable surfaces in the following.

Proposition 4.50 (Genus of a surface). All oriented surfaces (up to homeo-
morphism) can be generated by adding a number of handles to a sphere. The
number of handles is called genus of such a surface. The surface obtained by
adding g handles is denoted by Sg.

Adding a handle to a surface S is done as follows: First, we cut two circular
discs out of S. Then we identify the borders of these circles with each other.
Using the argument of homeomorphy, we can describe adding a handle as
adding a “tube” connecting the two circular boundaries. As a third analogy,
we can also interpret adding a handles as drilling a hole through the surface’s
body. Figure 4.112 shows example surfaces with genus 0–3.

Definition 4.51 (Genus of a graph). The genus of a graph G—denoted by
genus(G)—is the smallest genus g such that G can be drawn on Sg without
any crossings.

Identifying the genus of a graph is NP-complete, as shown by Thomassen [138].
Even though the problem looks somehow dissimiliar to the other non-planarity
measures, the non-planar core also preserves the genus of the original graph.
Furthermore, since the solution of the genus problem will add handles to the
surface, and not delete edges or allow crossings, we do not need the edge
weights for computing the core’s genus: Any handle always offers enough
space to place any number of (planarly embedded) edges onto it.

2Image sources: first row www.cims.nyu.edu/~steiner, chocolate www.magazinusa.

com, doughnut www.dadcando.com, baby cup www.rotho-babydesign.com, pretzel pdc.

wikipedia.org.

4.3. NON-PLANAR CORE FOR OTHER MEASURES 55

S0 S1 S2 S3

sphere torus double torus triple torus

chocolate doughnut baby cup pretzel

Figure 4.11: Surfaces of different genus.

Theorem 4.52. Let G be a 2-connected graph, and let C be its non-planar
core. Then,

genus(G) = genus(C).

Proof. “≤” Let g = genus(C) and let DC be a crossing-free drawing of C on
Sg. For each merge edge e = {s, t} ∈ C, let De be a planar drawing of
the corresponding planar st-component where s and t are on the outer
face.

We replace each e by the corresponding drawing De, within a small
enough neighborhood of e. This can be done, as each point on the
line representing e in DC has a neighborhood homeomorphic to the Eu-
clidean plane. Furthermore, there exists a small enough neighborhood
where the introduced drawing De does not interfere (i.e., cross) with
any other parts of the drawing DC . By these replacements, we obtain a
crossing-free drawing of G on Sg.

“≥” Let g = genus(G) and let D be a crossing-free drawing of G on Sg.
Clearly, each maximal planar 2-component H is drawn without any
crossings. Considering the induced drawing DH of the component, this
drawing might not be embedded in the plane (S0) but on some surface
Sh with 0 < h ≤ g. Yet, let s and t be the connection points of H, and
find any simple st-path p in H. We then replace H in D by the edge
e = {s, t} routed along p.

Clearly, e is the merge edge in C corresponding to H. Furthermore, e
can now be embedded in S0—the overall genus of the required surface
will hence never increase. By these replacements, we obtain a crossing-
free drawing of C on Sg.

56 CHAPTER 4. PREPROCESSING

Chapter 5

0/1-ILPs for the Crossing
Number Problem

crossing: (Entertainment)
A 2005 Canadian independent fea-
ture film by director Roger Evan
Larry, starring Sebastian Spence,
Crystal Buble, Bif Naked and Fred
Ewanuick.

In this chapter, we present two competing practical 0/1-ILP formulations
and discuss their similarities and differences. The order in this thesis cor-
responds to the chronological order of their development. While the newer
formulation is stronger in practice (cf. Chapter 8), the older has certain ad-
vantages with regard to its adaptability to other crossing number schemes
(cf. Chapter 7). Before we will discuss the two formulations, we will start with
a theoretical 0/1-ILP: Though not practical by itself, it defines the crossing
number polytope and forms the basis for both subsequent formulations. In
the remainder of this chapter, we are always given a graph G = (V,E) with
edge weights w, for which we seek the crossing number.

For a description of how to solve the presented ILPs within a branch-and-
bound framework, and in particular for the necessary separation routines and
column generation schemes, see Chapter 6.

5.1 General Concepts

Let
CP :=

{
{e, f} ∈ E{2} : e ∩ f = ∅

}
be the set of all edge pairs which may cross in any optimal drawing of G;
we know that adjacent edges will never cross. The central idea of all current

57

58 CHAPTER 5. 0/1-ILPS FOR THE CROSSING NUMBER PROBLEM

crossing minimization 0/1-ILPs is to introduce variables

x{e,f} ∈ {0, 1} ∀{e, f} ∈ CP (5.1)

which are 1 if the edges e and f cross, and 0 otherwise. The objective function
can then be written as:

min
∑

{e,f}∈CP

w(e) · w(f) · x{e,f},

i.e., we want to minimize the weight of the crossings, i.e., the crossing number
if w(e) = 1 for all e ∈ E.

It remains to model the requirement that the realization of these vari-
ables induces a feasible—i.e., planar—planarization of the given graph. The
problem is that if an edge is involved in multiple crossings, the realization
of the assignment x̄ for the variable vector x is ambiguous regarding the or-
der of the crossings on that edge: Some realizations may introduce feasible
planarizations, others may not. Formally, we can state the problem:

Definition 5.1 ((Strong) Realizability). Given a graph G = (V,E) and a set
of edge pairs R ⊆ E{2}, does there exist a drawing of G with the crossings
R?

In our context, we are given a graph G and a 0/1 vector x̄ as described above.
Does x̄ allow to a feasible planarization? This problem is called realization
problem and was shown to be NP-complete by Kratochv́ıl [101]. Hence, even
if we are given some presumably optimal solution x̄, we can in general not
even decide in polynomial time whether x̄ is at all feasible, unless P = NP .
If, however, every edge is involved in at most one crossing—or if the order of
the crossings on each edge is specified—the realization problem is solvable in
linear time: We replace each crossing by a dummy node and test for planarity
of the resulting graph.

Let F be the set of feasible (binary) solution vectors for x, i.e., each x̄ ∈ F
allows a feasible planarization. Let F̄ := {0, 1}|CP| \F be the set of infeasible
binary solution vectors. For any binary vector x̄, let k(x̄) (k ∈ {0, 1}) be the
set of edge pairs {e, f} for which x̄{e,f} = k. We can theoretically write the
exponential number of realizability constraints∑

{e,f}∈1(x̄)

x{e,f} −
∑

{e,f}∈0(x̄)

x{e,f} ≤ x̄x̄T ∀x̄ ∈ F̄ . (5.2)

Since x̄x̄T gives the number of ones in x̄, this constraint requires that at
least one x-variable is flipped either from 1 to 0 or vice versa, relative to
the forbidden vector x̄. Since the realization problem is NP-complete, we
can (unless P = NP) in general not construct all these constraints without
testing non-trivial x̄ vectors in exponential time to decide whether they are in

5.2. SUBDIVISION-BASED 0/1-ILP 59

F̄ . This renders this realizability-based exact crossing minimization (Recm)
formulation infeasible for practical use in general.

It is an open problem, whether there exists a practically relevant formu-
lation using only the variables described above, while directly including the
realizability subproblem.

Complete graphs. For complete graphs, the realization problem was re-
cently shown to be solvable in polynomial time [105]. This would allow a
branch-and-cut algorithm heuristically separating realizability constraints,
based on rounding the solution and performing the realizability check, cf. Sec-
tion 6.1. Due to the very specific nature of the single realizability constraints—
they only forbid one specific infeasible solution vector, instead of a whole class
of them—we will only obtain a very weak and slow algorithm that is infeasible
for practical use.

The proof in [105] only gives a highly complex testing procedure, but
not a description of forbidden minors or crossing configurations. The latter
could potentially be used to construct stronger linear constraints for Recm,
thus allowing a practically relevant algorithm to solve the crossing number
problem for complete graphs.

Kuratowski constraints. Despite the above setbacks, we can describe a
special variant of the realizability constraints that will form the basis of the
planarity-establishing constraints in the subsequent formulations: A so-called
Kuratowski constraint ∑

{e,f}∈CP(K)

x{e,f} ≥ 1 (5.3)

is conceptually bound to a specific Kuratowski subdivision K and requires at
least one crossing between the edges of K. Thereby, CP(K) ⊆ E(K){2} ∩CP
are the edge pairs of the subdivision, where the two edges of a pair belong to
non-adjacent Kuratowski paths.

We will revisit this formulation, the above Kuratowski constraints, and the
polytope induced by Recm in Section 5.4. Therein we will discuss the central
properties of these constraints, i.p., when they define facets in the crossing
number polytope. The following two 0/1-ILPs are based on the ideas of
Recm; their main difference to Recm and between each other is how they
circumvent the problem of ambiguously ordered multiple crossings on edges.

5.2 Subdivision-based 0/1-ILP

As described above, the realization problem becomes easy when each edge is
involved in at most one crossing. The smallest crossing number achievable
with this restriction is known as the simple crossing number scr(G). Clearly

60 CHAPTER 5. 0/1-ILPS FOR THE CROSSING NUMBER PROBLEM

Figure 5.1: The optimal drawing of a graph might require all crossings to be placed
on a single edge. The gray region denotes a dense, triconnected subgraph.

scr(G) ≥ cr(G), and there exist graphs where inequality holds, cf. Figure 5.1.
It is even NP-complete to decide whether a given graph allows such a re-
stricted drawing at all [71]. Hence, it would be invalid to restrict the solution
space in such a way, when computing cr(G).

Let ` be some heuristic solution to the crossing number optimization prob-
lem, i.e., ` ≥ cr(G). Clearly, the optimal solution will not require more than
` crossings on a single edge; on the other hand, we cannot easily restrict
the maximum number of crossings per edge any further, as there are graphs
where all the crossings lie on a single edge in any optimal solution, cf. again
Figure 5.1.

The central idea of the following ILP is to consider a transformed graph
G[`] = (V ′, E′) which we obtain from G by subdividing each edge into a chain
of ` edge segments. For linguistic simplicity, edges will in the following denote
the edges of the original graph, and the term segments will denote the edges in
the subdivided graph G[`]. Considering any optimal crossing number solution
for G, we can easily distribute the crossings over the different segments such
that we obtain:

Observation 5.2. If ` is any upper bound on the crossing number of G, the
simple crossing number of G[`] is identical to the traditional crossing number
of G, i.e.,

` ≥ cr(G) ⇒ cr(G) = scr
(
G[`]
)
.

We will not directly solve the crossing number problem on G, but the simple
crossing number problem on the subdivided graph G[`]. Hence we call our
ILP subdivision-based exact crossing minimization (Secm).

Let E′(e) be the set of segments corresponding to an edge e ∈ E, and vice
versa, E(e′) the original edge in G corresponding to the segment e′ ∈ E′. We
define CP ′ as the set of all pairs of segments which may cross in an optimal
drawing of G[`]. Clearly, segments of the same original edge will never cross,
neither will segments of adjacent original edges, cf. Section 2.3:

CP ′ :=
{
{e, f} ∈ E′{2} : E(e) ∩ E(f) = ∅

}
.

This set allows us to define our crossing variables that are 1 if the segments

5.2. SUBDIVISION-BASED 0/1-ILP 61

cross in the considered solution, and 0 otherwise:

z{e,f} ∈ {0, 1} ∀{e, f} ∈ CP ′ (5.4)

The objective function is then simply:

min
∑

{e,f}∈CP ′
w(E(e)) · w(E(f)) · z{e,f} (5.5)

And since we consider the simple crossing number on G[`] we only allow at
most one crossing on each segment; we call these the simplicity constraints:∑

f :{e,f}∈CP ′
x{e,f} ≤ 1 ∀e ∈ E′ (5.6)

Let a simple crossing set R′ ⊆ CP ′ be a set of unordered segment pairs which
define simple crossings: A drawing realizing R′ has a crossing between the
edges e and f , for each {e, f} ∈ R′. Furthermore, R′ guarantees that it
contains no pair {e, g} with g 6= f , i.e., each edge is involved in at most one
crossing. Starting from G, we can realize all crossings of R′ by modeling the
crossings via dummy nodes: For each {e, f} ∈ R′ we create a new node d
and substitute e = {ue, ve} and f = {uf , vf} by four edge segments e1 =
{ue, d}, e2 = {ve, d} and f1 = {uf , d}, f2 = {vf , d} connecting the end points
of e and f with d. We define the -̂function as ê1 = ê2 = e and f̂1 = f̂2 = f ;
for all unmodified edge segments e we have ê = e. We call the graph G[R′]
resulting from all these substitutions a partial planarization of G.

Clearly, all integer solutions z̄ of the partial ILP above induce a simple
crossing set R′[z̄], which contains a segment pair if and only if the corre-
sponding z-variable is set to 1. We write G[z̄] as a shorthand for G[R′[z̄]], the
partial planarization resulting from realizing the simple crossing set induced
by z̄. We have:

Lemma 5.3. Let z̄ be a solution of the 0/1-ILP subject to (5.4) and (5.6).
The vector z̄ corresponds to a solution of the simple crossing number problem
for G[`]—and therefore of the crossing number problem for G—if and only if
G[z̄] is planar.

We say, z̄ is realizable if G[z̄] is planar. From Kuratowski’s theorem (Section
2.2) we know that G[z̄] will be planar if and only if it contains no subdivision
of a K5 or a K3,3. For some fixed simple crossing set R′, let K be the edges
of a Kuratowski subdivision in G[R′]. Then, CP ′(K) denotes the set of all
edges pairs {ê1, ê2} ⊂ E′ with

1. {ê1, ê2} ∈ CP ′;

2. e1, e2 belong to different Kuratowski paths p1, p2 in K; and

62 CHAPTER 5. 0/1-ILPS FOR THE CROSSING NUMBER PROBLEM

3. the edges corresponding to p1 and p2 in the underlying K5 or K3,3 are
non-adjacent (i.e., they may cross in order to planarize K).

We can hence formulate the Kuratowski constraints:

∀ simple crossing sets R′, ∀ Kuratowski subdivisions K in G[R′] :∑
{e,f}∈

CP′(K)\R′

z{e,f} ≥ 1−
∑
{e,f}∈

CP′(K)∩R′

(
1− z{e,f}

)
(5.7)

Lemma 5.4. Let z̄ be a feasible solution of the ILP subject to (5.4) and
(5.6). The partial planarization G[z̄] is planar if and only if it satisfies all
Kuratowski constraints (5.7).

Proof. ⇐=: Assume there is a solution z̄ which induces a planar G[z̄] but
violates some constraint (5.7). Let R′ be the simple crossing set and K the
Kuratowski subdivision of this violated constraint, respectively. Since the z-
variables are binary, the constraint can only by violated if the left-hand side
is 0 and the right-hand side is 1. Hence the sum on the right-hand side has
to be zero, and all z-variables in that sum are therefore 1. We have:

z̄{e,f} =
{

0 if {e, f} ∈ CP ′(K) \ R′
1 if {e, f} ∈ CP ′(K) ∩R′

Recall that R′[z̄] is the simple crossing set induced by z̄. But then K is also
a Kuratowski subdivision in G[R′[z̄]] = G[z̄] and there are no crossings on
the edges of K which would planarize the non-planar structure. Hence, G[z̄]
is non-planar, which is a contradiction.

=⇒: Assume there is a solution z̄ which satisfies all constraints but does
not induce a planar G[z̄]. Then, G[z̄] contains some Kuratowski subdivision
K. We therefore consider the Kuratowski constraint for the simple crossing
set R′[z̄] and this K:∑

{e,f}∈
CP′(K)\R′[z̄]

z{e,f} ≥ 1−
∑
{e,f}∈

CP′(K)∩R′[z̄]

(1− z{e,f})

The variables on the left-hand side are all 0, and the variables on the right-
hand side are all 1. Hence the constraint is violated, which is a contradiction
to x̄ being feasible for all Kuratowski constraints.

This leads to the main theorem on the validity of our ILP:

Theorem 5.5. An optimal solution to the Secm 0/1-ILP

min

 ∑
{e,f}∈CP ′

w(E(e)) · w(E(f)) · z{e,f}, subject to (5.4), (5.6), and (5.7)


induces an optimal solution to the crossing number problem for G.

5.3. ORDERING-BASED 0/1-ILP 63

Remark 5.6. (Reducing the number of segments) When we are given some
upper bound ` on the number of crossings, we usually will know how to
obtain a planarization with that many crossings. Hence the ILP will mainly
be used to answer the following question: Is the heuristic solution optimal,
i.e. cr(G) = `, or do we have cr(G) < `? In the latter case, what does the
solution look like?

Hence we can reduce ourselves to solve the problem not on G[`] but only on
G[`−1]. If there is a solution with at most `−1 crossings, this graph will allow
a corresponding solution for the simple crossing number as well. Otherwise,
using `−1 as an upper bound of the objective function, the ILP will turn out
to be infeasible, which is a proof that ` is optimal.

5.3 Ordering-based 0/1-ILP

The second ILP solves the realization problem of multiple crossings per edge
in a different way. Instead of transforming the graph, we explicitly allow
that an edge is involved in multiple crossings, and introduce linear-ordering
subproblems on each edge. Hence we call the approach ordering-based exact
crossing minimization (Oecm).

To be able to define orderings on an edge, we need the edges to have a
direction. Therefore, we consider any arbitrary but fixed orientation of G—
for notational simplicity we will continue to denote this now-orientated graph
by G.

We can directly reuse the x-variables and the set CP of edges that may
cross in any optimal drawing of G, as originally introduced for Recm. Us-
ing the shorthand {e; f1, f2, . . .} := {{e, f1}, {e, f2}, . . .}, we can define two
variable sets:

x{e,f} ∈ {0, 1} ∀{e, f} ∈ CP (5.8)

ye,f,g ∈ {0, 1} ∀(e, f, g) ∈ E〈3〉, {e; f, g} ⊆ CP (5.9)

A variable x{e,f} specifies whether or not the edges e and f cross. A variable
ye,f,g is 1 if and only if both edges f and g cross e, and the crossing (e, f) is
nearer to e’s source node than the crossing (e, g). We say e is the base of the
variable. The objective function of our ILP is identical to Recm:

min
∑

{e,f}∈CP

w(e) · w(f) · x{e,f} (5.10)

64 CHAPTER 5. 0/1-ILPS FOR THE CROSSING NUMBER PROBLEM

Linear-Ordering Constraints. We define a set of linear-order (LO) con-
straints which ensure a consistent linear ordering over all edges:

x{e,f} ≥ ye,f,g, x{e,g} ≥ ye,f,g ∀(e, f, g) ∈ E〈3〉, (5.11)
{e; f, g} ⊆ CP

1 + ye,f,g + ye,g,f ≥ x{e,f} + x{e,g} ∀(e, f, g) ∈ E〈3〉, (5.12)
{e; f, g} ⊆ CP

ye,f,g + ye,g,f ≤ 1 ∀(e, f, g) ∈ E〈3〉, (5.13)
{e; f, g} ⊆ CP

ye,f,g + ye,g,h + ye,h,f ≤ 2 ∀(e, f, g, h) ∈ E〈4〉, (5.14)
{e; f, g, h} ⊆ CP

We introduce crossing-existence constraints (5.11) which connect the x- and
y-variables by ensuring that the x-vector specifies a crossing if the y-variables
do. Vice versa, the order-existence constraints (5.12) ensure that if x specifies
two crossings on the same edge, the y-vector has to specify their order. The
mirror-order constraints (5.13) guarantee that two crossings are uniquely
ordered if they exist. Analogously, the cyclic-order constraints (5.14) en-
sure that the orderings are acyclic. A solution (x̄, ȳ) which satisfies the LO-
constraints is called LO-feasible. Since no two edges will ever cross more than
once in any optimal solution, we have:

Proposition 5.7. Let x̄ be the assignment for the vector x, describing any
optimal solution to the crossing number problem of any graph G. There exists
an assignment ȳ for the vector y such that (x̄, ȳ) is LO-feasible.

Checking feasibility. Let (x̄, ȳ) be any integer LO-feasible solution. We
replace each crossing in G by a dummy vertex. Since we know the intended
order of these dummy vertices on each edge from the information in (x̄, ȳ), the
resulting graph is a partial planarization of G, which we denote by G[x̄, ȳ]. We
can check whether (x̄, ȳ) describes a feasible solution to the crossing number
problem by testing G[x̄, ȳ] for planarity; if it does, we say (x̄, ȳ) is realizable.
Therefore we have, similar to Lemma 5.3:

Lemma 5.8. Let (x̄, ȳ) be a feasible solution of the 0/1-ILP subject to (5.8),
(5.9) and the LO-constraints (5.11)–(5.14). The vector (x̄, ȳ) corresponds to a
solution of the crossing number problem for G if and only if G[x̄, ȳ] is planar.

Kuratowski Constraints. The final class of constraints required to fully
describe the feasible points of our ILP are the Kuratowski constraints. They
guarantee that a computed integer LO-feasible solution (x̄, ȳ) corresponds to
a feasible planarization, i.e., G[x̄, ȳ] is planar.

For any Kuratowski subdivision K, we require at least one crossing be-
tween the edges of K. Such a subdivision might not be a subgraph of the

5.3. ORDERING-BASED 0/1-ILP 65

original graph G, but might occur only in a partial planarization G[x̄, ȳ] for
some integer LO-feasible solution (x̄, ȳ).

For Secm we simply use the crossings in such a planarization to “turn off”
Kuratowski-constraints which are only valid if these crossings are selected, cf.
Section 5.2. The drawback is that we unavoidably have a multitude of very
similar constraints, where, e.g., an involved segment f1 is replaced by another
segment f2, but f̂1 = f̂2, i.e., f1 and f2 were created by the initial subdividing
of the graph and correspond to the same original edge.

We cannot reuse such a simple approach straight-forwardly for Oecm. But
now the additional effort is compensated for by constraints which correspond
to a whole class of similar Kuratowski constraints in Secm. Let (x̄, ȳ) be
an integer LO-feasible solution, and let K be a Kuratowski subdivision in
G[x̄, ȳ]. We define ZK [x̄, ȳ] as the set of crossings induced by (x̄, ȳ) whose
dummy nodes form integral parts of K: Any {e, f} ∈ ZK [x̄, ȳ] either induces
a Kuratowski node or there exist a segment e′ of e, a segment f ′ of f , and
a Kuratowski path which contains 〈e′, f ′〉 as a sub-path. We can then define
the crossing shadow (XK [x̄, ȳ],YK [x̄, ȳ]) as a pair of sets as follows:

YK [x̄, ȳ] := {(e, f, g) ∈ E〈3〉 | {e, f}, {e, g} ∈ ZK [x̄, ȳ] ∧ ȳe,f,g = 1 ∧ @{e, h} ∈
ZK : ȳe,f,h = ȳe,h,g = 1}, i.e., the triple (e, f, g) is in YK [x̄, ȳ], if no
other edge crosses e between f and g. Thus YK [x̄, ȳ] contains a minimal
description of all crossings and their orderings in K, except for crossings
of two edges that are both not involved in multiple crossings; these are
collected in the following set:

XK [x̄, ȳ] := {{e, f} ∈ ZK [x̄, ȳ] | ∀g ∈ E : {(e, f, g), (e, g, f), (f, e, g), (f, g, e)}∩
YK [x̄, ȳ] = ∅}, i.e., all singular crossings in K not contained in YK [x̄, ȳ].

Proposition 5.9. For each integer LO-feasible solution (x̄, ȳ) and each Kura-
towski subdivision K in G[x̄, ȳ] we have: The partial planarization of G only
realizing the crossings (and their order) as defined by the crossing shadow,
contains K as a Kuratowski subdivision.

Using the crossing shadow, we can now define Kuratowski constraints as∑
{e,f}∈CP(K)

x{e,f} ≥ 1−
∑

a∈XK [x̄,ȳ]

(1− xa)−
∑

b∈YK [x̄,ȳ]

(1− yb) (5.15)

for all LO-feasible integer vectors (x̄, ȳ) and all Kuratowski subdivisions K
in G[x̄, ȳ]. Here and in the sequel, CP(K) denotes the set of all edges pairs
{e1, e2} ⊂ E with

1. {e1, e2} ∈ CP;

2. e1, e2 (or segments of them, due to the introduction of dummy nodes)
belong to different Kuratowski paths p1, p2 in K; and

66 CHAPTER 5. 0/1-ILPS FOR THE CROSSING NUMBER PROBLEM

3. the edges corresponding to p1 and p2 in the underlying K5 or K3,3 are
non-adjacent (i.e., they may cross in order to planarize K).

Our constraints require at least one crossing on every Kuratowski subdivision
if it exists; this existence is detected via the crossing shadow.

Lemma 5.10. Each optimal solution to the crossing number problem of any
graph G corresponds to a feasible integer solution vector.

Proof. Clearly, any solution to the crossing number problem can be described
by an integer LO-feasible solution (x̄, ȳ) by construction, see Proposition 5.7.
It remains to show that this vector does not violate any constraint (5.15).
Assume there is some (x̄, ȳ) and K which induces a violated Kuratowski
constraint. Then∑

{e,f}∈CP(K)

x{e,f} < 1−
∑

a∈XK(x̄,ȳ)

(1− xa)−
∑

b∈YK [x̄,ȳ]

(1− yb).

Since we only consider integer solutions, the left-hand side is 0 while the
right-hand side is 1. We thus have:

∀{e, f} ∈ CP(K) : x{e,f} = 0 , and (5.16)

∀a ∈ XK [x̄, ȳ] : xa = 1 ∧ ∀b ∈ YK(x̄, ȳ) : yb = 1 .

But then, due to Proposition 5.9, the crossing shadow of (x̄, ȳ) w.r.t. K spec-
ifies exactly the crossings to induce a graph that contains K as a Kuratowski
subdivision. Due to (5.16) we know that there are no further crossings on K
which could lead to a planarization of this non-planar subgraph. This is a
contradiction to the feasibility of the original solution.

Lemma 5.11. Every feasible solution to the above ILP corresponds to a fea-
sible solution of the crossing number problem.

Proof. We can interpret any integer LO-feasible solution (x̄, ȳ) as a (partial)
planarization G′ := G[x̄, ȳ]. Assume that the solution vector satisfies all
Kuratowski constraints, but G′ is non-planar. Then there exists a Kuratowski
subdivision in G′. Let K be such a Kuratowski subdivision with the smallest
number of contained dummy nodes, and among them the one with the fewest
edges. We construct a crossing shadow (XK [x̄, ȳ],YK [x̄, ȳ]) which describes
the precise crossing configuration necessary to identify K. Since K is a non-
planar (minimal) Kuratowski subdivision, we know that there are no crossings
on any pair of CP(K). But then, constraint (5.15) is violated for K and
(XK [x̄, ȳ],YK(x̄, ȳ)), as the left-hand side sums up to 0 and the right-hand
side is 1.

We therefore obtain:

5.3. ORDERING-BASED 0/1-ILP 67

Theorem 5.12. Every optimal solution of the 0/1-ILP

min


∑
{e,f}
∈CP

w(e)w(f)x{e,f}, subj. to (5.8),(5.9),(5.11)–(5.14), and all (5.15)


yields an optimal solution of the crossing number problem.

5.3.1 Triangle Constraints

We present an additional class of constraints for the above Oecm formula-
tion. We therefore consider (undirected) 3-cycles in the graph and can define
triangle-constraints forbidding certain crossing structures on such cycles, cf.
Figure 5.2: Consider a 3-cycle of the edges e, f, g; say f is the edge incident
to e’s target node. Furthermore, consider two adjacent edges a and b, with
a common vertex p, both of which cross over e; say a crosses nearer to e’s
source node. Then {a, f} and {b, g} may only be crossings if either a also
crosses g, or b also crosses f . We can write this formally as our simple triangle
constraints:

ye,a,b + x{f,a} + x{g,b} ≤ 2 + x{f,b} + x{g,a} (5.17)

∀e = {u, v}, f = {v, w}, g = {u,w}, a = {p, q}, b = {p, q′} ∈ E such that
|{u, v, w, p, q, q′}| = 6 and e = (u, v) in the chosen orientation of G. I.e., the
triangle and a, b are disjoint and we specifically require that f specifies the
edge incident to e’s target node, considering the fixed orientation used in the
Oecm formulation.

We can extend this notion further, by requiring a and b not to be adjacent,
but only connected via a simple path P . We obtain the extended triangle
constraints:

ye,a,b+x{f,a}+x{g,b} ≤ 2+x{f,b}+x{g,a}+x{a,b}+
∑

e′∈{e,f,g}

∑
f ′∈P

x{e′,f ′} (5.18)

∀e = {u, v}, f = {v, w}, g = {u,w}, a = {p, q}, b = {p′, q′} ∈ E,∀P = (p →
p′) such that |{u, v, w, p, p′, q, q′}| = 7, e = (u, v) in the chosen orientation of
G, and P ∩{e, f, g, a, b} = ∅. The constraint describing the crossings between
a, b and the triangle is only restrictive as long as the path P does not cross
the triangle.

Theorem 5.13. The triangle-constraints (5.17) and (5.18) are valid.

Proof. Assume there is an optimal integer solution (x̄, ȳ) of the ILP without
the triangle-constraints, but it violates at least one of the triangle-constraints:
Let e, f, g, a, b be the appropriate edges of such a violated constraint. We know
that

ye,a,b = x{f,a} = x{g,b} = 1 and x{f,b} = x{g,a} = x{a,b} = 0.

68 CHAPTER 5. 0/1-ILPS FOR THE CROSSING NUMBER PROBLEM

a b

u

q'
q

p

v

w

e

g

f

Rf

Rf
_

Figure 5.2: A triangle constraint forbids illegal crossing configurations for edges
crossing over a triangle.

Furthermore, x{e′,f ′} = 0 for all {e′, f ′} ∈ {e, f, g}×P , if the constraint is an
extended triangle constraint. Consider a drawing of the solution (x̄, ȳ) on a
sphere and let R be the region defined by the 3-cycle {e, f, g} that does not
include p. If the constraint is extended, we also know that p′ does not lie in
R, since the path P = (p→ p′) does not cross the 3-cycle.

Since any pair of edges crosses at most once, we have: Any edge starting
outside of R which crosses over one of these three edges, say e, either (i) does
not cross over f nor g and ends inside of R, (ii) crosses exactly one of {f, g},
and ends outside of R, or (iii) crosses f and g and ends inside of R. For
the edge b, we have case (ii), and hence b partitions the region R into two
subregions Rf and R̄f , the former being the region which borders the edge
f . We know that a crosses e and f . Assume w.l.o.g. that a is oriented from
p to q. The crossing with f may occur before or after the crossing with e:

ya,e,f = 1: The edge a crosses e first, and f later. Since ye,a,b = 1, we know
that a has a crossing with e before e is crossed by b. Hence a starts
from outside of R, crosses over e and enters the region R̄f . It cannot
cross e twice in an optimal drawing, and we know that a does not cross
g nor b. Hence a cannot cross f which is a contradiction to x{f,a} = 1.

ya,f,e = 1: The edge a crosses f first, and e later. But, starting from outside
of R, after crossing f , a enters the region Rf . It cannot cross f twice in
an optimal drawing, and we know that a does not cross g nor b. Hence,
in order to leave Rf , a has to cross over e after e was crossed by b,
which is a contradiction to ye,a,b = 1.

Observation 5.14. There are only polynomially many simple triangle con-
straints. Hence they can be separated in polynomial time.

5.4 Facets in the Crossing Number Polytope

In this section, we will study some polyhedral properties of the crossing num-
ber polytope. Both above formulations were centered around the same con-

5.4. FACETS IN THE CROSSING NUMBER POLYTOPE 69

cept, denoted by Recm, of having variables to describe pairs of crossing edges,
cf. Section 5.1.

Definition 5.15 (Crossing Number Polytope). Let F be the assignments of
the x-variables, which correspond to feasible solutions to the crossing number
problem. The convex hull of the points in F then forms the crossing number
polytope

Pcr := conv{x ∈ F}.

As stated before, it is an open problem whether there exists a practically
relevant formulation using only these variables, while directly including the
realizability subproblem. We can look at our above formulations from the
polyhedral point of view:

Secm: The formulation expands the given graph in order to not consider
the crossing number polytope directly; instead it considers the higher-
dimensional simple crossing number polytope Pscr, and uses the projec-
tion

projz→x :
∑

{e′,f ′}∈CP′,
e′∈E′(e),
f ′∈E′(f)

z{e′,f ′} = x{e,f} ∀{e, f} ∈ CP (5.19)

to obtain a solution within Pcr.

Oecm: This formulation on the other hand, cuts Pcr with |E| linear-ordering
polytopes, in order to give a description of the feasible solutions.

In the following, we will show the strength of Kuratowski constraints in the
context of complete and complete bipartite graphs. Recall that, theoretically,
our ILP allows us to expand any given graph G = (V,E) into a complete
graph by adding the edges Ē = V {2} \ E and setting w(e) = 0 for all e ∈ Ē.
We could then solve the problem on a weighted complete graph K|V |.

We use the abbreviations CPn or CPn,m for CP if considering Kn or Kn,m,
respectively.

Definition 5.16 (Complete (Bipartite) Crossing Number Polytope). Let Fn
be the set of all feasible solutions for Kn in terms of x variables, i.e., for each
x̄ ∈ Fn there exists a drawing of Kn which has exactly the crossings described
by x̄. Analogously, let Fn,m be the feasible solutions with respect to drawings
of Kn,m. As special variants of Pcr we can then define the complete crossing
number polytope

Kn := conv{x ∈ Fn},

and the complete bipartite crossing number polytope

Kn,m := conv{x ∈ Fn,m}.

70 CHAPTER 5. 0/1-ILPS FOR THE CROSSING NUMBER PROBLEM

We write Vn and En for the nodes and edges of the complete graph Kn,
respectively. Analogously, we write Vn and V ′m for the node partitions of the
graph Kn,m, with |Vn| = n and |V ′m| = m, and En,m for its edges.

A central constraint of all above formulations are the Kuratowski con-
straints. We will consider these constraints in the realm of the pure x-variable
space. Furthermore, we can expand these constraints to variants where we
consider more complex non-planar graphs than only K5 and K3,3 subgraphs.

Definition 5.17 (K5-constraint). Fix some n > 5 and consider the complete
graph Kn =

(
Vn, En = V

{2}
n

)
. For each W ∈ V {5}n we define a K5-constraint

CW5 : ∑
{e,f}∈CPn,
e,f⊂W

x{e,f} ≥ 1.

Definition 5.18 (Km-constraint). Fix some n > 5 and consider the complete
graph Kn =

(
Vn, En = V

{2}
n

)
. Assume we know cr(Km), for some 5 ≤ m < n,

then for each W ∈ V {m}n we define a Km-constraint CWm as a generalization
of the K5 constraints: ∑

{e,f}∈CPn,
e,f⊂W

x{e,f} ≥ cr(Km).

It is obvious that a Km subgraph, m ≥ 3, can never be found in complete
bipartite graphs. On the other hand, K3,3 subgraphs occur in both complete,
and complete bipartite graphs. This is of particular interest since in most
non-planar real-world graphs, K3,3 subdivisions are much easier to find (from
the practical point of view) than K5 subdivisions: Non-planarity witnesses of
planarity tests are much more likely to be subdivisions of K3,3 rather than
of K5 [133]. Even in complete graphs Kn, there are only

(
n
5

)
K5 subgraphs,

while we can enumerate 10
(
n
6

)
K3,3 subgraphs.

Definition 5.19 (K3,3-constraint (in Kn)). Consider the complete graph
Kn = (Vn, En = V

{2}
n) for some fixed n. For each W ∈ V

{3}
n and W ′ ∈

(Vn \W){3} we define a K3,3-constraint CW,W
′

3,3 :∑
{e,f}∈CPn

|e∩W |=|e∩W ′|=|f∩W |=|f∩W ′|=1

x{e,f} ≥ 1.

Definition 5.20 (K3,3-constraint (in Kn,m)). Consider the complete graph
Kn,m = (Vn∪̇V ′m, En,m = {{u, v} : u ∈ Vn, v ∈ V ′m}) for some fixed n and m.
For each W ∈ V {3}n and W ′ ∈ V ′m

{3} we define a K3,3-constraint CW,W
′

3,3 :∑
{e,f}∈CPn,m
e,f⊂(W∪W ′)

x{e,f} ≥ 1.

