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Abstract. A proof of the Riemann hypothesis is obtained for zeta functions constructed in
Fourier analysis on locally compact skew–fields. The skew–fields are the algebra of quater-
nions whose coordinates are real numbers and the algebra of quaternions whose coordinates

are elements of a p–adic field for every prime p. Fourier analysis is also applied in locally
compact algebras which are finite Cartesian products of locally compact skew–fields and in
quotient spaces defined by a summation originating in the construction of Jacobian theta

functions. The Riemann hypothesis is a consequence of the maximal accretive property of a
Radon transformation relating Fourier analysis on a locally compact skew–field with Fourier
analysis on a maximal commutative subfield. The maximal accretive property of the Radon

transformation is preserved in Cartesian products but need not be preserved in quotient
spaces. A proof of the Riemann hypothesis is obtained for zeta functions constructed in quo-
tient spaces having the maximal accretive property. When the maximal accretive property

fails in a quotient space, the domain of the Radon transformation is decomposed by a symme-
try into two invariant subspaces in one of which the maximal accretive property is satisfied.

The Riemann hypothesis is proved for the zeta function generated by the quotient space. A
zeta function generated in Fourier analysis on skew–fields is constructed from the Euler zeta
function by an analogue of the duplication formula for the gamma function. A proof of the

Riemann hypothesis is obtained for the Euler zeta function.

1. Generalization of the Gamma Function

The gamma function is an analytic function of s in the complex plane with the exception
of singularities at the nonpositive integers which satisfies the recurrence relation

sΓ(s) = Γ(s+ 1).

A generalization of the gamma function is obtained with the factor of s in the recurrence
relation replaced by an arbitrary function of s which is analytic and has positive real part
in the right half–plane. The hypergeometric function theory of the gamma function is
generalized in a context which includes zeta functions.

An analytic weight function is defined as a function W (z) of z which is analytic and
without zeros in the upper half–plane.
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Hilbert spaces of functions analytic in the upper half–plane were introduced in Fourier
analysis by Hardy. The weighted Hardy space F(W ) is defined as the Hilbert space of
functions F (z) of z analytic in the upper half–plane such that the least upper bound

‖F‖2
F(W ) = sup

∫ +∞

−∞

|F (x+ iy)/W (x+ iy)|2dx

taken over all positive y is finite. The least upper bound is obtained in the limit as y
decreases to zero. The classical Hardy space is obtained when W (z) is identically one.
Multiplication by W (z) is an isometric transformation of the classical Hardy space onto
the weighted Hardy space with analytic weight function W (z).

An isometric transformation of the weighted Hardy space F(W ) into itself is defined by
taking a function F (z) of z into the function

F (z)(z − w)/(z − w−)

of z when w is in the upper half–plane. The range of the transformation is the set of
elements of the space which vanish at w. A continuous linear functional on the weighted
Hardy space F(W ) is defined by taking a function F (z) of z into its value F (w) at w
whenever w is in the upper half–plane. The function

W (z)W (w)−/[2πi(w− − z)]

of z belongs to the space when w is in the upper half–plane and acts as reproducing kernel
function for function values at w.

A Hilbert space of functions analytic in the upper half–plane which has dimension
greater than one is isometrically equal to a weighted Hardy space if an isometric transfor-
mation of the space onto the subspace of functions which vanish at w is defined by taking
F (z) into

F (z)(z − w)/(z − w−)

when w is in the upper half–plane and if a continuous linear functional is defined on the
space by taking F (z) into F (w) for w of the upper half–plane.

Examples of weighted Hardy spaces in are constructed from the Euler gamma function.
An analytic weight function

W (z) = Γ(s)

is defined by
s = 1

2 − iz.

A maximal accretive transformation is defined in the weighted Hardy space F(W ) by
taking F (z) into F (z + i) whenever the functions of z belong to the space.

A linear relation with domain and range in a Hilbert space is said to be accretive if the
sum

〈a, b〉 + 〈b, a〉 ≥ 0
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of scalar products in the space is nonnegative whenever (a, b) belongs to the graph of the
relation. A linear relation is said to be maximal accretive if it is not the proper restriction of
an accretive linear relation with domain and range in the same Hilbert space. A maximal
accretive transformation with domain and range in a Hilbert space is a transformation
which is a maximal accretive relation with domain and range in the Hilbert space.

Theorem 1. A maximal accretive transformation is defined in a weighted Hardy space
F(W ) by taking F (z) into F (z+ i) whenever the functions of z belong to the space if, and
only if, the function

W (z − 1
2 i)/W (z + 1

2 i)

of z admits an extension which is analytic and has nonnegative real part in the upper
half–plane.

Proof of Theorem 1. A Hilbert space H whose elements are functions analytic in the
upper half–plane is constructed when a maximal accretive transformation is defined in
the weighted Hardy space F(W ) by taking F (z) into F (z + i) whenever the functions of
z belong to the space. The space H is constructed from the graph of the adjoint of the
transformation which takes F (z) into F (z + i) whenever the functions of z belong to the
space.

An element
F (z) = (F+(z), F−(z))

of the graph is a pair of analytic functions of z, which belong to the space F(W ), such
that the adjoint takes F+(z) into F−(z). The scalar product

〈F (t), G(t)〉 = 〈F+(t), G−(t)〉F(W ) + 〈F−(t), G+(t)〉F(W )

of elements F (z) and G(z) of the graph is defined as the sum of scalar products in the space
F(W ). Scalar self–products are nonnegative in the graph since the adjoint of a maximal
accretive transformation is accretive.

An element K(w, z) of the graph is defined by

K+(w, z) = W (z)W (w − 1
2 i)

−/[2πi(w− + 1
2 i− z)]

and
K−(w, z) = W (z)W (w + 1

2 i)
−/[2πi(w− − 1

2 i− z)]

when w is in the half–plane
1 < iw− − iw.

The identity
F+(w + 1

2 i) + F−(w − 1
2 i) = 〈F (t),K(w, t)〉

holds for every element
F (z) = (F+(z), F−(z))
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of the graph. An element of the graph which is orthogonal to itself is orthogonal to every
element of the graph.

An isometric transformation of the graph onto a dense subspace of H is defined by
taking

F (z) = (F+(z), F−(z))

into the function
F+(z + 1

2 i) + F−(z − 1
2 i)

of z in the half–plane
1 < iz− − iz.

The reproducing kernel function for function values at w in the space H is the function

[W (z + 1
2 i)W (w − 1

2 i)
− +W (z − 1

2 i)W (w + 1
2 i)

−]/[2πi(w− − z)]

of z in the half–plane when w is in the half–plane.

Division by W (z + 1
2 i) is an isometric transformation of the space H onto a Hilbert

space L whose elements are functions analytic in the half–plane and which contains the
function

[ϕ(z) + ϕ(w)−]/[2πi(w− − z)]

of z as reproducing kernel function for function values at w when w is in the half–plane,

ϕ(z) = W (z − 1
2 i)/W (z + 1

2 i).

A Hilbert space with the same reproducing kernel functions is given an axiomatic char-
acterization in the Poisson representation [1] of functions which are analytic and have
positive real part in the upper half–plane. The argument applies to the present space L
whose elements are functions analytic in the smaller half–plane.

The function
[F (z) − F (w)]/(z − w)

of z belongs to L whenever the function F (z) of z belongs to L if w is in the smaller
half–plane. The identity

0 = 〈F (t), [G(t) −G(α)]/(t− α)〉L − 〈[F (t) − F (β)]/(t− β), G(t)〉L
−(β − α−)〈[F (t) − F (β)]/(t− β), [G(t) −G(α)]/(t− α)〉L

holds for all functions F (z) and G(z) which belong to L when α and β are in the smaller
half–plane.

An isometric transformation of the space L into itself is defined by taking a function
F (z) of z into the function

F (z) + (w − w−)[F (z) − F (w)]/(z − w)
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of z when w is in the smaller half–plane.

The same conclusion holds when w is in the upper half–plane by the preservation of the
isometric property under iterated compositions. The elements of L are functions which
have analytic extensions to the upper half–plane. The computation of reproducing kernel
functions applies when w is in the upper half–plane. The function ϕ(z) of z has an analytic
extension with nonnegative real part in the upper half–plane.

Since multiplication by W (z + 1
2 i) is an isometric transformation of the space L onto

the space H, the elements of H have analytic extensions to the upper half–plane. The
function

[W (z + 1
2 i)W (w − 1

2 i)
− +W (z − 1

2 i)W (w + 1
2 i)

−]/[2πi(w− − z)]

of z belongs to the space when w is in the upper half–plane and acts as reproducing kernel
function for function values at w.

The argument is reversed to construct a maximal accretive transformation in the weighted
Hardy space F(W ) when the function φ(z) of z admits an extension which is analytic and
has positive real part in the upper half–plane. The Poisson representation constructs a
Hilbert space L whose elements are functions analytic in the upper half–plane and which
contains the function

[φ(z) + φ(w)−]/[2πi(w− − z)]

of z as reproducing kernel function for function values at w when w is in the upper half–
plane. Multiplication by W (z + 1

2 i) acts as an isometric transformation of the space L
onto a Hilbert space H whose elements are functions analytic in the upper half–plane and
which contains the function

[W (z + 1
2 i)W (w − 1

2 i)
− +W (z − 1

2 i)W (w + 1
2 i)

−]/[2πi(w− − z)]

of z as reproducing kernel function for function values at w when w is in the upper half–
plane.

A transformation is defined in the space F(W ) by taking F (z) into F (z + i) whenever
the functions of z belong to the space. The graph of the adjoint is a space of pairs

F (z) = (F+(z), F−(z))

of elements of the space such that the adjoint takes the function F+(z) of z into the function
F−(z) of z. The graph contains

K(w, z) = (K+(w, z),K−(w, z))

with
K+(w, z) = W (z)W (w − 1

2 i)
−/[2πi(w− + 1

2 i− z)]

and
K−(w, z) = W (z)W (w + 1

2 i)
−/[2πi(w− − 1

2 i− z)]
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when w is in the half–plane
1 < iw− − iw.

The elements K(w, z) of the graph span the graph of a restriction of the adjoint. The
transformation in the space F(W ) is recovered as the adjoint of the restricted adjoint.

A scalar product is defined on the graph of the restricted adjoint so that an isometric
transformation of the graph of the restricted adjoint into the space H is defined by taking

F (z) = (F+(z), F−(z))

into
F+(z + 1

2 i) + F−(z − 1
2 i).

The identity

〈F (t), G(t)〉 = 〈F+(t), G−(t)〉F(W ) + 〈F−(t), G+(t)〉F(W )

holds for all elements
F (z) = (F+(z), F−(z))

and
G(z) = (G+(z), G−(z))

of the graph of the restricted adjoint. The restricted adjoint is accretive since scalar self–
products are nonnegative in its graph. The adjoint is accretive since the transformation
in the space F(W ) is the adjoint of its restricted adjoint.

The accretive property of the adjoint is expressed in the inequality

‖F+(t) − λ−F−(t)‖F(W ) ≤ ‖F+(t) + λF−(t)‖F(W )

for elements
F (z) = (F+(z), F−(z))

of the graph when λ is in the right half–plane. The domain of the contractive transforma-
tion which takes the function

F+(z) + λF−(z)

of z into the function
F+(z) − λ−F−(z)

of z is a closed subspace of the space F(W ). The maximal accretive property of the adjoint
is the requirement that the contractive transformation be everywhere defined for some, and
hence every, λ in the right half–plane.

Since K(w, z) belongs to the graph when w is in the half–plane

1 < iw− − iw,
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an element H(z) of the space F(W ) which is orthogonal to the domain of the accretive
transformation satisfies the identity

H(w − 1
2 i) + λH(w + 1

2 i) = 0

when w is in the upper half–plane. The function H(z) of z admits an analytic extension
to the complex plane which satisfies the identity

H(z) + λH(z + i) = 0.

A zero of H(z) is repeated with period i. Since

H(z)/W (z)

is analytic and of bounded type in the upper half–plane, the function H(z) of z vanishes
everywhere if it vanishes somewhere.

The space of elements H(z) of the space F(W ) which are solutions of the equation

H(z) + λH(z + i) = 0

for some λ in the right half–plane has dimension zero or one. The dimension is independent
of λ.

If τ is positive, multiplication by
exp(iτz)

is an isometric transformation of the space F(W ) into itself which takes solutions of the
equation for a given λ into solutions of the equation with λ replaced by

λ exp(τ).

A solution H(z) of the equation for a given λ vanishes identically since the function

exp(−iτz)H(z)

of z belongs to the space for every positive number τ and has the same norm as the function
H(z) of z.

The transformation which takes F (z) into F (z+i) whenever the functions of z belong to
the space F(W ) is maximal accretive since it is the adjoint of its adjoint, which is maximal
accretive.

This completes the proof of the theorem.

The theorem has no equivalent formulation. A maximal accretive transformation is
defined in a weighted Hardy space F(W ) for some real number h by taking F (z) into
F (z + ih) whenever the functions of z belong to the space if, and only if, the function

W (z + 1
2 ih)/W (z − 1

2 ih)
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of z admits an extension which is analytic and has nonnegative real part in the upper
half–plane.

Another theorem is obtained in the limit of small h. A maximal accretive transformation
is defined in a weighted Hardy space F(W ) by taking F (z) into iF ′(z) whenever the
functions of z belong to the space if, and only if, the function

iW ′(z)/W (z)

of z has nonnegative real part in the upper half–plane. The proof of the theorem is similar
to the proof of Theorem 1. A maximal accretive transformation is defined in a weighted
Hardy space F(W ) by taking F (z) into iF ′(z) whenever the functions of z belong to the
space if, and only if, the modulus of W (x + iy) is a nondecreasing function of positive y
for every real number x.

An Euler weight function is defined as an analytic weight function W (z) such that a
maximal accretive transformation is defined in the weighted Hardy space F(W ) whenever
h is in the interval [−1, 1] by taking F (z) into F (z+ ih) whenever the functions of z belong
to the space.

If a function φ(z) of z is analytic and has positive real part in the upper half–plane, a
logarithm of the functions is defined continuously in the half–plane with values in the strip
of width π centered on the real line. The inequalities

−π ≤ i log φ(z)− − i log φ(z) ≤ π

are satisfied. A function φh(z) of z which is analytic and has nonnegative real part in the
upper half–plane is defined when h is in the interval (−1, 1) by the integral

log φh(z) = sin(πh)

∫ +∞

−∞

log φ(z − t)dt

cos(2πit) + cos(πh)
.

An application of the Cauchy formula in the upper half–plane shows that the function

sin(πh)

cos(2πiz) + cos(πh)
=

∫ +∞

−∞

exp(2πitz)
exp(πht− exp(−πht)
exp(πt) − exp(−πt) dt

of z is the Fourier transform of a function

exp(πht) − exp(−πht)
exp(πt) − exp(−πt)

of positive t which is square integrable with respect to Lebesgue measure and is bounded
by h when h is in the interval (0, 1).

The identity
φ−h(z) = φh(z)−1
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is satisfied. The function
φ(z) = limφh(z)

of z is recovered in the limit as h increases to one. The identity

φa+b(z) = φa(z − 1
2 ib)φb(z + 1

2 ia)

when a, b, and a + b belong to the interval (−1, 1) is a consequence of the trigonometric
identity

sin(πa+ πb)

cos(2πiz) + cos(πa+ πb)

=
sin(πa)

cos(2πiz + πb) + cos(πa)
+

sin(πb)

cos(2πiz − πa) + cos(πb)
.

An Euler weight function W (z) is defined within a constant factor by the limit

iW ′(z)/W (z) = lim
log φh(z)

h
= π

∫ +∞

−∞

log φ(z − t)dt

1 + cos(2πit)
.

as h decreases to zero. The identity

W (z + 1
2 ih) = W (z − 1

2 ih)φh(z)

applies when h is in the interval (−1, 1). The identity reads

W (z + 1
2 i) = W (z − 1

2 i)φ(z)

in the limit as h increases to one.

An Euler weight function W (z) is constructed which satisfies the identity

W (z + 1
2 i) = W (z − 1

2 i)φ(z)

for a given nontrivial function φ(z) of z which is analytic and has nonnegative real part in
the upper half–plane.

If a maximal accretive transformation is defined in a weighted Hardy space F(W ) by
taking F (z) into F (z+i) whenever the functions of z belong to the space, then the identity

W (z + 1
2 i) = W (z − 1

2 i)φ(z)

holds for a function φ(z) of z which is analytic and has nonnegative real part in the upper
half–plane. The analytic weight function W (z) is the product of an Euler weight function
and an entire function which is periodic of period i and has no zeros.

If W (z) is an Euler weight function, the maximal accretive transformation defined for h
in the interval [0, 1] by taking F (z) into F (z+ih) whenever the functions of z belong to the
space F(W ) is subnormal: The transformation is the restriction to an invariant subspace
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of a normal transformation in the larger Hilbert space H of (equivalence classes of) Baire
functions F (x) of real x for which the integral

‖F‖2 =

∫ +∞

−∞

|F (t)/W (t)|2dt

converges. The passage to boundary value functions maps the space F(W ) isometrically
into the space H.

For given h the function

φ(z) = W (z + 1
2 ih)/W (z − 1

2 ih)

of z is analytic and has nonnegative real part in the upper half–plane. A transformation
T is defined to take F (z) into F (z + ih) whenever the functions of z belong to the space
F(W ). A transformation S is defined to take F (z) into

ϕ(z + 1
2 ih)F (z)

whenever the functions of z belong to the space F(W ). The adjoint

T ∗ = S−1TS∗

of T is computable from the adjoint S∗ of S on a dense subset of the space F(W ) containing
the reproducing kernel functions for function values. The transformation T−1ST takes
F (z) into

ϕ(z − 1
2 ih)F (z)

on a dense set of elements F (z) of the space F(W ). The transformation T−1T ∗ is the re-
striction of a contractive transformation of the space F(W ) into itself. The transformation
takes F (z) into G(z) when the boundary value function G(x) is the orthogonal projection
of

F (x)φ(x− 1
2 ih)

−/φ(x− 1
2 ih)

in the image of the space F(W ).

An isometric transformation of the space H onto itself is defined by taking a function
F (x) of real x into the function

F (x)φ(x− 1
2 ih)

−/ϕ(x− 1
2 ih)

of real x. A dense set of elements of H are products

exp(−iax)F (x)

for nonnegative numbers a with F (x) the boundary value function of a function F (z) of z
which belongs to the space F(W ). A normal transformation is defined in the space H as
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the closure of a transformation which is computed on such elements. The transformation
takes the function

exp(−iax)F (x)

of real x into the function
exp(−iah) exp(−iax)G(x)

of real x for every nonnegative number a when F (z) and

G(z) = F (z + ih)

are functions of z in the upper half–plane which belong to the space F(W ).

This completes the verification of subnormality for the maximal accretive transforma-
tion.

An entire function E(z) of z is said to be of Hermite class if it has no zeros in the
upper half–plane and if the modulus of E(x + iy) is a nondecreasing function of positive
y for every real number x. The Hermite class is also known as the Pólya class. Entire
functions of Hermite class are limits of polynomials having no zeros in the upper half–plane
[1]. Such polynomials appear in the Stieltjes representation of positive linear functions on
polynomials.

A linear functional on polynomials with complex coefficients is said to be nonnegative
if it has nonnegative values on polynomials whose values on the real axis are nonnegative.
A positive linear functional on polynomials is a nonnegative linear functional on polyno-
mials which does not vanish identically. A nonnegative linear functional on polynomials is
represented as an integral with respect to a nonnegative measure µ on the Baire subsets
of the real line. The linear functional takes a polynomial F (z) into the integral

∫

F (t)dµ(t).

Stieltjes examines the action of a positive linear functional on polynomials of degree
less than r for a positive integer r. A polynomial which has nonnegative values on the real
axis is a product

F ∗(z)F (z)

of a polynomial F (z) and the conjugate polynomial

F ∗(z) = F (z−)−.

If the positive linear functional does not annihilate

F ∗(z)F (z)

for any nontrivial polynomial F (z) of degree less than r, a Hilbert space exists whose
elements are the polynomials of degree less than r and whose scalar product

〈F (t), G(t)〉
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is defined as the action of the positive linear functional on the polynomial

G∗(z)F (z).

Stieltjes shows that the Hilbert space of polynomials of degree less than r is contained
isometrically in a weighted Hardy space F(W ) whose analytic weight function W (z) is a
polynomial of degree r having no zeros in the upper half–plane.

An axiomatization of the Stieltjes spaces is stated in a general context [1]. Hilbert
spaces are examined whose elements are entire functions and which have these properties:

(H1) Whenever an entire function F (z) of z belongs to the space and has a nonreal zero
w, the entire function

F (z)(z − w−)/(z − w)

of z belongs to the space and has the same norm as F (z).

(H2) A continuous linear functional on the space is defined by taking a function F (z)
of z into its value F (w) at w for every nonreal number w.

(H3) The entire function
F ∗(z) = F (z−)−

of z belongs to the space and has the same norm as F (z) whenever the entire function
F (z) of z belongs to the space.

An example of a Hilbert space of entire functions which satisfies the axioms is obtained
when an entire function E(z) of z satisfies the inequality

|E(x− iy)| < |E(x+ iy)|

for all real x when y is positive. A weighted Hardy space F(W ) is defined with analytic
weight function

W (z) = E(z).

A Hilbert space H(E) which is contained isometrically in the space F(W ) is defined as the
set of entire functions F (z) of z such that the entire functions F (z) and F ∗(z) of z belong
to the space F(W ). The entire function

[E(z)E(w)− − E∗(z)E(w−)]/[2πi(w− − z)]

of z belongs to the space H(E) for every complex number w and acts as reproducing kernel
function for function values at w.

A Hilbert space H of entire functions which satisfies the axioms (H1), (H2), and (H3)
is isometrically equal to a space H(E) if it contains a nonzero element. The proof applies
reproducing kernel functions which exist by the axiom (H2).

For every nonreal number w a unique entire function K(w, z) of z exists which belongs
to the space and acts as reproducing kernel function for function values at w. The function
does not vanish identically since the axiom (H1) implies that some element of the space
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has a nonzero value at w when some element of the space does not vanish identically.
The scalar self–product K(w,w) of the function K(w, z) of z is positive. The axiom (H3)
implies the symmetry

K(w−, z) = K(w, z−)−.

If λ is a nonreal number, the set of elements of the space which vanish at λ is a Hilbert
space of entire functions which is contained isometrically in the given space. The function

K(w, z) −K(w, λ)K(λ, λ)−1K(λ, z)

of z belongs to the subspace and acts as reproducing kernel function for function values at
w. The identity

[K(w, z) −K(w, λ)K(λ, λ)−1K(λ, z)](z − λ−)(w− − λ)

= [K(w, z) −K(w, λ−)K(λ−, λ−)−1K(λ−, z)](z − λ)(w− − λ−)

is a consequence of the axiom (H1).

An entire function E(z) of z exists such that the identity

K(w, z) = [E(z)E(w)− − E∗(z)E(w−)]/[2πi(w− − z)]

holds for all complex z when w is not real. The entire function can be chosen with a zero
at λ when λ is in the lower half–plane. The function is then unique within a constant
factor of absolute value one. A space H(E) exists and is isometrically equal to the given
space H.

Examples [1] of Hilbert spaces of entire functions which satisfy the axioms (H1), (H2),
and (H3) are constructed from the analytic weight function

W (z) = aizΓ( 1
2 − iz)

for every positive number a. The space is contained isometrically in the weighted Hardy
space F(W ) and contains every entire function F (z) such that the functions F (z) and
F ∗(z) of z belong to the space F(W ). The space of entire functions is isometrically equal
to a space H(E) whose defining function E(z) is a confluent hypergeometric function
[1]. Properties of the space motivate the definition of a class of Hilbert spaces of entire
functions.

An Euler space of entire functions is a Hilbert space of entire functions which satisfies
the axioms (H1), (H2), and (H3) such that a maximal accretive transformation is defined
in the space for every h in the interval [−1, 1] by taking F (z) into F (z+ ih) whenever the
functions of z belong to the space.

