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Abstract

This report aims to summarise the current research trends and challenges

of monitoring high speed networks. The report also presents the work carried

out by the author in this field, the tools which have been made available

to the community by the author and the future directions of this research

project work. A summary of the developed simulation test bed and its

application in the research project context is also discussed.

The emergence of research in e-Science contexts ranging from materials

simulation to physics measurements has lead to a rapid increase of process-

intensive and bandwidth-hungry applications which need to use several Giga

bits per second flows and increasingly higher data storage volumes. In the

UK e-Science community, the UKLight high-speed switched network 1 is

set up with dedicated 10Gbps links to international research networks. This

facility enables network researchers to try all kinds of application at network

layer, transport layer and session layer, ranging from variations of TCP

implementations to Grid computing file transfer protocols.

This report covers some of the challenges in measurement and analysis

systems for such networks and describes the architecture of a simulation

test-bed for storage of network data for long-term and short-term feature

extraction and traffic monitoring which are discussed in the UKLight mea-

surement and monitoring project, MASTS [1]. The Objective of MASTS is

to set-up a traffic monitoring system for the UKLIGHT international high

capacity experimental network. This facility will allow near real-time view

of the various network metrics and enable querying the databases via Web

Services. In presence of such high data rates and storage requests, monitor-

ing and measurement becomes a critical yet extremely sophisticated process.
1UKLight High-Capacity Network: www.uklight.ac.uk

www.uklight.ac.uk�
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At presence of high data rates on a saturated link, sampling is an important

step taken towards reducing the overheads involved in trace collection and

traffic analysis for characterisation.

Sampling is the focus of this report. The main disadvantage of sampling

is the loss of accuracy in the collected trace when compared to the original

traffic stream. In this report some of the techniques of compensation for

the loss of details are discussed. To date there has been no work on recov-

ering detailed properties of the original unsampled packet stream, such as

the number and lengths of flows. It is important to consider the sampling

techniques and their relative accuracy when applied to different traffic pat-

terns. An extension to this work is also discussed, where the applications

of network wide core and edge sampling are exploited for network trouble

shooting purposes.
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Chapter 1

Introduction

1.1 The aims of this report

This report aims to describe the background knowledge and the devel-

oped facilities for exploiting traffic flow characteristics within 10 Gbps and

similar high capacity switched networks. Using such facility allows valida-

tion of statistical compression and feature extraction algorithms which are

developed in order to enable monitoring networks over long time scales.

1.2 Motivations of the project

High speed optical switching allows high data transfer rates between sev-

eral exchange points without the complexity of routing, IP address and port

number analysis. The advantages of switched networks have been investi-

gated by researchers who have been looking at Local Area networks (LAN),

Metropolitan area Networks (MAN) and Wide Area Networks (WAN).

Ethernet has been one of the most successful standards in the com-

puter networking arena. Today most of data traffic is carried over Ethernet

LANs. With the wide adaptation of new Wireless network standards and

Ethernet media, extending the range of Ethernet everyday, it is inevitable

9
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that switched networks will play an ever more significant role in the future of

telecommunications. Alongside these improvements, the increased need for

higher data transfer rates for applications such as streaming audio and video

and wide area networks will require thorough research into the characteris-

tics of such networks and their provisioning, utilisation, topology evolution

and requirements.

The UK E-Science community, an industrial-academic collaboration ini-

tiative, has recently been active in the area of grid networks and high per-

formance computing applications. The purpose of this initiative is to allow

researchers throughout UK and Europe to be able to work on multi-site

projects generating huge data sets and requiring CPU resources more than

those available to a single university or company. Examples of these include

the GridPP [2] project at the international particle research laboratory in

Geneva, known as CERN, which from year 2007 will begin to produce sev-

eral Peta bytes of data per year, all of which must be made available to

physicists worldwide.

Data volumes like such as these will take a long time to be carried over

normal internet links with standard TCP/IP characteristics due to the TCP

congestion control algorithms, route failures and packet loss. As a result

there is need for design and implementation of more efficient protocols for

high bandwidth links. An important proposal regarding this matter was the

development of UKLight. UKLight is a national facility in UK to support

projects working on developments towards 10 Gbps optical networks and

the applications that will use them. UKLight primarily consisted of optical

fibre links between University of London Computer Centre, London Point

of Presence, NetherLight [3] in Amsterdam and Starlight in Chicago. The

links are now extended to more UK universities and UKLight on certain

links carries research and production traffic. Figure 1.1 displays the current

architecture of the UKLight network.
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Figure 1.1: UKLight Architecture ( [1])

From the operator and users perspective, The monitoring and measure-

ment of network events is an important issue within test networks such as

UKLight, where researchers and individuals are allowed to run arbitrary

variations of transport, session control and network layer protocols. The

UKLIGHT project is envisaged as a platform upon which a rich mix of traf-

fic and data will flow. The users of UKLIGHT are expected to trial many

new technologies. For example: ECN, Fast-TCP, Reliable multicast, Diff-

Serv, MPLS, and IPv6. Clearly there is a need for tools to evaluate their

effectiveness and assessing their impact on the network as a whole. Equally

important is the need for work to enable further research and infrastructure

offerings which can be enabled through the provision of a system that allows

both the interpretation of new service deployments and third-party access

to collected data.

UKLight is a switched network which makes it unique in the sense that

there is no queueing and routing involved. However, as there is not central

point of traffic routing, monitoring the network using router-based informa-
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tion, also known as active monitoring, is not possible. This leaves only the

option of monitoring the network using the information gathered at the end

terminals, which is known as passive monitoring.

The original monitoring architecture proposal for the UKLight is dis-

played in figure 1.2.

Figure 1.2: UKLight monitoring system architecture ( [1])

In the context of passive monitoring, traditionally, flow metrics have been

analysed using tools such as NetFlow. NetFlow provides valuable informa-

tion about network users and applications, peak usage times, and traffic

routing [4]. In applications where there is emphasis on packet level data

collection, TCP packet trace files are usually collected using variations of

libpcap and tcpdump [5]. Tcpdump allows capturing of Ethernet frames at

the Network Interface Card (NIC) and stores the data in ASCII format text

files. However, still to this date, there is not even a de-facto standard net-
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work measurement and monitoring tool deployed world wide, even expensive

industrial tools such as HP OpenView [7], only allow for network topology

and link monitoring in a more real-time manner, even after adding tools

such as Performance Manage Platform (PMP) and do not facilitate analy-

sis of network performance over along time. MRTG is another open-source

network monitoring tool. The Multi Router Traffic Grapher (MRTG) is a

tool to monitor the traffic load on network links. MRTG generates HTML

pages containing PNG images which provide a live visual representation of

this traffic [8]. MRTG is only suitable for network bandwidth measurement

and it does not allow flow analysis.

There are many packet and traffic capture tools available. However

these tools are not capable of handling the high data rates and possibly

flow rates on UKLight. Many comparative experiments have been carried

on using tcpdump on various systems and on a typical 100Mbps line the

capture rates declines rapidly after about 60Mbps send rate [9]. However,

the MASTS projects objective is to capture packets at full receive rate and

store header data. The captured files are archived to allow for different user-

defined queries to be applied on the data. This allows statistical analysis

on flow arrival rates, job durations and link transfer times. The objective

of this exercise is to let the UKLight user community to be able to view the

status of the system over a long period of time and observe how the network

topology and usage evolves over time.

These requirements add an extreme edge to the monitoring problem

space: high data capture rates, and vast amounts of storage facility. With

such requirements, passive monitoring of the network, using collected data

at the end nodes is the only feasible way, as adding extra traffic to network

for monitoring purposes will make the process more complicated. Collecting

the network traffic data will enable the creation of an extensive archive of the

traffic flows and their statistics and will bring to the research community an
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opportunity for analysis of ethernet and in particular Local Area Network

(LAN) traffic’s interesting features such as self similarity and long-range

dependence of the data. There has been research going on looking into

such features in a LAN and it is suggested that LAN traffic demonstrates

self-similarity features [10] and this will be looked into in details in the next

chapter. LAN traffic consists mostly of human-initiated traffic such as email

and web browsing and file sharing. However this is still a grey area in the

Grid environment and for a Wide Area Network, such as UKLight which

is a switched network extending over thousands of miles, and it will mostly

carry machine-generated traffic such as new grid FTP protocols and large

database transfers of scientific data.

Another interesting aspect of such networks is the arrival and comple-

tion of jobs. There has been research on network traffic and it is suggested

that human initiated traffic, such as electronic email and telnet remote lo-

gin sessions, have Poisson probability distribution function characteristics,

but they suggest one should abandon Poisson-based modelling of wide-area

traffic for all but user session arrivals [11]. For FTP traffic, it is shown

that modelling should concentrate heavily on the extreme upper tail of the

largest bursts. A wide-area link such as UKLight might have only one or two

such bursts an hour, but they tend to strongly dominate that hours FTP

traffic. Vern Paxson and Sally Floyd’s research in multiplexed TCP and

all-protocol traffic suggests that anyone interested in accurate modelling of

wide-area traffic should begin by studying self-similarity [11].

In order to carry out the research into such characteristics on UKLight,

there is need for a network simulation platform that closely resembles the

topology of UKLight. The objective of this simulation environment is to

allow creation of various node topologies, link properties such as delay and

bandwidth and various traffic generators such as CBR, Poisson, Exponential

and Pareto. This simulation tool has to be able to generate traffic data as
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if a network interface card is recording and storing Ethernet frame and IP

packets headers.

The concept of measurement is a relatively new concept in networking

and it has only been in the last decade that network equipment manufactur-

ers have started taking into account ways of enabling tapping network data.

Hence the equipment already deployed in the UKLight network is not able

to duplicate the network packets into a packet-sniffing program or to break

up the 10G data streams into smaller, more manageable streams. These

issues must be taken into consideration in designing the simulation tool and

the facility must be there for multiple choices of scenarios. The tool must be

able to plot live statistics of the network (such as packet count, flow count,

utilisation, delay and etc) and it must also use XML data files to enable the

web services to access the simulated traffic archives and retrieval of the data

for offline statistical manipulation.

Such a tool will allow a realistic approach to the link monitoring, traffic

storage, real time graphical interface, web services queries and archiving is-

sues of the whole project. This is the first step towards the research plans

involved in this project, which aims to look into analysis of flow arrival and

statistics within a Wide Area Network, which is unique in the sense that

it has no routing involved. Hence the links are reserved between individual

hosts and there is no routing and congestion involved in the network. An-

other important characteristic of UKLight is the fact that there is minimal

user-initiated traffic, such as email and web browsing, on the network and

it will mostly be utilised by machine-to-machine traffic.

There have been attempts to characterise the traffic metrics on net-

works and to look at the distributions and issues such as self-similarity and

Long-Range dependence. However these have mostly been in the context of

human-initiated traffic and metrics such as utilisation and delay and there

has not been a major attempt to characterise the actual data flows on net-
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works, which on a web server hosting frequently accessed web pages can

be very different from two machines on a grid network transferring large

databases using a proprietary transport protocol such as GridFTP. The

research into the above mentioned topics are essential parts of the Measure-

ment at All Scales in Time and Space MASTS project. MASTS is a 1.2

million project that has started in September 2004 and it will record, anal-

yse and publish the traffic and topology evolution throughout the lifetime

of UKLight. The project is carried on in collaboration between University

College London (EE & CS), LoughboroughUniversity (EE & CS), University

of Cambridge (EE & CS) and Endace (Industrial). MASTS is an e-Science

of networking project.

MASTS objectives are:

• To measure the development of the topology and traffic in and around

the UKLight network

• Develop and Deploy Grid Probe technology on the network

• Develop ’back end’ feature extraction and data compression

• Archive flow traces and statistics

• Provide real-time views on specific flows for other UKLight users

• Provide Grid Service based access to archive data

The authors focus within the MASTS project is research into feature

extraction algorithms for back end and real time deployment of the system.

UKLight

1.3 Layout of the report

This report aims to cover the background on network monitoring, work

done so far by the author and the future plans for the project as a whole.
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Chapter 2 gives a brief overview of the history and motivations behind

network monitoring. It argues why it is becoming more difficult to monitor

today and future networks and some challenges that there are on the way.

Chapter 3 discusses the current work in progress on various packet sam-

pling techniques and architectures, from core-based monitoring techniques to

edge-based trace collection systems. The chapter goes then onto discussing

the advantages and disadvantages of these techniques.

Chapter 4 covers the questions faced by the author when designing a

sampling system for different environments, UKLight in particular. In this

chapter the methods of generating the original traffic flow statistics from the

sampled data statistics and short falls of the current methods are discussed.

Chapter 5 discusses the effects of sampling on a large trace from a major

backbone research network and displays the changes in various statistical

properties and distribution of variables.

Chapter 6 covers the statistical analysis of the different sampling meth-

ods applied and the results of them and discusses the use of adaptive sam-

pling methods.Also discussed is the use of combinational edge-based and

core-based sampling for a novel method of generation of Network-wide to-

mography for troubleshooting and the experiments carried out by the author

and plans for future experiments.

In Chapter 7 the conclusion to the report is drawn by discussion of the

available tools and the future directions of the project.



