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Chapter 1

Introduction

Preface

These lecture notes are based on the series of lectures that were given by the author at
the Eötvös Loránd University for master students in Mathematics and Applied Math-
ematics about the qualitative theory of differential equations and dynamical systems.
The prerequisite for this was an introductory differential equation course. Hence, these
lecture notes are mainly at masters level, however, we hope that the material will be
useful for mathematics students of other universities and for non-mathematics students
applying the theory of dynamical systems, as well.

The prerequisite for using this lecture notes is a basic course on differential equations
including the methods of solving simple first order equations, the theory of linear sys-
tems and the methods of determining two-dimensional phase portraits. While the basic
existence and uniqueness theory is part of the introductory differential equation course
at the Eötvös Loránd Universitynot, these ideas are not presented in these lecture notes.
However, the reader can follow the lecture notes without the detailed knowledge of ex-
istence and uniqueness theory. The most important definitions and theorems studied
in the introductory differential equation course are briefly summarized in the Introduc-
tion below. For the interested reader we suggest to consult a textbook on differential
equations, for example Perko’s book [19].

Acknowledgement

The author is grateful to his colleagues at the Department of Applied Analysis and
Computational Mathematics in the Institute of Mathematics at the Eötvös Loránd Uni-
versity, who supported the creation of a dynamical system course at the University, and
encouraged the efforts to make lecture notes electronically available to the students of
the course.
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The author appreciates the careful work of the referee, Tamás Kurics, who provided
detailed comments, identified errors and typos, and helped to increase distinctness and
consistency of the notes.

The lecture notes were written in the framework of the project TAMOP-4.1.2.A/1-
11/1, titled Interdisciplinary and complex development of digital curriculum
for science master programmes.
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1.1 Qualitative theory of differential equations and

dynamical systems

The theory of differential equations is a field of mathematics that is more than 300 years
old, motivated greatly by challenges arising from different applications, and leading to
the birth of other fields of mathematics. We do not aim to show a panoramic view of this
enormous field, we only intend to reveal its relation to the theory of dynamical systems.
According to the author’s opinion the mathematical results related to the investigation
of differential equation can be grouped as follows.

• Deriving methods for solving differential equations analytically and numerically.

• Prove the existence and uniqueness of solutions of differential equations.

• Characterize the properties of solutions without deriving explicit formulas for them.

There is obviously a significant demand, coming from applications, for results in the first
direction. It is worth to note that in the last 50 years the emphasis is on the numerical
approximation of solutions. This demand created and motivated the birth of a new disci-
pline, namely the numerical methods of differential equations. The question of existence
and uniqueness of initial value problems for ordinary differential equations was answered
completely in the first half of the twentieth century (motivating the development of fixed
point theorems in normed spaces). Hence today’s research in the direction of existence
and uniqueness is aimed at boundary value problems for non-linear ordinary differen-
tial equations (the exact number of positive solutions is an actively studied field) and
initial-boundary value problems for partial differential equations, where the question is
answered only under restrictive conditions on the type of the equation. The studies in
the third direction go back to the end of the nineteenth century, when a considerable
demand to investigate non-linear differential equations appeared, and it turned out that
these kind of equations cannot be solved analytically in most of the cases. The start
of the qualitative theory of differential equations was first motivated by Poincaré, who
aimed to prove some qualitative properties of solutions without deriving explicit formu-
las analytically. The change in the attitude of studying differential equations can be
easily interpreted by the simple example ẋ = x, ẏ = −y. This system can be obviously
solved analytically, the traditional approach is to determine the solutions as x(t) = etx0,
y(t) = e−ty0. The new approach, called qualitative theory of differential equations, gives
a different answer to this question. Instead of solving the differential equations it pro-
vides the phase portrait as shown in Figure 1.1. This phase portrait does not show the
time dependence of the solutions, but several important properties of the solutions can
be obtained from it. Moreover, the phase portrait can be determined also for non-linear
systems, for which the analytic solution is not available. Thus a system of ordinary
differential equations is considered as a dynamical system, the orbits of which are to be
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Figure 1.1: The phase portrait of the system ẋ = x, ẏ = −y, the so-called saddle point.