Theorem 2. A maximal accretive transformation is defined in a Hilbert space H(E) of
entire functions for a real number h by taking F (z) into F (z + ih) whenever the functions
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of z belong to the space if, and only if, a Hilbert space H of entire functions exists which
contains the function

[E(z + 1
2 ih)E(w − 1

2 ih)
− − E∗(z + 1

2 ih)E(w− + 1
2 ih)]/[2πi(w

− − z)]

+ [E(z − 1
2 ih)E(w + 1

2 ih)
− − E∗(z − 1

2 ih)E(w− − 1
2 ih)]/[2πi(w

− − z)]

of z as reproducing kernel function for function values at w for every complex number w.

Proof of Theorem 2. The space H is constructed from the graph of the adjoint of the
transformation which takes F (z) into F (z + ih) whenever the functions of z belong to the
space. An element

F (z) = (F+(z), F−(z))

of the graph is a pair of entire functions of z, which belong to the space H(E), such that
the adjoint takes F+(z) into F−(z). The scalar product

〈F (t), G(t)〉 = 〈F+(t), G−(t)〉H(E) + 〈F−(t), G+(t)〉H(E)

of elements F (z) and G(z) of the graph is defined as a sum of scalar products in the
space H(E). Scalar self–products are nonnegative since the adjoint of a maximal accretive
transformation is accretive.

An element
K(w, z) = (K+(w, z),K−(w, z))

of the graph is defined for every complex number w by

K+(w, z) = [E(z)E(w − 1
2 ih)

− − E∗(z)E(w− + 1
2 ih)]/[2πi(w

− + 1
2 ih− z)]

and

K−(w, z) = [E(z)E(w + 1
2 ih)

− − E∗(z)E(w− − 1
2 ih)]/[2πi(w

− − 1
2 ih− z)].

The identity
F+(w + 1

2 ih) + F−(w − 1
2 ih) = 〈F (t),K(w, t)〉

holds for every element
F (z) = (F+(z), F−(z))

of the graph. An element of the graph which is orthogonal to itself is orthogonal to every
element of the graph.

A partially isometric transformation of the graph onto a dense subspace of the space H
is defined by taking

F (z) = (F+(z), F−(z))

into the entire function
F+(z + 1

2 ih) + F−(z − 1
2 ih)
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of z. The reproducing kernel function for function values at w in the space H is the function

[E(z + 1
2 ih)E(w − 1

2 ih)
− − E∗(z + 1

2 ih)E(w− + 1
2 ih)]/[2πi(w

− − z)]

+ [E(z − 1
2 ih)E(w + 1

2 ih)
− − E∗(z − 1

2 ih)E(w− − 1
2 ih)]/[2πi(w

− − z)]

of z for every complex number w.

This completes the construction of a Hilbert space H of entire functions with the desired
reproducing kernel functions when the maximal accretive transformation exists in the space
H(E). The argument is reversed to construct the maximal accretive transformation in the
space H(E) when the Hilbert space of entire functions with the desired reproducing kernel
functions exists.

A transformation is defined in the space H(E) by taking F (z) into F (z + ih) whenever
the functions of z belong to the space. The graph of the adjoint is a space of pairs

F (z) = (F+(z), F−(z))

such that the adjoint takes the function F+(z) of z into the function F−(z) of z. The graph
contains

K(w, z) = (K+(w, z),K−(w, z))

with

K+(w, z) = [E(z)E(w − 1
2 ih)

− − E∗(z)E(w− + 1
2 ih)]/[2πi(w

− + 1
2 ih− z)]

and

K−(w, z) = [E(z)E(w + 1
2 ih)

− − E∗(z)E(w− − 1
2 ih)]/[2πi(w

− − 1
2 ih− z)]

for every complex number w. The elements K(w, z) of the graph span the graph of a
restriction of the adjoint. The transformation in the space H(E) is recovered as the adjoint
of its restricted adjoint.

A scalar product is defined on the graph of the restricted adjoint so that an isometric
transformation of the graph of the restricted adjoint into the space H is defined by taking

F (z) = (F+(z), F−(z))

into

F+(z + 1
2 ih) + F−(z − 1

2 ih).

The identity

〈F (t), G(t)〉 = 〈F+(t), G−(t)〉H(E) + 〈F−(t), G+(t)〉H(E)

holds for all elements

F (z) = (F+(z), F−(z))
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of the graph of the restricted adjoint. The restricted adjoint is accretive since scalar self–
products are nonnegative in its graph. The adjoint is accretive since the transformation
in the space H(E) is the adjoint of its restricted adjoint.

The accretive property of the adjoint is expressed in the inequality

‖F+(t) − λ−F−(t)‖H(E) ≤ ‖F+(t) + λF−(t)‖H(E)

for elements
F (z) = (F+(z), F−(z))

of the graph when λ is in the right half–plane. The domain of the contractive transforma-
tion which takes the function

F+(z) + λF−(z)

of z into the function
F+(z) − λ−F−(z)

of z is a closed subspace of the space H(E). The maximal accretive property of the adjoint
is the requirement that the contractive transformation be everywhere defined for some,
and hence every, λ in the right half–plane.

Since K(w, z) belongs to the graph for every complex number w, an entire function
H(z) of z which belongs to the space H(E) and is orthogonal to the domain is a solution
of the equation

H(z) + λH(z + i) = 0.

The function vanishes identically if it has a zero since zeros are repeated periodically with
period i and since the function

H(z)/E(z)

of z is of bounded type in the upper half–plane. The space of solutions has dimension zero
or one. The dimension is zero since it is independent of λ.

The transformation which takes F (z) into F (z+ ih) whenever the functions of z belong
to the space H(E) is maximal accretive since it is the adjoint of its adjoint, which is
maximal accretive.

This completes the proof of the theorem.

The defining function E(z) of an Euler space of entire functions is of Hermite class since
the function

E(z − 1
2 ih)/E(z + 1

2 ih)

of z is of bounded type and of nonpositive mean type in the upper half–plane when h is
in the interval (0, 1). Since the function is bounded by one on the real axis, it is bounded
by one in the upper half–plane. The modulus of E(x+ iy) is a nondecreasing function of
positive y for every real x. An entire function F (z) of z which belongs to the space H(E)
is of Hermite class if it has no zeros in the upper half–plane and if the inequality

|F (x− iy)| ≤ |F (x+ iy)|
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holds for all real x when y is positive.

In a given Stieltjes space H(E) multiplication by z is the transformation which takes
F (z) into zF (z) whenever the functions of z belong to the space. Multiplication by z
need not be a densely defined transformation in the space, but if it is not, the orthogonal
complement of the domain of multiplication by z has dimension one. If E(z) = Λ(z)−iB(z)
for entire functions A(z) and B(z) of z which are real for real z, an entire function

S(z) = A(z)u+B(z)v

of z which belongs to the orthogonal complement of the domain of multiplication by z is
a linear combination of A(z) and B(z) with complex coefficients u and v. This result is a
consequence of the identity

[K(w, z)S(w) −K(w,w)S(z)]/(z − w) = [K(w−, z)S(w−) −K(w−, w−)S(z)]/(z − w−)

which characters functions S(z) of z which belong to the space and are linear combinations
of u and v. The identity

v−u = u−v

is then satisfied.

When multiplication by z is not densely defined in a Stieltjes space with defining function

E(b, z) = A(b, z) − iB(b, z)

and when the domain of multiplication by z contains a nonzero element, the closure of the
domain of multiplication by z is a Stieltjes space with defining function

E(a, z) = A(a, z) − iB(a, z)

which is contained isometrically in the given space. The defining function can be chosen
so that the matrix equation

(A(b, z), B(b, z)) = (A(a, z), B(a, z))

(

1 − πuv−z πuu−z
−πvv−z 1 + πvu−z

)

holds for complex numbers u and v such that

v−u = u−v.

A Stieltjes space of dimension r whose elements are the polynomials of degree less than
r has a polynomial

E(r, z) = A(r, z) − iB(z, z)

of degree r as defining function. A Stieltjes space of dimension n whose elements are the
polynomials of degree n and which is contained isometrically in the given space exists for
every positive integer n less than r. The defining function

E(n, z) = A(n, z) − iB(n, z)
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of the space can be chosen so that the matrix equation

(A(n+ 1, z), B(n+ 1, z)) = (A(n, z), B(n, z))

(

1 − πunv
−
n z πunu

−
n z

−πvnv
−
n z 1 + πvnu

−

1 z

)

is satisfied. The initial defining function can be chosen so that the equation hold when n
is zero with

(A(0, z), B(0, z)) = (1, 0).

A Stieltjes space with defining function

E(t, z) = (n+ 1 − t)E(n+ 1, z) + (t− n)E(n, z)

exists when n ≤ t ≤ n+ 1. The space is contained contractively in the Stieltjes space with
defining function E(n + 1, z) and contains isometrically the Stieltjes space with defining
function E(n, z).

A nondecreasing metric function

m(t) =

(

α(t) β(t)
β(t) γ(t)

)

of t in the interval [0, r] is defined by

m(0) =

(

1 0
0 1

)

and

m(n+ 1) −m(n) =

(

πunu
−
n πvnu

−
n

πvnu
−
n πvnv

−
n

)

for every nonnegative integer n less than r, and

m(t) = (n+ 1 − t)m(n+ 1) + (t− n)m(n)

when n < t < n+ 1.

The differential equation

(A′(t, z), B′(t, z))I = z(A(t, z), B(t, z))m′(t)

is satisfied when t is in an interval (n, n+1) with the prime indicating differentiation with
respect to t and

I =

(

0 −1
1 0

)

.

Since A(t, z) and B(t, z) are continuous functions of t, the integral equation

(A(b, z), B(b, z))I − (A(a, z), B(a, z))I = z

∫ b

a

(A(t, z), B(t, z))dm(t)
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is satisfied when a and b are in the interval [0, r].

The integral equation for Stieltjes spaces of finite dimension admits a generalization to
Stieltjes spaces of infinite dimension. The generalization applies a continuous function of
positive t whose values are matrices

m(t) =

(

α(t) β(t)
β(t) γ(t)

)

with real entries such that the matrix inequality

m(a) ≤ m(b)

holds when a is less than b. It is assumed that α(t) is positive when t is positive, that

limα(t) = 0

as t decreases to zero, and that the integral

∫ 1

0

α(t)dγ(t)

is finite.

The matrix

I =

(

0 −1
1 0

)

is applied in the formulation of the integral equation. When a is positive, the integral
equation

M(a, b, z)I − I = z

∫ b

a

M(a, t, z)dm(t)

admits a unique continuous solution

M(a, b, z) =

(

A(a, b, z) B(a, b, z)
C(a, b, z) D(a, b, z)

)

as a function of b greater than or equal to a for every complex number z. The entries of
the matrix are entire functions of z which are self–conjugate and of Hermite class for every
b. The matrix has determinant one. The identity

M(a, c, z) = M(a, b, z)M(b, c, z)

holds when a ≤ b ≤ c.

A bar is used to denote the conjugate transpose

M− =

(

A− C−

B− D−

)
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of a square matrix

M =

(

A B
C D

)

with complex entries and also for the conjugate transpose

c− = (c−+, c
−

−)

of a column vector

c =

(

c+
c−

)

with complex entries. The space of column vectors with complex entries is a Hilbert space
of dimension two with scalar product

〈u, v〉 = v−u = v−+u+ + v−−u−.

When a and b are positive with a less than or equal to b, a unique Hilbert space
H(M(a, b)) exists whose elements are pairs

F (z) =

(

F+(z)
F−(z)

)

of entire functions of z such that a continuous transformation of the space into the Hilbert
space of column vectors is defined by taking F (z) into F (w) for every complex number w
and such that the adjoint takes a column vector c into the element

[M(a, b, z)IM(a, b, w)− − I]c/[2π(z − w−)]

of the space.

An entire function
E(c, z) = A(c, z) − iB(c, z)

of z which is of Hermite class exists for every positive number c such that the self–conjugate
entire functions A(c, z) and B(c, z) satisfy the identity

(A(b, z), B(b, z)) = (A(a, z), B(a, z))M(a, b, z)

when a is less than or equal to b and such that the entire functions

E(c, z) exp[β(c)z]

of z converge to one uniformly on compact subsets of the complex plane as c decreases to
zero.

A space H(E(c)) exists for every positive number c. The space H(E(a)) is contained
contractively in the space H(E(b)) when a is less than or equal to b. The inclusion is
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isometric on the orthogonal complement in the space H(E(a)) of the elements which are
linear combinations

A(a, z)u+B(a, z)v

with complex coefficients u and v. These elements form a space of dimension zero or one
since the identity

v−u = u−v

is satisfied.

A positive number b is said to be singular with respect to the function m(t) of t if it
belongs to an interval (a, c) such that equality holds in the inequality

[β(c) − β(a)]2 ≤ [α(c) − α(a)][γ(c) − γ(a)]

with m(b) unequal to m(a) and unequal to m(c). A positive number is said to be regular
with respect to m(t) if it is not singular with respect to the function of t.

If a and c are positive numbers such that a is less than c and if an element b of the interval
(a, c) is regular with respect to m(t), then the space H(M(a, b)) is contained isometrically
in the space H(M(a, c)) and multiplication by M(a, b, z) is an isometric transformation
of the space H(M(b, c)) onto the orthogonal complement of the space H(M(a, b)) in the
space H(M(a, c)).

If a and b are positive numbers such that a is less than b and if a is regular with respect
to m(t), then the space H(E(a)) is contained isometrically in the space H(E(b)) and an
isometric transformation of the space H(M(a, b)) onto the orthogonal complement of the
space H(E(a)) in the space H(E(b)) is defined by taking

(

F+(z)
F−(z)

)

into √
2 [A(a, z)F+(z) +B(a, z)F−(z)].

A function τ(t) of positive t with real values exists such that the function

m(t) + Iih(t)

of positive t with matrix values is nondecreasing for a function h(t) of t with real values
if, and only if, the functions

τ(t) − h(t)

and
τ(t) + h(t)

of positive t with real values are nondecreasing. The function τ(t) of t, which is continuous
and nondecreasing, is called a greatest nondecreasing function such that

m(t) + Iiτ(t)
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is nondecreasing. The function is unique within an added constant.

If a and b are positive numbers such that a is less than b, multiplication by

exp(ihz)

is a contractive transformation of the space H(E(a)) into the space H(E(b)) for a real
number h, if, and only if, the inequalities

τ(a) − τ(b) ≤ h ≤ τ(b) − τ(a)

are satisfied. The transformation is isometric when a is regular with respect to m(t).

An analytic weight function W (z) may exist such that multiplication by

exp(iτ(c)z)

is an isometric transformation of the space H(E(c)) into the weighted Hardy space F(W )
for every positive number c which is regular with respect to m(t). The analytic weight
function is unique within a constant factor of absolute value one if the function

α(t) + γ(t)

of positive t is unbounded in the limit of large t. The function

W (z) = limE(c, z) exp(iτ(c)z)

can be chosen as a limit as c increases to infinity uniformly on compact subsets of the
upper half–plane.

If multiplication by
exp(iτz)

is an isometric transformation of a space H(E) into the weighted Hardy space F(W ) for
some real number τ and if the space H(E) contains an entire function F (z) whenever
its product with a nonconstant polynomial belongs to the space, then the space H(E) is
isometrically equal to the space H(E(c)) for some positive number c which is regular with
respect to m(t).

A construction of Euler spaces of entire functions is made from Euler weight functions
when a hypothesis is satisfied.

Theorem 3. If for some real number τ a nontrivial entire function F (z) of z exists such
that the functions

exp(iτz)F (z)

and
exp(iτz)F ∗(z)
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of z belong to the weighted Hardy space F(W ) of an Euler weight function W (z), then an
Euler space of entire functions exists such that multiplication by exp(iτz) is an isometric
transformation of the space into the weighted Hardy space and such that the space contains
every entire function F (z) of z such that the functions

exp(iτz)F (z)

and
exp(iτz)F ∗(z)

of z belong to the weighted Hardy space.

Proof of Theorem 3. The set of entire functions F (z) such that the functions

exp(iτz)F (z)

and
exp(iτz)F ∗(z)

of z belong to the weighted Hardy space is a vector space with scalar product determined by
the isometric property of multiplication as a transformation of the space into the weighted
Hardy space. The space is shown to be a Hilbert space by showing that a Cauchy sequence
of elements Fn(z) of the space converge to an element F (z) of the space.

Since the elements
exp(iτz)Fn(z)

and
exp(iτz)F ∗

n(z)

of the weighted Hardy space form Cauchy sequences, a function F (z) of z which is analytic
separately in the upper half–plane and the lower half–plane exists such that the limit
functions

exp(iτz)F (z) = lim exp(iτz)Fn(z)

and
exp(iτz)F ∗(z) = lim exp(iτz)F ∗

n(z)

of z belong to the weighted Hardy space. Since

|z − z−| 12 exp(iτz)F (z)/W (z) = lim |z − z−| 12 exp(iτz)Fn(z)/W (z)

and
|z − z−| 12 exp(iτz)F ∗(z)/W (z) = lim |z − z−| 12 exp(iτz)F ∗

n(z)/W (z)

uniformly in the upper half–plane and since the functions

log |Fn(z)/W (z)|
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and
log |F ∗

n(z)/W (z)|
of z are subharmonic in the half–plane

−1 < iz− − iz,

the convergence of
F (z) = limFn(z)

is uniform on compact subsets of the complex plane. The limit function F (z) of z is
analytic in the complex plane.

A Hilbert space of entire functions which satisfies the axioms (H1), (H2), and (H3) is
obtained such that multiplication by exp(iτz) is an isometric transformation of the space
into the weighted Hardy space. Since the space contains a nonzero element by hypothesis,
it is isometrically equal to a space H(E).

The space is shown to be an Euler space of entire functions by showing that a maximal
accretive transformation is defined in the space for h in the interval [−1, 1] by taking F (z)
into F (z + ih) whenever the functions of z belong to the space. The accretive property of
the transformation is a consequence of the accretive property in the weighted Hardy space.

Maximality is proved by showing that every element of the space is a sum

F (z) + F (z + ih)

of functions F (z) and F (z + ih) of z which belong to the space.

Since a maximal accretive transformation exists in the weighted Hardy space, every
element of the Hilbert space of entire functions is in the upper half–plane a sum

F (z) + F (z + ih)

of functions F (z) and F (z + ih) of z such that the functions

exp(iτz)F (z)

and
exp(iτz)F (z + ih)

of z belong to the weighted Hardy space. The function F (z) of z admits an analytic
continuation to the complex plane. The decomposition applies for all complex z.

The entire function
F ∗(z) + F ∗(z − ih)

of z belongs to the Hilbert space of entire functions since the space satisfies the axiom
(H3). An entire function G(z) of z exists such that

F ∗(z) + F ∗(z − ih) = G(z) +G(z + ih)
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and such that the functions
exp(iτz)G(z)

and
exp(iτz)G(z + ih)

of z belong to the weighted Hardy space.

Vanishing of the entire function

F ∗(z) −G(z + ih) = G(z) − F ∗(z − ih)

of z implies the desired conclusion that the functions F (z) and F (z + ih) of z as well
as the functions G(z) and G(z + ih) of z belong to the Hilbert space of entire functions.
Vanishing is proved by showing boundedness of the function in the strip

−2h < iz− − iz < 0

since the function is periodic of period 2ih with modulus which is periodic of period ih.

It can be assumed that the functions

exp(iτz)F (z)

and
exp(iτz)G(z)

of z are elements of norm at most one in the weighted Hardy space. The inequalities

2π|F (z)|2 ≤ | exp(−iτz)W (z)|2/(iz− − iz)

and
2π|G(z)|2 ≤ | exp(−iτz)W (z)|2/(iz− − iz)

apply when z is in the upper half–plane. Since the inequalities

2π|F ∗(z)|2 ≤ | exp(iτz)W ∗(z)|2/(iz − iz−)

and
2π|G(z + ih)|2 ≤ exp(2πh)| exp(−iτz)W (z + ih)|2/(2h+ iz− − iz)

apply when z is in the strip, the inequality

π|F ∗(z) −G(z + ih)|2 ≤ | exp(iτz)W ∗(z)|2/(iz − iz−)

+ exp(2πh)| exp(−iτz)W (z + ih)|2/(2h+ iz− − iz)

applies when z is in the strip.

Boundedness of the entire function

F ∗(z) −G(z + ih)
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of z in the complex plane follows from the subharmonic property of the logarithm of its
modulus. The entire function is a constant which vanishes because of the identity

F ∗(z) −G(z + ih) = G(z) − F ∗(z − ih).

This completes the proof of the theorem.

The hypotheses of the theorem are satisfied by an Euler weight function W (z) which
satisfies the identity

W (z + 1
2 i) = W (z − 1

2 i)ϕ(z)

for a function φ(z) of z which is analytic and has nonnegative real part in the upper
half–plane if logφ(z) has nonnegative real part in the upper half–plane. The modulus of
W (x+ iy) is then a nondecreasing function of positive y for every real x.

Since the weight function can be multiplied by a constant, it can be assumed to have
value one at the origin. The phase ψ(x) is defined as the continuous function of real x
with value zero at the origin such that

exp(iψ(x))W (x)

is positive for all real x. The phase function is a nondecreasing function of real x which is
identically zero if it is constant in any interval.

When the phase function vanishes identically, the modulus of W (x + iy) is a constant
as a function of positive y for every real x. The weight function is then the restriction
of a self–conjugate entire function of Pólya class. For every positive number τ an entire
function

F (z) = W (z) sin(τz)/z

is obtained such that the functions

exp(iτz)F (z)

and
exp(iτz)F ∗(z)

of z belong to the space F(W ). No nonzero entire function F (z) exists such that the
functions F (z) and F ∗(z) belong to the space F(W ).

When the phase function does not vanish identically, an entire function E(z) of Hermite
class which has no real zeros exists such that E(x) is real for a real number x if, and only
if, ψ(x) is an integral multiple of π, and then

exp(iψ(x))E(x)

is positive. Such an entire function is unique within a factor of a self–conjugate entire
function of Hermite class. The factor is chosen so that the function

E(z)/W (z)
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of z has nonnegative real part in the upper half–plane. The entire functions E(z) and
E∗(z) are linearly independent. A nontrivial entire function

F (z) = [E(z) − E∗(z)]/z

is obtained such that the functions F (z) and F ∗(z) of z belong to the space F(W ).

The same conclusions are obtained under a weaker hypothesis.

Theorem 4. If an Euler weight function W (z) satisfies the identity

W (z + 1
2 i) = W (z − 1

2 i)φ(z)

for a function φ(z) of z which is analytic and has nonnegative real part in the upper half–
plane such that

σ(z) + log φ(z)

has nonnegative real part in the upper half–plane for a function σ(z) of z which is analytic
and has nonnegative real part in the upper half–plane such that the least upper bound

sup

∫ +∞

−∞

Rσ(x+ iy)dx

taken over all positive y is finite, then for every positive number τ a nontrivial entire
function F (z) exists such that the functions

exp(iτz)F (z)

and
exp(iτz)F ∗(z)

of z belong to the weighted Hardy space F(W ).

Proof of Theorem 4. It can be assumed that the symmetry condition

σ∗(z) = σ(−z)

is satisfied since otherwise σ(z) can be replaced by σ(z)+σ∗(−z). When h is in the interval
(0, 1), the integral

log φh(z) = sin(πh)

∫ +∞

−∞

log φ(z − t)dt

cos(2πit) + cos(πh)

defines a function φh(z) of z which is analytic and has nonnegative real part in the upper
half–plane such that

W (z + 1
2 ih) = W (z − 1

2 ih)φh(z).
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The integral

Rσh(z) = sin(πh)

∫ +∞

−∞

Rσ(z − t)dt

cos(2πit) + cos(πh)

and the symmetry condition
σ∗

h(z) = σh(−z)

define a function σh(z) which is analytic and has nonnegative real part in the upper half–
plane. The function

σh(z) + log φh(z)

of z has nonnegative real part in the upper half–plane since the function

σ(z) + log φ(z)

has nonnegative real part in the upper half–plane by hypothesis.