5.4. FACETS IN THE CROSSING NUMBER POLYTOPE 71

We will show the strength of the above constraints, in particular that they
are facet defining in the following settings:

• K5-constraints define facets for Kn (Section 5.4.2)

• Km-constraints define facets for Kn (Section 5.4.3)

• K3,3-constraints define facets for Kn,m (Section 5.4.4)

• K3,3-constraints define facets for Kn (Section 5.4.5)

Although the second item also induces the first item, we prove the special
case K5 separately beforehand, as it showcases the strategy used in all the
subsequent proofs in the most simple way. This overall structure is described
in detail in the section hereafter. The proofs themselves will then heavily
reference the argumentation outlined as our proving strategy; they basically
only fill in the gaps left by the overall strategy.

5.4.1 Proving strategy

The general proof structure is as follows:

Fixing. We fix the considered input graph G and any arbitrary Kuratowski
constraint C of the considered types. Such a constraint can be written
as cTx ≥ ĉ. We define Xc = {x ∈ F | cTx = ĉ} as the set of feasible
solutions satisfying C with equality. Note that c is a binary vector, i.e.,
each entry in c is either 0 or 1.

Let there be a valid inequality A with aTx ≥ â for which Xc ⊆ Xa =
{x ∈ Fn | aTx = â} holds.

(Aim.) In order to show that C defines a facet, the remaining parts of the
respective sections focus on showing that for any such inequality A we
have a{e,f} = λc{e,f} and â = λĉ for some λ > 0. We can show this
by proving that for all pairs {e, f} with c{e,f} = 0, we have a{e,f} = 0;
furthermore all non-zero coefficients of a have to be identical.

Partitioning. We start with partitioning the edges of the underlying com-
plete (bipartite) graph into sets according to their incidence with W
(and W ′). These edge sets are denoted by S?, ? ∈ I, over some suitable
index set I.

This partitioning also induces a natural partitioning of the crossing pairs
in CP, according to the memberships of their edges: A pair {e, f} ∈ CP
belongs to the partition P?,• if e ∈ S? and f ∈ S•, or vice versa. To
avoid ambiguities, we assume that the index set I is ordered and require
that ? ≤ •, using this ordering.

We will always observe: There exists exactly one index † ∈ I such that
all variables corresponding to P†,† have a non-zero coefficient in C. For
all other partitions all induced coefficients in C are zero.

72 CHAPTER 5. 0/1-ILPS FOR THE CROSSING NUMBER PROBLEM

Lemma: Permutation Classes. The next step of the proof is to establish
a lemma describing permutation classes: We prove—by the argument of
permuting the index-labels of the vertices in the given complete (bipar-
tite) graph—that all edge pairs {e, f} belonging to the same partition
P?,• form an equivalence class with respect to their coefficients a{e,f},
i.e., they have to have a common coefficient in A, denoted by α?,• in
the following.

Theorem: Facet. The final step in each proof is performed as follows: Step
by step we fix a partition P?,• 6= P†,†. We consider two (similar) feasible
solutions that satisfy C with equality, and investigate the difference of
their crossings. The solutions are chosen in such a way that they only
differ in the number of crossings of type P?,•, thus inducing α?,• = 0 in
order for both solutions to also satisfy A with equality—as required by
the initial declaration of A.

Clearly, in later steps the considered drawings may also differ in the
number of other types of crossings, if prior steps already showed that
the coefficients for these crossing types are zero.

After performing this step for each permutation class P?,• 6= P†,†, we
know that α?,• = 0 unless ? = • = †. Furthermore we know that
all crossing pairs in P†,† have a common coefficient α†,† 6= 0. Hence
the inequality A can only be a positive multiple of C. Since A is not
stronger than C, each constraint of the considered type defines a facet
in the crossing number polytope of the given graph.

5.4.2 K5-constraints in Kn

Please refer to Section 5.4.1 for the overall structure of the proof.

Fixing 5.21. Fix any n > 5 and W ∈ V {5}n . This induces:

G = Kn

C = CW5 (K5-constraint)

c{e,f} =
{

1 if e, f ⊂W,
0 else.

∀{e, f} ∈ CPn

ĉ = 1
F = Fn

Partitioning 5.22. We can partition all edges e ∈ En using the ordered
index set I = 〈0, 1, 2〉, based on which nodes they connect:

e ∈ Si ⇐⇒ |e ∩W | = i.

Considering the induced partitions of CPn, we have † = 2, i.e., c{e,f} = 0 for
all {e, f} 6∈ P2,2, and 1 otherwise.

5.4. FACETS IN THE CROSSING NUMBER POLYTOPE 73

Lemma 5.23 (Permutation classes). For all i, j ∈ I, i ≤ j, we have:

{e, f}, {g, h} ∈ Pi,j =⇒ a{e,f} = a{g,h}

Proof. W.l.o.g. assume that W = {v1, . . . , v5}. Consider a feasible solution as
shown in Figure 5.3(a). The edges S2, over which CW5 is defined, are drawn
with bold lines. Clearly, this solution satisfies CW5 with equality. Further-
more, CW5 has exactly one variable for each possible optimal K5 solution and
only one of its variables can be 1 in any solutions of Xc.

We can relabel the nodes W arbitrarily in Figure 5.3(a), without violating
the feasibility of the solution, nor the equality of CW5 . We do also not violate
these properties by any permutation of the node labels of V \W .

Take any two edges e and f of the same partition Si. Note that there
is a permutation of the node labels of V and a permutation of the node
labels of V \W in Figure 5.3(a), such that these two edges switch their roles.
Considering all possible label permutations on W and on V \W , A cannot
distinguish between two edges if they belong to the same partition Si for
some i, because it has to satisfy all solutions arising from all possible label
permutations on W and on V \W with equality. Since A can only differentiate
between different partitions Si, it can also only differentiate between different
partitions Pi,j of the crossing pairs.

Theorem 5.24. Fix any n > 5 and W ∈ V {5}n . CW5 is a facet in Kn.

Proof. Again, we assume w.l.o.g. that W = {v1, . . . , v5} and consider a first
feasible solution as shown in Figure 5.3(a). We call the drawing of the path
v5, v6, . . . , vn the spine of the drawing.

α0,1 = 0 : cf. Figure 5.3(b). We can redraw the edge {v6, vn} ∈ S0 (bold,
dashed) on the left side of the spine instead of the right side, and still
obtain a solution in Xc. Thereby we only change crossings of type P0,1.
Since we remove more crossings then we introduce, and all coefficients
of these crossings are identical, we have: α0,1 = 0.

α0,0 = 0 : cf. Figure 5.3(c). We can redraw the edge {v6, vn−1} ∈ S0 on the
left side of the spine instead of the right side, and still obtain a solution
in Xc. We remove more P0,1 crossings than we introduce, but we already
know that α0,1 = 0. Hence it remains to observe that the redrawing
removes a P0,0 crossings and we therefore have: α0,0 = 0.

α1,2 = 0 : cf. Figure 5.3(d). We can redraw the edge {v4, vn} ∈ S1 on the
left side of the spine instead of the right side, and let it cross through
multiple edges of S2. We still obtain a solution in Xc. We introduce
more P1,2 crossings than we remove and hence we have: α1,2 = 0.

74 CHAPTER 5. 0/1-ILPS FOR THE CROSSING NUMBER PROBLEM

(a) Drawing scheme of Kn

1 2

43

n-1

5

7

6

n

(b) a{e,f} = 0, ∀{e, f} ∈ P0,1

1 2

43

n-1

5

7

6

n

(c) a{e,f} = 0, ∀{e, f} ∈ P0,0

1 2

43

n-1

5

7

6

n

(d) a{e,f} = 0, ∀{e, f} ∈ P1,2

1 2

43

n-1

5

7

6

n

(e) a{e,f} = 0, ∀{e, f} ∈ P1,1

1 2

43

n-1

5

7

6

n

(f) a{e,f} = 0, ∀{e, f} ∈ P0,2

Figure 5.3: K5-constraints are facet-defining in Kn.

5.4. FACETS IN THE CROSSING NUMBER POLYTOPE 75

α1,1 = 0 : cf. Figure 5.3(e). We can redraw the edge {v4, vn} ∈ S1 on the left
side of the drawing instead of the right side of the spine. Thereby it
crosses multiple edges of S2 but no S1 edges. We still obtain a solution
in Xc. We already know that α1,2 = 0 and can concentrate on the
P1,1 crossings. We remove such crossings without introducing any, and
conclude: α1,1 = 0.

α0,2 = 0 : cf. Figure 5.3(f). We can redraw the edge {v6, vn} ∈ S0 on the left
side of the drawing instead of the right side of the spine. Thereby it
crosses multiple edges of S2 but no S1 edges. We still obtain a solution
in Xc. We already know that α0,1 = 0 and can concentrate on the
P0,2 crossings. We introduce such crossings without removing any, and
conclude: α0,2 = 0.

5.4.3 Km-constraints in Kn

Please refer to Section 5.4.1 for the overall structure of the proof.

Fixing 5.25. Fix any m ≥ 5, n > m, and W ∈ V {m}n . This induces:

G = Kn

C = CWm (Km-constraint)

c{e,f} =
{

1 if e, f ⊂W,
0 else.

∀{e, f} ∈ CPn

ĉ = cr(Km)
F = Fn

Partitioning 5.26. We can partition all edges e ∈ En using the ordered
index set I = 〈0, 1, 2〉, based on which nodes they connect:

e ∈ Si ⇐⇒ |e ∩W | = i.

Considering the induced partitions of CPn, we have † = 2, i.e., c{e,f} = 0 for
all {e, f} 6∈ P2,2, and 1 otherwise.

Lemma 5.27 (Permutation classes). For all i, j ∈ I, i ≤ j, we have:

{e, f}, {g, h} ∈ Pi,j =⇒ a{e,f} = a{g,h}

Proof. Consider a feasible solution as shown in Figure 5.4(a). The nodes
W lie in the cyclic shaded region on the left-hand side of the drawing. We
assume that this region contains an optimal drawing of the Km induced by
W . Since we do not know the exact drawing for arbitrary m, we only visualize
a couple of S2 edges; our proof will not need the knowledge of the exact edge
placements. We note that for any drawing of the Km, we can choose an outer
face, where at least one nodes lies on the outside of the Km-drawing: In our

76 CHAPTER 5. 0/1-ILPS FOR THE CROSSING NUMBER PROBLEM

drawing we assume that the left-most node lies on the outside, denoted by
its placement on the circle’s border; for all other nodes we do neither assume
that they lie on the outside, not that they do not.

All nodes V \ W are lined up on the left border of rectangular shaded
region on the right-hand side of the drawing: The region itself contains all S0

edges. Finally, the S1 edges (connecting W with V \W) are partially drawn
using thick gray edges, denoting that all the considered edges are drawn in
parallel without crossings, until they split up into normal thin black lines.
All crossings between S1 edges are in the shaded region at the center of the
drawing.

Clearly, this solution satisfies CWm with equality.
We can label the nodes W arbitrarily in Figure 5.4(a), without violating

the feasibility of the solution, nor the equality of CWm . We do also not violate
these properties by any permutation of the labels of the nodes of V \W .

Take any two edges e and f of the same partition Si. Note that there
is a permutation of the node labels of V and a permutation of the node
labels of V \W in Figure 5.4(a), such that these two edges switch their roles.
Considering all possible label permutations on W and on V \W , A cannot
distinguish between two edges if they belong to the same partition Si for
some i, because it has to satisfy all solutions arising from all possible label
permutations on W and on V \W with equality. Since A can only differentiate
between different partitions Si, it can also only differentiate between different
partitions Pi,j of the crossing pairs.

Theorem 5.28. Fix any m ≥ 5, n > m, and W ∈ V {m}n . CWm is a facet in
Kn.

Proof. Again, we consider a first feasible solution as shown in Figure 5.4(a).
Assume w.l.o.g. that W = {v1, . . . , vm}, and that v1 is a node on the outside
of the drawing induced by W .

α0,1 = 0 : cf. Figure 5.4(b). We can reroute the S0 edge {vm+1, vn} which
originally has no crossings, such that it crosses over S1 edges, but no
other edges. Hence we have: α0,1 = 0.

α0,0 = 0 : cf. Figure 5.4(c). We can reroute the S0 edge {vn−2, vn} such that
it crosses S1 edges instead of S0 edges. We already know for the former,
that their coefficients are zero. The introduction of the latter crossings
therefore induces: α0,0 = 0.

α1,1 = 0 : cf. Figure 5.4(d). We can reroute the S1 edge {v1, vm+1} such that
it does not cross any S1 edge anymore, without introducing any new
crossings. Therefore we obtain: α1,1 = 0.

5.4. FACETS IN THE CROSSING NUMBER POLYTOPE 77

1

m+1

n

2

m

(a) Drawing scheme of Kn (b) a{e,f} = 0, ∀{e, f} ∈ P0,1

(c) a{e,f} = 0, ∀{e, f} ∈ P0,0 (d) a{e,f} = 0, ∀{e, f} ∈ P1,1

(e) a{e,f} = 0, ∀{e, f} ∈ P1,2 (f) a{e,f} = 0, ∀{e, f} ∈ P0,2

Figure 5.4: Km-constraints are facet-defining in Kn.

78 CHAPTER 5. 0/1-ILPS FOR THE CROSSING NUMBER PROBLEM

α1,2 = 0 : cf. Figure 5.4(e). We can reroute the S1 edge {v1, vm+1} such that
it crosses through the graph induced by W , i.e., through S2 edges.
Thereby, the number of crossings with S1 edges also changes, but we
already know that these coefficients are zero. We therefore have: α1,2 =
0.

α0,2 = 0 : cf. Figure 5.4(f). Finally, we can reroute the crossing free S0 edge
{vm+1, vn} such that it crosses through some S1 and S2 edges. Therefore
we have to reroute some other S1 edges beforehand, to avoid crossings
of adjacent edges. These rerouted edges may cross each other, but we
already know that α1,1 = 0. Furthermore we know that α0,1 = 0 and
we can therefore deduce: α0,2 = 0.

5.4.4 K3,3-constraints in Kn,m

Please refer to Section 5.4.1 for the overall structure of the proof.

Fixing 5.29. Fix any n,m ≥ 3 with n+m > 6, W ∈ V {3}n , and W ′ ∈ V ′m
{3}.

This induces:

G = Kn,m

C = CW,W
′

3,3 (K3,3-constraint)

c{e,f} =
{

1 if e, f ⊂ (W ∪W ′),
0 else.

∀{e, f} ∈ CPn,m

ĉ = 1
F = Fn,m

Partitioning 5.30. We can partition all edges e ∈ En,m using the ordered
index set I = 〈0, 1, 1′, 2〉, based on which nodes they connect:

e ∈ S0 ⇐⇒ |e ∩ (W ∪W ′)| = 0,
e ∈ S1 ⇐⇒ |e ∩W | = 1, |e ∩W ′| = 0,
e ∈ S1′ ⇐⇒ |e ∩W | = 0, |e ∩W ′| = 1,
e ∈ S2 ⇐⇒ |e ∩ (W ∪W ′)| = 2.

Considering the induced partitions of CPn,m, we have † = 2, i.e., c{e,f} = 0
for all {e, f} 6∈ P2,2, and 1 otherwise.

Lemma 5.31 (Permutation classes). For all i, j ∈ I, i ≤ j, we have:

{e, f}, {g, h} ∈ Pi,j =⇒ a{e,f} = a{g,h}

Proof. W.l.o.g. assume that W = {v1, . . . , v3} and W ′ = {v′1, . . . , v′3}. Con-
sider a feasible solution as shown in Figure 5.5(a). The edges of S2, over which
CW,W

′

3,3 is defined, are drawn with bold lines. Clearly, this solution satisfies

5.4. FACETS IN THE CROSSING NUMBER POLYTOPE 79

CW,W
′

3,3 with equality. Furthermore, CW,W
′

3,3 has exactly one variable for each
possible optimal K3,3 solution. We can relabel the nodes W arbitrarily in
this drawing, without violating the feasibility of the solution nor the equality
of CW,W

′

3,3 . The same holds for all permutations of the nodes W ′. We do also
not violate these properties by any permutation of the labels of the nodes of
Vn \W and of the nodes V ′m \W ′.

These permutations allow us to generate a relabeled drawing such that any
edge e ∈ Si can play the role of any other edge in the same edge partition set,
with all such drawings satisfying CW,W

′

3,3 with equality. Using the analogous
arguments, in conjunction with the allowed permutations described above, we
obtain that the edges of the same partition sets, and therefore the crossing
pairs of the same partition sets are indistinguishable from another.

Theorem 5.32. Fix any n,m ≥ 3 with n + m > 6, W ∈ V {3}n , and W ′ ∈
V ′m
{3}. CW,W

′

3,3 is a facet in Kn,m.

Proof. Again, we assume w.l.o.g. thatW = {v1, . . . , v3} andW ′ = {v′1, . . . , v′3}
and consider a feasible solution as shown in Figure 5.5(a).

α1,1′ = 0 : cf. Figure 5.5(b). Consider two drawings of the edge {v′2, vn} ∈ S1′

(bold, dashed) corresponding to solutions in Xc: We may route if over
the top of the drawing resulting in a single crossing with the edge
{v1, v

′
1} ∈ S2. Alternatively, we may route it below the drawing re-

quiring again one crossing with an S2 edge ({v1, v
′
3}) but additionally

crossings with the S1 edges {v1, v
′
4}, . . . , {v1, v

′
m}. Both drawings cor-

respond to elements of Xc and both require exactly one P1,2 crossing
(with identical coefficients). Hence we have: α1,1′ = 0.

α1′,2 = 0, α1,2 = 0 : cf. Figure 5.5(c). Consider two drawings of the edge
{v′3, vn} ∈ S1′ corresponding to solutions in Xc: We may route it
over the top of the drawing resulting in two crossings with the edges
{v1, v

′
1}, {v1, v

′
2} ∈ S2. Alternatively, we may route it below the draw-

ing crossing through the S1 edges {v1, v
′
4}, . . . , {v1, v

′
m}. For the latter

we already know that α1,1′ = 0, hence we have: α1′,2 = 0.

Consider the analogous feasible drawings where we exchange the node
labels of W and W ′. Both drawings correspond to solutions in Xc and
we obtain α1,2 = 0 by symmetry.

α1′,1′ = 0, α1,1 = 0 : cf. Figure 5.5(d). Consider two drawings of the edge
{v′2, vn} ∈ S1′ corresponding to solutions in Xc: We may route it over
the top of the drawing resulting in a single crossing with the edge
{v1, v

′
1} ∈ S2. Alternatively, we may route it between the nodes v2

and v3 and between the top two edges, resulting in two crossings with
S2 edges ({v′1, v3}, {v2, v

′
3}), crossings with the S1 edges {v2, v

′
3}, . . . ,

80 CHAPTER 5. 0/1-ILPS FOR THE CROSSING NUMBER PROBLEM

1

1'

3'

32

2'

n54

m'5'4'

(a) Drawing scheme of Kn,m

1

1'

3'

32

2'

n54

m'5'4'

(b) a{e,f} = 0, ∀{e, f} ∈ P1,1′

1

1'

3'

32

2'

n54

m'5'4'

(c) a{e,f} = 0, ∀{e, f} ∈ P1,2 ∪ P1′,2

1

1'

3'

32

2'

n54

m'5'4'

(d) a{e,f} = 0, ∀{e, f} ∈ P1,1 ∪ P1′,1′

1

1'

3'

32

2'

n54

m'5'4'

(e) a{e,f} = 0, ∀{e, f} ∈ P0,1 ∪ P0,1′

1

1'

3'

32

2'

n54

m'5'4'

(f) a{e,f} = 0, ∀{e, f} ∈ P0,0

1

1'

3'

32

2'

n54

m'5'4'

(g) a{e,f} = 0, ∀{e, f} ∈ P0,2

Figure 5.5: K3,3-constraints are facet-defining in Kn,m.

5.4. FACETS IN THE CROSSING NUMBER POLYTOPE 81

{v2, v
′
m}, and crossings with the S1′ edges {v′1, v4}, . . . , {v′1, vn−1}. We

already know that the coefficients for the crossings with S2 and S1 edges
are zero, hence we have: α1′,1′ = 0. Again, we obtain α1,1 = 0 by sym-
metry.

α0,1′ = 0, α0,1 = 0 : cf. Figure 5.5(e). Consider two drawings of the edge
{v′3, vn} ∈ S1′ corresponding to solutions in Xc: We may route it below
rest of the drawing resulting in crossings with the S1′ edges {v1, v

′
4}, . . . ,

{v1, v
′
m}. Alternatively, we may route it between the nodes vm−1 and

vm resulting in: crossings with the S1′ edges {v1, v
′
4}, . . . , {v1, v

′
m−1},

two crossings with S1 the edges {vi, v′m} for i = 2, 3, and crossings with
the S0 edges {v4, v

′
m}, . . . , {vn−1, v

′
m}. We already know that the coef-

ficients for the crossings with S1′ and S1 edges are zero, hence we have:
α0,1′ = 0. Again, we obtain α0,1 = 0 by symmetry.

α0,0 = 0 : cf. Figure 5.5(f). Consider two drawings of the edge {v5, v
′
5} ∈ S0

corresponding to solutions in Xc: We may route it via a straight line,
requiring multiple crossings with S1, S1′ , and S0 edges. Alternatively,
we may route it over the right-hand side of the drawing, requiring only
some crossings with S1 and S1′ edges. Since we already know that
α0,1 = α0,1′ = 0, we have: α0,0 = 0.

α0,2 = 0 : cf. Figure 5.5(g). Consider two drawings of the edge {v′m, vn} ∈ S0

corresponding to solutions in Xc: We may route it via a straight line
requiring no crossings at all. Alternatively, we may route it below the
drawing to the left-hand side, and back through S2 and S1′ edges. Since
we have α0,1 = α0,1′ = 0 for crossings with the latter type of edges, we
also have: α0,2 = 0.

5.4.5 K3,3-constraints in Kn

Please refer to Section 5.4.1 for the overall structure of the proof.

Fixing 5.33. Fix any n > 6 and (W ∪̇W ′) ∈ V
{6}
n with |W | = 3. This

induces:

G = Kn

C = CW,W
′

3,3 (K3,3-constraint)

c{e,f} =


1 if |ẽ ∩ W̃ | = 1
∀(ẽ, W̃) ∈ {e, f} × {W,W ′},

0 else.
∀{e, f} ∈ CPn

ĉ = 1
F = Fn

82 CHAPTER 5. 0/1-ILPS FOR THE CROSSING NUMBER PROBLEM

Partitioning 5.34. We can partition all edges e ∈ En using the ordered
index set I = 〈0, 1, 1′, 2, 2′, 2′′〉, based on which nodes they connect:

e ∈ S0 ⇐⇒ |e ∩ (W ∪W ′)| = 0,
e ∈ S1 ⇐⇒ |e ∩W | = 1, |e ∩W ′| = 0,
e ∈ S1′ ⇐⇒ |e ∩W | = 0, |e ∩W ′| = 1,
e ∈ S2 ⇐⇒ |e ∩W | = 2,
e ∈ S2′ ⇐⇒ |e ∩W | = |e ∪W ′| = 1,
e ∈ S2′′ ⇐⇒ |e ∩W ′| = 2.

Considering the induced partitions of CPn,m, we have † = 2′, i.e., c{e,f} = 0
for all {e, f} 6∈ P2′,2′ , and 1 otherwise. Note that the set P2,2 is empty, since
S2 forms a simple cycle of length 3, and hence all pairs of these edges are
adjacent. The same holds for P2′′,2′′ .

Lemma 5.35 (Permutation classes). For all i, j ∈ I, i ≤ j, we have:

{e, f}, {g, h} ∈ Pi,j =⇒ a{e,f} = a{g,h}

Proof. W.l.o.g. assume that W = {v1, v4, v5} and W ′ = {v2, v3, v6}. Consider
a feasible solution as shown in Figure 5.6(a). The edges of S2′ , over which
CW,W

′

3,3 is defined, are drawn with bold lines.

Clearly, this solution satisfies CW,W
′

3,3 with equality. Furthermore, we al-

ready know that CW,W
′

3,3 has exactly one variable for each possible optimal
K3,3 solution. We can relabel the nodes W arbitrarily in this drawing, with-
out violating the feasibility of the solution, nor the equality of CW,W

′

3,3 . The
same holds for the nodes W ′. We do also not violate these properties by
any permutation of the labels of the nodes of Vn \ (W ∪W ′). Using these
permutations in conjunction with the arguments of the previous permutation
lemmata, we obtain the above lemma.

Theorem 5.36. Fix any n > 6 and (W ∪̇W ′) ∈ V {6}n with |W | = 3. CW,W
′

3,3

is a facet in Kn.

Proof. Again, we assume w.l.o.g. that W = {v1, v4, v5} and W ′ = {v2, v3, v6}
and consider a feasible solution as shown in Figure 5.6(a) as our starting
point. Again, we call the drawing of the path v6, . . . , vn the spine of the
drawing.

α1,1′ = 0 : cf. Figure 5.6(b). We can redraw the edge {v6, vn} ∈ S1′ (bold,
dashed) on the left side of the spine instead of the right side, and still ob-
tain a solution in Xc. The crossings with the edges S1′ edges {v3, vi} and
the S1 edges {v5, vi} (7 ≤ i ≤ n−1) are replaced by the same number of
crossings with the S1′ edges {v2, vi} and the S1 edges {v4, vi}. But the
original drawing also requires crossings with the S1 edges {v1, vi}, which
are not necessary in the redrawn drawing. Hence we have: α1,1′ = 0.

5.4. FACETS IN THE CROSSING NUMBER POLYTOPE 83

(a) Drawing scheme of Kn,m

1
2

4

3

n-1

5

7

6

n

8

(b) a{e,f} = 0, ∀{e, f} ∈ P1,1′

1
2

4

3

n-1

5

7

6

n

8

(c) a{e,f} = 0, ∀{e, f} ∈ P1,2′ ∪ P1′,2′

1
2

4

3

n-1

5

7

6

n

8

(d) a{e,f} = 0, ∀{e, f} ∈ P1′,2 ∪ P1,2′′

1
2

4

3

n-1

5

7

6

n

8

(e) a{e,f} = 0, ∀{e, f} ∈ P2,2′ ∪ P2′,2′′

1
2

4

3

n-1

5

7

6

n

8

(f) a{e,f} = 0, ∀{e, f} ∈ P1,1 ∪ P1′,1′

Figure 5.6: K3,3-constraints are facet-defining in Kn (part 1).

84 CHAPTER 5. 0/1-ILPS FOR THE CROSSING NUMBER PROBLEM

1
2

4

3

n-1

5

7

6

n

8

(g) a{e,f} = 0, ∀{e, f} ∈ P1,2 ∪ P1′,2′′

1
2

4

3

n-1

5

7

6

n

8

(h) a{e,f} = 0, ∀{e, f} ∈ P2,2′′

1
2

4

3

n-1

5

7

6

n

8

(i) a{e,f} = 0, ∀{e, f} ∈ P0,2′

1
2

4

3

n-1

5

7

6

n

8

(j) a{e,f} = 0, ∀{e, f} ∈ P0,2 ∪ P0,2′′

1
2

4

3

n-1

5

7

6

n

8

(k) a{e,f} = 0, ∀{e, f} ∈ P0,1 ∪ P0,1′

1
2

4

3

n-1

5

7

6

n

8

(l) a{e,f} = 0, ∀{e, f} ∈ P0,0

Figure 5.6: K3,3-constraints are facet-defining in Kn (part 2).

5.4. FACETS IN THE CROSSING NUMBER POLYTOPE 85

α1,2′ = 0, α1′,2′ = 0 : cf. Figure 5.6(c). We can redraw the edge {v4, v7} ∈ S1

over v6 and on the right side of the spine. We still obtain a solution in
Xc. The new drawing also requires exactly one crossing with a S2′′ edge,
but additionally it requires multiple crossings with S1′ edges adjacent
to v6 and crossings with two S2′ edges. For the former new crossings
we already know α1,1′ = 0 and can conclude: α1,2′ = 0.

Consider the analogous feasible drawings where we exchange the node
labels of W and W ′. Both drawings correspond to solutions in Xc and
we obtain α1′,2′ = 0 by symmetry.

α1′,2 = 0, α1,2′′ = 0 : cf. Figure 5.6(d). We can redraw the edge {v3, v7} ∈ S1′

such that it is routed over the top left corner of the drawing, and still
obtain a solution in Xc. In both drawings we have the same number of
P1,1′ , P1′,1′ , and P1′,2′ crossings, but the new drawing requires additional
crossings with two S2 edges. Hence we conclude: α1′,2 = 0. Again, we
obtain α1,2′′ = 0 by symmetry.

α2,2′ = 0, α2′,2′′ = 0 : cf. Figure 5.6(e). We can redraw the edge {v1, v4} ∈ S2

such that it is routed over the top left corner of the drawing, and still
obtain a solution in Xc. In both drawings there is exactly one crossing
with an S2′′ edge. While the new drawing requires multiple crossings
with S′1 edges, the original drawing crosses an S2′ edge. For the former
crossings we already know that α1′,2 = 0 and we conclude: α2,2′ = 0.
Again, we obtain α2′,2′′ = 0 by symmetry.

α1′,1′ = 0, α1,1 = 0 : cf. Figure 5.6(f). We can redraw the edge {v2, v7} ∈ S1′

such that it is routed over the top right corner of the drawing, and still
obtain a solution in Xc. We already know for all crossings P1,1′ , that
α1,1′ = 0. But the new drawing requires additional crossings with the
S1′ edges {v3, vi} and {v6, vi} for 8 ≤ i ≤ n. Hence we have: α1′,1′ = 0.
Again, we obtain α1,1 = 0 by symmetry.

α1,2 = 0, α1′,2′′ = 0 : cf. Figure 5.6(g). Consider an alternative drawing of
Figure 5.6(a) where {v3, v6} is drawn as a straight line. In this drawing
we can redraw the edge {v4, v5} ∈ S2 such that it is routed over the
top of the drawing. Both drawings correspond to solutions in Xc. In
both drawings we have exactly one crossing with an S2′′ edge. The
latter drawing requires additionally (a) a crossing with an S2′ edge,
(b) crossings with S1′ edges, and (c) crossings with S1 edges. For the
crossings of (a) and (b) we already know that their coefficients are 0,
hence we conclude: α1,2 = 0. Again, we obtain α1′,2′′ = 0 by symmetry.

α2,2′′ = 0 : cf. Figure 5.6(h). We can redraw the edge {v4, v5} ∈ S2 such
that it is routed below v6, and still obtain a solution in Xc. While the
original drawing requires no crossings on this edge, the new drawing

86 CHAPTER 5. 0/1-ILPS FOR THE CROSSING NUMBER PROBLEM

crosses multiple S1′ edges, a single S2′ edge, and two S2′′ edges. For
the former crossings we already know that α1′,2 = α2,2′ = 0 and can
conclude: α2,2′′ = 0.

α0,2′ = 0 : cf. Figure 5.6(i). We can redraw the edge {v1, v2} ∈ S2′ such that
it is routed just above vn, and still obtain a solution in Xc. While the
original drawing requires no crossings on this edge, the new drawing
crosses two S1 and two S1′ edges. Furthermore, it crosses multiple S0

edges. As we already know that α1,2′ = 0, we can conclude: α0,2′ = 0.

α0,2 = 0, α0,2′′ = 0 : cf. Figure 5.6(j). We can redraw the edge {v1, v4} ∈ S2

such that it is routed just above vn, and still obtain a solution in Xc.
For all involved crossings in both drawings we already know that their
coefficients are 0, except for the crossings with S0 edges in the redrawn
drawing. Hence we conclude: α0,2 = 0. Again, we obtain α0,2′′ = 0 by
symmetry.

α0,1 = 0, α0,1′ = 0 : cf. Figure 5.6(k). We can redraw the edge {v4, vn−1} ∈ S1

above v6 and on the right side of the spine, and still obtain a solution
in Xc. For all involved crossings in both drawings we already know
that their coefficients are 0, except for the crossings with S0 edges in
the redrawn drawing. Hence we conclude: α0,1 = 0. Again, we obtain
α0,1′ = 0 by symmetry.

α0,0 = 0 : cf. Figure 5.6(l). We can redraw the edge {v7, vn−1} ∈ S0 on the
left side of the spine instead of the right side, and still obtain a solution
in Xc. For all involved crossings in both drawings we already know that
their coefficients are 0, except for the crossings with S0 edges in the
redrawn drawing. Hence we conclude: α0,0 = 0.

This proof concludes the section, in which we showed that the considered
Kuratowski constraints indeed define facets in the complete and complete
bipartite crossing number polytopes.

5.5 Comparison between the ILPs

It is hard to directly compare the theoretical strengths of our formulations
Secm and Oecm. It is not possible to project fractional Oecm solutions into
the Secm variable space. Even projecting Secm solutions into Oecm is non-
trivial. We can straight-forwardly project both variable spaces into Recm’s
x-variable space as described in the beginning of the previous section. But
there we lose all knowledge of the respective edge orderings over the crossings,
which is the main difference between our formulations.

To show that one formulation is stronger than the other, we would have
to find a feasible fractional solution of one and show that this solution is

5.5. COMPARISON BETWEEN THE ILPS 87

infeasible for the other formulation. Yet, we did not succeed with finding such
examples, since the exponential number of Kuratowski subdivisions makes a
thorough analysis very complicated. In particular, it is hard to manually
consider all the complex constraints where there are variables on the right-
hand side, i.e., CP ′(K) ∩R′ 6= ∅ for Secm or (XK [x̄, ȳ],YK [x̄, ȳ]) 6= (∅, ∅) for
Oecm. An in-depth theoretical comparison of the approaches remains as an
open problem.

Hence we divert the main comparison between the two formulations to
the experimental section, were we will see that Oecm turns out to be clearly
stronger than Secm in practice. This is mainly due to the fact, that Oecm is
in general more compact than Secm: It requires only O(|E|3) variables while
Secm requires O(|E|2 ·`2) = O(|E|4) since the crossing number, and therefore
also the upper bound `, can be quadratic in the number of edges. This is
amplified by the fact that Oecm’s variable structure allows less symmetric
solutions and a greedier column generation, cf. Section 8.3. Yet, Secm has
benefits regarding its adaptability for alternative crossing number concepts,
cf. Chapter 7.

88 CHAPTER 5. 0/1-ILPS FOR THE CROSSING NUMBER PROBLEM

Chapter 6

Solving the 0/1-ILPs

crossing: (Sports)
The movement of a horse which be-
gins from one of the positions out
wider on the track and moves down
to the inside fence, is referred to as
a crossing to the fence.

In this section, we will discuss how the exponentially sized Secm and
Oecm formulations presented in the previous section can be solved in prac-
tice. Therefore, we employ a branch-and-cut-and-price scheme, as introduced
in Section 3. We start by outlining the general structure of the algorithms
and their common—or similar—sub-steps like the separation routines and
branching strategies. Thereby we will focus on a pure branch-and-cut frame-
work, i.e., we will ignore the fact that certain variables may be dynamically
generated. In the sections thereafter, we will discuss the specializations for
Secm and Oecm, in particular we will describe the different column gener-
ation schemes for the ILPs. Again, we are given a graph G = (V,E) with
integer edge weights w in the following.

6.1 Common Framework

Algorithm 2 gives an overview on the general branch-and-cut(-and-price)
framework used for our algorithms. Since the column generation routines
are highly ILP specific we only mark the code lines where the corresponding
routines have to be inserted. For the descriptions in this section, we can safely
assume that no column generation is performed and all necessary variables
are active.

Our algorithms starts (line 1–3) with obtaining initial upper bounds by
using PrimalHeuristic. In our implementation, this is the efficient pla-
narization heuristic described in [76], which starts with a planar subgraph

89

90 CHAPTER 6. SOLVING THE 0/1-ILPS

Algorithm 2 Branch-and-cut algorithm for exact crossing minimization. By
χ we denote the variables of the 0/1-ILPs which may be either z or (x, y).
Require: 2-connected, non-planar graph G = (V,E) with integer edge weights w.
Ensure: crossing number cr(G) and a planarization G∗ of G realizing cr(G).

