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Abstract 

In this paper we extend the notion of zero knowledge 
proofs of membership (which reveal one bit of informa- 
tion) to zero knowledge proofs of knowledge (which reveal 
no information whatsoever). After formally defining this 
notion, we show its relevance to identification schemes, 
in which parties prove their identity by demonstrating 
their knowiedge rather than by proving the validity c’f as- 
sertions. We describe a novel scheme which is provably 
secure if factoring is difficult <and whose practical imple- 
mentations are about two orders of magnitude faster than 
RSA-based identification schemes. In the last part of the 
Paper we consider the question of sequential versus par- 
allel executions of zero knowledge protocols, define a new 
notion of “transferable information”, and prove that the 
parallel version of our identification scheme (which is not 
known to be zero knowledge) is secure since it reveals no 
transferable information. 

1. Introduction 

Zero knowledge proofs (Goldwasser, Micah and 
Rackoff [ 1985)) are an elegant technique to limit the 
amount of information transferred from a prover A to a 
verifier B in a cryptographic protocol. As defined in the 
original GMR paper, the proofs refer t.o language mem- 
bership problems (is input I a member of language L?), 
and their applicability to any language L in NP was re- 
cently demonstrated in Goldreich, Micah and Wigderson 
(19SG]. Additional properties of zero knowledge proofs 
were investigated in Goldwasser and Sipser [19S6], Bras- 
sard and Crepeau [19S6], Chaum [1986:\, and many other 
papers. 
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The name “zero knowledge proofs” is slightly mis- 
leading, since the prover A reveals one bit of knowledge 
to the verifier B (namely that I belongs to L). Our first 
objective in this paper is to show that it is possible to ex- 
tend this notion to “truly zero knowledge proofs” which 
do not even reveal this single bit. The basic idea is to re- 
place “knowledge” by “knowledge about knowledge”: A’s 

goal is not to prove that I belongs to L, but to prove 
that he knows the status of I with respect to L. From 
B’s point of view, he didn’t get any information whatso- 
ever about “the real world” (I, L and their relationships) 
- only about A’s state of knowledge concerning the real 
world. 

As a motivating (but technically inaccurate) exam- 
ple, consider a prover A who wants to prove to a skeptical 
B that he ha.s settled Fermat’s last theorem. With the 
type of proof introduced in this paper, A can convince 
B that he is a mathematical superstar without telling B 
anything new about the problem - not even whether he 
has found a proof or a counterexample! 

A related idea was presented by Galil Haber and 
Yung [1985], who defined the notion of %esult indistin- 
guishable protocols”. However, the two models differ in 
their goals: In their model the prover A proves either that 
I belongs to L or that I does not belong to L, B knows 
which c&m is being proven and gets a convincing proof, 
while the passive eavesdropper C (who is not allowed to 
participate or meddle in the protocol) cannot determine 
from the communication tape which claim is being proven 
and whether the tape constitutes a convincing proof. The 
main difficulty in extending such a result to our model is 
that we want. the same party B to be ignorant of what is 
being proven and yet to be convinced by the proof. 

The intuitive observation that the zero knowledge 
paradigm could be used to prove knowledge rather than 
existence of witnesses is not new, and appeared (with- 
out proper formalization) in several paranthetical remarks 
in Goldwasser, Micali and Rackoff [1985], Chor, Gold- 
wasser, Micah and Awerbuch [1985], Galil, Haber and 
Yung [1985]: Chaum [1986], and several other papers. 
As demonstrated in this paper, the formal definitions of 
“proofs of membership” and “proofs of knowledge” are 
quite differe:nt, and there is a fundamental philosophi- 
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cal difference between them. The notion of “knowledge” 
is very fuzzy, and a-priori it is not clear what proofs of 
knowledge actually prove. Several researchers have inves- 
tigated this notion from a different point of view (see e.g. 
Hdpern and Moses [1986], and Rosenschein [1985]), and 
we believe that a combined approach to knowledge and 
proofs of knowledge can have an important impact on 
areas outside cryptography (in particular logic and dis- 
tributed computing). 