Chapter 2

Network Monitoring

Principles

This chapter will briefly overview the current trends in research and

industry in the field of network monitoring. It includes an argument for the

need for network monitoring and a summary of work done by other active

researcher in the field and their achievements so far.

2.1 History of computer networks

Prior to the widespread inter-networking that led to the Internet, most

communication networks were limited by their nature to only allow commu-

nications between the stations on the network. Some networks had gate-

ways or bridges between them, but these bridges were often limited or built

specifically for a single use. One prevalent computer networking method

was based on the central mainframe method, simply allowing its terminals

to be connected via long leased lines. This method was used in the 1950s by

Project RAND to support researchers such as Herbert Simon, in Pittsburgh,

Pennsylvania, when collaborating across the continent with researchers in

Santa Monica, California, on automated theorem proving and artificial in-

18
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telligence [12].

2.1.1 Internet ancestors

At the core of the inter-networking problem lay the issue of connecting

separate physical networks to form one logical network. During the 1960s,

several groups worked on and implemented packet switching. Donald Davies

(NPL), Paul Baran (RAND Corporation) and Leonard Kleinrock (MIT) are

credited with the simultaneous invention. The notion that the Internet was

developed to survive a nuclear attack has its roots in the early theories

developed by RAND. Baran’s research had approached packet switching

from studies of decentralisation to avoid combat damage compromising the

entire network [13].

ARPANET

Promoted to the head of the information processing office at ARPA,

Robert Taylor intended to realize Licklider’s ideas of an interconnected net-

working system. Bringing in Larry Roberts from MIT, he initiated a project

to build such a network. The first ARPANET link was established between

the University of California, Los Angeles and the Stanford Research In-

stitute on 21 November 1969. By 5 December 1969, a 4-node network was

connected by adding the University of Utah and the University of California,

Santa Barbara. Building on ideas developed in ALOHAnet, the ARPANET

started in 1972 and was growing rapidly by 1981. The number of hosts

had grown to 213, with a new host being added approximately every twenty

days [14].

ARPANET became the technical core of what would become the Inter-

net, and a primary tool in developing the technologies used. ARPANET

development was centred around the Request for Comments (RFC) process,

still used today for proposing and distributing Internet Protocols and Sys-
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tems. RFC 1, entitled ”Host Software”, was written by Steve Crocker from

the University of California, Los Angeles, and published on April 7, 1969.

International collaborations on ARPANET were sparse. For various political

reasons, European developers were concerned with developing the X.25 net-

works. Notable exceptions were the Norwegian Seismic Array (NORSAR)

in 1972, followed in 1973 by Sweden with satellite links to the Tanum Earth

Station and University College London. These early years were documented

in the 1972 film Computer Networks: The Heralds of Resource Sharing [14].

X.25 and public access

Following on from DARPA’s research, packet switching networks were

developed by the International Telecommunication Union (ITU) in the form

of X.25 networks. In 1974, X.25 formed the basis for the SERCnet net-

work between British academic and research sites, which would later become

JANET. The initial ITU Standard on X.25 was approved in March 1976.

The British Post Office, Western Union International and Tymnet collab-

orated to create the first international packet switched network, referred to

as the International Packet Switched Service (IPSS), in 1978. This network

grew from Europe and the US to cover Canada, Hong Kong and Australia

by 1981. By the 1990s it provided a worldwide networking infrastructure.

Unlike ARPAnet, X.25 was also commonly available for business use.

X.25 would be used for the first dial-in public access networks, such as

Compuserve and Tymnet. In 1979, CompuServe became the first service to

offer electronic mail capabilities and technical support to personal computer

users. The company broke new ground again in 1980 as the first to offer

real-time chat with its CB Simulator. There were also the America On-

line (AOL) and Prodigy dial in networks and many bulletin board system

(BBS) networks such as The WELL and FidoNet. FidoNet in particular

was popular amongst hobbyist computer users, many of them hackers and
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radio amateurs [12].

UUCP

In 1979, two students at Duke University, Tom Truscott and Jim Ellis,

came up with the idea of using simple Bourne shell scripts to transfer news

and messages on a serial line with nearby University of North Carolina at

Chapel Hill. Following public release of the software, the mesh of UUCP

hosts forwarding on the Usenet news rapidly expanded. UUCPnet, as it

would later be named, also created gateways and links between FidoNet

and dial-up BBS hosts. UUCP networks spread quickly due to the lower

costs involved, and ability to use existing leased lines, X.25 links or even

ARPANET connections. By 1983 the number of UUCP hosts had grown to

550, nearly doubling to 940 in 1984 [12].

2.1.2 Network protocols, TCP/IP

With so many different network methods, something needed to unify

them. Robert E. Kahn of DARPA and ARPANET recruited Vint Cerf

of Stanford University to work with him on the problem. By 1973, they

had soon worked out a fundamental reformulation, where the differences

between network protocols were hidden by using a common internetwork

protocol, and instead of the network being responsible for reliability, as in the

ARPANET, the hosts became responsible. Cerf credits Hubert Zimmerman

and Louis Pouzin (designer of the CYCLADES network) with important

work on this design [15].

With the role of the network reduced to the bare minimum, it became

possible to join almost any networks together, no matter what their char-

acteristics were, thereby solving Kahn’s initial problem. DARPA agreed to

fund development of prototype software, and after several years of work, the

first somewhat crude demonstration of what had by then become TCP/IP
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occurred in July 1977. This new method quickly spread across the networks,

and on January 1, 1983, TCP/IP protocols became the only approved pro-

tocol on the ARPANET, replacing the earlier NCP protocol.

After the ARPANET had been up and running for several years, ARPA

looked for another agency to hand off the network to; ARPA’s primary

business was funding cutting-edge research and development, not running

a communications utility. Eventually, in July 1975, the network had been

turned over to the Defense Communications Agency, also part of the De-

partment of Defense. In 1984, the U.S. military portion of the ARPANET

was broken off as a separate network, the MILNET.

The networks based around the ARPANET were government funded and

therefore restricted to noncommercial uses such as research; unrelated com-

mercial use was strictly forbidden. This initially restricted connections to

military sites and universities. During the 1980s, the connections expanded

to more educational institutions, and even to a growing number of com-

panies such as Digital Equipment Corporation and Hewlett-Packard, which

were participating in research projects or providing services to those who

were [14].

Another branch of the U.S. government, the National Science Founda-

tion (NSF), became heavily involved in internet research and started de-

velopment of a successor to ARPANET. In 1984 this resulted in the first

Wide Area Network designed specifically to use TCP/IP. This grew into the

NSFNet backbone, established in 1986, and intended to connect and provide

access to a number of supercomputing centres established by the NSF. It

was around the time when ARPANET began to merge with NSFNet, that

the term Internet originated,[10] with ”an internet” meaning any network

using TCP/IP. ”The Internet” came to mean a global and large network us-

ing TCP/IP, which at the time meant NSFNet and ARPANET. Previously

“internet” and “internetwork” had been used interchangeably, and ”internet
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protocol” had been used to refer to other networking systems such as Xerox

Network Services.

As interest in wide spread networking grew and new applications for it

arrived, the Internet’s technologies spread throughout the rest of the world.

TCP/IP’s network-agnostic approach meant that it was easy to use any

existing network infrastructure, such as the IPSS X.25 network, to carry In-

ternet traffic. In 1984, University College London replaced its transatlantic

satellite links with TCP/IP over IPSS.

Many sites unable to link directly to the Internet started to create sim-

ple gateways to allow transfer of e-mail, at that time the most important

application. Sites which only had intermittent connections used UUCP or

FidoNet and relied on the gateways between these networks and the In-

ternet. Some gateway services went beyond simple e-mail peering, such as

allowing access to FTP sites via UUCP or e-mail.

The first ARPANet connection outside the US was established to NOR-

SAR in Norway in 1973, just ahead of the connection to Great Britain.

These links were all converted to TCP/IP in 1982, at the same time as the

rest of the Arpanet [14].

2.2 Watching the network, is there a need?

Traditionally most of the work on research on computer networks has

been carried out on subjects such as physical layer, speed improvement,

routing protocols and transport protocols. As the number of nodes on the

networks, number of different protocols and port numbers used by them,

new applications such as multimedia delivery on internet and peer-to-peer

networks and the amount of traffic on commercial networks keeps increasing

exponentially at a rate much faster than predicted, it is becoming more

evident for network administrators and researchers that there are simply

not enough tools for measurement and monitoring of traffic and topology on



CHAPTER 2. NETWORK MONITORING PRINCIPLES 24

high speed networks. Even simulation of such networks has been a challenge

and to date there is no simulation tool that claims to be able to simulate

the internet or even a large Ethernet network precisely. The rapid topology

changes and evolution, new applications and trends of use just make it

extremely difficult to simulate such networks.

There are basically two types of network monitoring: Active monitoring

and passive monitoring. In active monitoring, active traffic such as ping and

SNMP data is sent over the network and collected at edge routers. Active

monitoring of a network domain introduces some major challenges. Routers

of a network domain need to be queried periodically to collect statistics

about general status of the system and this huge amount of data has to be

stored to obtain useful monitoring information. This increases the overhead

for high speed core routers, and restricts the monitoring process from scaling

to a large number of flows. To achieve scalability, polling and measurements

that involve core routers should be avoided. Hence active network monitor-

ing is limited to periodic route discovery and topology analysis. In passive

monitoring the network is analysed only on the edges, without the intro-

duction of an extra traffic, and the network measurement parameters are

deduced by applying mathematical formulae on the collected dataset.

The major problem with passive monitoring is storage and processing of

many millions of packets which are gathered on edge nodes and the ability

of edge ”probing points” to capture and store this traffic decays rapidly as

the speeds of links go beyond 100s of mega bits per second.

On the other hand, network designers and researchers need to know ex-

actly how the network evolves and behaves over different time scales ranging

form few milliseconds for a denial of service attack to few hours or days for a

large batch of file transfers between two Grid network nodes. These are just

some examples of situations that would require continuous monitoring of the

network. As the network’s size and usage exceed the average office LAN,
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it becomes increasingly difficult to monitor all the activities within the net-

work, with many applications no longer using a common port number (e.g.

port 80 for HTTP).

Many network management applications employ measured traffic usage,

in packets or bytes, that is differentiated according to header fields into

classes at some granularity that depends on the application requirements.

Here are some examples:

• “Service development. Service providers track the growth of new ap-

plications (as identified by TCP/UDP port numbers) and identify po-

tential new customers that use them (from packet IP addresses not

administered in their network).

• Heavy hitters. Determining the dominant components within a class

of traffic, for example, the most popular websites, based on the IP

destination address of HTTP requests.

• Security applications. Detecting usage indicative of network intru-

sions, including changes of patterns of usage of specific protocols and

TCP/UDP ports, and most active hosts and networks involved.

• Network engineering. A service provider determines the intensities of

traffic between sets of source and destination addresses that is carried

over a congested link. This information could be used to examine the

feasibility of rerouting portions of the traffic away from the congested

link.

• Chargeback. A corporate intranet apportions its costs to constituent

organisations, based on usage that originates in the organisations IP

address ranges.

• Customer billing. A service provider charges customers, as identified

by IP address, for byte usage. The rate of charge may depend on ap-
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plication type (as identified by TCP/UDP port numbers). Charging

based on remote address (e.g., whether on or off the providers network)

also has been proposed. Information on some commercial examples of

the use of flow records for billing purposes can be found in [30]. The use

of packet samples for billing is proposed for InMons sFlow [31]. The

accuracy requirements of these applications are quite different; the list

above is (roughly) ordered by stringency, where customer billing is the

most stringent. There are strong legal reasons for not overbilling cus-

tomers and it would not be good customer relations. (Some regulatory

environments may prohibit billing on estimated usage.) On the other

hand, network management applications can probably tolerate errors

of quite a few percent in estimating usage by a class of traffic. The

ramifications of sampling for the estimation of network usage are a

central theme of this review.

• Path measurement. Duffield et al. [32] describes a method to measure

entire paths of packets through the network. As well as determining

per class usage along paths, this method enables the passive measure-

ment of network path performance, route troubleshooting and network

attack tracing.

• Traffic structure. Sampling can present a challenge to the determina-

tion of detailed structural properties of traffic (such as the duration

of traffic flows) or the composition of application transactions (such

as a Web browsing session) in terms of multiple application flows.An

inference method whereby sampled measurement are used to infer de-

tailed structural properties of the original unsampled flows of traffic is

described in [32].”
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2.3 Current research in measurement and moni-

toring

Network researchers have adopted two distinct approaches to data col-

lection. The first approach uses an active measurement system to inject

probe traffic into the network and then extrapolate the performance of the

network from the performance of the injected traffic. The second approach

is that of passively observing and recording network traffic. These pas-

sive measurement systems use the recorded traffic to characterise both the

applications and the networks performance. They record and archive full

traces, which in turn can be later used for re-analysis. One drawback is that

they generate a large amount of measurement data. Due to the quantity of

data produced, recording traces from very high bandwidth links is a serious

challenge. As a result, global observations have often been addressed by

inference techniques, and not by exhaustive passive monitoring of every link

in a network.

