Post-fire recovery of woody plants in the New England Tableland Bioregion

Peter J. Clarke^A, Kirsten J. E. Knox, Monica L. Campbell and Lachlan M. Copeland

Botany, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, AUSTRALIA. ^ACorresponding author; email: pclarke1@une.edu.au

Abstract: The resprouting response of plant species to fire is a key life history trait that has profound effects on post-fire population dynamics and community composition. This study documents the post-fire response (resprouting and maturation times) of woody species in six contrasting formations in the New England Tableland Bioregion of eastern Australia. Rainforest had the highest proportion of resprouting woody taxa and rocky outcrops had the lowest. Surprisingly, no significant difference in the median maturation length was found among habitats, but the communities varied in the range of maturation times. Within these communities, seedlings of species killed by fire, mature faster than seedlings of species that resprout. The slowest maturing species were those that have canopy held seed banks and were killed by fire, and these were used as indicator species to examine fire immaturity risk. Finally, we examine whether current fire management immaturity thresholds appear to be appropriate for these communities and find they need to be amended.

Cunninghamia (2009) 11(2): 221-239

Introduction

Fire is a pervasive ecological factor that influences the evolution, distribution and abundance of woody plants (Whelan 1995; Bond & van Wilgen 1996; Bradstock et al. 2002). The resprouting response of plant species to fire is a key life history trait that has profound effects on postfire population dynamics and community composition (Bellingham & Sparrow 2000, Bond & Midgley 2001). Hence, extensive efforts are being made to document the response of plants to fire in eastern Australia (e.g. Gill & Bradstock 1992; Benson & McDougall 1993, Clarke & Knox 2002, Walsh & McDougall 2004). Fire response classification systems have focused on whether a species is killed by fire or resprouts after fire, and whether seeds are stored in the canopy or in the soil (e.g. Gill & Bradstock 1992, Pausas et al. 2004). Whilst many factors such as fire season and intensity, plant physiological status and genetics can produce variable fire responses (e.g. Morrison & Renwick 2000, Wright & Clarke 2007) the response of species to a crown scorch fire can be useful in preliminary assessment of extirpation risks associated with fire regimes. Comparing the range of fire responses across habitats also informs models of ecological sorting and the potential for community shifts in response to changed fire regimes (e.g. Clarke & Knox 2002, Clarke et al. 2005, Pausas & Bradstock 2007).

Maturation times of new recruits for those plants killed by fire is also a critical biological variable in the context of fire regimes because this time sets the lower limit for fire intervals that can cause local population decline or extirpation (Keith 1996). Hence, fire intervals shorter than these maturation times pose an immaturity risk to populations of plants if they have no other means of persisting such as soil stored seed banks. These maturation times have been given the term 'primary juvenile period' (PJP) which refer to the time taken for seedlings to flower and produce viable seed. The primary juvenile period is particularly critical for those species that have a canopy stored seed bank because there is no mechanism, other than dispersal, by which populations can persist if the intervals between fires are shorter than the PJP (Gill & Bradstock 1992). For those plants that resprout the interval length between fires may seem to be of lesser importance; nevertheless, recruitment from seeds is required if long-term population decline is not to occur. In resprouting species both the PJP and the time taken for the resprouts to flower and produce fruits, secondary juvenile period, (SJP) is of consequence for maintenance of a seed supply.

The fire responses of shrubs on the New England Tablelands has been documented in grassy habitats by Knox and Clarke (2004), and the mesic forests by Campbell and Clarke (2006), whilst Clarke and Knox (2002) summarized the response of shrub species in four major formations. The aim of this study was to document the post-fire response (resprouting and maturation times) of woody species in six contrasting formations on the New England Tablelands in northern NSW. Firstly, we examined the resprouting ability of plants and whether the proportion of resprouters, variable and species killed by fire differed among habitats. Secondly, we examine the relationship between growth form and position of resprouting buds. Thirdly we examined maturation times and if there was a pattern of maturation time and resprouting ability. Finally, we discuss the implications of different fire regime intervals on plant populations and the role of management in ensuring population persistence in the face of changing fire regimes.

Methods

Study area

The study region is the New England Tableland (NET) Bioregion of eastern Australia with an altitudinal range of 750-1500 m (Thackway & Cresswell 1995). Six major vegetation formations that are prone to fire occur in the Bioregion; rainforest (RF) (Northern Warm Temperate Rainforest), wet sclerophyll forest (WSF) (Northern Escarpment Wet Sclerophyll Forests and Northern Escarpment Wet Sclerophyll Forest), dry sclerophyll forests (DSF) (New England Dry Scerophyll Forest, Northern Escarpment Dry Sclerophyll Forest and Northern Tableland Dry Sclerophyll Forest), grassy woodlands (GW) (Northern Grassy Woodlands), rocky outcrops heaths (RO) (Northern Montane Heaths) and wet heaths (WH) (Montane Bogs and Fens) (see Keith 2004). These broad groups form distinct floristic formations that are related to climate gradients, lithology and local physiography (Keith 2004). As a generalization, nutrient-poor siliceous soils provide habitats for scleromorphic shrub dominated woodlands and forests whilst the more fine-textured soils derived from metasediments and basalts support grassy woodlands and mesic forests (Benson & Ashby 2000). All habitats are prone to fires. Landscape scale fires in 2002 burnt into the more mesic wet sclerophyll forests and rainforests margins.

Field records

The fire response of woody species was recorded both quantitatively and qualitatively from direct observations of species in the post-fire environment for 489 taxa where their crowns had been burned. Repeated observations from independent fires were used to give a level of confidence in allocating species to fire response groups. In a few instances, fire response was inferred from root structures and comparing this with observations of closely related species. Post-fire observations were spread over several years using planned experimental, planned and unplanned fire from 1996 to 2008. Many species were observed in more than one or two formations. In these species the primary habitat in which they were recorded was used to allocate them to a habitat for trait analyses.

Growth forms, fire response groups, maturation and population status

The growth form of all woody species was determined from field observations, flora records and published records and summarized into seven groups corresponding to stem type and then height classes. The sprouting ability of at least five individuals (killed or resprouts) for at least two independent shrub populations were recorded where possible. Species could generally be classified into resprouters (70–100% of individuals in the population resprout) or obligate seeders (less than 30% of individuals resprout) (Gill & Bradstock 1992), although a third 'variable' resprouting class was also present (Clarke et al. 2005). In addition to data on resprouting, the position of resprouting and the type of seed bank was assessed for each species so they could be placed into one of the seven fire functional groups or syndromes of Gill and Bradstock (1992).

The minimum maturation times (time to seed set) of plants were observed from tagging seedling recruits in the post-fire environment or from observations of flowering and fruiting of species after fire. The mean time for primary juvenile period (PJP) and secondary juvenile period (SJP) was compared between growth form classes and resprouting class using a two factor ANOVA.

Vouchers and nomenclature

Identification of taxa was made in the field with verification against general field collections from the same reserve location in the NCW Beadle Herbarium (NE) at the University of New England. Less common species and taxa of uncertain status were also collected and lodged as vouchers in NE if flowering material was available. Several putative new taxa were also recorded and informal names have been allocated to these taxa. Nomenclature follows the latest printed version of the *Flora of New South Wales* (Harden 1990–3, 2002; Harden & Murray 2000) with the exception of those families that have recently changed names (Appendix 1) and where species names have changed (Appendix 2).

Results

Overview of regional coverage

Data on the fire response of 489 taxa were collected, of which 140 taxa had primary juvenile period (PJP) recorded and 105 taxa had secondary juvenile period (SJP) recorded (Appendix 3). Wet heath habitats had the lowest number of woody taxa fire responses (28) whilst the dry sclerophyll forest had the highest (170) (Table 1). Dry sclerophyll forest,

Table 1. Growth form classes showing the number of species observed after fire in each habitat, and the proportion (in brackets) resprouting. Variable species are grouped with the resprouting class. GW=Grassy woodland, DSF=Dry Sclerophyll Forest, RO=Rocky Outcrops, WH= Wet Heath, WSF=Wet Sclerophyll Forest, RF=Rainforest

Growth form				Habitats			
Shrubs	GW	DSF	RO	WH	WSF	RF	TOTAL
Sub-shrub (suffrutex)	5 (1)	9 (0.44)	0	4 (0.75)	0	0	18 (0.67)
Low shrub (<2m)	29 (0.69)	113 (0.60)	73 (0.19)	21 (0.81)	25 (0.72)	2(1)	263 (0.53)
Tall shrub (>2m)	5 (0.60)	24 (0.58)	12 (0.33)	3 (1)	37 (0.54)	3 (1)	84 (0.56)
Climber							
Twiner (suffrutex)	2 (1)	6(1)	0	0	4 (0.75)	0	12 (0.92)
Vine	0	0	0	0	7 (0.86)	13 (0.92)	20 (0.90)
Tree							
Small tree (< 10m)	3 (0.33)	9 (0.88)	3 (0)	0	16 (0.81)	23 (0.95)	54 (0.85)
Tree (> 10m)	1 (1)	9 (0.78)	0	0	7 (0.86)	21 (0.81)	38 (0.81)
All woody taxa	45 (0.73)	170 (0.63)	88 (0.21)	28 (0.82)	96 (0.65)	62 (0.90)	489 (0.62)

Table 2. Number of species in each habitat and resprouting class (Gill 1981)

Growth form				Habitats			
Fire Response	GW	DSF	RO	WH	WSF	RF	TOTAL
I. Killed, canopy-stored seed bank	0	3	3	1	1	0	8
II. Killed, soil-stored seed bank	9	54	62	4	24	4	157
III. Killed, no local seed bank	3	5	4	0	5	2	19
IV. Resprouts from root buds	2	4	1	0	8	5	20
V. Resprouts from basal buds	31	93	18	22	47	39	250
VI. Resprouts from stem buds	0	8	0	1	10	12	31
VI Resprouts from apical bud	0	3	0	0	1	0	4

grassy woodland, rocky outcrop and wet heath habitats have data records for almost all common shrub taxa recorded in these habitats. However, data on the wet sclerophyll forest and rainforest shrub taxa are less comprehensive as many more tree and shrubs occur in these habitats on the NE Tablelands (Table 1). In particular, the coverage of *Eucalyptus* is poor (19 species) because crown fires are rare in grassy and more mesic habitats.

Resprouting in habitats and growth forms

Across all taxa observed resprouting was present in 62% of the woody flora but differed among habitats, growth forms and growth forms within habitats (Table 1). Overall the proportion of species resprouting was highest in the rainforest (90%) followed by wet heath (82%), grassy woodlands (73%), wet sclerophyll forests (65%), dry sclerophyll forest (63%) and rocky outcrop (21%). Resprouting response was very high in climber species (>90%) whilst shrub species had the lowest (53%). Shrub sprouting capacity varied within habitats; 70% in wet heath and grassy woodland; 33% in rocky outcrops. Taller shrubs in the wet sclerophyll forests also tended to have less resprouting ability than lower shrubs (Table 1).