2. Interactive proofs of knowledge 

Our model differs from the original GMR model in 
several important aspects. We do not aHow the prover 
to be infinitely powerful (such a prover knows every- 
thing about its inputs by definition), and restrict both 
the prover and the verifier to be polynomial time proba- 
bilistic Turing machines. The machines have a common 
input tape I, two communication tapes CA and CB, pri- 
vate work tapes WA and WB, and private random tapes 
RA and RB. In addition, the prover is given access to a 
restricted oracle in the form of a private tape S. The con- 
tents of this tape satisfies a publicly known polynomial 
time predicate P(1,S) whenever the predicate is satisfi- 
able, and remains blank otherwise. Note that the prover 
cannot ask the oracle additional questions about the same 
or other inputs, and has to rely only on the given witness 
S in his proof of knowledge. This model restricts A’s 
proofs of knowledge to problems in NP, and typical ex- 
amples of predicates are “S is a valid 3-colouring of graph 
I” and “S satisfies the CNF formula I”. 

In the rest of this paper we adopt the following con- 
ventions: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

Notation: 

2 (straight A) p re resents the real prover who follows 
its designated protocol by using its explicit access to 
the oracie tape. 

A (crooked A) represents a polynomial time cheater 
who cannot access the oracle tape but can deviate from 
the protocol in an arbitrary way. 

A represents either x or A. 

B (straight B) represents the real verifier who follows 
its designated protocol. 

B( crooked B) represents an arbitrary polynomial 
time program which tries to extract additional infor- 
mation from Z. 

B represents either B or B. 

(A, B) represents the execution of the two party pro- 
tocol in which A is the prover and B is the verifier. 

To demonstrate the subtlety of interactive proofs of 
knowledge, consider the following examples in which I is 
the product of two primes and A claims that it knows its 
factorization S. We do not insist that the proofs should 
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be zero knowledge, and we use the fact that factoring 
and square root extraction are computationally equiva- 
lent. The question we address in each case is whether A’s 
proof of knowledge should convince B: 

Example 1: A extracts the square roots mod I of 
several substrings R1 . . . Rk from RA, and sends RA and -- 
the roots of about one quarter of the R; to B. B should 
not be convinced since he cannot verify that A really uses 
his random tape. 

Example 2: B sends several substrings RI . . . Rk 
from RB to A, and receives their square roots mod 1 in 
one quarter of the cases. Even though 3 itself could not 
use the results to compute S, it is clear that a slightly 

modified B’ could compute S with high probability by 
sending A the squares mod I of these substrings. 

Example 3: Let f be a strong one way function 
which is known to both parties. ?? sends several sub- 
strings RI .. Rk from RB to A and receives the square 
roots of one quarter of the values f(R1). . . f(Rk). The 
problem is not completely defined, but B should be wary 
of A’s proof: Even though arbitrary square roots cannot 
be extracted without knowledge of the factorization of I, 
the randomizing function f prevents even a modified i?’ 
from getting the second square root of the same number 
it needs to factor I. 

Example 4: To show that B’s skepticism in Ex- 
ample 3 can sometimes be justified, consider the function 
f(r) = z2(mod I). This is probably a strong one way 
function but it interacts badly with the problem at hand, 

and enables a cheating A to extract square roots even 
when it does not know the factorization of I. 

Example 5: Consider now the function f(z) = 
.x2 + b(mod I) with non zero a and b. The multiplica- 
tion by a and addition of b seems to destroy the ability of 

B’ to factor 1, which suggests that i? should not be con- 
vinced. However, Pollard proved that binary quadratic 
equations such as ez2 + b = y2(mod I) can be solved in 

polynomial time, and thus B’ can prepare an z for which 
he already knows one square root y of J(Z), but A cannot 
know which. As a result, B should be convinced in this 
case that A knows the factorization of I. 

Formalizing the concept of “interactive proofs of 
knowledge” is not easy. GMR’s definition of “interactive 
proofs of membership” is based on the language recogni- 
tion paradigm: Some intrinsic property of the inputs 1 is 
used to define the subset L of “good” inputs, and then we 
can check the adequacy of a particular protocol 2 3 by 

verifying that for all I and 2: 

1. If 1 belongs to L, ?? accepts zs proof with overwhelm- 
ing probability. 

2. If I does not belong to L, B accepts x% proof with 
negligible probability. 



In other words, B accepts exactly L :in the sense that 
the real 2 can convince B to accept at least L, but even 

a faulty 2 cannot convince B to’accept more than .C. 