OC3MON is a well-known passive monitoring system for OC-3 links

(155 Mbps) described in [24]. It collects packetlevel traces or flow-level

statistics. Packet-level traces can be collected only for a limited amount

of time (only a few minutes at a time), while flow-level statistics can be

collected on a continuous basis. It has been deployed at two locations in

the MCI backbone network to investigate daily and weekly variations in

traffic volume, packet size distribution, and traffic composition in terms of

protocols and applications. OC3MON has now been extended to support

OC-12 and OC-48 links.

Passive monitoring systems require specific hardware to collect data

on the network. In the case of OC3MON, data capture relies on tap-

ping the fibre through a dedicated network interface card. There are sev-

eral projects which combine both active and passive measurement. The
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NetScope project [25] collects measurements from the AT&T network in or-

der to study the effects of changing network routes and router configuration.

Using NetFlow measurements from routers, the traffic demand for the entire

network is derived. The traffic demand is used in simulation to determine

the effects of changing the network configuration. As part of an ongoing

effort to develop better network measurement tools, a passive monitoring

system called PacketScope has been developed and used to collect and fil-

ter packet-level information. The NAI (Network Analysis Infrastructure)

project measures the performance of the VBNS and Abilene networks. This

system collects packet traces, active measurements of roundtrip delay and

loss, and BGP routing information. All of the 90-second-long packet traces

from this project are available on their web site. Some routers have built-in

monitoring capabilities.

Cisco routers have NetFlow [17]. It collects information about every

TCP and UDP flow on a link. Juniper routers have a set of accounting

tools to collect similar statistics as NetFlow. There are other stand-alone

commercial products for passive monitoring, such as Niksuns NetDetector

and NetScouts ATM Probes. These systems, however, are limited to OC-3

or lower link speeds, and are thus not adequate for Internet backbone links.

The Sprint [29] monitoring infrastructure, called IPMON, is similar to

the OC3MON system, but with extended capabilities that allow it to collect

packet traces at up to OC-48 link speeds (2.48 Gbps) for a period of at

least several hours. The range of observable metrics is wider than with the

above systems thanks to timestamps synchronised to within 5 νs of a global

clock signal. Sprint researchers have deployed our monitoring infrastructure

on multiple OC-3, OC-12, and OC-48 bidirectional links in 4 POPs in the

Sprint IP backbone network, and collected weeks of traces. However this

work had been done in an environment where Cisco NetFlow tools have been

present in order to enable a comparison of results with those recorded at
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the routers. Another limitation is the bandwidth increase on the UKLight

scenario which goes to 10 Gbps links which use OC-192 cards.

Flow characterisation and packet classification is an area which is closely

related to any monitoring activity. Network operators, and exceedingly users

of services, would like to know how their network or connection to provider

is utilised, what applications are consuming the bandwidth and what ports

they operate on. This is a major area of research and it leads to activities

such as billing, network tomography and anomaly detection.

A better understanding of the nature and origin of flow rates in the

Internet is important for several reasons. First,in order to understand the

extent to which application performance would be improved by increased

transmission rates, one must first know what is limiting their transmission

rate. Flows limited by network congestion are in need of drastically different

attention than flows limited by host buffer sizes. Further, many router

algorithms to control per-flow bandwidth algorithms have been proposed,

and the performance and scalability of some of these algorithm depends on

the nature of the flow rates seen at routers. Thus, knowing more about these

rates may inform the design of such algorithms. Finally, knowledge about

the rates and their causes may lead to better models of Internet traffic. Such

models could be useful in generating simulation workloads and studying a

variety of network problems and are studied in [35]. The authors claim their

findings confirm what has been observed previously, the distribution of flow

rates is skewed, but not as highly skewed as flow sizes and that flow rates

strongly correlated with flow sizes.

This is strong evidence that user behaviour, as evidenced by the amount

of data they transfer, is not intrinsically determined, but rather, is a function

of the speed at which files can be downloaded. UKLight carries traffic on

10 Gbps links and the monitoring of these links is the main objective of

the project. However the process of capture and store of frame headers



CHAPTER 2. NETWORK MONITORING PRINCIPLES 30

even at 1Gbps speed is cumbersome. Researchers at Intel laboratories have

been working on a continuous Monitoring project called CoMo [36]. CoMo

has been designed to be the basic building block for a network monitoring

infrastructure that will allow researchers and network operators to easily

process and share network traffic statistics over multiple sites.

The architecture of CoMo, as shown in 2.1, is designed to compute and

report various performance metrics while sustaining high speed traffic col-

lection. CoMo also provides a query interface to allow users to elicit the

system to export the results of the measurement performed. The suitability

of CoMo for this project is currently being investigated by the author and

researchers at Loughborough University. The capture rates achieved are up

to around 700 Mbps.

Figure 2.1: CoMo Architecture (Figure courtesy of Intel Research [36]

2.4 Tools and techniques of network measurement

In classic network measurement applications such as SNMP, traceroute

and snort, attention was paid mostly on factors such as round-trip delay, loss
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and throughput. This trend has mainly been caused by a sudden increase

in the number of users of internet and the exponential growth of the volume

of traffic carried across networks. Many tools use SNMP, RMON [22], or

NetFlow [17], which are built-in functionality for most routers. Using these

mechanisms, a centralised or decentralised model can be built to monitor a

network. The centralised approach to monitor network latency, jitter, loss,

throughput, or other QoS parameters suffers from scalability.

On the other hand with the edge-based passive monitoring there is need

to store, archive and analyse extremely large data sets. These data sets are

sometimes collected over a long time duration in order to look at factors such

as burstiness, self-similarity and long-range dependence of network traffic.

Researchers have been working on the self-similar nature of the internet

traffic using sampled data and it has been proven that internet traffic is

self-similar at different times and scales [10]. A detailed list of network

monitoring tools can be found in [23]. In this section the most relevant ones

are discussed. The following description are all extracted from external

sources, typically the standards, and referenced respectively.

2.4.1 SNMP

The simple network management protocol (SNMP) forms part of the in-

ternet protocol suite as defined by the Internet Engineering Task Force. The

protocol is used by network management systems for monitoring network-

attached devices for conditions that warrant administrative attention.

Management Information Base (MIBs)

The SNMP protocol’s extensible design is achieved with management

information bases (MIBs), which specify the management data of a device

subsystem, using a hierarchical namespace containing object identifiers, im-

plemented via ASN.1. The MIB hierarchy can be depicted as a tree with
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a nameless root, the levels of which are assigned by different organisations.

This model permits management across all layers of the OSI reference model,

extending into applications such as databases, email, and the Java EE ref-

erence model, as MIBs can be defined for all such area-specific information

and operations.

Architecture

SNMP framework consists of master agents, subagents and management

stations. A master agent is a piece of software running on an SNMP-capable

network component (say, a router) that responds to SNMP requests made

by a management station. Thus it acts as a server in client-server architec-

ture terminology or as a daemon in operating system terminology. A master

agent relies on subagents to provide information about the management of

specific functionality. Master agents can also be referred to as Managed

objects. A subagent is a piece of software running on an SNMP-capable

network component that implements the information and management func-

tionality defined by a specific MIB of a specific subsystem (e.g., the ethernet

link layer). Some capabilities of the subagent are gathering information from

managed objects, configuring parameters of the managed objects, respond-

ing to managers’ requests, and generating alarms (or traps). The manager

or management station is the final component in the SNMP architecture.

It functions as the equivalent of a client in the client-server architecture. It

issues requests for management operations on behalf of an administrator or

application, and receives traps from agents as well.

The SNMP protocol

The SNMP protocol operates at the application layer (layer 7) of the

OSI model. It specified (in version 1) five core protocol data units (PDUs):

1. GET REQUEST, used to retrieve a piece of management information.
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2. GETNEXT REQUEST, used iteratively to retrieve sequences of man-

agement information.

3. GET RESPONSE

4. SET, used to make a change to a managed subsystem.

5. TRAP, used to report an alert or other asynchronous event about a

managed subsystem.

In SNMPv1, asynchronous event reports are called traps while they are

called notifications in later versions of SNMP. In SMIv1 MIB modules, traps

are defined using the TRAP-TYPE macro; in SMIv2 MIB modules, traps

are defined using the NOTIFICATION-TYPE macro. Other PDUs were

added in later versions, including:

1. GETBULK REQUEST, a faster iterator used to retrieve sequences of

management information.

2. INFORM, an acknowledged trap.

The first RFCs for SNMP, now known as Simple Network Management

Protocol version 1, appeared in 1988:

• RFC 1065 Structure and identification of management information

for TCP/IP-based internets

• RFC 1066 Management information base for network management of

TCP/IP-based internets

• RFC 1067 A simple network management protocol

Version 1 has been criticised for its poor security. Authentication of clients is

performed only by a ”community string”, in effect a type of password, which

is transmitted in cleartext. The ’80s design of SNMP V1 was done by a

group of collaborators who viewed the officially sponsored /OSI/IETF/NSF
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(National Science Foundation) effort (HEMS/CMIS/CMIP) as both unim-

plementable in the computing platforms of the time as well as potentially

unworkable. SNMP was approved based on a belief that it was an interim

protocol needed for taking steps towards large scale deployment of the In-

ternet and its commercialisation. In that time period Internet standard

authentication/security was both a dream and discouraged by focused pro-

tocol design groups. The Internet Engineering Task Force (IETF) recog-

nises Simple Network Management Protocol version 3 as defined by RFC

3411RFC 3418 (also known as STD0062) as the current standard version

of SNMP as of 2004. The IETF considers earlier versions as ”Obsolete” or

”Historical” [16].

Usage examples

snmpwalk

The output below show an example of an snmpwalk (snmpwalk is a Net-

SNMP application) performed on a router, and shows general information

about the device.

snmpwalk -c public punch system

SNMPv2-MIB::sysDescr.0 = STRING:unis see Cisco Internetwork Operating System Software

IOS (tm) C2600 Software (C2600-IO3-M), Version 12.2(15)T5, RELEASE SOFTWARE (fc1)

TAC Support: http://www.cisco.com/tac

Copyright (c) 1986-2003 by cisco Systems, Inc.

Compiled Thu 12-Jun-03 15:49 by eaarm

SNMPv2-MIB::sysObjectID.0 = OID: SNMPv2-SMI::enterprises.9.1.187

DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (835747999) 96 days, 17:31:19.99

SNMPv2-MIB::sysContact.0 = STRING: wikiuser

SNMPv2-MIB::sysName.0 = STRING: punch

SNMPv2-MIB::sysLocation.0 = STRING: test

SNMPv2-MIB::sysServices.0 = INTEGER: 78
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SNMPv2-MIB::sysORLastChange.0 = Timeticks: (0) 0:00:00.00

Router graphing software

A lot of data about the performance, load and error rates of network

elements like routers and switches can be gathered through SNMP. There

are a number of tools which gather this data on a regular basis and which

can produce various kinds of graphs from it. Such graphs can be interpreted

by network adminstrators to evaluate a network’s performance, identify po-

tential bottlenecks and help in redesigning a network. Example tools of this

type are MRTG and Cacti [16].

Proxy agent Normally, a network management system is able to man-

age device with SNMP agent installed. However in the absence of the SNMP

agent, it can be managed with the help of a proxy agent. The SNMP agent

associated with the proxy policy is called a proxy agent, or commercially a

proxy server. The proxy agent monitor non-SNMP Community with non-

SNMP agents and then converts the objects and data to SNMP compatible

objects and data to be fed to an SNMP manager [16].

2.4.2 CISCO NetFlow

As IP traffic continues its explosive growth across today’s networks, en-

terprise and service providers must be able to characterise this traffic and

account for how and where it flows. The challenge, however, is finding a

scalable, manageable, and reliable solution to provide the necessary data

to support these opportunities. Cisco IOS NetFlow technology is an inte-

gral part of Cisco IOS Software that collects and measures data as it enters

specific routers or switch interfaces.

By analysing NetFlow data, a network engineer can identify the cause

of congestion; determine the class of service (CoS) for each user and appli-

cation; and identify the source and destination network for traffic. NetFlow
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allows extremely granular and accurate traffic measurements and high-level

aggregated traffic collection. Because it is part of Cisco IOS Software, Net-

Flow enables Cisco product-based networks to perform IP traffic flow anal-

ysis without purchasing external probes–making traffic analysis economical

on large IP networks [16].

Usage scenarios

Network application and user monitoring: NetFlow data enables users

to view detailed, time- and application-based usage of a network. This infor-

mation allows planning and allocation of network and application resources,

including extensive near real-time network monitoring capabilities. It can

be used to display traffic patterns and application-based views. NetFlow

provides proactive problem detection, efficient troubleshooting, and rapid

problem resolution. This information is used to efficiently allocate network

resources and to detect and resolve potential security and policy violations.

Network planning: NetFlow can be used to capture data over a long pe-

riod of time, which enables users to track and anticipate network growth and

plan upgrades to increase the number of routing devices, ports, or higher-

bandwidth interfaces. NetFlow services data optimises network planning,

which includes peering, backbone upgrade planning, and routing policy plan-

ning. It minimises the total cost of network operations while maximising

network performance, capacity, and reliability. NetFlow detects unwanted

WAN traffic, validates bandwidth and Quality of Service (QoS), and en-

ables the analysis of new network applications. NetFlow will offer valuable

information to reduce the cost of operating the network.