Fire response syndromes in habitats

The most common fire syndrome was resprouting from basal stem buds (51%), followed by species regenerating only from seed with soil stored seed banks (32%), and then those resprouting via stem buds (Table 2). Species that had canopy stored seed banks and were killed by fire (<2%) and those resprouting from only apical buds (<1%) were not common in any landscape. In some habitats there were very few or no species with certain fire response syndromes. This included the absence of species with canopy held seed banks that were killed by fire in grassy woodlands and rainforests (Table 2) and the low number of species with stem and apical resprouting in grassy woodlands, rocky outcrops and rainforests (Table 1).

Fire response syndromes in growth forms

Fire response syndromes were very unevenly distributed among growth forms with only the tall shrub class having all syndromes present (Table 3). Sub-shrubs only had two syndromes present amongst the 18 species in that class. As expected the tree class had a number of species resprouting from stem buds. The vine class also had a high proportion of species resprouting from nodes along fallen stems after fires.

Table 3. Number of species observed in each growth form class across standardised fire syndrome classes (Gill & Bradstock 1992)

Growth form	Habitats							
Fire Response	Sub-shrub	Low Shrub	Shrub	Twinner	Vine	Small Tree	Tree	TOTAL
I. Killed, canopy-stored seed bank	0	1	4	0	0	1	2	8
II. Killed, soil-stored seed bank	6	107	31	1	2	6	4	157
III. Killed, no local seed bank	0	15	2	0	0	1	1	19
IV. Resprouts from root buds	0	6	5	1	1	7	0	20
V. Resprouts from basal buds	12	133	36	10	6	36	17	250
VI. Resprouts from stem buds	0	0	3	0	11*	3	14	31
VI Resprouts from apical bud	0	1	3	0	0	0	0	4

* Stem nodes from fallen vines

Table 4. Minimum, mean (bold) and maximum maturation times in years for shrub taxa.

	Habitats							
Maturation	GW	DSF	RO	WH	WSF	RF	All	
Primary juvenile period (PJP)	4-4.7-5	2-4.8-10	2-5.1-9	4-5.1-7	1-4.7-7	-	1-4.9-10	
Secondary juvenile period (SJP)	1-2.9-5	2-2.7-5	3-3.3-5	1-2.4-4	1-2.6-5	-	1-2.9-6	

Table 5. Proportion of resprouting taxa in woody plants sampled at plot scales (0.1 ha) and at landscape scales.

Data for plot scales from Clarke et al. 2005. The lower proportion of resprouting recorded at landscapes scales is due to the relative rarity of obligate seeders vs resprouters.

Landscape Scale	GW	DSF	RO	WH	WSF
0.1 ha plot mean	92	78	38	90	89
Landscape	73	63	21	82	65
Difference	19	15	17	8	24

Maturation times

We collected fewer data on maturation for PJP and SJP than resprouting syndromes, with fewer data on maturation times for species found in wet sclerophyll forests and rainforests (Table 4). Summary data for shrub species showed no significant difference in mean maturation times among habitats ($F_{4, 132} = 1.08$. p > 0.1), but a significant difference between mean maturation times for PJP vs SJP ($F_{1, 202} = 22.6$. p < 0.001). Over all habitats shrubs had a mean PJP maturation time of 4.9 years and mean SJP of 2.9 years; the range of SJP maturation times was greater (Table 4). The PJP differed between resprouters and obligate seeders ($F_{1, 128} = 9.7$. p < 0.05); 5.5 years compared to 4.8 years.

Field observations suggest rainfall influences PJP. In species with wide geographic ranges PJP was greater with lower annual rainfall e.g. the obligate seeder *Hakea macrorrhyncha* had a PJP of 4 years at Gibraltar Range (MAR >1400mm) whereas at Torrington its PJP was 7 years (MAR c. 800mm).

Discussion

Species and population variation in fire response

Overall, our data show how labile the resprouting trait is among the multiple lineages of the eudicot families, within genera and even within species. Within-species variation in the fire response may be due to the environment a plant occurs in or its genotype. Clear separation of these effects is not possible from field observations but genotypic inferences may be made where environmental constraints are thought to be similar. In general, most species in our study were readily assigned to either a resprouter or obligate seeder class with only a very small number of species exhibiting variation either within populations or between populations (see Appendix 3).

Gene based population differences in resprouting ability were suggested in several species (Acacia venulosa, Correa

reflexa, Dillwynia phylicoides, Dillwynia sieberi, Dodonaea viscosa, Eucalyptus oreades, Hardenbergia violacea, Kunzea bracteolata, Oxylobium arborescens), whilst within population genetic variation was observed in Hibbertia obtusifolia and Acacia ulicifolia. In the case of Hibbertia obtusifolia an informally recognized species, (H. .sp. B) is killed by fire and is mainly restricted to rocky habitats whist H. obtusifolia sensu stricto is found in adjacent forest and strongly resprouts. Morphologically intermediate individuals are found in intermediate habitats and have mixed response to fire suggesting a strong genetic control. Variation in resprouting position was also detected between ecotypes of Allocasuarina littoralis with a form restricted to heaths resprouting from the base of stems whilst the forest form resprouted from stems. Differences were also recorded between populations of the forest tree Eucalyptus oreades. Following canopy fire populations on ridgetops resprouted (Gibraltar Range NP, Werrikimbi NP), while those in forest habitats (Carrai Plateau) were killed by fire.

Bioregional differences in resprouting ability are also apparent in our data, although many disparities may relate to poor taxonomic resolution of species. For example, a taxon known as Epacris 'microphylla' is recorded as being killed by fire in the Sydney Basin (SB) whereas it strongly resprouts throughout the NET Bioregion (NET). In this case there has been a long-standing misapplication of the name E. 'microphylla' in the NET Bioregion as this resprouting taxon is E. gunnii. In other cases closer examination of morphological and genetic difference may separate taxa that have contrasting resprouting abilities the two bioregions. Examples include Acacia rubida (SB resprout NET killed), Bauera rubioides (SB resprout NET killed), Boronia ledifolia (SB killed, NET resprouts), Calytrix tetragona (SB resprout NET killed), Dillwynia sieberi (SB killed NET resprouts), Gompholobium latifolium (SB resprout NET killed), Goodia lotifolia (SB killed NET resprouts), Hibbertia acicularis (SB killed NET resprouts), Hibbertia linearis (SB killed NET resprouts), Kennedia rubicunda (SB killed NET resprouts), Olearia microphylla SB killed NET resprouts), Phyllota phylicoides (SB killed NET resprouts), and Sphaerolobium vimineum (SB killed NET resprouts). We found examples where subspecies are known to have divergent traits, e.g. Boronia anemonifolia subsp. variabilis (NET killed), Boronia anemonifolia subsp. anemonifolia (SB resprouts), supporting the view that geographic differences are related to evolutionary divergence.

Landscape & community patterns of fire response

Whilst there is great variation in the ability to resprout among species, community patterns emerge when woody species are grouped into broad-scale vegetation types (Table 1, 2). The current study reinforces landscape patterns in woody species previously identified by Clarke & Knox 2002, Clarke et al. 2005, Campbell & Clarke 2006 where rocky outcrops and dry sclerophyll forest have the largest numbers of species killed by fire whereas those communities on more fertile soils have lower numbers of obligate seeding species.

Surprisingly, of the 62 rainforest taxa observed 90% were recorded as being resprouters, most of which have 'top kill' and resprout from basal buds as previously reported by Campbell and Clarke (2006). Of those tree species killed by fire many seem to be early successional species (Dendrocnide, Polyscias) but none show fire stimulated recruitment. Most rainforest vines resprouted from adventitious shoots at stem nodes when stems fall to the ground after fires. Adjacent, but more frequently burned, wet sclerophyll forests also had a high proportion of resprouting species present (65%) which is less than previously reported by Clarke et al. (2005) for the same region, but similar to that reported by Floyd in Ashton (1981) for Eucalyptus pilularis Wet Sclerophyll forest (WSF) forest. The difference is due to undersampling obligate seeding shrub species due to their patchy distribution. The obligate seeding species in WSF are mostly tall (2–3m) but relatively short-lived (< 20 yrs) shrubs that have fire stimulated recruitment; they include Acacia irrorata, Asterolasia correifolia, Cassinia compacta, *Correa lawrenciana* var. *glandulifera*, *Dodonaea megazyga*, Hakea salicifolia, Logania albiflora, Olearia nernstii, Ozothamnus rufescens, Phebalium Mt Ballow sp., Persoonia media, Pimelea ligustrina subsp. hypericina, Prostanthera lasianthos, Pultenaea tarik, Solanum nobile, and Zieria arborescens. Many of these species are also associated with rainforest margins which suggests that fire frequency influences their local distribution and abundance within the more mesic eucalypt forests.

Similar proportions of resprouting species (63%) also occur in the dry sclerophyll forests of the tablelands soils whilst grassy woodlands (73%) and the wet heaths (82%) supported much higher number of resprouting species. The rocky outcrops have low numbers of resprouters but very high numbers of obligate seeders; a pattern now well described in the literature (Clarke & Knox 2002, Clarke et al. 2005). In part, these landscape differences in fire response reflect the probability of crown fire return, but other factors such as site productivity and competitive interactions may also be important (Bellingham & Sparrow 2000, Clarke et al. 2005).

Invariably, the proportion of woody plants killed by crown fire measured at plot scales (< 1ha) (see Table 5) is lower than that recorded at landscape scales for the same Bioregion (Clarke et al. 2005). This is because obligate seeding species are more represented at the tail end of abundance frequency curves (see Clarke 2002). Hence, they are rarer in all landscapes and under-sampled in plots. Such scale effects suggest that fire regime exerts strong control on the localized presence of species in the landscape.