The existence of some S which satisfies P(I, S) is an 
intrinsic property of I which can be used to distinguish be- 
tween “good” and “bad” inputs. However, there are many 
cases in which proofs of existence of S are meaningless, 
and what makes the proofs surprising in these cases i.2 only 
their constructive nature which demonstrates knowledge. 
Consider, for example, the following predicates P(I, S): 

I. S is the complete factorization of I. 

2. S is the discrete logarithm of I modulo a prime Q. 

3. S is either a short witness for square freeness or a 
number larger than 1 whose square divides I. 

In all these examples the mere existence of S can be 
proven by B in advance (in examples 1 and 3 the predi- 
cate is always satisfiable, and in example: 2 the exce:ptions 
are the set of multiples of Q, which is polynomially rec- 
ognizable). When S always exists, the original GMR def- 
inition degenerates to the uninteresting “B should always 
accept”. What we really want is to distinguish between 
inputs I for which S is “known” and inputs I for which 
S is “not known”. However, the subset of I for which S 
is “known” is ill-defined: The same I should sometimes 
be accepted and sometimes be rejected by i?. Since the 
proper decision depends on A’s state of knowledge rather 
than on I’s intrinsic properties, we can try to reformulate 
the two conditions in terms of A instead of I: 

-- 
1. If A is A, B should accept its proofs with overwhelm- 

ing probability for all I for which P(I, S) is satisfiable. 

2. If A is 2, B should accepts its proofs with negligible 
probability for all 1. 

This definition is motivated by the fact that x is 
always given access to the oracle tape that contains S, 

whereas 2 is never given access to this tape. However, 
even if P is a difficult predicate, there can be infinitely 

hl 
many “easy” instances of I for which A. can compute the 
S by itself and then mimic 2’s proof to B. Consequently, 

we have to allow B to accept A’s proofs occasionally, but 
only when it really happens t,o know S. In other words, 
we require that for all I and A (which scan be either x or 
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1. If A knows S, B should accept A’s proof for I with 
overwhelming probability. 

2. If A does not know S, a should accept .4’s proof for 
I with negligible probability. 

This makes it necessary to define the set of things 
that a particular program knows. An .informal definition 
of this concept was given in one of GMR’s paranthetical 
remarks: 

A knows S if there is some polynomial time Turing 

I.2 

machine 1M with complete control over A which prints S 

as a result of its interaction with 2. 

The notion of knowledge captured by this definition is 
I., 

very broad, and ‘4 may not even be “aware” of its knowl- 
edge of S. For example, S may be stored in an inaccessible 

portion of A’s <code, or may appear temporarily in its work 
tape, or may be computed only as a complicated function 
of values derived from polynomially many executions of 

A during which M repeatedly changes the contents of A’s 
random and work tapes. Unfortunately, this notion of 
knowledge is incompatible with the definition of interac- 
tive proofs of knowledge given above: In the first part of 
the definition .A may “know” S in some bizarre way which 
cannot be detected by the particular B, and on the other 
hand the second part of the definition becomes the tau- 
tology “if A cannot convince anyone that it knows S, it 
should not convince B that it knows s”. 

Having seen the many pitfalls along the path, we fi- 
nally propose our formal definition of interactive proofs 
of knowledge. It combines most of of the ideas discussed 
so far, but blends them in a different way: 

Definition: A pair of interacting polynomial time -- 
probabilistic Turing Machines A, B is called an interac- 
tive proof system of knowledge for the polynomial time 
predicate P(I,S) if: 

For all 1 -for which P(1, S) is satisfiable, the execu- -- 
tion of (A, B) on input I succeeds with overwhelming 
probability. 

There exists an M (with complete control over 2) such 

that for all A, RA and sufficiently large I, if the execu- 

tion of (A,B) on input 1 succeeds with non negligible 

probability, then the output produced by M at the 

end of the execution of (A, M) on input I satisfies the 
predicate P with overwhelming probability. More for- 
mally, 

Qa 3M Q 2 QRAQb 3c QjIj > c 

Prob((i,B) accepts I) > l/lIl” =+ 

Prob(output of (;i,M) on I satisfies P) > 1 - l/lllb. 

Remarks: 

We want B’s conviction that A knows S to depend 
only on the randomness of its own coin flips, and thus 
we universally quantify over the RA and define the 
probabilities only over the random choices of RB. To 

hl 
execute A. over arbitrarily large inputs, we assume that 
RA is infinite but only polynomially long prefixes in 
it are actually scanned. 

The para.meter a specifies the meaning of “non neg- 
ligible” while the parameter b specifies the meaning 
of ‘Loveru~helming”. The choice of M may depend on 
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the former but not on the latter, since we want the 
asymptotic failure rate of the chosen M to be smaller 
than the inverse of any polynomial. 