Security analysis: NetFlow data identifies and classifies Denial of Ser-

vice (DoS) attacks, viruses, and worms in real-time. Changes in network be-

haviour indicate anomalies that are clearly demonstrated in NetFlow data.

The data is also a valuable forensic tool to understand and replay the history
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of security incidents.

IP accounting and Usage-based billing: NetFlow technology also enables

customers to implement usage-based billing, providing them with the ability

to implement competitive pricing schemes and premium services. In addition

to measurement and billing, NetFlow also performs strategic analysis on

their point-of-presence (POP) traffic for network planning, acceptable usage

policy enforcement, or service-level management (SLM). Customers can,

therefore, use NetFlow to track IP traffic flowing into or out of their server

farms for capacity planning or to implement usage-based billing.

Traffic engineering: NetFlow can measure the amount of traffic crossing

peering or transit points to determine if a peering arrangement with other

service providers is fair and equitable.

NetFlow operation and architecture

NetFlow includes three key components that perform the following ca-

pabilities:

• Flow caching analyses and collects IP data flows entering router or

switch interfaces and prepares data for export. It enables the ac-

cumulation of data on flows with unique characteristics, such as IP

addresses, application, and CoS. Flexible flow data is now available

using the latest NetFlow v.9 export data format. NetFlow supports

key technologies, including IPv4, IPv6, Multicast, and Multiprotocol

Label Switching (MPLS).

• FlowCollector and Data Analysis captures exported data from multi-

ple routers and filters and aggregates the data according to customer

policies, and then stores this summarised or aggregated data. Users

can leverage Cisco NetFlow collector as a flow collector, or they can

opt for a variety of third-party partner products. A Graphical user
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interface displays and analyses NetFlow data collected from FlowCol-

lector files. This allows users to complete near-real-time visualisation

or trending analysis of recorded and aggregated flow data. Users can

specify the router and aggregation scheme and desired time interval.

Figure 2.2: Cisco IOS NetFlow Infrastructure( [17])

Typical flow analysis information found in a NetFlow data record in-

cludes [17]:

• “Source and destination IP address

• Source and destination TCP/User Datagram Protocol (UDP) ports

• Type of service (ToS)

• Packet and byte counts

• Start and end timestamps

• Input and output interface numbers

• TCP flags and encapsulated protocol (TCP/UDP)
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• Routing information (next-hop address, source autonomous system

(AS) number, destination AS number, source prefix mask, destination

prefix mask)”

2.5 Summary

Network monitoring is an essential part of the system life cycle of a

network of any size. There are various tools available which produce course-

grained aggregate statistics of the network status. Even though these tools

are available and deployed, access to detailed statistics of signatures of vari-

ous networks events such as intrusions, worms and denial of service attacks.

Access to such statistics is only possible by use of rigorous mathematical

operations on gathered traces of network packets at an aggregation point

and a routers. An important step in this path is sampling. Sampling is used

for selecting a small portion of the traffic which will enable us to analyse the

characteristics of the network. Sampling is discussed in the next chapter.



Chapter 3

Measurement and Sampling

The aim of network measurement is to provide the data for network

control, enabling the service provider to characterise the state of the network,

the demands of traffic and its consumption of network resources, and the

performance experienced by traffic on the network. Measurement systems

monitor the system response to reconfiguration to determine if corrective

actions are required. Actions operate over a range of time scales, from the

deployment of new network infrastructure over a period of months, through

tracing network attacks over minutes or hours, to control of traffic flows in

close to real time, for example.

3.1 Data analysis dilemma

Internet service providers have in one sense too little data at their dis-

posal, while in another sense they have too much. Too little, because it is

not always possible to directly measure quantities of interest, these being

only components in aggregate measurements. For example, troubleshooting

packet loss requires knowing network performance on individual links, while

in practice it may only be feasible to measure performance between two

hosts, that is, the composite performance along a path that comprises sev-

40
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eral links. A recent response to the problem of too little data was to develop

tomographic methods for inferring individual components from collections

of aggregate measurements [32].

When troubleshooting loss, correlating performance measures along in-

tersecting network paths reveals the performance on the intersection of those

paths. The too much data problem is that the volumes collected are truly

enormous. A large service provider may collect data from tens of thousands

of network interfaces. A single high speed network interface could in prin-

ciple generate hundreds of gigabytes of (unsampled) flow statistics per day

if fully utilised, while the whole network might generate several gigabytes

of simple network management protocol (SNMP) statistics per day. Fur-

thermore, the rate of data collection is growing, due to the requirement for

ubiquitous fine grained measurements. As a result, routers and switches are

being equipped with increasingly sophisticated measurement capabilities,

providing ever more data to the service providers.

3.2 Data reduction by sampling

The main resource constraint for the formation of flow statistics is at the

router flow cache. To perform lookup of packet keys and counter increment

at line rate would require the flow statistics to be stored in fast memory.

However, core routers will carry increasingly large number of concurrent

flows, necessitating large amount of fast memory: this would be expensive.

By sampling the packet stream in advance of the construction of flow statis-

tics, the time window available for flow cache lookup is prolonged, enabling

storage to be carried out in slower, less expensive, memory.

For many applications, measured data must be transmitted to collec-

tion points for storage and analysis. The massive volume of data has cost

ramifications for the collection infrastructure. First, processing and stor-

age resources on the routers and switches are comparatively expensive and
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scarce in practice; they are already employed in the regular work of routing

and switching packets. Second, the transmission of measured data to the

collection points can consume significant amounts of network bandwidth.

Third, sophisticated and costly computing systems are required for analy-

sis and storage of the data. These three factors motivate data reduction.

However, there is an inherent tension between reducing data, on the one

hand, and supplying sufficiently detailed measurements for applications, on

the other. This tension is most evident at the observation point, where re-

sources are typically the least available. Data reduction is preferably carried

out online in a single pass through the traffic stream to avoid buffering and

reprocessing. Three methods are commonly employed:

• Aggregation: The combination of several data into a single composite,

the components of which are then discarded. Aggregation is commonly

additive, for example, finding the total traffic from a set of sources

or over a time interval. Aggregates are used to provide a compact

data summary when it is acceptable to lose visibility of the aggregates

components.

• Filtering: Selection of data based on the data values; unselected data

are discarded. For example, traffic from a given source is selected.

Filtering is useful to drill down to a subset of traffic of interest, once

that subset has been identified.

• Sampling: Random or pseudorandom selection of data; unselected

data are discarded. For example, simple random sampling of pack-

ets. There is overlap between filtering and sampling: implementations

of sampling may be filters by the above definitions, albeit with an

exceedingly complex selection rule.

The important factor that distinguishes these three methods is that fil-

tering and aggregation require knowledge of the traffic’s features of interest
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in advance, whereas only sampling allows the retention of arbitrary detail

while at the same time reducing data volumes. [32]

3.3 Packet monitoring

Packet monitoring entails passively copying a stream of packets, then

selecting, storing, analysing and/or exporting information on these packets.

Until recently packet monitoring was performed exclusively by special pur-

pose hosts installed in the network; A copy of the packet stream is brought

to a monitor in one of three ways: by copying the physical signal that car-

ries the packets (e.g., with an optical splitter) and bringing the signal to an

interface on the monitor; by attaching the monitor to a shared medium that

carries the traffic; by having a router or switch copy packets to an inter-

face to which the monitor is attached. Packet monitors have to cope with

some formidable demands on their resources, particularly on the processing

bandwidth needed to work at the full line rate of increasingly high speed

links.

Restricting data capture to some initial number of bytes of the packet is

a common way to control data bandwidth at the monitor. This is a reason-

able solution, since the IP header and other protocol header information is

located at or near the start of the packet. Even so, widespread continuous

collection, transmission and storage of unreduced packets has been infeasible

for a number of years due to the immense volumes of data relative to the

capacity of systems to collect them; see [18] for an early reference and [19]

for a recent one.

Collection of full packet header traces is feasible only for limited dura-

tions. Instead, for applications that require continuous monitoring over an

extended period, it is common to perform analysis at or near the monitor by

forming flow records or other aggregate statistics, or a more general stream

querying functionality (see [36]). Collection of packet IP and transport head-
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ers is commonly performed using tcpdump [5] or its variant windump [6].

Depending on the traffic load and processing power at the measurement

host, these tools may also be able to capture parts of the packet payload.

In network elements, deployment of packet monitors is limited by equip-

ment availability and administrative costs. A more recent approach to

packet monitoring was to embed the passive measurement functionality

within network elements such as routers and switches. Once packet monitor-

ing capabilities become available in network elements, packet measurement

can become ubiquitous in the network. However, little or no capabilities for

measurement analysis are expected to be available in routers and switches,

because they generally lack the additional computational resources for this

purpose. Instead, some form of data reduction is required, both in the se-

lection of information from packets and in the selection of packets to be

reported on.

Some packet sampling capabilities are becoming available in routers,

for example, sampling in InMons sFlow [31]. Packet selection capabili-

ties for network elements are currently being standardised by the Packet

Sampling (PSAMP) Working Group of the Internet Engineering Task Force

(IETF). The aim of this work is to define a set of packet selection capabili-

ties which are simple enough to be ubiquitously deployed, yet rich enough to

support the needs of measurementbased network management applications.

Although specific selection operations are yet to be finalised, it is likely that

this will include filtering and various forms of sampling.

3.4 Flow records

A flow of traffic is a set of packets with a common property, known as

the flow key, observed within a period of time. Many routers construct and

export summary statistics on packet flows that pass through them. Ideally,

a flow record can be thought of as summarising a set of packets that arises
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in the network through some higher level transaction, for example, a remote

terminal session or a web page download. In practice, the set of packets that

are included in a flow depends on the algorithm used by the router to assign

packets to flows. The flow key is usually specified by fields from the packet

header, such as the IP source and destination address and TCP/UDP port

numbers. Flows in which the key is specified by individual values of these

fields are often called raw flows, as opposed to aggregate flows in which the

key is specified by a range of these quantities.

Flow statistics are created as follows: When a packet arrives at the

router, the router determines if the flow is active, that is, if statistics are

currently being collected for the packets key. If not, it instantiates a new

set of statistics for the key. The statistics include counters for packets and

bytes that are updated according to each packet matching the key. When the

router judges that the flow is terminated, the flows statistics are exported in

a flow record and the associated memory is released for use by new flows [32].

A router at the core of an internet link is carrying a large number of flows

at any given time. this pressure on the router entails the use of strict rules in

order to export the statistics and keep the router memory buffer and CPU

resources available to deal with changes in traffic patterns by avoiding the

handling of large tables of flow records. Rules for expiring NetFlow cache

entries include:

• Flows which have been idle for a specified time are expired and re-

moved from the cache (15 seconds is default)

• Long lived flows are expired and removed from the cache (30 minutes

is default)

• As the cache becomes full a number of heuristics are applied to ag-

gressively age groups of flows simultaneously

• TCP connections which have reached the end of byte stream (FIN) or
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which have been reset (RST) will be expired

Flow definition schemes have been developed in research environments

and are being standardised by the IP Flow Information Export (IPFIX)

Working Group of the IETF. Examples of flow definitions employed as part

of network management and accounting systems can be found in Cisco’s

NetFlow [17].

A flow record typically includes the properties that make up a flow’s

defining key, the arrival times of the first and last packets, and the number

of packets and bytes in the flow. Flow records yield considerable compression

of information, since a flow is summarised in a fixed length record, regardless

of the number of packets in the flow. The trade-off is loss of detail of the

timing of packets within the flow. The compression factor depends on the

composition of traffic: it is greater for long flows and smaller for short flows.

For traffic mixes observed in backbone traffic, byte compression factors for IP

and transport headers versus NetFlow records of 25 or more are commonly

attainable [32].

3.5 Uniform sampling techniques

This section reviews classical sampling methods [systematic, simple ran-

dom and stratified sampling and their common applications in passive In-

ternet measurement.

3.5.1 Systematic sampling

In count-based systematic sampling, the triggers are in = nN + i0, the

occurrence of objects with integer period N > 0. In the simplest case,

the object in is selected. More generally, M ≤ N objects in, ..., in+M1 are

selected. An example is the capture of subsets of successive packets. Sam-

pling of consecutive packets may be useful for understanding the detailed
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dynamical behaviour of packet streams. In time-based systematic sampling,

triggers fire at times τn = nT + τ0. Selection takes place after each trigger

has fired, for example, selection of the next arriving object or all objects

arriving within a time t of the trigger. Systematic sampling is very straight

forward to implement: Set a counter to the sampling period, decrement on

each packet, select a packet on reaching zero, then reset the counter and

repeat.

However, systematic sampling is vulnerable to bias if the objects being

sampled exhibit a period which is rationally related to the sampling pe-

riod, since samples are taken only at a discrete set of phases within the

period. Potential sources of periodicity are timers in protocols and periodi-

cally scheduled applications. A further drawback is that periodic sampling

is to some extent predictable and, hence, open to deliberate manipulation

or evasion.