Maturation

Comprehensive data on maturation times for woody plants are critically important for the management of biodiversity because they reveal the immaturity risk posed by short fire intervals. Both within and among species variation in maturation times are driven by environmental and genotype factors which are not easily separated without manipulative or greenhouse experiments. One of the most striking examples of environmental control that has been observed in our region was the difference in the ability of an obligate seeding shrub (Hakea macrorrhynca) to flower and set fruits between populations of the same post-fire age at Torrington (MAR c. 800 mm) and those at Gibraltar Range (MAR >1500 mm). After seven years of growth less than 5% of individuals had set fruit in the low rainfall site whilst at Gibraltar Range 99% of individuals had accumulated large numbers of fruits. Another example is the variation within populations of the obligate seeding shrub Banksia marginata. Plants at the margins of core habitats in forests had generally failed to accumulate seed banks after seven years postfire but those at 'swamp' margins began to flower and set fruits within five years. Such population variation is underestimated in our data because we record the shortest time to flowering and fruiting of an individual in populations, across all shrub species the minimum median maturation time for woody plants in the region was five years and ranged from one to 11 years which is broader than the range reported for the Sydney Basin (Benson 1985). Most data were collected from obligate seeding species and limited field observations suggest that the mean maturation rates of seedlings of resprouter species (5.5 yrs) is slower than obligate seeders (4.8 yrs). We found stronger evidence, however, that obligate seeders with a canopy held seed bank have longer PJP (6.2 yrs) than those that have soil-stored seed banks (4.7 yrs). Surprisingly we could not detect any habitat difference in maturation time although the range of PJP was wider in dry sclerophyll forests and rocky outcrop communities than other communities. Similarly, the secondary juvenile period in resprouters did not significantly vary among habitats but, on average, was much faster than the PJP.

Classification scheme and terminology

Classification schemes of the way species respond to fire are designed to help predict how populations and communities will respond to fire regimes (Whelan et al. 2002). Ideally this includes information on the 'vital attributes' of taxa which include dispersal, establishment and persistence such as that proposed by Noble and Slatyer (1980); however, such data are difficult to collect for comprehensive regional analyses. Instead, we use a simplified scheme that focuses on persistence ability (Gill 1981). The fire response scheme developed by Gill (1981) indicates whether taxa are killed by fire, and for those that resprout, where resprouting occurs. For those plants killed by fire it also indicates whether seed is held in canopy vs soil-stored seed banks but not where seeds are held in resprouting plants. It is not possible to identify from our data those species that only regenerate from sprouting, i.e. the so-called 'obligate resprouters'. Ascertaining obligate resprouting may be difficult because many environmental factors influence seed production, postfire germination, and seedling emergence and survival. For example, several of the resprouting Ericacaceous species failed to establish seedlings in the first year post-fire but in the following years small numbers of seedlings were observed. We therefore think that whilst the term 'obligate resprouting' is appropriate, its application as a species trait needs careful long-term observation (see Clarke & Knox 2002). Overall, it appears that the number of species that lack any post-fire or fire interval recruitment from seeds is very low across the landscape and may only be restricted to a handful of species that are unable to set viable seed such as Grevillea rhizomatosa (Caddy & Gross 2006).

Application of Gill's resprouting scheme is sometimes problematic where taxa exhibit combinations of stem, basal and below ground resprouting. In particular many basal resprouting species also have resprouting from roots (e.g. *Acacia* spp.). Where this occurred we have used the lowest position of resprouting buds to allocate taxa to one of seven groups but in the appendix indicate that both forms of resprouting are possible. For global comparisons, the term 'top kill' is often used in savanna ecosystems to cover both those woody species that have basal and below ground resprouts although this term is rarely used in the sclerophyllous systems of eastern Australia.

The extent and intensity of recent fires on the escarpment of the Northern Tablelands of NSW allowed the categorization of many species in rainforests that would either be infrequently burned or where crowns of trees, shrubs and vines would rarely be burned. Categorization of rainforest shrubs and trees within the Gill scheme was simple where crowns had been burned, although for many larger rainforest trees it was difficult to find more than ten individuals where this had occurred. One group of plants that was difficult to assign to a Gill class were the vines (often lianas >2.5 cm dia) as they generally become detached from their support during fires and resprout from stems nodes where they have fallen after fires. These patterns are typical of vines as they vigorously resprout when they fall due to the production of adventitious roots and adventitious shoot buds (Fisher & Ewers 1991). Here we assign this resprouting capacity to 'stem' buds although most stems are situated on the ground and are also producing roots at stem nodes. Smaller vines, and scramblers, however, lack this capacity and generally resprout from basal stems or root tubers.

Conclusion – immaturity risk to plants from fire regimes

Our data highlight the range of fire responses to fire events across woody plants in the New England Tableland Bioregion and that communities differ in the composition of fire traits. Using these traits we can broadly assess the relative sensitivity of species and communities to projected fire frequencies that may be imposed through management or those that are likely without direct intervention. At the species level, a large number of taxa that are either listed or eligible for NSW State and/or Commonwealth under threatened species legislation and discussion of these threats will be covered elsewhere. More generally, across all community types, sequential fire intervals of less than five years are likely to cause local extirpations of fire killed species through adult deaths and exhaustion of either canopy or soil stored seed banks. Relatively large proportions (38%) of species fall into this obligate seeding group, although there are relatively few species of obligate seeding species with canopy held seed banks. Habitats that are particularly vulnerable to short fire intervals are rocky outcrops and the rainforest margins of wet sclerophyll forests with high concentrations of obligate seeders.

Table 6. Indicator species, primary juvenile period and minimum fire intervals that reduce immaturity risk for major vegetation classes in the New England Tableland Bioregion.

The current threshold recommendations of Kenny *et al.* (2004) are given. * 25 years recommended when *Callitris maclaeyana* is present otherwise 11 years.

Formation	Vegetation Classes (Keith 2004)	Indicator Species Gill Type I, II	Primary Juvenile Period (Years)	Immaturity Risk Threshold (years)	Current Thresholds
Wet Sclerophyll Forest	Northern Escarpment Wet Sclerophyll Forests	Banksia integrifolia subsp. monticola Hakea salicifolia Persoonia media Dodonaea megazyga Callitris maclaeyana	8 5 6 5 25 (estimate)	11(25*)	25–60
	Northern Tableland Wet Sclerophyll Forest	Banksia integrifolia subsp. monticola Hakea salicifolia Persoonia media	8 5 5	11	10–50
Dry Sclerophyll Forest	New England Dry Sclerophyll Forest	Callitris oblonga Banksia integrifolia var monticola Leucopogon biflorus Acacia rubida	8 8 5 4	11	5–50
	Northern Escarpment Dry Sclerophyll Forest	Allocasuarina rigida Banksia marginata Hibbertia rhynchocalyx Grevillea acerata Acacia terminalis	5 5 6 4 5	9	7–30
	Northern Tableland Dry Sclerophyll Forest	Callitris endlicheri Styphelia triflora Grevillea triternata Acacia burbidgeae	7 7 6 8	11	7–30
Grassy Woodland	Northern Grassy Woodlands	Acacia dealbata Cassinia leptocephala	5 5	8	5–40
Rocky Outcrop	Northern Montane Heaths (Eastern)	Callitris monticola Hakea macrorrhyncha Brachyloma saxicola Boronia angustisepala	9 5 8 5	12	7–30
	Northern Montane Heaths (western)	Hakea macrorrhyncha Kunzea bracteolata Leionema rotundifolium Homoranthus binghiensis Acacia triptera	8 6 8 9 8	12	7–30
Wet Heaths	Montane Bogs and Fens	Banksia marginata Bauera rubioides Sprengelia incarnata	4 5 5	8	6–35

Fire interval thresholds have been suggested for major vegetation formations in NSW based on species that are likely to be most at risk to short fire intervals (Kenny et al. 2004). Our finer scale analysis of vegetation types (Table 6) shows that the minimum interval to avoid immaturity risk to vulnerable species ranges from 8 to 11 years in fire prone formations in the New England Tableland Bioregion. These thresholds have been derived by determining the longest PJP for obligate seeding species that do not retain seed through a fire event (Gill's class I) and allowing three additional years for sufficient seed to accumulate (Keith et al. 2002). Our results indicate that minimum thresholds in the New England Tableland Bioregion need to be slightly more conservative in comparison to similar vegetation formations in other areas of NSW as many New England Tableland species take longer to reach maturity and therefore require a longer minimum fire interval.

Kenny et al. (2004) indicate a minimum threshold of 25 years for Wet Sclerophyll Forests because the most sensitive species in the analyses of Kenny et al. (2004) were obligate seeding Eucalyptus spp. In the Northern Escarpment Wet Sclerophyll Forests, obligate seeding eucalypts are absent, but the obligate seeder gymnosperm Callitris maclaeyana occurs uncommonly. Data are not available for the maturation time of Callitris maclaeyana. However, in cultivation no fruits have been produced by 21 year old planting (Floyd pers. comm.). Therefore, in areas in which Callitris maclaeyana occurs, a threshold of 25 years is suggested and in where this species is absent a threshold of 11 years is recommended. Clearly, these fire interval thresholds are a starting point to develop fire regimes models that incorporate season, intensity and the 'mosaic' concept as advocated by those concerned with all biodiversity components (Clarke 2008).

For those species that resprout, the consequences of repeated short interval fires are poorly known and rarely factored into species' risk assessment. Limited data on three commonly occurring resprouting shrubs shows that up to 15% of populations are killed by fire (Knox & Clarke 2006), hence seedling recruitment must occur to maintain current populations. Our study has predictably shown that seedlings of resprouters are slower to mature, but their ability to resprout prior to this maturation remains unknown. Similarly, whilst many rainforest shrubs and trees show 'tolerance' to a fire event, through vigorous resprouting, it is not known if recurrent fire causes mortality and recruitment failure. These topics are fertile ground for further research, not only in the NET Bioregion, but throughout fire prone south-eastern Australia.

Acknowledgments

We thank the Armidale and Glen Innes offices of the Department of Environment and Climate Change (Parks and Wildlife) for their funding and assistance in targeted burning of various taxa and for allowing long-term studies of the fire response of many species in remote and difficult to access sites. We are grateful to Ian Telford and the N.C.W Beadle Herbarium for support and assistance with the identification and nomenclatural attribution. Alex Floyd is also thanked for his contribution on the life history of *Callitris macleayana*. This research has been support by an ARC Linkage research grant LP0775145.