The uniformity of the “interrogator” M which extracts 

S from any 2 that manages to convince B makes it 
possible to distinguish between “obvious” and “acci- 
dental” knowledge. Since the same 1M should work for 

all A, it makes little sense for M to try to analyze A’S 
program or to meddle with its tapes. In fact, for our 
purposes it suffices to give M the power to reset and 

rerun 2 polynomially many times without inspecting 
or modifying its tapes. 

The justification of interactive proofs of knowledge is 
purely statistical: The success of a particular execu- 

tion of (x,B) is a circumstantial evidence that the 

success rate of (2, z) on the same input 1 and random 

tape RA is non negligible, and thus that the knowledge 
of S can be effectively demonstrated with overwhelm- 
ing probability. However, the assumption about the 
probability distribution is a global property which is 
not really testable by i?, and thus no firm consequence 

about A’s knowledge should be directly provable from 

B’s decision to accept A’s proof. 

GMR’s definition of zero knowledge can be stated in 
the following informal way: 

An interactive proof system of membership is zero 

knowledge if for all B its view of the communication in 

(& g) can be recreated with an indistinguishable proba- 
bility distribution UndeT the sole assumption that S exists 
by a polynomial time probabilistic Turing machine M. 

As demonstra,ted in this paper, proofs of knowledge 
make perfect sense even when the set of I for which S ex- 
ists is polynomially recognizable (and in particular when 
S always exists). We exploit this extra degree of free- 
dom by making our definition of zero knowledge slightly 
stronger than the GMR definition: 

Definition: An interactive proof system of knowl- 
N 

edge is zero knowledge if for all B its view of the commu- 

nication in (2, z) can be recreated with an indistinguish- 
able probability distribution under no additional assump- 
tions by a polynomial time probabilistic Turing machine 
M (which cannot access the oracle tape). 

Remarks: 

I. It is easy to show that a predicate P(I,S) can have 
a zero knowledge interactive proof system of knowl- 
edge only when the set of I for which S exists is rec- 
ognizable in random polynomial time (otherwise the 
existence of S which is implied by its knowledge is the 
result of an infeasible computation, and thus consti- 
tutes knowledge). 

2. To prove that a particular proof system is zero knowl- 
edge in our model we use GMR’s idea of resetting the 

simulation whenever it gets stuck. It is interesting to 
notice that in proofs of knowledge the resettable sim- 
ulation is used in two very different ways: In proofs 

of validity we use it to extract from A as much in- 
formation as possible about S, while in proofs of zero 

knowledge we use it to avoid situations in which B’s 
questions cannot be answered. In proofs of member- 

ship the validity is based on A’s inability to satisfy 
P(1, S), and the resettable simulation is used only to 
prove the zero knowledge character of the protocol. 

Theorem 1: Any problem in NP has an interac- 
tive proof system of knowledge which is zero knowledge 
under GMR’s definition (but not necessarily under our 
definition). 

Proof (sketch): Due to the constructive nature of 
all the NP reductions, it suffices to consider Btum’s zero 
knowledge interactive proof system of membership for 
graph Hamiltonicity. The details of this proof system are 
not really important, but basically it repeats 111 times a 
basic step in which A transforms I into a complementary 
pair of subproblems, and 3 requests and verifies the so- 
lution to one of them. In most cases a valid Hamiltonian 
cycle S can be constructed from pairs of complementary 

solutions. The only exception is when A manages to con- 
vince B that an improperly chosen encryption method is 
valid, but this event has an exponentially small probabil- 
ity. 

The executions of (x,B) on input I and random 
tape RA can now be described as an incomplete binary 

tree which describes A’s responses to B’s requests. Each 
choice of RB corresponds to a particular path in the tree, 
where left sons correspond to subproblems of the first type 
and right sons correspond to subproblems of the second 

type. Any son that corresponds to a probIem A does not 
answer properly is eliminated along with all its descen- 
dants, and thus the successful executions correspond to 
root-to-leaf paths in the full binary tree that survive the 
truncation. 

The machine M we construct explores this tree by 

repeatedly resetting A to the root, providing the necessary 
steering requests, and verifying which one of the two sons 
of each explored vertex corresponds to a correct answer. 
It is easy to see that if the truncated tree contains any 
vertices with degree 2, M can find at least one such vertex 
in 0(1112) time. Since a non negligible fraction of the 
exponentially many leaves of the full binary tree survive 
by assumption, the polynomial time M is guaranteed to 
succeed. 