1: var U : global upper bound
2: var χ̄U : feasible integer variable assignment realizing U
3: U , χ̄U ← PrimalHeuristic(G)

4: var Open: list of open subproblems (initially empty)
5: Open.push(new Subproblem(J)) . first problem with initial constraints J
6: while Open not empty do
7: S ← extract subproblem from Open
8: loop
9: var L: local lower bound

10: var χ̄: fractional values for the variables χ
11: L, χ̄← solve LP relaxation of S
12: if dLe ≥ U then break . subproblem can be pruned

13:

constraints ← CyclicOrderSeparation(v̄) . Oecm specific
if constraints not empty then

add constraints to S
continue . restart loop

end if
14: (insert Combinatorial Column Generation code)
15: χ̃← Round(χ̄)
16: P ← (partial) planarization induced by χ̃.
17: H, χ̄H ← PrimalHeuristic(P) . local upper bound
18: if H < U then U, χ̄U ← H, χ̄H . new global upper bound found
19: if dLe ≥ H then break . no more room for improvement
20: constraints ← KuratowskiSeparation(χ̄, χ̃, P)
21: if constraints not empty then
22: add constraints to S
23: continue . restart loop
24: end if
25: (insert Algebraic Pricing code)
26: B ← select variable or constraint to branch on
27: b0, b1 ← the two fixings or constraints induced by branching on B
28: Open.push(new Subproblem(S, b1))
29: Open.push(new Subproblem(S, b2))
30: break . leave loop
31: end loop
32: end while

33: cr(G)← U
34: G∗ ← planarization induced by χ̄U

6.1. COMMON FRAMEWORK 91

and inserts the edges one after another, see Part III of this thesis for details
on the chosen parameters in our various experiments.

We then initialize the root of our branch-and-bound tree and store it as the
only element in the list Open (line 4–5): This first subproblem is basically the
full problem, without any restrictions other than the constraints in the ILP.
If no column generation is used, we can assume that the initial constraint set
J includes all variable bounds, and all simplicity constraints (5.6) for Secm
or all linear ordering constraints (5.11)–(5.13) for Oecm, respectively. Note
that we do not add the O(|E|4) cyclic-order constraints (5.14); we will add
them via a separation routine later.

Furthermore, we start with a subset of Kuratowski constraints: We iden-
tify a certain number of Kuratowski subdivisions in G using the separation
routine (see below), and add the corresponding inequalities to J .

The main while loop (line 6–32) handles the various subproblems that
may occur in the course of the computation. In particular, in line 7 we select
one of the open, i.e. not yet considered, subproblems in the list Open; usually
we use a best search strategy, i.e., we select the subproblem with the most
promising dual bound.

The loop between line 8 and 31 processes a specific subproblem S. We
iteratively solve the LP relaxation to obtain a dual (lower) bound L and check
whether S might give us a new solution that is better than the primal (upper)
bound U we already know (line 9–12). Since the edge weights are integral, we
know that the optimal solution will be integral as well and we can therefore
consider L rounded up.

If the subproblem is still promising, we proceed. In the case of Oecm, we
want to ensure that the fractional solution is LO-feasible, even though we did
not add all cyclic-order constraints (5.14). Therefore (block at line 13), we
simply check all inactive such constraints and add them if they are violated
by the current solution. If we did identify violated constraints we resolve the
LP relaxation.

Otherwise, we continue with the inspection of the current solution: We
round our fractional solution (if it is not already integer), and realize the
crossings specified by this assignment to obtain a partial planarization P
(line 15–16; see Section 6.1.1 below for a detailed description of the applied
rounding schemes). P contains dummy nodes modeling the crossings in this
rounded solution. We can then perform our PrimalHeuristic on P (line
17). The union of the crossings modeled by dummy nodes in P and the
crossings introduced by the heuristic then constitutes a full planarization of
G, and therefore a feasible solution. Note that P may be planar, in which case
the primal heuristic will return the unmodified graph P as its solution. If the
new solution is better than our current global upper bound U , we update the
latter (line 18–19). To avoid spending too much time on computing heuristics,
in practice we only perform the lines 17–19 if the obtained rounded solution
is different from the one obtained in the prior iteration.

92 CHAPTER 6. SOLVING THE 0/1-ILPS

If the subproblem is not pruned yet, we start our separation routine Ku-
ratowskiSeparation (line 20) which tries to identify violated inactive Ku-
ratowski constraints, see Section 6.1.2. If the routine finds such constraints
(line 21–24) we add them to our current subproblem and reiterate the process,
i.e. solve the LP relaxation, check for bound clashes, etc.

If no constraints were identified, we have to resort to branching (line
26–29). We will only consider 2-branches, i.e., we generate exactly two new
subproblems for each branch. We first select a variable or constraint on which
to branch and compute the two constraints arising from this branch. We then
generate two new subproblems which are initialized with the constraints in S
and the additional branching constraint. We add the subproblems to our list
Open of open subproblems and stop considering the current subproblem S.
See Section 6.1.3 for details on the branching strategies.

Finally (line 33–34), when all open subproblems have been considered, our
upper bound U will constitute the optimal solution of our ILP, i.e., the cross-
ing number of G. We can return this number, as well as the integer feasible
variable assignment realizing cr(G) and the thereby induced planarization G∗.

We will now discuss rounding, Kuratowski separation, and branching in
more detail, as they were only sketched above.

6.1.1 Rounding the Fractional Solution

Rounding a fractional solution z̄ of Secm is rather straight-forward. Gen-
erally, we can establish various different rounding schemes, but preliminary
experiments showed that their influence is rather weak [49]. Hence we use a
simple threshold rounding, i.e., we fix a threshold 0.5 < τ < 1 and have:

z̃{e′,f ′} =
{

1 if z̄{e′,f ′} ≥ τ,
0 else.

∀{e′, f ′} ∈ CP ′.

The rounding of (x̄, ȳ) for Oecm is somewhat more complex, since we
require that the rounded solution (x̃, ỹ) is LO-feasible. We proceed in two
steps; first, we round the x-variables analogously to before:

x̃{e,f} =
{

1 if x̄{e,f} ≥ τ,
0 else.

∀{e, f} ∈ CP.

Based on x̃, we can then restrict the set of ỹ-variables that may be 1. For
each edge e, let Fe be the set of edges which cross e, according to x̃. We
can set ỹe,f,g = 0 for all variables with {f, g} 6⊆ Fe. If |Fe| ≥ 2, we define a
complete bidirected weighted graph, using Fe as its vertex set. We choose the
weight of an arc (f, g) as ȳe,f,g. Then we solve the linear ordering problem on
this graph, using a straight-forward greedy heuristic [44]. Using the resulting
order, we can decide the values for ỹe,f,g, for all {f, g} ⊆ De.

In our experiments, we usually generate two rounded solutions for each
fractional solution: one for τ = 0.7 and one for τ = 1− ε̃ (for some small ε̃ >

6.1. COMMON FRAMEWORK 93

0). The subsequent steps of computing a heuristic solution and performing
the separation (see below) is then performed twice, once for each rounded
solution.

See Remark 6.1 in the next section for a rationale why, e.g., a pure ran-
domized rounding of the variables would be unsuitable.

6.1.2 Kuratowski Separation

In the following, we will concentrate on identifying violated Kuratowski con-
straints either in Secm or Oecm. It is an open problem whether there exists
an exact polynomial-time separation routine for Kuratowski constraints in
either of the two formulations. Even for the supposedly simpler Kuratowski
constraints in the context of maximum planar subgraphs, no such routine is
known1 [92, 93].

Hence, we try to identify violated constraints heuristically: Any violated
constraint we find is valid, but we may not find any violated constraint even
though there is one in the full ILP. Thereby, our algorithm is still valid,
gives the optimal solution, etc., but we may start to branch before it would
theoretically be necessary and hence our algorithm may have to consider more
subproblems than necessary with an exact separation routine.

Our heuristic works as follows: We consider the planarization P con-
structed from the rounded solution—if we have multiple rounded solutions,
we perform the separation multiple times, once for each rounded solution.
We then try to identify Kuratowski subdivisions in P . For each identified
subdivision we construct the corresponding Kuratowski constraint (5.7) or
(5.15) for Secm or Oecm, respectively. Using the fractional solution of the
LP relaxation, we can easily check if the constraint is currently violated. If
it is, we have identified a constraint C := pTχ ≥ b (with variables χ and
coefficients p) with violation φC = b− pT χ̄.

We iterate this process to obtain multiple violated constraints. In the
end, we may not add all identified constraints but only a certain number of
the most violated constraints and/or only ones where φC is above a certain
threshold. See Part III for the experiment-specific parameters.

Remark 6.1. Recall the rounding scheme described in Section 6.1.1. We can
now easily see why certain other rounding schemes are unsatisfactory in our
context. Consider the pure randomized rounding, where a variable is rounded
to 1 with the probability given by its fractional solution. A constraint based
on a Kuratowski which contains more than one dummy crossing of P which
has a fractional solution of 0.5 can never be violated, and we would perform
many useless extractions. Even worse, on average, every 5th variable with

1To identify a maximum planar subgraph via a 0/1-ILP, we have a variable xe ∈ {0, 1}
for each edge e, maximize

P
e xe, and for each Kuratowski subdivision K in the graph we

have
P
e∈K xe ≤ |K| − 1, i.e., at least one edge has to be removed. See [113] for details.

94 CHAPTER 6. SOLVING THE 0/1-ILPS

value 0.2 would be rounded to 1. A Kuratowski constraint containing only
one such variable will already be highly unlikely to be violated.

It remains to discuss how to identify a Kuratowski subdivision in P . The
simplest variant—only requiring any planarity testing algorithm—removes
edges from P as long as P remains non-planar. If P becomes planar the edge
is added again, and the next one is deleted, etc; cf. Algorithm 3. In the end,
a Kuratowski subdivision will remain. Clearly, this simple algorithm denoted
by SimpleExtract requires O(|V (P)|2) time, since planarity testing for
graphs with |E(P)| > 3 · |V (P)| − 6 can be performed in constant time as
these graphs can never be planar, and in linear time otherwise.

Algorithm 3 SimpleExtract: Extraction of a single Kuratowski subdivi-
sion in quadratic time.
Require: non-planar graph P
Ensure: a Kuratowski subdivision K contained in P

1: K ← P
2: for each e ∈ E(P) do . in random order
3: K ← K − e
4: if K is planar then
5: K ← K + e
6: end if
7: end for

Anyhow, as noted in Section 2.2, state-of-the-art planarity testing algo-
rithms like the ones by de Fraysseix et al. [61] or Boyer and Myrvold [20]
extract such a subdivision directly in linear time O(|V (P)|+ |E(P)|) within a
single run of the planarity testing algorithm. Note that for the extraction, we
have to consider the case that the number of edges is larger than the number
of nodes.

In our context, we are interested in obtaining several Kuratowski subdi-
visions in P . Hence would we have to run the planarity algorithm several
times, perturbing its outcome, e.g., by randomizing the initial DFS-traversal.
Note that after k runs, we are not guaranteed to have obtained k distinct
subdivisions.

Efficient Extraction of Multiple Kuratowski Subdivisions. Using the
testing and extraction algorithm by Boyer and Myrvold as a starting point,
we develop an algorithm with optimal linear running time which can extract
multiple distinct Kuratowski subdivisions in one run [39]. This algorithm is
quite involved and requires a thorough understanding of the original planarity
testing algorithm. Although this algorithms constitutes a work by this thesis’
author together with Petra Mutzel and Jens M. Schmidt, it would be beyond
the focus of this thesis. We will only very briefly sketch its main ideas herein
and refer the interested reader to the original publications [39, 38, 133] (in
increasing order of extensiveness) for more details.

6.1. COMMON FRAMEWORK 95

The original Boyer-Myrvold algorithm starts with a DFS-tree D of P ,
which is trivially planar. It then iterates over the tree’s nodes in decreasing
order of their DFS-index. For each node v it tries to embed all backedges
that start below v (i.e., at a node with larger index) and end at v. Thereby
embedding a backedge e means to include it in D. Since e will be part of a
cycle, its addition may merge several blocks in D into a new, larger block. By
carefully choosing the order in which the backedges ending at v are embedded,
we can establish the property that the embedding of a block is never changed.

If at some point the embedding of a backedge fails, this is because its
addition would block the path for backedges which should be added later on.
Hence the algorithm stops; by careful investigation of this stopping configura-
tion, we can identify a witness for the graph’s non-planarity, i.e., a Kuratowski
subdivision. Clearly, the extraction of a subdivisions may take linear time
in the number of nodes and edges of P without influencing the algorithm’s
overall runtime analysis.

The challenges with developing an algorithm to efficiently extract multiple
subdivisions is therefore three-fold. Surprisingly, all these can be solved, at
the only cost of a more involved and harder to prove algorithm:

• After identifying a stopping configuration: Can we extract multiple dis-
tinct Kuratowski subdivisions from it?
Yes, there may be multiple matching minor types (i.e., patterns how
the witness is contained in the graph), and each minor type may allow
multiple realization to be found in P .

• To obtain an output-sensitive algorithm, the runtime for the extraction
of a subdivision has to be bounded by its own size, instead of the size of
the given graph.
While there are examples where the time for extracting a single sub-
division cannot be bounded by its size, it can be shown that we can
amortize the costs over all extracted subdivisions at the same crossing
configuration.

• After extracting subdivisions at some stopping configuration: Can we
proceed with the original algorithm to arrive at further stopping con-
figurations, extract additional subdivisions, etc., until arriving at the
original DFS-tree’s root node?
After arriving at some stopping configuration Ω, the algorithm cannot
proceed as it was, since further edge embeddings would not be possible.
Therefore, after the extractions at Ω, we remove the backedge whose
attempted embedding established Ω. The central problem is that such
a modification invalidates all the algorithm’s inner data structures; re-
computing them would require linear time. It can be shown that by
extending the data structures by a constant factor, we can continue
the algorithm and re-validate the data structures on the fly, without

96 CHAPTER 6. SOLVING THE 0/1-ILPS

increasing the asymptotic runtime performance.

We end up with an algorithm MultiExtract which is optimal in terms of
its asymptotic running time: It is linear in the input size and its required
output.

Theorem 6.2 ([39]). The overall running time of MultiExtract is

O

(
|V (P)|+ |E(P)|+

∑
K∈K
|E(K)|

)
,

where K is the set of all extracted Kuratowski subdivisions.

The identified paths of a Kuratowski subdivision will in general go through
multiple blocks in D. By enumerating multiple paths per blocks, we can
further increase the number of identified subdivisions. These are similar but
distinct to the subdivisions identified before. Though, this algorithm denoted
by MultiExtractBundle comes at the cost of an additional log-factor:

Theorem 6.3 ([39]). The overall running time of MultiExtractBundle
is

O

(
|V (P)|+ |E(P)|+ log(|V (P)|) ·

∑
K∈K
|E(K)|

)
.

6.1.3 Branching Strategies

Generally, we use two different branching strategies:

Branching on K5-constraints. We can use Kleitman’s parity argument
for complete graphs with an odd number of vertices [96, 97]: If a K2n+3,
n ∈ N, has an even or odd crossing number, every possible drawing of K2n+3

will also have an even or odd number of crossings, respectively. Since we
know that cr(K5) = 1, we have for every K5-subdivision that if it is drawn
with more than one crossing, it will require at least 3 crossings.

This jump in the crossing number can be used for branching. We check
for any K5-constraint of the type pTχ ≥ 1, with p and χ being the vectors
of the coefficients and variables, respectively. We can then generate two sub-
problems, one with pTχ = 1 and one with pTχ ≥ 3. Note that, theoretically,
we can continue to branch on the latter constraint, generating pTχ = 3 and
pTχ ≥ 5, etc.

Branching on Variables. If our current model does not include any K5-
constraint on which we could branch, we resort to common variable branching.
We select a variable χi, which has a current fractional value χ̄i close to 0.5
and a high coefficient in the objective function. We can then generate two
subproblems with the constraints χi = 0 and χi = 1, respectively.

6.1. COMMON FRAMEWORK 97

6.1.4 Column Generation

By introducing all variables of the ILP in the first subproblem, as assumed
above, we obtain a pure branch-and-cut algorithm for Secm and Oecm.
Yet, the high number of variables—recall that Secm requires O(|E|4) and
Oecm requires still O(|E|3) variables—becomes a bottleneck when solving
even medium sized problems. See Chapter 8 for an experimental demon-
stration. Furthermore, we know that in the final solution, only few of the
variables will be non-zero. E.g., we know for Secm that the optimal solution
will set at most O(|E|2) variables to 1, for any given graph.

Based on these arguments, we will discuss in the following how to turn the
above branch-and-cut algorithm into a branch-and-cut-and-price algorithm,
i.e., we will generate variables during the computation. As briefly discussed
in Chapter 3, we will use two different approaches for this task:

Algebraic Pricing: The most common method for column generation is
based on the Dantzig-Wolfe decomposition theorem [42]. The key idea
is to compute the reduced costs of the inactive variables, and generate a
variable with (in the case of minimization problems) a highly negative
reduced cost. On first sight, this is particular attractive in our case,
where there is only a polynomial number of variables to check.

Combinatorial Column Generation: We will see that we can heavily im-
prove on the above concept with a tailored approach where we identify
potentially beneficial new columns based on combinatorial arguments,
instead of algebraic computations.

The central idea thereby is to recognize the main reason why we could
not simply use the Recm formulation, only having one x-variable for
each edge pair: The substitution with z-variables for Secm, and the
introduction of y-variables for Oecm are only needed to decide the order
of crossings on edges. But for most real-world graphs, cf. Chapter 8,
most edges are involved in at most 1 crossing; and is it very seldom that
a single edge is involved in many crossings.

Hence, our combinatorial column generation schemes will allow unclear
solutions, i.e., solutions where the crossings on some edges are not prop-
erly ordered. Such a solution cannot be used to obtain a partial pla-
narization, nor can we deduce Kuratowski subdivisions from it. Hence,
before we try to interpret the solution in any such way, we will add
exactly the variables to resolve the unordered situations.

The order of the different schemata given in this thesis reflects the historical
development: For Secm, we first developed an approach based on the tradi-
tional algebraic pricing method. We later improved on this by a combinatorial
column generation strategy and investigated the advantages of the latter ex-
perimentally. When developing Oecm, we concentrated on the combinatorial
column generation scheme right from the beginning.

98 CHAPTER 6. SOLVING THE 0/1-ILPS

Bounding. Algorithm 2 already shows the conceptual places where the ad-
ditional steps for the column generation schemata will be performed. Yet
note that by introducing algebraic pricing, we loose certain bounding prop-
erties known from branch-and-cut algorithms: Mainly, the solution of the LP
relaxation is not a proper lower bound for the problem, since the addition
of additional variables might allow smaller objective values. Therefore the
bounding schemes have to be adopted accordingly.

We will see in the subsequent sections, that the combinatorial column gen-
eration schemes deal with this problem by guaranteeing that the LP solution
can still be rounded to a valid lower bound as in the given code.

6.2 Algebraic Pricing for Secm

When performing algebraic pricing, we have to identify at least one inactive
variable whose activation could decrease the objective function. This can be
tested by computing the reduced cost of each inactive variable: Let p be the
vector of coefficients the inactive variable zi would have (when added) in the
currently active constraints, and let d be the vector of the dual variables of
the current solution. The reduced cost r(zi) of zi is simply defined as the
scalar product of these vectors. If r(zi) ≥ 0 (in a minimization problem), we
know that the addition of zi cannot lead to better solutions. On the other
hand, if r(zi) is negative it could be necessary to add zi to the current model
to guarantee overall optimality.

This strategy may give false positives, hence we only add a certain number
of variables with the smallest reduced costs first. Their addition may then
lead to the rejection of other variables in the next iteration, which had a
negative reduced cost before.

Due to the structure of our specific problem, we actually do not need to
test all inactive variables. It suffices to test variables which “extend” the
currently introduced edge segments. More technically, this means that we
start with a quadratic number of variables: For all pairs {e, f} ∈ CP, we
label one of their expanded segments with e0 and f0, and add the variable
z{e0,f0} representing a crossing between these segments. In the pricing step,
we have only to consider variables that are convex extensions of the active
variables. We can add variables for a segment left or right to the segment
for which a variable already exists, leading to positive and negative indices.
In the first iteration, we will have to test the variables z{e±1,f0} and z{e0,f±1}.
Figure 6.1 shows the situation at some later iteration step: The indices of
segments of e are plotted on the horizontal axis, the indices of the segments
of f on the vertical. The gray rectangles mark active variables; the circles
denote potential new variables. The crosses mark variables which, although
adjacent to the current set of realized variables, are not tested: They would
extend the variable set in a way that is not orthogonally convex. Note that

6.3. COMBINATORIAL COLUMN GENERATION FOR SECM 99

3

2

1

0

-1

-2

3 4210-1-2

Figure 6.1: Algebraic Pricing for Secm. We allow only orthogonally convex exten-
sions of the active variable set, cf. text.

the orthogonally convex extensions are sufficient, and crossed out variables
can be realized by first extending via the variables “in between”.

Recall that the number of segments per edge is restricted to ` − 1 (cf.
Remark 5.6). Clearly, we will not test any variables which would induce a
span of more that ` − 1 between the smallest and the largest segment index
per edge. Also note that we do not add all simplicity constraints (5.6) to the
initial subproblem. We always add such a constraint together with the first
variable which has a non-zero coefficient in it.

6.3 Combinatorial Column Generation for Secm

Of any edge e, we will denote its segments E′(e) by 〈e1, e2, . . . , e`−1〉, con-
sidering their natural order (recall Remark 5.6 why we require at most one
segment less than `). We say e1 is the primary segment of e, while the others
are its secondary segments.

We start with a quadratic number of active variables, representing cross-
ings between the primary segments of the edges, i.e., we initially activate all
z{e1,f1} for all {e, f} ∈ CP. Disregarding the fact that subdividing the graph
is necessary for efficient realizability testing (and subsequently primal heuris-
tics and separation), we want to be able to describe a feasible solution with
this restricted variable set, similar to the x-variables of Recm. Therefore, we
will not introduce the simplicity constraints (5.6) for the primary segments.
We call these unused constraints imaginary simplicity constraints.

When activating a variable later, which uses some secondary segment ei
(1 < i < `) for the first time, we will introduce the simplicity constraint for
ei to the current model.

When solving the initial subproblem, we may find a fractional solution
z̄ that violates an imaginary simplicity constraints Ce on the segment e1.
Recall that we will use z̄ only to generate a rounded solution z̃ which will
then in turn be used to generate a planarization P . The only problem arises
when there are multiple rounded variables which are all 1 and share the
same primary segment: their order would be unclear, we cannot interpret the

100 CHAPTER 6. SOLVING THE 0/1-ILPS

solution as a partial planarization in a meaningful way, and hence our cutting
plane approach could not be used. Note that this argument is based on the
rounded values z̃, not on the fractional solution z̄ itself. In fact, we do not
have to care if an imaginary constraint is violated due to the sum of some
variables, if at most one of these variables is 1 in the rounded solution: We
can still stablely round this fractional solution into an unambiguous integer
solution.

Our column generation scheme simply checks each imaginary simplicity
constraint Ce. Let Fe be the set of segments f ′ with z{e1,f ′} ≥ τ ; we use the

notation Fe =
{
f

(1)
γ(1), f

(2)
γ(2), . . . , f

(k)
γ(k)

}
, where f (i)

γ(i), 1 ≤ i ≤ k, is the γ(i)-th

segment of the edge f (i). If k ≥ 2, we have to generate new variables. For all
1 ≤ i ≤ k, let κ(i) be the largest index for which the variable x{eκ(i),f

(i)
γ(i)}

is active. We will add the variables x{eκ(i)+1,f
(i)
γ(i)} for all i.

By the introduction of these variables, we allow that instead of having all
these segments cross over e1, at least one of them can be routed via the newly
activated secondary segment.

It is essential to add an incentive for the ILP to prefer solutions with few
crossings over the primary edges, i.e., it should be beneficial to cross over
the secondary edges, for which we have simplicity constraints. By subtract-
ing a small ε from the objective function coefficients of variables containing
a secondary segment, we make them slightly more attractive than primary
segments (if they are activated). Clearly, ε has to be chosen small enough to
not influence the final integer-rounded outcome of the algorithm.

If at some point κ(i) + 1 = `, we will not add an according variable. If
there are no other variables to be introduced, we establish a partial simplicity
constraint for e1 only restricting the crossings with segments f ′ for which
z{e`−1,f ′} is already activated. We can then resolve our LP relaxation.

Using the described generation strategy, the Kuratowski constraints could
be left unchanged without making the ILP invalid. However, if there is any
active constraint based on a simple crossing set R′ and the Kuratowski subdi-
vision K, such that

{
e1, f

(i)
γ(i)

}
∈ CP ′(K)∩R′ for any f (i)

γ(i) ∈ Fe, the strength
of this constraint degrades, as potential crossings can be shifted from e1 to
eκ(i)+1 now. In order to reduce this effect, we duplicate all such Kuratowski
constraints replacing e1 by eκ(i)+1.

See Figure 6.2 for an illustration of the presented column generation
scheme. Consider a rounded integer solution, based on some LP relaxation, as
shown on the left: There are two segments f (1)

1 and f (2)
2 crossing the primary

segment of the horizontal edge e. Since this violates the imaginary simplicity
constraint on e1, we add the variables z{e2,f (1)

1} and z{e2,f (2)
2}, such that a

solution as given on the right can be computed. While the first solution has
an objective value of 1 + 1 = 2, the new solution is 1 + 1− ε = 2− ε, and will
therefore be preferred by the LP solver.

6.4. COMBINATORIAL COLUMN GENERATION FOR OECM 101

e
2

e
11

f
1

(2)

e
2

e
3

f
(2)

3
f
(1)

2

3

(1)

e

f
(1)

2

f
(1)

1
f
(2)

2

f
(2)

3

e
3

f
(2)

1

f
(1)

3
f

Figure 6.2: Combinatorial Column Generation for Secm. Left: imaginary simplic-
ity constraint is violated; Right: by adding additional variables and reducing the
cost on the additional segment, the situation is resolved.

Whenever the column generation terminates without activating additional
variables—and therefore not forcing us to re-solve the LP relaxation—we are
guaranteed to be able to interpret the solution for our cutting scheme. Clearly,
whenever no imaginary simplicity constraint is violated by the LP relaxation,
the currently inactive variables are not necessary for the optimal solution.
Hence the optimal objective value on the restricted variable set is at least as
small as on the fully expanded ILP, which suffices to prove the optimality of
the induced solutions.

6.4 Combinatorial Column Generation for Oecm

The combinatorial column generation scheme for Oecm builds on the con-
ceptual ideas of the scheme for Secm, i.e., we will also start with allowing
solutions with ambiguous ordering, and add ordering variables as necessary.
Since the variables of Oecm intrinsically describe the crossings and their or-
der in distinct variable sets x and y, respectively, the column generation is
somewhat more direct than for Secm.

Our initial subproblem will contain all x-variables. Clearly, we do not
require y-variables if there is at most one crossing on each edge—then all
y variables are zero. Hence, conceptually, having some solution x̄, we only
require the y-variables with a base edge e, if there are multiple edges crossing
over e.

Recall that only the x-variables enter the objective function: The values of
the y-variables do not influence the solution value as they are only introduced
to solve the ordering problems on the edges. In particular, we add y-variables
only to restrict certain orderings, and their addition will never allow solutions
not also valid before. Hence, the value of the LP relaxation can never decrease
due to our column generation, which is in stark contrast to typical pricing
schemes. This property allows us to use the same strong bounding arguments

102 CHAPTER 6. SOLVING THE 0/1-ILPS

as known from traditional branch-and-cut strategies.
Since the separation routine only uses integer rounded interpretations of

the current fractional solution, we only require the knowledge of the crossing
order if

∑
f :{e,f}∈CP x̃{e,f} ≥ 2 for some edge e. Let Fe be the set of edges f

with x̃{e,f} = 1. The order of performing the variable generation prior to the
separation routine is again crucial: we first obtain a fractional solution and
check if the solution can be uniquely interpreted as a partial planarization,
i.e., if all the variables ye,f,g, with {f, g} ⊆ Fe, are active. If not, we add
all inactive such variables, together with their corresponding LO-constraints,
and resolve our LP model.

Hence, the variable generation takes place before we interpret a fractional
solution as a partial planarization for the separation routine, and before the
bounding heuristic. Therefore, for these steps we guarantee that all necessary
y-variables are in the model, and the solution is LO-feasible.

Chapter 7

Crossing Number Variants

crossing: (Martial Arts)
When one crosses blades with the
opponent.

7.1 Simple Crossing Number

We already introduced the simple crossing number scr(G) of a graph G in the
description of Secm (Section 5.2). It is defined analogously to the traditional
crossing number, under the restriction that every edge is involved in at most
one crossing.

Secm solves the crossing number of some given graph G by subdividing all
edges into long enough chains, obtaining the graph G[`], and then computing
scr(G[`]).

To solve the simple crossing number problem, we can simply apply Secm
to the original graph, instead of G[`], obtaining O(|E|2) variables.

We could also use Oecm by fixing all y-variables to 0. Under these
conditions, the crossing-existence, mirror-order, and cyclic-order constraints
(5.11)–(5.14) are redundant and trivially satisfied. The stacked-order con-
straints (5.12) reduce to

x{e,f} + x{e,g} ≤ 1 ∀{e; f, g} ⊆ CP, f 6= g (7.1)

which are weaker versions of the simplicity constraints (5.6): While any so-
lution feasible for (5.6) also satisfies (7.1), the assignment x̄{e,f} = x̄{e,g} =
x̄{e,h} = 0.5, for {e; f, g, h} ⊆ CP and pairwise disjoint f, g, h, violates (5.6)
but not (7.1). Hence, as the Kuratowski constraints become equivalent, Secm
is preferable to solve the simple crossing number problem.

103

104 CHAPTER 7. CROSSING NUMBER VARIANTS

Figure 7.1: The wiring scheme G′′ (left) cannot be drawn without any crossing.
By computing a minor G (middle) and considering a realizing graph G′ (right), we
obtain an equivalent but planar wiring scheme.

7.2 Minor and Hypergraph Crossing Number

In this section we will consider both the minor crossing number, and the cross-
ing number of hypergraphs, as defined below. We will investigate the relation-
ship between these two numbers and introduce the generalized W-restricted
minor crossing number, which can be used to model both aforementioned
crossing numbers.

Besides from their theoretical appeal, these problems also occur, e.g., for
crossing minimal layouts of electrical wiring schemes [15], cf. Figure 7.1 and
Section 7.2.7. Usually, the exact topology of such a wiring scheme G′′ is not
interesting for the connected subgraphs which have the same electric poten-
tial. Hence we can “merge” these nodes into one node, which is exactly the
operation to obtain a minor G, compute the minor crossing number mcr(G)
and expand the graph accordingly to obtain G′. In this example, we can
observe the connection to hypergraphs: By seeing the resistors on the wires
as nodes, we can interpret the wires on the same potential as hyperedges, i.e.,
edges with multiple incident nodes.

7.2.1 Definitions

Minor Crossing Number. Recall from Section 2.1 that a graph H is a
minor of the graph G, if H can be obtained from G by a series of minor
operations. Such an operation is to either (i) delete a node and its incident
edges, or (ii) contract an edge {v1, v2}, thereby unifying the two incident
nodes into a new node v which is incident to all former neighbors of v1 and
v2. The latter operation is called edge contraction.

Symmetrically, we can define the inverse minor operations; H is a minor
of G, if we can obtain G from H by a series of the following operations: We
either (i) introduce a new node, probably incident to some nodes in the graph,
or (ii) we replace some node v by an edge {v1, v2}, and for each neighbor
u ∈ N(v) of v we introduce an edge {v1, u}, {v2, u}, or both. We call the
latter operation node expansion.

7.2. MINOR AND HYPERGRAPH CROSSING NUMBER 105

Definition 7.1 (Minor Crossing Number). The minor-monotone crossing
number mcr(G), or minor crossing number for short, is the smallest crossing
number of any graph G′ which has G as its minor, i.e.,

mcr(G) = min
G�G′

cr(G′).

Let G � G′ and cr(G′) = mcr(G). We say G′ is a realizing graph of mcr(G).

Clearly, we always have mcr(G) ≤ cr(G). The eponymous property of this
number is that, unlike the traditional crossing number, it is monotonously
decreasing with respect to the minor relation; if H ≺ G, we have mcr(H) ≤
mcr(G). The minor crossing number has yet only been studied in the context
of theoretical lower and upper bounds [14, 15], but was never before tackled
algorithmically.

Observation 7.2. Consider a cubic graph G, i.e., a graph where each node
has degree 3. We have mcr(G) = cr(G).

Proof. Since mcr(G) 6> cr(G), assume mcr(G) < cr(G). Let G′ be a realizing
graph of mcr(G). Since G � G′, there has to exist a series of inverse minor
operations to transform G into G′. Clearly, the addition of nodes and edges
will never result in a crossing number smaller than the original cr(G). The
node expansion do also not decrease the crossing number: Expand a node v
with N(v) = {u1, u2, u3} into an edge {v1, v2}; we can either

1. attach all neighbors of v to only one of the new nodes (say v1); or

2. attach two neighbors (say u1, u2) to one node (say v1) and the other
one to the other; or

3. choose one of the above and add additional edges connecting N(v) with
v1 or v2.

The third possibility will never allow a crossing number less than the former
two options. In the first case, the crossing number does not change, since
we effectively only add a single edge incident to a new node (v2) which has
degree 1. The second case resembles subdividing an edge (in our case the edge
{v, u3}) into a chain of two edges; this does not change the overall crossing
number. Analogously, expanding any of the newly introduced nodes v with
deg(v) < 3 can neither reduce the crossing number.

This is a contradiction to cr(G′) < cr(G) and hence equality holds.

In [85], Hliněný showed that the crossing number problem remains NP-
complete when considering cubic graphs; hence the minor crossing number
problem is NP-complete as well.

106 CHAPTER 7. CROSSING NUMBER VARIANTS

(a) Subset (b) Edge, tree-based (c) Edge, point-based

Figure 7.2: A hypergraph, drawn using different drawing styles.

Hypergraph Crossing Number. Recall from Section 2.1 that a hyper-
graph H = (V,Ψ) differs from an ordinary graph in that instead of edges—
which have exactly two incident nodes—we consider hyperedges: A hyperedge
ψ ∈ Ψ is a proper subset of V (i.e., ψ ⊂ V) with |ψ| ≥ 2. See, e.g., [91] for
details. In the following, we will restrict ourselves to undirected hypergraphs;
Section 7.2.7 will briefly discuss directed hyperarcs as well.

There are two major variants on how to draw hypergraphs [109], cf. Fig-
ure 7.2: the subset-standard and the edge-standard . The first variant becomes
very confusing with more hyperedges, and it is ambiguous how to define a
consistent notion of crossings. Hence, most applications, cf. [52, 98, 130],
focus on the edge-standard which allows two sub-variants: In the tree-based
drawing style, each hyperedge ψ is drawn as a tree-like structure of lines,
whose leaves are the incident nodes of ψ. If we restrict the tree-like structure
of every hyperedge to be a star, we obtain the point-based drawing style.

Formally, each hyperedge ψ ∈ Ψ has a set of associated hypernodes Nψ,
which form the branching points of the line tree. Each node v ∈ ψ is connected
to exactly one n ∈ Nψ, and all hypernodes Nψ are tree-wise connected. By
this tree-based transformation we obtain a traditional graph L. We denote
the set of all graphs L obtainable by such transformations by L(H), and can
naturally define:

Definition 7.3 (Tree-based Hypergraph Crossing Number). Let H be a hy-
pergraph. We define the tree-based hypergraph crossing number as

thcr(H) := min
L∈L(H)

cr(L).

The tree-based hypergraph crossing number has the elegant property that it
is equivalent to the traditional crossing number if all hyperedges have cardi-
nality 2. Because of this property, computing thcr(H) is NP-hard.

We further define the point-based transformation Λ(H) as the special tree-
based transformation where each hyperedge has exactly one associated hyper-
node, i.e., Λ(H) := (V ∪ Ψ, E′) with E′ := {{v, ψ} | v ∈ ψ,ψ ∈ Ψ}. Clearly,
this leads to the point-based drawing style and the definition of the point-
based hypergraph crossing number phcr(H) := cr(Λ(H)).

7.2. MINOR AND HYPERGRAPH CROSSING NUMBER 107

Observation 7.4. For any L ∈ L(H) we have Λ(H) � L, i.e., the point-
based transformation of H is the minor of any tree-based transformation of
H.