3.5.2 Random additive and simple random sampling

The potential problems of systematic sampling are avoided by suitable

use of random additive sampling. Here, the intervals between successive trig-

gers are independent random variables with a common distribution. (Pe-

riodic sampling is a degenerate case where the random variable takes a

constant value.) The advantages of random additive sampling for Inter-

net measurement were highlighted by Paxson [35]. It avoids synchronisa-

tion problems. Choosing the intervals to be geometrically distributed (for

countbased sampling) or exponentially distributed (for timebased sampling)

avoids predictability. “Furthermore, Wolffs Poisson arrivals see time av-

erages (PASTA) property ensures that any empirical mean over sampled

objects is an unbiased estimator of the corresponding population mean” [21].

For these reasons, random additive sampling is recommended in stan-

dards for performance metrics. A simple implementation of random additive
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sampling is to generate, immediately following a given trigger, the length

of the interval until the next trigger. However some generated intervals will

not fit in storage unless a cutoff is applied. “The special case of geometric

random additive sampling with mean intersample count m is equivalent to

simple random sampling with probability 1/m. It can be implemented by

making a sampling decision for each object, although this is computationally

more costly than generating random intersample times” [32].

3.6 Summary

This chapter has provided the knowledge to standard measurement and

monitoring techniques available to network researchers and operators. The

need for detailed statistics of network operations has recently increased fol-

lowing the growth of applications on internet ranging from Voice over IP,

streaming media and content distribution to peer-to-peer applications. Op-

erators have increased the accuracy of their traffic measurement techniques

in order to be able to classify services and charge for the high-priority and

QoS services. The provision of such billing systems requires adequately de-

tailed reports on bandwidth usage and traffic generation by various users

for the operator. It is becoming increasingly important to be able to infer

the characteristics of the traffic over the network over different time scales

to be able to detect any anomalies resulting form various attacks and usage

increases. In the next chapters some of these inference techniques are looked

into more carefully and novel inference and trouble shooting methods are

discussed.



Chapter 4

Measurements on Large

Networks

Sampling is a method of reducing the amount of data collected and

reported at the measurement points on networks. However the statistics

gathered from these datasets are based on a sampled subset of the real

data stream. Consider a constant sampling of 1 in 1000 packets which is

currently in use in Cisco Netflow routers; in this case, if a flow is shorted

than 1000 packets, there is a probability that it never gets sampled. Many

worms, ICMP packets and HTTP requests and replies are shorted than 1000

packets. So clearly, by simply multiplying the final statics by the inverse

of the sampling rate (1000 in this case), the network manager will not get

the individual flow properties, though it is possible to get a fairly accurate

measure of the general traffic characteristics like average throughput, total

number of active flows and the distribution of their sizes. In this section,

the impact of sampling and inversion by multiplication on network traffic is

discussed.

49
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4.1 Analysis of flows on GEANT

Network simulation requires a thorough understanding of the character-

istic of the flows on a network, the activity levels of hosts behind networks

and the amount of data and the frequency of its tansmission from sources

behind a network to the destinations outside, possibly worldwide. In order

to get a feel for the nature of traffic on a network such as GEANT, the Net-

flow data was collected and analysed for the 1 day period of 24th November

2004. The results are those of sampled NetFlow records, an example of

which is displayed below, both lines span over two lines.

====================================

Timestamp Duration Proto Source IP/Mask Port Destination IP/Mask

Port Bytes Packets SrcAS DstAS TCP Flags Exporter Addr Next Hop Addr

Engine Type/ID Input/Output Iface Index

Sat Jan 1 00:02:05 2005 1104537725.850 0.000 6 193.170.0.0/15 38877

194.85.32.0/20 80 52 1 1853 2603 16(—-A—) 127.0.0.1 62.40.96.56 0/0 61/87

====================================

These results are divided into two sections and discussed in this sec-

tion. Figure 4.1 displays the topology of GEANT network as of April 2004.

GEANT is a pan-European multi-gigabit data communications network, re-

served specifically for research and education use. It is creating the biggest

interconnected community of scientists and academics in the world today,

enabling them to share and distribute research data faster than ever before.

It delivers exciting benefits to its users and will play an important role in

shaping the future of European science.

GEANT is the latest generation of pan-European research network in-

frastructure and is one of the most advanced and reliable networks in the

world. It provides the highest capacity, and offers the greatest geographic

coverage, of any network of its kind in the world. By the end of the project

in June 2005, GEANT served over 3,500 research and education institutions
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Figure 4.1: GEANT network topology( [37])

in 34 countries through 30 national and regional research and education

networks [37].

4.1.1 Node activity summaries

The following figures display the activity of the nodes behind 2 of the 23

GEANT routers for comparison purposes. Figure 4.2 displays the number

of flows that have been seen from the hosts, x-axis sorted by the first 3 digits

of the IP address , from 0 to 255, covering the whole IP address spectrum,

of the IP prefix. behind the Slovakia router.

Slovakia, being one of the smaller contributers to the traffic on GEANT,

has a more limited number of hosts on a small range of IP prefixes. It can be

observed that when a simulation scenario is to be created, the distribution

of source addresses, and how they differ for different locations on network

plays a significant role. Figure 4.3 displays the number of connections that

have been made by the hosts behind the UK router [x-axis sorted by the

first 3 digits of the IP address , from 0 to 255, covering the whole IP address
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Figure 4.2: Number of flows from source hosts behind router SK1

spectrum, of the IP prefix].

Figure 4.3: Number of flows from source hosts behind router UK1

The activities on the UK router have a much larger scale of volume and

range of IP addresses as it is a major backbone router for GEANT and it is

also the connection point to New York Point of Presence (PoP).

Figure 4.4 displays the number of flows that have been seen by the hosts

behind the Hungary router [x-axis sorted by the first 3 digits of the IP

address , from 0 to 255, covering the whole IP address spectrum, of the

IP prefix]. It can be seen that there is IP address spoofing present in the

Hungary domain. This can be observed both at source prefixes which have

virtually covered the whole of IP address range.

It can also be observed that these hosts maybe creating attacks across the
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Figure 4.4: Number of flows from source hosts behind router HU1

internet by sending packets in large volumes all over the IP address range.

It is only by real time monitoring that such anomalies can be detected

and alarms can be raised to find the source of such activities which will

compromise the performance of networks.

4.1.2 Packet rates

The following figures display the number of packets that have been sent

out by the hosts behind some of the routers on GEANT. These figures are

there to display the general trends and statistical behaviour of the hosts on

a typical backbone network. It must be noted that these statistics are subject

to 1 in 1000 sampling rate.

Figure 4.5 displays the Empirical Cumulative Distribution Function (CDF)

of the packets sent out by the Slovakia router. Slovakia router is one of the

smaller connection points on the GEANT network.

Figure 4.6 diplays the Empirical CDF of the aggregate number of packets

sent out by the UK router in the day of measurement. That is the sum of

all packets sent out by any one host behind the router to any destination

worldwide. UK being one of the main connection points and the European-

American exchange point has an order of magnitude more data across it than

the relatively smaller routers such as Slovakia which was seen previously.
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Figure 4.5: PDF of Packets sent by hosts behind router SK1

This trend was also observed when comparing the other routers together

with the core routers such as Germany router (DE1) from which most of

the GEANT traffic is traversed.

Figure 4.6: PDF of Packets sent by hosts behind router UK1

It can be seen that an extremely large number of hosts only send a very

small number of flows, while a very small number of sources, which from

their IP addresses could be identified as main university FTP servers and

some file sharing facilities, initiate a large number of flows resulting to a high

number of packets. This property conforms to the observations of Paxson

et al. at [35].
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4.1.3 Flow sizes distributions on GEANT routers

Even though the above figures are indicative of the elephants and mice

nature of internet flows, a large number of flows (mice flows) only have a

small number of packets, while very few flows (elephant flows) have a large

number of packets [20]. It is interesting to view the size of flows transfered

across networks by hosts and the frequency of occurrence of flows of different

sizes. These results will enable network researchers to determine the type

of traffic on networks. One of the hot topics looked at in network research

has been the distribution of flow sizes on networks and the heavy detail In

the Internet, heavy-tailed distributions have been observed in the context of

traffic characterisation and in the context of topological properties. In the

area of traffic characterisation, evidence indicates that Ethernet traffic ex-

hibits self-similar properties [10]. It has been demonstrated that WAN traffic

exhibits self-similar properties [11], as is the case for traffic specifically asso-

ciated with WWW transfers The main implication of such discoveries is that

most previous analytic work done in Internet studies adopted assumptions

such as exponentially-distributed packet interarrivals. Conclusions reached

under such exponentiality assumptions may be misleading or incorrect in

the presence of heavy-tailed distributions.

the following graphs are demonstrative of such characteristics. They

demonstrate the number of packets sent in flows, and the frequency of oc-

currence of each flows. It can be seen clearly that as the number of flows

grows on bigger routers, the distribution of flow sizes tends to be spread

across with the size of the flows gradually decreasing in frequency of their

occurrence increases.

Figure 4.7 a displays the number of times a host has sent a packet of

certain size, against the packet size on the x-axis. As there is not a great

number of packets transmitted, the trends and variation of sizes can be

clearly seen in this graph. Figure 4.8 displays the same property for a more
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Figure 4.7: Activity rates of source hosts behind router SK1

busy router which is the German router, sitting at the core of the GEANT

network. The German router, being at the core of the network, carries the

most traffic on the GEANT network and it can be observed that the number

of larger flows are much more on the DE1 router than the similar router at

the UK.
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Figure 4.8: Activity rates of source hosts behind router DE1

The distribution is much smoother and without expanding the graph

further via sampling for example it is not easy to observe any anomalies.

This is due to the fact that there is much more human-generated traffic such

as browsing and email on the UK routers than the core German router. This

fact has increased the number of smaller flows on routers such as UK and

Hungary and this can be observed by comparison to the German router.
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4.2 Re-normalisation of Measured Usage

This section discusses re-normalisation of usage estimates from reports

on uniformly sampled packets and how to take into account the effect of loss

of reports in transit. , In an approach suggested by [32], each sampled value,

such as a packet or flow length, must be re-normalised through division by its

selection probability so as to obtain an unbiased estimator of the original.

Let there be M packets in a given class, of which m are selected when

sampling independently at rate p. We form an unbiased estimate M̂1 of the

total packets M in that class by M̂1 = m/p. Bytes are estimated similarly.

Let the M original packets in the class have sizes b1, . . . , bM with total

B =
∑M

i=1 bi. Then B̂1 = p1
∑′

i=1, ..., M
bi is an unbiased estimator of B,

where
∑′

denotes the random sum over sampled packets only.

An alternative re-normalisation uses the attained sampling rate, which

may be calculated when sufficient information is provided in the measure-

ments. In InMons sFlow [31], routers include the cumulative count of all

packets arrived at the observation pointwhether sampled or notin each sam-

pled packet report. By subtraction of counts, the collector can calculate the

pool size, that is, the number of packets that arrived at the observation point

between two given packets for which reports reached the collector. Let the

pool size be N , of which n packets in all classes were sampled. The attained

sampling rate for all traffic is n/N . Assuming this rate applies uniformly

across all constituent classes, the estimate of the total packets in the class

of interest is obtained by dividing the number m of sampled packet in the

class by the attained sampling rate, yielding M̂2 = mN/n.

Analogous estimates for original bytes can be formed. In principle the

attained sampling rate could be formed using either packet counts or byte

counts. In practice, the estimate derived from packet counts is preferable:

the estimate derived from byte counts has higher variance due to the vari-

ability of packet sizes. The attained loss rate between two received packets is
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independent of which intervening packets were lost. Thus re-normalisation

with the attained loss rate is less sensitive to deviations from independent

sampling than re-normalisation with the target loss rate, provided that the

deviations affect all traffic classes equally.

4.3 Variance of Usage Estimates

Assuming independent packet selection with probability p, M̂1 has co-

efficient of variation s1 = ((1 − p)/(pM))1/2, but M̂2 offers some reduc-

tion in variance. Suppose that N ,M → ∞, with the proportion of pack-

ets M/N in the class under consideration converging to r. An applica-

tion of the delta method [33] shows that the coefficient of variation of M̂2

converges to s1

√
1− r. The byte estimator B̂1 has coefficient of variation

((1−p)
∑M

i=1 b2
i /p)1/2/B. Since packet sizes are bounded above by the max-

imum transmission unit bmax of the link at which measurement takes place,

it is possible to usefully bound this error above by
√

bmax/(pB). Since

the coefficients of variation are inversely proportional to the square root of

the actual usage, larger contributions to usage are more reliably estimated

than smaller ones. This is useful for applications. For example, the relative

error in estimating high volume contributions to network usage is smaller

than for general classes. This property was exploited by Jedwab, Phaal and

Pinna [34] to identify heavy hitters through packet sampled usage. Their

scheme assumes that only limited storage is available for ranking traffic

classes by usage. If instantiating a new class would exceed storage capacity,

the ranking information is truncated by discarding all classes except a cer-

tain number of the highest ranking. The probability of mis-ranking can be

controlled to be small [32].
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4.4 Uniform Sampling Probability

Usually packet sampling uses randomness in the sampling process to pre-

vents synchronisation with any periodic patterns in the traffic. On average,

1 in every N packets is captured and analysed. As an example, for a flow of

length between 1 to 1000 packets: p= 0.001.