An analytic weight function U(z) which admits an analytic extension without zeros to
the half–plane iz− − iz > −1 is defined within a constant factor by the identity

logU(z + 1
2 ih) − logU(z − 1

2 ih) = σh(z)

for h in the interval (0, 1) and by the symmetry

U∗(z) = U(−z).

The analytic weight function
V (z) = U(z)W (z)

has an analytic extension without zeros to the half–plane iz− − iz > −1. The modulus of
U(x+ iy) and the modulus of V (x+ iy) are nondecreasing functions of positive y for every
real x.

Since
∂

∂y
log |U(x+ iy)| = π

∫ +∞

−∞

Rσ(x+ iy − t)dt

1 + cos(2πit)

the integral
∫ +∞

−∞

∂

∂y
log |U(x+ iy)|dx =

∫ +∞

−∞

Rσ(x+ iy)dx

is a bounded function of positive y. The phase ψ(x) is the continuous, nondecreasing, odd
function of real x such that

exp(iψ(x))U(x)

is positive for all real x. Since

∂

∂y
log |U(x+ iy)| =

y

π

∫ +∞

−∞

dψ(t)

(t− x)2 + y2
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when y is positive, the inequality

ψ(b) − ψ(a) ≤ sup

∫ +∞

−∞

Rσ(x+ iy)dx

holds when a is less than b with the least upper bound taken over all positive y.

The remaining arbitrary constant in U(z) is chosen so that the integral representation

logU(z) =
1

2π

∫ ∞

0

log(1 − z2/t2)dψ(t)

holds when z is in the upper half–plane with the logarithm of 1 − z2/t2 defined continu-
ously in the upper half–plane with nonnegative values when z is on the upper half of the
imaginary axis. The inequality

|U(z)| ≤ |U(i|z|)
holds when z is in the upper half–plane since

|1 − z2/t2| ≤ 1 + z−z/t2.

If a positive integer r is chosen so that the inequality
∫ +∞

−∞

Rσ(x+ iy)dx ≤ 2πr

holds for all positive y, then the function

U(z)/(z + i)r

is bounded and analytic in the upper half–plane.

Since the modulus of V (x+ iy) is a nondecreasing function of positive y for every real
x, there exists for every positive number τ a nontrivial entire function G(z) such that the
functions

exp(iτz)G(z)

and
exp(iτz)G∗(z)

of z belong to the weighted Hardy space F(V ). Since the entire function

G(z) = F (z)P (z)

is the product of an entire function F (z) and a polynomial P (z) of degree r, a nontrivial
entire function F (z) is obtained such that the functions

exp(iτz)F (z)

and
exp(iτz)F ∗(z)

of z belong to the weighted Hardy space F(W ).

This completes the proof of the theorem.

The Hilbert spaces of entire functions constructed from an Euler weight function are
Euler spaces of entire functions.
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Theorem 5. A Hilbert space of entire functions which satisfies the axioms (H1), (H2),
and (H3) and which contains a nonzero element is an Euler space of entire functions if it
contains an entire function whenever its product with a nonconstant polynomial belongs to
the space and if multiplication by exp(iτz) is for some real number τ an isometric trans-
formation of the space into the weighted Hardy space F(W ) of an Euler weight function
W (z).

Proof of Theorem 5. It can be assumed that τ vanishes since the function

exp(−iτz)W (z)

is an Euler weight function whenever the function W (z) of z is an Euler weight function.

The given Hilbert space of entire functions is isometrically equal to a space H(E) for an
entire function E(z) which has no real zeros since an entire function belongs to the space
whenever its product with a nonconstant polynomial belongs to the space.

An accretive transformation is defined in the space H(E) when h is in the interval [0, 1]
by taking F (z) into F (z + ih) whenever the functions of z belong to the space since the
space is contained isometrically in the space F(W ) and since an accretive transformation is
defined in the space F(W ) by taking F (z) into F (z+ih) whenever the functions of z belong
to the space. It remains to prove the maximal accretive property of the transformation in
the space H(E).

The ordering theorem for Hilbert spaces of entire functions applies to spaces which
satisfy the axioms (H1), (H2), and (H3) and which are contained isometrically in a weighted
Hardy space F(W ) when a space contains an entire function whenever its product with
a nonconstant polynomial belongs to the space. One space is properly contained in the
other when the two spaces are not identical.

A Hilbert space H of entire functions which satisfies the axioms (H1) and (H2) and
which contains a nonzero element need not satisfy the axiom (H3). Multiplication by
exp(iaz) is for some real number a an isometric transformation of the space onto a Hilbert
space of entire functions which satisfies the axioms (H1), (H2), and (H3).

A space H which satisfies the axioms (H1) and (H2) and which is contained isometrically
in the space F(W ) is defined as the closure in the space F(W ) of the set of those elements
of the space which functions F (z + ih) of z for functions F (z) of z belonging to the space
H(E). An example of a function F (z + ih) of z is obtained for every element of the space
H(E) which is a function F (z) of z such that the function z2F (z) of z belongs to the space
H(E). The space H contains an entire function whenever its product with a nonconstant
polynomial belongs to the space.

The function
E(z)/W (z)

of z is of bounded type in the upper half–plane and has the same mean type as the function

E(z + ih)/W (z + ih)
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of z which is of bounded type in the upper half–plane. Since the function

W (z + ih)/W (z)

of z is of bounded type and has zero mean type in the upper half–plane, the function

E(z + ih)/E(z)

of z is of bounded type and of zero mean type in the upper half–plane.

If a function F (z) of z is an element of the space H(E) such that the functions

F (z)/W (z)

and
F ∗(z)/W (z)

of z have equal mean type in the upper half–plane, and such that the functions

G(z) = F (z + ih)

and
G∗(z) = F ∗(z − ih)

of z belong to the space F(W ), then the functions

G(z)/W (z)

and
G∗(z)/W (z)

of z have equal mean type in the upper half–plane. It follows that the space H satisfies
the axiom (H3).

Equality of the spaces H and H(E) follows when the space H is contained in the space
H(E) and when the space H(E) is contained in the space H.

The function F (z + ih) of z belongs to the space H(E) whenever the function F (z) of
z belongs to the space H and the function F (z+ ih) of z belongs to the space F(W ) since
the spaces H and H(E) satisfy the axiom (H3). If the space H(E) is contained in the
space H, then the space H is contained in the space H(E). If the space H is contained in
the space H(E), then the space H(E) is contained in the space H.

Since the transformation T which takes F (z) into F (z + ih) whenever the functions of
z belong to the space H(E) is subnormal, the domain of the adjoint T ∗ of T contains the
domain of T . A dense subspace of the graph of T ∗ is determined by elements of the domain
of T ∗ which belong to the domain of T . The accretive property of T implies the accretive
property of T ∗. The maximal accretive property of T follows since T is the adjoint of T ∗.

This completes the proof of the theorem.
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Hypergeometric functions appear in the construction of the Stieltjes spaces for an Euler
weight function when a rational function appears in the recurrence relation as the factor
which is an analytic function with positive real part in the upper half–plane. When the
Stieltjes spaces are known for a given Euler weight function, they can be obtained for
related Eulerweight functions.

Assume that for some λ in the upper half–plane an isometric transformation of the
weighted Hardy space defined by an Euler weight function W−(z) onto the set of functions
which vanish at λ in the weighted Hardy space defined by an Euler weight function W+(z)
takes a function F (z) of z into the function (1 − z/λ)F (z). Since multiplication by a
constant of absolute value one does not change the weighted Hardy space of an Euler
weight function, it can be assumed that

(1 − z/λ−)W−(z) = W+(z).

Stieltjes spaces of entire functions which are contained contractively in the weighted
Hardy space defined by W+(z) are defined by entire functions E+(t, z) for positive t. The
functions have value one at the origin, depend continuously on t, and satisfy the equation

(A+(b, z), B+(b, z))I − (A+(a, z), B+(a, z))I = z

∫ b

a

(A+(t, z), B+(t, z))dm+(t)

when a and b are positive for a continuous nondecreasing matrix function

m+(t) =

(

α+(t) β+(t)
βr(t) γ+(t)

)

of positive t. The Stieltjes space defined by Er(t, z) is contained isometrically in the
weighted Hardy space defined by W+(z) when t is regular with respect to m+. The union
of the Stieltjes spaces is dense in the weighted Hardy space. The intersection of the Stieltjes
spaces has dimension at most one.

The Stieltjes space defined by Er(t, z) is assumed to have dimension greater than one
for every positive number t. A Stieltjes space exists for every positive number t such
that multiplication by 1 − z/λ is an isometric transformation of the space onto the set
of functions which vanish at λ in the Stieltjes space defined by E+(t, z). The space is
contained contractively in the weighted Hardy space defined by W−(z) with an isometric
inclusion when t is regular with respect to m+. The defining function E−(t, z) of the space
can be chosen so that

(1 − z/λ)[B−(t, z)A+(t, λ) −A−(t, z)B+(t, λ)] = B+(t, z)A+(t, λ) −A+(t, z)B+(t, λ).

The function has value one at the origin and depends continuously on t. The equation

(A−(b, z), B−(b, z))I − (A−(a, z), B−(a, z))I = z

∫ b

a

(A−(t, z), B−(t, z))dm−(t)
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holds when a and b are positive for a continuous nondecreasing matrix function

m−(t) =

(

α− (t) β−(t)
β−(t) γ−(t)

)

of positive t. The union of the Stieltjes space is dense in the weighted Hardy space defined
by W−(t, z). The intersection of the Stieltjes spaces has at most dimension one.

A matrix P (t) with real entries and determinant one is defined for every positive t by
the equation

|λ|R[iB+(t, λ)A+(t, λ)−]P (t)

=





R[iλA+(t, λ)B+(t, λ)−]
sR[iλB+(t, λ)B+(t, λ)−]
−R[iλA+(t, λ)A+(t, λ)−] −R[iλB+(t, λ)A+(t, λ))−]



 .

The matrix depends continuously on t. The identity

m−(b) −m−(a) =

∫ b

a

P (t)dm+(t)P (t)−

holds when a and b are positive.

2. Fourier Analysis on the Complex Skew–Plane

The Stieltjes spaces constructed from the gamma function apply to Fourier analysis for
the complex skew–plane. The complex skew–plane is a vector space of dimension four
over the real numbers which contains the complex plane as a vector subspace of dimension
two. The multiplicative structure of the complex plane as a field is generalized as the
multiplicative structure of the complex skew–plane as a skew–field. The conjugation of the
complex plane is an automorphism which extends as an anti–automorphism of the complex
skew–plane.

An element
ξ = t+ ix+ jy + kz

of the complex skew–plane has four real coordinates x, y, z, and t. The conjugate is

ξ− = t− ix− jy − kz.

The multiplication table
ij = k, jk = i, ki = j

ji = −k, kj = −i, ki = −j

defines a conjugated algebra in which every nonzero element has an inverse. An automor-
phism of the skew–field is an inner automorphism which is defined by an element with
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conjugate as inverse. A plane is a maximal commutative subalgebra. Every plane is iso-
morphic to every other plane under an automorphism of the skew–field. The complex
plane is the subalgebra of elements which commute with i.

The topology of the complex skew–plane is derived from the topology of the real line
as is the topology of the complex plane. Addition and multiplication are continuous as
transformations of the Cartesian product of the space with itself into the space. The
topology of the real line is derived from Dedekind cuts. A real number t divides the real
line into two open half–lines (t,∞) and (−∞, t). The intersection of open half–lines is an
open interval (a, b) when it is nonempty and not a half–line. A open subset of the line is
a union of open intervals. The topology of the plane is the Cartesian product topology of
Dedekind topologies of two coordinate lines. The topology of the complex skew–plane is
the Cartesian product topology of the Dedekind topologies of four coordinate lines.

The canonical measure for the complex skew–plane is derived from the canonical mea-
sure for the real line as is the canonical measure for the complex plane. In all cases the
canonical measure is defined on the Baire subsets of the space defined as the smallest class
of sets containing the open sets and the closed sets and containing countable unions and
countable intersections of sets of the class. A measure preserving transformation of the
space onto itself is defined by taking ξ into ξ + η for every element η of the space. This
condition determines the canonical measure within a constant factor.

The canonical measure for the real line is Lebesgue measure, which assigns measure one
to the interval (0, 1). The canonical measure for the complex plane is the Cartesian product
measure of the canonical measure of two coordinate lines, which assigns measure π to the
unit disk z−z < 1. The canonical measure for the complex skew–plane is the Cartesian
product measure of the canonical measures of four coordinate lines, which assigns measure
1
2π

2 to the unit disk ξ−ξ < 1.

Multiplication by an element ξ of the space multiplies the canonical measure by |ξ| in
the case of the line, by |ξ|2 in the case of the plane, and by |ξ|4 in the case of the skew–plane
with |ξ| the nonnegative solution of the equation

|ξ|2 = ξ−ξ.

The modulus |ξ| of ξ defines a metric on the space whose topology is identical with the
Dedekind topology. The identity

|ξη| = |ξ||η|
holds for all elements ξ and η of the space.

The ring of integers is a subset of the real line whose special properties include an
Euclidean algorithm for greatest common divisors. If α is an integer and if β is a nonzero
integer, an integer γ exists such that the inequality

(α− βγ)2 < β2

is satisfied. An ideal of integers which contains a nonzero element contains a nonzero
element β which minimizes the positive integer β2. Every element α of the ideal is a
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product
α = βγ

for an integer γ.

The ring of Gauss integers is a subset of the complex plane which admits an Euclidean
algorithm. A Gauss integer

x+ iy

is a complex number whose coordinates x and y are integers. If α is a Gauss integer and
if β is a nonzero Gauss integer, a Gauss integer γ exists such that the inequality

(α− βγ)−(α− βγ) < β−β

is satisfied. An ideal of Gauss integers which contains a nonzero element contains a nonzero
element β which minimizes the positive integer β−β. Every element α of the ideal is a
product

α = βγ

for a Gauss integer γ.

The ring of Hurwitz integers is a subset of the complex skew–plane which admits an
Euclidean algorithm. A Hurwitz integer is a quaternion

t+ ix+ jy + kz

whose coordinates are all integers or all halves of odd integers. If α is a Hurwitz integer
and if β is a nonzero Hurwitz integer, a Hurwitz integer γ exists such that the inequality

(α− βγ)−(α− βγ) < β−β

is satisfied. A right ideal of Hurwitz integers which contains a nonzero element contains
a nonzero element β which minimizes the positive integer β−β. Every element α of the
right ideal is a product

α = βγ

for a Hurwitz integer γ.

The group of Hurwitz integers with conjugate as inverse contains twenty–four elements
with a normal subgroup of eight elements whose quotient group is cyclic of three elements.

Integral elements of the complex skew–plane are defined as the integral elements of a
skew–field which contains the Hurwitz integers and which has finite dimension as a vector
space over the Gauss field whose elements are complex numbers with rational numbers as
coordinates. The skew–field is given the discrete topology.

A discrete skew–field is defined as the set of elements of the complex skew–plane which
are sums

a+ kb
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for elements a and b of a discrete field. A construction of the discrete field is made from
the algebra of polynomials with coefficients in the Gauss field.

The polynomial algebra has an Euclidean algorithm. If A(z) is a polynomial and if B(z)
is a nonzero polynomial, a polynomial C(z) exists such that the degree of the polynomial

A(z) −B(z)C(z)

is less than the degree of B(z).

An ideal of the polynomial algebra which contains a nonzero element contains a nonzero
element B(z) of least degree. The minimal polynomial is chosen with one as the coefficient
to the highest power of z which has a nonzero coefficient. An element

A(z) = B(z)C(z)

of the ideal is the product of the minimal polynomial with a polynomial C(z).

The discrete field is assumed to contain ξ− whenever it contains ξ. If ξ is an element
of the discrete field a homomorphism of the polynomial algebra into the discrete field is
defined by taking P (z) into P (ξ). The kernel of the homomorphism is a maximal ideal
whose quotient field is mapped isomorphically into the discrete field. The homomorphism
commutes with conjugation if ξ is self–conjugate. The ideal is generated by a nonzero
polynomial whose degree is no greater than the dimension of the discrete field as a vector
space over the Gauss field. The minimal polynomial is chosen with one as the coefficient
of the highest power of z which has a nonzero coefficient. The minimal polynomial has
rational numbers as coefficients when ξ is self–conjugate. An element ξ of the discrete field
is said to be integral if the coefficients of its minimal polynomial are Gauss integers.

The image of the polynomial algebra need not contain every element of the discrete
field. But the elements of the discrete field which are obtained belong to a subfield which
can be used to replace the Gauss field in the previous construction. An element of the
discrete field is found which defines a homomorphism of the polynomial algebra onto a
larger subfield of the discrete field. Iteration produces an element of the discrete field
which generates the discrete field by a homomorphism of the polynomial algebra. The
generating element can be chosen self–conjugate.

Sums and products of integral elements of the discrete field are integral. The conjugate
of an integral element of the discrete field is integral.

An element
a+ kb

of the discrete skew–field is said to be integral if a+ a−, a− a−, b+ b−, b− b− are integral
elements of the discrete field whose quotients by two are all integral or all nonintegral. Sums
and products of integral elements of the discrete skew–field are integral. The conjugate of
an element of the discrete skew–field is integral. An element of the complex skew–plane
with rational numbers as coordinates is an integral element of the discrete skew–field if,
and only if, it is a Hurwitz integer.



A PROOF OF THE RIEMANN HYPOTHESIS 37

A simplification occurs when all roots of the minimal polynomial of a generating ele-
ment of the discrete field belong to the field. The automorphisms of the discrete field then
acts as a transitive group of permutations of the roots of the minimal polynomial. An
automorphism of the discrete field commutes with conjugation and takes integral elements
into integral elements. The automorphism admits a unique extension as an automorphism
of the discrete skew–field which leaves k fixed. The extension commutes with conjugation
and takes integral elements into integral elements. If a Hurwitz integer has conjugate as
inverse, an inner automorphism of the discrete skew–field which commutes with conjuga-
tion and takes integral elements into integral elements is defined by taking ξ into ω−ξω.
Every automorphism of the discrete skew–field which takes integral elements into integral
elements is the composition in either order of the inner automorphism defined by a Hurwitz
integer with conjugate as inverse and an automorphism which takes the discrete field into
itself and leaves k fixed.

The automorphisms of the discrete skew–field permit the construction on a scalar prod-
uct for the discrete skew–field as a right vector space over the Gauss field. A linear
functional on the skew–field is a transformation L of the skew–field into the Gauss field
which takes ξα+ ηβ into (Lξ)α+ (Lη)β for all elements ξ and η of the skew–field and all
elements α and β of the Gauss field.

The scalar product of elements ξ and η of the skew–field is the element 〈ξ, η〉 of the
Gauss field defined by

〈ξ, η〉
∑

1 =
∑

σ(η)−σ(ξ)

with summation over the automorphisms σ of the skew field which take integral elements
into integral elements. The sum on the left is the number of automorphisms.

The properties of a scalar product are satisfied: A linear functional on the skew–field
is defined by taking ξ into 〈ξ, η〉 for every element η of the skew–field symmetry

〈η, ξ〉 = 〈ξ, η〉−

holds for all elements ξ and η of the skew–field. Positivity states that the scalar self–
product

〈ξ, ξ〉 > 0

is positive for every nonzero element of the skew–field.

The definition of a scalar product is initially made for a discrete skew–field when all
roots of the minimal polynomial of the discrete field belong to the field. A discrete skew–
field which does not satisfy the hypothesis is however contained in a discrete skew–field
which satisfies the hypothesis. The scalar product for the given skew–field as defined as
the restriction of the scalar product for the extension field.

The modulus is a function defined on the discrete skew–field which vanishes at the origin
and which defines a homomorphism of the group of nonzero elements into the multiplicative
group of positive real numbers. The modulus is determined by its values on self–conjugate
elements of the skew–field since it satisfies the identity

λ(ξ)2 = λ(ξ−ξ).
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A nonzero self–conjugate element ξ defines a linear transformation of the space of self–
conjugate elements, treated as a vector space over the rational numbers, into itself by
taking η into ξη. The modulus λ(ξ) is defined as the positive rational number which is
the determinant of the transformation. When ξ is integral, λ(ξ) is equal to the number of
elements in the quotient ring of the ring of self–conjugate integral elements by the ideal
generated by ξ.

A nontrivial ideal of the ring of self–conjugate integral elements of the discrete skew–
field has a finite quotient ring and is uniquely determined by the number of elements of the
quotient ring. The quotient ring modulo ρ of the ring of self–conjugate integral elements
is defined as the unique quotient ring with ρ elements when such a quotient ring exists.

An ideal of the ring of integral elements of the complex skew–plane is generated by the
ideal of self–conjugate integral elements. The quotient ring modulo ρ of the ring of integral
elements of the complex skew–plane is defined as the quotient ring by the generated ideal.
When ρ is odd, elements of the quotient ring modulo ρ of the ring of integral elements of
the complex skew–plane are represented by quaternions

t+ ix+ jy + kz

whose coordinates are elements of the quotient ring modulo ρ of the ring of self–conjugate
integral elements. The same representation applies when n is even except the coordinates
are divided by two when they are all odd.

When r and s are relatively prime positive integers such that quotient rings modulo r
and modulo s exist of the ring of integral elements of the complex skew–plane, a quotient
ring modulo rs exists and is isomorphic to the Cartesian product of the quotient ring
modulo r and the quotient ring modulo s.

When a quotient ring modulo ρ exists for a positive integer ρ which has only one prime
divisor, there is a divisor n of ρ divisible by p such that a quotient ring modulo n exists
for the ring of integral elements of the complex skew–plane. A quotient ring modulo nk

exists for every nonnegative integer k. A positive integer k exists such that

ρ = nk.

When p is a prime and ρ is the least positive power of p for which a quotient ring modulo
ρ exists, the ring of self–conjugate integral elements of the complex skew–plane modulo ρ
is a field.

When ρ is odd, a skew–conjugate integral element

ia+ jb+ kc

of the complex skew–plane modulo ρ is represented by a quaternion with coordinates in
the field of self–conjugate integral elements. The group of nonzero elements is cyclic of
order ρ− 1. Half of the elements are squares of elements of the group and half are not. A
choice of coordinates can be made so that the sum

a2 + b2 + c2
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is equal to any desired self–conjugate element. When the sum is not minus the square of
a self–conjugate element, the set of integral elements of the complex skew–plane modulo
ρ which commute with the skew–conjugate element is a field.

If κ is the choice of a nonzero skew–conjugate element which anti–commutes with

ia+ jb+ kc,

then every integral element
α+ κβ

of the complex skew–plane modulo ρ is a unique sum with α and β in the commuting field.
Since the identity

γκ = κγ−

holds for every element γ of the commuting field, the identity

(α+ κβ)−(α+ κβ) = α−α− κ2β−β

holds for all elements α and β of the commuting field. The equation

α−α = κ2β−β

admits a solution in nonzero elements α and β of the commuting field since there exists no
finite skew–field. An integral element ξ of the complex skew–plane modulo ρ is invertible
if, and only if, ξ−ξ is nonzero. The number of integral elements of the complex skew–plane
modulo ρ which are nonzero and noninvertible is

(ρ− 1)(ρ+ 1)2.

When ρ is the even prime, the set of integral elements of the complex skew–plane modulo
ρ which commute with

1
2 + 1

2 i+
1
2j + 1

2k

is a field of four elements. When ρ is a greater power of the even prime, every self–conjugate
integral element of the complex skew–plane modulo ρ is the square of a self–conjugate
integral element of the complex skew–plane modulo p. The set of self–conjugate integral
elements of the complex skew–plane modulo ρ is the only subfield of the ring of integral
elements of the complex skew–plane modulo ρ.