Point-based hypergraph planarity ofH can be defined as phcr(H) = 0 straight-
forwardly and is equivalent to Zykov planarity [91]. It can be efficiently tested
by transforming H into Λ(H) in linear time and applying any traditional
linear-time planarity testing algorithm to Λ(H). Analogously, tree-based hy-
pergraph planarity can be defined as thcr(H) = 0. Since L ∈ L(H) is planar
if and only if Λ(H) is planar, all three planarity definitions are equivalent.

Obviously, the point-based hypergraph crossing minimization of H is
equivalent to the traditional crossing minimization on the graph Λ(H). Hence
we will focus on computing thcr(H).

7.2.2 Relationship and Observations

Restricted Minor Crossing Number. Let W ⊆ V . We can define the
minor relation G′ �W G, i.e., G is a W -minor of G′ if we can obtain G′ from
G by only expanding nodes of W . This leads to the more general W-restricted
Minor Crossing Number mcrW (G), i.e., the smallest crossing number of any
graph G′ �W G. Clearly mcrW (G) = mcr(G) if W = V . Since nodes with
degree less than 4 are irrelevant for the differences between the traditional
and the minor crossing number, we have:

Theorem 7.5. Let H = (V,Ψ) be a hypergraph and Ψ̂ := {ψ ∈ Ψ | |ψ| ≥
4}. The tree-based hypergraph crossing number of H is equivalent to the Ψ̂-
restricted minor crossing number of Λ(H), i.e., thcr(H) = mcrΨ̂(Λ(H)).

Hence, computing the tree-based hypergraph crossing number of H is equiv-
alent to finding a realizing graph Λ′ �Ψ̂ Λ(H) with smallest crossing number,
i.e., we may obtain Λ′ by only expanding hypernodes of degree at least 4. In
the following, we will always consider an undirected graph G = (V,E) with
W ⊆ V , and we are interested in mcrW (G).

General Observations. For the following algorithms, there are two points
of view which are helpful when discussing the problem of minor crossing
numbers: We can replace each node v ∈W with deg(v) ≥ 4 by an expansion
tree Tv, which is incident to all nodes—or their respective expansion trees—
originally incident to v. The nodes of Tv are called the split nodes of v. The
W -restricted minor crossing number problem can then be reformulated as
finding a tree expansion G′, i.e., a graph obtained by such transformations,
with smallest crossing number.

Another possibility to view the problem is that in the traditional crossing
number problem, edges are allowed to cross. For the minor crossing number,
edges are also allowed to cross through vertices, and moreover vertices may

108 CHAPTER 7. CROSSING NUMBER VARIANTS

(a) Edge crosses node (b) Node crosses node

Figure 7.3: New types of crossings. Both (a) and (b) give three visualizations:
On the left, we see a situation for the traditional crossing number. We require less
crossings for the minor-monotone case, by allowing novel crossing types (middle),
which lead to a realizing graph structure depicted on the right.

even “cross” other vertices, cf. Figure 7.3. Such crossings can be seen as
crossings between an expansion tree and a traditional edge, or between two
expansion trees, respectively.

7.2.3 Edge and Node Insertion Results

In the following, we will always consider the W -restricted variant of the minor
crossing number. Since W may be the full set V , the algorithmic results also
hold for the pure minor-monotonous case.

We will first summarize our results on insertion problems w.r.t. the minor
crossing number, and prove them in the section thereafter. We will then show
how to use these results to obtain a practical heuristic to tackle the minor
crossing number problem. In Section 7.2.6 we will outline a concept of an
0/1-ILP to compute this number exactly.

We consider two embeddings Γ of G and Γ′ of G′ (G � G′) equivalent ,
if we can obtain Γ by performing the necessary minor operations stepwise
on G′ and Γ′ in the natural way: Let us merge the connected nodes v1 and
v2 with their respective cyclic orders πv1 = 〈{v1, v2}, e1, . . . , edeg(v1)−1〉 and
πv2 = 〈{v2, v1}, f1, . . . , fdeg(v2)−1〉 of their incident edges. The new node v
will have the cyclic order πv = 〈e1, . . . , edeg(v1)−1, f1, . . . , fdeg(v2)−1〉.

Similar to the corresponding problems for the traditional crossing number,
we can state the following related problems:

Definition 7.6 (Minor Edge Insertion). Let G = (V,E) be a planar undi-
rected graph, and let e = {s, t} ∈ V {2} \ E be an edge not yet in G. The
W-restricted Minor Edge Insertion Problem with Variable Embedding (MEIV)
is to find the W -restricted minor crossing number of the graph G+ e, under
the restriction that the realizing drawing induces a planar drawing of G.

Given a specific planar embedding Γ of G, the W-restricted Minor Edge
Insertion Problem with Fixed Embedding (MEIF) is to find the W -restricted
minor crossing number of the graph G + e, under the restriction that the
realizing drawing induces an embedding of G equivalent to Γ.

7.2. MINOR AND HYPERGRAPH CROSSING NUMBER 109

For both problems, the corresponding problems concerning the traditional
crossing number can be solved in linear time. We will show:

Theorem 7.7. MEIF and MEIV can be solved to optimality in linear time.

In Section 7.2.5, we show how to use this result to obtain a heuristic following
the planarization method.

Definition 7.8 (Minor Node Insertion). Let G = (V,E) be a planar undi-
rected graph, let v 6∈ V be a node not yet in G, and let E′ be edges connecting
v with nodes of V . Let W− := W and W+ := W ∪ {v}. The W−-restricted
(W+-restricted) Minor Node Insertion Problem with Variable Embedding is to
find the W−-restricted (W+-restricted) minor crossing number of the graph
G′ = (V ∪{v}, E∪E′), under the restriction that the realizing drawing induces
a planar drawing of G. We abbreviate these problems MNIV− and MNIV+,
respectively.

Assume we are given a specific planar embedding Γ of G. Then the W−-
restricted (W+-restricted) Minor Node Insertion Problem with Fixed Embed-
ding is to find the W−-restricted (W+-restricted) minor crossing number of
the graph G′, under the restriction that the realizing drawing induces an em-
bedding of G equivalent to Γ. We abbreviate these problems MNIF− and
MNIF+, respectively.

The corresponding problem for the traditional crossing number and a fixed
embedding can be solved in O(|V | · |E′|) time. An analogous algorithm,
together with the ideas of Theorem 7.7, can be used to show:

Theorem 7.9. MNIF− is solvable in O(|V | · |E′|) time.

The problem for the traditional crossing number where all embeddings are
considered—and therefore a special case of MNIV−—has been open until
recently [32], when it was shown to be polynomially solvable. In contrast
to this result, we show that the problem is hard when the inserted node is
allowed to be expanded:

Theorem 7.10. MNIF+ and MNIV+ are NP-hard. This also holds for the
case W = V , i.e., non-restricted minor-monotonicity.

Corollary 7.11. Let H = (V,Ψ) be a hypergraph, and ψ 6∈ Ψ a hyperedge not
yet in H. Under the restriction that H has to be drawn planar and independent
on whether a specific embedding of H is given or not, we have: Computing
thcr(H+ ψ) is NP-hard.

The theorem is based on the observation that we can turn any planar Steiner
tree problem instance (NP-complete, [63]) into a corresponding MNIF+ prob-
lem, see below. The corollary does not follow from Theorem 7.10 itself, but
from its proof. Furthermore, since computing thcr(H) is a special case of a
W -restricted minor crossing number we have in particular:

110 CHAPTER 7. CROSSING NUMBER VARIANTS

Observation 7.12. The heuristic and exact algorithms presented below can
be used to solve the tree-based hypergraph crossing number problem heuristi-
cally and to optimality, respectively.

7.2.4 Edge and Node Insertion Details

For the edge insertion, our task is to find a tree expansion G′ of G along with
an insertion path connecting s and t, i.e., an ordered list of edges that are
crossed when inserting e. Observe that it is never necessary to expand s or t.

Algorithm for Theorem 7.7 (Fixed Embedding). We show that MEIF
is solvable in linear time.

Let Γ be an embedding of G. We define a directed graph DΓ,s,t = (N,A)
as follows. N contains a node nϕ for each face ϕ in Γ and a node nv for each
node v ∈ W ∪ {s, t}. Each arc a ∈ A has an associated cost ca ∈ {0, 1}; we
have the following arcs:

• For each pair ϕ,ϕ′ of adjacent faces, we have two arcs (nϕ, nϕ′) and
(nϕ′ , nϕ) with cost 1.

• For each node v ∈ W \ {s, t} and face ϕ incident to v we have an arc
(nv, nϕ) with cost 1 and an arc (nϕ, nv) with cost 0.

• Finally, we have arcs (ns, nϕ) for each face ϕ incident to s and (nϕ, nt)
for each face ϕ incident to t; all these arcs have cost 0.

Then, the solution to MEIF is the length of a shortest path p in DΓ,s,t from
ns to nt; each arc (nϕ, nϕ′) in p corresponds to crossing an edge separating ϕ
and ϕ′; each sub-path (nϕ, nv), (nv, nϕ′) corresponds to splitting node v and
crossing the edge resulting from the split.

The number of nodes in N is bounded by |V |+ |Φ| (where Φ is the set of
faces in Γ), and the number of arcs in A by 4 · |E|, since we have at most four
arcs per edge. Hence, we can apply breadth-first-search for finding a shortest
path in DΓ,s,t which takes time O(|V |) as in planar graphs |E| and |Φ| are of
the same order as |V |. We remark that BFS can easily be extended to graphs
with 0/1-arc costs. Thus, we can solve MEIF in linear time.

Algorithm for Theorem 7.7 (Variable Embedding). We show that
MEIV is solvable in linear time.

In order to solve MEIV, we adapt the algorithm by Gutwenger et al. [77]
which solves the problem for the traditional crossing number, i.e., W = ∅ and
no tree expansions are possible. They showed that it is sufficient to consider
the shortest path B0, v1, B1, . . . , vk, Bk in the BC-tree of G and independently
compute optimal edge insertion paths in the blocks Bi from vi to vi+1 (0 ≤
i ≤ k, v0 = s, and vk+1 = t). This is also true when we are allowed to split

7.2. MINOR AND HYPERGRAPH CROSSING NUMBER 111

the nodes W : Concatenating the respective paths in the blocks results in a
valid insertion path, and alternately crossing edges from different blocks or
splitting (and crossing through) a cut vertex vi would result in unnecessary
crossings.

Thus, we can restrict ourselves to a biconnected graph G. Let T be the
SPR-tree of G, cf. Section 4.2.1. We consider the shortest path p = µ1, . . . , µh
in T from a node µ1 whose skeleton contains s to a node µh whose skeleton
contains t. Let Gi be the skeleton of µi (1 ≤ i ≤ h). The representative rep(v)
of a node v ∈ G in a skeleton Gi is either v itself if v ∈ Gi, or the virtual edge
e ∈ Gi whose expansion graph contains v. If W = ∅, the optimal algorithm
only considers the R-nodes—triconnected components with therefore unique
embeddings—on p and independently computes optimal edge insertion paths
in fixed embeddings of the respective skeletons from rep(s) to rep(t). If the
representative is an edge, we assume that a virtual node is placed on this edge
and serves as start or endpoint of the insertion path.

This approach is invalid if W 6= ∅: An optimal insertion path in a skeleton
Gi might cross through an endpoint a of the edge representing t in Gi, and
continuing this path from a in Gi+1 might save a crossing. We circumvent
this problem by processing p in order from µ1 to µh: For each R-node µi
where rep(t) is an edge et = {a, b}, we compute three insertion paths pa, pb,
and pe in a fixed embedding of Gi, which are optimal insertion paths to a, b,
and et, respectively. Observe that for the respective lengths `a, `b, and `e of
these paths we have `e ≤ `a, `b ≤ `e+ 1. If a ∈W , `a = `e, and a is contained
in the skeleton of the next processed R-node µj , then a is a possible start
node for an insertion path in Gj ; the analogous is true for b; rep(s) is always
a possible start node. We compute the optimal insertion paths in the R-node
skeletons by slightly modifying the search network introduced for MEIF. We
introduce a super start node s∗ and connect it to the possible start nodes.
Then we compute shortest paths from s∗ to rep(t) and, if this is an edge et,
to the endpoints of et.

After processing all nodes on p, we reconstruct the optimal insertion path
backwards from t to s. The insertion path in Gh ends in t; we determine which
insertion path in the preceding R-node skeleton to chose by checking which
start node is used, until we reach s. This algorithm can be implemented in
linear time, thus showing that MEIV can be solved in linear time as well.

Algorithm for Theorem 7.9. We show that MNIF− is solvable in O(|V | ·
|E′|) time.

Let U be the nodes of V incident to edges of E′. We can solve the node
insertion problem with fixed topology for the traditional crossing number by
considering the dual graph GD of G with respect to Γ. Each node in GD

is labeled with a number which is initially 0. We then start a BFS for each
u ∈ U , augmenting GD with edges between u and its incident faces. The
labels in GD are incremented by their BFS-depth minus 1, for each different

112 CHAPTER 7. CROSSING NUMBER VARIANTS

u. Finally, each node of GD holds the sum of the shortest distances between
itself and the nodes U . We then simply pick a node of GD with smallest
number, and insert the new node v into the corresponding face in Γ.

Using the ideas from solving MEIF, we can use the same algorithm but
allow edges to cross through nodes. Since all inserted edges are incident to
v, they will not cross each other in any optimal node insertion. Therefore,
no conflicting edge-node crossings can occur, other than ones based on paths
with equal length. Such conflicts can easily be resolved by choosing any of
the conflicting paths for both inserted edges. The correctness and running
time of the algorithm follows directly.

Proof of Theorem 7.10. We show that MNIF+ and MNIV+ are NP-hard.
We can restrict ourselves to MNIF+. Since a planar 3-connected graph

has only a unique planar embedding and its mirror, we naturally have NP-
hardness for MNIV+ if MNIF+ is NP-hard. We only briefly sketch the idea
of the proof.

We reduce to the planar Steiner tree problem, which is known to be NP-
complete [63]. Thereby we are given a planar graph D with integer edge-
weights and a subset of its nodes are marked as terminals. We ask for a
weight-minimum tree T connecting all terminals (and possibly some other
nodes).

Choose any embedding of D and augment it greedily by additional edges
to obtain a planar triangulated graph D′ (i.e., each face is a triangle); the
new edges get high enough costs such that they will not be chosen for an
optimal solution T . Note that these costs, as well as the given edge costs, are
polynomial in the graph size.

Let G be the dual of D′. For each terminal t in D′, let ϕt be the corre-
sponding face in G. We introduce a star of degree 3 into ϕt for each t, i.e., a
new node ut with incident edges to the three nodes bordering ϕt, calling the
resulting graph G′.

Recall that the embeddings of D′ and G′ are unique. Finding a cost
minimal Steiner tree in D′ (and therefore in D) becomes equivalent to finding
a tree-wise expansion for a node v that we want to insert into G, connecting
it to the vertices ut, for each terminal t in D; thereby we do not need any
minor operations on the nodes originally in G. I.e., by solving the weighted
∅+-restricted minor node insertion problem on the fixed embedding of G, we
solve the Steiner tree problem.

Since all integer crossing weights in G′ can be bounded to be a polynomial
in the graph size, we can replace each edge of weight w by a parallel structure
of this thickness, as described in Section 2.3. Hence we have NP-hardness for
MNIF+.

We can show that this also holds when W = V , i.e., all vertices, not only
the new node v, are allowed to be split. Therefore we have to replace higher
degree nodes by grids of maximum degree 3, similar to the brick-wall style

7.2. MINOR AND HYPERGRAPH CROSSING NUMBER 113

(a) Dummy on target (b) Dummy near target (c) Dummy near source and target

Figure 7.4: Modification of insertion paths ending at dummy nodes. Bold solid
edges are part of expansion trees, dummy-nodes are denoted by squares.

grids used in the proof of [85], and attach the edges to this substructure. We
already know from Observation 7.2 that for graphs with maximum degree 3,
splitting nodes does not influence the crossing number.

7.2.5 Heuristic Crossing Minimization

As outlined in Section 2.3, the planarization method is a well-known and suc-
cessful heuristic for traditional crossing minimization; see [76, 73] for exper-
imental studies. First, a planar subgraph is computed. Then the remaining
edges are inserted one after another by computing edge insertion paths and
inserting the edges accordingly, i.e., edge crossings are replaced by dummy
vertices of degree 4.

In order to apply the algorithms from the previous section in a planariza-
tion approach for computing mcrW (G), we need to generalize them, since
the insertion of edges splits nodes and thereby expands them to trees. Fur-
thermore, edges of G and edges resulting from node splits get subdivided by
dummy vertices during the course of the planarization. We call the resulting
paths edge paths and tree paths, respectively. Hence, we are not simply given
two nodes s and t but two node sets S and T , and we have to find an insertion
path connecting a node of S with a node of T . Thereby, S (T) is the set of all
split nodes of s (t) and all dummy nodes on edge or tree paths starting at a
split node of s (t). The dummy nodes in these sets have the property that a
simple extension of a tree expansion is sufficient to connect an insertion path
to a correct split node; see Figure 7.4 for a visual description.

Before we discuss the details, we give an overview of the planarization
approach for mcrW (G).

(1) Compute a planar subgraph G′ = (V,E′) of G.

(2) For each edge e = {s, t} ∈ E \ E′:

(a) Compute S and T .

(b) Find an insertion path p from S to T in G′.

(c) Insert e into G′ according to p by splitting nodes if required and
introducing new dummy nodes for crossings.

114 CHAPTER 7. CROSSING NUMBER VARIANTS

It remains to show how to generalize the edge insertion algorithms. In
the fixed embedding scenario, we simply introduce a super start node s∗

connected to all nodes in S, and a super end node t∗ connected from all
nodes in T in the search network. The following proposition shows the key
property for generalizing the variable embedding case.

Proposition 7.13. 1. The blocks of G′ containing a node in S (T) and
the cut vertices of G′ contained in S (T) form a subtree of the BC-tree
of G′.

2. Let T be the SPR-tree of a block of G′. The nodes of T whose skeletons
contain a node in S (T) form a subtree of T .

This allows us to compute the shortest paths in the BC- and SPR-trees in a
similar way as described above. The only difference is that we consider blocks
and skeletons containing any node in S (or T). The computation of insertion
paths in R-node skeletons is generalized as for the fixed case if several nodes
of S or T are contained.

In [76], two improvement techniques for the planarization approach are
described which are both also applicable in our case. The permutation strat-
egy calls step (2) several times and processes the edges in E \ E′ in random
order. The post-processing strategy successively removes an edge path and
tries to find a better insertion path. This can also be done for tree paths
which in fact is a key optimization of our approach, since it allows to intro-
duce crossings between two tree expansions as well. Finally, we remark that
we also contract tree paths during the algorithm if they no longer contain a
dummy node and thus become redundant.

7.2.6 Exact Crossing Minimization

We briefly sketch how to construct a 0/1-ILP to compute mcrW (G), and
therefore also thcr(H).

We can use both Secm and Oecm formulations by considering tree expan-
sions of G, instead of G itself. We replace each node v ∈W , with deg(v) ≥ 4,
by a vertex set V ′v with |V ′v | = 2 deg(v)− 2. Each edge originally incident to
v is incident to a unique vertex of this set. By augmenting V ′v with edges, we
can model any tree-wise connection of the vertices {w ∈ V ′v | deg(w) = 1}.
Hence, considering the edges E′v = V ′v

{2} of the complete graph on the set
V ′v , we introduce 0/1-variables ξe for all e ∈ E′v. If such a variable is 1, the
corresponding edge is used for the tree-wise connection of V ′v .

We now require two main types of constraints. We can generalize the
Kuratowski constraints straight-forwardly: let M(K) be the set of edges with
ξ variables which are contained in some Kuratowski subdivision K. We can
subtract the term

∑
e∈M(K)(1−ξe) on the right-hand side of the corresponding

Kuratowski constraint, i.e., we only require a crossing on K if all its edges
are selected.

7.2. MINOR AND HYPERGRAPH CROSSING NUMBER 115

Additionally, we have to assure the tree-wise connection for each V ′v .
Therefore we require to select exactly |V ′v | − 1 edges of E′v for each set V ′v ,
and assure connectivity via traditional cut constraints:

∀v ∈W, deg(v) ≥ 4, ∀∅ 6= S ⊂ V ′v :
∑

u1∈S,u2∈V ′v\S

ξ{u1,u2} ≥ 1.

All these constraints can be added dynamically within a branch-and-cut
framework using known separation routines. Nonetheless, the resulting ILP
seems to be too large even for relatively small graphs. It is therefore mainly
of theoretical interest.

7.2.7 Application: Electrical Wiring Schemes

We will now briefly divert from the mainly theoretical background of crossing
numbers and look at some application for hypergraph crossing numbers.

We consider the real-world problem of drawing electrical circuit designs.
On a chip, the most important criteria for realizing such circuits is a small
required area, leading to compact but confusing edge routings. But on the
other hand, as stated in [51], a readable drawing with few edge crossings
is beneficial for debugging, teaching, presentation, and documentation pur-
poses. This is further strengthened by the fact that gate-level descriptions
may by automatically synthesized from other, e.g., register-transfer level, de-
scriptions. Furthermore, according to [11], the crossing number of a graph
seems to be a good estimate for the required area on a chip.

As outlined in the beginning of Section 7.2, the properties of electrical
wirings allow us to consider such circuits as hypergraphs. The problem of find-
ing a crossing minimal drawing for such circuits was, e.g., tackled in [51, 52],
the latter of which also gives a short overview on previous approaches. The
currently best known approach [52] is based on Sugiyama’s three-stage algo-
rithm [136] of layering the graph, performing crossing minimizations between
adjacent layers, and finally assigning coordinates.

Circuit Design. Gate-level networks are composed of the following com-
ponents; see Figure 7.5 for an example:

Logical gates: Such a gate performs a specified logical operation, like NOT,
AND, NOR, etc. Its corresponding electrical component takes one or
more input signals on its in-ports and outputs a single signal on its
out-port.

Input gates: Such a gate will retrieve an input signal from outside of the
network. Therefore, it is only connected to in-ports of logical gates.
Conceptually, it hence has no in-ports and a single out-port.

116 CHAPTER 7. CROSSING NUMBER VARIANTS

s

s

i

o

Figure 7.5: An electrical circuit (left) and its transformation into a graph for the
restricted minor crossing number problem (right). Circles denote original nodes,
squares denote the hypernodes from the point-based expansion. We allow the minor
relations on the black nodes, the white nodes (input and output gates) are merged
into the nodes si and so, respectively.

Output gates: Such a gate will output a resulting signal to the outside of
the network. Therefore, it is only connected to out-ports. Conceptually,
it itself has no out-ports and a single in-port.

Wires: Each wire will connect a single out-port to one or more in-ports. We
will never have a wire directly connecting two out-ports: If the ports
do not have the equivalent signal, this would result in a circuit failure.

For higher abstraction levels (register-transfer level, etc.), we may also con-
sider operational components, which represent logical networks that perform
more complex computations, like a 4-bit ADDER. Such components may have
multiple out-ports, and the order of the in- and out-ports may be crucial.

Drawing requirements. A drawing of such a circuit has to follow certain
established norms. The most common of which is that the input and output
gates are drawn on opposing borders of the drawing, say inputs on the top,
outputs on the bottom, and all other gates and wires in between. In terms of
graph drawing we can deduce the following drawing requirements:

DR1. Input and output gates have to lie on the outer face of the drawing.

DR2. Consider the cyclic order of the input and output gates on the outer
face. All input gates have to occur consecutively. This induces the same
property for the output gates.

Consider a planarization and an embedding of it. If the embedding satisfies
the above two properties, we can easily find a drawing where the input and
output gates are on opposing borders, and where all other wires and gates
are in-between.

7.2. MINOR AND HYPERGRAPH CROSSING NUMBER 117

Furthermore, for each operational component the order of its ports has to
be retained by the drawing. If no order is given, we always require that the
component’s in-ports are consecutive in the embedding (and hence so are its
out-ports).

In the aforementioned currently best known crossing minimization algo-
rithm for electrical wiring schemes, the drawings furthermore have the prop-
erty that they are drawn upward, i.e., the y-coordinate increases monotoni-
cally for each edge, when traversing it from its source node to one of its target
nodes. This is an intrinsic property of Sugiyama-based algorithms, and it is
unspecified whether this property is a requirement or a mere side-effect. In
our context we will not take upwardness into account.

From Circuit Designs to Hypergraphs. Clearly, the gates in a circuit
C correspond to nodes V in a hypergraph H = (V,Ψ). We partition V into
the sets I, O, and L, corresponding to the input, output, and logical gates,
respectively. Each wire connects an out-port to several in-ports; for each
such wire we have a hyperedge connecting the nodes of the wire’s ports, cf.
Figure 7.5.

We start with the point-based transformation Λ(H) = (V ∪ Ψ, E′) of
this hypergraph and want to solve the Ψ̂-restricted minor crossing number
problem on Λ(H). However, this translation itself would not yet guarantee
the drawing requirements discussed above. Therefore we further modify Λ(H)
into the graph Λ+ as follows: we unify all input nodes into a node si, all
output nodes into a node so, and we introduce a new edge {si, so}. We
then have to solve the problem of finding mcrsi,so

Ψ̂
(Λ+), i.e., the Ψ̂-restricted

minor crossing number of Λ+ under the restriction that the edge {si, so}
has no crossings. Assuming we (exactly or heuristically) solve this crossing
minimization problem, we obtain a planarization of Λ+, where hypernodes
might be expanded into subtrees.

We can deduce a drawing for the circuit C by reinterpreting the hyper-
edges as wires; it remains to reintroduce the input and output nodes. Since
the edge {si, so} has no crossings, we know that si and so lie in a common
face, which we choose as our outer face. We can then choose a (conceptually
arbitrarily small) crossing free region around si and place the input nodes
on their corresponding edges next to si; we do the analogous for the output
nodes. After removing {si, so}, we finally obtain a drawing of the circuit C
where all inputs and outputs lie on the outside (DR1), and the input nodes
occur consecutively (DR2). Hence we obtain a valid drawing of C and can
deduce:

Proposition 7.14. Given a circuit C, let ccr(C) be the crossing number of
the circuit C under the drawing requirements DR1 and DR2. Let Λ+ be its
transformed graph as described above. We have: ccr(C) = mcrsi,so

F̂
(Λ+).

118 CHAPTER 7. CROSSING NUMBER VARIANTS

It remains to solve the restricted minor crossing number problem, as described
below.

More complex operational components with multiple in- and out-ports can
be modeled by subgraphs as follows: Each port is represented by a vertex.
If the order of the vertices is given, we connect the vertices accordingly via
a cycle. If the order is specified and if it is furthermore important whether
this order occurs clockwise or counterclockwise, we can reuse the machinery
of embedding constraints and their planarization, as described in [74]. If, on
the other hand the order is not specified at all, we connect all in-port nodes
to a new node, all out-ports to a second new node, and then connect both
new nodes. In any case, we have to forbid any crossings through these new
subgraphs.

Crossing Minimization of Circuit Designs. We have to augmented our
above algorithms regarding mcrW (G) in order to restrict the use of the edge
{si, so}. The simplest possibility to enforce the restriction is to assign a
crossing weight k = min(|I|, |O|) + 1 to the restricted edge, or to replace the
edge by a parallel substructure of that thickness. An optimal solution will
then never cross through {si, so} or its replacement, since it is cheaper to
cross over all other edges incident to si or so, close to these nodes.

Although this strategy suffices, we prefer a method which does not require
edge costs or the enlargement of the graph: The key concept of the insertion
algorithm is to find a shortest path in the dual of the graph (or within sub-
graphs). To forbid the crossing of an edge then means to remove its dual
from the routing network. It is obvious, that this strategy still always allows
us to find an insertion path. We have:

Proposition 7.15. The edge insertion problem corresponding to mcrsi,so
F̂

can
be solved in linear time, both over a fixed and over all possible embeddings.

7.3 Simultaneous Crossing Number

In simultaneous graph drawing, we are given a series of graphs, rather than a
single one, and consider visualization and embedding problems over this set
of graphs. Research on simultaneous embeddings of graphs started in 2003 by
Brass et al. [21], and resulted in a number of publications, e.g. [21, 50, 58, 59,
65, 66, 67], that deal with different kinds of simultaneous embeddings, e.g.,
simultaneous embeddings without restrictions on the edge drawings, simul-
taneous embeddings with fixed edges, simultaneous geometric embeddings.
The main interest was the examination whether given pairs of graphs allow a
simultaneous embedding or not. Recently, also related complexity questions
have been studied [53, 65]. See, e.g., [35] for an introduction to the practi-
cal applications of simultaneous graph drawing, as this would be beyond the
scope of this thesis.

7.3. SIMULTANEOUS CROSSING NUMBER 119

We consider simultaneous drawings with fixed edges, i.e., given a series of
graphs, we consider layouts for each graph such that all vertices and edges
belonging to more than one graph are drawn identically in all drawings in
which they appear. In this section, we deal with the problem of crossing
minimization for simultaneous graphs; the objective is to minimize the to-
tal number of edge crossings over all these drawings. We also consider the
weighted problem, where a small number of crossings may be more important
for certain graphs of the series than for others.

While simultaneous graph drawing currently is a very active topic in graph
drawing, the concept of crossing minimization for this problem class has, to
our knowledge, not been studied before. Hence, the concise definition of
the simultaneous crossing number, as given in the following subsection, also
constitutes a contribution of this section.

We will discuss some of its main differences to the traditional crossing
number in Section 7.3.2, wherein we show upper and lower bounds for the
simultaneous crossing number, and prove its NP-completeness. The sections
thereafter will discuss preprocessing and show how to extend both heuristic
and exact crossing minimization algorithms to solve the problem. The latter
also constitutes the first algorithm for testing general simultaneous planarity.
In Part III of this thesis, we will give a brief experimental study and offer
some insights on the quantitative difference between the traditional crossing
number and the simultaneous one.

7.3.1 Definitions

Let {Gi = (Vi, Ei) | i = 1, . . . , k} be a set of graphs called basic graphs. We
define their simultaneous graph G = (V, E) by V :=

⋃
i=1,...,k Vi and E :=⋃

i=1,...,k Ei. Instead of creating layouts for each graph Gi independently, we
draw G in the plane. We obtain a drawing for any Gi by deleting all images of
the vertices and edges not belonging to Gi. Thus, a drawing D of G leads to
a drawing Di for each Gi such that all vertices and edges belonging to more
than one graph are drawn identically in all corresponding drawings.

Consider a drawing D of G with crossings. We can distinguish between
two different kinds of crossings: Assume there is a crossing between the edges
e and f . We say it is a phantom crossing , if there is no basic graph Gi which
contains both e and f . It is a proper crossing otherwise. Hence, phantom
crossings do not correspond to a crossing in a drawing of any basic graph, as
none of these graphs contains both edges. Thus, a drawing of a simultaneous
graph G yields a set of planar drawings for each basic graph, if it contains
only phantom crossings, if any at all.

Definition 7.16 (Simultaneous Planarity). A set of graphs Gi, i = 1, . . . , k,
as well as their simultaneous graph G, are called simultaneously planar if G
can be drawn with only phantom crossings, if any at all.

120 CHAPTER 7. CROSSING NUMBER VARIANTS

Obviously, a planar simultaneous graph is always simultaneously planar. This
definition of simultaneous planarity is equivalent to the definition of simulta-
neous embedding with fixed edges [50, 58, 65, 67]. Thus, we can reformulate
a result of Gassner et al. as follows:

Theorem 7.17 (Gassner et al. [65]). It is NP-complete to decide whether
three or more basic graphs are simultaneously planar.

The theorem states that testing simultaneous planarity is NP-complete for
three or more basic graphs. The corresponding problem for two graphs
is open, without strong conjectures for either a polynomial time algorithm
nor for NP-completeness. The problem to decide whether two (or more)
graphs have a simultaneously planar straight-line drawing is known to be
NP-hard [53].

We use the new planarity definition instead of the usual embedding def-
inition to emphasize our ambition to minimize crossings and produce simul-
taneous drawings.

Given a simultaneous graph G = (V, E), we define crossing costs cc(e, f) :=
|{i ∈ {1, . . . , k} | e, f ∈ Ei}| for each edge pair {e, f} ∈ E{2}, i.e., cc(e, f) is
the number of basic graphs which contain both e and f . Hence, cc(e, f) re-
flects the number of basic graphs whose induced drawings will have a crossing
if e and f cross in a drawing of the simultaneous graph G. Given a draw-
ing D of G, we define RD as a multi-set of edge pairs which lists all cross-
ings in D. Unlike for the traditional crossing number, optimal simultaneous
drawings may require multiple crossings of the same pair of edges {e, f} (see
Section 7.3.2); RD contains exactly as many instances of {e, f} as there are
crossings induced by this pair.

We can define the simultaneous crossing number of a simultaneous graph
G with respect to a drawing D of G as simcr(G,D) :=

∑
{e,f}∈RD cc(e, f).

Thus, simcr(G,D) is the total number of (proper) crossings in the drawings
of all basic graphs which are induced by D.

Definition 7.18 (Simultaneous Crossing Number). We define the simulta-
neous crossing number simcr(G) of a simultaneous graph G as the minimum
number simcr(G,D) over all drawings D of G.

A phantom crossing between two edges e and f has no effect on the simul-
taneous crossing number, as cc(e, f) = 0. Furthermore, we easily see the
relationship to the previously defined simultaneous planarity.

Proposition 7.19. A simultaneous graph is simultaneously planar if and
only if its simultaneous crossing number is zero.

Formally, we can state the problem:

Definition 7.20 (Simultaneous Crossing Minimization (SimCM)). Given a
simultaneous graph G, identify simcr(G).

7.3. SIMULTANEOUS CROSSING NUMBER 121

The crossing minimization for the simultaneous crossing number does not in-
clude the minimization of phantom crossings as they have cost zero. However,
we still think that these crossings should be avoided if possible. Hence we
also consider:

Definition 7.21 (Phantom Crossing Aware Simultaneous Crossing Mini-
mization (SimCM+)). Given a simultaneous graph G, identify simcr(G) and
the smallest number of phantom crossings possible among all drawings real-
izing simcr(G).

If not mentioned otherwise, we refer to a drawing realizing SimCM+ as an
optimal drawing. Clearly, a solution to this problem also solves SimCM. Con-
sidering SimCM+ instead of SimCM becomes crucial for the implementation
and analysis of our algorithms.

Sometimes a small number of crossings is more important for certain basic
graphs than for others; e.g., we might want to have few crossings in the first
and the last graph of the series. This can be achieved by considering graph
weights gw : {1, . . . , k} → N\{0} that define a positive weight for each graph
Gi. We can then define weighted crossing costs ccgw (e, f) :=

∑
i∈Ie,f gw(i)

where Ie,f = {i ∈ {1, . . . , k} | e, f ∈ Ei} is the index set of the basic graphs
that contain both e and f . This leads to the Graph-Weighted Simultane-
ous Crossing Number simcr(G, gw), and therefore to the Graph-Weighted Si-
multaneous Crossing Minimization (gwSimCM) and the Phantom Crossing
Aware Graph-Weighted Simultaneous Crossing Minimization (gwSimCM+)
problems.

While we will only discuss SimCM and SimCM+ in the following, all
algorithms can be used for gwSimCM and gwSimCM+ as well.

7.3.2 Bounds and Complexity

Gassner et al. [65] also discuss the relationship between simultaneous pla-
narity and the weak realizability problem. Furthermore, the problems are
closely related to the abstract topological graph problem introduced by Kra-
tochv́ıl [102]. Both the abstract topological graph problem and the simul-
taneous crossing minimization problem are quite different from traditional
crossing minimization as we demonstrate in Figure 7.6: We know that ad-
jacent edges do not cross in crossing minimal drawings. Furthermore, non-
adjacent edges cross each other at most once. This, however, does not hold
for simultaneous crossing minimization. The following propositions improve
on similar propositions in the original paper [35] and answer an open problem
stated therein:

Proposition 7.22. There are simultaneous graphs G = (V, E) with k ≥ 2
whose optimal drawings require that pairs of edges, even adjacent ones, cross
multiple times.