4.5 Estimation method with increasing p

Given only a sample of values x1,...,xN from some larger population,

many authors define the sample (or estimated) standard deviation by:

s =

√√√√ 1
N − 1

N∑

i=1

(xi − x)2 (4.1)

The reason behind this equation is the fact that s2 is an unbiased esti-

mator for the variance σ2 of the underlying population, if it is uncorrelated

and has uniform variance of σ2. However, s is not an unbiased estimator

for the standard deviation σ; it tends to underestimate the population stan-

dard deviation. Although an unbiased estimator for ”s” is known when the

random variable is normally distributed which is not always true in case of

network packet distributions as shown in works such as [11]. In Uniform

sampling case, the relative standard deviation for unbiased estimation of

the total packets n flows behaves roughly as ∼ 1/
√

Np.

4.6 Estimating the number of active flows

Two definitions for counting flows: active flows and flow arrivals. A flow

is active during a time period if it sends at least one packet during that time.

Active flows with none of their packets sampled by the flow slicing process,

will have no records; at least some of the flow records recorded should be
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counted as more than one active flow, so that the total estimate will be

unbiased. We count records with a packet counter cs of 1 as 1/p flows and

other records as 1 flow and this gives us unbiased estimates for the number

of active flows:

f̂ =





1/p if cs = 1

1 if cs > 1

Another way of expressing this range is as a percentage of the most likely

value, in other words that the largest likely error is 4.8%. The following

equation provides a simple estimate of the percentage error:

%error ≤ 196.

√
1
c

Plotting this equation in 4.9 shows how sampling accuracy improves as

c increases.
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Figure 4.9: Relative sampling error for 95% confidence interval of missing a
flow

It is observed from 4.9 that as the number of samples in the target flow

increases, the relative error drops linearly and this is the basic conclusion of

the effect of increasing the population in a sampling scenario.
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4.7 Packet Count Estimator

The packet counter cs in an entry is initialised to 1 when the first packet

of the flow gets sampled, and it is incremented for all subsequent packets

belonging to the flow. Let s be the number of packets in the flow at the

input of the flow slicing algorithm. Equation below gives the formula for

estimator ŝ for the number of packets in the flow:

ŝ = 1/p− 1 + cs

Lemma 1 ŝ as defined in is an unbiased estimator of s.

If s = 1, the only packet of the flow is sampled with probability p and in

that case it is counted as 1/p− 1 + 1 = 1/p packets. With probability 1− p

it is not sampled (and it counts as 0). Thus:

E[ŝ] = p · 1/p + 0 = 1 = s.

If a router samples packets randomly with probability q before applying

the flow slicing algorithm, the measurement system will want to estimate

the number of packets S at the input of the packet sampling stage. Since

E[s] = qS, it is easy to show that Ŝ = 1/qŝ is an unbiased estimator for S.

4.8 Sparse Flows And Slicing

Consider an original flow with typical interpacket spacing τ . Suppose

1 in N packets are sampled from this stream. Typically, the interpacket

spacing in the sampled stream is τN . If τN exceeds the flow interpacket

timeout, then the original flow tends to decompose into a number of separate

measured flows, depending on how the packets are bunched. The worst case

is even spacing: each sampled packet would give rise to a separate measured

flow. If τN is less than the flow interpacket timeout, the reverse holds,

and the packets tend to be reported as a single measured flow. If evenly
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spaced, a single measured flow would result; bunching may increase the

number of measured flows. This presupposes there are multiple packets in

the sampled stream. An original flow is called sparse, if sampling at a given

rate typically yields more than one packet, with the typical interpacket time

of the sampled packet exceeding the flow timeout. Thus an implicit and

necessary condition for sparseness is that the typical flow length exceeds

N . Packet size distributions of measured flows have previously been found

to be heavy-tailed; see e.g. [35]. This leads to expectation of a noticeable

number of long, and hence potentially sparse, flows. With sparse flows,

packet sampling can then increase the number of measured flows and hence

the downstream resource usage for those flows. It is not expected that

sparseness to increase consumption of memory at the router. Whether or

not splitting takes place, the original flow gives rise to at most one active

measured flow at any time.

Peer to peer and streaming applications are candidates to produce sparse

flows since they typically transmit packets over extended periods. Duffield

et.al [27] call sparse those applications which may be expected to transmit

sparse flows of traffic at typical sampling rates. “A single sparse origi-

nal flow gives rise to multiple flow statistics. The increasing prevalence of

longer file transfers by peer-to-peer applications, as much as 50% of traffic

on some links, may lead to sparseness if the sampling rate is sufficiently

low [27]”. Ignoring sparseness can lead to substantial overestimation of the

mean number of active flows, and hence the buffering resources needed to

accommodate them in a router.

Duffield et.al in [27] conclude that flow slicing is more observed at mod-

erate sampling rates 1 in N for N = 10 and N = 100, but declines once N=

1000, since this exceeds the typical original flow length [27]. However in an

analysis of CAIDA network in 1995, for a five minute trace, the average flow

size for the IP flows was 10088 packets and 6,344,202 bytes [28]. The rise
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in use of peer to peer applications has been rapid and recent other sparse

applications may arise in future. This entails the need for a more dynamic

sampling regime, in which the high volume of short flows, and long lasting

flows of streaming and peer to peer applications are catered for.

In periodic sampling the router needs only decrement a counter. It

has the potential disadvantage of introducing correlations into the sampling

process: when a packet is selected, none of the following N-1 packets are

selected. Although this does not bias against selection of any one packet, it

can bias against selection of multiple packets from short flows.

4.9 Normalised recovery

Traditionally the recovery of flow characteristics have been by division

by the sampling rate. For a sampling probability q and for sampled traffic

α(q) out of a sampling pool size N with inter-packet time-out τth it can be

seen that normalised recovery is a trivial approach to inversion problem.

α =
1
p
α(p) (4.2)

where uniform random (1/N) sampling is done:

α = Nα(p) (4.3)

Below are the results of application of sampling in a simple network

simulation scenario. These simulations are based on the statistics from the

trace collected on 24 November 2004 on the GEANT network. In this sim-

ulation, 380000 flows across 23 routers and 100 nodes attached to them are

generated. The statistics for these simulations are derived from the GEANT

measurements discussed in the previous chapter, so they are subject to a bias

already with short flows missing from them and a smoother distribution, due
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to sampling and the central limit theorem, which states that assuming an

infinite population with random sampling, the distribution of a sample av-

erage from a pool of data becomes like a Normal distribution as the sample

size goes to infinity. The mean and the variance of the distribution will be

the mean and the variance of of the original population divided by the sam-

ple size. Sampling and inversion process tends to ignore many short flows.

This is also adversely true for the longer flows as this method of sampling

tends to over estimate the number of the longer flow as discussed in section

4.8.

4.10 Sampling Rate and Missing Flows

The effects of sampling on long flows and the synthesis of sparse flows

from long flows were discussed in section 4.8. In this section another effect

of sampling is discussed which is the most important bias that sampling

introduces in a trace file under analysis and that is the omission of many

small packets which form small flows and are never sampled in the stream.

Duffield et al. [27] mention that periodic sampling is very simple to im-

plement: the router needs only decrement a counter. It has the potential

disadvantage of introducing correlations into the sampling process: when a

packet is selected, none of the following N-1 packets are selected. Although

this does not bias against selection of any one packet, it can bias against

selection of multiple packets from short flows. However, so far it has been

assumed by other works that this effect would not be important for sampling

from high speed links that carry many flows concurrently. In this case, suc-

cessive packets of a given flow would be interspersed by many packets from

other flows, effectively randomising the selection of packets from the given

flow. While such randomisation may not be effective at lower speed routers

carrying fewer flows (e.g. edge routers), packet sampling is not expected to

be necessary for flow formation in this case.
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This conclusion has been the basis of a series of experiments devised by

the author. As many high speed links such as UKLight are there to serve for

specific purposes such as large file transfers for databases of medical records

or astrophysics simulation and measurements results, which will practically

form one flow, in this case, despite the assumption made by the previously

stated argument, there will be a bias against the smaller flows and the

because there may not be too many active flows at any given time, flow

slicing may not happen due to the fact that the router only needs to keep

track of a limited number of flows and the continuous stream of data will

avoid time-outs. In the next section two network scenarios are considered.

4.10.1 Scenario 1: Normal network characteristics

The simulator input for this case is the normalised CDF of packet statis-

tics from GEANT on the measurement day as used previously. This simu-

lation was based on 100 nodes located around 23 routers based on the CDF

of locations of nodes behind GEANT routers. Around 300’000 flows were

generated for his experiment, with the flow sources being based on the CDF

of the transmission rates of the GEANT routers. The flow sizes were usually

between 1 to about 250 packets per flow which is still small compared to the

typical flows observed on routers today.

Figure 4.10 is a comparative view of the original normalised CDF with

the normalised CDF of the sampled packet counts. The original non-sampled

data set has a finer granularity however it is evident that the number of

smaller flows in the CDF are lower after the sampling stage and this is due

to the fact that many of the smaller flows are missed.

4.10.2 Scenario 2: Long flows, large packets

Todays networks are constantly evolving. Internet is no longer a simple

web browsing and email medium. Peer to peer file sharing, audio stream-
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Figure 4.10: Comparison of the Normalised CDF of packet size distributions
for flow sizes ranging from 1 to 244 packets per flow, no sampling (fine-
grained) versus 1 in 1000 sampling (course-grained)

ing, torrents and online games have changed the intrinsic nature of flows

on networks. many companies are connected via Virtual Private Network

(VPN) and many send their traffic using the Multi-Protocol label Switching

(MPLS) protocol. All of these mean that many individual flows between

two remote sites of a company will look like a single large flow to the core

router. In a network such as UKLight which has been designed to carry large

GridFTP traffic and similar large flows of data transfers, it is vital that sam-

pling is done In a way that the creation of sparse flows are minimised. In

this section of the simulation, the range of packet sizes is increased from 1 to

244 previously to about 500-1200 packets per flow. The performance under

various sampling methods are shown below.

Figure 4.11 displays the normalised Cumulative Distribution Function

(CDF) of the total number of packets sent across the network of 23 routers

based on their sizes, 500 to 1200 packets per flow versus the CDF extracted

from the original data stream after sampling 1 in every 1000 is performed on
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the packets and the inversion is achieved by multiplication by the sampling

rate. In this context, since the minimum size of flows is about 500 packets,

there will be the probability of missing some of the smaller flows, however as

the simulator is designed in a way that the flows are sampled and generated

sequentially, it may well be possible that the sampling is usual done far from

the boundaries of the flows and somewhere in the middle of flows, so that

all the flows are sampled. This is a limitation imposed by the simulation

environment and in practical implementation it will not be present due to the

fact that sampling will be done on a link that carries many flows concurrently

so the packets of each flow will be interspersed by many other packets from

other flows.
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Figure 4.11: Comparison of the Normalised CDF of packet size distributions
for flow sizes ranging from 500 to 1244 packets per flow, no sampling (fine-
grained) versus 1 in 1000 sampling (course-grained)

It can be observed that especially due to the sequential nature of the

sampling process, constant sampling has performed extremely well in this

case and there is surprisingly no major difference between the shapes of

the two CDF graphs. This is indicative that in an environment as such,
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sampling 1 in a 1000 and then inverting the statistics using multiplications

by the sampling rate is accurate enough for many purposes. However The

great disadvantage of this method is that sparse flows can not be detected

in such a scenario and in the next step of the work the author will focus

on counting the number of flows as reported by the sampling process and

compare it to the original stream under various sampling regimes.

It is interesting to view that there is a negligible error introduced by

sampling with regards to the omission of the smaller flows. This is indicative

that on a network link or topology where most of the flows are large flows

comprising machine to machine flows such as file transfers and streaming

applications, sampling at even a higher rate than 1 in a 1000 is possible

but only providing that the router cache is not exhausted and flow splitting

occurs as a result of freeing the tables for new flows or flow time-outs.

In practice this can be tested on a large scale network such as PlantLab

[38] and the author is in process of enabling such a facility for edge-based

measurement and flow statistics aggregation.

4.11 Summary

In this section the affects of sampling on a typical traffic profile were

discussed. It is observed that sampling has two distinct effects:

Under-estimation of short flows On a high speed link with many small

flows such as web browsing, many of the smaller flows may not get

sampled at all which makes the process of recovering the detailed re-

covery of original statistics difficult.

Creating sparse flows Sparse applications produce original flows com-

prising many packets with moderate interarrival times, that are likely

to be split by packet sampling into multiple measured flows. Packet

sampling increases the number of measured flows exported for ap-
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plications such as peer-to-peer and streaming applications which are

becoming more and more popular.