The group of nonzero elements of the discrete skew–field has normal subgroups whose
quotient groups are finite. A normal subgroup is generated for every positive integer r by
the nonzero integral elements ξ of the discrete skew–field such that for every prime divisor
p of r the greatest power of p which is a divisor of λ(ξ−ξ) is a power of the greatest power
of p which is a divisor of r. A fundamental domain for the equivalence relation defined
by the subgroup is the set of nonzero integral elements ξ of the skew–field such that for
every prime p the greatest power of p which is a divisor of λ(ξ−ξ) is less than the greatest
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power of p which is a divisor of r. The intersection of the normal subgroups is the group
of elements of the discrete skew–field with conjugate as inverse.

The canonical measure for the complex plane is the Cartesian product measure of the
Lebesgue measures for two coordinate lines. The canonical measure for the complex skew–
plane is the Cartesian product measure of the Lebesgue measures of four coordinate lines.

The Fourier transformation for the real line is the unique isometric transformation of
the Hilbert space of square integrable functions with respect to the canonical measure into
itself which takes an integrable function f(ξ) of ξ into the continuous function

g(ξ) =

∫

exp(2πiξη)f(η)dη

of ξ defined by integration with respect to the canonical measure. Fourier inversion

f(ξ) =

∫

exp(−2πiξη)g(η)dη

applies with integration with respect to the canonical measure when the function g(ξ) of
ξ is integrable and the function f(ξ) of ξ is continuous.

The Fourier transformation for the complex plane is the unique isometric transformation
of the Hilbert space of square integrable functions with respect to the canonical measure
into itself which takes an integrable function into the continuous function

g(ξ) =

∫

exp(πi(ξ−η + η−ξ))f(η)dη

of ξ defined by integration with respect to the canonical measure. Fourier inversion

f(ξ) =

∫

exp(−πi(ξ−η + η−ξ))g(η)dη

applies with integration with respect to the canonical measure when the function g(ξ) of
ξ is integrable and the function f(ξ) of ξ is continuous.

The Fourier transformation for the complex skew–plane is the unique isometric trans-
formation of the Hilbert space of square integrable functions with respect to the canonical
measure into itself which takes an integrable function f(ξ) of ξ into the continuous function

g(ξ) =

∫

exp(πi−(ξ−η + η−ξ))f(η)dη

of ξ defined by integration with respect to the canonical measure. Fourier inversion

f(ξ) =

∫

exp(−πi(ξ−η + η−ξ))g(η)dη
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applies with integration with respect to the canonical measure when the function g(ξ) of
ξ is integrable and the function f(ξ) of ξ is continuous.

The Fourier transformation for the complex skew–plane commutes with the isometric
transformations of the Hilbert space onto itself which are defined by taking a function f(ξ)
of ξ into the functions f(ωξ) and f(ξω) of ξ for every element ω of the complex skew–
plane with conjugate as inverse. The Hilbert space decomposes into the orthogonal sum
of invariant subspaces for the transformations taking a function f(ξ) of ξ into the function
f(ωξ) of ξ for every element ω of the complex skew–plane with conjugate as inverse.

A homomorphism of the multiplicative group of nonzero elements of the complex skew–
plane onto the multiplicative group of the positive half–line is defined by taking ξ into ξ−ξ.
The identity

∫

|f(ξ−ξ)|2dξ = π2

∫

|f(ξ)|2ξdξ

holds with integration on the left with respect to the canonical measure for the complex
skew–plane and with integration on the right with respect to Lebesgue measure for every
Baire function f(ξ) of ξ in the positive half–line.

The Hilbert space of homogeneous polynomials of degree ν is the set of functions

ξ = t+ ix+ jy + kz

of ξ in the complex skew–plane which are linear combinations of monomials

xaybzctd

whose exponents are nonnegative integers with sum

ν = a+ b+ c+ d.

The monomials are an orthogonal set with

a!b!c!d!

ν!

as the scalar self–product of the monomial with exponents a, b, c, and d. The function

2−ν(η−ξ + ξ−η)ν

of ξ in the complex skew–plane belongs to the space for every element η of the complex
skew–plane and acts as reproducing kernel function for function values at η.

Isometric transformations of the Hilbert space of homogeneous polynomials of degree
ν into itself are defined by taking a function f(ξ) of ξ in the complex skew–plane into
the functions f(ωξ) and f(ξω) of ξ in the complex skew–plane for every element ω of the
complex skew–plane with conjugate as inverse.
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The Laplacian
∂2

∂t2
+

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

takes homogeneous polynomials of degree ν into homogeneous polynomials of degree ν− 2
when ν is greater than one and annihilates polynomials of smaller degree. The Laplacian
commutes with the transformations which take a function f(ξ) of ξ in the complex skew–
plane into the functions f(ωξ) and f(ξω) of ξ in the complex skew–plane for every element
ω of the complex skew–plane with conjugate as inverse.

A homogeneous polynomial of degree ν is said to be harmonic if it is annihilated by
the Laplacian. Homogeneous polynomials f(ωξ) and f(ξω) of degree ν are harmonic for
every element ω of the complex skew–plane with conjugate as inverse if the homogeneous
polynomial f(ξ) of degree ν is harmonic.

The Hilbert space of homogeneous harmonic polynomials of degree ν is the orthogonal
complement in the space of homogeneous polynomials of degree ν of product of ξ−ξ with
homogeneous polynomials of degree ν − 2 when ν is greater than one. The space of
homogeneous polynomials of degree ν has dimension

(ν + 1)(ν + 2)(ν + 3)/6.

The space of homogeneous harmonic polynomials of degree ν has dimension

(ν + 1)2.

The function
(η−ξ)ν+1 − (ξ−η)ν+1

η−ξ − ξ−η

of ξ in the complex skew–plane belongs to the space of homogeneous harmonic polynomials
of degree ν for every element η of the complex skew–plane and acts as reproducing kernel
function for function values at η.

The spaces of homogeneous harmonic polynomials of degree ν are contained in a Hilbert
space of harmonic functions for every nonnegative integer ν. Homogeneous harmonic
polynomials of unequal degree are orthogonal. The elements of the space are harmonic in
the unit disk ξ−ξ < 1. The function

1

(1 − η−ξ)(1 − ξ−η)

of ξ in the disk belongs to the space when η is an element of the disk and acts as reproducing
kernel function for function values at η.

Isometric transformations of the space onto itself are defined for every element ω of the
complex skew–plane with conjugate as inverse by taking a function f(ξ) of ξ in the disk
into the functions f(ωξ) and f(ξω) of ξ in the disk.
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The boundary of the disk, which is the set of elements of the complex skew–plane with
conjugate as inverse, is a compact Hausdorff space in the subspace topology inherited from
the complex skew–plane. The canonical measure for the space is the essentially unique
nonnegative measure on its Baire subsets such that measure preserving transformations
are defined on multiplication left or right by an element of the space. Uniqueness is
obtained by stipulating that the full space has measure

π2.

A homomorphism of the multiplicative group of nonzero elements of the complex skew–
plane onto the positive half–line is defined by taking ξ into ξ−ξ. The canonical measure
for the complex skew–plane is mapped to the measure whose value on a Baire set E is the
integral

π2

∫

tdt

over the set E. The canonical measure for the complex skew–plane is the Cartesian product
measure of the canonical measure for the boundary of the disk and the image measure on
Baire subsets of the positive half–line.

A continuous function f(ω) of ω on the boundary of the disk admits a continuous
extension as a harmonic function

f(ξ) =
1

π2

∫

f(ω)dω

(1 − ω−ξ)(1 − ξ−ω)

of ξ in the disk defined by integration with respect to the canonical measure for the
boundary of the disk. The extended function is continuous in the closed disk.

A function

f(ξ) =
1

π2

∫

dµ(ω)

(1 − ω−ξ)(1 − ξ−ω)

of ξ in the disk which is harmonic and has nonnegative values is represented by a nonneg-
ative measure µ on the Baire subsets of the boundary of the disk. The value

µ(E) = lim

∫

f(tω)dω

of the measure on a regular open set E is the limit as t increases to one of integrals over
E with respect to the canonical measure for the boundary.

The complementary space to the complex plane in the complex skew–plane is the set of
elements η of the complex skew–plane which satisfy the identity

ξη = ηξ−

for every element ξ of the complex plane. An element η of the complex skew–plane is
skew–conjugate:

η− = −η.
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Multiplication on left or right by η is an injective transformation of the complex plane
onto the complementary space for every nonzero element η of the complementary space.
The transformation is continuous when the complementary space is given the topology
inherited from the complex skew–plane. The transformation takes the canonical measure
for the complex plane into η−η times the measure defined as the canonical measure for the
complementary space.

An element of the complex skew–plane is the unique sum α+ β of an element α of the
complex plane and an element β of the complementary space. The topology of the complex
skew–plane is the Cartesian product topology of the topology of the complex plane and the
topology of the complementary space. The canonical measure for the complex skew–plane
is the Cartesian product measure of the canonical measure for the complex plane and the
canonical measure for the complementary space.

Radon transformations for the complex skew–plane are maximal accretive transforma-
tions in the Hilbert space of square integrable functions with respect to the canonical
measure for the complex skew–plane.

A Radon transformation of harmonic φ is defined for a harmonic polynomial φ of degree
ν which has norm one in the Hilbert space of harmonic functions of order ν. The domain
and range of the transformation are contained in the Hilbert space of functions f(ξ) of ξ in
the complex skew–plane which are square integrable with respect to the canonical measure
for the complex skew–plane and which satisfy the identity

φ(ξ)f(ωξ) = φ(ωξ)f(ξ)

for every element ω of the complex skew–plane with conjugate as inverse.

The Radon transformation of harmonic φ takes a function f(ξ) of ξ in the complex
skew–plane into a function g(ξ) of ξ in the complex skew–plane when the identity

g(ωξ)/φ(ωξ) =

∫

f(ωξ + ωη)/φ(ωξ + ωη)dη

holds when ξ is in the complex plane for every element ω of the complex skew–plane
with conjugate as inverse with integration with respect to the canonical measure for the
complementary space to the complex plane in the complex skew–plane.

The integral is interpreted as a limit of integrals over disks η−η < n in the comple-
mentary space. The limit is taken in the metric topology of the Hilbert space of square
integrable functions with respect to the canonical measure for the complex skew–plane.

Spectral analysis of the Radon transformation of harmonic φ is given by the Laplace
transformation of harmonic φ. The domain of the Laplace transformation of harmonic φ
is contained in the Hilbert space of functions f(ξ) of ξ in the complex skew–plane which
are square integrable with respect to the canonical measure and which satisfy the identity

φ(ξ)f(ωξ) = φ(ωξ)f(ξ)

for every element ω of the complex skew–plane with conjugate as inverse.
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The function
φ(ξ) exp(πiξ−ξ)

of ξ in the complex skew–plane is an eigenfunction of the Radon transformation of harmonic
φ for the eigenvalue

i/z

when z is in the upper half–plane.

The canonical measure for the upper half–plane is defined as the restriction to Baire
subsets of the upper half–plane of the canonical measure for the complex plane.

A function
f(ξ) = φ(ξ)h(ξ−ξ)

of ξ in the complex skew–plane which belongs to the domain of the Laplace transformation
of harmonic φ is parametrized by a function h(z) of z in the upper half–plane admitting
an extension to the complex plane satisfying the identity

h(ωz) = h(z)

for every element ω of the complex plane with conjugate as inverse. The identity

∫

|f(ξ)|2dξ = π

∫

|ξ|ν |h(ξ)|2dξ

holds with integration on the left with respect to the canonical measure for the complex
skew–plane and integration on the right with respect to the canonical measure for the
upper half–plane.

An element of the range of the Laplace transformation of harmonic φ for the complex
skew–plane is an analytic function

h∧(z) = π

∫ ∞

0

tνh(t) exp(πitz)tdt

of z in the upper half–plane defined by a function h(z) of z in the upper half–plane which
admits an extension to the complex plane satisfying the identity

h(ωz) = h(z)

for every element ω of the complex plane with conjugate as inverse such that the integral

∫

|ξ|ν |h(ξ)|2dξ

with respect to the canonical measure for the upper half–plane converges. The identity

∫ ∞

0

∫ +∞

−∞

|h∧(x+ iy)|2yνdxdy = (2π)−νΓ(1 + ν)

∫ ∞

0

tν |h(t)|2tdt
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is satisfied.

The range of the Laplace transformation of harmonic φ contains every function h∧(z)
analytic in the upper half–plane for which the integral on the left converges. The range is
a Hilbert space whose scalar self–product is defined by the integral.

A continuous linear functional is defined on the space by taking a function h∧(z) of
z into its value h∧(w) at an element w of the upper half–plane. The reproducing kernel
function

1 + ν

4π
[12 i(w

− − z)]−2−ν

for function values at w is a function of z in the upper half–plane obtained from the integral

1 + ν

4π
(2π)−νΓ(1 + ν)[12 i(w

− − z)]−2−ν = π
∫ ∞

0
tν exp(πit(z − w−))tdt.

The identity

h∧(w) =
1 + ν

4π

∫ ∞

0

∫ +∞

−∞

h∧(x+ iy)yνdxdy

[12 i(x− iy − w)]2+ν

holds when w is in the upper half–plane.

The adjoint of the transformation which takes h∧(z) into (z/i)h∧(z) whenever the func-
tions of z belong to the range of the Laplace transformation of harmonic φ takes the
function

[12 i(w
− − z)]−2−ν

of z into the function
(w/i)−[12 i(w

− − z)]−2−ν

of z for every element w of the upper half–plane.

The transformation which takes h∧(z) into (z/i)h∧(z) whenever the functions of z be-
long to the range of the Laplace transformation of harmonic φ is maximal accretive. The
maximal accretive property is a consequence of the computation of reproducing kernel func-
tions. A Hilbert space exists whose elements are functions analytic in the upper half–plane
and which contains the function

(iw− − iz)[12 i(w
− − z)]−2−ν

as reproducing kernel function for function values at w when w is in the upper half–plane.

The adjoint of the Radon transformation of harmonic φ takes a function f(ξ) of ξ in the
complex skew–plane into a function g(ξ) of ξ in the complex skew–plane when the identity

∫

φ(ξ)−g(ξ) exp(πizξ−ξ)dξ = (i/z)

∫

φ(ξ)−f(ξ) exp(πizξ−ξ)dξ

holds when z is in the upper half–plane with integration with respect to the canonical
measure for the complex skew–plane. The transformation is maximal accretive.
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The Fourier transform for the complex skew–plane of the function

φ(ξ) exp(πizξ−ξ)

of ξ in the complex skew–plane is the function

iν(i/z)2+νφ(ξ) exp(−πiz−1ξ−ξ)

of ξ in the complex skew–plane when z is in the upper half–plane. Since the Fourier
transformation commutes with the transformations which take a function f(ξ) of ξ into
the functions f(ωξ) and f(ξω) of ξ for every element ω of the complex skew–plane with
conjugate as inverse, it is sufficient to make the verification when

φ(t+ ix+ jy + kz) = (t+ ix)ν .

The verification reduces to showing that the Fourier transform for the complex plane of
the function

ξν exp(πizξ−ξ)

of ξ in the complex plane is the function

iν(i/z)1+νξν exp(−πiz−1ξ−ξ)

of ξ in the complex plane. It is sufficient by analytic continuation to make the verification
when z lies on the imaginary axis. It remains by a change of variable to show that the
Fourier transform of the function

ξν exp(−πξ−ξ)

of ξ in the complex plane is the function

iνξν exp(−πξ−ξ)

of ξ in the complex plane.

The desired identity follows since

iνξν exp(−πξ−ξ) =
∞
∑

k=0

ξν

∫

(πiξ−ξ)k(πiη−η)ν+k

k!(ν + k)!
exp(−πη−η)dη

where

exp(πi(ξ−η + η−ξ)) =

∞
∑

n=0

(πiξ−η + πiη−ξ)n

n!

and

(πiξ−η + πiη−ξ)n =

n
∑

k=0

(πiη−ξ)n−2k(πiξ−ξ)k(πiη−η)k

k!(n− k)!
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where
∫

(πiη−η)ν+k exp(−πη−η)dη = iν+k(ν + k)!

and

iν exp(−πξ−ξ) =
∞
∑

k=0

iν+k (πiξ−ξ)k

k!

Integrations are with respect to the canonical measure for the complex plane. Interchanges
of summation and integration are justified by absolute convergence.

If a function f(ξ) of ξ in the complex skew–plane is square integrable with respect to
the canonical measure and satisfies the identity

φ(ξ)f(ωξ) = φ(ωξ)f(ξ)

for every element ω of the complex skew–plane with conjugate as inverse, then its Fourier
transform is a function g(ξ) of ξ in the complex skew–plane which is square integrable with
respect to the canonical measure and which satisfies the identity

φ(ξ)g(ωξ) = φ(ωξ)g(ξ)

for every element ω of the complex skew–plane with conjugate as inverse. The Laplace
transforms of harmonic φ are functions F (z) and G(z) of z in the upper half–plane which
satisfy the identity

G(z) = iν(i/z)2+νF (−1/z).

A construction of Euler weight functions is obtained on applying the Mellin transforma-
tion. The Mellin transformation reformulates the Fourier transformation for the real line
on the multiplicative group of the positive half–line. Analytic weight functions constructed
from the gamma function appear when the Mellin transformation is adapted to the domain
of the Laplace transformation of harmonic φ.

The Mellin transform of harmonic φ of the function f(ξ) of ξ in the complex skew–
plane is an analytic function F (z) of z in the upper half–plane which is defined when f(ξ)
vanishes in the disk ξ−ξ < a for some positive number a. The function is defined by the
integral

πF (z) =

∫ ∞

0

g(it)t
1

2
ν−izdt.

Since

g(iy) = π

∫ ∞

0

t
1

2
νh(t) exp(−πty)tdt

when y is positive, the identity

F (z)/W (z) =

∫ ∞

0

h(t)t
1

2
ν+izdt
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holds with Euler weight function

W (z) = π−
1

2
ν−1+izΓ( 1

2ν + 1 − iz).

The identity

∫ +∞

−∞

|F (x+ iy)/W (x+ iy)|2dx = 2π

∫ ∞

0

|h(t)|2tν−2ytdt

holds when y is positive.

The analytic function
a−izF (z)

of z in the upper half–plane belongs to the weighted Hardy space F(W ) since the function
f(ξ) of ξ in the complex skew–plane vanishes when ξ−ξ < a. An analytic function F (z) of
z in the upper half–plane such that the function

a−izF (z)

of z belongs to the space F(W ) is the Mellin transform of a function f(ξ) of ξ in the complex
skew–plane which belongs to the domain of the Laplace transformation of harmonic φ and
vanishes in the disk ξ−ξ < a.

The adjoint of the Radon transformation for the complex skew–plane takes elements
of the domain of the Laplace transformation of harmonic φ which vanish in the disk
ξ−ξ < a into elements of the space which vanish in the disk. The transformation acts as
a maximal accretive transformation on the subspace. The adjoint is a maximal accretive
transformation which is unitarily equivalent to multiplication by

i/z

in the Hilbert space which is the image of the subspace under the Laplace transformation
of harmonic φ. When ξ−ξ < 1 is the unit disk, the transformation is unitarily equivalent
to the transformation which takes F (z) into F (z − i) whenever the functions of z belong
to the space F(W ).

3. Harmonic Analysis on an r–adic Skew–Plane

An r–adic skew–plane is the ring of quotients of the completion of the ring of integral
elements in the complex skew–plane in the r–adic topology: If ρ is a positive integer whose
prime divisors are divisors of r such that a ring of integral elements modulo ρ exist, the
discrete topology is the unique topology with respect to which the ring is a Hausdorff space
since the ring is finite. The Hausdorff space is compact. Addition and multiplication are
continuous as transformations of the Cartesian product of the ring with itself into the ring.
Conjugation is continuous as a transformation of the ring into itself.
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The r–adic topology of the ring of integral elements of the complex skew–plane is the
least topology with respect to which the projection onto the quotient ring modulo ρ is
continuous for every positive integer ρ whose prime divisors are divisors of r such that a
quotient ring modulo ρ exists. The ring of integral elements of the complex skew–plane is
a Hausdorff space in the r–adic topology. Addition and multiplication are continuous as
transformations of the Cartesian product of the ring with itself into the ring. Conjugation
is continuous as a transformation of the ring into itself.

The ring of integral elements of the r–adic skew–plane is the compact Hausdorff space
which is the completion of the ring of integral elements of the complex skew–plane in its r–
adic topology. Addition and multiplication extend continuously as transformations of the
Cartesian product of the ring with itself into the ring. Conjugation extends continuously
as a transformation of the ring into itself.

The r–adic skew–plane is the ring of quotients of the ring of its integral elements with
denominators positive integers whose prime divisors are divisors of r. The r–adic topology
of the r–adic skew–plane is the least topology for which multiplication by ρ is a continuous
open mapping for every positive integer ρ whose prime divisors are divisors of r and for
which the topology of the ring of integral elements of the r–adic skew–plane is the subspace
topology inherited from the r–adic skew–plane.

Addition is continuous as a transformation of the Cartesian product of the r–adic skew–
plane with itself into the r–adic skew–plane. Multiplication by an element of the r–
adic skew–plane is continuous as a transformation of the r–adic skew–plane into itself.
Conjugation is continuous as a transformation of the r–adic skew–plane into itself.

The r–adic line is the ring of self–conjugate elements of the r–adic skew–plane. The
r–adic skew–plane is the algebra of quaternions

t+ ix+ jy + kz

with coordinates in the r–adic line. The r–adic line is a closed subspace of the r–adic
skew–plane which is a Hausdorff space in the subspace topology. The ring of integral
elements of the r–adic line is a compact open subset of the r–adic line.

The r–adic modulus of an invertible integral element ξ of the r–adic line is the positive
number λr(ξ) whose inverse λr(ξ)

−1 is the number of elements in the quotient ring of the
ring of integral elements of the r–adic line by the ideal generated by ξ. The identity

λr(ξη) = λr(ξ)λr(η)

holds for all invertible elements ξ and η of the r–adic line. The r–adic modulus of an
invertible element ξ of the r–adic line is defined so that the identity holds for all invertible
integral elements ξ and η of the r–adic line. A noninvertible element of the r–adic line is
given infinite r–adic modulus.

The r–adic modulus of an invertible element ξ of the r–adic skew–plane is defined as
the positive solution λr(ξ) of the equation

λr(ξ)
2 = λr(ξ

−ξ).
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The identity
λr(ξη) = λr(ξ)λr(η)

holds for all invertible elements ξ and η of the r–adic skew–plane. The r–adic modulus of
a noninvertible element of the r–adic skew–plane is infinite.

A dense additive subgroup of a p–adic line is represented by real numbers. The function
exp(2πiξ) of ξ in the subgroup is a homomorphism of the subgroup into the multiplicative
group of complex numbers of absolute value one which is continuous for the p–adic topology
since its kernel is closed. The function admits a unique continuous extension as a function
of ξ in the p–adic line which is a homomorphism of its additive group into the multiplicative
group of complex numbers of absolute value one.

The function exp(2πiξ) of ξ in the r–adic line is defined as the unique continuous
homomorphism of its additive group into the multiplicative group of complex numbers of
absolute value one which agrees with the definition given when ξ belongs to a component
p–adic line.

The canonical measure for the r–adic line is the unique nonnegative measure on its
Baire subsets such that a measure preserving transformation is defined by taking ξ into
ξ + η for every element η of the line and such that the value of the measure on the set
of integral elements is one. Multiplication by an invertible element ξ of the r–adic line
multiplies the canonical measure for the line by a factor of λr(ξ).

The canonical measure for the r–adic skew–plane is the unique nonnegative measure on
its Baire subsets such that a measure preserving transformation is defined by taking ξ into
ξ+ η for every element η of the skew–plane and such that the value of the measure on the
set of integral elements is one when r is odd and two when r is even. Multiplication by a
nonzero element ξ of the r–adic skew–plane multiplies the canonical measure by a factor
of λr(ξ)

4. Conjugation is a measure preserving transformation. The canonical measure for
a r–adic skew–plane is the Cartesian product measure of the canonical measures of four
coordinate r–adic lines. The canonical measure for the r–adic skew–plane is the Cartesian
product measure of the canonical measures for component p–adic skew–planes.