122 CHAPTER 7. CROSSING NUMBER VARIANTS

Figure 7.6: Two simultaneously planar basic graphs (top) where a pair of edges
(the horizontal and the bent edge) crosses multiple times in an optimal drawing of
their simultaneous graph (bottom). The gray region denotes a dense triconnected
subgraph identical in both basic graphs. When merging the two nodes on the right-
hand side, we observe multiple crossings on adjacent edges.

Proof. Figure 7.6 depicts a simultaneous graph G consisting of two basic
graphs. In particular, both basic graphs have unique embeddings as they
are triconnected apart from the “spikes”—i.e., single chains of length 2—
which can only be uniquely embedded as well, given the triconnected part of
the graph is dense enough. G has simultaneous crossing number zero but all
realizing drawings involve multiple phantom crossings on a pair of edges; this
edge pair can even be adjacent.

Proposition 7.23. There are simultaneous graphs G = (V, E) with k ≥ 3
whose optimal drawings require that pairs of edges, even adjacent ones, cross
Ω(|V|) times.

Proof. Figure 7.7 depicts a simultaneous graph G consisting of three basic
graphs. As before, they have unique embeddings. G has simultaneous crossing
number zero but all realizing drawings involve multiple phantom crossings on
a pair of edges; this edge pair can even be adjacent. By enlarging the example
at the zigzag line, we obtain linearly many phantom crossings between these
two edges. Note that we require the additional basic graph to fix the inner
gray nodes at their relative position: Without it, we could let the spikes of
different basic graphs cross in order to sort them such that only 3 (or 2, for
adjacent edges) phantom crossings are required between the edge pair.

7.3. SIMULTANEOUS CROSSING NUMBER 123

Figure 7.7: Three simultaneously planar basic graphs where a pair of edges crosses
multiple times in an optimal drawing of their simultaneous graph (bottom right). The
gray region denotes a dense triconnected subgraph identical in both basic graphs.
When merging the two nodes on the right-hand side, we observe multiple crossings
on adjacent edges. By enlarging the example at the zigzag line, we obtain linearly
many crossings of this edge pair.

For a simultaneous graph G neither the traditional crossing number is bounded
by the simultaneous crossing number nor the other way around. In fact, Fig-
ure 7.6 shows an example of a simultaneously planar (no proper crossings)
but not planar (traditional crossing number greater than zero) graph. On
the other hand, assume a non-planar graph G and construct a simultaneous
graph G by defining basic graphs G1 = G2 = G. Then the simultaneous
crossing number is twice the traditional crossing number of G.

Using this idea, we develop an upper bound to the simultaneous crossing
number:

Lemma 7.24. Let G be a simultaneous graph with k basic graphs. Then
simcr(G) ≤ k · cr(G).

Proof. Starting with a simultaneous graph G with k basic graphs, we define
a new simultaneous graph G′ by a set of k basic graphs G′1 := . . . G′k := G.
By construction we have simcr(G′) = k · cr(G), where cr(G) is the ordinary
crossing number of G. On the other hand simcr(G) ≤ simcr(G′) as every
crossing pair in G costs at most as much as in G′.

Corollary 7.25. The simultaneous crossing number simcr(G)—and therefore
the number of proper crossings in any optimal drawing of G—is polynomial
in the number of vertices and basic graphs for any simultaneous graph G.

A large difference to the traditional problem is the lack of upper bounds for
the cumulative crossing count ccc(G), i.e., the sum of phantom and proper
crossings, in the solution of a SimCM+ instance. As we have seen in Fig-
ures 7.6 and 7.7, two edges can cross more than once. Therefore, we cannot

124 CHAPTER 7. CROSSING NUMBER VARIANTS

Figure 7.8: A simultaneously planar simultaneous graph (shown in the bottom-
most picture) with n + 1 basic graphs. Edge (u0, v0) is involved in 2n − 1 phantom
crossings. The pictures show the case n = 3.

bound the number of crossings per edge by |E| − 1 in an optimal drawing as
in traditional crossing minimization. Furthermore we have:

Proposition 7.26. There are simultaneous graphs G whose optimal draw-
ings require that an edge is involved in an exponential number of phantom
crossings.

Proof. Figure 7.8 shows a simultaneous graph with this property in any op-
timal drawing. The graph is adapted from Kratochv́ıl and Matoušek [103]
where it was used in the context of string graphs.

We know that the traditional crossing number problem is NP-complete. Since
the simultaneous crossing number for a single basic graph (i.e., k = 1 and
G = G1) is equal to the ordinary crossing number, we have NP-hardness for
SimCM. But the fact that an exponential number of phantom crossings may
be necessary for any drawing realizing simcr(G) raises the question of NP-
membership of SimCM. We can prove this membership by showing a relation
to the NP-complete Weak Realizability problem [132].

7.3. SIMULTANEOUS CROSSING NUMBER 125

Definition 7.27 (Weak Realizability). Given a graph G = (V,E) and a set
of edge pairs R ⊆ E{2}, does there exist a drawing of G where all crossing
pairs lie in R?

Note the difference between this realizability problem and the problem of
strong realizability, cf. Definition 5.1: While in the latter we ask for a drawing
with exactly the crossing edge pairs specified by R, we now only specify
allowed crossings, and ask for a drawing which only uses (some of) these
allowed crossings.

Lemma 7.28. SimCM reduces NP-many-one to Weak Realizability.

Proof. Given a simultaneous graph G and a positive integral number h, we
can test simcr(G) ≤ h in the following way. We guess ` ≤ h pairs of edges
with non-zero crossing cost and whose crossing costs sum up to at most h.
Our guessing includes the order in which each edge is crossed. It is allowed
to guess the same edge pairs multiple times. Each edge e involved in these
crossing pairs is split into a path by introducing a new dummy vertex for
each guessed crossing. The new dummy vertices have degree four as they are
simultaneously used in the paths for both edges involved in the corresponding
crossing. The guessed crossing order is maintained by the construction of the
paths. This transformation can be realized in time polynomially in |E| and h.

We further define the set of allowed crossing pairs by the set of edge
pairs that create a phantom crossing. Path edges inherit their original edge’s
crossing costs. Edges of the same constructed path are, by construction, not
allowed to cross each other.

Notice that our guessing requires only a polynomial number of crossings as
h and `, the number of proper crossings, are polynomial (cf. Corollary 7.25).
When we correctly guess the crossings (including the order for each edge)
that correspond to a solution of the original SimCM problem, the constructed
Weak Realizability problem solves the original SimCM problem as it will find
the corresponding phantom crossings.

Since we have NP-hardness for SimCM, we can conclude:

Theorem 7.29. SimCM is NP-complete.

Corollary 7.30. SimCM+ is NP-hard.

This relationship between SimCM and Weak Realizability allows us to use a
similar result for Weak Realizability (see [120, Theorem 2]) to show that there
are at most exponentially many crossings per edge in an optimal drawing.
Even more, we have an exponential bound on the number of all crossings of
the drawing.

Theorem 7.31. The cumulative crossing count ccc(G) in an optimal solution
to SimCM+ for a simultaneous graph G is at most exponential. There are at
most (4m)12m+24 phantom crossings where m is the number of edges in G
while the number of proper crossings is polynomial.

126 CHAPTER 7. CROSSING NUMBER VARIANTS

u wv
e f

xy

u wv
e f

yx

Figure 7.9: In general, a vertex with degree two cannot be shrunk by the traditional
reduction techniques, cf. text. Solid edges are in G1, dashed edges in G2. All edges
except for e and f are also in G3.

A main difference to the traditional problem lies in the fact that the actual
number of crossings is not proportional to the simultaneous crossing number
as a higher number of phantom crossings but lower number of proper crossings
is preferred to a higher number of proper crossings (independent of the total
number of crossings). Thus, the overall number of crossings in a drawing
of G that realizes SimCM or SimCM+ cannot be bounded by the crossing
number, the simultaneous crossing number, or by the number of crossings in
some other drawing of G.

7.3.3 Preprocessing

We discussed preprocessing routines for the traditional crossing number prob-
lem in Chapter 4; thereby we in particular concentrated on the SPR-tree based
non-planar core reduction. However, these graph reduction techniques can-
not be used for simultaneous crossing minimization in general. As we shall
see, even trivial reductions are not always possible. We describe two valid
reduction techniques for the SimCM and SimCM+ problems:

Biconnected Components. Trivially, the simultaneous crossing number
of a graph is the sum of the simultaneous crossing numbers of the connected
components, when computed separately. Furthermore, as for the traditional
crossing number problem, it is also valid to solve the problem for each bi-
connected component separately: The obtained drawings of the blocks can
be glued together at their common vertices, without introducing additional
crossings. This implies that edges with a degree one vertex can be removed
from the problem instance recursively, as they will never cause a crossing in
a drawing that realizes SimCM+.

Chain Reduction. A 2-chain is a pair of edges e = {u, v} and f = {v, w},
in which the common vertex v has degree two. For the traditional crossing
number problem, we could merge them into a single edge g = {u,w}. In
general, this would be invalid for simultaneous graphs, cf. Figure 7.9: Assume
that e ∈ E1 \ E2 and f ∈ E2 \ E1. Let there be two edges x ∈ E1 ∩ E3 \ E2

7.3. SIMULTANEOUS CROSSING NUMBER 127

and y ∈ E2∩E3 \E1. Depending on the relative order in which they cross the
2-chain, they may induce either two phantom crossings, or one phantom and
one proper crossing. Replacing e and f by some edge g = {u,w} can never
reflect both situations.

Nevertheless, we can define a valid chain reduction based on a subset
relation. Let B(e) and B(f) be the sets of basic graphs that contain e and
f , respectively. If B(e) ⊆ B(f), we can replace the edges by g = {u,w} with
B(g) := B(e). Clearly, this reduction can be performed recursively on the
newly generated edge, in order to reduce even longer chains.

7.3.4 Heuristic Crossing Minimization

We consider the planarization heuristic as outlined in Section 2.3; we already
discussed it in more detail in the context of extending it for the hypergraph
and minor crossing number in Section 7.2. Recall that the heuristic consists
of two steps: We first identify a maximum, maximal, or at least large planar
subgraph; then we reinsert the temporarily removed edges one after another.
Thereby each edge is inserted such that all new crossings lie on this edge; the
crossings are replaced by dummy nodes, such that the intermediate graph
always stays planar.

Planar Subgraph. If G is planar in the traditional sense, it is also simul-
taneously planar. Hence we can use any known algorithm to solve the max-
imum or maximal planar subgraph problem, as it is done for the traditional
planarization approach. The resulting graph may not be maximally simul-
taneously planar, in the sense that we could insert additional edges without
introducing proper crossings. But it is maximally simultaneously planar in
the sense that it does not contain any phantom crossing and the insertion of
any edge would lead to at least one phantom or proper crossing.

Edge Insertion. As described before, the reinsertion of an edge e into
a planar graph G can be considered in two different settings: We may fix
a combinatorial embedding of G and insert e into this embedding along a
shortest-path in the dual graph of G. This can result in an unnecessary
high number of crossings if the chosen embedding is disadvantageous. Hence,
the preferable setting is to insert e optimally over all possible combinatorial
embeddings, which can also be done in linear time, using SPR-trees.

We can adapt both algorithms for simultaneous crossing minimization by
modifying the crossing cost calculations. Given an edge e and a planar simul-
taneous graph G, we want to add e to G such that all introduced crossings
lie on e and the simultaneous crossing number of the resulting graph is mini-
mized. In traditional crossing minimization, the crossing cost for each edge f
already in G is independent of e; in the unweighted case it is fixed to 1. How-
ever, in simultaneous crossing minimization the cost for crossing f depends

128 CHAPTER 7. CROSSING NUMBER VARIANTS

on e: the cost is given by cc(e, f), i.e., the number of basic graphs which
contain both e and f . As mentioned above, we also want to minimize the
number of phantom crossings and set the cost for edges f that do not have a
common basic graph with e to some small positive number ε. Hence—for each
reinsertion step and independently on whether we solve the insertion problem
for a fixed embedding or over all embeddings—the crossing cost for each edge
f in G must be calculated anew to reflect the current cost depending on the
inserted edge e.

Clearly, the quality of the solution depends on the order in which the edges
are inserted. As discussed in [76], there are several strong post-processing
strategies, based on removing and reinserting edges after the first heuristic
solution. All of them can also be used for the simultaneous crossing mini-
mization.

7.3.5 Exact Crossing Minimization & Testing Planarity

As discussed above, a pair of edges may cross several times, even an exponen-
tial number of times. This renders the variable concept of Oecm useless: The
idea of uniquely specifying that an edge f crosses some edge e before an edge
g crosses e breaks when f crosses e multiple times, sometimes before, some-
times after g crosses e. Generally, there is no way to uniquely model multiple
crossings per edge pairs with a cubic number of binary linear-ordering vari-
ables. Hence we will consider the Secm formulation and extend it to solve
the phantom crossing aware simultaneous crossing minimization problem.

Variables and Expansion of Edges. For the traditional crossing number,
we are able to bound the number of crossings per edge by the number of graph
edges and by any heuristic solution. We use this bound ` to expand the
graph and solve the simple crossing number on G[`] or G[`−1]. As discussed in
Section 7.3.2, there are no bounds of practical interest in case of the SimCM+

problem. We define ccc(G,D) as the sum of phantom and proper crossing in
the drawing D of G. We cannot even use ccc(G,D), for some heuristically
computedD, as a valid upper bound for the number of crossings per edge: The
optimal drawing D∗ might have fewer proper crossings than D, but require
many more phantom crossings, possibly resulting in ccc(G,D∗) > ccc(G,D).

Hence we consider a maximum expansion with exponentially many seg-
ments per edge. This drawback, although terrifying on first sight, turns out
to be of little relevance in practice, since the column generation scheme does
not generate this enormous amount of additional variables in any of our tests.
We observe that now the use of the column generation scheme is not only an
enhancement to improve the running time, but that it is a compulsory element
of the algorithm.

The original approach allows to leave out the variables for adjacent edges
e and f . Additionally, it may use constraints that allow at most one crossing

7.3. SIMULTANEOUS CROSSING NUMBER 129

per pair of original edges. Both these possibilities are no longer valid.

Crossing Costs and Column Generation Scheme. The main idea for
computing a solution to the SimCM+ problem with our ILP is to use the
crossing cost cc(e, f) as the coefficient of the variable xe,f in the objective
function, for each pair of edges e, f . Since phantom crossings correspond to
cc(e, f) = 0, the ILP would not solve SimCM+ correctly. We set the crossing
costs for phantom crossing to some small value ε̂ > 0. Clearly, as we know
there can be exponentially many phantom crossings in an optimal drawing,
ε̂ would have to be exponentially small such that kε̂ < 1 for each arising
number of phantom crossings k. Conceptually, we can do the following: We
start the algorithm assuming that the number of phantom crossings will not
be too large, and choose some small ε̂. When inspecting a fractional solution,
we can check if the objective function is perturbed too strongly by these
values: Whenever it is, we choose ε̂ := ε̂/2 and re-solve. Yet, for all practical
purposes the BIP will not allow too large crossing numbers to be computed
anyhow, due to the problem’s NP-hardness. So this does not become an issue
in practice.

The ε̂-approach comes with further certain challenges regarding the col-
umn generation scheme: The central idea of the combinatorial column gener-
ation scheme is to start with a primary segment per edge, adding secondary
segments when necessary. It is crucial for the algorithm that these additional
segments are a bit cheaper to cross than the primary segment of an edge, say
by some small enough ε > 0. Hence we have to be careful about mixing these
two different epsilons. Note that also crossings with cost ε̂ have to be reduced
by ε for secondary segments. Hence we require ε < ε̂ to ensure positive costs.
We cannot choose ε� ε̂ due to the risk of numerical instabilities.

The bounding schemes can easily become unstable, i.p., simply round-
ing the objective function up will in general not give a valid lower bound
for simcr(G): In the original column generation approach, using a suit-
able ε, the objective value of the ILP can always be rounded up to ob-
tain the unskewed integer objective value, i.e., any solution of the ILP is
of the form

⌈
cr(G)− `′ · ε− `′′ · ε2

⌉
= cr(G). Hereby, `′ and `′′ reflect the

number of crossings between primary and secondary, and between two sec-
ondary segments, respectively. We loose this property by the introduction
of ε̂, since crossings with such cost have to be rounded down to obtain
the graph theoretic crossing cost 0. Hence the ILP solution is of the form
simcr(G)− `′ · ε− `′′ · ε2 + ˆ̀· ε̂ which can be greater than simcr(G).

Overall, we can in fact use both ε and ε̂ simultaneously, choosing, e.g.,
2ε = ε̂, but we must adapt all bounding schemes accordingly. By choosing
the epsilons carefully, we can change the d.e-function into a rounding scheme
which transforms any value within the interval [a − 0.5, a + 0.5) into the
integral value a, and still use the combinatorial column generation scheme.
Alternatively, we can compute the unskewed objective function (i.e., without

130 CHAPTER 7. CROSSING NUMBER VARIANTS

any ε or ε̂) based on the fractional solution and use this for bounding purposes.

With the use of ε̂ and a conceptually exponentially large graph expansion,
it is clear that neither Secm’s Kuratowski-constraints, nor their separation,
has to be modified and we obtain:

Theorem 7.32. The Secm formulation, when modified as described above,
solves SimCM+ to provable optimality.

Corollary 7.33. The Secm formulation, when modified as described above,
can be used for the NP-complete problem of testing simultaneous planarity:
A graph is simultaneous planar if and only if the 0/1-ILP has an optimal
solution with simcr(G) = 0.

7.4 Further Crossing Numbers

In [25], Buchheim et al. presented how the Secm formulation can be extended
to solve the bimodal crossing number . This crossing number is defined as
the traditional crossing number, but—considering some fixed orientation of
the given graph—requires that the ingoing and the outgoing edges appear
consecutively in the resulting drawing.

In order to solve this crossing number, we modify the given graph by
expanding each original vertex v into two connected vertices vi and vo, similar
to the inverse minor operation described in Section 7.2. The node vi is incident
to all ingoing edges of v, and vo is incident to all outgoing edges of vo. We can
then forbid that the new edges {vi, vo} (for all nodes v) are crossed, simply by
fixing the corresponding variables to 0. By shrinking the node pairs into their
original counterparts after the computation, we obtain a bimodal drawing of
the graph with the minimum number of crossings.

The same modification is also possible for the Oecm formulation. Since
Oecm is preferable over Secm, this yields a formulation for the bimodal
crossing number preferable to the one presented in [25].

We want to conclude this section with noting that there are also many
other crossing numbers which are of theoretical or practical interest. Some of
these, like crossing numbers on surfaces of higher genus, are hard to formulate
similar to Oecm or Secm, as the planarity classification based on Kuratowski
subdivisions no longer holds.

The probably best-known other crossing number variants on the plane,
which up to now are of mainly theoretical interest, are the pairwise crossing
number pcr(G) and the odd crossing number ocr(G), see [119]. They are
defined similar to the traditional crossing number, but in the former we do
not count the crossings, but the number of edge pairs that cross; i.e., we only
care if two edges e, f cross of not, but we do not care if they cross once or
multiple times. For the latter crossing number we only count the pairs of
edges which cross an odd number of times.

7.4. FURTHER CROSSING NUMBERS 131

Clearly we have
ocr(G) ≤ pcr(G) ≤ cr(G)

for all graphs G. For a long time, it has been an open question whether
equality holds. In 2005, Pelsmajer et al. [124] showed that there are graphs
for which ocr(G) 6= cr(G). For the pairwise crossing number the answer is
still unknown. The Oecm formulation seems inappropriate for computing the
pairwise crossing number, as its variable structure cannot describe multiple
crossings of the same edge pair. The subdivision strategy of Secm on the
other hand, may be suitable for such an extension. Considering the fact that
the counter-example presented in [124] for the odd crossing number is quite
small (when edge weights are allowed), it might be an interesting approach
to have an optimal pairwise crossing minimizer, when seeking for counter-
examples—if there are any.

132 CHAPTER 7. CROSSING NUMBER VARIANTS

Part III

Experiments & Outlook

133

135

Explanatory Note

crossing: (Road Construction)
A place where two or more routes
of transportation form a junction or
intersection.

In this part of the thesis, we will investigate the practical performance
of the algorithms, the influence of different strategies, etc. In Chapter 8, we
report on experiments regarding our approaches for the traditional crossing
number on real-world graphs. Afterwards, we look at our algorithms for other
crossing numbers. Chapter 10 will give an overview on ongoing research: We
investigate how our ILP approach can be applied to graph theoretic questions
regarding the crossing number of special graph classes. We conclude with a
summary and outlook in Chapter 11.

We practically evaluated all relevant algorithms, schemata and routines
described in Part II of this thesis. They were implemented using the free
open-source1 Open Graph Drawing Framework (OGDF) [118]. This frame-
work is mainly developed here at the Chair for Algorithm Engineering at the
Dortmund University of Technology. At the time of this writing, all of the
algorithms described in this thesis, apart from the branch-and-cut-and-price
algorithms themselves, are contained in the publicly available package. Fur-
thermore, our code uses the free open-source2 Abacus branch-and-cut-and-
price framework [1, 94] in conjunction with the commercial LP-solver Ilog
CPLEX 9.0 [90]. Until specified otherwise, we ran our experiments on an
AMD Opteron 2.4 GHz, 32bit, 2GB RAM per process, under Debian Linux.
Although the machine offers 4 cores, we used only a single one per process.

1GPL – GNU General Public License, v2 and v3.
2LGPL – GNU Lesser General Public License, v2.1 and above.

136

Chapter 8

Experiments: Crossing
Number

crossing: (Nature)
A shallow area in a stream that can
be forded.

In this chapter, we concentrate on the traditional crossing number. First
we introduce the Rome graph library used for benchmarking and discuss the
efficiency of our non-planar core preprocessing scheme. The central part of
the experiments is our investigation on the practical performance of Secm
and Oecm, as well as the effectiveness of our column generation schemata.
After obtaining provable optimal solutions for most Rome graphs, we can
use these to study the quality of the currently best known crossing number
heuristic.

8.1 The Rome Graph Library

We consider the Rome graph library. This benchmark set was collected and
introduced by Di Battista et al. at the eponymous University of Rome III [45].
It has been widely used to evaluate various graph drawing algorithms since
then, in particular also crossing number heuristics, see, e.g. [76].

The set contains 11,389 graphs that consist of 10 to 100 nodes and 9 to 158
edges. These graphs were generated from a core set of 112 real-world graphs
originating from database design and software engineering applications. Most
of the graphs are sparse, which is a common property in most application
areas of automatic graph drawing. The average ratio between the number of
edges and the number of nodes of the graphs is about 1.35. The benchmark
set contains 8,249 non-planar graphs; their average degree is 2.69.

To understand the test set better, it is worth looking at Figure 8.1. The
library consists of many planar graphs and non-planar graphs for which we

137

138 CHAPTER 8. EXPERIMENTS: CROSSING NUMBER

200

250

300

350

n
u

m
b

er
 o

f
g

ra
p

h
s

all graphs

non-trivial graphs

0

50

100

150

10 20 30 40 50 60 70 80 90 100

n
u

m
b

er
 o

f
g

ra
p

h
s

nodes

Figure 8.1: Number of non-trivial graphs compared to all graphs in the benchmark
set.

know that their crossing number is 1, based on the primal heuristic; we call
these graphs trivial, since they are of no interest for us. As we can see, there
are only very few graphs with up to 32 nodes which are non-trivial.

8.2 Non-Planar Core Reduction

Figure 8.2 serves as a motivation. We see a database scheme of a retirement
fund company with 117 nodes and 153 edges (ignoring the graph’s second
connected component which is a simple chain of four nodes). It contains a
single non-planar block with 45 nodes and 80 edges. The non-planar core of
this graph has only 21 nodes and 47 edges. The graph becomes simple enough
that our heuristic directly computes a drawing with 7 crossings; our ILP can
easily prove that this is in fact the optimal value.

In our experiments, we consider the 8,249 non-planar graphs in the Rome
library; their average node degree is 2.69. We find that all these graphs have
a single non-planar block whose non-planar core is the skeleton of a single
R-node. The average node degree in these non-planar blocks is 2.89.

Figure 8.3 shows the average relative size of the non-planar core C com-
pared to the non-planar block and compared to the whole graph. Here, the
size of a graph is simply the number of its edges. The size of each circle in the
diagram reflects the number of graphs at the data point. Hence, larger circles
correspond to statistically more reliable data points. It turns out that, on av-

8.2. NON-PLANAR CORE REDUCTION 139

(a) Non-planar component: 117 nodes, 153 edges

(b) Non-planar block: 45 nodes, 80 edges

(c) Non-planar core: 21 nodes, 47 edges

Figure 8.2: An example graph, coming from a retirement company, cf.text. Note
that the crossed, left-most virtual edge in the core has weight 2.

140 CHAPTER 8. EXPERIMENTS: CROSSING NUMBER

Figure 8.3: Relative size (w.r.t. the original graph size) of the non-planar core for
the Rome graphs.

Figure 8.4: Relative size (w.r.t. the original graph size) of the θ-core for the Rome
graphs (if unsolved).

8.3. EXACT CROSSING MINIMIZATION 141

erage, the size of the non-planar core is only 2/3 of the size of the non-planar
block. Compared to the whole graph, the size of the non-planar core reduces
to about 55% on average. This shows that the new preprocessing technique
provides a significant improvement for reducing the size the real-world graphs.

Furthermore, we want to clarify that not only exact approaches, but also
heuristics profit from the application of the non-planar core. Not only does
it reduce their running time, but also the computed number of crossings
decreases, as the problem tends to get easier for the heuristics.

We also analyzed the improved reduction strategy for the thickness pre-
sented in the end of Section 4.3.2. We call the set of graphs obtained after
exhaustively applying this reduction the “θ-core” of the graph. For only 64
of the Rome graphs the θ−-core is not empty, and hence the thickness prob-
lem can be solved for 99.4% of the graphs (11,464 out of 11,528) simply by
planarity testing and preprocessing. Figure 8.4 shows the relative size of the
θ-core for all 64 unsolved instances (filled circles) along with the average rel-
ative size grouped by number of nodes (unfilled circles); the average number
of edges in the θ-core of the unsolved instances is 21.7.

8.3 Exact Crossing Minimization

Figure 8.5 serves as a motivation. We see a Rome instance with originally
37 nodes and 53 edges. Its non-planar core consists of 15 nodes and 29
edges, which is the graph depicted in the figure. While the heuristic requires
9 crossings, our algorithms finds the provable optimal solution with only 5
crossings.

Developments and Progress. We do not only want to show the current
applicability of our ILP approaches, but also the chronological progress over
the last few years. Table 8.1 shows the algorithms and their key properties
for all milestones of the algorithmic development or the ILP formulations.

The first implementation (S) is a special case as it was not implemented
by the author of this thesis but by Dietmar Ebner as part of his Diploma
thesis. The corresponding experiments were conducted on a Intel Pentium
4 (2.4 GHz) with 1 GB RAM. All experiments but the ones for this first
variant were performed on the AMD Opteron described in the beginning of
this part of the thesis. We note that between S and S+, there has been a full
re-implementation of the former by this thesis’ author, using COIN-OR [40].
This implementation performed similar to S+ but was discontinued: At that
time, COIN-OR did not offer a column generation framework as mature as
Abacus. Parts of the code of this intermediate version where later developed
into S+. Table 8.2 summarizes the main parameters used in this study, if not
specified otherwise.

The success ratio of our algorithm is the percentage of how many instances

142 CHAPTER 8. EXPERIMENTS: CROSSING NUMBER

(a) Heuristic solution: 8 crossings (b) Optimal solution: 5 crossings

Figure 8.5: Rome graph example (No. 11627): a non-planar core with 15 nodes
and 29 edges. The thick edge is the only one with weight 2.

Algorithm ILP Column Gen. Graph library ILP library
Generation 1: pure branch-and-cut
S [24] Secm (none) Leda [112], AGD [2] (direct)

Note: This is the only implementation which, due to the di-
rect use of CPLEX (v8.1), was able to profit from CPLEX’s
own integer cuts. Preprocessing: consider only blocks,
shrink chains into edges. Implementation done by Dietmar
Ebner.

Generation 2: branch-and-cut-and-price, non-planar core reduction
S+ [30] Secm (none) OGDF Abacus

Note: full re-implementation. Implementation identical to
SA/SC below, but column generation turned off.

SA [30] Secm Algebraic Pr. OGDF Abacus

SC [23, 30] Secm Combinatorial OGDF Abacus
Note: Column generation criterion applied to fractional val-
ues instead of rounded solution.

Generation 3: tuning regarding column generation; efficient Kura-
towski extraction (Section 6.1.2); new formulation. — These are the
algorithms as described in this thesis.
SC+ [37] Secm Combinatorial OGDF Abacus

OC [37] Oecm Combinatorial OGDF Abacus

Table 8.1: Exact crossing minimization algorithms.

8.3. EXACT CROSSING MINIMIZATION 143

Algorithm Description
Heuristics

S • AGD’s default planarization heuristic.
• Settings as suggested in [76].

others • OGDF’s default planarization heuristic (equivalent to
AGD’s heuristic, but supports post-processing option incre-
mental, cf. text on page 157).
• Settings equivalent to above, but for the initial upper
bound we use: 10 independent runs of the heuristic, 100
permutations of the insertion order, and incremental post-
processing.

Kuratowski Separation
S • Runs SimpleExtract to extract a Kuratowski subdivi-

sion K.
• Adds corresponding cut if violated.
• Removes one of the edges of K from P , and iterates the
above steps.

S+, SA, SC • We perform 50 independent runs of SimpleExtract.
• We add the 20 most violated cuts.
• If no violated cut was found, we try up to 250 further
extractions until at least one violated constraint is found.

SC+, OC • We perform 20 independent runs of MultiExtract.
• In each run, we extract at most 100 subdivisions and buffer
the 30 most violated corresponding cuts.
• We add the 40 most violated cuts over all buffered cuts.
• If no violated cut was found, we try up to 80 more runs
until at least one violated constraint is found.

Algebraic Pricing
SA • For each edge pair (in random order), we identify up to 5

variables with smallest reducted cost.
• We stop after identifying 300 such variables.
• We activate the 50 variables with smallest reduced cost.

Table 8.2: Main algorithmic parameters used in this study.

144 CHAPTER 8. EXPERIMENTS: CROSSING NUMBER

160

200

240

280

320

360

400

40%

50%

60%

70%

80%

90%

100%

n
u

m
b

e
r

o
f

in
st

a
n

c
e
s

su
c
c
e
ss

 r
a
ti

o

0

40

80

120

160

0%

10%

20%

30%

40%

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

n
u

m
b

e
r

o
f

in
st

a
n

c
e
s

su
c
c
e
ss

 r
a
ti

o

nodes

instances OC
SC+ SC
SA S+
S+ (5min) S (5min)

Figure 8.6: Success ratio of the various algorithms after 30 minutes of computation
(if not otherwise stated).

it can solve within the time limit. In Figure 8.6 we consider the various
milestones of the algorithmic and formulation-specific development. We show
an overview over the success ratios w.r.t. the number of nodes of the graphs,
within a time bound of 30 minutes per graph instance. As only 5 minutes
were considered for S in [24], we also give the results for S+ after 5 minutes.
Observe that for S+, the difference between both time bounds is rather small.

Table 8.3 shows some corresponding statistical data. Note that only
graphs with up to 40 nodes were considered for S; the 2nd generation al-
gorithms were run for up to 75 nodes. Only the 3rd generation algorithms
were efficient enough to reasonably consider all Rome graphs.

Column Generation Strategies. In order to compare our two different
column generation schemes for Secm in a fair way, we use the 2nd generation
algorithms SA and SC. Since the success ratio drops rapidly for large graphs,
we restrict ourselves to the graphs with up to 75 nodes. For each computation
scheme, we apply a 30 minute time limit per instance.

Figure 8.7 shows the percentage of graphs for which the exact crossing
number was computed. The size of the circles denotes the number of graphs
per node count. Hence, larger circles correspond to statistically more reliable
data points. While S+—the ILP without column generation—can only solve
a third of the large graphs, SC can still solve about 50%. Note that even after
only 5 minutes, SC can already solve more graphs than S+ and SA after 30.
Furthermore, there is no instance which can be solved by either S+ or SA,

8.3. EXACT CROSSING MINIMIZATION 145

at least |V |
Alg. max 100% 95% 38–40 58–60 73–75 88–90 98–100
S ∗ 40 14 35 73.8% — — — —
S+ ∗ 75 27 36 90.7% 48.4% 20.7% — —
S+ 75 32 36 92.2% 53.6% 23.9% — —
SA 75 32 38 94.5% 60.0% 28.0% — —
SC 75 32 42 99.2% 76.6% 46.1% — —
SC+ 100 38 60 99.9% 97.4% 90.8% 67.9% 44.5%
OC 100 42 66 100% 99.7% 95.7% 80.0% 54.8%

Table 8.3: Success ratios of the various algorithms after 30 minutes (5 minutes,
if marked with ∗) of computation. max gives the number of nodes of the largest
considered graphs. The two at least X% columns give the maximum number of
nodes N such that for each class of graph size |V | ≤ N at least X% were solved.
Conversely, the |V | = Y –Z columns give the success ratio over the graphs classes
with size Y –Z.

but remains unsolved by SC.
As it turns out, the number of edges in the non-planar core is much more

influential than the number of nodes in the original graph. Figure 8.8 shows
the relationship between those two properties: While we can clearly see a
correlation, the variance is quite high. When we look at Figure 8.9 we can
see the clear dependence of a successful computation on the number of core
edges.

For the following observations on the number of required variables, we
only consider non-trivial graphs that are solved to provable optimality. Since
SC is able solve many more instances than SA, we will in particular consider
the common set, which is the set of instances solved by SA and therefore
also by SC. Figure 8.10 shows the number of variables used by SA and SC,
relative to the full (potential) variable set. While SC needs more variables
on average for all the graphs it can solve, it uses less variables than SA when
compared on the common set. This shows that SC is able to solve graphs
which require a larger variable set, whereby SA is too slow to tackle such
graphs successfully.

Figure 8.11 shows the actual numbers of generated variables (compared
on the common set). Note that the number of variables generated by SC
stays very close to the number of the initially generated variables. While SA
can only solve graphs with roughly 10,000 potential variables on average, a
similar statistic for all the graphs solved by SC shows an average of between
30,000 and 40,000 potential variables.

According to the above statistics, it is obvious that the running time of
SC is superior to SA’s, and that both are more efficient than no column
generation at all. Yet, it is impressive that—over the set of instances solved
by S+—even the maximum running time of SC is always far below S+’s

146 CHAPTER 8. EXPERIMENTS: CROSSING NUMBER

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

30 35 40 45 50 55 60 65 70 75

%
 s

o
lv

e
d

nodes

S+, 30min SA, 30min SC, 5 min SC, 30 min

Figure 8.7: Percentage of graphs solved by algorithms of Generation 2.

45

50

55

60

65

70

75

80

#
 n

o
d

es

10

15

20

25

30

35

40

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

#
 n

o
d

es

core edges

graphs

Figure 8.8: Correlation between number of nodes and number of core edges.

8.3. EXACT CROSSING MINIMIZATION 147

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 15 20 25 30 35 40 45 50 55 60 65 70

%
 s

o
lv

ed

core edges

S+, 30min SA, 30min SC, 5 min SC, 30 min

Figure 8.9: Success ratio of the 2nd generation algorithms.

25

30

35

40

45

50

%
 f

u
ll

 v
ar

ia
b

le
 s

et

SC, average

SC, minimum

SC, common set, average

SC, common set, minimum

SA, average

SA, minimum

0

5

10

15

20

25

35 40 45 50 55 60 65 70 75

%
 f

u
ll

 v
ar

ia
b

le
 s

et

nodes

Figure 8.10: Number of generated variables, relative to the full variable set.

148 CHAPTER 8. EXPERIMENTS: CROSSING NUMBER

1000

10000

#
 v

ar
ia

b
le

s

100

1000

30 35 40 45 50 55 60 65 70 75

#
 v

ar
ia

b
le

s

nodes

initial variables

potential variables

SC, used variables

SA, used variables

Figure 8.11: Number of generated variables (common set).

800

1000

1200

1400

1600

1800

se
co

n
d

s

0

200

400

600

800

30 35 40 45 50 55 60 65 70 75

se
co

n
d

s

nodes

SC, maximum

SC, average

SA, maximum

SA, average

Figure 8.12: Running time (common set).