To complete the proof, we notice that M’s success 

implies that either S has been computed or that A used 
an improper encryption scheme. Since the probability of 
the latter event is negligible, the probability of the former 
event is overwhelming. Q.E.D. 
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Theorem 2: Any problem in NPflco-NP has a zero 
knowledge interactive proof system of knowledge. 

Proof: Since the problem is in NP, it can be rtep- 
resented by the boolean satisfiability formula Pl(j: S). 
Since the problem is also in co-NP, its complement can be 
represented by the boolean satisfiability fo,rmula P2( I, S>. 
Consider now the boolean predicate P(I, S) = Pl(I, S) V 

P2(1, S), which is satisfiable for all 1. By Theorem 1 its 
Blum proof system (which makes no sense when used. to 
prove the existence of S) is a valid interactive proof s,ys- 
tern of knowledge. Since the assumption that S exists is 
superfluous, the two definitions of zero yknowledge coin- 
cide, and thus A can prove that he knows whether I is in 
the language or in its complement without revealing even 
this single bit of knowledge. Q.E.D. 

3. An efficient identification scheme 

An Identification scheme is a protocol which enables 
party ,4 to prove his identity polynomially many times 

to party B without enabling B to misrepresent himself 
as A to someone else. Identification schemes are C.osely 
related to the notion of digital signatures, but there are 
no messages judges and disputes: The proof of identity is 
either accepted or rejected in real time, and as a result the 
requested access or service is granted or withheld. This 
is one of the fundamental problems in cryptography, and 
it has numerous practical applications. The basic prob- 
lem with most of the current identification techniques (ID 
cards, credit cards, computer passwords, PIN numbers, 
etc) is that A proves his identity by revealing a constant 
S in the form of a printed card or a memorized value. A 
sophisticated adversary who cooperates with a dishonest 
verifier B can use a Xerox copy of the card or a recording 
of the secret value to misrepresent himself successfully as 
A at a later stage. The obvious solution is to use zero 
knowledge proofs of knowledge, which convince B that A 
knows S without revealing even a single bit of information 
about A’s key. 

Our goal in the next two sections is to develop a truly 
practical scheme, which can be implemented in software 
in a fraction of a second even on the weak microprocessors 
embedded in smart cards. For reasonable choices of the 
parameters, our scheme is about two ordiers of magnitude 
faster than RSA-based identification sclhemes. If factor- 
ing is difficult, the new scheme is provably secure in the 
strong sense of the GoIdwasser, Micah and Rivest [1984] 
“paradoxical scheme”. 

The scheme assumes the existence of a trusted cen- 
ter whose sole purpose is to publish a modulus n which is 
the product of two large primes of the form 4r + 3. Such 
moduli (which are known as Blum integers) are used in a 
variety of cryptographic applications, and their most use- 
ful property is that -1 is a quadratic non-residue whose 
Jacobi symbol is $1 (mod n). After publishing n, the 
center can be closed since it has no further role in the 
protocol. Note that unlike the RSA scheme, everyone can 

use the same universal n, and no one should know its 
factorization. 

The identification scheme is a special case of Theo- 
rem 2, in which ;x proves to B that he knows whether 
a certain number is a quadratic residue: or a quadratic 
non residue mod n without revealing even this single bit 

of information. It IS a slightly modified version of the 
identification scheme described in Fiat and Shamir [1986] 
(which leaked nothing but this bit). It incorporates sev- 
eral ideas from GMR’s yet unpublished zero knowledge 
proof of quadratic residuosity and from GHY’s “result 
indistinguishable” residuosity protocol, but it has much 
lower time and communication complexities. This effi- 
ciency is derived primarily from the use of the multiplica- 
tive properties of modular square roots to prove the simul- 
taneous knowledge of the quadratic residuosity character 
of several numbers - something we do not know how to 
do with non number theoretic problems. 

& key generation protocol in the new scheme is: 

1. Choose Ic mndom numbers St,. . . , Sk in 2,. 

2. Choose each Ij (randomly and independently) as 

ztl/Sf (mod n). 

3. Publish 4,. . , & and keep Sl, . . . , Sk secret. 

The Sj (which are witnesses to the quadratic resid- 
uosity character of the 1j) are effectively hidden by the 
difficulty of extracting square roots mod n, and thus A 
can establish his identity by proving that he knows these 
Sj. By allowing Ij to be either plus or minus a square 
modulo a Blum integer, we make sure that 1j can range 
over all the numbers with Jacobi symbol -l-l mod n and 
thus the Sj exist (from B’s point of view) regardless of 
Ij’s character,, as required in zero knowledge proofs of 
knowledge. Our choice of Ij as rbl/S~ rather than &Si 
has no theoret.ical significance, but optrmizes the practical 
implementations of the scheme. 