characterized, mainly from geometric or topological point of view. Based on this idea, the
qualitative theory of differential equations and the theory of dynamical systems became
closely related. This is shown also by the fact that in the title of modern monographs
the expression ”differential equation” is often accompanied by the expression ”dynamical
system”. A significant contribution to the development of qualitative theory was the
invention of chaotic systems and the opportunity of producing phase portraits by nu-
merical approximation using computers. The use of the main tools of qualitative theory
has become a routine. Not only the students in physics, chemistry and biology, but also
students in economics can use the basic tools of dynamical system theory. Because of the
wide interest in applying dynamical systems theory several monographs were published
in the last three decades. These were written not only for mathematicians but also for
researchers and students in different branches of science. Among several books we men-
tion the classical monograph by Guckenheimer and Holmes [11], an introduction to chaos
theory [1], the book by Hale and Koçak [12], by Hubbard and West [16], and by Perko
[19]. Seydel’s book [22] introduces the reader to bifurcation theory. The emphasis in the
following books is more on proving the most important and relevant theorems. Hence for
mathematics student the monographs by Chow and Hale [8], by Chicone [7], by Hirsch,
Smale and Devaney [15], by Robinson [20] and by Wiggins [27] can be recommended.

1.2 Topics of this lecture notes

In this section we introduce the mathematical framework, in which we will work, and list
briefly the topics that will be dealt with in detail. The object of our study is the system
of autonomous ordinary differential equations (ODEs)

ẋ(t) = f(x(t))
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where x : R → Rn is the unknown function and f : Rn → Rn is a given continuously
differentiable function that will be referred to as right hand side (r.h.s). Most of the
ordinary differential equations can be written in this form and it is impossible to list all
physical, chemical, biological, economical and engineering applications where this kind
of system of ODEs appear.

The solution of the differential equation satisfying the initial condition x(0) = p is
denoted by ϕ(t, p). It can be proved that ϕ is a continuously differentiable function
satisfying the assumptions in the definition of a (continuous time) dynamical system
below.

Definition 1.1.. A continuously differentiable function ϕ : R × Rn → Rn is called a
(continuous time) dynamical system if it satisfies the following properties.

• For all p ∈ Rn the equation ϕ(0, p) = p holds,

• For all p ∈ Rn and t, s ∈ R the relation ϕ(t, ϕ(s, p)) = ϕ(t+ s, p) holds.

A dynamical system can be considered as a model of a deterministic process, Rn is the
state space, an element p ∈ Rn is a state of the system, and ϕ(t, p) is the state, to which
the system arrives after time t starting from the state p. As it was stated above, the
solution of the above system of autonomous ordinary differential equations determines a
dynamical system (after rescaling of time, if it is necessary). On the other hand, given
a dynamical system one can define a system of autonomous ordinary differential equa-
tions, the solution of which is the given dynamical system. Hence autonomous ordinary
differential equations and (continuous time) dynamical systems can be considered to be
equivalent notions. We will use them concurrently in this lecture notes.

The above definition of the dynamical system can be extended in several directions.
One important alternative is when time is considered to be discrete, that is Z is used
instead of R. This way we get the notion of (discrete time) dynamical systems.

Definition 1.2.. A continuous function ϕ : Z × Rn → Rn is called a discrete time
dynamical system if it satisfies the following properties.

• For all p ∈ Rn the equation ϕ(0, p) = p holds,

• For all p ∈ Rn and k,m ∈ Z the relation ϕ(k, ϕ(m, p)) = ϕ(k +m, p) holds.

As the notion of (continuous time) dynamical systems was derived from autonomous ordi-
nary differential equations, the notion of discrete time dynamical systems can be derived
from difference equations. A difference equation can be defined by a map. Namely, let
g : Rn → Rn be a continuous function and consider the difference equation (or recursion)

xk+1 = g(xk)
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with initial condition x0 = p. The function ϕ(k, p) = xk satisfies the properties in the
definition of the discrete time dynamical system. Thus a difference equation determines
a discrete time dynamical system. On the other hand, if ϕ is a discrete time dynamical
system, then introducing g(p) = ϕ(1, p) one can easily check that xk = ϕ(k, p) is the
solution of the recursion xk+1 = g(xk). This is expressed with the formula ϕ(k, p) = gk(p),
where gk denotes the composition g ◦ g ◦ . . . ◦ g k times. (If k is negative then the inverse
function of g is applied.