In the inversion problem, the interesting science is to infer the properties

of the original traffic stream can be inferred from the packet sampled flow

statistics. Previous work on these have not looked into details of statistics

for different varieties of network scenarios. Duffield et al. [27] state that

inference of total bytes and packets, possibly differentiated by flow key, is

straightforward: dividing by the sampling rate the traffic rate represented

in the measured flows yields an unbiased estimate of the originaltraffic rate

and also show how to infer characteristics of the original traffic flows from

the measured packet sampled flows. Whereas byte and packet volumes are

estimated simply by dividing the measured quantities by the sampling rate,

this approach does not work to estimate the number and mean length of

flows, since some original flows will not be sampled at all. However the only

disadvantage of this work is that they exploit the statistics of reported SYN

packets for TCP flows. The limitations of this is that most of the anomalies,

port scanning and even some major streaming applications do not use TCP.

More difficult to infer are the detailed properties of the original flows: their

arrival rate, their lengths. The main difficulty is that some flows may not be

sampled at all; so it is not enough to simply form estimates through dividing

the measured number of flows and their lengths by the sampling rate or look

at TCP headers for SYN flag.

In analysis of simulation results, it was observed that when there are

many short flows are present, the sampling schemes currently in use in in-

ternet can fall short of producing detailed statistics. Many of the short

flows are missed with periodic and constant sampling schemes. However the

statistics are not always too biased for the longer flows and they can be

realistic. in terms of sparse flows as a result of slicing larger flows to smaller

ones, work has to be done in the simulation and in practice to analyse the
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evidence that the existence of such flows greatly misleads the statistical

analysis of network traffic characterisation.



Chapter 5

Sample and Export in

Routers

In this section we look at a more detailed analysis of the effect of sampling

as performed by netflow on higher order statistics of the packet and flow

size distributions. For the analysis of packet sampling application is used

by NetFlow, we emulated the NetFlow operation on a 1 hour OC-48 trace,

collected from the CAIDA link on 24th of April 2003, from 8:00 tp 9:00. This

data set is available from the public repository at CAIDA [28]. The trace

comprises of 84579462 packets with anonymised source and destination IP

addresses. An important factor to rememberer in this work is the fact that

the memory constraint on the router has been relaxed in generating the

flows from the sampled stream. This means that there maybe more than

tens of thousands of flow keys present at the memory at a given time, while

in NetFlow, the export mechanism empties the buffer list regularly which

can have a more severe impact on the resultant distribution of flow rates

and statistics3.
3The processing of the data was done using tools which are made available to the public

by the authors.

71
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5.1 Effects of the short time-out imposed by mem-

ory constraints

As observed in table 5.1, the mean does not have a great variation, pos-

sibly because distributions of packet sizes within single flows do not exhibit

high variability. The standard deviation of the estimated data rate is higher

than the corresponding standard deviation for the unsampled data stream.

In the absence of any additional knowledge about the higher level protocol,

or the nature of the session level activity, in the unsampled data stream,

each flow can be thought of as having packets of varying sizes that are more

or less independent from one another. Thus, the whole traffic profile re-

sults from the addition of many independent random variables which, by

the central limit theorem, tend to balance among themselves to produce a

more predictable, homogeneous traffic aggregate. However, simple inversion

eliminates this multiplicity of randomly distributed values by introducing a

very strong correlation effect, whereby the size of all the packets in a recon-

structed flow depend on the size of a very small set of sampled packets. This

eliminates the possibility for balancing and thus increases the variability of

the resulting stream, i.e. its standard deviation.

However, the skewness and kurtosis do change. Skewness is a measure

of the asymmetry of the probability distribution of a real-valued random

variable. Roughly speaking, a distribution has positive skew (right-skewed)

if the right (higher value) tail is longer and negative skew (left-skewed) if

the left (lower value) tail is longer (confusing the two is a common error).

Skewness, the third standardised moment, is written as γ1 and defined as:

γ1 = µ3

σ3

where µ3 is the third moment about the mean and σ is the standard

deviation.

Kurtosis is more commonly defined as the fourth cumulant divided by
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the square of the variance of the probability distribution,

γ2 = κ4

κ2
2

= µ4

σ4 − 3

which is known as excess kurtosis. The ”minus 3” at the end of this for-

mula is often explained as a correction to make the kurtosis of the normal

distribution equal to zero. The skewness is a sort of measure of the asym-

metry of the distribution function. The kurtosis measures the flatness of the

distribution function compared to what would be expected from a Gaussian

distribution. Table 5.1 illustrates the data rates d(t) per interval of mea-

surement. Inverted data rates, by dividing d(t) by the sampling probability

q, are shown as dn(t).

Table 5.1: The statistical properties on Data rates d(t)
Dataset,bin(secs) Mean STD Skewness Kurtosis

d(t), 30 3.6019e+08 2.2274e+07 0.5421 0.6163
dn(t), 30 3.5919e+08 2.9109e+07 0.3837 0.4444

d(n)− dn(t), 30 1.0009e+06 1.6748e+07 -0.2083 0.7172
d(t), 120 1.4408e+09 7.8650e+07 0.7398 1.6190
dn(t), 120 1.4368e+09 9.5216e+07 0.3274 0.9268

d(t)− dn(t), 120 4.0037e+06 3.7652e+07 -0.2971 -1.1848
d(t), 300 3.6019e+09 1.8491e+08 1.3058 3.7451
dn(t), 300 3.5919e+09 2.1248e+08 1.1016 2.5408

d(t)− dn(t), 300 1.0009e+07 6.1039e+07 0.1840 -1.1628

Table 5.2 illustrates the packet rates p(t) per interval of measurement.

Inverted packet rates, by dividing p(t) by the sampling probability q, are

shown as pn(t). The distributions before and after sampling are extremely

close, and thus their difference tends to exaggerate those small difference

that they do have. That is the reason of the enormous skewness and kurtosis

that are observed. The skewness of the reconstructed stream is smaller than

that of the unsampled stream this means that the reconstructed distribution

is more symmetric, that is , it tends to diverge in a more homogeneous
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manner around the mean. Additionally, it is positive, meaning that in both

cases the distribution tends to have longer tails towards large packets rather

than towards short packets, concentrating its bulk on the smaller packets. If

we conclude that small flows (flows consisting of a small number of packets)

tend to contain small packets, then it is clear that this smaller packets will

be underrepresented and the distribution will shift its weight towards bigger

packets (members of bigger flows). Thus, it will become more symmetric

and hence less skewed.

Table 5.2: The statistical properties on Packet rates p(t)
Dataset,bin(secs) Mean STD Skewness Kurtosis

p(t), 30 7.0483e+05 3.1162e+04 -0.4007 0.7415
pn(t), 30 7.0483e+05 3.1359e+04 -0.3584 0.6072

p(t)− pn(t), 30 -5.7333 5.4148e+03 9.1469 96.0659
p(t), 120 2.8193e+06 1.1215e+05 -0.3875 1.2027
pn(t), 120 2.8193e+06 1.1178e+05 -0.3759 1.2238

p(t)− pn(t), 120 -22.9333 3.0157e+03 4.7140 26.1079
p(t), 300 7.0482e+06 2.5128e+05 0.1305 1.6495
pn(t), 300 7.0483e+06 2.5152e+05 0.1433 1.6597

p(t)− pn(t), 300 -57.3333 2.1047e+03 2.4298 8.9377

The Kurtosis decreases in all of the considered examples. This means

that the reconstructed streams are more homogeneous and less prone to

outliers when compared with the original traces. Thus, more of the variance

in the original traces in packet size can be attributed to infrequent packets

that have inordinately big packets that were missed in the sampling process,

and thus the variance in the reconstructed stream consists more of homo-

geneous differences and not large outliers. However, both the reconstructed

and unsampled streams tend to have long, heavy tails.
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5.1.1 The two-sample KS test

The two-sample Kolmogorov-Smirnov test is one of the most useful and

general non-parametric methods for comparing two samples, as it is sensi-

tive to differences in both location and shape of the empirical cumulative

distribution functions of the two samples. A CDF was calculated for the

number of packets per flow and the number of octets per flow for each of the

120 sampling intervals of 30 seconds each, both for the sampled/inverted

and unsampled streams. Then, a Two-Sample Kolmogorov-Smirnov Test

with 5% significance level was performed between the 120 unsampled and

the 120 sampled and inverted distributions. In every case the distributions

before and after sampling and inversion were found to be significantly dif-

ferent, and thus it is very clear that the sampling and inversion process

significantly distorts the actual flow behaviour of the network.

5.2 Practical Implications of Sampling

The effects of sampling on network traffic statistics can be measured

from different perspectives. In this section we will cover the theories be-

hind the sampling strategy and use some real data captures from CAIDA

in an emulation approach to demonstrate the performance constraints of

systematic sampling.

5.2.1 Inversion errors on sampled statistics

The great advantage of sampling is the fact that the first order statistics

do not show much variation when the sampling is done at consistent intervals

and from a large pool of data. This enables the network monitoring to use

the sampled statistics to form a relatively good measure of the aggregate

measure of network performance. Figure 5.1 displays the data rates d(t),

in number of bytes seen per 30 second interval, on the one hour trace.
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The inverted data d(t) is also shown with diamond notation, showing the

statistics gathered after the sampled data is multiplied by the sampling rate.

The black dots display the relative error per interval, e(t) = d(t)−dn(t)
d(t) .
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Figure 5.1: Data rates per 30 second interval, original versus normal inver-
sion of sampled

Figure 5.2 displays the packet rates p(t), the number of packets per 30

second interval, versus the sampled and inverted packet rates pn(t). In this

figure, it can be observed that the inversion does a very good job at nearly

all times and the relative error is negligible. This is a characteristics of

systematic sampling and is due to the central limit theorem.

It can be readily seen that the recovery of packet rates by simple inver-

sion is much better than the recovery of data rates. This is because sampling

one in a thousand packets deterministically can be trivially inverted by mul-

tiplying by the sampling rate (1000): we focus on packet level measurement,

as opposed to a flow level measurement. If the whole traffic flow is collapsed

into a single link, then if we sample one packet out every thousand and

then multiply that by the sampling rate, we will get the total number of

packets in that time window. We believe that the small differences that
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we can see in Figure 2 are due to the fact that at the end of the window

some packets are lost (because their ’representative’ was not sampled) or

overcounted (a ’representative’ for 1000 packets was sampled but the time

interval finished before they had passed). We believe these errors happen

between measurement windows in time, i.e. they are window-edge effects.
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Figure 5.3: Standard Sampling & inversion error on data rates, different
measurement bins

The inversion property described above does not hold for measuring the
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number of bytes in a sampling interval. Simple inversion essentially assumes

that all packets in a given flow are the same size, and of course this assump-

tion is incorrect. It is to be expected that the greater the standard deviation

of packet size over an individual flow, the more inaccurate the recovery by

simple inversion will be regarding the number of bytes per measurement

interval. Figure 5.4 displays the standard error rate on packet rate recovery

in different measurement intervals.
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Figure 5.4: Sampling & inversion error on packet rates, different measure-
ment bins

5.2.2 Flow size and packet size distributions

Figure 5.5, displays the CDF of packet size distribution in all the flows

formed from the sampled and unsampled streams. The little variation in

the packet size distribution conforms to the findings of the previous section

where it was discussed that the packet sampling has low impact on the

packet size distribution. Due to the fact that the flows tend to be densely

concentrated at the higher end towards the smaller flows, all the following

graphs are displayed on a log scale.

Figure 5.6:1 shows the effect that the distribution of packet lengths can

have on the distribution of flow lengths when periodic packet sampling is

applied. As flows reconstructed from a sampled packet stream are predom-
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Figure 5.5: Normalised CDF of packets distributions per flow, original vs
inverted

inantly formed by just one packet, their length distribution follows that of

single packets (Figure 5.5). That is the reason for the sharp jump near

1500 octets, as this characteristic originates from the maximum frame size

in ethernet networks.
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Figure 5.6: Normalised CDF of flow size in packets [figure] & length in bytes
[right] per flow, original vs inverted

From Figure 5.6:2 , it can be readily seen that, in the sampled stream,

more than 90 percent of flows consist of a single packet, whereas in the un-
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sampled case a much grater diversity in flow lengths exists for small flows.

This is due to the fact that simple packet-based deterministic sampling

under-represents short flows, and those short flows that are indeed detected

by the procedure after sampling usually consist of a single packet. Thus,

short flows are either lost or recovered as single packet flows, and long flows

have their lengths reduced.



Chapter 6

Inference of Network Flow

Statistics

It is inevitable that sampling, as done today on the core routers of the

networks and the aggregation points, is not optimal. The short falls are in

two distinct regimes, the very short flows, which typically comprise of web

page look ups, emails and may be even form part of Denial of Service (DoS)

attacks and anomalies, are mis-represented in the aggregate statictics. On

the other hand, at presence of many large flows at a router which carries

thousands of flows, Netflow has a limited amount of fast memory available

to it which must use efficiently to gather summaries for all the flows. This

leads to premature termination of flow statistic collection for large flows that

have been on the table for a long time and have reached the buttom of the

list. In such circumstances, a single flow which may be part of an audio or

video stream or a peer to peer file transfer stream, is split into many smaller

flows and each flows is accounted for and output separately. This leads to

over presentation of larger flow counts on the aggregated statistics reported

by Netflow or the alternative software present at the core router.
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6.1 Adaptive sampling

Adaptive sampling has been suggested under different names previously.