To genera.te and verify a proof of identity, the parties 
execute the following protocol: 

Repeat steps 1 to 4 d times: 

1. x picks a random R, and sends X = fR2 (mod n). 

2. B sends a random boolean vector (El,. . . , Ek). 

3. ii sends the value Y = R. J-J Sj (mod n). 
Ej=l 

4. B verifies that X = &Y2 n Ij (mod n). 
Ej=l 

Theorem 3: This protocol is a zero knowledge 
proof of knowledge of the Sj for Ic = O(loglogn) and 
t = O(log n). 

Proof (sketch): To prove that 3’s proof always con- 
vinces B, we evaluate the verification condition: 
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Y2. n Ip(R. n s’)z. J-J Ij 
Ej=l Ej=l Ej=l 

= R2 fl (Sj”Q = fR2 = 2zX (mod n). 
Ej=l 

Next we show that whenever B accepts A’s proof 
with non negligible probability, M can print out all the 
Sj with overwhelming probability. Let T be the truncated 

execution tree of (2, B) for input I and random tape RA. 

Unlike the tree in Theorem 1, B may ask 2” = (log n)O(l) 
possible questions at each stage, and thus the vertices in 
T may have polynomially many sons in terms of (I(. A 
vertex is called “heavy” if its degree is larger than 2”/2 

(i.e., if more than half the executions of (x,‘B) at this 
state are successful). Our goal in this part of the proof is 
to show that all the Sj can be computed from the sons of 
a heavy vertex and that a polynomial time A4 can find a 
heavy vertex in T with overwhelming probability. 

Let V be any heavy vertex in 2’ and let Q be the 
set of queries in the form of boolean vectors (El, . . . , Ek) 

which are properly answered by A. It is easy to show 
that for any 1 5 j 5 k a set Q of more than 2k/2 boolean 
vectors of length k must contain two vectors (E{, . . . , EL) 
and (E;‘, . . , Ez) in which Ei = 0, Ey = I, and Ei = Ei 
for all i # j. Since both queries were properly answered, 
the two verification conditions imply: 

and 

X’ = kYf2. n Ij (mod n) 
E;=l 

X” = AYY”~ . n Ij (mod n). 
EC’=1 

J 

However, A must choose X before he obtains B’s query, 
and thus X’ = X”. By manipulating the equations we 

get 

(Y’r/Y’)2 = fl/Ij (mod n), 

and thus Y/‘/Y’ is the desired Si (recall that n is a Blum 
integer, and thus exactly one of +l/Ij and -l/Ij has a 
square root). 

Next we show that at least half the vertices in at 
least one of the levels in T must be heavy. Let CY~ be the 
ratio between the number of vertices at level i + 1 and the 
number of vertices at level i in T. If oi 5 (3/4)2k for all 
1 <_ i 5 t, then the total number of leaves in T which is 
the product of all these oi) is bounded by (3/4)t2 I ‘, which 
is a negligible fraction of the 21et possible leaves. Since we 
assume that this fraction is polynomial, oi > (3/4)2k for 
at least one i, and thus at least half the vertices at this 
level must contain more than 2k/2 sons. 

To actually find a heavy vertex in T, M chooses poly- 
nomially many random vertices at each level, and deter- 
mines their degrees by repeated resets and executions of 
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ii. T o ensure a uniform probability distribution in spite 
of the uneven degrees of the vertices, h4 should explore 
random paths in the untruncated tree, and restart from 
the root whenever the path encounters an improperly an- 
swered query. Since a non negligible fraction of the leaves 
is assumed to survive the truncation, this blind explo- 
ration of T can be carried out in polynomial time. 

The last part of the proof deals with the zero knowl- 

edge aspect of the protocol. A can easily cheat ?? with 
probability 2-” per iteration by guessing the (El,. . . , Ek) 
vector, preparing X = fR2/ nEjzl Ij(mod n) in step 1, 
and providing Y = R in step 3. By using GMR’s idea of 
resettable simulation, M can mimic the communication 

in (x, $) with an indistinguishable probability distribu- 

tion in O(t .2”) expected time, which is polynomial in 111 
by our assumptions on k and t. Since the existence of Sj 

which satisfy JjS! = fl(mod n) is guaranteed for any Ij 
with Jacobi symbol $1 and this property is checkable in 
polynomial time, the protocol is zero knowledge even in 

our stronger sense. Q.E.D. 