Continuous and discrete time dynamical systems often can be dealt with concurrently.
Then the set of time points is denoted by T as a common notation for R and Z. In the case
of continuous time the notion ”flow”, while in the case of discrete time the notion ”map” is
used. The main goal in investigating dynamical systems is the geometric characterization
of the orbits that are defined as follows. The orbit of a point p is the set

{ϕ(t, p) : t ∈ T}

that is a curve in the continuous case and a sequence of points in the discrete case.
After defining the main concepts used in the lecture notes let us turn to the overview

of the topics that will be covered.
In the next section we show how the differences and similarities of phase portraits can

be exactly characterized from the geometrical and topological point of view. In order to
do so we introduce the notion of topological equivalence, that is an equivalence relation
in the set of dynamical systems. After that, we investigate the classes determined by
the topological equivalence and try to find a simple representant from each class. The
main question is how to decide whether two systems are equivalent if they are given by
differential equations and the dynamical system ϕ is not known. The full classification
can be given only for linear systems.

Nonlinear systems are classified in Section 3. However, in this case only the local
classification in the neighbourhood of equilibrium points can be carried out. The main
tool of local investigation is linearization, the possibility of which is enabled by the
Hartman–Grobman theorem. If the linear part of the right hand side does not determine
the phase portrait, then those nonlinear terms that play crucial role in determining the
equivalence class the system belongs to can be obtained by using the normal form theory.

The stable, unstable and center manifold theorems help in the course of investigating
the local phase portrait around steady states. These theorems are dealt with in Section
4. The manifolds can be considered as the generalizations of stable, unstable and center
subspaces introduced for linear systems. These manifolds are invariant (similarly to the
invariant subspaces), that is trajectories cannot leave them. The stable manifold contains
those trajectories that converge to the steady state as t → +∞, while the unstable
manifold contains those points, from which trajectories converge to the steady state as
t → −∞. The center manifold enables us to reduce the dimension of the complicated
part of the phase space. If the phase portrait can be determined in this lower dimensional
manifold, then it can also be characterized in the whole phase space.
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Tools for investigating the global phase portrait are dealt with in Section 5. First, an
overview of methods for determining two dimensional phase portraits is presented. Then
periodic solutions are studied in detail. Theorems about existence and non-existence
of periodic solutions in two dimensional systems are proved first. Then the stability
of periodic solutions is studied in arbitrary dimension. In the end of that section we
return to two dimensional systems and two strong tools of global investigation are shown.
Namely, the index of a vector field and compactification by projecting the system to the
Poincaré sphere.

In the next sections we study dynamical systems depending on parameters, especially
the dependence of the phase portraits on the value of the parameters. Methods are
shown that can help to characterize those systems, in which a sudden qualitative change
in the phase portrait appears at certain values of the parameters. These qualitative
changes are called bifurcations. We deal with the two most important one co-dimensional
bifurcations, the fold bifurcation and the Andronov–Hopf bifurcation, in detail.

An important chapter of dynamical systems theory is chaos. Our goal is to define
what chaos means and investigate simple chaotic systems. The tools are developed mainly
for discrete time dynamical systems, hence these are investigated separately in section
8. Methods for investigating fixed points, periodic orbits and their stability are shown.
We introduce one of the several chaos definitions and prove that some one dimensional
maps have chaotic orbits. As a tool we introduce symbolic dynamics and show how can
it be applied to prove the appearance of chaos.

The last section presents an extension of dynamical systems theory to systems with
infinite dimensional phase space. This can typically happen in the case of partial differ-
ential equations. In that section semilinear parabolic partial differential equations are
studied that are often called reaction-diffusion equations. The existence and stability of
stationary solutions (that correspond to equilibrium points) is studied first. Then, an-
other type of orbit, the travelling wave is studied that is important from the application
point of view. For these solutions again the question of existence and stability is dealt
with in detail.
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Chapter 2