Duffield et al. in [26] suggests a deterministic adaptive sampling to be ap-

plied on flows. The sampling strategy described [26] is currently used to

collect NetFlow records collected extensively from a large IP backbone. The

collection infrastructure deals with millions of NetFlow records per second.

Measurements from some tens of routers are transmitted to a smaller num-

ber of distributed mediation servers. The servers aggregate the records in

multiple dynamic ways, serving the needs of a variety of network manage-

ment applications. The aggregates are sent to a central collection point, for

report generation, archival, etc.

The major difference between the above work and the proposed work in

this thesis is that in the above work, two stages of sampling are present as

shown in figure 6.1.

Figure 6.1: Flow of measurement traffic and potential sampling points: (left
to right) packet capture at router; flow formation and export; staging at
mediation station; measurement collector. [Figure courtesy of AT & T]
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In stage one, packet sampling has been performed on the router. It is

however assumed that the sampling has an un-biased estimator:

The aim is to obtain an estimate of X from a subset of sampled values,

and, generally, without needing to know the original number n of sizes. X̂

is said to be an unbiased estimator of X if EX̂ = X. X̂ is unbiased if

X =
n∑

i=1

xi =
n∑

i=1

p(xi)r(xi) = EX̂

This happens for all collections {xi} if and only if

r(x) = x/p(x) for all x

And this assumption has been held throughout the report.

if the sampling rate is 1 in N, based on the average number of packets

per flow in a given interval τ , one can predict the traffic characteristics and

set the sampling rate accordingly to capture more small flows, or to increase

the time-out in order to get full-lengths of large flows. Also, simulation has

been modified to allow end nodes capture their own packet trace and store

them., this can be used for the prediction model.

The optimum choice of sampling on a link where adaptive sampling is

utilised is sFlow [31]. There has been work on improving netflow however

this requires periodic updates to the software at a router running netflow

[39]. Sampling tools such as sFlow sample packets without building up

flow records from them. This sampled substream can then be passed to

an aggregation point in order to generate the flow statistics. The great

advantage of these types of solutions is that they report full packet headers

together with a portion of the packet payload and this provides much richer

raw data for analysis. The disadvantage discussed by Estan et al. [39] is that

they do not benefit of the compression achieved by flow records that count
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more than one packet. However on a high speed link this may more than

compensate for changing hardware and software configurations of a NetFlow

router.

Duffield et al. [27] suggest that it may be advantageous to adjust flow

delineation criteria with sampling rate in order to match the flow definition

to the underlying nature of the transactions that generate the traffic. One

case that they investigate is scaling the interpacket timeout inversely with

the sampling rate in order to capture longer lived packet streams as a single

flow whether the volumes of flow statistics, and the number of active flows,

can be easily predicted. Packet traces are not available at most points in

a network; heterogeneity of traffic prevents generalising the analysis from a

given trace to arbitrary network sites.

The short fall of method suggested at [26] is use of sampled flow statistics.

Given a set of statistics of unsampled flows perhaps derived directly from

flow measurements the model predicts the flow export rate and mean number

of active flows that would result if instead flow statistics from a sampled

version of the original packet stream were formed.

The major step to be taken in the work by the author is to analyse the

sampling process used by a tool such as sFlow on a stream of real traffic trace,

ideally such traces can be collected from different networks where dominant

applications maybe smaller flows such as browsing and emails to those with

larger transfers such as peer to peer data and streaming applications.

6.2 Network Tomography Using Distributed Mea-

surement

Enterprise and ISP network management requires thorough knowledge

of network status, malfunctions in the routers, firewall configurations, link

utilisation, delay and time out measures, traffic matrices and etc. A slight
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mis-configuration in a firewall or IP address assignment of a NAT device is

enough to cause two devices not being able to communicate with each other.

Figure 6.2 displays an extremely simple scenario of an enterprise network

over three offices worldwide, where the two smaller centres connect to the

main servers and facilities in the head office over internet using a technology

such as VPN as an example. It is possible that Node A is able to talk to the

mail exchange server located at the main head quarters but Node B is not

able to connect to the same server due to a mis-configured firewall. In this

case, the optimum placement of measurement and monitoring points at the

core and edges of the enterprize network allow the system to narrow down

its search to the possible causes of such a scenario.

Figure 6.2: Typical architecture of an Enterprise network, various laptops
all around the world are connecting to the enterprise server via VPN con-
figuration. It is natural for them to have to go through many firewalls and
proxy servers in order to connect to the desired end point.
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There has been some work done in this fields recently and it is becoming

a topic of interest amongst network researchers however the field is still very

immature. Passive monitoring of IP flows at multiple locations in a network

has not been possible in the past due to many privacy and inter connection

issues. Router vendors softwares usually would not report rich traffic sets

and the SNMP reports of the core routers are not rich enough to enable

real inference of traffic flow characteristics. However recently there has been

networks such as PlanetLab and GEANT which have lent themselves into

measurement projects and give out (usually anonymised) traffic statistics

reports such as NetFlow, ISIS and BGP data.

The common objective of such a distributed monitoring system is to

sample packets belonging to a large fraction of IP flows in a cost-effective

manner by carefully placing monitors and controlling their sampling rates.

In recent work by K.Suh et al. [41], they consider the problem of where

to place monitors within the network and how to control their sampling.

To address the tradeoff between monitoring cost and monitoring coverage,

minimum cost and maximum coverage problems under various budget con-

straints are looked into and it is shown that all of the defined problems are

NP-hard.

Inference of such information leads to being able to perform passive to-

mography of the link failure information, whilst most of the work done in the

tomography area thus far relies on actively injecting traffic on the network

which may not always be feasible due to injection of biased traffic. Another

disadvantage is the fact that it is not possible to perform the techniques on

already collected traffic traces. An example of a scenario when the tomog-

raphy can lead to discovery of a mis- configured firewall is demonstrated in

figure 6.3. In this figure hosts A, B, C and D form a ring network. However

on the route from node C to node B there is a firewall which has been re-

cently re configured by an operator which has closed connection possibility
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from node C to node B.

Figure 6.3: A simple double ring network, nodes are connected bi-
directionally but there is a mis-configured firewall which stops packets
fromnode C to node B.

It can be seen that in presence of explicit routing policy, some packets

may not make it from C to B, this can even include acknowledgement packets

(ACK) which are sent after a message was successfully received at C. In the

presence of Equal Cost Multi Path (ECMP) this has even a more sever

form, as can be seen in picture 6.4. The communication process happens

successfully between the two nodes and it just takes another path. So it

becomes inevitably more difficult to trace the cause of failure of the group

of packets that have been missing from the flow and this may be a very

small fraction of the traffic in case of traces collected at the edge of a large

enterprise network.

The major disadvantage of novel work done in [41] is the fact that it

considers IP networks in which each IP flow is routed along a single path.

Because of single path routing, it is possible to observe all packets in the

flow by monitoring any one of the links on the flow’s path. However even
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Figure 6.4: A small traffic flow between nodes. Packets from node C to
node B can take alternative route to get to destination hence avoiding the
firewall. This makes the task of finding failure points in the network more
difficult.
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with such assumption it is shown that the problems are NP-hard.

The vital decision at such a problem is the location of the measurement

points. There are two places where measurement can place. Complete traffic

traces can usually be collected at the edge devices, and sampled statistics

can be output by the core routers.

The solution to a distributed monitoring problem consists of two parts:

1. Set of end notes and links at which to place a monitor and being able

to query them.

2. Measurement and querying strategy (e.g. sampling rate and query

frequency) at each monitoring place.

If the end to end query and response is considered and it is possible

to query all the end nodes and all the routers in between them, the above

example will have the following criteria.

Suppose there are i alternative routes to take between n nodes, the

number of possible of possible routes between them will be ni. In the above

example, the routes will be as followed:

1. nodeA, LinkAC , LinkCB, nodeB, LinkBC , linkCA, nodeB

2. nodeA, LinkAC , LinkCB, nodeB, LinkBD, linkDA, nodeB

3. nodeA, LinkAD, LinkDB, nodeB, LinkBC , linkCA, nodeB

4. nodeA, LinkAD, LinkDB, nodeB, LinkBD, linkDA, nodeB

The most simple way to perform the query at such a scenario will be to

perform a binary search on each iteration of the transaction process in order

to find out the missing traffic packets before or after the point of failure.

function binarySearch(a, value, left, right)

while left right

mid := floor((right-left)/2)+left
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if value > a[mid]

left := mid+1

else if value < a[mid]

right := mid-1

else

return mid

return not found

The tomography of the network by passive measurement in such a way

has not been experienced before to the best of author’s knowledge and this

is certainly an interesting area for exploiting the measurement and adaptive

sampling opportunities.



Chapter 7

Conclusions and Future

Plans

In this report the consequences of collecting packet sampled flow statis-

tics are examined. It is pointed out that the flows in the original stream

whose length is greater than the sampling period tend to give rise to multiple

flow reports when the interpacket time in the sampled stream exceeds the

flow timeout. In practice this occurs predominantly for traffic generated by

peer-to-peer applications. Such traffic is on the rise, motivating the need to

better understand the implications for resource usage in the measurement

infrastructure of such splitting.

The aim of this work is to enable prediction of original flow rates and

the number of active flows from sampled flow traffic statistics. It is possible

to predict a coarse statistics on flow details, however the information which

are of interest is the exact numbers of smaller flows which may be missed

by sampling at high intervals, or even more importantly for the high capac-

ity networks that are the end target of this work, it is to be able to keep

track of the larger flows without the limitation put in place by sampling

schemes today, which usually time-out a flow after 15 seconds of seeing the

last packet in a flow, or 30 seconds after creation of the flow entry. As also
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noted by Duffield et.al [26], failing to take account of sparse flows (those

vulnerable to splitting) can lead to underestimation of the total flows, and

severe overestimation of the size of the buffer needed to accommodate ac-

tive flows. Even though the sampling rates are configurable, they have to

be programmed into a NetFlow router and that is part of the work done

previously in this field. This is indicative that in an environment with com-

paratively large flows, sampling 1 in a 1000 and then inverting the statistics

using multiplications by the sampling rate is accurate enough for many pur-

poses. However The great disadvantage of this method is that sparse flows

can not be detected in such a scenario and in the next step of the work the

author will focus on counting the number of flows as reported by the sam-

pling process and compare it to the original stream under various sampling

regimes. For practical implementation, The authors aim is to use the sFlow

module within CoMo to have the ability of sampling adaptively.

Nowadays networks are constantly under attack from Distributed De-

nial of Service (DDoS) attacks, port scanning applications and worms which

mostly contain a high number of SYN packets generating a new flow record

which may or may not be sampled by the router simply using NetFlow 1

in 1000 sampling and many of them will be missed. Hence many attack

detection research projects have to rely on packet trace collections over pe-

riods of time to observe such anomalies and this is certainly not viable for

a large ISP network trying to manage the network in real time in terms of

provisioning and QoS constraint maintenance.

While sampling can be compensated for in reports that measure the

traffic in packets or bytes it has been proven that it is impossible to measure

traffic in flows without bias. To date there has been no work on recovering

detailed properties of the original unsampled packet stream, such as the

number and lengths of flows. Duffield et al. at [27] suggest It may be

advantageous to adjust flow delineation criteria with sampling rate in order
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to match the flow definition to the underlying nature of the transactions

that generate the traffic. This is the basic introduction to adaptive sampling

which will be the focus of the next stage of this work.

7.1 Plans for the next stage of the PhD research

It is proposed to look into an extension to the sampling work and the

inversion problem which entails the use of more detailed statistics such as

port numbers and TCP flags in order to be able to infer the original charac-

teristics from the probability distribution functions of such variables. This

will enable a more detailed recovery of original packet and data rates for dif-

ferent applications. The inference of such probabilities, plus use of methods

such as Bayesian inference, would enable a forecasting method which would

enable the inversion of the sampled stream in near real time.

In this work, multiple information, such as port number and distribution

of packets per port, source and destination IP addresses, and information

readily available such as packet counts from SNMP reports are gathered in

order to enable the creation of entropy tables, which will give more detailed

about the characteristics of the flows and aid in the inversion of the statistics.

In related work, we will be looking at adaptive sampling schemes, looking

at techniques replacing the NetFlow, such as InMon’s sFlow [31], in order

to use the forecast statistics to change of the sampling rate on-the-fly, which

would accommodate for the changes in the traffic profile.

In tomography experiments, the generation of traffic-load, topology and

applications scenarios will be looked at. The aim is to create a tool which can

simulate a network to resemble a particular network, focusing on Corporate

networks. The objective is to provide a validated tool for analysing failures

and changes of characteristics of networks such as introduction of new sites

or link failures. Another objective is to be able to pin point the failure points

in a network by optimally adjusting the number of monitors, their locations
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and their sampling rates. The placement and number of monitoring points is

showed to be an NP-hard problem [42]. However the heuristics will lead to an

exciting new range of opportunities for research into network management.
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