The Fourier transformation for the r–adic skew–plane is the unique isometric transfor-
mation of the Hilbert space of square integrable functions with respect to the canonical
measure for the r–adic skew–plane into itself which takes an integrable function f(ξ) of ξ
into the continuous function

g(ξ) =

∫

exp(πi(ξ−η + η−ξ))f(η)dη

of ξ defined by integration with respect to the canonical measure for the r–adic skew–plane.
Fourier inversion states that the integral

f(ξ) =

∫

exp(−πi(ξ−η + η−ξ))g(η)dη

with respect to the canonical measure for the r–adic skew–plane represents the function
f(ξ) of ξ when the function g(ξ) of ξ is integrable and the function f(ξ) of ξ is continuous.
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An r–adic plane is a maximal commutative subring of the r–adic skew–plane which is
isomorphic to the Cartesian product of p–adic planes taken over the prime divisors p of
r. A p–adic plane is determined by the choice of an integral element ιp of the complex
skew–plane such that λ(ι−p ιp) is the least positive integer n which is divisible by p and has
no other prime divisors such that a ring of self–conjugate integral elements of the complex
skew–plane modulo n exists. The elements of the p–adic plane are the elements of the
p–adic skew–plane which commute with ιp. An element

ξ = α+ ιpβ

of the p–adic plane is a sum with α and β elements of the p–adic line. The element ξ of the
p–adic plane is integral if, and only if, the elements α and β of the p–adic line are integral.

The ring of integral elements of the r–adic plane is a compact Hausdorff space in the
subspace topology inherited from the r–adic skew–plane. Addition and multiplication are
continuous as transformations of the Cartesian product of the ring with itself into the
ring. In the subspace topology inherited from the r–adic skew–plane the r–adic plane is a
Hausdorff space which contains the ring of integral elements as an open and closed subset
containing the origin. A continuous transformation of the r–adic plane into itself is defined
by taking ξ into ξ + η for every element η of the r–adic plane.

The canonical measure for the r–adic plane is the unique nonnegative measure on its
Baire subsets such that a measure preserving transformation of the space into itself is
defined by taking ξ into ξ + η for every element η of the space and such that the ring
of integral elements has measure one. Multiplication by an element ξ of the r–adic plane
multiplies the canonical measure by a factor of λr(ξ)

2.

The conjugation of the r–adic skew–plane acts as a continuous isomorphism of the r–
adic plane onto itself. The set of self–conjugate elements of the r–adic plane is the r–adic
line. If ι is the element of the r–adic plane whose p–adic component is ιp for every prime
divisor p of r, then an element

ξ = α+ ιβ

of the r–adic plane has coordinates α and β in the r–adic line. The topology of the r–adic
plane is the Cartesian product topology of the r–adic topologies of two r–adic lines. The
canonical measure for the r–adic plane is a constant multiple of the Cartesian product
measure of the canonical measures of two r–adic lines.

The complementary space to the r–adic plane in the r–adic skew–plane is the set of
elements η of the r–adic skew–plane which satisfy the identity

ξη = ηξ−

for every element ξ of the r–adic plane. An element η of the complementary space to the
r–adic plane in the r–adic skew–plane is skew–conjugate:

η− = −η.
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Multiplication on left or right by an invertible element of the complementary space is an
injective transformation of the r–adic plane onto the complementary space. The transfor-
mation is continuous when the complementary space is given the topology inherited from
the r–adic skew–plane. The canonical measure for the complementary space is defined as
the image of the canonical measure for the r–adic plane under multiplication by a unit of
the complementary space.

An element of the r–adic skew–plane is the unique sum α + β of an element α of the
r–adic plane and an element β of the complementary space. The topology of the r–adic
skew–plane is the Cartesian product topology of the topology of the r–adic plane and the
topology of the complementary space. The canonical measure for the r–adic skew–plane
is the Cartesian product measure of the canonical measure for the r–adic plane and the
canonical measure for the complementary space.

The Fourier transformation for the r–adic plane is the unique isometric transformation
of the Hilbert space of square integrable functions with respect to the canonical measure for
the r–adic plane into itself which takes an integrable function f(ξ) of ξ into the continuous
function

g(ξ) =

∫

exp(πi(ξ−η + η−ξ))f(η)dη

of ξ defined by integration with respect to the canonical measure. Fourier inversion

f(ξ) =

∫

exp(−πi(ξ−η + η−ξ))g(η)dη

applies with integration with respect to the canonical measure when the function g(ξ) of
ξ is integrable and the function f(ξ) of ξ is continuous. The Fourier transformation for
the r–adic skew–plane commutes with the transformation which takes a function f(ξ) of ξ
into the functions f(ωξ) of ξ for every element ω of the r–adic skew–plane with conjugate
as inverse.

The group of invertible elements of the r–adic skew–plane contains closed normal sub-
groups with finite quotient groups. A normal subgroup is defined by every positive integer
ν whose prime divisors are divisors of r. The normal subgroup is generated by the invert-
ible integral elements ξ of the r–adic skew–plane such that for every prime divisor p of ν
the greatest power of p which is a divisor of λr(ξ

−ξ)−1 is a power of the greatest power of
p which is a divisor of ν.

A fundamental domain for the equivalence relation defined by the subgroup is the set
of invertible integral elements ξ of the r–adic skew–plane such that for every prime divisor
p of r the greatest power of p which is a divisor of λr(ξ

−ξ)−1 is less than or equal to the
greatest power of p which is a divisor of ν with equality only when p is not a divisor of ν.
The intersection of the normal subgroups is the group of units of the r–adic skew–plane.

The quotient group defined by ν is a compact Hausdorff space in the discrete topology.
The canonical measure for the quotient group is counting measure divided by the number
of elements in the group. An invertible integral element ω of the r–adic skew–plane defines
a measure preserving transformation ξ into ωξ of the quotient group into itself. The
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conjugation of the r–adic skew–plane defines a measure preserving conjugation of the
quotient group into itself. An automorphism of the discrete skew–field which takes Hurwitz
integers into Hurwitz integers defines a measure preserving automorphism of the quotient
group.

If ν′ is a divisor of ν such that for every prime divisor p of µ′ the greatest power of
p which is a divisor of ν is a power of the greatest power of p which is a divisor of ν′, a
normal subgroup of the quotient group defined by ν is defined as the set of elements ξ such
that for every prime p the greatest power of p which is a divisor of λr(ξ

−ξ)−1 is a power of
the greatest power of p which is a divisor of ν′. The quotient group of the quotient group
defined by ν by the normal subgroup is isomorphic to the quotient group defined by ν′.

The projection of the quotient group defined by ν onto the quotient group defined by ν′

takes the canonical measure into the canonical measure and commutes with conjugation.

A function defined on the quotient group defined by ν′ is treated as a function defined
on the quotient group defined by ν which has equal values at elements which project into
the same element of the quotient group defined by ν′. The Hilbert space of functions
which are square integrable with respect to the canonical measure for the quotient group
defined by ν′ is contained isometrically in the Hilbert space of functions which are square
integrable with respect to the canonical measure for the quotient group defined by ν.

A function defined on the quotient group defined by ν is said to be harmonic of order ν
if it is orthogonal to functions defined on the quotient group defined by ν′ for every proper
divisor ν′ of ν such that for every prime divisor p of ν′ the greatest power of p which is a
divisor of ν is a power of the greatest power of p which is a divisor of ν′.

For every invertible integral element ω of the r–adic skew–plane an isometric transfor-
mation of the Hilbert space of harmonic functions of order ν into itself is defined by taking
a function f(ξ) of ξ in the quotient group defined by ν into the function f(ωξ) of ξ in the
quotient group defined by ν.

An isometric transformation of the Hilbert space of harmonic functions of order ν into
itself is defined by taking a function f(ξ) of ξ in the quotient group defined by ν into the
function f(ξ−) of ξ in the quotient group defined by ν.

A function defined on the quotient group defined by ν is treated as a function defined
on the r–adic skew–plane which vanishes at noninvertible elements and which has equal
values at invertible elements which project into the same element of the quotient group
defined by ν.

The Radon transformation of harmonic φ for the r–adic skew–plane is a transformation
with domain and range in the Hilbert space of functions f(ξ) of ξ in the r–adic skew–
plane which are square integrable with respect to the canonical measure for the r–adic
skew–plane, which vanish at noninvertible elements, and which satisfy the identity

φ(ξ)f(ωξ) = φ(ωξ)f(ξ)

for every element ω of the r–adic skew–plane with conjugate as inverse.
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The Radon transformation of harmonic φ takes a function f(ξ) of ξ into the function
g(ξ) of ξ when the identity

g(ωξ)/φ(ωξ) =

∫

f(ωξ + ωη)/φ(ωξ + ωη)dη

holds for every element ω of the r–adic skew–plane with conjugate as inverse when ξ is in the
r–adic plane with integration with respect to the canonical measure for the complementary
space to the r–adic plane in the r–adic skew–plane.

The integral is interpreted as a limit of the integrals over the set of elements ξ of the
complementary space such that

λr(ξ
−ξ) ≤ n

for a positive integer n whose prime divisors are divisors of r. Convergence is in the metric
topology of the Hilbert space of square integrable functions with respect to the canonical
measure for the r–adic skew–plane as n becomes eventually divisible by every positive
integer whose prime divisors are divisors of r.

The Laplace transformation of harmonic φ for the r–adic skew–plane gives a spectral
analysis of the adjoint of the Radon transformation of harmonic φ for the r–adic skew–
plane. The domain of the Laplace transformation of harmonic φ is the Hilbert space of
functions f(ξ) of ξ in the r–adic skew–plane which are square integrable with respect to
the canonical measure for the r–adic skew–plane, which vanish at noninvertible elements,
and which satisfy the identity

φ(ξ)f(ωξ) = φ(ωξ)f(ξ)

for every element ω of the r–adic skew–plane with conjugate as inverse. An r–adic half–
plane is applied in the parametrization of these functions.

An r–adic half–plane is defined as a maximal commutative subalgebra of the r–adic
skew–plane which is isomorphic to the Cartesian product of p–adic half–planes taken over
the prime divisors p of r. A p–adic half–plane is defined as a maximal commutative
subalgebra of the p–adic skew–plane whose ring of integral elements is a field modulo n for
the least positive integer n divisible by p with no other prime divisor such that a ring of
self–conjugate integral elements of the complex skew–plane modulo n exists. When p is an
odd prime, the p–adic half–plane is chosen so that every element of the p–adic skew–plane
is a sum

α+ ιpβ

with α and β in the p–adic half–plane and so that the identity

γιp = ι−p γ

holds for every skew–conjugate element of the half–plane.

An r–adic half–plane is a locally compact Hausdorff space in the subspace topology
inherited from the r–adic skew–plane. The canonical measure for the r–adic half–plane
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is the unique nonnegative measure on its Baire subsets such that a measure preserving
transformation is defined by taking ξ into ξ + η for every element η of the r–adic half–
plane and such that the set of integral elements has measure one.

A Laplace transformation of harmonic φ is defined when a harmonic function φ of order
ν for the r–adic skew–plane has norm one in the Hilbert space of harmonic functions is of
order ν. The domain of the Laplace transformation of harmonic φ is the set of functions
f(ξ) of ξ in the r–adic skew–plane which are square integrable with respect to the canonical
measure for the r–adic skew–plane, which vanish at noninvertible elements of the r–adic
skew–plane, and which satisfy the identity

φ(ξ)f(ωξ) = φ(ωξ)f(ξ)

for every element ω of the r–adic skew–plane with conjugate as inverse.

A function
f(ξ) = φ(ξ)h(ξ−ξ)

of ξ in the r–adic skew–plane which belongs to the domain of the Laplace transformation
of harmonic φ is parametrized by a function h(ξ) of ξ in the r–adic half–plane which is
square integrable with respect to the canonical measure for the r–adic half–plane.

The function h(ξ) of ξ is initially defined on the r–adic line. The transformation of the
r–adic skew–plane into the r–adic line which takes ξ into ξ−ξ takes the canonical measure
for the r–adic skew–plane into a nonnegative measure µ on the Baire subsets of the r–adic
line. The identity

∫

|f(ξ)|2dξ =

∫

|h(ξ)|2dµ

holds with integration on the left with respect to the canonical measure for the r–adic
skew–plane and with integration on the right with respect to the measure µ.

The extension of functions defined on the r–adic line to functions defined on the r–adic
half–plane is made by a decomposition with respect to characters for the r–adic half–plane.

parities defined by prime divisors p of r. A function h(ξ) of ξ in the r–adic line is said
to have parity if

h(ωξ) = h(ξ)

or if
h(ωξ) = −h(ξ)

whenever ω is an element of the r–adic line with itself as inverse.

The Hilbert space of functions which are square integrable with respect to µ is the
orthogonal sum of subspaces defined parity. The extension to the r–adic half–plane of a
function defined on the r–adic line is made by characters for the r–adic half–plane.

If ρ is a positive integer whose prime divisors are divisors of r, a character modulo ρ
for the r–adic half–plane is a function χ(ξ) of ξ in the r–adic half–plane which vanishes at
nonintegral elements, which satisfies the identity

χ(ξη) = χ(ξ)χ(η)
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for all integral elements ξ and η, which has equal values at integral elements which are
congruent modulo ρ, and which has a nonzero value at an integral element when, and only
when, the element is invertible modulo ρ.

A character modulo ρ is said to be primitive modulo ρ if no character modulo ρ′ exists
for a proper divisor ρ′ of ρ which agrees with the given character on integral elements
which are invertible modulo ρ.

Primitive characters modulo ρ whose nonzero values are fourth roots of unity are applied
for extension. The values are square roots of unity on elements of the r–adic line with
self inverse. Characters are equivalent for extension purposes if they agree on elements of
the r–adic line with self–inverse. The choice of a character is made in every equivalence
class so that a product of chosen characters is a chosen character. The choice reduces to
the choice when ρ has only one prime divisor, in which case the choice is between two
characters which are conjugates of each other.

The group of elements of the r–adic half–plane with conjugate as inverse is compact in
the subspace topology inherited from the r–adic half–plane. A unique nonnegative measure
is defined on the Baire subsets of the group such that a measure preserving transformation
is defined by taking ξ into ωξ for every element ω of the group and such that the value of
the measure on the group is one.

The group of invertible elements of the r–adic half–plane is locally compact in the
subspace topology inherited from the half–plane. A unique nonnegative measure µ′ is
defined on the Baire subsets of the group such that a measure preserving transformation
is defined by taking ξ into ωξ for every element ω of the group with conjugate as inverse
and such that for every Baire subset C of the r–adic line the set C ′ of elements of the
r–adic half–plane which are products of an element of C and an element with conjugate
as inverse the measure of C with respect to µ is equal to the measure of C ′ with respect
to µ′.

If ω is an invertible element of the r–adic half–plane, the transformation which takes
ξ into ωξ multiplies the measure µ′ by a factor of λr(ω)2. The measure µ′ is a constant
multiple of the canonical measure for the r–adic half–plane.

The set of integral elements of the r–adic half–plane has measure one for the canonical
measure. When r is odd, the set of integral elements of the r–adic half–plane has measure
one for the measure µ′. The measure µ′ is equal to the canonical measure when r is odd.
When r is even, the set of integral elements of the r–adic half–plane has measure two for
the measure µ′. The measure µ′ is is equal to twice the canonical measure when r is even.

When a function

f(ξ) = φ(ξ)h(ξ−ξ)

of ξ in the r–adic skew–plane is parametrized by a function h(ξ) of ξ in the r–adic half–
plane, the identity

∫

|f(ξ)|2dξ =

∫

|h(ξ)|2dξ
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holds when r is odd and the identity

∫

|f(ξ)|2dξ = 2

∫

|h(ξ)|2dξ

holds when r is even with integration on the left with respect to the canonical measure
for the r–adic skew–plane and with integration on the right with respect to the canonical
measure for the r–adic half–plane.

The Fourier transformation for the r–adic half–plane is the unique isometric transfor-
mation of the Hilbert space of square integrable functions with respect to the canonical
measure into itself which takes an integrable function f(ξ) of ξ into the continuous function

g(ξ) =

∫

exp(πi(ξ−η + η−ξ))f(η)dη

of ξ defined by integration with respect to the canonical measure. Fourier inversion

f(ξ) =

∫

exp(−πi(ξ−η + η−ξ))g(η)dη

applies with integration with respect to the canonical measure when the function g(ξ) of
ξ is integrable and the function f(ξ) of ξ is continuous.

The Laplace transform of harmonic φ for the r–adic skew–plane of a function

f(ξ) = φ(ξ)h(ξ−ξ)

of ξ in the r–adic skew–plane is defined as the function g(ξ) of ξ in the r–adic half–plane
such that the function 1

2g(2ξ) of ξ is the Fourier transform of the function h(ξ) of ξ in the
r–adic half–plane. The function g(ξ) of ξ is square integrable with respect to the canonical
measure for the r–adic half–plane. The identity

∫

|f(ξ)|2dξ = 2

∫

|g(ξ)|2dξ

holds with integration on the left with respect to the canonical measure for the r–adic
skew–plane and with integration on the right with respect to the canonical measure for
the r–adic half–plane.

The adjoint of the Radon transformation of harmonic φ takes a function

f1(ξ) = φ(ξ)h1(ξ
−ξ)

of ξ in the r–adic skew–plane into a function

f2(ξ) = φ(ξ)h2(ξ
−ξ)
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of ξ in the r–adic skew–plane if, and only if, the Laplace transforms satisfy the identity

g2(ξ) = λr(ξ)
−1g1(ξ)

for ξ in the r–adic line. The proof applies Fourier analysis on an r–adic plane.

If n is an even positive integer whose prime divisors are divisors of r and if γ is an
invertible element of the r–adic line, the Fourier transform of the function of ξ in the
r–adic plane which is equal to

exp(−πiγξ−ξ)
when nγξ−ξ is integral and which vanishes otherwise is the function of ξ in the r–adic
plane which is equal to

λr(γ)
−1 exp(πiγ−1ξ−ξ)

when nγ−1ξ−ξ is integral and which vanishes otherwise.

The desired identity

exp(πiξ−ξ) =

∫

exp(πi(ξ−η + η−ξ)) exp(−πiη−η)dη

can be written

1 =

∫

exp(−πi(ξ − η)−(ξ − η))dη

and reduces by change of variable to the case ξ equal to zero.

The isometric property of the Fourier transformation implies that the identity holds
with the left side replaced by a constant of absolute value one and that the constant is
independent of n. The constant is computed by an elementary argument when n is equal
to two.

If n is an even positive integer whose prime divisors are divisors of r and if γ is an
invertible element of the r–adic line, the function of ξ in the r–adic skew–plane which is
equal to

exp(−πiγξ−ξ)
when nγξ−ξ is integral and which vanishes otherwise is an eigenfunction of the Radon
transformation for the r–adic skew–plane for the eigenvalue

λr(γ)
−1.

The proof applies the identity

exp(−πiγ(ξ + η)−(ξ + η)) = exp(−πiγξ−ξ) exp(−πiγη−η)

which holds when ξ is an element of the r–adic plane and η is an element of the comple-
mentary space to the r–adic plane in the r–adic skew–plane. The element

nγ(ξ + η)−(ξ + η)
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of the r–adic line is integral if, and only if the elements

nγξ−ξ

and
nγη−η

of the r–adic line are integral.

The integral
∫

exp(−πiγη−η)dη

with respect to the canonical measure for the complementary space to the r–adic plane
in the r–adic skew–plane over the set of elements η such that nγη−η is integral is equal
to the integral with respect to the canonical measure for the r–adic plane over the set of
elements η such that nγη−η is integral. The integral is equal to

λr(γ)
−1

by the computation of Fourier transforms for the r–adic plane.

The domain of the Laplace transformation of harmonic φ is the orthogonal sum of
invariant subspaces for the adjoint of the Radon transformation of harmonic φ which are
characterized as eigenfunctions of the transformation for given eigenvalues. The eigenvalues
are the rational numbers which are equal to

λr(γ)
−1

for an invertible element γ of the r–adic line. The eigenfunctions for the eigenvalue are the
functions f(ξ) of ξ in the r–adic skew–plane whose Laplace transform vanishes at elements
ξ of the r–adic half–plane such that γ−1ξ is not a unit.

The Radon transformation of harmonic φ for the ring of integral elements of the r–adic
skew–plane is a restriction of the Radon transformation of harmonic φ for the r–adic skew–
plane. The domain and range of the transformation are contained in the Hilbert space of
functions f(ξ) of ξ in the r–adic skew–plane which are square integrable with respect to
the canonical measure for the r–adic skew–plane, which satisfy the identity

φ(ξ)f(ωξ) = φ(ωξ)f(ξ)

for every element ω of the r–adic skew–plane with conjugate as inverse, and which vanish
at nonintegral elements of the r–adic skew–plane.

The ring of integral elements of the r–adic skew–plane is a compact Hausdorff space
in the subspace topology inherited from the r–adic skew–plane. The canonical measure
for the ring is the restriction to Baire subsets of the ring of the canonical measure for the
r–adic skew–plane.
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The spectral theory of the adjoint of the Radon transformation for the ring applies
the quotient ring modulo r of the ring of integral elements of the r–adic skew–plane. A
function defined on the quotient ring is treated as a function defined on the ring which has
equal values at elements which are congruent modulo r. The canonical measure for the
ring of integral elements of the r–adic skew–plane modulo r is counting measure divided by
the number of elements in the ring. The projection of the ring of integral elements of the
r–adic skew–plane onto the quotient ring modulo r is a continuous open mapping which
is a homomorphism of conjugated ring structure and which maps the canonical measure
into the canonical measure.

The ring of integral elements of the r–adic plane is contained in the ring of integral
elements of the r–adic skew–plane. The ring is a compact Hausdorff space in the subspace
topology inherited from the r–adic plane, which is identical with the subspace topology
inherited from the ring of integral elements of the r–adic skew–plane. The canonical
measure for the ring is the restriction to Baire subsets of the ring of the canonical measure
for the r–adic plane.

The ring of integral elements of the r–adic plane modulo r is the quotient ring of the
ring of integral elements of the r–adic plane modulo the ideal generated by r. The ring of
integral elements of the r–adic plane modulo r is isomorphic to the image of the ring of
integral elements of the r–adic plane in the ring of integral elements of the r–adic skew–
plane modulo r. The ring of integral elements of the r–adic plane modulo r is treated as a
subring of the ring of integral elements of the r–adic skew–plane modulo r. The canonical
measure for the quotient ring is counting measure divided by the number of elements in the
ring. The projection of the ring of integral elements of the r–adic plane onto the quotient
ring is a continuous open mapping which is a homomorphism of conjugated ring structure
and which maps the canonical measure into the canonical measure.

The complementary space to the ring of integral elements of the r–adic plane in the ring
of integral elements of the r–adic skew–plane is defined as the set of integral elements of
the complementary space to the r–adic plane in the r–adic skew–plane. The set of integral
elements of the complementary space is an additive group which is a compact Hausdorff
space in the subspace topology inherited from the complementary space to the r–adic plane
in the r–adic skew–plane. The canonical measure for the set of integral elements of the
complementary space is the restriction to its Baire subsets of the canonical measure for
the complementary space.

The complementary space to the ring of integral elements of the r–adic plane modulo r
in the ring of integral elements of the r–adic skew–plane modulo r is defined as the image
in the ring of integral elements of the r–adic skew–plane modulo r of the set of integral
elements of the complementary space to the r–adic plane in the r–adic skew–plane.

The complementary space modulo r has a finite number of elements and is given the
discrete topology. The set is an additive group whose canonical measure is counting mea-
sure divided by r2. The projection of the set of integral elements of the complementary
space to the r–adic plane in the r–adic skew–plane onto the complementary space modulo
r is a continuous open mapping which is a homomorphism of additive structure and which
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maps the canonical measure into the canonical measure.