Topological classification of
dynamical systems

The evolution of the theory of differential equations started by developing methods for
solving differential equations. Using these methods the solution of different special dif-
ferential equations can be given analytically, i.e. formulas can be derived. However, it
turned out that the solution of systems of ordinary differential equations can be obtained
analytically only in very special cases (e.g. for linear systems), and even in the case when
formulas can be derived for the solutions, it is difficult to determine the properties of
the solutions based on the formulas. For example, two dimensional linear systems can
be characterized by plotting trajectories in the phase plane instead of deriving formulas
for the solutions. It does not mean that the trajectories are plotted analytically, instead
the main characteristics of the trajectories are shown, similarly to the case of plotting
graphs of functions in calculus, when only the monotonicity, local maxima, minima and
the convexity are taken into account, the exact value of the function does not play im-
portant role. Thus the construction of the phase portrait means that we plot the orbits
of a system that is equivalent to the original system in a suitable sense, that somehow
expresses that the phase portraits of the two systems ”look like similar”. In this section
our aim is to define the equivalence of dynamical systems making the notion of ”look like
similar” rigorous.

We will define an equivalence relation for dynamical systems ϕ : R × M → M .
Then the goal is to determine the classes given by this equivalence relation, to find a
representant from each class, the phase portrait of which can be easily determined, and
finally, to derive a simple method that helps to decide if two systems are equivalent or
not.
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2.1 Equivalences of dynamical systems

Two dynamical systems will be called equivalent if their orbits can be mapped onto each
other by a suitable mapping. First we define the classes of mappings that will be used.
The equivalence relations for discrete and continuous time dynamical systems will be
defined concurrently, hence we use the notation T for R or for Z.

Definition 2.1.. Let M,N ⊂ Rn be open sets. A function h : M → N is called a
homeomorphism (sometimes a C0-diffeomorphism), if it is continuous, bijective and its
inverse is also continuous. The function is called a Ck-diffeomorphism, if it is k times
continuously differentiable, bijective and its inverse is also k times continuously differ-
entiable.

Definition 2.2.. Let M,N ⊂ Rn be open connected sets. The dynamical systems ϕ : T×
M →M and ψ : T×N → N are called Ck equivalent, (for k = 0 topologically equivalent),
if there exists a Ck-diffeomorphism h : M → N (for k = 0 a homeomorphism), that maps
orbits onto each other by preserving the direction of time. This is shown in Figure 2.1.
In more detail, this means that there exists a continuous function a : T ×M → T, for
which t 7→ a(t, p) is a strictly increasing bijection and for all t ∈ T and p ∈M we have

h
(
ϕ(t, p)

)
= ψ

(
a(t, p), h(p)

)
.

One can get different notions of equivalence by choosing functions a and h having
special properties. The above general equivalence will be referred to as equivalence of
type 1. Now we define important special cases that will be called equivalences of type 2,
3 and 4.

Definition 2.3.. The dynamical systems ϕ and ψ are called Ck flow equivalent (equiv-
alence of type 2), if in the general definition above, the function a does not depend on p,
that is there exists a strictly increasing bijection b : T → T, for which a(t, p) = b(t) for
all p ∈M . Thus the reparametrization of time is the same on each orbit.

Definition 2.4.. The dynamical systems ϕ and ψ are called Ck conjugate (equivalence
of type 3), if in the general definition above a(t, p) = t for all t ∈ T and p ∈ M . Thus
there is no reparametrization of time along the orbits. In this case the condition of
equivalence takes the form

h
(
ϕ(t, p)

)
= ψ

(
t, h(p)

)
.

Definition 2.5.. The dynamical systems ϕ and ψ are called Ck orbitally equivalent
(equivalence of type 4), if in the general definition above M = N and h = id, that
is the orbits are the same in the two systems and time is reparametrized.

The definitions above obviously imply that the different types of equivalences are
related in the following way.
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Figure 2.1: The orbits of topologically equivalent systems can be taken onto each other
by a homeomorphism.

Proposition 2.1. 1. If the dynamical systems ϕ and ψ are Ck conjugate, then they
are Ck flow equivalent.

2. If the dynamical systems ϕ and ψ are Ck flow equivalent, then they are Ck equiv-
alent.

3. If the dynamical systems ϕ and ψ are orbitally equivalent, then they are Ck equiv-
alent.

Summarizing, the equivalences follows from each other as follows

3⇒ 2⇒ 1, 4⇒ 1.

2.1.1 Discrete time dynamical systems

First we show that for discrete time dynamical systems there is only one notion of
equivalence, as it is formulated in the proposition below.