8.3. EXACT CROSSING MINIMIZATION 149

70%

80%

90%

100%
%

 s
o

lv
e
d

40%

50%

60%

10 20 30 40 50 60 70 80 90 100

%
 s

o
lv

e
d

nodes

SC SC+ OC

Figure 8.13: Success ratio of the 3rd generation algorithms (and SC).

average. When comparing SA to SC on the common set (Figure 8.12), we
see that SA’s average is about equal to SC’s maximum time. The average
running time of SC over all successfully solved graphs is under 5 minutes.

Subdivision-based vs. Ordering-based. We now compare our two ILP
formulations Secm and Oecm with each other. For the former, we choose
its strongest algorithmic variant SC+ that is—as far as possible—equivalent
to OC, except for the underlying ILP model and column generation scheme.
As we can see in Figure 8.13, both algorithms clearly outperform SC, which
drops below a success ratio of 50% for graphs of 70 nodes. While OC can
solve virtually all graphs with up to 60 nodes to provable optimality within
the time limit, SC already drops to a 70% success ratio for graphs of size 60.
The experiments also show that the linear-ordering based ILP formulation
of OC is able to solve more and larger graphs than SC+: While SC+ can
only solve 84.4% of all non-trivial graphs within 30 minutes, OC finds and
proves an optimal solution in 89.2% of all these instances, i.e., 93.3% over all
benchmark instances. Even when OC has a time limit of only 10 and 5 minutes
per non-trivial instance, it can still solve 85.9% and 83.4%, respectively, and
thus produces results comparable to 30 minutes of SC+ in a 3–6x shorter
period of time.

There are only 19 instances solved by SC+ but not by OC, within 30
minutes, but 361 instances which OC solves but SC+ does not, cf. Figure 8.14.
Most importantly, we can now solve over 50% of the largest graphs of the
Rome library. Figure 8.15 further illustrates the strength of OC; it shows the

150 CHAPTER 8. EXPERIMENTS: CROSSING NUMBER

10

12

14

16

18

20

22

only SC+

only OC

0

2

4

6

8

35 40 45 50 55 60 65 70 75 80 85 90 95 100

#
 i

n
st

an
ce

s

nodes

Figure 8.14: The number of instances only solved by either SC+ or OC, but not
by both.

150

200

250

300

350

av
er

ag
e

ru
n

ti
m

e
(s

ec
) SC+

OC

0

50

100

150

35 40 45 50 55 60 65 70 75 80 85 90 95 100

av
er

ag
e

ru
n

ti
m

e
(s

ec
)

nodes

Figure 8.15: The required running time, averaged over the instances solved by both
SC+ and OC.

8.3. EXACT CROSSING MINIMIZATION 151

average running times for graphs solved by both approaches. Even for large
graphs, OC only requires roughly 100 seconds on average.

Figure 8.16 shows the dependency of the solvability on the crossing num-
ber: We see that OC can solve all but 6 graphs with a crossing number of
up to 20. It even solves a graph with a crossing number of 37. In contrast to
this, SC+ solves only all but 7 graphs with a crossing number of at most 12.

Finally, Figure 8.17 shows a comparison of the number of required vari-
ables for the instances solved by both approaches: Both algorithms start
with the same initial variable set, but OC requires far less additional vari-
ables during the computation of the optimal solution. This seems to be the
main reason why OC is faster and more efficient than SC and SC+.

Root-node vs. Branching & Separation. Considering the strongest al-
gorithm OC, we investigate its algorithmic behavior. We are in particular
interested in finding out if our formulation is strong enough to solve many
problems in the root node of the branch-and-bound tree. In Figure 8.18, we
consider all graphs that are solved to provable optimality in 30 minutes. We
only have to branch very rarely; even for the largest graphs, we solve 80% of
them within the root note. If we do need to branch, we require less than 8
subproblems on average. In Figure 8.19, we analogously look at the instances
that remain unsolved after 30 minutes. Even in these cases, we do not branch
often, but regularly time out while still in the root node. We observe that
this is especially the case when the graphs get larger. Interestingly, using
a time-out limit of one hour gives virtually the same results. It seems that
already solving the root node can become too expensive for large, complex
graphs.

For Figure 8.20, we consider all graphs that are solved to optimality and
require branching. We observe that the rounded lower bound at the root node
is nearly always corresponding to the optimal solution, while the heuristic
upper bound is relatively far away. Yet, this statistic is skewed in the sense
that it does not and cannot include the instances for which no optimality
proof is found due to weak lower bounds, although the upper bounds might
be tight.

Finally, Figure 8.21 shows the average number of required constraints.
We note that separating the simple triangle constraints does not influence the
overall running time in any statistically relevant way for the Rome graphs.
They are only useful when considering complete graphs, cf. Section 10.2.1.
We therefore do not use them in these experiments. Also note that virtually
all separated Kuratowski constraints are K3,3 subdivisions.

152 CHAPTER 8. EXPERIMENTS: CROSSING NUMBER

1
2
5 1
0
5

9
4

7
4

7
5

4
6

5
4

3
6

2
6

1
7

1
2

1
0

4

2

1

1

1

2

2

3
4 1
1
8 1
5
8

1

1
0
5

4
2

1
4
8

7
2

2

1
0
1
2
8

7
3

8
1
6
1
6
9

1
1

6
1
6
1
7
1
0
9

1
1

1
1
1
1
1
5
1
5
1
1
3

1
1

1
1

7
7

4
1
0
8

4
8

2
3

6
1
0
6
1
5
1
1
4

2
2

1

4
7

9
1
0
6

8
3

3
1

1

2
6

5
4
1
0
7

8
3

2
1

4
2

4
3

9
4

5
6

3
1

1
3

6
1

7
4

5
5

1
1

1
2

1
1

2
5

2
2

2
4

2
1

1
1

3
1

1
1

1
2

2
4

4
2

2
1

1
1

1
1

1
2

2
4

2
3

2
1

1

2
1

2
1

2
2

1
1

1
1

1
1

3
3

2
2

1
1

3
1

2
1

2
1

1
1

1
1

1
2

1
1

1

1
1

1
1

1
1

1
1

1

1
1

1

2
0

2
5

3
0

3
5

4
0

4
5

lower bound

1
0
7
8 8
2
1 7
2
5 5
4
5 4
8
5 4
2
5 3
6
1 3
3
7 3
0
3 2
1
8 2
5
3 2
4
3 2
0
5 2
2
0 1
6
0 1
4
8 1
3
6 1
2
6 1
2
5

1

1

2

0 5

1
0

1
5

2
0

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

lower bound

u
p

p
er b

o
u

n
d

Figure 8.16: The number of instances per combination of lower and upper bound
after 30 minutes of OC, over all graphs of the Rome library. 9 instances are not
shown as their lower or upper bounds do not fit into this diagram.

8.3. EXACT CROSSING MINIMIZATION 153

50%

60%

70%

80%

90%

100%

750

1000

1250

1500

1750

2000

g
en

er
at

ed
 v

ar
ia

b
le

s
(%

)

#
 s

ta
rt

 v
ar

ia
b

le
s

start variables

SC+ increase (%)

OC increase (%)

0%

10%

20%

30%

40%

-500

-250

0

250

500

25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
g

en
er

at
ed

 v
ar

ia
b

le
s

(%
)

#
 s

ta
rt

 v
ar

ia
b

le
s

nodes

Figure 8.17: The average factor by which the number of variables increases com-
pared to the number of start variables (which is identical for SC+ and OC). The
diagram also shows the average number of start variables per graph size.

154 CHAPTER 8. EXPERIMENTS: CROSSING NUMBER

40%

50%

60%

70%

80%

90%

100%

80

100

120

140

160

180

200

%
 s

o
lv

ed
 i

n
 r

o
o

t
n

o
d

e

n
u

m
b

er
 o

f
in

st
an

ce
s

solved instances

solved in root

unsolved in root

(right axis)

0%

10%

20%

30%

40%

0

20

40

60

80

35 40 45 50 55 60 65 70 75 80 85 90 95 100

%
 s

o
lv

ed
 i

n
 r

o
o

t
n

o
d

e

n
u

m
b

er
 o

f
in

st
an

ce
s

nodes

32

64

128

256

512

1024

2048

#
 s

u
b

p
ro

b
le

m
s

average

average, if branched

maximum

1

2

4

8

16

35 40 45 50 55 60 65 70 75 80 85 90 95 100

#
 s

u
b

p
ro

b
le

m
s

nodes

Figure 8.18: Considering the graphs that are solved within 30 minutes: (top)
necessity for branching, (bottom) number of subproblems.

8.3. EXACT CROSSING MINIMIZATION 155

40%

50%

60%

70%

80%

90%

100%

40

50

60

70

80

90

100

%
 s

o
lv

ed
 i

n
 r

o
o

t
n

o
d

e

n
u

m
b

er
 o

f
in

st
an

ce
s

unsolved instances

unsolved, still in root

0%

10%

20%

30%

40%

0

10

20

30

40

75 80 85 90 95 100

%
 s

o
lv

ed
 i

n
 r

o
o

t
n

o
d

e

n
u

m
b

er
 o

f
in

st
an

ce
s

nodes

unsolved, still in root

unsolved,branched

(right axis)

16

32

64

128

256

512

1024

#
 s

u
b

p
ro

b
le

m
s

average

average, if branched

maximum

1

2

4

8

16

75 80 85 90 95 100

#
 s

u
b

p
ro

b
le

m
s

nodes

Figure 8.19: Considering the graphs that are unsolved after 30 minutes: (top)
necessity for branching, (bottom) number of subproblems.

156 CHAPTER 8. EXPERIMENTS: CROSSING NUMBER

-10

0

10

20

110%

115%

120%

125%

#
 i

n
st

an
ce

s

%
 o

f
cr

o
ss

in
g

 n
u

m
b

er

upper bound at root

lower bound at root

instances (right axis)

-40

-30

-20

95%

100%

105%

35 40 45 50 55 60 65 70 75 80 85 90 95 100

%
 o

f
cr

o
ss

in
g

 n
u

m
b

er

nodes

Figure 8.20: Gaps between the root bounds and the crossing number. We only
consider solved graphs that require branching.

8

16

32

64

128

256

512

1024

2048

#
 c

o
n

st
ra

in
ts

0,125

0,25

0,5

1

2

4

35 40 45 50 55 60 65 70 75 80 85 90 95 100

#
 c

o
n

st
ra

in
ts

nodes

Kuratowski (all)

Kuratowski (solved)

LO (all)

LO (solved)

Figure 8.21: Kuratowski- and LO-constraints generated by OC, over all graphs,
and over all that are solved to provable optimality.

8.4. COMPARISON WITH HEURISTIC 157

8.4 Comparison with Heuristic

Having the knowledge of exact values for most Rome graph instances, we are
now in the position to evaluate the quality of the currently best heuristic.
You may also see [73] for a more thorough description and comparison of
the quality of such heuristics, as well as a comparison with the exact cross-
ing numbers computed by the algorithms described herein. While the cited
thesis especially discusses the comparison between a long-running version
of the planarization heuristic and the exact values, we will focus on more
traditional, but weaker, parameters for the heuristic, as would be done in
most semi-interactive graph drawing applications. In particular, we will use
the parameter settings recommended in [76], augmented with the improved
post-processing strategy called incremental : After each edge insertion step,
we remove and re-insert all other edges again one-by-one. The traditional
post-processing strategy would try to re-insert all edges only after all initial
insertion steps, cf. [73]. This is the same setting we used for our initial upper
bound in SC+ and OC. Hence, we simultaneously analyze how often our algo-
rithm was improving the upper bound or merely had to prove its optimality.
More generally, we can also compare the initial upper bound IUB to the final
upper bound FUB obtained after 30 minutes of OC. Recall Figure 8.16 for
an overview on the deviation between the final upper and lower bounds.

Figure 8.22 shows the average number of crossings with respect to the
number of nodes for both the IUB and the FUB. It turns out that the IUB is
very close to the FUB. We know that OC solves almost all instances with up
to 60 nodes to optimality, and so we can conclude that the heuristic performs
very well on these graphs. The dashed line shows the relative improvement
achieved by OC. For graphs over 50 nodes, the heuristic is usually 6–8%
away from OC’s final upper bound. The small circles in the lower part of the
diagram give the maximal absolute deviation between the FUB and the IUB;
the largest improvement was 13 crossings achieved for a graph with 91 nodes.
We further observe in Figure 8.23 that the heuristic solution is optimal for
virtually all instances with up to 3 crossings. The absolute deviation from
the upper bound of OC grows linear for graphs with up to 24 crossings by
about 1/12 per crossings—the experiments cannot be used to deduce any
relationship for larger numbers. It is very interesting to see this observation
in the context of the analogous statistic based on experiments with the 2nd
generation algorithm SC, as published in [30]: Therein, we suggested the very
same slope, although it was only observable for up to 12 crossings as SC’s
success ratio was not sufficient for higher crossing numbers.

We consider the absolute improvement achieved by OC in more detail.
Figure 8.24 shows the deviation between the FUB and the IUB per graph
size: The larger the circle is, the more graphs had the difference given on the
vertical axis. It is interesting to consider the same statistic with respect to
the FUB (see Figure 8.25). Finally, see Figure 8.26: For graphs with crossing

158 CHAPTER 8. EXPERIMENTS: CROSSING NUMBER

-8%

-4%

0%

4%

8%

12%

16

18

20

22

24

26

28

30

32

34

36

h
eu

ri
st

ic
 r

el
at

iv
e

to
 F

U
B

n
u

m
b

er
 o

f
cr

o
ss

in
g

s

maximum Difference

Heuristic (average)

FUB (average)

-24%

-20%

-16%

-12%

-8%

0

2

4

6

8

10

12

14

16

30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

n
u

m
b

er
 o

f
cr

o
ss

in
g

s

nodes

Heuristic/FUB (average), right axis

Figure 8.22: Average number of crossings achieved by heuristic and OC.

number at most 3, the heuristic solves nearly all instances to optimality—note
that there is a single non-trivial graph G with cr(G) = 1 where the heuristic
could not find such a solution. We can again observe that the higher the
crossing number, the more often the heuristic was not optimal. The diagram
is truncated at FUB= 40. The results for graphs with higher final bound are
only few and statistically useless, since OC timed out early.

We conclude that, although there is still room for improvement when the
crossing numbers get higher, the currently best known heuristics are very
good in practice and solve many instances to their optimal value. This ob-
servation if further strengthened in [73], where the solutions of the heuristics
over multiple, more time-consuming runs are investigated. Using the solu-
tions of such a heuristic would again speed up our exact algorithm, as we
could prune more branch-and-bound nodes early.

8.4. COMPARISON WITH HEURISTIC 159

6

7

8

9

10

11

12

13

14

3

3,5

4

4,5

5

5,5

6

6,5

7

n
u

m
b

er
 o

f
cr

o
ss

in
g

s
(m

ax
im

u
m

 d
if

fe
re

n
ce

)

n
u

m
b

er
 o

f
cr

o
ss

in
g

s
(a

v
er

ag
e

d
if

fe
re

n
ce

) average difference of heuristic

maximum difference of heuristic

0

1

2

3

4

5

0

0,5

1

1,5

2

2,5

0 10 20 30 40 50 60 70

n
u

m
b

er
 o

f
cr

o
ss

in
g

s
(m

ax
im

u
m

 d
if

fe
re

n
ce

)

n
u

m
b

er
 o

f
cr

o
ss

in
g

s
(a

v
er

ag
e

d
if

fe
re

n
ce

)

final upper bound of OC

4

5

6

7

8

9

2

2,5

3

3,5

4

4,5

n
u

m
b

er
 o

f
cr

o
ss

in
g

s
(m

ax
im

u
m

 d
if

fe
re

n
ce

)

n
u

m
b

er
 o

f
cr

o
ss

in
g

s
(a

v
er

ag
e

d
if

fe
re

n
ce

) average difference of heuristic

maximum difference of heuristic

0

1

2

3

0

0,5

1

1,5

0 10 20 30

n
u

m
b

er
 o

f
cr

o
ss

in
g

s
(m

ax
im

u
m

 d
if

fe
re

n
ce

)

n
u

m
b

er
 o

f
cr

o
ss

in
g

s
(a

v
er

ag
e

d
if

fe
re

n
ce

)

final upper bound of OC

Figure 8.23: Difference in the computed crossing numbers between the IUB and
the FUB. (top) overview, (bottom) zoomed.

160 CHAPTER 8. EXPERIMENTS: CROSSING NUMBER

6

7

8

9

10

11

12

13

14

ad
d

it
io

n
al

 c
ro

ss
in

g
s

b
y

 h
eu

ri
st

ic

graphs without difference

graphs with differences

0

1

2

3

4

5

6

35 40 45 50 55 60 65 70 75 80 85 90 95 100

ad
d

it
io

n
al

 c
ro

ss
in

g
s

b
y

 h
eu

ri
st

ic

nodes

Figure 8.24: Absolute improvement of OC by number of nodes.

5

6

7

8

9

10

ad
d

it
io

n
al

 c
ro

ss
in

g
s

b
y

 h
eu

ri
st

ic

graphs without difference

#graphs with differences

0

1

2

3

4

0 5 10 15 20 25 30 35 40 45 50 55 60

ad
d

it
io

n
al

 c
ro

ss
in

g
s

b
y

 h
eu

ri
st

ic

final upper bound

Figure 8.25: Absolute improvement of OC by FUB.

8.4. COMPARISON WITH HEURISTIC 161

50,0%

62,5%

75,0%

87,5%

100,0%

400

500

600

700

800

p
er

ce
n

t
n

o
t

so
lv

ed

n
u

m
b

er
 o

f
g

ra
p

h
s

graphs

0,0%

12,5%

25,0%

37,5%

0

100

200

300

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

p
er

ce
n

t
n

o
t

so
lv

ed

n
u

m
b

er
 o

f
g

ra
p

h
s

final upper bound

graphs

graphs, heuristic not optimal

% heuristic not optimal (right axis)

Figure 8.26: Quality of the heuristic solution.

162 CHAPTER 8. EXPERIMENTS: CROSSING NUMBER

Chapter 9

Experiments: Other Crossing
Numbers

crossing: (Architecture)
A drainage structure that passes
over, under, or through a location
used for the passage of people, live-
stock, or vehicles.

9.1 Minor and Hypergraph Crossing Number

In Section 7.2, we described heuristic approaches to solve the minor and
hypergraph crossing numbers. As noted, the sketched exact ILP approach is
of no practical relevance. Hence, this section focuses on the former.

Minor crossing number. The first group of experiments deals with the
minor crossing number. We use the Rome benchmark set introduced in the
previous chapter and restrict ourselves to the non-planar graphs with at least
30 nodes. Our main focus is to investigate how the minor crossing num-
ber compares to the traditional crossing number in real-world settings. Fig-
ure 9.1(a) shows the average crossing numbers and minor crossing numbers
per graph size. We can see that the minor crossing minimization leads to
roughly 35% less crossings on average. While this diagram shows the results
for variable embeddings, the diagram looks nearly identical when consider-
ing random fixed embeddings, although the absolute crossing numbers are of
course a bit higher (cf. Figure 9.1(b)).

In both cases, for the large graphs, the realizing graphs have about 10%
more nodes than the original graphs, and roughly 8% of the graphs’ nodes
are substituted by expansion trees. See Figure 9.2 for the absolute values.
On a Pentium 4 Windows PC (3.4 GHz) and 2 GB RAM, all graphs can be
solved in clearly under a second for the fixed embedding case and under 30

163

164 CHAPTER 9. EXPERIMENTS: OTHER CROSSING NUMBERS

25%

30%

35%

40%

20

25

30

35

re
la

ti
v
e

 i
m

p
ro

v
e

m
e

n
t

n
u

m
b

e
r

o
f

c
ro

s
s

in
g

s

5%

10%

15%

20%

0

5

10

15

30 40 50 60 70 80 90 100

re
la

ti
v
e

 i
m

p
ro

v
e

m
e

n
t

n
u

m
b

e
r

o
f

c
ro

s
s

in
g

s

cr

mcr

rel. improvement

30 40 50 60 70 80 90 100

number of nodes

(a) variable embedding

25%

30%

35%

40%

20

25

30

35

re
la

ti
v
e

 i
m

p
ro

v
e

m
e

n
t

n
u

m
b

e
r

o
f

c
ro

s
s

in
g

s

5%

10%

15%

20%

0

5

10

15

30 40 50 60 70 80 90 100

re
la

ti
v
e

 i
m

p
ro

v
e

m
e

n
t

n
u

m
b

e
r

o
f

c
ro

s
s

in
g

s

cr

mcr

rel. improvement

30 40 50 60 70 80 90 100

number of nodes

(b) fixed embedding

Figure 9.1: Minor crossing number results for the Rome graphs.

9.1. MINOR AND HYPERGRAPH CROSSING NUMBER 165

6

8

10
n

u
m

b
e

r
o

f
s

p
li
ts

node splits

splitted nodes

0

2

4

10 20 30 40 50 60 70 80 90 100

n
u

m
b

e
r

o
f

s
p

li
ts

number of nodes

Figure 9.2: Splits in the minor crossing number solutions for the Rome graphs.

seconds for the variable case. For the latter, the 100-node graphs require 5.5
seconds on average.

Hypergraph/Circuit Crossing Number. The second set of experiments
deals with the hypergraph crossing numbers and the circuit crossing number.
The tests were run on an Intel Xeon E5430 2.67GHz with 2 GB. We choose
all hypergraphs from the established synthesized sequential benchmark set
Synth [22], and the Iscas’85, Iscas’89, and Itc’99 benchmark sets of real-
world electrical networks. In the latter, we considered all graphs with up to
1000 gates. This leads to hypergraphs with up to 1781 nodes and 2750 edges
in their point-based transformations.

Table 9.1 shows the heuristically computed point-based and tree-based
hypergraph crossing numbers for these instances (phcr, thcr), as well as their
circuit crossing numbers (ccr). Recall that the latter considers the tree-based
setting under the restriction that the I/O ports have to satisfy the outer face
properties DR1 and DR2 described in Section 7.2.7. All crossing numbers are
computed using 10 permutations, i.e., the full edge insertion step is performed
10 times, and the best solution is chosen. The column ccr1 shows the results
for the circuit crossing number after only one permutation.

Table 9.2 gives the required running times of our algorithm for computing
phcr, thcr and ccr1. We omit the running times for ccr as they are simply
10 times higher than ccr1. We see the clear dependence of the running time
on the size of the resulting planarization: The higher the crossing number,
the more dummy nodes we have to insert and consider. We observe that

166 CHAPTER 9. EXPERIMENTS: OTHER CROSSING NUMBERS

Table 9.1: FIX VAR [52]
ID Gts |E′| phcr thcr ccr1 ccr phcr thcr ccr1 ccr ccr red.

S
y
n
t
h

add6 229 531 51 43 94 68 49 37 70 64 112 42.9%
adr4 147 340 40 29 40 40 33 25 63 41 74 44.6%
alu1 85 188 10 10 42 42 10 9 36 36 60 40.4%
alu2 189 448 115 89 181 128 117 80 140 121 243 50.2%
alu3 218 514 172 109 190 166 160 108 226 183 331 44.7%
co14 145 334 19 18 36 33 19 17 33 32 52 38.5%
dk17 168 392 89 59 159 138 92 56 131 116 188 38.3%
dk27 78 175 12 11 43 40 10 9 43 34 45 24.4%
dk48 194 452 74 59 204 170 73 56 171 166 290 42.8%
mish 215 423 0 0 12 11 0 0 11 10 49 79.6%
radd 121 275 13 12 38 29 12 12 30 24 37 35.1%
rckl 338 790 99 90 192 186 89 85 164 157
rd53 134 320 88 62 85 69 80 54 75 75 126 40.5%
vg2 185 421 35 27 92 86 30 25 74 74 131 43.5%
x1dn 186 423 35 29 85 78 24 24 80 74 134 44.8%
x9dn 203 459 39 33 115 100 35 33 77 77 158 51.3%
z4 125 291 33 24 48 43 29 24 47 41 66 37.9%
Z9sym 438 1081 1615 818 1074 917 1563 700 824 763 1802 57.7%

Is
c
a
s’

8
5

c17 4 16 0 0 1 1 0 0 1 1
c432 153 489 331 175 453 409 303 166 471 368
c499 170 578 543 218 708 574 493 209 578 546
c880 357 1086 548 369 910 716 521 336 787 701
c1196 516 1525 3612 1500 2195 1998 3613 1388 2008 1765
c1238 495 1536 5074 1838 2460 2353 4868 1640 2252 2068
c1355 514 1578 569 225 756 684 492 214 708 561
c1908 855 2353 1800 867 1571 1382 1768 809 1335 1328

Is
c
a
s’

8
9

s27 12 33 0 0 1 1 0 0 1 1
s208 102 276 30 22 39 38 31 21 34 34 162 79.0%
s208a 111 300 35 21 40 31 25 18 29 28
s298 127 385 244 87 140 116 226 80 128 116 428 72.9%
s344 164 448 64 43 109 89 60 37 94 76
s349 165 453 71 42 94 80 60 42 83 76
s382 173 500 226 82 145 122 201 89 129 110 357 69.2%
s386 158 511 835 300 449 360 815 278 385 310 904 65.7%
s400 177 518 238 95 149 140 239 93 138 121 400 69.8%
s420 210 562 84 60 120 83 79 57 96 84
s420a 233 632 91 52 87 83 88 47 78 75
s444 196 569 229 90 125 119 224 83 118 105
s510 210 640 1291 565 857 764 1244 497 716 678
s526 208 674 662 262 327 288 627 233 296 275
s526a 209 675 631 252 324 264 631 233 279 272
s641 374 932 237 118 394 394 227 120 425 385
s713 389 999 226 122 404 374 219 106 384 354
s820 275 1037 6021 1075 1566 1378 5491 963 1603 1346
s832 273 1047 6262 1161 1673 1527 6015 1058 1360 1360
s838 420 1122 244 144 281 269 218 139 277 247
s838a 477 1296 217 112 187 170 197 116 172 158
s953 401 1173 2364 1317 1936 1728 2212 1259 1671 1555
s1196 533 1549 3908 1728 2104 2016 3876 1600 2005 1805
s1423 726 1964 620 273 402 386 577 257 381 342

It
c

’9
9

b01 40 127 57 33 37 31 56 30 32 29
b02 25 74 14 8 16 11 11 8 11 9
b03 137 407 153 56 80 73 145 56 72 66
b04s 570 1670 1595 607 694 645 1504 477 758 612
b05s 872 2750 3091 1339 1567 1472 3017 1294 1399 1312
b06 46 147 66 32 48 45 62 32 52 41
b07s 403 1194 1073 495 564 543 1049 486 484 484
b08 150 455 316 168 250 196 295 149 232 181
b09 156 449 219 94 101 101 227 89 124 92
b10 166 521 438 231 355 299 437 215 313 300
b11s 462 1428 3131 1164 1414 1182 2939 1187 1366 1216
b13s 309 899 203 111 173 148 168 95 175 137

9.1. MINOR AND HYPERGRAPH CROSSING NUMBER 167

FIX VAR
ID Gts |E′| phcr thcr ccr1 phcr thcr ccr1

S
y
n
t
h

add6 229 531 0.26 0.24 0.14 16.72 14.21 4.98
adr4 147 340 0.14 0.12 0.06 5.68 5.05 1.29
alu1 85 188 0.04 0.03 0.02 0.87 0.62 0.78
alu2 189 448 0.54 0.5 0.13 46.16 31.9 9.15
alu3 218 514 0.9 0.7 0.2 79.41 62.89 12.34
co14 145 334 0.09 0.08 0.05 2.78 2.18 0.91
dk17 168 392 0.35 0.3 0.12 25.8 22.8 7.7
dk27 78 175 0.04 0.04 0.02 1.02 0.89 0.38
dk48 194 452 0.29 0.42 0.21 24.15 21.56 14.43
mish 215 423 0.0 0.0 0.1 0.0 0.0 0.43
radd 121 275 0.05 0.04 0.04 0.98 1.13 0.56
rckl 338 790 0.62 0.6 0.4 51.45 48.2 18.89
rd53 134 320 0.29 0.24 0.08 29.64 19.28 1.73
vg2 185 421 0.13 0.14 0.1 6.91 4.66 5.85
x1dn 186 423 0.12 0.11 0.1 5.12 4.95 6.34
x9dn 203 459 0.19 0.2 0.15 6.96 6.82 4.34
z4 125 291 0.1 0.1 0.04 4.88 4.21 0.72
Z9sym 438 1081 115.7 86.67 7.81 17305.6 8462.18 473.87

Is
c
a
s’

8
5

c17 4 16 0.0 0.0 0.0 0.0 0.0 0.0
c432 153 489 1.9 1.29 0.41 214.5 99.48 23.92
c499 170 578 9.06 3.32 1.55 1143.6 417.55 145.22
c880 357 1086 10.73 6.9 3.18 2842.73 936.08 471.94
c1196 516 1525 1977.37 871.58 75.37 115963 46354 3720.44
c1238 495 1536 3548.5 1284.16 117.85 161832 79042.9 8968.46
c1355 514 1578 21.85 6.59 2.99 2272.43 1359.76 240.23
c1908 855 2353 409.58 77.91 20.16 44384.6 16817.6 1999.33

Is
c
a
s’

8
9

s27 12 33 0.0 0.0 0.0 0.0 0.0 0.0
s208 102 276 0.08 0.09 0.04 5.37 4.13 0.48
s208a 111 300 0.08 0.07 0.03 4.32 3.14 0.44
s298 127 385 1.93 0.74 0.13 204.15 55 5.5
s344 164 448 0.24 0.22 0.09 19.66 13.64 3.27
s349 165 453 0.28 0.27 0.14 21.54 16.2 4.72
s382 173 500 0.99 0.66 0.17 114.81 55.88 4.6
s386 158 511 9.01 7.65 0.51 1503.18 593.6 25.37
s400 177 518 1.12 0.76 0.18 137.1 49.05 7.18
s420 210 562 0.37 0.41 0.13 43.77 26.13 5.67
s420a 233 632 0.38 0.37 0.16 38.31 30.05 5.3
s444 196 569 1.06 0.78 0.19 134.78 55.39 7.63
s510 210 640 28.18 16.66 1.4 4199.45 1122.45 164.35
s526 208 674 7.58 3.93 0.38 1177.34 315.69 26.93
s526a 209 675 6.37 3.75 0.6 1213.15 437.1 30.38
s641 374 932 1.64 1.38 0.97 177.96 131.2 65.63
s713 389 999 2.07 1.48 1.1 226.59 154.51 49.45
s820 275 1037 3288.78 287.49 27.27 72036.2 14218.4 1129.8
s832 273 1047 4960.48 354.96 15.9 100122 21556.7 2058.63
s838 420 1122 3.36 2.24 0.59 492.93 326.83 24.35
s838a 477 1296 1.83 1.39 0.73 494.33 256.95 19.6
s953 401 1173 487.33 170.66 14.47 27788.7 16452.2 1918.05
s1196 533 1549 2747.56 757.75 106.63 159485 61260.1 4333.75
s1423 726 1964 14.01 7.53 2.23 3104.34 1140.83 90.63

It
c

’9
9

b01 40 127 0.09 0.08 0.01 3.64 2.5 0.38
b02 25 74 0.01 0.01 0.0 0.24 0.25 0.03
b03 137 407 0.45 0.3 0.06 37.83 17.1 1.77
b04s 570 1670 147.14 29.39 3.79 18064.2 3928.51 407
b05s 872 2750 1379.09 261.75 20.58 138015 59115.6 4218.66
b06 46 147 0.1 0.06 0.02 4.76 2.36 0.46
b07s 403 1194 78.78 14.57 1.34 5710.17 1961.42 138.64
b08 150 455 2.19 1.32 0.3 228.91 112.16 11.86
b09 156 449 1.6 0.54 0.1 163.69 40.39 2.57
b10 166 521 5.78 2.73 0.46 699.3 280.95 36.79
b11s 462 1428 1395.11 197.56 11.88 58743.1 18403.3 2016.01
b13s 309 899 1.24 0.76 0.3 210.25 110.41 12.84

Table 9.2: Test
results for hy-
pergraphs and
electrical wiring
schemes. Ta-
ble 9.1 gives the
achieved cross-
ing numbers,
this table the
corresponding
running times
(in seconds). Gts
gives the number
of gates, E′ de-
notes the edges
in Λ(H). See the
main text for a
description of the
other columns.

168 CHAPTER 9. EXPERIMENTS: OTHER CROSSING NUMBERS

Synth Iscas’85 Iscas’89 Itc’99 all
cr

os
si

ng
s VAR:FIX (phcr) 91.8% 94.0% 93.8% 94.1% 93.4%

VAR:FIX (thcr) 91.8% 93.1% 93.8% 94.0% 93.2%
VAR:FIX (ccr) 92.0% 91.0% 92.3% 92.4% 91.9%
thcr:phcr (VAR) 80.1% 46.2% 47.9% 47.8% 55.5%
thcr:ccr (VAR) 50.9% 55.5% 68.9% 87.5% 65.7%

ru
nt

im
e

VAR/FIX (phcr) 58.4× 102.7× 110.3× 85.9× 89.3×
VAR/FIX (thcr) 49.7× 109.6× 81.8× 95.6× 84.2×
VAR/FIX (ccr) 39.7× 75.8× 49.1× 72.3× 59.2×
phcr/thcr (VAR) 1.2× 2.2× 2.3× 2.5× 2.1×
ccr/thcr (VAR) 28.7× 2.1× 1.5× 1.1× 8.3×

Table 9.3: Benchmark-wise average percentages and ratios of the results for hyper-
graph and circuit crossing numbers. A:B (C) gives the percentage of A in terms of
B, in the setting C. A/B (C) gives the ratio between A and B, in the setting C.

computing phcr therefore is more time consuming than the implementation-
wise more complex algorithm for thcr, which allows smaller crossing numbers.
Table 9.3 summarizes some statistics, averaged over the benchmark sets. The
column all gives the average over the results for the individual benchmark
sets.

Obviously, and as known for the traditional crossing number, the algo-
rithm clearly benefits from multiple permutations and from considering all
embeddings (VAR) instead of fixing one (FIX) in the edge insertion step.
Consider the results of the algorithm variant VAR. Generally, we can clearly
see the benefit of considering the tree-based hypergraph crossing number com-
pared to the point-based one: it reduces the crossing number to 55.5% on av-
erage. Regarding the circuit crossing number, we observe that the additional
restriction requires 52% more crossings than the pure tree-based hypergraph
crossing number.

The right-most columns in Table 9.1 give the results presented in [52],
which summarized the currently best known solutions, as well as our improve-
ment on these numbers in percent. Our algorithm for ccr clearly outperforms
the prior algorithms. The best results we obtained for each circuit require
42% less crossings on average for the Synth instances, and even 71.3% less
crossings for the Iscas’89 instances. See Figure 9.3 for an example: Fig-
ure 9.3(a) is a re-print of an example in [51], which has 30 crossings, instead
of 118 resulting from näıvely drawing the graph using the IDs of the nodes for
ordering them within layers; note that in 9.3(a) one out-port would require
either an additional crossing or a switch between nodes 28 and 29, in order
to lie on the outer face. Figure 9.3(b) shows a drawing corresponding to the
planarization computed by our algorithm. We require only 18 crossings. Note
that in this example, we do not require to split any nodes, as the hypernodes
have at most degree 3.

9.1. MINOR AND HYPERGRAPH CROSSING NUMBER 169

(a) Layout from [51]; nodes recolored and
background grid removed: 30 crossings

0

8

16

24

32

1

9

17

25

33

2

10

18

26

34

3

11

19

27

35

4

12

20

28

36

5

13

21

29

37

6

14

22

30

38

7

15

23

31

(b) A drawing realizing our computed planarization: 18 crossings

Figure 9.3: Example graph rd84 from [51] (not part of the official Synth bench-
mark set).

170 CHAPTER 9. EXPERIMENTS: OTHER CROSSING NUMBERS

9.2 Simultaneous Crossing Number

We implemented both heuristic approaches—based on the edge insertion over
a fixed embedding and over all embeddings, respectively—as well as the ex-
act algorithm. The main intention of the experiments is to investigate the
behavior of the simultaneous crossing minimization concept.