The Radon transformation for the ring of integral elements of the r–adic skew–plane
takes a function f(ξ) of ξ in the ring into a function g(ξ) of ξ in the ring when the identity

g(ωξ)/φ(ωξ) =

∫

f(ωξ + ωη)/φ(ωξ + ωη)dη

holds for every element ω of the r–adic skew–plane with conjugate as inverse when ξ is an
integral element of the r–adic plane with integration with respect to the canonical measure
for the complementary space to the ring of integral elements of the r–adic plane in the
ring of integral elements of the r–adic skew–plane.

The Radon transformation for the ring of integral elements of the r–adic skew–plane
modulo r is a restriction of the Radon transformation for the ring of integral elements of
the r–adic skew–plane. The domain and range of the transformation are contained in the
Hilbert space of functions f(ξ) of ξ in the ring of integral elements of the r–adic skew–plane
modulo r which are square integrable with respect to the canonical measure for the ring
of integral elements of the r–adic skew–plane modulo r and which satisfy the identity

φ(ξ)f(ωξ) = φ(ωξ)f(ξ)

for every element ω of the r–adic skew–plane with conjugate as inverse.

The Radon transformation for the ring of integral elements of the r–adic skew–plane
modulo r takes a function f(ξ) of ξ in the ring into a function g(ξ) of ξ in the ring when
the identity

g(ωξ)/φ(ωξ) =

∫

f(ωξ + ωη)/φ(ωξ + ωη)dη

holds for every element ω of the r–adic skew–plane with conjugate as inverse when ξ is
an element of the ring of integral elements of the r–adic plane modulo r with integration
with respect to the canonical measure for the complementary space to the ring of integral
elements of the r–adic plane modulo r in the ring of integral elements of the r–adic skew–
plane modulo r.

A function
f(ξ) = φ(ξ)h(ξ−ξ)

of ξ in the ring of integral elements of the r–adic skew–plane which is square integrable with
respect to the canonical measure for the ring, which vanishes at noninvertible elements of
the r–adic skew–plane, and which satisfies the identity

φ(ξ)f(ωξ) = φ(ωξ)f(ξ)

for every element of the r–adic skew–plane with conjugate as inverse is parametrized by a
function h(ξ) of half–integral elements ξ of the r–adic half–plane.

The set of integral elements of the r–adic half–plane is subring which is a compact Haus-
dorff space in the subspace topology inherited from the r–adic half–plane. The canonical
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measure for the subring is the restriction to Baire subsets of the subring of the canonical
measure for the r–adic half–plane.

The function h(ξ) of integral elements ξ of the r–adic half–plane is square integrable with
respect to the canonical measure for the ring of integral elements of the r–adic half–plane.
When r is even, the identity

∫

|f(ξ)|2dξ = 2

∫

|h(ξ)|2dξ

holds with integration on the left with respect to the canonical measure for the ring of
integral elements of the r–adic skew–plane and with integration on the right with respect
to the canonical measure for the ring of integral elements of the r–adic half–plane. The
factor of two is deleted when r is odd.

The Fourier transformation for the ring of integral elements of the r–adic half–plane
applies a quotient space of the r–adic half–plane. Elements ξ and η of the r–adic half–
plane are said to be congruent modulo 1 if they differ by an integral element η − ξ of the
r–adic half–plane.

The r–adic half–plane modulo 1 is the quotient space of the r–adic half–plane defined
by the equivalence relation. The quotient space is an additive group which has the discrete
topology and whose canonical measure is counting measure. The projection of the r–adic
half–plane onto the r–adic half–plane modulo 1 is a continuous open mapping which is
a homomorphism of additive structure and which takes the canonical measure into the
canonical measure. A function defined on the r–adic half–plane modulo 1 is treated as a
function defined on the r–adic half–plane which has equal values at elements which are
congruent modulo 1.

An example
exp(πi(ξ−η + η−ξ))

of a function of ξ in the r–adic half–plane modulo 1 is obtained when η is an integral
element of the r–adic half–plane.

The Fourier transformation for the ring of integral elements of the r–adic half–plane is
the unique isometric transformation of the Hilbert space of square integrable functions with
respect to the canonical measure for the ring onto the Hilbert space of square integrable
functions with respect to the canonical measure for the r–adic half–plane modulo 1 which
takes an integrable function f(ξ) of ξ into the continuous function

g(ξ) =

∫

exp(πi(ξ−η + η−ξ))f(η)dη

of ξ defined by integration with respect to the canonical measure for the group. Fourier
inversion

f(ξ) =

∫

exp(−πi(ξ−η + η−ξ))g(η)dη

applies with integration with respect to the canonical measure for the r–adic half–plane
modulo 1 when the function g(ξ) of ξ is integrable and the function f(ξ) of ξ is continuous.
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If for some signature χ for the r–adic half–plane the function f(ξ) of ξ in the integral
elements of the r–adic half–plane satisfies the identity

f(ωξ) = χ(ω)f(ξ)

for every element ω of the r–adic half–plane with conjugate as inverse, then the function
g(ξ) of ξ in the r–adic half–plane modulo 1 satisfies the identity

g(ωξ) = χ(ω)−g(ξ)

for every element ω of the r–adic half–plane with conjugate as inverse.

The Laplace transformation of harmonic φ for the ring of integral elements of the r–adic
skew–plane is defined to take a function

f(ξ) = φ(ξ)h(ξ−ξ)

of ξ in the ring into the function g(ξ) of ξ in the r–adic half–plane modulo 2 such that the
function 1

2g(2ξ) in the r–adic half–plane modulo 1 is the Fourier transform of the function
h(ξ) of ξ in the ring of integral elements of the r–adic half–plane. When r is even, the
identity

∫

|f(ξ)|2dξ = 2

∫

|g(ξ)|2dξ

holds with integration on the left with respect to the canonical measure for the ring and
with integration on the right with respect to the canonical measure for the r–adic half–
plane modulo 2.

The r–adic modulus
λr(ξ) = minλr(η)

of an element ξ of the r–adic half–plane modulo 2 is defined as the minimum r–adic
modulus of elements η of the r–adic half–plane which represent ξ.

The adjoint of the Radon transformation of harmonic φ for the ring of integral elements
of the r–adic skew–plane takes a function

f1(ξ) = φ(ξ)h1(ξ
−ξ)

of ξ in the ring into a function

f2(ξ) = φ(ξ)h2(ξ
−ξ)

of ξ in the ring if, and only if, the Laplace transforms for the ring satisfy the identity

g2(ξ) = λr(ξ)
−1g1(ξ)

for ξ in the r–adic half–plane modulo 2.
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The adjoint of the Radon transformation for the ring of integral elements of the r–adic
skew–plane is a nonnegative transformation in the Hilbert space of square integrable func-
tions with respect to the canonical measure for the ring. The transformation is extended
by its adjoint.

A function
f(ξ) = φ(ξ)h(ξ−ξ)

of ξ in the ring of integral elements of the r–adic skew–plane modulo r which is square
integrable with respect to the canonical measure for the ring modulo r and which satisfies
the identity

φ(ξ)f(ωξ) = φ(ωξ)f(ξ)

for every element ω of the r–adic skew–plane with conjugate as inverse is parametrized by
a function h(ξ) of integral elements ξ of the r–adic half–plane which has equal values at
elements which are congruent modulo r.

Integral elements ξ and η of the r–adic half–plane are said to be congruent modulo r if
they differ by an element η − ξ which is the product of r and an integral element of the
r–adic half–plane. The quotient space for the equivalence relation is the ring of integral
elements of the r–adic half–plane modulo r.

The quotient space contains a finite number of elements and is given the discrete topol-
ogy. The canonical measure is counting measure divided by the number of elements in the
quotient space.

The projection of the ring of integral elements of the r–adic half–plane onto the ring
modulo r is a continuous open mapping which is a homomorphism of ring structure and
which takes the canonical measure into the canonical measure. A function defined on
the ring modulo r is treated as a function defined on the ring which has equal values at
elements which are congruent modulo r.

When r is finite, an example of a function of ξ in the ring modulo r is

exp(πi(ξ−η + η−ξ))

when η is an element of the r–adic half–plane such that rη is an integral element of the
r–adic half–plane: Multiplication by r annihilates the element of the r–adic half–plane
modulo 1 represented by η.

The r–adic half–plane modulo r−1 is defined as the quotient group of the r–adic half–
plane modulo the subgroup of elements whose product by r is integral. A homomorphism
of the r–adic half–plane modulo 1 onto r–adic half–plane modulo r−1 is defined by taking
the image of an element of the r–adic half–plane in the r–adic half–plane modulo 1 into
its image in the r–adic half–plane modulo r. The kernel of the homomorphism is the set
of elements of the r–adic half–plane modulo 1 whose product by r vanishes. The group
of r–annihilated elements of the r–adic half–plane modulo 1 is isomorphic to the quotient
group of the group of elements of the r–adic half–plane whose product by r is integral by
the subgroup of integral elements of the r–adic half–plane. The group of r–annihilated
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elements of the r–adic half–plane modulo 1 contains a finite number of elements and is
given the discrete topology. The canonical measure for the group is counting measure.

The Fourier transformation for the ring of integral elements of the r–adic half–plane
modulo r is the unique isometric transformation of the Hilbert space of square integrable
functions with respect to the canonical measure for the ring onto the Hilbert space of
square integrable functions with respect to the canonical measure for the r–annihilated
subgroup of the r–adic half–plane modulo 1 which takes an integrable function f(ξ) of ξ
into the continuous function

g(ξ) =

∫

exp(πi(ξ−η + η−ξ))f(η)dη

of ξ defined by integration with respect to the canonical measure for the ring. Fourier
inversion

f(ξ) =

∫

exp(−πi(ξ−η + η−ξ))g(η)dη

holds with integration with respect to the canonical measure for the r–annihilated subgroup
when the function g(ξ) of ξ is integrable and the function f(ξ) of ξ is continuous.

The Laplace transformation of harmonic φ for the ring of integral elements of the r–adic
skew–plane modulo r takes a function

f(ξ) = φ(ξ)h(ξ−ξ)

of ξ in the ring into the function g(ξ) of ξ in the 2r–annihilated subgroup of the r–adic
half–plane modulo 2 such that the function 1

2 g(2ξ) of ξ in the r–annihilated subgroup of
the r–adic half–plane modulo 1 which is the Fourier transform of the function h(ξ) in the
ring of integral elements of the r–adic half–plane modulo r.

The identity
∫

|f(ξ)|2dξ = 2

∫

|g(ξ)|2dξ

holds with integration on the left with respect to the canonical measure for the ring of
integral elements of the r–adic skew–plane modulo r and with integration on the right
with respect to the canonical measure for the 2r–annihilated subgroup of the r–adic half–
plane modulo 2.

The adjoint of the Radon transformation of harmonic φ for the ring of integral elements
of the r–adic skew–plane modulo r takes a function

f1(ξ) = φ(ξ)h1(ξ
−ξ)

of ξ in the ring into a function

f2(ξ) = φ(ξ)h2(ξ
−ξ)

of ξ in the ring if, and only if, the Laplace transforms for the ring satisfy the identity

g2(ξ) = λr(ξ)
−1g1(ξ)

for ξ in the 2r–annihilated subgroup of the r–adic half–plane modulo 2.

The adjoint of the Radon transformation for the ring of integral elements of the r–adic
skew–plane modulo r is a nonnegative transformation which is extended by its adjoint.
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4. Harmonic Analysis on an r–Adelic Skew–Plane

An r–adelic skew–plane is defined for every positive integer r after its definition when
r is one.

The 1–adelic skew–plane is the completion of the discrete skew–field in the metric topol-
ogy of its scalar product. The discrete skew–field is a vector space over the Gauss field with
multiplication by an element of the Gauss field on the right of an element of the discrete
skew–field. The 1–adelic skew–plane is a vector space over the field of complex numbers
since the Gauss field is dense in the field of complex numbers and since multiplication is
continuous when the Gauss field has the subspace topology inherited from the complex
plane and the discrete skew–field has the metric topology defined by its scalar product.

Conjugation is a conjugate linear transformation of the discrete skew–field into itself
which extends continuously as a conjugation of the 1–adelic skew–plane.

The isometric transformation ξ into kξ of the discrete skew–field into itself has a unique
continuous extension as an isometric transformation ξ into kξ of the 1–adelic skew–plane
into itself.

An element
γ = α+ kβ

of the complex skew–plane is a linear combination of elements α and β of the complex
plane which defines the product

γξ = αξ + βkξ

as a linear combination of elements of the 1–adelic skew–plane.

The product
η = γξ

of an element ξ of the 1–adelic skew–plane and an element γ of the complex skew–plane is
defined by the conjugate product

η− = ξ−γ−γ−.

The 1–adelic plane is a Hilbert space which is contained isometrically in the 1–adelic
skew–plane and whose elements are the elements of the 1–adelic skew–plane on which
multiplication on left and right by elements of the complex plane agree. An orthogonal
basis for the discrete field as a vector space over the Gauss field is an orthogonal basis for
the 1–adelic plane as a vector space over the field of complex numbers.

If a set of elements γ of the discrete field is an orthogonal basis for the discrete field,
every element

ξ =
∑

γξγ

of the 1–adelic skew–plane is a unique sum over the elements γ of the orthogonal basis
with coefficients ξγ in the complex skew–plane. The identity

〈ξ, ξ〉 =
∑

〈γ, γ〉ξ−γ ξγ
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holds with summation over the elements γ of the orthogonal basis. The element ξ belongs
to the 1–adelic plane if, and only if, the elements ξγ belong to the complex plane.

The canonical measure for the 1–adelic skew–plane is a nonnegative measure on its Baire
subsets such that a measure preserving transformation is defined by taking ξ into ξ + η
for every element η of the 1–adelic skew–plane. The measure is mapped into a constant
multiple of the Cartesian product measure of canonical measures for complex skew–planes
by taking ξ into the element of the Cartesian product which has component ξγ at γ for
every element of the orthogonal basis. The canonical measure for the 1–adelic skew–plane
is normalized so that the constant is the product

∏

〈γ, γ〉2

taken over the elements γ of the orthogonal basis.

The canonical measure for the 1–adelic plane is a nonnegative measure on its Baire
subsets such that a measure preserving transformation is defined by taking ξ into ξ+ η for
every element η of the 1–adelic plane. The measure is mapped into a constant multiple of
the Cartesian product measure of canonical measures for complex planes by taking ξ into
the element of the Cartesian product which has ξγ as component for every element γ of
the orthogonal basis. The canonical measure for the 1–adelic plane is normalized so that
the constant is the product

∏

〈γ, γ〉
taken over the elements γ of the orthogonal basis.

The complementary space to the 1–adelic plane in the 1–adelic skew–plane is its orthog-
onal complement. Multiplication by k is an isometric transformation of the 1–adelic plane
onto its complementary space. The canonical measure for the complementary space is a
nonnegative measure on its Baire subsets such that a measure preserving transformation is
defined by taking ξ into ξ+η for every element η of the space. The measure is the image of
the canonical measure for the 1–adelic plane under the transformation which takes ξ into
kξ. The canonical measure for the 1–adelic skew–plane is the Cartesian product measure
for the 1–adelic plane and the canonical measure for its complementary space.

Conjugation is a measure preserving transformation of the 1–adelic skew–plane into
itself. Every isometric transformation of the 1–adelic skew–plane into itself is measure
preserving. An example of an isometric transformation of the 1–adelic skew–plane into
itself is the continuous extension of an automorphism of the discrete skew–field which
takes Hurwitz integers into Hurwitz integers. If the transformation takes ξ into η, it
takes ωξ into ωη and ξω into ηω for every element ω of the complex skew–plane. Similar
conclusions apply to the 1–adelic plane.

The Fourier transformation for the 1–adelic skew–plane is the unique isometric trans-
formation of the Hilbert space of square integrable functions with respect to the canonical
measure for the 1–adelic skew–plane into itself which takes an integrable function f(ξ) of
ξ into the continuous function

g(ξ) =

∫

exp(πi〈ξ, η〉 + πi〈η, ξ〉)f(η)
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of ξ defined by integration with respect to the canonical measure. Fourier inversion states
that

f(ξ) =

∫

exp(−πi〈ξ, η〉 − πi〈η, ξ〉)g(η)dη

with integration with respect to the canonical measure when the function f(ξ) of ξ is
continuous and the function g(ξ) of ξ is integrable.

The Fourier transformation for the 1–adelic plane is the unique isometric transformation
of the Hilbert space of square integrable functions with respect to the canonical measure
for the 1–adelic plane into itself which takes an integrable function f(ξ) of ξ into the
continuous function

g(ξ) =

∫

exp(πi〈ξ, η〉 + πi〈η, ξ〉)f(η)dη

of ξ defined by integration with respect to the canonical measure. Fourier inversion states
that

f(ξ) =

∫

exp(−πi〈ξ, η〉 − πi〈η, ξ〉)g(η)dη

with integration with respect to the canonical measure when the function f(ξ) of ξ is
continuous and the function g(ξ) of ξ is integrable.

Harmonic functions of order ν for the 1–adelic skew–plane are defined when an orthog-
onal basis is chosen for the discrete field. The degree of the harmonic polynomial is a
family of nonnegative integers νγ parametrized by elements γ of the orthogonal basis. A
harmonic polynomial of degree ν is a continuous function φ(ξ) of ξ =

∑

γξγ in the 1–adelic
skew–plane which is a harmonic polynomial of degree νγ in the variable ξγ for every γ when
other variables are held fixed.

A harmonic polynomial of degree ν is said to be a monomial if it is a product of
monomials of degree νγ in the variables ξγ . The Hilbert space of harmonic polynomials
of degree ν is a Hilbert space which has an orthogonal basis consisting of monomials of
degree ν and in which the scalar self–product of a monomial is the product of the scalar
self–products of monomials in the variables ξγ .

Isometric transformations of the Hilbert space of harmonic polynomials of degree ν
into itself are defined by taking a function f(ξ) of ξ in the 1–adelic skew–plane into the
functions f(ωξ) and f(ξω) of ξ in the 1–adelic skew–plane for every element ω of the
complex skew–plane with conjugate as inverse.

A Radon transformation of harmonic φ for the 1–adelic skew–plane is defined when a
harmonic polynomial of degree ν for the 1–adelic skew–plane does not vanish identically.
The domain and range of the Radon transformation of harmonic φ are contained in the
Hilbert space of functions f(ξ) of ξ in the 1–adelic skew–plane which are square integrable
with respect to the canonical measure and which satisfy the identity

φ(ξ)f(ωξ) = φ(ωξ)f(ξ)

for every element ω of the complex skew–plane with conjugate as inverse.
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The Radon transformation of harmonic φ takes a function f(ξ) of ξ in the 1–adelic
skew–plane into a function g(ξ) of ξ in the 1–adelic skew–plane when the identity

g(ωξ)/φ(ωξ) =

∫

f(ωξ + ωη)/φ(ωξ + ωη)dη

holds for ξ in the 1–adelic plane for every element ω of the complex skew–plane with
integration with respect to the canonical measure for the complementary space to the
1–adelic plane in the 1–adelic skew–plane.

The integral is interpreted as a limit of integrals over disks 〈η, η〉 < n in the comple-
mentary space. The limit is taken in the metric topology of the Hilbert space of square
integrable functions with respect to the canonical measure for the 1–adelic skew–plane.

The function
φ(ξ) exp(πiz〈ξ, ξ〉)

of ξ in the 1–adelic skew–plane is an eigenfunction of the Radon transformation of harmonic
φ for the eigenvalue

i/z

when z is in the upper half–plane.

The harmonic function is assumed to have norm one in the Hilbert space of harmonic
polynomials of degree ν. The domain of the Laplace transformation of harmonic φ is the
set of functions

f(ξ) = φ(ξ)h(〈ξ, ξ〉)
of ξ in the 1–adelic skew–plane which are square integrable with respect to the canonical
measure and which are parametrized by a function h(z) of z in the upper half–plane
admitting an extension to the complex plane satisfying the identity

h(ωz) = h(z)

for every element ω of the complex plane with conjugate as inverse.

The inequality

π∞

∫

|ξ|ν∞ |h(ξ)|2dξ ≤
∫

|f(ξ)|2dξ

holds with integration on the left with respect to the canonical measure for the complex
skew–plane and with integration on the right with respect to the canonical measure for
the 1–adelic skew–plane with

2 + ν∞ =
∑

(2 + νγ)

defined as a sum and
π∞

2 + ν∞
=

∏ π

2 + νγ

defined as a product over the elements γ of the orthogonal basis. Every function h(z) of z
in the upper half–plane for which the integral on the left converges parametrizes a function
f(ξ) of ξ in the 1–adelic skew–plane for which equality holds.
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An element of the range of the Laplace transformation of harmonic φ for the 1–adelic
skew–plane is an analytic function

h∧(z) = π

∫ ∞

0

tν∞h(t) exp(πitz)tdt

of z in the upper half–plane defined by a function h(z) of z in the upper half–plane which
admits an extension to the complex plane satisfying the identity

h(ωz) = h(z)

for every element ω of the complex plane with conjugate as inverse such that the integral

∫

|ξ|ν∞ |h(ξ)|2dξ

with respect to the canonical measure for the upper half–plane converges. The identity

∫ ∞

0

∫ +∞

−∞

|h∧(x+ iy)|2yν∞dxdy = (2π)−ν∞Γ(1 + ν∞)

∫ ∞

0

tν∞ |h(t)|2tdt

is satisfied.

The orthogonal complement of the kernel of the Laplace transformation of harmonic
φ is an invariant subspace for the adjoint of the Radon transformation of harmonic φ
on which the adjoint is a maximal accretive transformation. The adjoint of the Radon
transformation takes a function f(ξ) of ξ which is orthogonal to the kernel into a function
g(ξ) of ξ which is orthogonal to the kernel when the identity

∫

φ(ξ)−g(ξ) exp(πiz〈ξ, ξ〉)dξ = (i/z)

∫

φ(ξ)−f(ξ) exp(πiz〈ξ, ξ〉)dξ

holds when z is in the upper half–plane with integration with respect to the canonical
measure for the 1–adelic skew–plane.

The Fourier transform for the 1–adelic skew–plane of the function

φ(ξ) exp(πiz〈ξ, ξ〉)

of ξ in the 1–adelic skew–plane is the function

iν∞(i/z)2+ν∞φ(ξ) exp(−πiz−1〈ξ, ξ〉)

of ξ in the l–adelic skew–plane when z is in the upper half–plane.

The r–adelic skew–plane is the Cartesian product of the 1–adelic skew–plane and the
r–adic skew–plane. An element ξ of the r–adelic skew–plane has a component ξ+ in the 1–
adelic skew–plane and a component ξ− in the r–adic skew–plane. The r–adelic skew–plane
is a conjugated ring with coordinate addition and multiplication.
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The sum ξ + η of elements ξ and η of the r–adelic skew–plane is the element of the
r–adelic skew–plane whose component in the 1–adelic skew–plane is the sum

ξ+ + η+

of components in the 1–adelic skew–plane and whose component in the r–adic skew–plane
is the sum

ξ− + η−

of components in the r–adic skew–plane.

The product ξη of elements ξ and η of the r–adelic skew–plane is the element of the
r–adelic skew–plane whose component in the 1–adelic skew–plane is the product

ξ+η+

of components in the 1–adelic skew–plane and whose component in the r–adic skew–plane
is the product

ξ−η−

of components in the r–adic skew–plane.

The conjugate of an element ξ of the r–adelic skew–plane is the element ξ− of the
r–adelic skew–plane whose component in the 1–adelic skew–plane is the conjugate

ξ−+

of the component in the 1–adelic skew–plane and whose component in the r–adic skew–
plane is the conjugate

ξ−−

of the component in the r–adic skew–plane.