Let ϕ : Z×M →M and ψ : Z×N → N be discrete time dynamical systems. Let us
define function f and g by f(p) = ϕ(1, p) and g(p) = ψ(1, p). Then the definition of a
dynamical system simply implies that ϕ(n, p) = fn(p) and ψ(n, p) = gn(p), where fn and
gn denote the composition of the functions with themselves n times, fn = f ◦ f ◦ . . . ◦ f
and similarly for g.

13



Proposition 2.2. The statements below are equivalent.

1. The dynamical systems ϕ and ψ are Ck conjugate.

2. The dynamical systems ϕ and ψ are Ck flow equivalent.

3. The dynamical systems ϕ and ψ are Ck equivalent.

4. There exists a Ck-diffeomorphism h : M → N , for which h ◦ f = g ◦ h.

Proof. According to the previous proposition the first three statements follow from each
other from top to the bottom. First we prove that the last statement implies the first.
Then it will be shown that the third statement implies the last.

Using that h ◦ f = g ◦ h one obtains

h ◦ f 2 = h ◦ f ◦ f =︸︷︷︸
h◦f=g◦h

g ◦ h ◦ f =︸︷︷︸
h◦f=g◦h

g ◦ g ◦ h = g2 ◦ h.

Similarly, the condition h ◦ fn−1 = gn−1 ◦ h implies h
(
fn(p)

)
= gn

(
h(p)

)
, that is

h
(
ϕ(n, p)

)
= ψ

(
n, h(p)

)
holds for all n and p that is exactly the Ck conjugacy of the

dynamical systems ϕ and ψ.
Let us assume now that the dynamical systems ϕ and ψ are Ck equivalent. Let

us observe first that if r : Z → Z is a strictly increasing bijection, then there exists
k ∈ Z, such that r(n) = n + k for all n ∈ Z. Namely, strict monotonicity implies
r(n + 1) > r(n), while since r is a bijection there is no integer between r(n + 1) and
r(n), thus r(n + 1) = r(n) + 1. Then introducing k = r(0) we get by induction that
r(n) = n + k. Thus for the function a in the definition of Ck equivalence holds that
for all p ∈ M there exists an integer kp ∈ Z, for which a(n, p) = n + kp. Thus the Ck

equivalence of ϕ and ψ means that for all n ∈ Z and for all p ∈M

h
(
ϕ(n, p)

)
= ψ

(
n+ kp, h(p)

)
holds, that is

h
(
fn(p)

)
= gn+kp

(
h(p)

)
.

Applying this relation for n = 0 we get h(p) = gkp(h(p)). Then applying with n = 1
equation

h
(
f(p)

)
= g1+kp

(
h(p)

)
= g
(
gkp
(
h(p)

))
= g
(
h(p)

)
follows, that yields the desired statement.

Proposition 2.3. The dynamical systems ϕ and ψ are orbitally equivalent if and only
if they are equal.
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Proof. If the two dynamical systems are equal, then they are obviously orbitally equiv-
alent. In the opposite way, if they are orbitally equivalent, then they are Ck equivalent,
hence according to the previous proposition h◦ f = g ◦h. On the other hand, h = id im-
plying f = g, thus ϕ(n, p) = ψ(n, p) for all n ∈ Z, which means that the two dynamical
systems are equal.

Definition 2.6.. In the case of discrete time dynamical systems, i.e. when T = Z, the
functions f and g and the corresponding dynamical systems are called Ck conjugate if
there exists a Ck-diffeomorphism h : M → N , for which h ◦ f = g ◦ h.

Remark 2.1. In this case the functions f and g can be transformed to each other by a
coordinate transformation.

Proposition 2.4. In the case k > 1, if f and g are Ck conjugate and p ∈ M is a fixed
point of the map f (in this case h(p) is obviously a fixed point of g), then the matrices
f ′(p) and g′(h(p)) are similar.

Proof. Differentiating the equation h ◦ f = g ◦ h at the point p and using that f(p) = p
and g(h(p)) = h(p) we get h′(p)f ′(p) = g′(h(p))h′(p). This can be multiplied by the
inverse of the matrix h′(p) (the existence of which follows from the fact that h is a
Ck-diffeomorphism) yielding that the matrices f ′(p) and g′(h(p)) are similar.