References

- APG III (2009) An update of the Angiosperm Phylogeny group classification for the orders and families of flowering plants: APG III. *Botanical Journal of the Linnean Society* 161: 105– 121.
- Ashton, D.H. (1981) Fire in tall open-forests (wet sclerophyll forests). In: *Fire and the Australian biota* (Eds A.M. Gill, R.H. Groves and I.R. Noble) pp. 339–366. (Australian Academy of Science, Canberra).
- Bellingham, P.A. & Sparrow, A.D. (2000) Resprouting as a life history strategy in woody plant communites. *Oikos* 89: 409– 416.
- Benson, D.H. (1985) Maturation periods for fire-sensitive shrub species in Hawkesbury sandstone vegetation. *Cunninghamia* 1: 339–349.
- Benson, D.H. & McDougall, L. (1993) Ecology of Sydney plant species part 1: Ferns, fern allies, cycads, conifers and dicotyledon families Acanthaceae to Asclepiadaceae. *Cunninghamia* 3: 257–422.
- Benson, J.S. & Ashby, E.M. (2000) Vegetation of the Guyra 1: 100 000 map sheet New England Bioregion, New South Wales. *Cunninghamia* 6: 747–872.
- Bradstock, R.A., Williams, J.E. & Gill, A.M. (2002) Flammable Australia. The Fire Regimes and Biodiversity of a Continent. Cambridge University Press, Cambridge.
- Bond, W.J. & Midgley, J.J. (2001) Ecology of sprouting in woody plants: the persistence niche. *Trends in Ecology and Evolution* 16: 45–51.
- Bond, W.J. & van Wilgen, B.W. (1996) *Fire and Plants* (Chapman and Hall: London)
- Caddy, H.A.R. & Gross, C.L. (2006) Population structure and fecundity in the putative sterile shrub, *Grevillea rhizomatosa* Olde & Marriott (Proteaceae). *Proceedings of the Linnean Society of NSW* 127: 11–18
- Campbell, M.C. & Clarke, P.J. (2006) Response of montane wet sclerophyll forest understorey species to crown fire: evidence from high and low intensity fires. *Proceedings of the Linnean Society of New South Wales* 127: 22–26

- Clarke PJ (2002) Habitat islands in fire-prone vegetation: do landscape features influence community composition? *Journal* of *Biogeography* 29(5–6), 677–684. http://www.une.edu.au/ ers/staff-profile-doc-folders/peter-clarke/2002-clarke-journalbiogeography.pdf
- Clarke, P.J. & Knox, K.J.E. (2002) Post-fire responses of shrubs in the tablelands of eastern Australia: do existing models explain habitat differences? *Australian Journal of Botany* 50: 53–62.
- Clarke, P.J., Knox K.J.E., Wills, K.E. & Campbell, M. (2005) Landscape patterns of woody plant response to crown fire: disturbance and productivity influence sprouting ability. *Journal of Ecology* 93: 544–555.
- Clarke, M.F. (2008) Catering for the needs of fauna in fire management: science or just wishful thinking? *Wildlife Research* 35: 385–394.
- Fisher, J.B. & Ewers, F.W. (1991) Structural responses to stem injury in vines. In: *The Biology of Vines* (eds Futz, F.E. & Mooney, H.A.) Cambridge University Press, Cambridge.
- Gill, A.M. (1981) Adaptive responses of Australian vascular plant species to fires. pp. 243–271. In: A.M. Gill, R.H. Groves & I.R. Noble (eds.) *Fire and the Australian biota* (Australian Academy of Science: Canberra).
- Gill, A.M. & Bradstock R.A. (1992) A national register for the fire response of plant species. *Cunninghamia* 2: 653–660.
- Harden, G.J. (Ed.) (1990–3) *Flora of New South Wales. Volumes* 1–4 (University of New South Wales Press, Sydney).
- Harden, G.J. (Ed.) (2002) *Flora of New South Wales. Volume* 2. Revised Edition (University of New South Wales Press, Sydney).
- Harden, G.J. & Murray, L.J. (Eds) (2000) Supplement to flora of New South Wales. Volume 1 (University of New South Wales Press, Sydney).
- Knox, K.J.E. & Clarke, P.J. (2004) Fire related syndromes of shrubs in grassy woodlands in the New England Bioregion: Implications for management. *Cunninghamia* 8: 348–353.
- Knox, K.J.E. & Clarke, P.J. (2006) Response of resprouting shrubs to repeated fires in the dry sclerophyll forest of Gibraltar Range National Park. *Proceedings of the Linnean Society of New South Wales* 127: 49–56.
- Keith, D.A. (1996) Fire-driven extinction of plant populations: a synthesis of theory and review of the evidence from Australian vegetation. *Proceedings of the Linnean Society of New South Wales* 116: 37–78.

- Keith, D.A. (2004) Ocean Shores to Desert Dunes: The Native Vegetation of New South Wales and the ACT (Department of Environment and Conservation NSW, Sydney).
- Kenny, B., Sutherland, E., Tasker, E. & Bradstock, R. (2004) *Guidelines for Ecologically Sustainable Fire Management*, NSW Government, Sydney.
- Morrison, D.A. & Renwick, J.A. (2000) Effects of variation in fire intensity on regeneration of co-occurring species of small trees in the Sydney region. *Australian Journal of Botany* 48: 71–79.
- Noble, I.R. & Slatyer, R,O, (1980) The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances, *Vegetatio* 43: 5–21.
- Pausas, J.G., Bradstock, R.A., Keith, D.A., Keeley, J.E. & GCTE Fire Network (2004) Plant functional traits in relation to fire in crown-fire ecosystems. *Ecology* 85: 1085–1100.
- Pausas, J.G. & Bradstock, R.A. (2007) Plant persistence fire traits along a productivity and disturbance gradient in Mediterranean shrublands of SE Australia. *Global Ecology & Biogeography* 16: 330–340.
- Thackway, R. & Cresswell, I. (1995) An Interim Biogeographic Regionalisation for Australia: a Framework for Establishing the National System of Reserves, Version 4.0. Australian Nature Conservation Agency, Canberra.
- Walsh, N.G. & McDougall, K.L. (2004) Progress in the recovery of treeless subalpine vegetation in Kosciuszko National Park after the 2003 fires. *Cunninghamia* 8: 439–452.
- Whelan, R.J. (1995) *Ecology of Fire*. (Cambridge University Press: Cambridge).
- Whelan, R.J., Rodgerson, L., Dickman, C.R. & Sutherland, E.F. (2002) Critical life cycles of plants and animals: developing a process-based understanding of population changes in fireprone landscapes. pp. 94–124 in: Bradstock, R.A., Williams, J. and Gill, A.M. (eds) *Flammable Australia: The Fire Regimes* and Biodiversity of a Continent. Cambridge University Press, Cambridge.
- Wright, B.R. & Clarke, P.J. (2007) Resprouting responses of Acacia shrubs in the Western Desert of Australia – fire severity, interval and season influence survival. *International Journal of Wildland Fire* 16: 317–323.

Manuscript accepted 9 October 2009

Appendix 1:

Recent changes to family placement of various genera compared with Flora of New South Wales (Harden 1990–3, 2002; Harden & Murray 2000)

Genus	New family placement used here as in APG III	Family as in Flora of NSW
Acrotriche	Ericaceae	Epacridaceae
Bauera	Cunoniaceae	Baueraceae
Brachychiton	Malvaceae	Sterculiaceae
Brachyloma	Ericaceae	Epacridaceae
Breynia	Phyllanthaceae	Euphorbiaceae
Chloanthes	Lamiaceae	Chloanthaceae
Commersonia	Malvaceae	Sterculiaceae
Doryphora	Atherospermataceae	Monimiaceae
Epacris	Ericaceae	Epacridaceae
Eustrephus	Asparagaceae	Luzuriagaceae
Geitonoplesium	Xanthorrhoeaceae	Luzuriagaceae
Keraudrenia	Malvaceae	Sterculiaceae
Lasiopetalum	Malvaceae	Sterculiaceae
Leucopogon	Ericaceae	Epacridaceae
Lissanthe	Ericaceae	Epacridaceae
Melichrus	Ericaceae	Epacridaceae
Monotoca	Ericaceae	Epacridaceae
Myoporum	Scrophulariaceae	Myoporaceae
Phyllanthus	Phyllanthaceae	Euphorbiaceae
Pseudanthus	Picrodendraceae	Euphorbiaceae
Sprengelia	Ericaceae	Epacridaceae
Styphelia	Ericaceae	Epacridaceae
Tetratheca	Elaeocarpaceae	Tremandraceae
Trema	Cannabaceae	Ulmaceae
Trochocarpa	Ericaceae	Epacridaceae
Tylophora	Apocynaceae	Asclepiadaceae

Appendix 2.

Nomenclatural changes to species names used in the *Flora of New South Wales* (Harden 1990–3, 2002; Harden & Murray 2000).

New name used here

Akama paniculata Agiortia cicatricata Epacris gunnii Harmogia densifolia Kardonia odontocalyx Melaleuca linearis Melaleuca pallida Melaleuca pityoides Melaleuca williamsii Melaleuca paludicola Myrsine howittiana Myrsine variabilis

Philotheca epilosa Pittosporum multiflorum Homalanthus populifolius Pittosporum spinescens Spyridium scortechinii Trema tomentosa var. viridis

Caldcluvia paniculosa Leucopogon cicatricatus Epacris microphylla Babingtonia densifolia Babingtonia odontocalyx Callistemon linearis Callistemon pallidus Callistemon pityoides Callistemon pungens Callistemon sieberi Rapanea howittiana Rapanea variabilis Philotheca myoporoides subsp. epilosa Citriobatus pauciflorus Omalanthus populifolius Citriobatus pauciflorus Cryptandra scortechinii Trema aspera

Name in Flora of NSW

Appendix 3.

List of taxa and their habitats, fire response, primary juvenile period, secondary juvenile period and growth form. Habitats – GW=Grassy woodland, DSF=Dry Sclerophyll Forest, RO=Rocky Outcrops, WH= Wet Heath, WSF=Wet Sclerophyll Forest, RF=Rainforest