4. The parallel version of the identification 
scheme 

Interactive proofs are usually iterated versions of 
some basic protocol with a constant number of elemen- 
tary operations and a constant probability of cheating. 
This can be done either by repeating the protocol as a 
whole (sequential execution) or by repeating each elemen- 

tary operation by itself (parallel execution). Parallel exe- 
cutions change the direction of the communication only a 
constant number of times (which is preferable for theoret- 
ical as well as practical reasons), but unfortunately they 
are not zero knowledge for vyry subtle technical reasons. 

The problem of sequential vs. parallel executions of 
protocols has attracted considerable attention, and was 
dubbed “the case-where intuition fails” in the literature. 

The information B can compute as a result of his paral- 
lel interaction with 2 seems to be very specialized, and 
thus it is natural to speculate that parallel versions of 
zero knowledge protocols release only “unusable” infor- 
mation. The problem of course is how to formally distin- 
guish between “useful” and %seless” information. Our 
approximation to this notion is: 

-- 
Definition: The protocol (A, B) releases no trans- 

ferable information if it succeeds with overwhelming prob- 
NN 

ability but there is no coalition of A, B with the property 

that after polynomially many executions of @,g) it is 

possible to execute (2, B) with a non negligible probabil- 
ity of success. 

In other words, transferable information enables g 
to repeat A’s proof to someone else. This is the most 

natural use of the information that 2 may inadvertantly 
reveal in his proof, and its absence is a certain indication 



of cryptographic strength. In the context of identifica- 
tion schemes this can be viewed as the formal definition 
of security, and thus the following result proves that the 
parallel version of our identification scheme (which is not 
zero knowledge) is provably secure: 

Theorem 4: If factoring is difficult,, the parallel ver- 
sion of the identification scheme releases no transferable 
information. 

In fact, we can prove a stronger result which enables 
us to turn any assumed lower bound on the complexity of 
factoring n into proven lower bounds on the complexities 

of successful 2 and & 

Theorem 5: If (x,B) can be executed with prob- 

ability E > Zskt+’ after e executions of (x,8) then n 

can be factored by a coalition of x, A, g and B in time 

0( 1 B ie + 1 2 1 /e) and constant probab’ility. 

Proof: In proofs of zero knowledge z knolys the 
secret Sj values and thus it is essenti.al to simulate its 
role by an external M with indistinguishable probabil- 
ity distribution. This simulation is possible only when 
Ic = O(log log n) and the execution of the protocol is se- 
quential. We sidestep all these complicaLtions by changing 
the goal from the computation of the Sj to the factor- 

ization of n. Since 3 does not know this factorization, it 

cannot inadvertantly leak it to i during the executions 

of (a, g), and thus 2 can join the coalition of i,B and 

L3 in their search for the factorization of n. 

Gi,ven any pair of unusually successful programs 2 

and g, we start the factorization by executing (I&g) e 
times and relaying the transcript of the communication 

to A. Since 71 itself can be used in this part and its time 

complexity 1x1 is assumed to be dominated by 1 ?; 1, these 

executions require O([ Z Ie) time. 

The possible outcomes of the executions of (Ji,B) at 
this stage can be summarized in a large boolean matrix 
H whose rows correspond to all possible choices of RA, 
its columns correspond to all the 2kt possible choices of 
RB, and its entries are 0 if B rejects 2s proof and 1 if 

B accepts 2% proof. Note that this value is well defined 
since the executions become deterministic once .RA and 
RB are chosen. 

To factor n, the coalition tries to find two l’s along 
the same row in H. They can probe H by executing 

(x, B) with properly chosen RA and RB tapes, and their 
goal is to minimize the number of probes. 

The fraction of l’s in H is at least e, but their loca- 
tions can be chosen by an adversary who knows the prob- 
ing strategy and tries to foil it. We call a row “h.eavy” if 
the fraction of l’s along it is at least e/2. Since the width 

of H is 2kt and E > 2-kt+1, a heavy row contains at least 
two 1’s. 

The obvious probing strategy uses Q(~/c~) probes in 
the following way: 

1. choose 0( l/c) random rows. 

2. Probe 0(1./e) random entries in each row. 

Since the fraction of heavy rows in H is at least s/2, 
the first step chooses at least one heavy row with constant 
probability and the second step finds two l’s along this 
row with constant probability. However, a better probing 
strategy is: 

1. Probe 0(X/&) random entries in H. 

2. After the first 1 was found, probe O(l/&) random en- 
tries along the same row. 

Since at least half the l’s in H are located in heavy 
rows, this strategy succeeds with constant probability in 
just 0( l/e) probes. Again we assume that IBI is domi- 

nated by 1 A 1, and thus the time complexity of this part 

of the algorithm is O(l 2 I/E). 