Remark 2.2. According to the above proposition Ck conjugacy (for k ≥ 1) yields finer
classification than we need. Namely, the maps f(x) = 2x and g(x) = 3x are not Ck con-
jugate (since the eigenvalues of their derivatives are different), while the phase portraits
of the corresponding dynamical systems xn+1 = 2xn and xn+1 = 3xn are considered to be
the same (all trajectories tend to infinity). We will see that they are C0 conjugate, hence
the above proposition is not true for k = 0.

2.1.2 Continuous time dynamical systems

Let us turn now to the study of continuous time dynamical systems, i.e. let T = R and
let ϕ : R×M → M and ψ : R×N → N be continuous time dynamical systems. Then
there are continuously differentiable functions f : M → Rn and g : N → Rn, such that
the solutions of ẋ = f(x) are given by ϕ and those of ẏ = g(y) are given by ψ.

Proposition 2.5. 1. Let k ≥ 1. Then the dynamical systems ϕ and ψ are Ck con-
jugate if and only if there exists a Ck diffeomorphism h : M → N Ck, for which
h′ · f = g ◦ h holds.

2. Assume that the function t 7→ a(t, p) is differentiable. Then the dynamical systems
ϕ and ψ are orbitally equivalent if and only if there exists a continuous function
v : M → R+, for which g = f · v.
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3. In Proposition 2.1 the converse of the implications are not true.

Proof. 1. First, let us assume that the dynamical systems ϕ and ψ are Ck conjugate.
Then there exists a Ck diffeomorphism h : M → N , for which h(ϕ(t, p)) = ψ(t, h(p)).
Differentiating this equation with respect to t we get h′(ϕ(t, p)) · ϕ̇(t, p) = ψ̇(t, h(p)).
Since ϕ is the solution of ẋ = f(x) and ψ is the solution of ẏ = g(y), we have

h′(ϕ(t, p)) · f(ϕ(t, p)) = g(ψ(t, h(p))).

Applying this for t = 0 yields

h′(ϕ(0, p)) · f(ϕ(0, p)) = g(ψ(0, h(p))),

that is h′(p) · f(p) = g(h(p)). Thus the first implication is proved. Let us assume now
that there exists a Ck-diffeomorphism h : M → N , for which h′ · f = g ◦ h holds. Let us
define ψ∗(t, q) := h(ϕ(t, h−1(q))) and then prove that this function is the solution of the
differential equation ẏ = g(y). Then by the uniqueness of the solution ψ∗ = ψ is implied,
which yields the desired statement since substituting q = h(p) into the definition of ψ∗

we get that ϕ and ψ are Ck conjugate. On one hand, ψ∗(0, q) := h(ϕ(0, h−1(q))) = q
holds, on the other hand,

ψ̇∗(t, q) = h′(ϕ(t, h−1(q))) · ϕ̇(t, h−1(q))

= h′(h−1(ψ∗(t, q))) · f(h−1(ψ∗(t, q))) = g(ψ∗(t, q)),

which proves the statement.
2. First, let us assume that the dynamical systems ϕ and ψ are orbitally equiva-

lent. Then ϕ(t, p) = ψ(a(t, p), p), the derivative of which with respect to t is ϕ̇(t, p) =
ψ̇(a(t, p), p) · ȧ(t, p). Since ϕ is the solution of ẋ = f(x) and ψ is the solution of ẏ = g(y),
we have f(ϕ(t, p)) = g(ψ(a(t, p)), p)). Applying this for t = 0 yields f(p) = g(p) · ȧ(0, p),
which proves the statement by introducing the function v(p) = ȧ(0, p). Assume now that
there exists a function v : M → R+, for which g = f ·v. Let p ∈ Rn and let x(t) = ϕ(t, p).
Introducing

b(t) =

∫ t

0

1

v(x(s))
ds,

we have ḃ(t) = 1/v(x(t)) > 0, hence the function b is invertible, the inverse is denoted
by a = b−1. (This function depends also on p, hence it is reasonable to use the notation
a(t, p) = b−1(t).) Let y(t) = x(a(t, p)), then

ẏ(t) = ẋ(a(t, p))ȧ(t, p) = f(x(a(t, p)))
1

ḃ(a(t, p))
= f(y(t))v(y(t)) = g(y(t)).