Family	Species	Habitats	Gill	PJP	SJP	Growth Form
Anacardiaceae	Euroschinus falcatus var. falcatus	RF, WSF	VI			Tree
Apiaceae	Platysace ericiodes	DSF	V		2	Sub-shrub
Apiaceae	Platysace lanceolata	DSF	II	3	2	Sub-shrub
Apiaceae	Xanthosia pilosa	DSF	V		2	Sub-shrub
Apocynaceae	Alyxia ruscifolia	RF. WSF	V			Low shrub
Apocynaceae	Marsdenia rostrata	RF	VI			Vine
Apocynaceae	Tylophora paniculata	RF	VI			Vine
Araliaceae	Astrotricha longifolia s.1.	DSF	V		2	Low shrub
Araliaceae	Astrotricha roddii	RO	V			Low shrub
Araliaceae	Cephalaralia cephalobotrys	RF	VI			Vine
Araliaceae	Polyscias elegans	RF, WSF	II			Tree
Araliaceae	Polyscias murrayi	RF	V			Small tree
Araliaceae	Polyscias sambucifolia subsp. A (sens. Fl. NSW)	GW, DSF, WSF	IV		2	Tall shrub
Asteraceae	Cassinia compacta	WSF	II	5		Low shrub
Asteraceae	Cassinia laevis	GW	II			Low shrub
Asteraceae	Cassinia lepschii	DSF, RO	V		4	Low shrub
Asteraceae	Cassinia leptocephala subsp. leptocephala	GW	II	5		Low shrub
Asteraceae	Cassinia quinquefaria	DSF, GW	II		4	Low shrub
Asteraceae	Cassinia straminea	DSF	II			Low shrub
Asteraceae	Cassinia telfordii	WSF	II	5		Low shrub
Asteraceae	Olearia alpicola	WSF, DSF	V			Low shrub
Asteraceae	Olearia covenyi	WSF	V	6	3	Low shrub
Asteraceae	Olearia cydoniifolia	WSF, RF	V			Low shrub
Asteraceae	Olearia gravis	DSF	II	2		Low shrub
Asteraceae	Olearia microphylla	GW, DSF	V		3	Low shrub
Asteraceae	Olearia myrsinoides	DSF, GW	V		2	Low shrub
Asteraceae	Olearia nernstii	WSF	II	4		Low shrub
Asteraceae	Olearia oppositifolia	WSF, DSF, GW	V	7	3	Low shrub
Asteraceae	Olearia phlogopappa	DSF, WH	II			Low shrub
Asteraceae	Olearia ramosissima	GW, DSF	V			Low shrub
Asteraceae	Olearia rosmarinifolia	GW	V			Low shrub
Asteraceae	Olearia sp. aff. elliptica	DSF, GW	V			Low shrub
Asteraceae	Olearia viscidula	GW, DSF	V		2	Low shrub
Asteraceae	Ozothamnus adnatus	GW	II			Low shrub
Asteraceae	Ozothamnus diosmifolius	DSF, GW, WSF	IV			Low shrub
Asteraceae	Ozothamnus diosmifolius	RO, DSF	II	4		Low shrub
Asteraceae	Ozothamnus obcordatus (obligate seeding pops.)	RO	II			Low shrub
Asteraceae	Ozothamnus obcordatus (resprouting pops.)	GW	V			Low shrub
Asteraceae	Ozothamnus rufescens	WSF, RF	II	5		Low shrub
Asteraceae	Ozothamnus sp. 'Basket swamp'	WH	V	5		Low shrub
Atherospermataceae	Doryphora sassafras	RF, WSF	V			Tree
Berberidopsidaceae	Berberidopsis beckleri	RF	II			Vine
Bignoniaceae	Pandorea pandorana	RF, WSF	V			Vine
Cannabaceae	Trema tomentosa var. viridis	WSF	V	_		Tall shrub
Casuarinaceae	Allocasuarina brachystachya	WH, DSF	V	7		Tall shrub
Casuarinaceae	Allocasuarina inophloia	DSF	VI			Small tree
Casuarinaceae	Allocasuarina littoralis	WSF, DSF, GW	VI			Tall shrub
Casuarinaceae	Allocasuarina littoralis (Swamp form)	WH DO DOD	V	_	3	Tall shrub
Casuarinaceae	Allocasuarina rigida subsp. rigida	RO, DSF	I	5		Tall shrub
Casuarinaceae	Allocasuarina torulosa	WSF, DSF	VI			Tree
Celastraceae	Celastrus subspicatus	RF	II			Tall shrub
Celastraceae	Denhamia celastroides	RF	V			Small tree
Celastraceae	Maytenis bilocularis	RF, WSF	V			Small tree
Celastraceae	Maytenus silvestris	WSF	V			Small tree

Family	Species	Habitats	Gill	PJP	SJP	Growth Form
Cunoniaceae	Ackama paniculata	RF	V			Tree
Cunoniaceae	Bauera rubioides	WH, DSF	II	6		Low shrub
Cunoniaceae	Callicoma serratifolia	RF, WSF	V		5	Tree
Cunoniaceae	Ceratopetalum apetalum	RF	V, VI			Tree
Cunoniaceae	Schizomeria ovata	RF	V, VII			Tree
Cupressaceae	Callitris endlicheri	DSF, RO	Ι	7		Tree
Cupressaceae	Callitris monticola	RO, DSF	Ι	9		Tall shrub
Cupressaceae	Callitris oblonga subsp. parva	DSF	Ι	8		Tall shrub
Dilleneaceae	Hibbertia acicularis s.l.	DSF, GW	V		3	Low shrub
Dilleneaceae	Hibbertia aspera	WSF, DSF	V			Low shrub
Dilleneaceae	Hibbertia cistoidea	DSF	V			Low shrub
Dilleneaceae	Hibbertia dentata	WSF	V, VI			Vine
Dilleneaceae	Hibbertia empetrifolia	WSF	V		1	Low shrub
Dilleneaceae	Hibbertia linearis	GW	V			Low shrub
Dilleneaceae	Hibbertia obtusifolia s.l.	DSF, GW, WSF	V		4	Low shrub
Dilleneaceae	Hibbertia rhynchocalyx	DSF, WSF	II	5		Low shrub
Dilleneaceae	Hibbertia riparia (Gibraltar Range form)	DSF	V			Low shrub
Dilleneaceae	Hibbertia riparia (Grassy woodlands form)	GW	V			Low shrub
Dilleneaceae	Hibbertia riparia s.l.	DSF, GW, WSF	V		2	Low shrub
Dilleneaceae	Hibbertia scandens var. glabra	WSF	VI		2	Vine
Dilleneaceae	Hibbertia scandens var. scandens	WSF	V		2	Vine
Dilleneaceae	Hibbertia serpyllifolia	DSF	V			Low shrub
Dilleneaceae	Hibbertia sp. aff. obtusifolia	DSF	II	6		Low shrub
Dilleneaceae	Hibbertia sp. aff. rufa	WH	V			Low shrub
Dilleneaceae	Hibbertia sp. B sens. Fl. Nsw	RO	II	8		Low shrub
Dilleneaceae	Hibbertia vestita s.l.	WH, WSF	V			Low shrub
Dilleneaceae	Hibbertia villosa	RO, DSF	Π	5		Low shrub
Ebenaceae	Diospyros australis	RF	V			Small tree
Elaeocarpaceae	Aristotelia australasica	RF	V			Vine
Elaeocarpaceae	Elaeocarpus reticulatus	WSF, DSF	V			Small tree
Elaeocarpaceae	Sloanea woollsii	RF	II			Tree
Elaeocarpaceae	Tetratheca thymifolia	DSF	II	7		Low shrub
Ericaceae	Acrotriche aggregata	WSF, RF	V			Tall shrub
Ericaceae	Agiortia cicatricata	RO	II			Low shrub
Ericaceae	Brachyloma daphnoides subsp. glabrum	DSF, GW	V		3	Low shrub
Ericaceae	Brachyloma saxicola	RO	II	8		Low shrub
Ericaceae	Epacris breviflora	WH	V			Low shrub
Ericaceae	Epacris longiflora	DSF, WH	II	4		Low shrub
Ericaceae	E_{pacris} microphylla = gunnii	DSF	V		2	Low shrub
Ericaceae	Epacris obtusifolia	WH	II	5	_	Low shrub
Ericaceae	Leucopogon attenuatus	DSF	V			Low shrub
Ericaceae	Leucopogon biflorus	RO, DSF	II	5		Low shrub
Ericaceae	Leucopogon hookeri	GW, DSF	V			Low shrub
Ericaceae	Leucopogon lanceolatus subsp. lanceolatus	WSF, DSF, GW	V	6	3	Tall shrub
Ericaceae	Leucopogon melaleucoides	DSF	V		2	Tall shrub
Ericaceae	Leucopogon microphyllus var. pilibundus	DSF, RO	II	4		Low shrub
Ericaceae	Leucopogon muticus	DSF, RO	II			Low shrub
Ericaceae	Leucopogon neo-anglicus	RO, DSF	II	5		Low shrub
Ericaceae	Leucopogon sp. aff. apressus	RO, DSF	II	4		Low shrub
Ericaceae	Leucopogon sp. aff. fraseri	GW, WSF	V	-		Low shrub
Ericaceae	Leucopogon virgatus	DSF	V			Low shrub
Ericaceae	Lissanthe strigosa subsp. subulata	GW, DSF	IV		2	Low shrub
Ericaceae	Melichrus erubescens	DSF	II		-	Low shrub
Ericaceae	Melichrus procumbens	DSF	V			Low shrub
Ericaceae	Melichrus urceolatus	DSF, GW	v		2	Low shrub
Ericaceae	Monotoca scoparia	DSF, GW, WSF	v	6	2	Tall shrub
Ericaceae	Sprengelia incarnata	WH	II	5	-	Low shrub
Ericaceae	Styphelia perileuca	RO, DSF	II	5		Low shrub
	Significante per neueu					20 51140