First, we created a set of 10 random graphs with varying size. We then
interpreted each graph G of this set as a simultaneous graph of two basic
graphs by randomly choosing the basic graphs for each edge of G: We set the
probability for every edge to belong to both basic graphs to some percentage
π. All edges which do not belong to both basic graphs had an equal chance
to belong to either basic graph. We used different values for π: 0, 10, 20, . . . ,
90, and created a set of 10 simultaneous graphs for each original graph and
each value of π. This resulted in 1000 simultaneous graphs.

We applied the heuristic algorithms to this test set and computed the
simultaneous crossing number, together with the number of phantom and
proper crossings. Assume a simultaneous graph G generated from G with π =
100: All edges belong to both basic graphs and thus this instance reflects the
traditional crossing minimization problem: There are no phantom crossings,
we have scr(G) = 2 ·ccc(G), and for optimal solutions we have ccc(G) = cr(G).
We performed similar experiments with the exact algorithm. These were
run on smaller and less dense graphs, as the algorithm’s running time is
highly dependent on the crossings number (cf. Chapter 8), in our case on the
cumulative crossing count ccc(G).

Generally, we encountered the same effects throughout all instances and
algorithms. Figure 9.4 and Figure 9.5 show two representative examples.
The former one was computed via the exact algorithm, the second one via
the heuristic which optimizes the edge insertions over all planar embeddings.
The heuristic-specific parameters are the ones proposed in [76].

The simultaneous crossing number and the number of proper crossings
increase as π gets larger. On the other hand, the number of phantom crossings
strongly decreases at the same time, and thus the total number of crossings
slightly decreases. Interestingly, while the simultaneous crossing number of
course monotonically increases, this does not hold in general for the number
of proper crossings due to their differing crossing costs.

Over all values for π, the runtime of the heuristic algorithms is in general
roughly four times larger than for the traditional heuristics, most runtime loss
is due to the more complex crossing cost calculation for each pair of edges.
For the tested ILP instances, the heuristic always finds the optimal solution.
Hence the exact branch-and-cut algorithm only has to prove this optimality.
The running time is thereby ranging from 10 to 1, 000 seconds for graphs with
a crossing count of up to 7.

9.2. SIMULTANEOUS CROSSING NUMBER 171

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 100

π

simultaneous crossing number

cumulative crossing count

proper crossings

phantom crossings

traditional crossing number

π simcr prop phan ccc
0 0.4 0.4 6.2 6.6

10 0.6 0.6 5.4 6.0
20 0.8 0.8 5.0 5.8
30 1.2 1.2 4.4 5.6
40 1.8 1.8 3.4 5.2
50 2.6 2.0 2.4 4.4
60 4.2 2.8 0.8 3.6
70 4.4 3.2 0.2 3.4
80 5.0 3.0 0.2 3.2
90 5.6 3.2 0.0 3.2

100 6.0 3.0 0.0 3.0

Figure 9.4: (Exact) The figure shows the computed simultaneous crossing number
(simcr), the number of proper (prop) and phantom (phan) crossings and the cumu-
lative crossing count (ccc) for different values of π. The underlying graph G has 10
nodes and 23 edges. The results were computed using the exact algorithm. For each
value π, the values were averaged over 5 simultaneous graphs generated from G.

172 CHAPTER 9. EXPERIMENTS: OTHER CROSSING NUMBERS

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

π

simultaneous crossing number

cumulative crossing count

proper crossings

phantom crossings

traditional crossing number

π simcr prop phan ccc
0 0.8 0.8 110.7 111.5

10 1.9 1.9 96.1 98.0
20 4.7 4.7 71.7 76.4
30 9.1 8.9 54.3 63.2
40 14.6 13.0 40.2 53.2
50 23.8 20.1 23.8 43.9
60 28.2 22.9 13.0 35.9
70 33.2 25.4 8.4 33.8
80 39.5 27.7 3.8 31.5
90 49.5 30.0 1.1 31.1

100 58.0 29.0 0.0 29.0

Figure 9.5: (Heuristic) The figure shows the computed simultaneous crossing num-
ber (simcr), the number of proper (prop) and phantom (phan) crossings and the
cumulative crossing count (ccc) for different values of π. The underlying graph G
has 33 nodes and 70 edges. The results were computed heuristically. For each value
π, the values were averaged over 10 simultaneous graphs generated from G.

Chapter 10

Solving Special Graph Classes

crossing: (Travel)
A voyage across a body of water
(usually across the Atlantic Ocean).

This section does not so much reflect finished research, but is more meant
as an outlook on a research direction, enabled by the results described prior
in this thesis.

The Secm and Oecm formulations were developed with “real-world”
graphs in mind, i.e., general, medium-sized, comparably sparse graphs. In
this section, we will discuss how we can tune our 0/1-ILPs to solve special
graph classes which usually have larger crossing numbers. Interestingly, these
graph classes can all be considered structurally “simple” in the sense that
they are highly symmetric and may have properties like low degree, thick-
ness, genus, etc. Yet, and despite the fact that there has been dedicated
graph theoretical research for all the considered graph classes, they turn out
to be hard w.r.t. the crossing number problem. In particular, we often have
construction schemata which are only conjectured to give optimal solutions.

We will showcase some useful properties and observations for special graph
classes which can be turned into additional constraints. Using such strength-
enings, we can hope to solve graph instances to provable optimality, for which
current purely theoretical research has no proof yet. Although the current
results are not necessarily ground breaking yet, they show that we can im-
prove a lot on the standard ILP formulation when including knowledge of the
specific graph type.

The aim of this approach is many-fold: We can prove that conjectured
crossing numbers hold for certain graphs; we can solve base cases which could
be used to develop construction schemata, to extract conjectures, or even as a
foundation for theoretical inductive proofs of larger graphs; we can potentially
disprove conjectures or falsify non-rigorous proofs for specific graph classes.
We also hope that by showing how to integrate certain types of crossing

173

174 CHAPTER 10. SOLVING SPECIAL GRAPH CLASSES

number observations (e.g. required crossings for substructures, symmetries,
etc.) we provide an incentive to do research regarding such results. They
can help to speed up our ILPs significantly, which in turn helps to solve
theoretically hard crossing number problems.

10.1 General Concepts

Usually, we will start with an upper bound for which we hope that it con-
stitutes an optimal solution, and tune the ILP to prove that no better so-
lution exists. The constraints described below can either be constructed in
the beginning—adding them to a pool from which automatic separation is
possible—or we may generate them in a dedicated separation routine by man-
ually enumerating and testing them on the fly. Generally, we can classify the
additional constraints as follows:

Substructure constraints. The often most useful category of constraints
is based on specifically structured subgraphs or subdivisions. If we can,
e.g., detect some K6 subgraph in the given graph, we can construct a
corresponding Kuratowski constraint and require cr(K6) = 4 crossings.
This is beneficial compared to enumerating multiple K5 constraints on
this structure.

The main purpose of these constraints is to raise the lower bound of the
relaxations in order to prune the problem early due to bound clashes
with the supposedly optimal upper bound.

Symmetry constraints. At certain problem sizes, pure cutting will not
be sufficient for proofs; branching will occur. The main purpose of
symmetry(-breaking) constraints is to avoid enumerating distinct but
isomorphic subproblems.

Knowledge constraints. The most general class of constraints that has the
potential for strong improvements in practice is also the one requiring
the most graph theoretical insight: In certain graphs we may know
properties of the optimal drawings (e.g. that it is sufficient to investigate
solutions with at most one crossing per edge). Such findings can be
turned into constraints of high practical value.

In the following, we will discuss some constraints of these types for specific
graph classes.

10.2. SPECIAL CLASSES 175

10.2 Special Classes

10.2.1 Complete Graphs

Bounds and Kleitman’s argument. The best-known bound regarding
complete graphs is Guy’s crossing number conjecture [80]:

cr(Kn) ?= Z(n) :=
1
4

⌊n
2

⌋⌊n− 1
2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋
,

which can be written as

Z(n) =
1
64

(n− 1)2(n− 3)2

for odd n. Based on the combinatorial bound1

cr(Kn) ≥
(
n
p

)
cr(Kp)(
n−4
p−4

)
we can observe that the conjecture holds for cr(K2k) if it is true for cr(K2k−1),
i.e., proofs are only interesting for Kn with odd n.

Guy presented a drawing scheme for arbitrary Kn realizing the crossing
number conjectured above, hence we have at least an upper bound. He proved
the conjectured equality for n ≤ 10, and Pan and Richter [123] later extended
the proof to n ≤ 12. We know from [99] that

0.8594 · Z(n) ≤ cr(Kn).

Recall Kleitman’s argument that the parity of cr(Kn), n odd, has to be
the same as of Z(n). When proving that the conjecture holds for some Kn

and Kn+1 (n odd), we only have to show that cr(Kn) > Z(n)− 2.

Kuratowski Constraints. Clearly, each Kn contains n Kn−1 subgraphs,
and generally

(
n
m

)
Km subgraphs. When computing Kn for the smallest

unknown n, we can therefore consider all Km constraints (5 ≤ m < n, Sec-
tion 5.4.3) for which we know that they are facet-defining in Kn. Analogously,
we have multiple complete bipartite subgraphs Km,m′ , with m + m′ ≤ n, in
Kn for which we can construct Kuratowski constraints if cr(Km,m′) is known,
cf. below.

Apart from subgraphs, we can also generate all n
(
n−1

2

)
Kn−1 subdivisions

in Kn: We select any node v that shall not be a Kuratowski node; the other
nodes induce a Kn−1 subgraph. We then select one edge e in this subgraph
and replace it by the path of length 2 over v. For this substructure we can
force at least cr(Kn−1) crossings.

1This arises from removing four vertices from the drawing and counting the crossings
over all such possible modifications.

176 CHAPTER 10. SOLVING SPECIAL GRAPH CLASSES

While we can store the subgraph constraints in a pool, we check the
subdivision constraints on the fly via a separation routine due to their high
number. We only add the constraints with highest violation.

Theoretically, we could also separate any Km, m < n, subdivision but
their enumeration, even if only done for promising edges, takes too long for
practical purposes.

Node/Kuratowski Symmetry Constraints. Assume we are given any
optimal drawing of someKn with node labels v1, v2, . . . , vn. We can arbitrarily
permute these labels and still obtain an optimal drawing. Hence we can
establish a canonical ordering of the vertices based on the responsibility of
a node v, i.e., the number of crossings on edges incident to v. We use the
shorthand X(v) =

∑
{e,f}∈CP:v∈e xe,f to denote this concept. Using any fixed

labeling of the nodes we can require:

X(v1) ≥ X(v2) ≥ . . . ≥ X(vn) (10.1)

This will not influence the value of the optimal solutions but is only used for
breaking the symmetry in the solution space. Its advantage only comes into
play when branching.

An analogous idea is to establish a canonical ordering of the crossings on
the Kn−1 subgraphs. We can observe that this is dual to the node symmetry
constraints above: Consider any optimal solution. If G − v is the Kn−1

subgraph with minimal number of crossings, we can deduce that v has the
highest responsibility among all nodes, as each edge is either contained in
G − v or incident to v. Therefore (10.1) is also a canonical ordering with
respect to the Kn−1 subgraphs.

Edge Symmetry Constraints. Alternatively to the node symmetry con-
straints above, we can establish edge symmetry constraints. Note that they
are not compatible, i.e., we cannot use both constraint classes simultaneously.
Consider any optimal drawing of some Kn and fix a vertex v1. Using the rela-
beling argument of above, we can establish a canonical ordering with respect
to its incident edges. We use the shorthand X(e) =

∑
f :{e,f}∈CP xe,f for the

number of crossings over the edge e:

X({v1, v2}) ≥ X({v1, v3}) ≥ . . . ≥ X({v1, vn}) (10.2)

Furthermore, we can require that v1 is the node with the highest responsibil-
ity:

X(v1) ≥ X(vi) ∀2 ≤ i ≤ n. (10.3)

Experiments show that this class of constraints is more efficient than the node
symmetry constraint above.

10.2. SPECIAL CLASSES 177

Subgraph Knowledge Constraints. Sometimes we have certain knowl-
edge about the crossing configuration of certain substructures in the context
of the whole graph. Below are such results obtained and used in [123], as
sub-steps when proving cr(K11) = 100 analytically. It is trivial to formulate
such results as linear constraints; one has only to be careful when trying to
use them in conjunction with symmetry breaking constraints like the ones
above.

Theorem 10.1 ([123]). 1. For n ≤ 8, every optimal drawing of Kn con-
tains an optimal drawing of Kn−1.

2. A good optimal drawing of K9 contains a good drawing of K8 with at
most 20 crossings. Any good drawing of K8 with at most 20 crossings
contains an optimal drawing of K7.

3. A good drawing of K11 with fewer than 100 crossings contains a good
drawing of K10 with at most 62 crossings. Any good drawing of K10

with at most 62 crossings contains an optimal drawing of K9.

Note on Complete Bipartite Graphs

After preliminary experiments, we did not try to tackle the crossing number
problem for complete bipartite graphs: Similar to complete graphs, there is
a drawing construction by Zarankiewicz [147] (predating Guy’s conjecture)
requiring

Z(n,m) :=
⌊n

2

⌋⌊n− 1
2

⌋ ⌊m
2

⌋⌊m− 1
2

⌋
crossings; he gave a proof for cr(Kn,m) = Z(n,m), which was later shown to
be flawed by Guy [79]. Anyhow, we know that the conjecture holds for K2k,m

if it holds for K2k−1,m, i.e., proving the conjecture is interesting only for com-
plete bipartite graphs with odd partition set cardinalities. Furthermore, we
know that cr(Kn,m) ≥ 0.8 · Z(n,m) using straight-forward combinatorial ar-
guments; this was later improved to a factor of roughly 0.8001 by Nahas [116].
Kleitman proved the conjecture rigorously for Kn,m with n ≤ 6. For n = 7,
the conjecture is known to be true for m ≤ 10.

Hence the first interesting complete bipartite graphs in terms of proving
Zarankiewicz’s conjecture would be K7,11 and K9,9 with supposedly 225 and
256 crossings, respectively. This seems to be beyond the reach of our ILP
approach.

10.2.2 Toroidal Grids

Definition and Bounds. A toroidal grid Tn,m is a 4-regular (rectangular)
n × m grid graph where the opposing sides are joined with each other; cf.
Figure 10.1(a). The graph, though non-planar, can be embedded on the

178 CHAPTER 10. SOLVING SPECIAL GRAPH CLASSES

(a) Drawn as a rectangular grid with joined
sides.

(b) Drawn with the supposedly optimal
drawing paradigm.

Figure 10.1: Toroidal grid T6,5.

torus; cf. Section 4.3.4. The graph therefore is “simple” in the sense that it
has genus 1 and thickness 2, independent of its specific size.

Formally, Tn,m has the vertices vi,j for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Each
vertex vi,j is incident to the vertices vi±1(mod n),j±1(mod m).

There is a drawing paradigm which requires n(m−2) crossings (assuming
n ≥ m), cf. Figure 10.1(b). Despite the fact that this drawing and the count-
ing of the arising crossings are very simple, the optimality of these drawings
can only be conjectured; see [87, 121] for details. The smallest toroidal grid
with unknown crossing number is T8,8 with supposedly 48 crossings.

Subgrid constraints. Consider the graph Tn,m with n ≥ m. By ignoring
a column or a rows arising in Figure 10.1(a), we obtain a subdivision of
a Tn−1,m or Tn,m−1, respectively. Analogous to Kuratowski constraints we
can specify constraints on these substructures requiring (n − 1)(m − 2) or
n(m−3) crossings, respectively. By ignoring multiple rows and/or column, we
can generate further—smaller—toroidal grid subdivisions and corresponding
constraints.

Kuratowski constraints. When trying to solve T8,8, we can enumerate
multiple K4,4 subdivisions; these require at least 4 crossings. Clearly, this is
the most complex complete bipartite graph that any toroidal grid can contain
as a subdivision. Figure 10.2 shows such a subdivision within a T8,8, found
by Petr Hliněný.

Symmetry constraints. Similar to the complete graphs, we can pick any
vertex, say vi,i, in Tn,m and require it to have the highest responsibility among
all nodes. Note that we cannot order all nodes according to their responsibil-
ity. Furthermore, assume w.l.o.g. that 0 < i < min(n,m). We can “orient”

10.2. SPECIAL CLASSES 179

Figure 10.2: A K4,4 subdivision in a T8,8.

our drawing by requiring an order of the number of crossings w.r.t. the vertical
and horizontal neighbors of vi,i:

X({vi,i, vi−1,i}) ≥ X({vi,i, vi+1,i}), (10.4)
X({vi,i, vi,i−1}) ≥ X({vi,i, vi,i+1}). (10.5)

If n = m we can furthermore require:

X({vi,i, vi−1,i}) ≥ X({vi,i, vi,i−1}). (10.6)

10.2.3 Generalized Petersen Graphs

Definition and Bounds. A generalized Petersen graph Pn,m is a cubic
graph (each vertex has degree 3) and is constructed a follows: We start with
the main cycle, i.e., a cycle on nodes v1, . . . , vn. For each vertex vi we in-
troduce a node v′i incident to vi. Then, for each 1 ≤ i ≤ n we connect v′i
with v′i+m(mod n). These latter edges form one or more secondary cycles. The
eponymous Petersen graph itself is P5,2, cf. Figure 10.3.

This graph class has been studied with respect to many graph measures;
it was considered in the context of crossing numbers in multiple papers [56,
57, 110, 127, 129, 131]. The known results only regard general bounds or
special cases. One of the most outstanding results was to show the crossing
number for Pn,3 for general n [127]. A main complexity when considering
generalized Petersen graphs is that there are no simple closed formulae like
for the special graph classes above, and there are no established conjectures
for most parameter settings.

In our context, there is few room for subgraph constraints similar to the
classes investigated before: Since the generalized Petersen graphs are cubic,

180 CHAPTER 10. SOLVING SPECIAL GRAPH CLASSES

Figure 10.3: Petersen graph P5,2, and generalized Petersen graph P10,3.

they can never contain a subdivision of a non-planar complete graph or a
complete bipartite graph that is more complex than a K3,3. In general, it
is also not possible to find subgraphs or subdivisions which are themselves
generalized Petersen graphs.

Node Symmetry constraints. When considering an optimal drawing of
Pn,m, we can label an arbitrary vertex of the main cycle as v1. There are two
possible labeling orientations of this cycle. Hence, we can select any valid
labeling and break the symmetry (a) by requiring that v1 is the vertex with
highest responsibility on that cycle

X(v1) ≥ X(vi) ∀i 6= 1, (10.7)

and (b) by choosing an orientation on the main cycle:

X({v1, vn}) ≥ X({v1, v2}). (10.8)

10.3 Current Results

Complete Graphs. Our current results with the above approach for com-
plete graphs are double-edged: On the one hand we clearly see the benefits
of the additional efforts, on the other hand we are not yet able to solve the
currently smallest unproven complete graph K13. Experimental runs with
this particular graph do not finish within months of computation due to the
large number of required branchings. Our unaugmented Oecm formulation
can only solve graphs up to cr(K7) = 9 without the special constraints. This
graph is trivially solvable using K6 constraints. Considering the augmented
algorithm, we can solve cr(K9) = 36 within about 15 minutes.

Finally, we were also able to prove cr(K11) = 100, only months after it was
proven formally by Richter and Pan in 2007 [123]. Hence our computation—
requiring roughly two weeks on a single CPU—verifies their highly complex

10.3. CURRENT RESULTS 181

Figure 10.4: Toroidal grid Tn,m with n ≥ m and m odd: one crossing per edge.

proof. Note that we have to switch to the 64bit mode the aforementioned
AMD Opteron offers: Our algorithm requires more than the 2 GB of memory
which is the limit for 32bit applications. The machine’s physical 32 GB RAM
are sufficient.

Toroidal Grid. The toroidal grids also constitute hard problems not only
for the theoreticians but also for the ILP approach. This somehow comes
as a surprise, as their crossing numbers only increase moderately with their
size. We can compute cr(T7,7) = 35 rather easily, but already for the known
cr(T8,7) = 40 our algorithm starts to branch heavily such that it cannot
prove the bound within reasonable time. In order to tackle the unproven
cr(T8,8) ?= 48, we seem to require some more graph theoretic insight in the
graph structure, and to identify some additional strengthening constraints.
An interesting aspect would be the following conjecture:

Conjecture 10.2. The optimal drawing of a toroidal grid Tn,m, with n ≥ m
and m odd, requires at most one crossing per edge.

Rationale. When considering the supposedly optimal drawing scheme, we can
redraw the cycles of length m such that each edge is crossed at most once, cf.
Figure 10.4.

Hence, if the conjectured crossing number is correct, this conjecture would be
a corollary. On the other hand, if we could prove this conjecture, we could
restrict our ILP to the simple crossing number, which is practically much
simpler, and try to prove T9,9.

Generalized Petersen Graphs. We know from [127] that cr (Pn,3) does
not offer a completely closed formula, but

Theorem 10.3 ([127]). The crossing number of the generalized Petersen
graph P3k+h,3 is k + h if h ∈ {0, 2} and k + 3 if h = 1, for each k ≥ 3, with
the single exception of P9,3, whose crossing number is 2.

182 CHAPTER 10. SOLVING SPECIAL GRAPH CLASSES

k
h 1 2 3 4 5 6 7 8 9 10 proof
0 0 3 7 10 14 16 18 20 22 24 10
1 0 4 8 10 12 14 16 18 20 22 37
2 3 5 10 12 14 16 18 20 22 24 11
3 1 4 8 10 12 14 16 18 20 22 43

Table 10.1: Computed crossing numbers for some generalized Petersen graphs
P4k+h+1,4. The column proof gives the largest k for which we proved our conjectured
crossing number; we stopped the computation for a specific h when the last proof
required more than 10,000 seconds; the largest graph proved this way is P176,4 with
88 crossings.

1000

1500

2000

R
u

n
ti

m
e
 (

se
c
)

h=0

h=1

h=2

h=3

0

500

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

R
u

n
ti

m
e
 (

se
c
)

k

h=3

Figure 10.5: The runtime performance for P4k+h+1,4, depending on h and k.

10.4. EXTRACTING PROOFS 183

In our experiments, we tackled the generalized Petersen graphs cr (Pn,4), for
which currently not even conjectures exist. There is a paper proving the
crossing number of the single graph P4,10 [131]. By our computation, cf.
Table 10.1, we can prove all such graphs with n ≤ 44 and multiple beyond.
We can see that for small n the crossing number behaves seemingly chaotic,
constituting exceptional cases like P9,3 for Pn,3. Only for n ≥ 14, a pattern
seems to emerge. We therefore conjecture:

Conjecture 10.4. The crossing number of the generalized Petersen graph
P4k+h+1,4 is 2k + 4 if h ∈ {0, 2} and 2k + 2 if h ∈ {1, 3}, for each k ≥ 3, with
the single exceptions of P13,4 and P17,4, whose crossing numbers are 7 and 10,
respectively.

It is very interesting to investigate the required runtime for these proofs, as
they are highly dependent on h (Figure 10.5): P4i,4 (h = 3) can be solved
very quickly—for these graphs, the secondary cycles decompose into i disjoint
cycles, and the running time increases moderately with the graph size. The
performance for P4i+2,4 (h = 1) is the second best, as they contain i/2 disjoint
secondary cycles. We have the worst running time for P4i+1,4 (h = 0), as the
secondary cycle does not decompose; furthermore the performance degrades
quickly for larger graphs. We conclude with two exemplary crossing minimal
drawings of P14,4 and P21,4, respectively, see Figure 10.6.

10.4 Extracting Proofs

Theoretically, we have a formal proof for a crossing number after computing
it via our ILP. Nonetheless, this does not constitute a proof that can be easily
verified, and ignores the fact of possible bugs in the code of any necessary
component. Even the fact that we have two distinct algorithms (based on
Secm and Oecm, respectively) seems not satisfiable enough, due to shared
code and conceptual ideas.

Therefore we may want to extract a proof that is (comparably) easily
verifiable, using code that is itself easily verifiable and has nothing in common
with the code of the original algorithm. In order to establish a formal proof,
one would have to perform the following steps:

1. Solve the problem using one of the branch-and-cut-and-price algorithms
described in Chapters 5 and 6; store the optimal solution OPT .

2. For each leaf node in the branch-and-bound tree (or the root node if no
branching was necessary):

(a) Extract the branch information (variable fixings, K5-branches), if
any.

(b) Extract the necessary variables and constraints from the final LP
model.

184 CHAPTER 10. SOLVING SPECIAL GRAPH CLASSES

(a) cr(P14,4) = 8

(b) cr(P21,4) = 14

Figure 10.6: Provably crossing minimal drawings of two generalized Petersen
graphs. Thick edges denote the main and secondary cycles.

10.4. EXTRACTING PROOFS 185

(c) Translate the formal variables and constraints into a human read-
able format, e.g., by specifying the type of the constraint, listing
the edges of the corresponding Kuratowski subdivision, etc.

3. Publish the information extracted above.

To validate the proof, one then has to perform the following steps:

1. Validate the branch information, in order to ensure that the multitude
of subproblems describes the original problem completely.

2. For each subproblem:

(a) Run a validation program that proves the graph theoretic sound-
ness of the constraints, e.g., checking that the edge lists resemble
Kuratowski constraints.

(b) Run a validation program that proves that the LP relaxation of
the subproblem induces that the solution cannot be better than
the stored optimal solution we try to validate. Therefore it re-
interprets the human readable variables and constraints in terms
of our 0/1-ILP, adds the branching information and solves a single
LP relaxation (via any trusted LP-solver). The objective function
has to be larger than OPT − 1 (or OPT − 2 for K2k−1 due to
Kleitman’s parity argument).
Note that this is sufficient as the introduction of additional con-
straints or variables could never decrease the objective function.

186 CHAPTER 10. SOLVING SPECIAL GRAPH CLASSES

Chapter 11

Conclusion and Outlook

crossing: (Road Construction)
A place where two or more routes
of transportation form a junction or
intersection.

After summarizing some main aspects of current crossing number research,
this thesis’s Part II introduced a preprocessing scheme based on SPR-trees.
We showed that we can compute a non-planar core for arbitrary graphs in
linear time, which behaves invariant not only w.r.t. the crossing number but
also w.r.t. the graph’s skewness, thickness, coarseness and genus.

Afterwards, we presented the thesis’s central ILP formulations for the
traditional crossing number problem: one based on subdividing the edges of
the given graph and one based on linear ordering. We discussed their common
concepts and defined the crossing number polytope. We were able to show
that several classes of Kuratowski constraints define facets of this polytope.

The exponential size of the ILPs required us to develop branch-and-cut al-
gorithms facilitating sophisticated separation routines, in particular efficient
Kuratowski extractions. Even when generating constraints on the fly, the
number of variables is still prohibitive for computing the crossing number of
larger graphs. Therefore we investigated several possibilities of generating
variables dynamically as well. While a traditional pricing approach based on
reduced costs only allowed moderate improvements, we presented application
specific combinatorial column generation schemes that are crucial for the al-
gorithms’ success. These schemes detect the necessity for additional variables
based on combinatorial and graph theoretic arguments; in contrast to tradi-
tional pricing, they have the valuable property that the LP relaxations always
correspond to lower bounds of the full problem.

We discussed related crossing number concepts and how to apply heuristic
or exact approaches to them. We described the minor-monotone and the hy-
pergraph crossing numbers, and showed a previously unexplored relationship
between them. We showed how to use corresponding heuristic algorithms to

187

188 CHAPTER 11. CONCLUSION AND OUTLOOK

find drawings of electrical circuits with clearly less crossings than previously
reported. We also investigated the novel concept of simultaneous crossing
numbers, and presented complexity results as well as heuristic and exact al-
gorithms.

We implemented the presented approaches and showed experimentally
that the exact crossing number algorithm is practical for medium sized gen-
eral graphs with crossing numbers of up to 20 and beyond. Based on these
investigations, we conclude that the Oecm formulation, using combinatorial
column generation, is the practically strongest one. Yet, Secm has benefits
regarding its adaptability to other crossing number concepts. Knowing the
exact crossing numbers, we can deduce that state-of-the-art heuristics for the
problem are very close to optimality if the crossing number is not too large.

In the last chapter, we discussed how to use our algorithms to solve open
problems in the realm of formerly purely theoretic questions regarding the
crossing number of special graph classes. Initial experiments are promising,
as we could verify the crossing number of the largest proven complete graph
K11. For the first time, we were able to show crossing numbers for generalized
Petersen graphs Pn,4; we computed the numbers for all n ≤ 44 and multi-
ple beyond, and came up with a conjecture for the crossing number with
general n.

We want to conclude with giving some more open questions that arose
during the development of this thesis’s material:

Non-planar Core Reduction. The reduction strategy is strong if the bi-
connected components of a graph contain only few non-planar tricon-
nected components. If a graph is non-planar and triconnected, the
reduction strategy will not modify the graph. Can we decompose R-
nodes based on 4-connected components and analyze these components
in order to shrink the graph further?

Additional Constraints. In practice, triangle constraints seldom lead to
improved running times. Can we prove any properties of this constraint
class? Can we identify additional classes of planarity constraints that
are either practically more efficient or easier to separate than the general
Kuratowski constraints used in Secm and Oecm?

Polyhedral Strength of the Approaches. Can we show whether Secm
or Oecm is stronger from the polyhedral point of view? See Section 5.5
for a discussion why this question seems hard to answer.

Pairwise Crossing Number. Can we extend our ILP to solve the pair-
wise crossing number problem (Section 7.4), and to thereby probably
find examples where pcr(G) 6= cr(G).

Toroidal Grids. Recall Conjecture 10.2: Can we restrict the drawing of
toroidal grids Tn,m, with n ≥ m and m odd, to have at most one

189

crossing per edge, without losing optimality?

Special Graph Classes. As noted before, special graph classes offer a wide
field for research; see the beginning of Chapter 10 for an overview on
the aims. In order to solve more such special graphs or graph classes,
we have to identify and graph theoretically prove additional special
properties of their optimal drawings. We can then try to turn this
knowledge into linear constraints. Furthermore, it would be nice to
be able to perform a simple minimal-proof extraction for clean-room
verification, as sketched in Section 10.4.

Thrackles. A thrackle drawing [146] of a graph is a good drawing of a graph
where each pair of non-adjacent edges crosses exactly once. John Con-
way asked if there exists a graph with more edges then nodes that allows
a thrackle drawing. It is conjectured that this is not the case. In fact,
the thrackle conjecture holds, if it can be shown that the one-point
union of two even-length cycles cannot be thrackled.

By fixing all x-variables to 1 in Oecm and eliminating the objective
function, we could reuse our formulation to solve the realizability prob-
lem for such graphs. This could be used within a search framework, to
identify a graph that allows such a drawing. This concept, of course,
would only allow to disprove the conjecture.

190 CHAPTER 11. CONCLUSION AND OUTLOOK

Part IV

Backmatter

191

Curriculum Vitae

Personal Data

Name (Dipl.Ing.) Markus CHIMANI
Date of birth January 8th, 1980
Place of birth Vienna, Austria
Citizenship Austrian
Marital status single

Address Chair XI – Algorithm Engineering
Faculty of Computer Science
Dortmund University of Technology
Otto-Hahn-Str. 14
44227 Dortmund, Germany

Telephone (office) +49 / 231 / 755 7706
eMail markus.chimani@tu-dortmund.de

Education

since 2005 PhD-student of Computer Science at Dortmund Univer-
sity of Technology (former name: University Dortmund),
Chair XI (Algorithm Engineering).
Topic: “Computing Crossing Numbers”.

1999–2004 Master student of Computer Science at Vienna University
of Technology.
Focus on algorithmics and computer graphics.
April 27th, 2004: Diploma (≈ Master of Science), with
distinction: Avarage (first part:) 1.1, (second part:) 1.0
(best possible average: 1.0); below minimum duration of
study.
Diploma thesis: “Bend-Minimal Orthogonal Drawing of
Non-Planar Graphs” (in English).

1998 Realgymnasium GRg XIX, 1990 Vienna, Austria.
finished with distinction; Matura (≈ high school diploma).

193

194

Experience

since 2005 Research associate with teaching responsibilities at Dort-
mund University of Technology/University Dortmund; de-
veloper of parts of OGDF [118].

2004 Research visit at MERL (Mitsubishi Electric Research
Laboratories) in Boston, MA, USA (6 months).
Research projects: “Human Guided Optimization” and
“Collaborative Interface Design”.

2000–2004 Multiple tutorships (student assistant) for Introduction-
to-Programming, Algorithms-and-Datastructures 1 and 2,
and Compiler-Engineering at TU Vienna

2003, 2004 Developer of parts of AGD [2] at TU Vienna.
2000,2001,2002 Internships at Generali AG; software development (3×

2 months).
1999 Software developer at BEKO (4 months).
1998–1999 Military service (8 months).

Research Interests

• (Computation of) Crossing numbers and other non-planarity measures,
graph drawing

• Network optimization
• Integer linear programming, branch-and-cut, column generation
• Combinatorial optimization
• Graph theory

Languages

Languages German, English
Programming C/C++, Java, Python, Pascal/Delphi, (Visual)Basic,

Modula, Fortran, Prolog, Smalltalk

195

Publications

Refereed Conference Papers

2009
• M. Chimani, C. Gutwenger, P. Mutzel, C. Wolf. Inserting a Vertex into a

Planar Graph. ACM-SIAM Symposium on Discrete Algorithms 2009, New
York (SODA’09), pp. 375–383, ACM Press, 2009.

2008
• M. Chimani, C. Gutwenger, M. Jansen, K. Klein, P. Mutzel. Computing

Maximum C-Planar Subgraphs. to appear in: 16th International Symposium
on Graph Drawing 2008, Heraklion (GD’08).

• M. Chimani, P. Mutzel, I. Bomze. A New Approach to Exact Crossing Mini-
mization. 16th Annual European Symposium on Algorithms 2008, Karlsruhe
(ESA’08), LNCS 5193, pp. 284–296, Springer, 2008.

• M. Chimani, M. Kandyba, I. Ljubić, P. Mutzel. Strong Formulations for
the 2-Node-Connected Steiner Network Problems. 2nd Annual Interna-
tional Conference on Combinatorial Optimization and Applications 2008,
St. John’s, Newfoundland (COCOA’08), LNCS 5165, pp. 190–200, Springer,
2008.

• M. Chimani, C. Gutwenger, P. Mutzel, H.-M. Wong. Layer-Free Upward
Crossing Minimization. 7th International Workshop on Experimental Algo-
rithms 2008, Cape Cod (WEA’08), LNCS 5038, pp. 55–68, Springer, 2008.

• M. Chimani, M. Jünger, M. Schulz. Crossing Minimization meets Simulta-
neous Drawing. 2008 IEEE Pacific Visualization Symposium, Kyoto (Paci-
ficVis’08), pp. 33–40, 2008.

• M. Chimani, M. Kandyba, I. Ljubic, P. Mutzel. Obtaining Optimal k-
Cardinality Trees Fast. Workshop on Algorithm Engineering & Experiments
2008, San Francisco (ALENEX’08), SIAM, pp. 27–36, 2008.

2007
• M. Chimani, C. Gutwenger. Algorithms for the Hypergraph and the Minor

Crossing Number Problems. 18th Annual International Symposium on Al-
gorithms and Computation (ISAAC’07), LNCS 4835, pp. 184–195, Springer,
2007.

196

• M. Chimani, P. Mutzel, J.M. Schmidt. Efficient Extraction of Multiple Ku-
ratowski Subdivisions. 15th International Symposium on Graph Drawing
(GD’07), LNCS 4875, pp. 159–170, Springer, 2007.

• M. Chimani, M. Kandyba, M. Preuss. Hybrid Numerical Optimization for
Combinatorial Network Problems. 4th International Workshop on Hybrid
Metaheuristics (HM’07), LNCS 4771, pp. 185–200, Springer, 2007.

• M. Chimani, M. Kandyba, P. Mutzel. A New ILP Formulation for 2-Root-
Connected Prize-Collecting Steiner Networks. 15th Annual European Sym-
posium on Algorithms (ESA’07), LNCS 4698, pp. 681–692, Springer, 2007.

2006
• M. Chimani, C. Gutwenger, P. Mutzel. Experiments on Exact Crossing Min-

imization using Column Generation. 5th International Workshop on Exper-
imental Algorithms (WEA’06), LNCS 4007, pp. 303–315, Springer, 2006.