Hence y is the solution of the differential equation ẏ(t) = g(y(t)) and satisfies the initial
condition y(0) = p, therefore y(t) = ψ(t, p). Thus using the definition y(t) = x(a(t, p))
we get the relation ψ(t, p) = ϕ(a(t, p), p) that was to be proved.

3. In order to prove this statement we show counterexamples.
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(i) Let us introduce the matrices A =

(
0 1
−1 0

)
and B =

(
0 2
−2 0

)
. Then the phase

portraits of the differential equations ẋ = Ax and ẏ = By are the same, since both
of them are centers, however, the periods of the solutions in these two systems are
different. Hence in order to map the orbits of the two systems onto each other
time reparametrisation is needed. This means that the two systems are Ck flow-
equivalent, however, they are not Ck conjugate.

(ii) Assume that both ϕ and ψ has a pair of periodic orbits and the ratio of the periods
is different in the two systems. Then they are not Ck flow-equivalent, but they can
be Ck equivalent.

(iii) Let A =

(
1 0
0 −1

)
and B =

(
1 0
0 −2

)
. Then both ẋ = Ax and ẏ = By determines

a saddle point, that is they are C0 equivalent, however their orbits are not identical,
hence they are not orbitally equivalent.

2.2 Ck classification of linear systems

In this section we classify continuous time linear systems of the form ẋ = Ax and discrete
time linear systems of the form xn+1 = Axn according to equivalence relations introduced
in the previous section. Let us introduce the spaces

L(Rn) = {A : Rn → Rn linear mapping}

and
GL(Rn) = {A ∈ L(Rn) : detA 6= 0}

for the continuous and for the discrete time cases. If A ∈ L(Rn), then the matrix A is
considered to be the right hand side of the linear differential equation ẋ = Ax, while
A ∈ GL(Rn) is considered to be a linear map determining the discrete time system
xn+1 = Axn. Thus the space L(Rn) represents continuous time and GL(Rn) represents
discrete time linear systems. In the linear case the dynamical system can be explicitly
given in terms of the matrix. If A ∈ L(Rn), then the dynamical system determined
by A (that is the solution of the differential equation ẋ = Ax) is ϕ(t, p) = eAtp. If
A ∈ GL(Rn), then the dynamical system generated by A (that is the solution of the
recursion xn+1 = Axn) is ψ(n, p) = Anp. In the following the equivalence of the matrices
will be meant as the equivalence of the corresponding dynamical systems. Moreover, we
will use the notion below.

Definition 2.7.. The matrices A and B are called linearly equivalent, if there exist
α > 0 and an invertible matrix P , for which A = αPBP−1 holds.
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Proposition 2.6. Let T = R and k ≥ 1.

1. The matrices A,B ∈ L(Rn) are Ck conjugate, if and only if they are similar.

2. The matrices A,B ∈ L(Rn) are Ck equivalent, if and only if they are linearly
equivalent.

Proof. 1. Assume that the matrices A and B are Ck conjugate, that is there exists a Ck-
diffeomorphism h : Rn → Rn, such that h(ϕ(t, p)) = ψ(t, h(p)), i.e. h(eAtp) = eBth(p).
Differentiating this equation with respect to p we get h′(eAtp) · eAt = eBth′(p), then
substituting p = 0 yields h′(0)eAt = eBt ·h′(0). Differentiating now with respect to t leads
to h′(0)eAt ·A = eBt ·B ·h′(0), from which by substituting t = 0 we get h′(0)A = B ·h′(0).
The matrix h′(0) is invertible, because h is a diffeomorphism, hence multiplying the
equation by this inverse we arrive to A = h′(0)−1Bh′(0), i.e. the matrices A and B
are similar. Assume now, that the matrices A and B are similar, that is there exists
an invertible matrix P , for which A = P−1BP . Then the linear function h(p) = Pp
is a Ck-diffeomorphism taking the orbits onto each other by preserving time, namely
PeAtp = PeP

−1BPtp = eBtPp.
2. Assume that the matrices A and B are Ck equivalent, that is there exists a