Cunninghamia 11(2): 2009

Family	Species	Habitats	Gill	PJP	SJP	Growth Form
Ericaceae	Styphelia triflora	DSF	II	7		Tall shrub
Ericaceae	Trochocarpa laurina	WSF	V			Small tree
Ericaceae	Trochocarpa montana	WSF, RF	V			Tall shrub
Escalloniaceae	Anopteris macleayanus	RF	V			Small tree
Euphorbiaceae	Amperea xiphoclada var. xiphoclada	DSF	V		2	Sub-shrub
Euphorbiaceae	Claoxylon australe	RF, WSF	V			Small tree
Euphorbiaceae	Homalanthus nutans	WSF	V			Low shrub
Euphorbiaceae	Homalanthus populifolius	RF, WSF	V			Tall shrub
Euphorbiaceae	Ricinocarpus speciosus	DSF	V			Tall shrub
Eupomatiaceae	Eupomatia laurina	RF, WSF	V			Tall shrub
Fabaceae-Faboideae	Almaleea cambagei	WH	V		3	Low shrub
Fabaceae-Faboideae	Aotus ericiodes	DSF	V		2	Low shrub
Fabaceae-Faboideae	Aotus subglauca var. subglauca	DSF	V	4	2	Low shrub
Fabaceae-Faboideae	Bossiaea neo-anglica	DSF, WSF	V		2	Low shrub
Fabaceae-Faboideae	Bossiaea obcordata	DSF	V			Low shrub
Fabaceae-Faboideae	Bossiaea prostrata	GW	V			Low shrub
Fabaceae-Faboideae	Bossiaea rhombifolia subsp. rhombifolia	DSF, RO	II			Low shrub
Fabaceae-Faboideae	Bossiaea scortechinii	DSF, GW, WSF	V	5		Low shrub
Fabaceae-Faboideae	Davesia villifera	DSF	II	3		Low shrub
Fabaceae-Faboideae	Daviesia acicularis	RO, DSF	II	2		Low shrub
Fabaceae-Faboideae	Daviesia elliptica	DSF, WSF	II			Tall shrub
Fabaceae-Faboideae	Daviesia genistifolia	GW	V			Low shrub
Fabaceae-Faboideae	Daviesia latifolia	GW, DSF, WSF	V	5		Tall shrub
Fabaceae-Faboideae	Daviesia mimosoides subsp. mimosoides	DSF	V			Tall shrub
Fabaceae-Faboideae	Daviesia nova-anglica	DSF	II	5		Low shrub
Fabaceae-Faboideae	Daviesia ulicifolia subsp. ulicifolia	GW, DSF	II			Low shrub
Fabaceae-Faboideae	Daviesia umbellulata	DSF	II	4		Low shrub
Fabaceae-Faboideae	Desmodium rhytidophyllum	GW, DSF	V			Twinner
Fabaceae-Faboideae	Dillwynia phylicoides	DSF	V			Low shrub
Fabaceae-Faboideae	Dillwynia phylicoides	DSF, RO	II	5		Low shrub
Fabaceae-Faboideae	Dillwynia rupestris	RO, DSF	II	5		Tall shrub
Fabaceae-Faboideae	Dillwynia sericea	DSF	II			Low shrub
Fabaceae-Faboideae	Dillwynia sieberi	GW	V		3	Low shrub
Fabaceae-Faboideae	Dillwynia sieberi	GW, DSF	II	5		Low shrub
Fabaceae-Faboideae	Glycine clandestina	DSF	V		2	Twinner
Fabaceae-Faboideae	Gompholobium heugelii	DSF	V		3	Low shrub
Fabaceae-Faboideae	Gompholobium heugelii	DSF	II			Sub-shrub
Fabaceae-Faboideae	Gompholobium inconspicum	DSF	II			Sub-shrub
Fabaceae-Faboideae	Gompholobium latifolium	DSF	II	3		Low shrub
Fabaceae-Faboideae	Gompholobium uncinatum	DSF	II	5		Sub-shrub
Fabaceae-Faboideae	Gompholobium virgatum var. aspalathoides	DSF	II			Low shrub
Fabaceae-Faboideae	Goodia lotifolia var. lotifolia	WSF	IV		4	Tall shrub
Fabaceae-Faboideae	Hardenbergia violacea	DSF, GW	V	5	3	Twinner
Fabaceae-Faboideae	Hardenbergia violacea (obligate seeder pop.)	WSF, DSF	II			Twinner
Fabaceae-Faboideae	Hovea apiculata	RO	II	4	3	Low shrub
Fabaceae-Faboideae	Hovea graniticola	RO	II	6		Low shrub
Fabaceae-Faboideae	Hovea heterophylla	GW, DSF	V		3	Sub-shrub
Fabaceae-Faboideae	Hovea lanceolata	RO, DSF	II	4		Low shrub
Fabaceae-Faboideae	Hovea pedunculata	RO, DSF	II	3		Low shrub
Fabaceae-Faboideae	Indigofera adesmiifolia	GW, DSF	V		5	Low shrub
Fabaceae-Faboideae	Indigofera australis	RO, DSF, WSF, GW	IV		4	Low shrub
Fabaceae-Faboideae	Jacksonia scoparia	GW, DSF, WSF	V	4	2	Tall shrub
Fabaceae-Faboideae	Kennedia rubicunda	DSF	V	3		Twinner
Fabaceae-Faboideae	Lezpedeza juncea subsp. sericea	GW	V		3	Sub-shrub
Fabaceae-Faboideae	Mirbelia confertiflora	RO	V		3	Tall shrub
Fabaceae-Faboideae	Mirbelia pungens	RO	II	2		Low shrub
Fabaceae-Faboideae	Mirbelia rubiifolia	DSF, RO	II	3		Low shrub
Fabaceae-Faboideae	Mirbelia speciosa subsp. speciosa	RO, DSF	II	6		Low shrub

Family	Species	Habitats	Gill	PJP	SJP	Growth Form
Fabaceae-Faboideae	Oxylobium arborescens (Gibraltar Range form)	DSF	V		4	Low shrub
Fabaceae-Faboideae	Oxylobium arborescens (Tall form)	RO, DSF	Π			Tall shrub
Fabaceae-Faboideae	Phyllota phylicoides	DSF	V	4	3	Low shrub
Fabaceae-Faboideae	Podolobium aestivum	DSF	V		3	Low shrub
Fabaceae-Faboideae	Podolobium ilicifolium	DSF, GW, WSF	IV		2	Low shrub
Fabaceae-Faboideae	Pultanaea tarik	WSF, DSF	Π	5		Tall shrub
Fabaceae-Faboideae	Pultenaea campbellii	GW	IV		3	Low shrub
Fabaceae-Faboideae	Pultenaea daphnoides	DSF	II			Low shrub
Fabaceae-Faboideae	Pultenaea dentata	WH	II			Sub-shrub
Fabaceae-Faboideae	Pultenaea foliolosa	DSF	V	7	4	Low shrub
Fabaceae-Faboideae	Pultenaea sp. Girraween	WH	V			Low shrub
Fabaceae-Faboideae	Pultenaea linophylla	DSF, GW	II	3		Low shrub
Fabaceae-Faboideae	Pultenaea microphylla	GW	V		3	Low shrub
Fabaceae-Faboideae	Pultenaea polifolia	DSF	II			Low shrub
Fabaceae-Faboideae	Pultenaea pycnocephala	DSF, RO	II	5		Low shrub
Fabaceae-Faboideae	Pultenaea retusa	DSF	II			Low shrub
Fabaceae-Faboideae	Sphaerolobium vimineum	WH	V		1	Sub-shrub
Fabaceae-Faboideae	Zornia dyctiocarpa var. dyctiocarpa	GW, DSF	V			Sub-shrub
Fabaceae-Mimosoideae	Acacia adunca	RO, DSF	II			Tall shrub
Fabaceae-Mimosoideae	Acacia barringtonensis	DSF	IV		3	Tall shrub
Fabaceae-Mimosoideae	Acacia beadleana	RO	V		3	Low shrub
Fabaceae-Mimosoideae	Acacia betchei	DSF	II			Tall shrub
Fabaceae-Mimosoideae	Acacia binervata	WSF	V			Tall shrub
Fabaceae-Mimosoideae	Acacia blakei subsp. diphylla	WSF	II			Small tree
Fabaceae-Mimosoideae	Acacia brownii	DSF	V			Low shrub
Fabaceae-Mimosoideae	Acacia brunioides subsp. brunioides	DSF	II	4		Low shrub
Fabaceae-Mimosoideae	Acacia burbidgeae	DSF	II	8		Low shrub
Fabaceae-Mimosoideae	Acacia buxifolia subsp. pubiflora	DSF	V	5	2	Low shrub
Fabaceae-Mimosoideae	Acacia dealbata	WSF, DSF, GW	II	5		Small tree
Fabaceae-Mimosoideae	Acacia diphylla	RF	II			Tall shrub
Fabaceae-Mimosoideae	Acacia falciformis	RO, DSF, WSF, GW	IV	-	3	Tall shrub
Fabaceae-Mimosoideae	Acacia filicifolia	WSF, DSF	IV	5	5	Small tree
Fabaceae-Mimosoideae	Acacia fimbriata	GW, DSF	II V	4		Small tree
Fabaceae-Mimosoideae Fabaceae-Mimosoideae	Acacia floribunda	WSF RO	v II	5		Tall shrub Tall shrub
Fabaceae-Mimosoideae	Acacia granitica Acacia gunnii	DSF, GW	II V	3		Low shrub
Fabaceae-Mimosoideae	Acacia hispidula	RO, DSF	v II			Low shrub
Fabaceae-Mimosoideae	Acacia implexa	DSF, GW	IV		5	Tall shrub
Fabaceae-Mimosoideae	Acacia irrorata subsp. irrorata	WSF	II		5	Small tree
Fabaceae-Mimosoideae	Acacia juncifolia subsp. juncifolia	DSF	V			Small tree
Fabaceae-Mimosoideae	Acacia latisepala	RO	II	6		Tall shrub
Fabaceae-Mimosoideae	Acacia leptoclada	DSF	V	0		Low shrub
Fabaceae-Mimosoideae	Acacia longifolia subsp. longifolia	DSF, WSF	II	6		Tall shrub
Fabaceae-Mimosoideae	Acacia macnuttiana	DSF	П			Tall shrub
Fabaceae-Mimosoideae	Acacia maidenii	RF, WSF	v			Small tree
Fabaceae-Mimosoideae	Acacia melanoxylon	RF, WSF	IV			Small tree
Fabaceae-Mimosoideae	Acacia mitchellii	DSF	Π	5		Low shrub
Fabaceae-Mimosoideae	Acacia myrtifolia	DSF, WSF	II	4		Low shrub
Fabaceae-Mimosoideae	Acacia neriifolia	RO, DSF, GW	IV			Small tree
Fabaceae-Mimosoideae	Acacia nova-anglica ms	RO, DSF, WSF, GW	IV		4	Small tree
Fabaceae-Mimosoideae	Acacia obtusifolia	DSF, WSF	V	4		Low shrub
Fabaceae-Mimosoideae	Acacia penninervis var. penninervis	DSF	II			Tall shrub
Fabaceae-Mimosoideae	Acacia pruinosa	DSF	V			Tall shrub
Fabaceae-Mimosoideae	Acacia pycnostachya	RO, DSF	V			Small tree
Fabaceae-Mimosoideae	Acacia rubida	DSF	II	4		Tall shrub
Fabaceae-Mimosoideae	Acacia suaveolens	DSF	II	3		Low shrub
Fabaceae-Mimosoideae	Acacia terminalis	DSF	II	5		Tall shrub
Fabaceae-Mimosoideae	Acacia torringtonensis	RO, DSF	II	4		Low shrub