• C. Gutwenger, M. Chimani. Non-Planar Core Reduction of Graphs. 13th
International Symposium on Graph Drawing (GD’05), LNCS 3843, pp. 223–
234, Springer, 2006.

2005
• C. Rich, C. Sidner, N. Lesh, A. Garland, S. Booth, M. Chimani. Diamond-

Help: A Collaborative Interface Framework for Networked Home Appliances.
IEEE International Conference on Distributed Computing Systems Work-
shops (ICDCS’05) / 5th International WorkShop on Smart Appliances and
Wearable Computing (IWSAWC’05), pp. 514–519, IEEE Computer Society
Press, 2005.

• M. Chimani, N. Lesh, M. Mitzenmacher, C. Sidner, H. Tanaka. A Case
Study in Large-Scale Interactive Optimization. International Conference on
Artificial Intelligence and Applications (AIA’05), IASTED-Proc., pp. 24–29,
Acta Press, Anaheim CA, 2005.

• M. Chimani, G.W. Klau, R. Weiskircher. Non-Planar Orthogonal Drawings
with Fixed Topology. SofSem’05: Theory and Practice of Computer Science,
LNCS 3381, pp. 96–105, Springer, 2005.

197

Journal Articles

• M. Chimani, C. Gutwenger, P. Mutzel, H.-M. Wong. Layer-Free Upward
Crossing Minimization. Submitted.

• M. Chimani, M. Kandyba, I. Ljubic, P. Mutzel. Obtaining Optimal k-
Cardinality Trees Fast. to appear in: Journal of Experimental Algorithms.

• M. Chimani, C. Gutwenger. Non-Planar Core Reduction of Graphs. Discrete
Mathematics. In print.

• M. Chimani, C. Gutwenger, P. Mutzel. Experiments on Exact Crossing Min-
imization using Column Generation. Submitted.

• C. Buchheim, M. Chimani, D. Ebner, C. Gutwenger, M. Jünger, G.W. Klau,
P. Mutzel, R. Weiskircher. A Branch-and-Cut Approach to the Crossing
Number Problem. Discrete Optimization, Vol. 5(2), Special Issue in Memory
of George B. Dantzig, pp. 373–388, 2008.

• M. Chimani, C. Gutwenger, P. Mutzel. On the Minimum Cut of Planariza-
tions. Electronic Notes in Discrete Mathematics, Vol. 28, pp. 177–184, 2007.

• C. Rich, C. Sidner, N. Lesh, A. Garland, S. Booth, M. Chimani. Diamond-
Help: A New Interaction Design for Networked Home Appliances. Personal
and Ubiquitous Computing, Vol. 10(2), pp. 187–190, Springer, 2006.

Posters and Demos

• M. Chimani, P. Hliněný, P. Mutzel. Approximating the Crossing Number
of Apex Graphs. to appear in: 16th International Symposium on Graph
Drawing (GD’08).

• M. Chimani, C. Gutwenger, M. Jünger, K. Klein, P. Mutzel, M. Schulz. The
Open Graph Drawing Framework. 15th International Symposium on Graph
Drawing (GD’07).

• C. Rich, C. Sidner, N. Lesh, A. Garland, S. Booth, M. Chimani. Diamond-
Help: A New Interaction Design for Networked Home Appliances. Third
International Conference on Appliance Design 2005 (3AD), Finalist of De-
sign Competition.

198

• C. Rich, C. Sidner, N. Lesh, A. Garland, S. Booth, M. Chimani. Diamond-
Help: A Collaborative Task Guidance Framework for Complex Devices. 20th
National Conference on Artificial Intelligence; Intelligent Systems Demon-
strations (AAAI’05), pp. 1700–1701, 2005.

Bibliography

[1] Abacus: A Branch-And-CUt System. University of Cologne, Faculty of
Mathematics and Natural Sciences, Chair of Computer Science (Prof.
Jünger), http://www.informatik.uni-koeln.de/abacus/, 2007.

[2] AGD: Algorithms for Graph Drawing. Max-Planck institute Saar-
brücken, Vienna University of Technology, University of Cologne, Uni-
versity Trier, http://www.ads.tuwien.ac.at/AGD/, 2000.

[3] V. B. Alekseev and V. S. Gončakov. The thickness of an arbitrary com-
plete graph. Mathematics of the USSR-Sbornik, 30(2):187–202, 1976.

[4] D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook. The Trav-
eling Salesman Problem: A Computational Study. Princeton University
Press, 2006.

[5] L. Auslander and S. V. Parter. On imbedding graphs in the plane.
Journal of Mathematics and Mechanics, 10(3):517–523, 1961.

[6] C. Batini, M. Talamo, and R. Tamassia. Computer aided layout of
entity-relationship diagrams. Journal of Systems and Software, 4:163–
173, 1984.

[7] L. W. Beineke and G. Chartrand. The coarseness of a graph. Compositio
Mathematica, 19:290–298, 1968.

[8] L. W. Beineke and R. K. Guy. The coarseness of the complete bipartite
graph. Canadian Journal of Mathematics, 21:1086–1096, 1969.

[9] L. W. Beineke and F. Harary. The thickness of the complete graph.
Canadian Journal of Mathematics, 17:850–859, 1965.

[10] L. W. Beineke, F. Harary, and J. W. Moon. On the thickness of the
complete bipartite graph. Proceedings of the Cambridge Philosophical
Society, 60:1–5, 1964.

[11] S. N. Bhatt and F. T. Leighton. A framework for solving VLSI graph
layout problems. Journal of Computer and System Sciences, 28:300–
343, 1984.

199

200 BIBLIOGRAPHY

[12] D. Bienstock and C. L. Monma. On the complexity of embedding planar
graphs to minimize certain distance measures. Algorithmica, 5(1):93–
109, 1990.

[13] D. Bokal. On the crossing numbers of cartesian products with paths.
Jounal of Combinatorial Theory, Series B, 2007(3):381–384, 97.

[14] D. Bokal, É. Czabarkab, L. A. Székely, and I. Vrt’o. Graph minors and
the crossing number of graphs. Electronic Notes in Discrete Mathemat-
ics, 28:169–175, 2007.

[15] D. Bokal, G. Fijavz, and B. Mohar. The minor crossing number. SIAM
Journal on Discrete Mathematics, 20:344–356, 2006.

[16] K. S. Booth and G. S. Lueker. Testing for the consecutive ones property,
interval graphs, and graph planarity using PQ-tree algorithms. Journal
of Computer and System Sciences, 13(3):335–379, 1976.

[17] K. J. Börözky, J. Pach, and G. Tóth. Planar crossing numbers of graphs
embeddable in another surface. International Journal of Foundations
of Computer Science, 17(5):1005–1016, 2006.

[18] J. M. Boyer, P. F. Cortese, M. Patrignani, and G. Di Battista. Stop
minding your P’s and Q’s: Implementing a fast and simple DFS-based
planarity testing and embedding algorithm. In Proc. GD ’03, volume
2912 of LNCS, pages 25–36. Springer, 2004.

[19] J. M. Boyer and W. J. Myrvold. Stop minding your P’s and Q’s: A
simplified O(n) planar embedding algorithm. In Proc. SODA ’99, pages
140–146. SIAM, 1999.

[20] J. M. Boyer and W. J. Myrvold. On the cutting edge: Simplified O(n)
planarity by edge addition. Journal of Graph Algorithms and Applica-
tions, 8(3):241–273, 2004.

[21] P. Braß, E. Čenek, C. A. Duncan, A. Efrat, C. Erten, D. Ismailescu,
S. G. Kobourov, A. Lubiw, and J. S. B. Mitchell. On simultaneous
planar graph embeddings. Computational Geometry, 36(2):117–130,
2007.

[22] F. Brglez, D. Bryan, and K. Kozminski. Combinatorial profiles of se-
quential benchmark circuits. In Proc. Circuits and Systems, pages 1929–
1934, 1989.

[23] C. Buchheim, M. Chimani, D. Ebner, C. Gutwenger, M. Jünger, G. W.
Klau, P. Mutzel, and R. Weiskircher. A branch-and-cut approach to
the crossing number problem. Discrete Optimization, Special Issue in
Memory of George B. Dantzig, 5(2):373–388, 2008.

BIBLIOGRAPHY 201

[24] C. Buchheim, D. Ebner, M. Jünger, G. W. Klau, P. Mutzel, and
R. Weiskircher. Exact crossing minimization. In Proc. GD ’05, vol-
ume 3843 of LNCS, pages 37–48. Springer, 2006.

[25] C. Buchheim, M. Jünger, A. Menze, and M. Percan. Bimodal crossing
minimization. In Proc. COCOON ’06, volume 4112 of LNCS, pages
497–506. Springer, 2006.

[26] S. Cabello and B. Mohar. Crossing and weighted crossing number of
near planar graphs. In Proc. GD ’08, LNCS. Springer. to appear.

[27] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm for
embedding planar graphs using PQ-Trees. Journal of Computer and
System Sciences, 30(1):54–76, 1985.

[28] M. Chimani and C. Gutwenger. Algorithms for the hypergraph and the
minor crossing number problems. In Proc. ISAAC ’07, volume 4835 of
LNCS, pages 184–195. Springer, 2007.

[29] M. Chimani and C. Gutwenger. Non-planar core reduction of graphs.
Discrete Mathematics, 2008. In press. A preliminary version appeared
in Proc. GD ’05, LNCS 3843, pp. 223–234.

[30] M. Chimani, C. Gutwenger, and P. Mutzel. Experiments on exact cross-
ing minimization using column generation. In Proc. WEA ’06, volume
4007 of LNCS, pages 303–315. Springer, 2006.

[31] M. Chimani, C. Gutwenger, and P. Mutzel. On the minimum cut of
planarizations. Electronic Notes in Discrete Mathematics, 28:177–184,
2007.

[32] M. Chimani, C. Gutwenger, P. Mutzel, and C. Wolf. Inserting a vertex
into a planar graph. submitted, 2008.

[33] M. Chimani, C. Gutwenger, P. Mutzel, and H.-M. Wong. Layer-free up-
ward crossing minimization. In Proc. WEA ’08, volume 5038 of LNCS,
pages 55–68. Springer, 2008.

[34] M. Chimani, P. Hliněný, and P. Mutzel. Approximating the crossing
number of apex graphs. submitted, 2008.

[35] M. Chimani, M. Jünger, and M. Schulz. Crossing minimization meets
simultaneous drawing. In Proc. PacificVis ’08, pages 33–40, 2008.

[36] M. Chimani, M. Kandyba, I. Ljubić, and P. Mutzel. Obtaining optimal
k-cardinality trees fast. In Proc. ALENEX ’08, pages 27–36, 2008.

[37] M. Chimani, P. Mutzel, and I. Bomze. A new approach to exact crossing
minimization. In Proc. ESA ’08, LNCS. Springer, 2008. to appear.

202 BIBLIOGRAPHY

[38] M. Chimani, P. Mutzel, and J. M. Schmidt. Efficient extraction of
multiple Kuratowski subdivisions (TR). Technical Report TR07-1-002,
June 2007, Dortmund University of Technology, June 2007.

[39] M. Chimani, P. Mutzel, and J. M. Schmidt. Efficient extraction of
multiple Kuratowski subdivisions. In Proc. GD ’07, volume 4875 of
LNCS, pages 159–170. Springer, 2008.

[40] Coin-OR: COmputational INfrastructure for Operations Research.
www.coin-or.org.

[41] G. B. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale
traveling-salesman problem. Journal of the Operations Research Society
of America, 2(4):393–410, 1954.

[42] G. B. Dantzig and P. Wolfe. Decomposition principle for linear pro-
grams. Operations Research, 8:101–111, 1960.

[43] G. Demoucron, Y. Malgrange, and R. Pertuiset. Graphes planaires: Re-
connaissance et construction de representations planaires topologiques.
Rev. Francaise Recherche Operationelle, 8:33–47, 1964.

[44] G. Di Battista, P. Eades, R. Tamassia, and I.G. Tollis. Graph Drawing:
algorithms for the visualization of graphs. Prentice Hall, 1999.

[45] G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and
F. Vargiu. An experimental comparison of four graph drawing al-
gorithms. Computational Geometry: Theory and Applications, 7(5–
6):303–325, 1997.

[46] G. Di Battista and R. Tamassia. On-line planarity testing. SIAM
Journal on Computing, 25:956–997, 1996.

[47] R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathemat-
ics. Springer-Verlag, Heidelberg, 3 edition, 2005.

[48] Garcia-Moreno E. and G. Salazar. Bounding the crossing number of a
graph in terms of the crossing number of a minor with small maximum
degree. Journal of Graph Theory, 36:168–173, 2001.

[49] D. Ebner. Optimal crossing minimization using integer linear program-
ming. Master’s thesis, Vienna University of Technology, 2005.

[50] C. Erten and S. G. Kobourov. Simultaneous embedding of planar graphs
with few bends. In Proc. GD ’04, volume 3383 of LNCS, pages 195–205.
Springer, 2005.

BIBLIOGRAPHY 203

[51] T. Eschbach, W. Günther, and B. Becker. Orthogonal circuit visualiza-
tion improved by merging the placement and routing phases. In Proc.
VLSID ’05, pages 433–438, 2005.

[52] T. Eschbach, W. Günther, and B. Becker. Orthogonal hypergraph draw-
ing for improved visibility. Journal of Graph Algorithms and Applica-
tions, 10(2):141–157, 2006.

[53] A. Estrella-Balderrama, E. Gassner, M. Jünger, M. Percan, M. Schaefer,
and M. Schulz. Simultaneous geometric graph embeddings. In Proc.
GD ’07, volume 4875 of LNCS, pages 280–290. Springer, 2008.

[54] G. Even, S. Guha, and B. Schieber. Improved approximations of cross-
ings in graph drawing. In Proc. STOC ’00, pages 296–305, 2000.

[55] S. Even and R. E. Tarjan. Computing an st-Numbering. Theoretical
Computer Science, 2(3):339–344, 1976.

[56] G. Exoo, F. Harary, and J Kabell. The crossing numbers of some
generalized Petersen graphs. Mathematica Scandinavica, 48:184–188,
1981.

[57] S. Fiorini. On the crossing number of generalized Petersen graphs.
Annals of Discrete Mathematics, 30:225242, 1986.

[58] F. Frati. Embedding graphs simultaneously with fixed edges. In Proc.
GD ’06, volume 4372 of LNCS, pages 108–113. Springer, 2007.

[59] F. Frati, M. Kaufmann, and S. Kobourov. Constrained simultaneous
and near-simultaneous embeddings. In Proc. GD ’07, volume 4875 of
LNCS, pages 268–279. Springer, 2008.

[60] H. de Fraysseix and P. Ossona de Mendez. On cotree-critical and DFS
cotree-critical graphs. Journal of Graph Algorithms an Applications,
7(4):411–427, 2003.

[61] H. de Fraysseix, P. Ossona de Mendez, and P. Rosenstiehl. Trémaux
Trees and planarity. International Journal of Foundations of Computer
Science, 17(5):1017–1030, 2006.

[62] H. de Fraysseix and P. Rosenstiehl. A characterization of planar graphs
by Trémaux orders. Combinatorica, 5(2):127–135, 1985.

[63] M. R. Garey and D. S. Johnson. The rectilinear steiner tree problem
is NP-complete. SIAM Journal on Applied Mathematics, 32:826–834,
1977.

[64] M. R. Garey and D. S. Johnson. Crossing number is NP-complete.
SIAM Journal on Algebraic and Discrete Methods, 4:312–316, 1983.

204 BIBLIOGRAPHY

[65] E. Gassner, M. Jünger, M. Percan, M. Schaefer, and M. Schulz. Simul-
taneous graph embeddings with fixed edges. In Proc. WG ’06, volume
4271 of LNCS, pages 325–335. Springer, 2006.

[66] M. Geyer, M. Kaufmann, and I. Vrt’o. Two trees which are self-
intersecting when drawn simultaneously. In Proc. GD ’05, volume 3843
of LNCS, pages 201–210. Springer, 2006.

[67] E. Di Giacomo and G. Liotta. A note on simultaneous embedding of
planar graphs. In Proc. EWCG ’05, pages 207–210, 2005.

[68] I. Gitler, P. Hliněný, J. Leanos, and G. Salazar. The crossing number
of a projective graph is quadratic in the face-width. Electronic Notes
in Discrete Mathematics, 29:219–223, 2007.

[69] A. J. Goldstein. An efficient and constructive algorithm for testing
whether a graph can be embedded in a plane. In Proc. Graph and
Combinatorics Conference ’63, 1963.

[70] R. E. Gomory. Outline of an algorithm for integer solutions to linear
programs. Bulletin of the American Mathematical Society, 64:275–278,
1958.

[71] A. Grigoriev and H. Bodlaender. Algorithms for graphs embeddable
with few crossings per edge. Algorithmica, 49(1):1–11, 2007.

[72] M. Grohe. Computing crossing numbers in quadratic time. In Proc.
STOC ’01, 2001.

[73] C. Gutwenger. Applications of SPQR-Trees in the Planarization Ap-
proach for Drawing Graphs. PhD thesis, Dortmund University of Tech-
nology, 2008. to appear.

[74] C. Gutwenger, K. Klein, and P. Mutzel. Planarity testing and optimal
edge insertion with embedding constraints. In Proc. GD ’06, volume
4372 of LNCS, pages 126–137. Springer, 2007.

[75] C. Gutwenger and P. Mutzel. A linear time implementation of SPQR
trees. In Proc. GD ’00, volume 1984 of LNCS, pages 77–90. Springer,
2001.

[76] C. Gutwenger and P. Mutzel. An experimental study of crossing min-
imization heuristics. In Proc. GD ’03, volume 2912 of LNCS, pages
13–24. Springer, 2004.

[77] C. Gutwenger, P. Mutzel, and R. Weiskircher. Inserting an edge into a
planar graph. Algorithmica, 41(4):289–308, 2005.

BIBLIOGRAPHY 205

[78] R. K. Guy. A coarseness conjecture of Erdös. Journal of Combinatorial
Theory, 3:38–42, 1967.

[79] R. K. Guy. The decline and fall of zarankiewicz’s theorem. In Proof
Techniques in Graph Theory, Proc. 2nd Ann Arbor Graph Theory Con-
ference ’68, pages 63–69. Academic Press, 1969.

[80] R. K. Guy. Crossing numbers of graphs. In Proc. Graph Theory and
Applications, LNM, pages 111–124. Springer, 1972.

[81] R. K. Guy and L. W. Beineke. The coarseness of the complete graph.
Canadian Journal of Mathematics, 20:888–894, 1968.

[82] R. K. Guy, T. Jenkyns, and Schaer J. The toroidal crossing number of
complete graphs. Journal of Combinatorial Theory, 4:376–390, 1968.

[83] F. Harary. Research problem. Bulletin of the American Mathematical
Society, 67:542, 1961.

[84] F. Harary. Graph Theory. AddisonWesley, Reading, MA, 1969.

[85] P. Hliněný. Crossing number is hard for cubic graphs. Journal of
Combinatorial Theory, Series B, 96:455–471, 2006.

[86] P. Hliněný and G. Salazar. On the crossing number of almost pla-
nar graphs. In Proc. GD ’05, volume 4372 of LNCS, pages 162–173.
Springer, 2006.

[87] P. Hliněný and G. Salazar. Approximating the crossing number of
toroidal graphs. In Proc. ISAAC ’07, volume 4835 of LNCS, pages
148–159. Springer, 2007.

[88] J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected
components. SIAM Journal on Computing, 2(3):135–158, 1973.

[89] J. E. Hopcroft and R. E. Tarjan. Efficient planarity testing. Journal of
the ACM, 21(4):549–568, 1974.

[90] Ilog CPLEX, v.9.0. www.ilog.com.

[91] D. S. Johnson and H. O. Pollak. Hypergraph planarity and the complex-
ity of drawing venn diagrams. Journal of Graph Theory, 11(3):309–325,
1987.

[92] M. Jünger and P. Mutzel. Solving the maximum weight planar sub-
graph. In Proc. IPCO ’93, pages 479–492, 1993.

[93] M. Jünger and P. Mutzel. The polyhedral approach to the maximum
planar subgraph problem: New chances for related problems. In Proc.
GD ’94, volume 894 of LNCS, pages 119–130. Springer, 1995.

206 BIBLIOGRAPHY

[94] M. Jünger and S. Thienel. The ABACUS system for branch-and-cut-
and-price-algorithms in integer programming and combinatorial opti-
mization. Software: Practice & Experience, 30(11):1325–1352, 2000.

[95] K. Kawarabayashi and B. Reed. Computing crossing number in linear
time. In Proc. STOC ’07, pages 382–380, 2007.

[96] D.J. Kleitman. The crossing number of K5,n. Journal of Combinatorial
Theory, 9:315–323, 1970.

[97] D.J. Kleitman. A note on the parity of the number of crossings of a
graph. Journal of Combinatorial Theory, Series B, 21(1):88–89, 1976.

[98] H. Klemetti, I. Lapinleimu, E. Mäkinen, and M. Sieranta. A program-
ming project: Trimming the spring algorithm for drawing hypergraphs.
SIGCSE Bulletin, 27(3):34–38, 1995.

[99] E. de Klerk, J. Maharry, D.V. Pasechnik, R.B. Richter, and G. Salazar.
Improved bounds for the crossing numbers of Km,n and Kn. SIAM
Journal on Discrete Mathematics, 20(1):189–202, 2006.

[100] A. Kotzig. On certain decompositions of a graph. Mat.-Fyz. C̆asopis,
5:144–151, 1955.

[101] J. Kratochv́ıl. String graphs II: Recognizing string graphs is NP-hard.
Journal of Combinatorial Theory, Series B, 52:67–78, 1991.

[102] J. Kratochv́ıl. Crossing number of abstract topological graphs. In Proc.
GD ’98, volume 1547 of LNCS, pages 238–245. Springer, 1998.

[103] J. Kratochv́ıl and J. Matoušek. String graphs requiring exponential
representations. Journal of Combinatorial Theory, B 53:1–4, 1991.

[104] C. Kuratowski. Sur le problème des courbes gauches en topologie. Fund.
Math., 15:271–283, 1930.

[105] J. Kyncl. The complexity of several realizability problems for abstract
topological graphs. In Proc. GD ’07, volume 4875 of LNCS, pages 137–
158. Springer, 2008.

[106] Glebsky L. and G. Salazar. The crossing number of Cm × Cn is as
conjectured for m ≥ m(m+ 1). Journal of Graph Theory, 47(1):53–72,
2004.

[107] A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity
testing of graphs. In Theory of Graphs: Int’t Symp., pages 215–232.
Gordon and Breach, 1967.

BIBLIOGRAPHY 207

[108] I. Ljubić, R. Weiskircher, U. Pferschy, G. Klau, P. Mutzel, and M. Fis-
chetti. An algorithmic framework for the exact solution of the prize-
collecting Steiner tree problem. Mathematical Programming, Series B,
105(2–3):427–449, 2006.

[109] E. Mäkinen. How to draw a hypergraph. International Journal of
Computer Mathematics, 34:177–185, 1990.

[110] D. McQuillan and R. B. Richter. On the crossing numbers of certain
generalized Petersen graphs. Discrete Mathematics, 104:311–320, 1992.

[111] K. Mehlhorn and P. Mutzel. On the embedding phase of the Hopcroft
and Tarjan planarity testing algorithm. Algorithmica, 16(2):233–242,
1996.

[112] K. Mehlhorn and S. Näher. The LEDA Platform of Combinatorial and
Geometric Computing. Cambridge University Press, 1999.

[113] P. Mutzel. The Maximum Planar Subgraph Problem. PhD thesis, Uni-
versity of Cologne, 1994.

[114] P. Mutzel, T. Odenthal, and M. Scharbrodt. The thickness of graphs:
A survey. Graphs and Combinatorics, 14(1):59–73, 1998.

[115] P. Mutzel and T. Ziegler. The constrained crossing minimization prob-
lem. In Proc. GD ’99, volume 1731 of LNCS, pages 175–185. Springer,
1999.

[116] N. Nahas. On the crossing number of km,n. Electronic Journal of
Combinatorics, 10, 2003. Note 8.

[117] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Opti-
mization. Discrete Mathematics and Optimization. Wiley-Interscience,
1999.

[118] OGDF: Open Graph Drawing Framework. Dortmund University of
Technology, Faculty of Computer Science, Chair for Algorithm Engi-
neering, www.ogdf.net, 2007.

[119] J. Pach and G. Tóth. Which crossing number is it anyway? Journal of
Combinatorial Theory, Series B, 80(2):225–246, 2000.

[120] J. Pach and G. Tóth. Recognizing string graphs is decidable. In Proc.
GD ’01, volume 2265 of LNCS, pages 247–260. Springer, 2002.

[121] J. Pach and G. Tóth. Crossing number of toroidal graphs. In Proc.
GD ’05, volume 3843 of LNCS, pages 334–342. Springer, 2006.

208 BIBLIOGRAPHY

[122] M. Padberg and G. Rinaldi. A branch-and-cut algorithm for the res-
olution of large-scale symmetric traveling salesman problems. SIAM
Review, 33(1):60–100, 1991.

[123] S. Pan and R. B. Richter. The crossing number of K11 is 100. Journal
of Graph Theory, 56:128–134, 2007.

[124] M. Pelsmajer, M. Schaefer, and D. Štefankovič. Odd crossing number
is not crossing number. In Proc. GD ’05, volume 3843 of LNCS, pages
386–396. Springer, 2006.

[125] M. Pelsmajer, M. Schaefer, and D. Štefankovič. Crossing number of
graphs with rotation systems. In Proc. GD ’06, LNCS. Springer, 2007.

[126] H. C. Purchase. Which aesthetic has the greatest effect on human
understanding? In Proc. GD ’97, volume 1353 of LNCS, pages 248–
261. Springer, 1997.

[127] R. B. Richter and G. Salazar. The crossing number of P (N, 3). Graphs
and Combinatorics, 18:381–394, 2002.

[128] G. Salazar. On the crossing number of Cm × Cn. Journal of Graph
Theory, 28(3):163–170, 1998.

[129] G. Salazar. On the crossing numbers of loop networks and generalized
Petersen graphs. Discrete Mathematics, 302(1-3):243–253, 2005.

[130] G. Sander. Layout of directed hypergraphs with orthogonal hyperedges.
In Proc. GD ’03, volume 2912 of LNCS, pages 381–386. Springer, 2004.

[131] M.L. Saraz̆in. The crossing number of the generalized Petersen graph
p(10, 4) is four. Mathematica Slovaca, 4747:189192, 1997.

[132] M. Schaefer, E. Sedgwick, and D. Štefankovič. Recognizing string
graphs in NP. Journal of Computer and System Sciences, 67(2):365–
380, 2003.

[133] J. M. Schmidt. Effiziente Extraktion von Kuratowski-Teilgraphen. Mas-
ter’s thesis, University Dortmund, March 2007. (in German).

[134] A. Schrijver. Theory of Linear and Integer Programming. Discrete
Mathematics and Optimization. Wiley-Interscience, 1998.

[135] F. Shahrokhi, O. Sykora, L. A. Szekely, and I. Vrt’o. Drawing graphs
on surfaces with few crossings. Algorithmica, 16:118–131, 1996.

[136] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understand-
ing of hierarchical system structures. IEEE Trans. Sys. Man. Cyb.,
11(2):109–125, 1981.

BIBLIOGRAPHY 209

[137] L. A. Székely. A successful concept for measuring non-planarity of
graphs: the crossing number. Discrete Mathematics, 276(1-3):331–352,
2004.

[138] C. Thomassen. The graph genus problem is np-complete. Journal of
Algorithms, 10(4):568–576, 1989.

[139] P. Turán. A note of welcome. Journal of Graph Theory, 1:7–9, 1977.

[140] I. Vrt’o. Crossing numbers of graphs: A bibliography. ftp://ftp.ifi.
savba.sk/pub/imrich/crobib.pdf, 2008.

[141] J. Širáň. Additivity of the crossing number of graphs with connectivity
2. Periodica Mathematica Hungarica, 15(4):301–305, 1984.

[142] K. Wagner. Über eine Eigenschaft der ebenen Komplexe. Mathematis-
che Annalen, 114(1):570–590, 1937.

[143] R. Weiskircher. New Applications of SPQR-Trees in Graph Drawing.
PhD thesis, Saarland University, 2002.

[144] L. A. Wolsey. Integer Programming. Discrete Mathematics and Opti-
mization. Wiley-Interscience, 1998.

[145] D. R. Wood and J. A. Telle. Planar decompositions and the crossing
number of graphs with an excluded minor. In Proc. GD ’06, volume
4372 of LNCS, pages 150–161. Springer, 2007.

[146] D. R. Woodall. Combinatorial Mathematics and its Applications, chap-
ter Thrackles and deadlock, pages 335–348. Academic Press, London,
1969.

[147] K. Zarankiewicz. The solution of a certain problem on graphs of P.
Turán. Bulletin de l’Academie Polonaise des sciences, Cl. III, 1:167–
168, 1953.

[148] W. P. Zheng. On the crossing number of Km × Pn. Graphs and Com-
binatorics, 23:327–336, 2007.

[149] T. Ziegler. Crossing Minimization in Automatic Graph Drawing. PhD
thesis, Saarland University, Germany, 2001.

210 BIBLIOGRAPHY

Index

0/1-ILP, see binary integer linear
program

2-chain, 49, 126
2-component

planar, 33
trivial, 33

active variable, 21
adjacent, 7
algebraic pricing, 21, 98

Secm, 98–99
almost-planar graph, 14
apex graph, 14
arc, 8

hyper-, 8

basic graph, 119
BC-tree, 9
biconnected, see graph
bimodal crossing number, 130
binary integer linear program, 20
BIP, see binary integer linear pro-

gram
block, see biconnected component
branching, 22, 96
bridge, 36

chain, 9
coarseness, 51
column generation, 21

combinatorial, 22, 97
Oecm, 101–102
Secm, 99–101

combinatorial optimization problem,
19

complement, 9
component

2-component, 33
connected, 9
st-component, 33

connected, see graph
constraint, 20

active, 21
cyclic-order, 64
extended triangle, 67
imaginary, 99
Kuratowski, 59, 62, 64, 70–86
linear-order, 64
simple triangle, 67
simplicity, 61
triangle, 67

contact point, 33
crossing, 10

phantom, 119
proper, 119

crossing cost, 120
crossing number, 12

bimodal, 130
hypergraph (point-based), 106
hypergraph (tree-based), 106
minor(-monotone), 104
W -restricted, 107

odd, 130
pairwise, 130
polytope, 69
simple, 59, 103
simultaneous, 120
weighted, 16

crossing number polytope, 68, 69

211

212 INDEX

complete, 69
complete bipartite, 69

crossing shadow, 65
cumulative crossing count, 123
cut, 34

capacity, 34
minimum, 34
st-cut, 34

cut vertex, 9
cutting plane, 21
cycle, 9

simple, 9
cyclic-order constraint, 64

separation, 91

degree, 8
drawing, 10

good, 15
upward, 15

dummy vertex, 13

edge, 7
contraction, 10, 104
hyper-, 8
insertion, 14
merge, 36
original, 27
virtual, 27

edge contraction, 10
edge path, 113
edge segment, 60
edge-standard (hypergraph draw-

ing), 106
embedding

combinatorial, 10
equivalence, 108
planar, 11

exact crossing minimization
ordering-based, 63
realizability-based, 59
subdivision-based, 60

expansion tree, 107
extended triangle constraint, 67

facet defining, 71

feasible, 20
fixed edges, 119
fixed parameter tractable, 15
forest, 9
fractional solution, 21

genus (graph), 54
genus (surface), 54
good drawing, 15
graph, 7

almost-planar, 14
apex, 14
basic, 119
biconnected, 9
bipartite, 10
complete, 10
complete bipartite, 10
connected, 9
cubic, 13, 105, 179
dual of, 11
generalized Petersen, 179
k-connected, 9
multi-graph, 8
orientation of, 8
Petersen, 179
realizing, 105
shadow of, 8
simple, 8
simultaneous, 119
toroidal grid, 177
triconnected, 10

graph weight, 121

handle, 54
hyperedge, 8
hypergraph, 8, 107
hypernode, 106

ILP, see integer linear program
in-degree, 8
incident, 7
integer linear program, 20
inverse minor operation, 104

k-connected, see graph

INDEX 213

Kuratowski constraint, 59, 70–86
(Oecm), 64
(Recm), 59
(Secm), 62
separation, 93

Kuratowski node, 12
Kuratowski path, 12
Kuratowski subdivision, 12

linear program, 19
binary integer, 20
integer, 20
mixed integer, 20

linear-order constraint, 64
LO, see linear-order
LO-feasible, 64
LP, see linear program
LP relaxation, 20

maximum planar subgraph, 45
MEIF, see minor edge insertion
MEIV, see minor edge insertion
merge edge, 36
minimum cut, 34
minimum st-cut, 34
minor, 10

topological, 10
minor edge insertion, 108
minor node insertion, 109
minor operation, 104

inverse, 104
minor(-monotone) crossing number,

104
W -restricted, 107

MIP, see mixed integer linear pro-
gram

mixed integer linear program, 20
MNIF, see minor node insertion
MNIV, see minor node insertion
MPS, see maximum planar subgraph
multi-set, 8
MultiExtract, 96
MultiExtractBundle, 96

neighbor, 8

node, 7
degree, 8
expansion, 104
in-degree, 8
insertion, 14
Kuratowski, 12
out-degree, 8
source of arc, 8
target of arc, 8

non-planar core, 36

odd crossing number, 130
Oecm, see ordering-based exact

crossing minimization
orientation, 8
original edge, 27
out-degree, 8

P-node, 27
pairwise crossing number, 130
parity argument (Kleitman), 96, 175
path, 8

Kuratowski, 12
simple, 9

phantom crossing, 119
planar 2-component, 33
planar st-component, 33
planarity, 10

hypergraph, 107
simultaneous, 119
testing, 12

planarization, 14
method, 13
partial (Oecm), 64
partial (Secm), 61

point-based
drawing standard, 106
hypergraph crossing number,

106
transformation, 106

polytope
crossing number, 68, 69
simple crossing number, 69

pricing, 21
Secm, 98–99

214 INDEX

algebraic, 21, 98
primal heuristic, 22
proper crossing, 119
Proto-SPQR-tree, 30

Q-node, 32

R-node, 27
realizability, 58

strong, 58
weak, 125

realizable, 61, 64
realizing graph, 105
Recm, see realizability-based exact

crossing minimization
reduced cost, 98
reference edge, 30
relaxation, see LP relaxation
responsibility, 176
reversal, 8
Rome graph library, 137
rotation system, 11

planar, see embedding
rounding, 92

S-node, 27
Secm, see subdivision-based exact

crossing minimization
segment, see edge segment
self-loop, 8
separation (routine), 21

cyclic-order constraint, 91
Kuratowski constraint, 93

separation pair, 10
shadow, see graph
SimCM, see simultaneous crossing

minimization
SimCM+, see simultaneous cross-

ing minimization, phantom
crossing aware

simple crossing number, 59, 103
polytope, 69

simple crossing number polytope, 69
simple triangle constraint, 67
SimpleExtract, 94

simplicity constraint, 61
imaginary, 99

simultaneous crossing minimization,
120

phantom crossing aware, 121
simultaneous crossing number, 120
simultaneous drawing, 119
simultaneous graph, 119
simultaneous planarity, 119
skeleton, 26
skewness, 45
split component, 29
split graph, 29
split node, 107
split pair, 29

maximal, 30
SPQR-tree, 31
SPR-tree, 26
st-component

planar, 33
trivial, 33

st-cut, 34
minimum, 34

stopping configuration, 95
strong realizability, 58
subdivision, 10

Kuratowski, 12
subgraph, 9

complement, 9
edge-induced, 9
maximum planar, 45
node-induced, 9

subset-standard (hypergraph draw-
ing), 106

surface, 53

thickness, 48
thrackle drawing, 189
toroidal grid, 177
traversing cost, 34
traversing path, 34
tree, 9
tree expansion, 107
tree path, 113

INDEX 215

tree-based
drawing standard, 106
hypergraph crossing number,

106
transformation, 106

triangle constraint, 67
extended, 67
simple, 67

triconnected, see graph

variable
active, 21

vertex, see node
virtual edge, 27

weak realizability, 125