The r–adelic skew–plane is a locally compact Hausdorff space in the Cartesian product
topology of the topology of the 1–adelic skew–plane and the topology of the r–adic skew–
plane. Addition is continuous as a transformation of the Cartesian product of the r–adelic
skew–plane with itself into the r–adelic skew–plane. Multiplication by an element of the
r–adelic skew–plane is a continuous transformation of the r–adelic skew–plane into itself.
Conjugation is a continuous transformation of the r–adelic skew–plane into itself.

The canonical measure for the r–adelic skew–plane is the Cartesian product measure
of the canonical measure for the 1–adelic skew–plane and the canonical measure for the
r–adic skew–plane. The measure is defined on Baire subsets of the r–adelic skew–plane.
A measure preserving transformation of the r–adelic skew–plane into itself is defined by
taking ξ into ξ + η for every element η of the r–adelic skew–plane. Measure preserving
transformations of the r–adelic skew–plane into itself are defined by taking ξ into ωξ and
into ξω for every element ω of the r–adelic skew–plane with has conjugate as inverse.

The Fourier transformation for the r–adelic skew–plane is the unique isometric trans-
formation of the Hilbert space of square integrable functions with respect to the canonical
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measure for the r–adelic skew–plane into itself which takes an integrable function f(ξ+, ξ−)
of ξ = (ξ+, ξ−) in the r–adelic skew–plane into the continuous function

g(ξ+, ξ−) =

∫

exp(πi〈ξ+, η+〉 + πi〈η+, ξ+〉) exp(πi(ξ−−η− + η−−ξ−))f(η+, η−)dη

of ξ = (ξ+, ξ−) in the r–adelic skew–plane defined by integration with respect to the
canonical measure. Fourier inversion

f(ξ+, ξ−) =

∫

exp(−πi〈ξ+, η+〉 − πi〈η+, ξ+〉) exp(−πi(ξ−−η− + η−−ξ−))g(η+, η−)dη

applies with integration with respect to the canonical measure when the function g(ξ+, ξ−)
of ξ = (ξ+, ξ−) is integrable and the function f(ξ+, ξ−) of ξ = (ξ+, ξ−) is continuous.

The r–adelic half–plane is the set of elements (z, ξ) of the r–adelic skew–plane whose
component z in the complex skew–plane belongs to the upper half–plane and whose com-
ponent ξ in the r–adic skew–plane belongs to the r–adic half–plane. The topology of
the r–adelic half–plane is the Cartesian product topology of the topology of the upper
half–plane and the topology of the r–adic half–plane. The canonical measure for the r–
adelic half–plane is the Cartesian product measure of the canonical measure for the upper
half–plane and the canonical measure for the r–adic half–plane.

Harmonic functions of order ν = (ν+, ν−) for the r–adelic skew–plane are defined when
harmonic functions of order ν+ are defined for the 1–adelic skew–plane and harmonic
functions of order ν− are defined for the r–adic skew–plane.

A harmonic function of order ν for the r–adelic skew–plane is a continuous function
φ(ξ+, ξ−) of ξ = (ξ+, ξ−) in the r–adelic skew–plane such that for every element ξ− of the
r–adic skew–plane the function of ξ+ in the 1–adelic skew–plane is a harmonic function
of order ν+ and for every element ξ+ of the 1–adelic skew–plane the function of ξ− in the
r–adic skew–plane is a harmonic function of order ν−.

The set of harmonic functions of order ν for the r–adelic skew–plane is a Hilbert space
whose scalar product is defined from the scalar product of the Hilbert space of harmonic
functions of order ν+ for the 1–adelic skew–plane and the scalar product for the Hilbert
space of harmonic functions of order ν− for the r–adic skew–plane.

The Hilbert space of harmonic functions of order ν+ for the 1–adelic skew–plane admits
an orthogonal basis whose elements are monomials. The Hilbert space of harmonic func-
tions of order ν for the r–adelic skew–plane is the orthogonal sum of subspaces determined
by the monomials. A subspace contains the product of the monomial with a harmonic
function of order ν− for the r–adic skew–plane. The scalar product of two elements of the
subspace is the scalar self–product of the monomials multiplied by the scalar product of
the harmonic functions for the r–adic skew–plane.

Multiplication on left or right by an element of the r–adelic skew–plane with conjugate as
inverse on the argument of a harmonic function of order ν is an isometric transformation
of the Hilbert space of harmonic functions of order ν into itself. The dimension of the
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Hilbert space of harmonic functions of order ν for the 1–adelic skew–plane is the product
of the dimension of the Hilbert space of harmonic functions of order ν+ for the 1–adelic
skew–plane and the Hilbert space of harmonic functions of order ν− for the r–adic skew–
plane.

Hecke operators are self–adjoint transformations of the Hilbert space of harmonic func-
tions of order ν for the r–adelic skew–plane into itself. An isometric transformation of the
Hilbert space into itself is defined by every nonzero element ω of the discrete skew–field
by taking a function f(ξ+, ξ−) of ξ = (ξ+, ξ−) in the r–adelic skew–plane into the function
f(ξ+ω, ξ−ω) of ξ = (ξ+, ξ−) in the r–adelic skew–plane.

An integral element of the discrete skew–field with integral inverse has conjugate as
inverse. Define µ as the number of elements of the discrete skew–field with conjugate as
inverse.

A Hecke operator ∆(n) is defined for every positive integer n whose prime divisors are
divisors of r such that a ring of self–conjugate integral elements of the complex skew–plane
modulo n exists. The transformation takes a function f(ξ+, ξ−) of ξ = (ξ+, ξ−) in the
r–adelic skew–plane into the function g(ξ+, ξ−) of ξ = (ξ+, ξ−) in the r–adelic skew–plane
defined by the sum

µg(ξ+, ξ−) =
∑

f(ξ+ω, ξ−ω)

over the integral elements ω of the discrete skew–field such that

n = λ(ω−ω).

The identity

∆(m)∆(n) =
∑

k∆(mn/k2)

holds for all positive integers m and n whose prime divisors are divisors of r such that
∆(m) and ∆(n) are defined with summation over the common odd divisors k of m and n.

The Hecke operator ∆(1) is the orthogonal projection of the Hilbert space of harmonic
functions of order ν onto the subspace of functions f(ξ+, ξ−) of ξ = (ξ+, ξ−) in the r–adelic
skew–plane which satisfy the identity

f(ξ+, ξ−) = f(ξ+ω, ξ−ω)

for every integral element ω of the discrete skew–plane with conjugate as inverse.

The kernel of ∆(1) is contained in the kernel of ∆(n), and the range of ∆(n) is contained
in the range of ∆(1), for every positive integer n whose prime divisors are divisors of r
such that ∆(n) is defined.

Hecke operators act as self–adjoint transformations in the range of ∆(1). The range
of ∆(1) is the orthogonal sum of invariant subspaces whose elements are characterized as
eigenfunctions of ∆(n) for a real eigenvalue τ(n) for every positive integer n whose prime
divisors are divisors of r such that ∆(n) is defined.
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Eigenvalues defining an invariant subspace satisfy the identity

τ(m)τ(n) =
∑

kτ(mn/k2)

for all positive integers m and n whose prime divisors are divisors of r such that ∆(m)
and ∆(n) are defined with summation over the common odd divisors k of m and n. The
eigenvalue τ(n) is one when n is one.

A Radon transformation of harmonic φ is defined for the r–adelic skew–plane when a
nontrivial harmonic function φ of order ν defines an eigenfunction for Hecke operators.
The transformation is defined by integration with respect to the canonical measure for the
complementary space to the r–adelic plane in the r–adelic skew–plane.

The r–adelic plane is the set of elements ξ = (ξ+, ξ−) of the r–adelic skew–plane whose
component ξ+ in the 1–adelic skew–plane belongs to the 1–adelic plane and whose com-
ponent ξ− in the r–adic skew–plane belongs to the r–adic plane. The r–adelic plane is
isomorphic to the Cartesian product of the complex 1–adelic plane and the r–adic plane.
The subspace topology of the r–adelic plane inherited from the r–adelic skew–plane is iden-
tical with the Cartesian product topology of the topology of the 1–adelic plane and the
topology of the r–adic plane. The canonical measure for the r–adelic plane is the Carte-
sian product measure of the canonical measure for the 1–adelic plane and the canonical
measure for the r–adic plane.

The complementary space to the r–adelic plane in the r–adelic skew–plane is the set of
elements ξ = (ξ+, ξ−) of the r–adelic skew–plane whose component ξ+ in the 1–adelic skew–
plane belongs to the complementary space to the 1–adelic plane in the 1–adelic skew–plane
and whose component ξ− in the r–adic skew–plane belongs to the complementary space to
the r–adic plane in the r–adic skew–plane. The complementary space to the r–adelic plane
in the r–adelic skew–plane is isomorphic to the Cartesian product of the complementary
space of the 1–adelic plane in the 1–adelic skew–plane and the complementary space to
the r–adic plane in the r–adic skew–plane.

The topology which the r–adelic plane inherits from the r–adelic skew–plane is identical
with the Cartesian product topology of the topology of the 1–adelic plane and the topology
of the r–adic plane. The canonical measure for the r–adelic plane is the Cartesian product
measure of the canonical measure for the 1–adelic plane and the canonical measure for the
r–adic plane.

The topology which the complementary space to the r–adelic plane in the r–adelic
skew–plane inherits from the r–adelic skew–plane is identical with the Cartesian product
topology of the topology of the complementary space of the 1–adelic plane in the 1–adelic
skew–plane and the topology of the complementary space to the r–adic plane in the r–adic
skew–plane.

The canonical measure for the complementary space to the r–adelic plane in the r–adelic
skew–plane is the Cartesian product measure of the canonical measure for the complemen-
tary space to the 1–adelic plane in the 1–adelic skew–plane and the canonical measure for
the complementary space to the r–adic plane in the r–adic skew–plane.
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The Radon transformation of harmonic φ has domain and range in the Hilbert space of
functions f(ξ+, ξ−) of ξ = (ξ+, ξ−) in the r–adelic skew–plane which satisfy the identity

φ(ξ+, ξ−)f(ω+ξ+, ω−ξ−) = φ(ω+ξ+, ω−ξ−)f(ξ+, ξ−)

for every element ω = (ω+, ω−) of the r–adelic skew–plane with conjugate as inverse.

The transformation takes a function f(ξ+, ξ−) of ξ = (ξ+, ξ−) in the r–adelic skew–plane
into the function g(ξ+, ξ−) of ξ = (ξ+, ξ−) in the r–adelic skew–plane when the identity

g(ω+ξ+, ω−ξ−)/φ(ω+ξ+, ω−ξ−)

=

∫

f(ω+ξ+ + ω+η+, ω−ξ− + ω−η−)/φ(ω+ξ+ + ω+η+, ω−ξ− + ω−η−)dη

holds with integration with respect to the canonical measure for the complementary space
to the r–adelic plane in the r–adelic skew–plane for every element ξ = (ξ+, ξ−) of the
r–adelic plane and every element ω = (ω+, ω−) of the r–adelic skew–plane with conjugate
as inverse.

The integral is taken in the metric topology of the Hilbert space of square integrable
functions with respect to the canonical measure for the r–adelic skew–plane of integrals
over compact subsets of the complementary space to the r–adelic plane in the r–adelic
skew–plane.

The Laplace transformation of harmonic φ for the r–adelic skew–plane is a spectral
analysis of the adjoint of the Radon transformation of harmonic φ for the r–adelic skew–
plane in an invariant subspace. A Laplace transformation of harmonic φ is defined for
a harmonic function φ of order ν which has norm one in the Hilbert space of harmonic
functions of order ν.

The domain of the Laplace transformation of harmonic φ is contained in the Hilbert
space of functions f(ξ+, ξ−) of ξ = (ξ+, ξ−) in the r–adelic skew–plane which are square
integrable with respect to the canonical measure for the r–adelic skew–plane, which satisfy
the identity

φ(ξ+, ξ−)f(ω+ξ+, ω−ξ−) = φ(ω+ξ+, ω−ξ−)f(ξ+, ξ−)

for every element ω = (ω+, ω−) of the r–adelic skew–plane with conjugate as inverse, and
which vanish at noninvertible elements of the r–adelic skew–plane.

A function
f(ξ+, ξ−) = φ(ξ+, ξ−)h(〈ξ+, ξ+〉, ξ−−ξ−)

of ξ = (ξ+, ξ−) in the r–adelic skew–plane which belongs to the domain of the Laplace
transformation of harmonic φ is parametrized by a function h(z, ξ) of (z, ξ) in the r–adelic
half–plane.

For every element ξ of the r–adic half–plane the function of z in the upper half–plane
admits an extension to the complex plane which satisfies the identity

h(ωz, ξ) = h(z, ξ)
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for every element ω of the complex plane with conjugate as inverse. For every element z
of the upper half–plane the function of ξ in the r–adic half–plane satisfies the identity

h(z, ωξ) = h(z, ξ)

for every element ω of the r–adic half–plane with conjugate as inverse which is the square
of an element with conjugate as inverse. If for some primitive character χ modulo ρ for
the r–adic half–plane whose values are fourth roots of unity, the identity

h(z, ωξ) = χ(ω)h(z, ξ)

holds for every element ξ of the r–adic line and every element ω of the r–adic line with
itself as inverse, then the identity holds for every element ω of the r–adic half–plane with
conjugate as inverse and every element ξ of the r–adic half–plane.

The identity
∫

|f(ξ+, ξ−)|2dξ = π∞

∫

|ξ+|ν∞ |h(ξ+, ξ−)|2dξ

holds with integration on the left with respect to the canonical measure for the r–adelic
skew–plane and with integration on the right with respect to the canonical measure for
the r–adelic half–plane.

The Laplace transformation of harmonic φ of the function f(ξ+, ξ−) of ξ = (ξ+, ξ−) in
the r–adelic skew–plane is the function

g(z, ξ) = 2

∫

exp(πi|η+|z) exp( 1
2πi(ξ

−η− + η−−ξ))|η+|ν∞h(η+, η−)dη

of (z, ξ) in the r–adelic half–plane defined by integration with respect to the canonical
measure for the r–adelic half–plane when the integral is absolutely convergent. The integral
is otherwise defined to maintain the identity

∫

|12η+ − 1
2η

−

+ |ν∞ |g(η+, η−)|2dξ = (2π)−ν∞Γ(1 + ν∞)
∫

|η+|ν∞ |h(η+, η−)|2dη

with integration with respect to the canonical measure for the r–adelic half–plane.

A computation of the adjoint of the Radon transformation of harmonic φ for the r–adelic
skew–plane is made from the Laplace transformation of harmonic φ for the r–adelic skew–
plane. The adjoint of the Radon transformation takes a function f1(ξ+, ξ−) of ξ = (ξ+, ξ−)
in the r–adelic skew–plane into the function f2(ξ+, ξ−) of ξ = (ξ+, ξ−) in the r–adelic
skew–plane if, and only if, the Laplace transforms of harmonic φ are functions g1(z, ξ) and
g2(z, ξ) of (z, ξ) in the r–adelic half–plane which satisfy the identity

g2(z, ξ) = (i/z)λr(ξ)
−1g1(z, ξ).

The adjoint of the Radon transformation of harmonic φ for the r–adelic skew–plane
is a maximal accretive transformation in the orthogonal complement of the kernel of the
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Laplace transformation. The adjoint of the Radon transformation of harmonic φ is exam-
ined in subspaces for the same property.

An element ξ = (ξ+, ξ−) of the r–adelic skew–plane is treated as integral if its r–adic
component ξ− is integral. The set of integral elements of the r–adelic skew–plane is a ring
which is a locally compact Hausdorff space in the topology inherited from the r–adelic
skew–plane. The canonical measure for the ring is the restriction to Baire subsets of the
ring of the canonical measure for the r–adelic skew–plane.

The ring of integral elements of the r–adelic skew–plane is isomorphic to the Cartesian
product of the 1–adelic skew–plane and the ring of integral elements of the r–adic skew–
plane. The topology of the ring of integral elements of the r–adelic skew–plane is the
Cartesian product topology of the topology of the 1–adelic skew–plane and the topology
of the ring of integral elements of the r–adic skew–plane. The canonical measure for the
ring of integral elements of the r–adelic skew–plane is the Cartesian product measure of
the canonical measure for the 1–adelic skew–plane and the canonical measure for the ring
of integral elements of the r–adic skew–plane.

The set of integral elements of the r–adelic plane is a ring which is a locally compact
Hausdorff space in the topology inherited from the r–adelic plane. The canonical measure
for the ring is the restriction to Baire subsets of the ring of the canonical measure for the
r–adelic plane.

The ring of integral elements of the r–adelic plane is isomorphic to the Cartesian product
of the 1–adelic plane and the ring of integral elements of the r–adic plane. The topology
for the ring of integral elements of the r–adelic plane is the Cartesian product topology of
the topology of the 1–adelic plane and the topology of the ring of integral elements of the
r–adic plane. The canonical measure for the ring of integral elements of the r–adelic plane
is the Cartesian product measure of the canonical measure for the 1–adelic plane and the
canonical measure for the ring of integral elements of the r–adic plane.

The complementary space to the ring of integral elements of the r–adelic plane in the
ring of integral elements of the r–adelic skew–plane is the set of integral elements of the
complementary space to the r–adelic plane in the r–adelic skew–plane. The complementary
space to the ring of integral elements of the r–adelic plane in the ring of integral elements
of the r–adelic skew–plane is a locally compact Hausdorff space in the subspace topology
inherited from the complementary space to the r–adelic plane in the r–adelic skew–plane.
The canonical measure for the complementary space to the ring of integral elements of the
r–adelic plane in the ring of integral elements of the r–adelic skew–plane is the restriction
to its Baire subsets of the canonical measure for the complementary space to the r–adelic
plane in the r–adelic skew–plane.

The complementary space to the ring of integral elements of the r–adelic plane in the
ring of integral elements of the r–adelic skew–plane is isomorphic to the Cartesian product
of the complementary space to the 1–adelic plane in the 1–adelic skew–plane and the com-
plementary space to the ring of integral elements of the r–adic plane in the ring of integral
elements of the r–adic skew–plane. The topology of the complementary space to the ring
of integral elements of the r–adelic plane in the ring of integral elements of the r–adelic
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skew–plane is the Cartesian product topology of the topology of the complementary space
to the 1–adelic plane in the 1–adelic skew–plane and the topology of the complementary
space to the ring of integral elements of the r–adic plane in the ring of integral elements
of the r–adic skew–plane. The canonical measure for the complementary space to the ring
of integral elements of the r–adelic plane in the ring of integral elements of the r–adelic
skew–plane is the Cartesian product measure of the canonical measure for the complemen-
tary space to the 1–adelic plane in the 1–adelic skew–plane and the canonical measure for
the complementary space to the ring of integral elements of the r–adic plane in the ring of
integral elements of the r–adic skew–plane.

The Radon transformation of harmonic φ for the ring of integral elements of the r–
adelic skew–plane is a transformation whose domain and range are contained in a Hilbert
space which is the domain of the Laplace transformation of harmonic φ for the ring of
integral elements of the r–adelic skew–plane. The elements of the domain of the Laplace
transformation are functions f(ξ+, ξ−) of ξ = (ξ+, ξ−) in the ring of integral elements of
the r–adelic skew–plane which are square integrable with respect to the canonical measure
for the ring and which satisfy the identity

φ(ξ+, ξ−)f(ω+ξ+, ω−ξ−) = φ(ω+ξ+, ω−ξ−)f(ξ+, ξ−)

for every element ω = (ω+, ω−) of the r–adelic skew–plane with conjugate as inverse.

The Radon transformation takes a function f(ξ+, ξ−) of ξ = (ξ+, ξ−) in the ring into a
function g(ξ+, ξ−) of ξ = (ξ+, ξ−) in the ring when the identity

g(ω+ξ+, ω−ξ−)/φ(ω+ξ+, ω−ξ−)

=

∫

f(ω+ξ+ + ω+η+, ω−ξ− + ω−η−)/φ(ω+ξ+ + ω+η+, ω−ξ− + ω−η−)dη

for every element ω = (ω+, ω−) of the r–adelic skew–plane with conjugate as inverse for
every element ξ = (ξ+, ξ−) of the ring of integral elements of the r–adelic plane with
integration with respect to the canonical measure for the complementary space to the ring
of integral elements of the r–adelic plane in the ring of integral elements of the r–adelic
skew–plane. The integral is interpreted as a limit in the metric topology of the domain of
the Laplace transformation of integrals over compact subsets of the complementary space.

An element ξ = (ξ+, ξ−) of the r–adelic half–plane is treated as integral if its r–adic
component ξ− is an integral element of the r–adic half–plane. The set of integral elements of
the r–adelic half–plane is an additive subgroup which is a locally compact Hausdorff space
in the subspace topology inherited from the r–adelic half–plane. The canonical measure for
the subgroup is the restriction to Baire subsets of the subgroup of the canonical measure
for the r–adelic half–plane.

The group of integral elements of the r–adelic half–plane is isomorphic to the Cartesian
product of the upper half–plane and the group of integral elements of the r–adic half–
plane. The topology of the group of integral elements of the r–adelic half–plane is the
Cartesian product topology of the topology of the upper half–plane and the topology of
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the group of integral elements of the r–adic half–plane. The canonical measure for the
group of integral elements of the r–adelic half–plane is the Cartesian product measure of
the canonical measure for the upper half–plane and the canonical measure for the group
of integral elements of the r–adic half–plane.

A function
f(ξ+, ξ−) = φ(ξ+, ξ−)h(〈ξ+, ξ+〉, ξ−−ξ−)

of ξ = (ξ+, ξ−) in the ring of integral elements of the r–adelic skew–plane which belongs
to the domain of the Laplace transformation of harmonic φ for the ring is parametrized
by a function h(z, ξ) of (z, ξ) in the group of integral elements of the r–adelic half–plane

whose product with |z| 12 ν∞ is square integrable with respect to the canonical measure for
the group. For every integral element ξ of the r–adic half–plane the function h(z, ξ) of z in
the upper half–plane admits an extension to the complex plane which satisfies the identity

h(ωz, ξ) = h(z, ξ)

for every element ω of the complex plane with conjugate as inverse. If for a primitive
character χ modulo ρ for the r–adic half–plane with fourth roots of unity as nonzero
values, the identity

h(z, ωξ) = χ(ω)h(z, ξ)

holds for every element ω of the r–adic line with itself as inverse, then the identity holds
for every element ω of the r–adic half–plane with conjugate as inverse.

The identity
∫

|f(ξ+, ξ−)|2dξ = π∞

∫

|ξ+|ν∞ |h(ξ+, ξ−)|2dξ

holds with integration on the left with respect to the canonical measure for the ring of
integral elements of the r–adelic skew–plane and with integration on the right with respect
to the canonical measure for the group of integral elements of the r–adelic half–plane.

Elements ξ = (ξ+, ξ−) and η = (η+, η−) of the r–adelic half–plane are treated as con-
gruent modulo 1 if the components

ξ+ = η+

in the upper half–plane are equal and the components ξ− and η− in the r–adic half–plane
are congruent modulo 1. The quotient space modulo the equivalence relation is the r–adelic
half–plane modulo 1.

The r–adelic half–plane modulo 1 is isomorphic to the Cartesian product of the upper
half–plane and the r–adic half–plane modulo 1. The r–adelic half–plane modulo 1 is an
additive group whose topology is the Cartesian product topology of the upper half–plane
and the topology of the r–adic half–plane modulo 1. The canonical measure for the r–
adelic half–plane modulo 1 is the Cartesian product measure of the canonical measure for
the upper half–plane and the canonical measure for the r–adic half–plane modulo 1.

The Laplace transform of harmonic φ of the function

f(ξ+, ξ−) = φ(ξ+, ξ−)h(〈ξ+, ξ+〉, ξ−−ξ−)
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of ξ = (ξ+, ξ−) in the ring of integral elements of the r–adelic skew–plane is defined as the
function

g(z, ξ) = 2

∫

exp(πi|η+|z) exp( 1
2πi(ξ

−η− + η−−ξ))|η+|νh(η+, η−)dη

of (z, ξ) in the r–adelic half–plane modulo 1 defined by integration with respect to the
canonical measure for the group of integral elements of the r–adelic half–plane. The
identity

∫

|12η+ − 1
2η

−

+ |ν∞ |g(η+, η−)|2dη = (2π)−ν∞Γ(1 + ν∞)
∫

|η+|ν∞ |h(η+, η−)|2dη

holds with integration on the left with respect to the canonical measure for the r–adelic
half–plane modulo 2 and with integration on the right with respect to the canonical measure
for the group of integral elements of the r–adelic half–plane.