Family	Species	Habitats	Gill	PJP	SJP	Growth Form
Fabaceae-Mimosoideae	Acacia triptera	RO, DSF	II	8		Tall shrub
Fabaceae-Mimosoideae	Acacia ulicifolia	RO, DSF, GW, WSF	Π	3		Low shrub
Fabaceae-Mimosoideae	Acacia venulosa	DSF	V			Low shrub
Fabaceae-Mimosoideae	Acacia venulosa (obligate seeding pop.)	RO, DSF	II	5		Low shrub
Fabaceae-Mimosoideae	Acacia viscidula	GW	V			Low shrub
Fabaceae-Mimosoideae	Acacia viscidula	RO, DSF	II			Low shrub
Fabaceae-Mimosoideae	Acacia williamsiana	RO	IV			Small tree
Goodeniaceae	Goodenia ovata	WSF	II		2	Low shrub
Xanthorrhoeacae	Gietonoplesium cymosum	WSF	IV			Twinner
Lamiaceae	Chloanthes parviflora	RO	II			Low shrub
Lamiaceae	Prostanthera incisa	WSF	II			Tall shrub
Lamiaceae	Prostanthera lasianthos	WSF	II			Tall shrub
Lamiaceae	Prostanthera nivea	RO	II	3		Low shrub
Lamiaceae	Prostanthera nivea var. nivea	RO	II	3		Low shrub
Lamiaceae	Prostanthera 'ovalifolia'	WSF	II			Tall shrub
Lamiaceae	Prostanthera saxicola	RO	II	3		Low shrub
Lamiaceae	Prostanthera scutellarioides (Carrai form)	WH	V		1	Low shrub
Lamiaceae	Prostanthera scutellarioides (Gibraltar Range form)	DSF	V		3	Low shrub
Lamiaceae	Prostanthera sp. aff. howelliae	DSF	V		4	Low shrub
Lamiaceae	Prostanthera teretifolia	RO	II	8		Low shrub
Lamiaceae	Westringia amabilis	DSF	II	4		Low shrub
Lamiaceae	Westringia eremicola	DSF	V			Low shrub
Lauraceae	Cinnamomum oliveri	RF, WSF	V			Tree
Lauraceae	Cryptocarya foveolata	RF, WSF	V			Small tree
Lauraceae	Cryptocarya glaucescens	RF, WSF	V			Small tree
Lauraceae	Cryptocarya meisneriana	RF, WSF	V			Small tree
Lauraceae	Cryptocarya rigida	RF, WSF	V		6	Small tree
Lauraceae	Endiandra muelleri	RF, WSF	V			Tree
Lauraceae	Endiandra sieberi	RF, WSF	V			Tree
Lauraceae	Litsea reticulata	RF	II			Tree
Asparagaceae	Eustrephus latifolius	WSF	IV			Vine
Loganiaceae	Logania albiflora	WSF	II	5		Tall shrub
Loganiaceae	Logania sp. aff. albiflora (narrow leaves, rocky habitat)	DSF	V			Low shrub
Malvaceae	Brachychiton populneus subsp. populneus	GW	V			Tree
Malvaceae	Commersonia amystia	RO	II	3		Low shrub
Malvaceae	Commersonia breviseta	RO	II	4		Low shrub
Malvaceae	Keraudrenia hillii var. hillii	RO	II	5		Low shrub
Malvaceae	Lasiopetalum macrophyllum	WSF	V			Low shrub
Meliaceae	Dysoxylum fraserianum	RF	V			Tree
Meliaceae	Synoum glandulosum	WSF, RF	V			Low shrub
Menispermaceae	Sarcopetalum harveyanum	WSF, RF	V			Twinner
Monimiaceae	Hedycarya angustifolia	WSF, RF	V		6	Small tree
Monimiaceae	Palmeria scandens	RF	VI			Vine
Monimiaceae	Wilkiea heugeliana	RF	V			Small tree
Myrsinaceae	Myrsine howittiana	WSF	V			Small tree
Myrsinaceae	Myrsine variabilis	WSF	V			Small tree
Myrtaceae	Acmena smithii	RF, WSF	VI			Tree
Myrtaceae	Archirhodomyrtus beckleri	RF, WSF	V		6	Small tree
Myrtaceae	Baeckea omissa	WH	V	4	1	Low shrub
Myrtaceae	Calytrix tetragona	RO	II	6		Low shrub
Myrtaceae	Eucalyptus acaciiformis	DSF	V			Small tree
Myrtaceae	Eucalyptus brunnea	DSF	VI			Tree
Myrtaceae	Eucalyptus caliginosa	DSF	VI			Tree
Myrtaceae	Eucalyptus cameronii	WSF	VI			Tree
Myrtaceae	Eucalyptus campanulata	WSF	VI		_	Tree
Myrtaceae	Eucalyptus codonocarpa	RO	V		5	Tall shrub
Myrtaceae	Eucalyptus laevopinea	DSF	VI			Tree
Myrtaceae	Eucalyptus ligustrina	DSF	VI			Small tree

Family	Species	Habitats	Gill	PJP	SJP	Growth Form
Myrtaceae	Eucalyptus microcorys	WSF	VI			Tree
Myrtaceae	Eucalyptus nobilis	WSF	II			Tree
Myrtaceae	Eucalyptus notabilis	WSF, DSF	VI			Tree
Myrtaceae	Eucalyptus obliqua	WSF, DSF	VI			Tree
Myrtaceae	Eucalyptus olida	DSF	V			Small tree
Myrtaceae	Eucalyptus oreades	DSF	Ι			Tree
Myrtaceae	Eucalyptus prava	RO	V		5	Small tree
Myrtaceae	Eucalyptus pyrocarpa	DSF	VI			Tree
Myrtaceae	Eucalyptus radiata subsp. sejuncta	DSF	VI			Tree
Myrtaceae	Eucalyptus saligna	WSF	VI			Tree
Myrtaceae	Eucalyptus williamsiana	DSF	VI			Tree
Myrtaceae	Harmogia densifolia	RO	V			Low shrub
Myrtaceae	Homoranthus biflorus	RO	II			Low shrub
Myrtaceae	Homoranthus binghiensis	RO	II	9		Low shrub
Myrtaceae	Homoranthus croftianus	RO	II	-		Low shrub
Myrtaceae	Homoranthus lunatus	RO	II			Low shrub
Myrtaceae	Kardomia odontocalyx	RO	II	8		Low shrub
Myrtaceae	<i>Kunzea bracteolata</i> (obligate seeder pop.)	RO	I	6		Low shrub
Myrtaceae	Kunzea bracteolata (resprouter pop.)	RO	V	0		Low shrub
Myrtaceae	Kunzea obovata	RO	v II			Low shrub
Myrtaceae	Kunzea opposita	RO	I			Low shrub
•	Kunzea parvifolia	DSF, GW	I			Low shrub
Myrtaceae Myrtaceae	* *	WH	II V		3	Low shrub
Myrtaceae	Leptospermum arachnoides					
Myrtaceae	Leptospermum brevipes	RO, DSF, GW	V V		3	Tall shrub
Myrtaceae	Leptospermum divaricatum	RO, DSF			2	Low shrub
Myrtaceae	Leptospermum gregarium	WH	V		3	Low shrub
Myrtaceae	Leptospermum minutifolium	WH DO DOE	V	0	3	Low shrub
Myrtaceae	Leptospermum novae-angliae	RO, DSF	V	8	3	Low shrub
Myrtaceae	Leptospermum petersonii	RO, DSF	V		2	Tall shrub
Myrtaceae	Leptospermum polygalifolium subsp. montanum	WSF	V		2	Tall shrub
Myrtaceae	Leptospermum polygalifolium subsp. transmontanum	DSF, WSF	V		2	Tall shrub
Myrtaceae	Leptospermum trinervium	DSF	VI		2	Tall shrub
Myrtaceae	Lophostemon confertus	RF, WSF	VI			Tree
Myrtaceae	Melaleuca linearis	DSF	V			Low shrub
Myrtaceae	Melaleuca pallida	WH	V			Tall shrub
Myrtaceae	Melaleuca paludicola	WH	V		4	Low shrub
Myrtaceae	Melaleuca pityoides	WH	V			Low shrub
Myrtaceae	Melaleuca sp nov./comboynensis	RO	V			Low shrub
Myrtaceae	Melaleuca sp. aff. comboynensis ('Big Red')	RO	V		3	Low shrub
Myrtaceae	Melaleuca sp. aff. flavovirens (Torrington)	DSF	V	10		Low shrub
Myrtaceae	Melaleuca williamsii	DSF	V			Low shrub
Myrtaceae	Micromyrtus sessilis	RO, DSF	V			Low shrub
Myrtaceae	Rhodamnia rubescens	RF, WSF	IV			Small tree
Olacaceae	Olax stricta	DSF, RO	V			Tall shrub
Oleaceae	Notelaea linearis	WSF, RF	V			Tall shrub
Oleaceae	Notelaea microcarpa var. microcrpa	WSF, DSF, GW	V			Tall shrub
Oleaceae	Notelaea sp. A	WSF, DSF	V			Tall shrub
Oleaceae	Notelaea venosa	WSF, RF	V			Small tree
Phyllanthaceae	Breynia oblongifolia	WSF	V			Low shrub
Phyllanthaceae	Phyllanthus gunnii	WSF	V			Low shrub
Phyllanthaceae	Phyllanthus subcrenulatus	GW	V			Sub-shrub
Phyllanthaceae	Phyllanthus virgatus	DSF	V			Sub-shrub
Phyllanthaceae	Synostemon hirtellus	DSF	II	5		Low shrub
Picrodendraceae	Pseudanthus pauciflorus	RO	II	4		Low shrub
Pittosporaceae	Billardiera scandens	DSF, WSF, GW	V			Twinner
Pittosporaceae	Bursaria spinosa subsp. spinosa	GW	V		5	Tall shrub
Pittosporaceae	Hymenosporum flavum	RF, WSF	V			Small tree
Pittosporaceae	Pittosporum multiflorum	RF, WSF	IV			Small tree