The two successes found by this probing strategy ar-c 

located in the same row, and thus 2 uses the same set 
of X’s but manages to answer two different queries. As 

shown in the proof of Theorem 3, this enables A to get 
an equality 

Yf2 * ~ Ij = AzY”~ * n Ij (mod n) 

E;=l E/‘--l .- I 

which is e.quivalent to 

(Y’/Y”)2 = f UIy (mod n) 

j 

where cj E {-l,O, +l) and not all of them are zero. 

2 s ability to compute the square root of & = 

f n 1: (mod n) does not imply that A can factor n, since 

2 was assisted by B who communicated with 71 who knew 

this square root in a protocol (a, g) which is not necessar- 
ily zero knowledge. To complete the proof we show that 
the square roots of Q which are known by 2 and computed 

by A are totally independent, and thus the coalition of x 

and 2 can factor n with probability l/2. 

Each &.rj has four square roots mod n, but only two 
of them are :known to 7i (otherwise it could have factored 

n by itself). We claim that even an infinitely powerful g 
cannot determine from the X’s and Y’s sent by x dur- 

ing the execution of (2, &) which square roots 3 actually 
uses. To prove this, consider the defining equation for Y: 

Y = R. n Sj (mod n). 
Ej=l 
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If ;;i replaces Si by one of the other three square roots, 
the Y is multiplied by one of the three non trivial square 
roots of 1. This effect can be cancelled by dividing B by 
the same square root, which leaves X = fR2(mod n) un- 
changed. Since the R’s are randomly chosen. x produces 

the same X, Y values with the same probability distribu- 
tion in both cases. This symmetry argument proves that 

x cannot leak to g during the executions of (3, %) which 
square root of Q he can compute from the Sj he knows, 
Q.E.D. 

Theorem 5 proves that the identification scheme pos- 
seses a sharp security threshold: Anyone can misrepre- 
sent himself with probability 2-kt, but no one can dou- 
ble it without factoring n. The factor of 2 is arbitrary, 
and can be replaced by any consttit larger than 1. The 
non asymptotic nature of Theorem 5 makes it possible to 
prove the practical security of schemes for fixed k and t. 

For example, when kt = 20 and the running times of 2 

and B are bounded by 2s”, ;3 cannot misrepresent itself 

with probability better than 2- 2o after 2; has verified 220 
proofs of identity unless n can be factored in 21°0 steps. 

The choice of kt = 20 can be obtained with k = 5 
keys and t = 4 iterations. The expected number of mod- 
ular multiplications per party is (k + l)t/2 = 12, which 
compares very favorably with the 1000 modular multipli- 
cations required in the RSA scheme with a 200 digit mod- 
ulus. The 2-*’ security level suffices to deter cheaters in 
most practical applications: No one will try to pay with 
a forged credit card or try to enter a restricted area with 
a forged ID badge if he knows that his probability of suc- 
cess in each attempt is only one in a million, and a failed 
attempt will have unpleasant consequences. 

An interesting modification can eliminate the pub- 
lic key directory and lead to a “keyless” identification 
scheme. It assumes that the trusted center (which knows 
the factorization of n) issues smart cards to users after 
properly checking their physical identity. No further in- 
teraction with the center is required either to generate or 
to verify proofs of identity. In this version of the scheme 
the center creates a string I which contains the user’s 
name, address, ID number, physical description, and any 
other information provers or verifiers may want to estab- 
lish. The public keys Ij are then derived pseudo randomly 
from I, and the secret square roots Sj are computed and 

stored m the card by the center. When A wants to prove 
his identity, B can derive the Ij directly from A’s claimed 
identity rather than from a public key directory. The ac- 
tual proof remains the same, and it convinces B that A 
knows the Sj that correspond to these Ii. These values 
could only be computed by the trusted center when the 
real A requested a card. This convenient scheme offers 
provable security for everyone involved: Provers cannot 
cheat verifiers, verifiers cannot later misrepresent them- 
selves as provers, and even coalitions of provers and veri- 
fiers cannot create new identities, modify existing identi- 
ties, or find out the secret factorization of n. 

More information on the practical aspects of the 

scheme and its optimized implementations can be found 
in Fiat and Shamir [1986). 
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