The adjoint of the Radon transformation of harmonic φ for the ring of integral elements
of the r–adelic skew–plane takes a function f1(ξ+, ξ−) of ξ = (ξ+, ξ−) in the ring into a
function f2(ξ+, ξ−) of ξ = (ξ+, ξ−) in the ring if, and only if, the Laplace transforms of
harmonic φ satisfy the identity

g2(z, ξ) = (i/z)λr(ξ)
−1g1(z, ξ)

for every element ξ of the r–adic half–plane modulo 2.

The adjoint of the Radon transformation of harmonic φ for the ring of integral elements
of the r–adelic skew–plane is an accretive transformation in the orthogonal complement
of the kernel of the Laplace transformation of harmonic φ. The accretive property of the
transformation is preserved in an invariant subspace.

Integral elements ξ = (ξ+, ξ−) and η = (η+, η−) of the r–adelic skew–plane are treated
as congruent modulo r if their components

ξ+ = η+

in the 1–adelic skew–plane are equal and if their components ξ− and η− in the r–adic
skew–plane are congruent modulo r. The quotient space is the ring of integral elements of
the r–adelic skew–plane modulo r.

The ring is isomorphic to the Cartesian product of the 1–adelic skew–plane and the
ring of integral elements of the r–adic skew–plane modulo r. The topology of the ring of
integral elements of the r–adelic skew–plane modulo r is the Cartesian product topology of
the topology of the 1–adelic skew–plane and the topology of the ring of integral elements of
the r–adic skew–plane modulo r. The canonical measure for the ring of integral elements
of the r–adelic skew–plane modulo r is the Cartesian product measure of the canonical
measure for the 1–adelic plane and the canonical measure for the ring of integral elements
of the r–adic skew–plane modulo r.
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The projection of the ring of integral elements of the r–adelic skew–plane onto the ring
of integral elements of the r–adelic skew–plane modulo r is a homomorphism of conjugated
ring structure which is a continuous open mapping and which takes the canonical measure
into the canonical measure.

A function defined on the ring of integral elements of the r–adelic skew–plane modulo r
is treated as a function defined on the ring of integral elements of the r–adelic skew–plane
which has equal values at elements which are congruent modulo r.

The ring of integral elements of the r–adelic plane modulo r is the quotient ring of the
ring of integral elements of the r–adelic plane defined by congruence modulo r. The ring
of integral elements of the r–adelic plane modulo r is isomorphic to the image of the ring
of integral elements of the r–adelic plane in the ring of integral elements of the r–adelic
skew–plane modulo r.

The ring of integral elements of the r–adelic plane modulo r is isomorphic to the Carte-
sian product of the 1–adelic plane and the ring of integral elements of the r–adic plane
modulo r. The topology of the ring of integral elements of the r–adelic plane modulo r is
the Cartesian product topology of the topology of the 1–adelic plane and the topology of
the ring of integral elements of the r–adic plane modulo r. The canonical measure for the
ring of integral elements of the r–adelic plane modulo r is the Cartesian product measure
of the canonical measure for the 1–adelic plane and the canonical measure for the ring of
integral elements of the r–adic plane modulo r.

The projection of the ring of integral elements of the r–adelic plane onto the ring of
integral elements of the r–adelic plane modulo r is a homomorphism of conjugated ring
structure which is a continuous open mapping and which takes the canonical measure into
the canonical measure.

A function defined on the ring of integral elements of the r–adelic plane modulo r is
treated as a function defined on the ring of integral elements of the r–adelic plane which
has equal values at elements which are congruent modulo r.

The complementary space to the ring of integral elements of the r–adelic plane modulo r
in the ring of integral elements of the r–adelic skew–plane modulo r is defined as the image
in the ring of integral elements of the r–adelic skew–plane modulo r of the complementary
space to the ring of integral elements of the r–adelic plane in the ring of integral elements
of the r–adelic skew–plane. The complementary space to the ring of integral elements of
the r–adelic plane modulo r in the ring of integral elements of the r–adelic skew–plane
modulo r is isomorphic to the quotient space modulo r of the complementary space to
the ring of integral elements of the r–adelic plane in the ring of integral elements of the
r–adelic skew–plane.

The complementary space to the ring of integral elements of the r–adelic plane modulo
r in the ring of integral elements of the r–adelic skew–plane modulo r is isomorphic to
the Cartesian product of the complementary space to the 1–adelic plane in the 1–adelic
skew–plane and the complementary space to the ring of integral elements of the r–adic
plane modulo r in the ring of integral elements of the r–adic skew–plane modulo r.
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The topology of the complementary space to the ring of integral elements of the r–adelic
plane modulo r in the ring of integral elements of the r–adelic skew–plane modulo r is the
Cartesian product topology of the topology of the complementary space to the 1–adelic
plane in the 1–adelic skew–plane and the topology for the complementary space to the
ring of integral elements of the r–adic plane modulo r in the ring of integral elements of
the r–adic skew–plane modulo r.

The canonical measure for the complementary space to the ring of integral elements of
the r–adelic plane modulo r in the ring of integral elements of the r–adelic skew–plane
modulo r is the Cartesian product measure of the canonical measure for the complementary
space to the 1–adelic plane in the 1–adelic skew–plane and the canonical measure for the
complementary space to the ring of integral elements of the r–adic plane modulo r in the
ring of integral elements of the r–adic skew–plane modulo r.

The projection of the complementary space to the ring of integral elements of the r–
adelic plane in the ring of integral elements of the r–adelic skew–plane into the comple-
mentary space to the ring of integral elements of the r–adelic plane modulo r in the ring
of integral elements of the r–adelic skew–plane modulo r is a homomorphism of additive
structure which is a continuous open mapping and which maps the canonical measure into
the canonical measure.

A function defined on the complementary space to the ring of integral elements of the r–
adelic plane modulo r in the ring of integral elements of the r–adelic skew–plane modulo r
is treated as a function defined in the complementary space to the ring of integral elements
of the r–adelic plane in the ring of integral elements of the r–adelic skew–plane which has
equal values at elements which are congruent modulo r.

The Radon transformation of harmonic φ for the ring of integral elements of the r–
adelic skew–plane modulo r is a transformation with domain and range in the domain of
the Laplace transformation of harmonic φ for the ring of integral elements of the r–adelic
skew–plane modulo r.

The domain of the Laplace transformation of harmonic φ for the ring of integral elements
of the r–adelic skew–plane modulo r is the Hilbert space of functions f(ξ+, ξ−) of ξ =
(ξ+, ξ−) in the ring of integral elements of the r–adelic skew–plane modulo r which are
square integrable with respect to the canonical measure for the ring and which satisfy the
identity

φ(ξ+, ξ−)f(ω+ξ+, ω−ξ−) = φ(ω+ξ+, ω−ξ−)f(ξ+, ξ−)

for every element ω = (ω+, ω−) of the r–adelic skew–plane with conjugate as inverse.

The Radon transformation of harmonic φ takes a function f(ξ+, ξ−) of ξ = (ξ+, ξ−) in
the ring of integral elements of the r–adelic skew–plane modulo r into a function g(ξ+, ξ−)
of ξ = (ξ+, ξ−) in the ring of integral elements of the r–adelic skew–plane modulo r when
the identity

g(ω+ξ+, ω−ξ−)/φ(ω+ξ+, ω−ξ−)

=

∫

f(ω+ξ+ + ω+η+, ω−ξ− + ω−η−)/φ(ω+ξ+ + ω+η+, ω−ξ− + ω−η−)dη
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holds for every element ω = (ω+, ω−) of the r–adelic skew–plane with conjugate as inverse
when ξ = (ξ+, ξ−) is an element of the ring of integral elements of the r–adelic plane modulo
r and when integration is with respect to the canonical measure for the complementary
space to the ring of integral elements of the r–adelic plane modulo r in the ring of integral
elements of the r–adelic skew–plane modulo r.

The integral is interpreted as a limit of integrals over compact subsets of the comple-
mentary space to the ring of integral elements of the r–adelic plane modulo r in the ring
of integral elements of the r–adelic skew–plane modulo r. The limit is taken in the metric
topology of the Hilbert space of square integrable functions with respect to the canonical
measure for the ring of integral elements of the r–adelic skew–plane modulo r.

Integral elements ξ = (ξ+, ξ−) and η = (η+, η−) of the r–adelic half–plane are treated
as congruent modulo r if their components

ξ+ = η+

in the upper half–plane are equal and if their components ξ− and η− in the r–adic half–
plane differ by an element η− − ξ− of the r–adic half–plane which is the product of r and
an integral element of the r–adic half–plane.

The quotient group of the group of integral elements of the r–adelic half–plane is the
group of integral elements of the r–adelic half–plane modulo r. The group is isomorphic
to the Cartesian product of the upper half–plane and the group of half–integral elements
of the r–adic half–plane modulo r.

The topology of the group of integral elements of the r–adelic half–plane modulo r is
the Cartesian product topology of the topology of the upper plane and the topology of the
group of integral elements of the r–adic half–plane modulo r. The canonical measure for
the group of integral elements of the r–adelic half–plane modulo r is the Cartesian product
measure of the canonical measure for the upper half–plane and the canonical measure for
the ring of integral elements of the r–adic half–plane modulo r.

The projection of the group of integral elements of the r–adelic half–plane onto the group
of integral elements of the r–adelic half–plane modulo r is a homomorphism of additive
structure which is a continuous open mapping and which maps the canonical measure into
the canonical measure.

A function defined on the group of integral elements of the r–adelic half–plane modulo r
is treated as a function defined on the group of integral elements of the r–adelic half–plane
which has equal values at elements which are congruent modulo r.

A function
f(ξ+, ξ−) = φ(ξ+, ξ−)h(〈ξ+, ξ+〉, ξ−−ξ−)

of ξ = (ξ+, ξ−) in the ring of integral elements of the r–adelic skew–plane modulo r
which belongs to the domain of the Laplace transformation of harmonic φ for the ring
is parametrized by a function h(z, ξ) of (z, ξ) in the group of integral elements of the r–

adelic half–plane modulo r whose product with |z| 12 ν∞ is square integral with respect to
the canonical measure for the group.
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For every element ξ of the group of integral elements of the r–adic half–plane modulo r
the function h(z, ξ) of z in the upper half–plane admits an extension to the complex plane
which satisfies the identity

h(ωz, ξ) = h(z, ξ)

for every element ω of the complex plane with conjugate as inverse. If for a primitive
character χ modulo ρ for the r–adic half–plane with fourth roots of unity as nonzero
values the identity

h(z, ωξ) = χ(ω)h(z, ξ)

holds for every element ω of the r–adic line which is its own inverse, then the identity
holds for every element ω of the r–adic half–plane with conjugate as inverse.

The identity
∫

|f(ξ+, ξ−)|2dξ = π∞

∫

|ξ+|ν∞ |h(ξ+, ξ−)|2dξ

holds with integration on the left with respect to the canonical measure for the ring of
integral elements of the r–adelic skew–plane modulo r and with integration on the right
with respect to the canonical measure for the group of integral elements of the r–adelic
half–plane modulo r.

The Laplace transform of harmonic φ of the function

f(ξ+, ξ−) = φ(ξ+, ξ−)h(〈ξ+, ξ+〉, ξ−−ξ−)

of ξ = (ξ+, ξ−) in the ring of integral elements of the r–adelic skew–plane modulo r is
defined as the function

g(z, ξ) = 2

∫

exp(πi|η+|z) exp( 1
2πi(ξ

−η− + η−−ξ))|η+|ν∞h(η+, η−)dη

of (z, ξ) in the r–adelic half–plane modulo 2 such that rξ vanishes defined by integration
with respect to the canonical measure for the group of half–integral elements of the r–adelic
half–plane modulo r.

The identity
∫

|12η+ − 1
2η

−

+ |ν∞ |g(η+, η−)|2dη = (2π)−ν∞Γ(1 + ν∞)
∫

|η+|ν∞ |h(η+, η−)|2dη

holds with integration on the left with respect to the canonical measure for the r–adelic
half–plane modulo 2 over the set of elements η = (η+, η−) such that rη− vanishes and with
integration on the right with respect to the canonical measure for the group of integral
elements of the r–adelic half–plane modulo r.

The adjoint of the Radon transformation of harmonic φ for the ring of integral elements
of the r–adelic skew–plane modulo r takes a function f1(ξ+, ξ−) of ξ = (ξ+, ξ−) in the ring
into a function f2(ξ+, ξ−) of ξ = (ξ+, ξ−) in the ring if, and only if, the Laplace transforms
of harmonic φ satisfy the identity

g2(z, ξ) = (i/z)λr(ξ)
−1g1(z, ξ)
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for every element ξ of the r–adic half–plane modulo 2 such that rξ vanishes.

The adjoint of the Radon transformation of harmonic φ for the ring of integral elements
of the r–adelic skew–plane modulo r is an accretive transformation in the orthogonal
complement of the kernel of the Laplace transformation.

By hypothesis the harmonic φ is an eigenfunction of the Hecke operator ∆(n) for an
eigenvalue τ(n) for every divisor n of r in the definition of the Jacobi space of harmonic φ
for the r–adelic skew–plane. The space is the set of functions f(ξ+, ξ−) of ξ = (ξ+, ξ−) in
the ring of integral elements of the r–adelic skew–plane modulo r which satisfy the identity

φ(ξ+, ξ−)f(ω+ξ+, ω−ξ−) = φ(ω+ξ+, ω−ξ−)f(ξ+, ξ−)

for every element ω = (ω+, ω−) of the r–adelic skew–plane with conjugate as inverse, which
are square integrable with respect to the canonical measure for the ring over the set of
elements of the ring whose r–adic component is a unit of the ring of integral elements of
the r–adic skew–plane modulo r, and which satisfy the identity

f(ξ+, ξ−) =
∑

f(ξ+ω
−1, ξ−ω

−1)

with summation over the integral elements ω of the complex skew–plane representing
divisors

n = ω−ω

of r such that ξ−ω
−1 is a unit of the ring of integral elements of the r–adic skew–plane

modulo r.

The function
f(ξ+, ξ−) = φ(ξ+, ξ−)h(〈ξ+, ξ+〉, ξ−−ξ−)

of ξ = (ξ+, ξ−) in the ring is parametrized by a function h(ξ+, ξ−) of ξ = (ξ+, ξ−) in the

group of integral elements of the r–adelic half–plane modulo r whose product with |ξ+|
1

2
ν∞

is square integrable with respect to the canonical measure for the group over the set of
elements of the group whose r–adic component is a unit of the ring of integral elements of
the r–adic half–plane modulo r, and which satisfy the identity

h(ξ+, ξ−) = τ(n)h(n−1ξ+, n
−1ξ−)

when n is a divisor of r such that n−1ξ− is a unit of the ring of integral elements of the
r–adic half–plane modulo r.

The identity
∫

|f(ξ+, ξ−)|2dξ = 2π

∫

|h(ξ+, ξ−)|2dξ

holds with integration on the left with respect to the canonical measure for the ring of
integral elements of the r–adelic skew–plane modulo r over the set of elements of the ring
whose r–adic component is a unit of the ring of integral elements of the r–adic skew–plane
modulo r and with integration on the right with respect to the canonical measure for the
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group of integral elements of the r–adelic half–plane modulo r over the set of elements
whose r–adic component is a unit of the ring of integral elements of the r–adic half–plane
modulo r.

The domain and range of the Radon transformation for the Jacobi space of harmonic φ
for the r–adelic skew–plane are contained in the Jacobi space for the r–adelic skew–plane.
The transformation takes f(ξ+, ξ−) into g(ξ+, ξ−) when these functions of ξ = (ξ+, ξ−) in
the ring of integral elements of the r–adelic skew–plane modulo r satisfy the identity

g(ωξ+, ξ−)/φ(ωξ+, ξ−) =

∫

f(ωξ+ + ωη, ξ−)/φ(ωξ+ + ωη, ξ−)dη

with integration with respect to the canonical measure for the complementary space to the
complex plane in the complex skew–plane for every element ξ = (ξ+, ξ−) of the r–adelic
skew–plane whose component ξ+ in the 1–adelic skew–plane belongs to the 1–adelic plane
and for every element ω of the 1–adelic skew–plane with conjugate as inverse.

The Laplace transformation for the Jacobi space of harmonic φ for the r–adelic skew–
plane is a spectral analysis of the adjoint of the Radon transformation for the Jacobi
space of harmonic φ for the r–adelic skew–plane which is defined by the theta function of
harmonic φ for the r–adelic skew–plane. The theta function

θ(z, ξ) =
∑

τ(n)n
1

2
ν∞ exp(πinz) exp( 1

2πin(ξ + ξ−))

is a function of (z, ξ) in the r–adelic half–plane defined by summation over the divisors n
of r.

The Laplace transform of a function

f(ξ+, ξ−) = φ(ξ+, ξ−)h(〈ξ+, ξ+〉, ξ−−ξ−)

of ξ = (ξ+, ξ−) in the ring of integral elements of the r–adelic skew–plane modulo r which
belongs to the Jacobi space of harmonic φ for the r–adelic skew–plane is the function

g(z, ξ) = 2

∫

θ(|η+|z, η−−ξ)|η+|ν∞h(η+, η−)dη

of (z, ξ) in the r–adelic half–plane modulo 2 which is defined by integration with respect to
the canonical measure for the group of integral elements of the r–adelic half–plane modulo
r over the set of elements of the group whose r–adic component is a unit of the ring of
integral elements of the r–adic half–plane modulo r.

The Jacobi space for the r–adelic half–plane is a Hilbert space whose elements are the
Laplace transforms of elements of the Jacobi space of harmonic φ for the r–adelic skew–
plane and which is the orthogonal sum of subspaces defined by primitive characters χ
modulo p for the r–adic half–plane whose nonzero values are fourth roots of unity.

If χ is a primitive character modulo ρ for the r–adic half–plane, a function g(z, ξ) of
(z, ξ) in the r–adelic half–plane is said to be of character χ if the identity

g(z, ωξ) = χ(ω)g(z, ξ)
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holds for every unit ω of the r–adic half–plane.

A function κ(χ, ξ) of ξ in the r–adic half–plane is defined which vanishes when the
p–adic component of pξ is nonintegral for some prime divisor p of r which is not a divisor
of p. The function is otherwise defined by products

κ(χ, ξ)
∏

(1 − p2) = ρ−1χ(ρξ)
∏

(1 − p−2)

on the left over the prime divisors p of r which are not divisors of ρ such that the p–adic
component of ξ is nonintegral and on the right over all prime divisors p of r which are
not divisors of ρ. The function vanishes when rξ is nonintegral and has equal values at
elements of the r–adic half–plane which are congruent modulo 1.

The function is the Fourier transform of a function of ξ in the r–adic half–plane which
vanishes when ξ is not a unit and which is otherwise the product of the conjugate character
χ−(ξ) and a constant of absolute value one. The identity

∑

|κ(χ, ξ)|2 =
∏

(1 − p−2)

holds with summation over the equivalence classes of elements ξ of the r–adic half–plane
modulo 1 and with the product taken over the prime divisors p of r.

A function
g(z, ξ) =

∑

τ(n)n
1

2
ν∞h∧(nz)2κ(χ, 1

2nξ)

of (z, ξ) in the r–adelic half–plane modulo 2 which is of character χ and belongs to the
Jacobi space of harmonic φ for the r–adelic half–plane is a sum over the divisors n of r
with an analytic function

h∧(z) = π

∫ ∞

0

exp(πitz)tν∞h(t)tdt

of z in the upper half–plane which is a Laplace transform of harmonic φ for the complex
skew–plane.

The set of elements of character χ of the Jacobi space of harmonic φ for the r–adelic
half–plane is a Hilbert space with the scalar self–product of a function g(z, ξ) of (z, ξ) in
the r–adelic half–plane modulo 2 defined as the integral

∫ ∞

0

∫ +∞

−∞

|h∧(x+ iy)|2yν∞dxdy
∏

(1 − p−2)

with the product taken over the prime divisors p of r.

The Jacobi space of harmonic φ for the r–adelic skew–plane is contained in the domain
of the Laplace transformation of harmonic φ for the ring of integral elements of the r–adelic
skew–plane modulo r. A function f(ξ+, ξ−) of ξ = (ξ+, ξ−) in the ring which belongs to
the Jacobi space of harmonic φ for the r–adelic skew–plane satisfies the identity

∫

|f(ξ+, ξ−)|2dξ =
∑

τ(n)2
∫

|f(ξ+, ξ−)|2dξ
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with summation over the divisors n of r, with integration on the left with respect to the
canonical measure for the ring of integral elements of the r–adelic skew–plane modulo r,
and with integration on the right with respect to the same measure over the set of elements
of the ring whose r–adic component is a unit of the ring of integral elements of the r–adic
skew–plane modulo r.

The Laplace transformation for the Jacobi space of harmonic φ for the r–adelic skew–
plane agrees with the Laplace transformation for the ring of integral elements of the r–
adelic skew–plane modulo r. The Jacobi space of harmonic φ for the r–adelic half–plane is
contained in the range of the Laplace transformation of harmonic φ for the ring of integral
elements of the r–adelic skew–plane modulo r.

When a function

g(z, ξ) =
∑

τ(n)n
1

2
ν∞h∧(nz)2κ(χ, 1

2nξ)

of (z, ξ) in the r–adelic half–plane modulo 2 belongs to the Jacobi space of harmonic φ for
the r–adelic half–plane, the identity

∑

∫ ∞

0

∫ +∞

−∞

|g(x+iy, ξ)|2yν∞dxdy =
∑

τ(n)2
∫ ∞

0

∫ +∞

−∞

|h∧(x+iy)|2yν∞dxdy
∏

(1−p−2)

holds with the product taken over the prime divisors p of r, with summation on the left
over the equivalence classes of elements ξ of the r–adic half–plane modulo 2, and with
summation on the right over the divisors n of r.

A function

g(z, ξ) =
∑

τ(n)n
1

2
ν∞h∧n(nz)2κ(χ, 1

2nξ)

of (z, ξ) in the r–adelic half–plane modulo 2 which is of character χ and belongs to the
range of the Laplace transformation of harmonic φ for the ring of integral elements of the
r–adelic skew–plane modulo r is a sum over the divisors n of r with for every divisor n of
r an analytic function

h∧n(z) = π

∫ ∞

0

exp(πitz)tν∞hn(t)tdt

of z in the upper half–plane which is a Laplace transform of harmonic φ for the complex
skew–plane.

The range of the Laplace transformation of harmonic φ for the ring of integral elements
of the r–adelic skew–plane modulo r is a Hilbert space in which the scalar self–product of
the function g(z, ξ) of (z, ξ) in the r–adelic half–plane modulo 2 is the integral

∫ ∞

0

∫ +∞

−∞

∑

τ(n)2|h∧n(x+ iy)|2yν∞dxdy
∏

(1 − p−2)

with summation over the divisors n of r and with the product taken over the prime divisors
p of r.
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The adjoint of the inclusion of the Jacobi space of harmonic φ for the r–adelic half–plane
in the range of the Laplace transformation of harmonic φ for the ring of integral elements
of the r–adelic skew–plane modulo r takes a function

∑

τ(n)n
1

2
ν∞h∧n(nz)2κ(χ, 1

2nξ)

of (z, ξ) in the r–adelic half–plane modulo 2 into the function

∑

τ(n)n
1

2
ν∞h∧(nz)2κ(χ, 1

2nξ)

of (z, ξ) in the r–adelic half–plane modulo 2 defined by summation

h(z)(
∑

τ(n)2)−
1

2 =
∑

τ(n)hn(z),

over the divisors n of r.
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