Family	Species	Habitats	Gill	PJP	SJP	Growth Form
Pittosporaceae	Pittosporum revolutum	RF, WSF	V			Small tree
Pittosporaceae	Pittosporum spinescens	RF, WSF	IV			Low shrub
Pittosporaceae	Pittosporum undulatum	RF, WSF	V			Small tree
Pittosporaceae	Rhytidosporum diosmoides	DSF, GW	V		3	Twinner
Pittosporaceae	Rhytidosporum procumbens	GW	V	5	3	Twinner
Polygalaceae	Comesperma defoliatum	WH	V			Sub-shrub
Polygalaceae	Comesperma ericinum	DSF, RO	II	2		Low shrub
Polygalaceae	Comesperma retusum	WH	V			Sub-shrub
Escalloniaceae	Polyosma cunninghamii	RF	V			Small tree
Proteaceae	Banksia integrifolia subsp. monticola	WSF, DSF, GW	Ι	8		Small tree
Proteaceae	Banksia marginata	WH	Ι	4		Low shrub
Proteaceae	Banksia spinulosa subsp. collina	DSF	V			Low shrub
Proteaceae	Banksia spinulosa subsp. neoanglica	DSF, WH	V	6	2	Tall shrub
Proteaceae	Conospermum burgessiorium	DSF	II	5		Low shrub
Proteaceae	Conospermum taxifolium	DSF, WH	V		4	Low shrub
Proteaceae	Grevillea acanthifolia subsp. stenomera	WH	V		4	Low shrub
Proteaceae	Grevillea acerata	DSF	II	4		Low shrub
Proteaceae	Grevillea beadleana	RO	II			Low shrub
Proteaceae	Grevillea floribunda subsp. floribunda	DSF	V			Low shrub
Proteaceae	Grevillea guthrienana	RO	II			Low shrub
Proteaceae	Grevillea juniperina subsp. allojohnsonii	GW, DSF	V			Low shrub
Proteaceae	Grevillea rhizomatosa	WSF, DSF	IV		5	Low shrub
Proteaceae	Grevillea scotechenii subsp. sarmentosa	DSF	V			Low shrub
Proteaceae	Grevillea triternata	DSF, RO	II	6		Low shrub
Proteaceae	Grevillea viridiflava	DSF, WH	V		4	Low shrub
Proteaceae	Hakea eriantha	WSF, DSF, GW	V	5		Tall shrub
Proteaceae	Hakea laevipes subsp. graniticola	DSF	V	5	3	Low shrub
Proteaceae	Hakea macrorrhyncha	RO	Ι	5		Small tree
Proteaceae	Hakea microcarpa	WH	V	5	2	Low shrub
Proteaceae	Hakea salicifolia subsp. salicifolia	WSF	Ι	5		Tall shrub
Proteaceae	Isopogon petiolaris	DSF	V	4	4	Low shrub
Proteaceae	Lomatia arborescens	WSF	V			Small tree
Proteaceae	Lomatia fraseri	DSF, WSF	V			Low shrub
Proteaceae	Lomatia silaifolia	WSF, DSF, GW	V		1	Low shrub
Proteaceae	Orites excelsa	RF, WSF	II			Small tree
Proteaceae	Persoonia acuminata	WSF	V			Low shrub
Proteaceae	Persoonia chamaepeuce	DSF	V		4	Low shrub
Proteaceae	Persoonia conjuncta	WSF	II			Tall shrub
Proteaceae	Persoonia cornifolia	DSF	V			Tall shrub
Proteaceae	Persoonia fastigiata	DSF	V			Low shrub
Proteaceae	Persoonia linearis	WSF	VI			Tall shrub
Proteaceae	Persoonia media	WSF, RF	II	6		Small tree
Proteaceae	Persoonia oleoides	WSF, DSF	V	-		Tall shrub
Proteaceae	Persoonia procumbens	DSF	V			Low shrub
Proteaceae	Persoonia rufa	DSF, RO	II	6		Low shrub
Proteaceae	Persoonia sericea	DSF, WSF	V	0		Low shrub
Proteaceae	Persoonia tenuifolia	DSF	v		4	Low shrub
Proteaceae	Persoonia terminalis subsp. terminalis	RO	II		•	Low shrub
Proteaceae	Petrophile canescens	DSF	V		3	Low shrub
Proteaceae	Stenocarpus salignus	RF	v		5	Small tree
Proteaceae	Telopea aspera	DSF	v		2	Low shrub
Quintiniaceae	Quintinia seiberi	RF	V, VI		-	Tree
Ranunculaceae	Clematis aristata	WSF, RF	V, VI V			Vine
Ranunculaceae	Clematis glycinoides	WSF, RF	П			Vine
Rhamnaceae	Cryptandra amara var. floribunda	RO	II	3		Low shrub
Rhamnaceae	Cryptandra amara var. longfolia	GW	N N	5	3	Low shrub
Rhamnaceae	Pomaderiris (long Point small leaf)	GW, DSF	v II		5	Tall shrub
Rhamnaceae	Pomaderris andromedifolia	RO	II			Low shrub
mannacac	1 onduerns andromedyond	nu -	11			Low sinu0

Family	Species	Habitats	Gill	PJP	SJP	Growth Form
Rhamnaceae	Pomaderris angustifolia	DSF	II			Low shrub
Rhamnaceae	Pomaderris betulina	DSF	II			Low shrub
Rhamnaceae	Pomaderris eriocephala	GW	V			Low shrub
Rhamnaceae	Pomaderris lanigera	DSF, WSF	II			Low shrub
Rhamnaceae	Pomaderris nitidula	WSF, RF	II			Low shrub
Rhamnaceae	Pomaderris prunifolia	GW	II			Low shrub
Rhamnaceae	Spyridium scortechinii	RO, DSF	II	4		Low shrub
Ripogoneaceae	Ripogonum discolor	RF	VI			Vine
Rosaceae	Rubus moluccanus	RF, WSF	VI			Vine
Rosaceae	Rubus mooreii	RF	VI			Vine
Rosaceae	Rubus parvifolius	WSF, DSF	V			Twinner
Rubiacae	Psychotria loniceroides	WSF, RF	V			Small tree
Rubiaceae	Coprosma hirtella	WSF	V			Low shrub
Rubiaceae	Coprosma quadrifida	WSF	V			Small tree
Rubiaceae	Psychotria loniceroides	WSF, RF	V			Small tree
Rutaceae	Acronychia oblongifolia	RF	V			Tree
Rutaceae	Asterolasia asteroscophora subsp. asteroscophora	DSF	П	4		Low shrub
Rutaceae	Asterolasia correifolia	WSF	Π	4		Tall shrub
Rutaceae	Boronia algida	DSF	V		2	Low shrub
Rutaceae	Boronia anemonifolia subsp. variablis	RO	Π			Low shrub
Rutaceae	Boronia anethifolia	RO	П	3		Low shrub
Rutaceae	Boronia angustisepala	RO, DSF	II	5		Low shrub
Rutaceae	Boronia bolivensis	RO	II	5		Low shrub
Rutaceae	Boronia granitica	RO	II	6		Low shrub
Rutaceae	Boronia ledifolia	DSF	V		2	Low shrub
Rutaceae	Boronia microphylla	DSF, WH	V		2	Low shrub
Rutaceae	Boronia polygalifolia	WH, DSF, GW	V		1	Low shrub
Rutaceae	Correa lawrenciana var. glandulifera	WSF	П	5		Tall shrub
Rutaceae	<i>Correa reflexa</i> (resprouter green flowered)	GW	V			Low shrub
Rutaceae	<i>Correa reflexa</i> (obligate seeder red flowered)	DSF	II	5		Low shrub
Rutaceae	Crowea exaltata subsp. magnifolia	DSF, RO	II			Low shrub
Rutaceae	Eriostemon australasius subsp. australasius	RO	II	5		Low shrub
Rutaceae	Leionema ambiens	RO	II			Low shrub
Rutaceae	Leionema dentatum	RO	II	5		Low shrub
Rutaceae	Leionema rotundifolium	RO	II	8		Low shrub
Rutaceae	Leionema rotundifolium	RO, DSF	V			Low shrub
Rutaceae	Medicosma cunninghamii	RF, WSF	V			Tree
Rutaceae	Melicope hayesii	RF, WSF	V			Tree
Rutaceae	Melicope micrococca	RF, WSF	V			Tree
Rutaceae	Phebalium glandulosum subsp. eglandulosum	RO	II	8		Low shrub
Rutaceae	Phebalium squamulosum subsp. squamulosum	RO, DSF	II	5		Low shrub
Rutaceae	Phebalium sp. Mt Ballow	WSF	II			Tall shrub
Rutaceae	Phebalium woombye	RO	II	5		Low shrub
Rutaceae	Philotheca epilosa	RO	II	7		Low shrub
Rutaceae	Zieria arborescens	WSF	II			Tall shrub
Rutaceae	Zieria aspalathoides	RO, DSF	II	4		Low shrub
Rutaceae	Zieria cytisoides	RO, DSF	V			Low shrub
Rutaceae	Zieria laevigata	RO	II	3		Low shrub
Rutaceae	Zieria odorifera	RO	V			Low shrub
Rutaceae	Zieria smithii subsp. smithii	WSF	II	5		Tall shrub
Santalaceae	Choretrum candollei	DSF	V			Low shrub
Santalaceae	Choretrum pauciflorum	RO	II			Low shrub
Santalaceae	Exocarpos cupressiformis	GW, WSF	V			Small tree
Santalaceae	Exocarpos strictus	DSF	V			Small tree
Santalaceae	Leptomeria acida	DSF	II			Tall shrub
Sapindaceae	Dodonaea boroniifolia	DSF, RO	Π			Low shrub
Sapindaceae	Dodonaea hirsuta	RO	II	6		Low shrub
Sapindaceae	Dodonaea megazyga	WSF	II	5		Tall shrub

Cunninghamia 11(2): 2009

Family	Species	Habitats	Gill	PJP	SJP	Growth Form
Sapindaceae	Dodonaea triquetra	GW, DSF, WSF	V			Low shrub
Sapindaceae	Dodonaea viscosa subsp. Black Fruits	DSF, GW	V			Low shrub
Sapindaceae	Dodonaea viscosa subsp. spatulata	DSF, RO	II			Low shrub
Scrophulariaceae	Myoporum betcheanum	RF	II			Tall shrub
Smilacaceae	Smilax australis	WSF, RF	V			Vine
Smilacaceae	Smilax glyciphylla	DSF, WSF	V			Twinner
Solanaceae	Duboisia myoporoides	RF	V			Small tree
Solanaceae	Solanum aviculare	WSF, RF	II	1		Tall shrub
Solanaceae	Solanum curvicuspe	WSF, RF	V		2	Tall shrub
Solanaceae	Solanum densevestitum	WSF	V			Low shrub
Solanaceae	Solanum nobile	WSF, RF	II	3		Tall shrub
Solanaceae	Solanum prinophylllum	WSF, RF	II	3		Low shrub
Thymelaeaceae	Pimelea curviflora var. divergens	GW	V		1	Sub-shrub
Thymelaeaceae	Pimelea ligustrina subsp. hypericina	WSF	II	5		Tall shrub
Thymelaeaceae	Pimelea linifolia subsp. collina	DSF, RO, WH	II	3		Low shrub
Thymelaeaceae	Pimelea linifolia subsp. linifolia	DSF, GW	V		3	Low shrub
Thymelaeaceae	Pimelea neo-anglica	DSF, GW	V			Low shrub
Thymelaeaceae	Pimelea sp. 'Long Point'	GW	II			Low shrub
Trimeniaceae	Trimenia moorei	RF	VI			Vine
Urticaceae	Dendrocnide excelsa	RF	II			Tree
Vitaceae	Cissus hypoglauca	RF	VI			Vine
Vitaceae	Tetrastigma nitens	RF	IV			Vine
Winteraceae	Tasmannia insipida	WSF, RF	V			Low shrub
Winteraceae	Tasmannia stipitata	WSF, RF	IV			Tall shrub
Xanthorrhoeaceae	Xanthorrhoea sp. Gibraltar Range	WSF	VII			Tall shrub
Xanthorrhoeaceae	Xanthorrhoea glauca subsp. angustifolia	DSF	VII		2	Tall shrub
Xanthorrhoeaceae	Xanthorrhoea johnsonii	DSF	VII		2	Tall shrub
Zamiaceae	Macrozamia plurinervia	DSF	VII			Low shrub