Ck-diffeomorphism h : Rn → Rn Ck and a differentiable function a : R × Rn → R,
such that h(ϕ(t, p)) = ψ(a(t, p), h(p)), that is h(eAtp) = eBa(t,p)h(p). Differentiating
this equation with respect to p and substituting p = 0 yields h′(0)eAt = eBa(t,0) · h′(0).
Differentiating now with respect to t we get h′(0)eAt · A = eBa(t,0) · Bȧ(t, 0) · h′(0), from
which by substituting t = 0 we obtain h′(0)A = Bȧ(0, 0) · h′(0). The matrix h′(0) is
invertible, because h is a diffeomorphism, hence multiplying the equation by this inverse
and introducing α = ȧ(0, 0) we arrive to A = αh′(0)−1Bh′(0), i.e. the matrices A and B
are linearly equivalent. Assume now, that the matrices A and B are linearly equivalent,
that is there exists an invertible matrix P and α > 0, for which A = αP−1BP . Then
the linear function h(p) = Pp is a Ck-diffeomorphism taking the orbits onto each other
with time reparametrisation a(t, p) = αt, namely PeAtp = PeαP

−1BPtp = eBαtPp.

Remark 2.3. According to the above proposition the classification given by Ck conjugacy

and equivalence is too fine when k ≥ 1. Namely, the matrices A =

(
−1 0
0 −1

)
and B =(

−1 0
0 −2

)
are neither Ck conjugate nor Ck equivalent, however, they both determine a

stable node, hence we do not want them to be in different classes since the behaviour of
the trajectories is the same in the two systems. We will see that this cannot happen to
matrices that are C0 conjugate, that is the above proposition does not hold for k = 0.

Proposition 2.7. Let T = Z and k ≥ 1. The matrices A,B ∈ GL(Rn) are Ck conju-
gate, if and only if they are similar.
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Proof. Assume that the matrices A and B are Ck conjugate, that is there exists a
Ck-diffeomorphism h : Rn → Rn, for which h(Ap) = Bh(p). Differentiating this
equation with respect to p yields h′(Ap)A = Bh′(p), then substituting p = 0 we get
h′(0)A = Bh′(0). The matrix h′(0) is invertible, because h is a diffeomorphism, hence
multiplying the equation by this inverse A = h′(0)−1Bh′(0), that is the matrices A and
B are similar. Assume now, that the matrices A and B are similar, that is there exists
an invertible matrix P , for which A = P−1BP . Then the linear function h(p) = Pp is a
Ck-diffeomorphism taking the orbits onto each other, namely PAp = BPp.

2.3 C0 classification of linear systems

In this section the following questions will be studied.

1. How can it be decided if two matrices A,B ∈ L(Rn) are C0 equivalent or C0

conjugate?

2. How can it be decided if two matrices A,B ∈ GL(Rn) are C0 conjugate?

First, we answer these questions in one dimension.

2.3.1 Continuous time case in n = 1 dimension

Let us consider the differential equation ẋ = ax. If a < 0, then the origin is asymptot-
ically stable, i.e. all solutions tend to the origin as t → ∞. If a > 0, then the origin
is unstable, i.e. all solutions tend to infinity as t → ∞. If a = 0, then every point
is a steady state. These phase portraits are shown in Figure 2.2 for positive, zero and
negative values of a. Thus the linear equations ẋ = ax and ẏ = by, in which a, b ∈ R,
are C0 equivalent if and only if sgn a = sgn b. (The homeomorphism can be taken as
the identity in this case.)

2.3.2 Discrete time case in n = 1 dimension

Let us consider the discrete time dynamical system given by the recursion xn+1 = axn
for different values of a ∈ R \ {0}. We note that the set GL(R) can be identified with
the set R \ {0}. Since this recursion defines a geometric sequence, the behaviour of the
trajectories can easily be determined. C0 equivalence divides GL(R) into the following
six classes.

1. If a > 1, then for a positive initial condition x0 the sequence is strictly increasing,
hence 0 is an unstable fixed point.

2. If a = 1, then every point is a fixed point.
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Figure 2.2: Three classes of continuous time linear equations in one dimension.

3. If 0 < a < 1, then 0 is a stable fixed point, every solution converges to zero
monotonically.

4. If −1 < a < 0, then 0 is a stable fixed point, every solution converges to zero as
an alternating sequence. Hence this is not conjugate to the previous case since a
homeomorphism takes a segment onto a segment.

5. If a = −1, then the solution is an alternating sequence.

6. If a < −1, then 0 is an unstable fixed point, however, the sequence is alternating,
hence this case is not conjugate to the case a > 1.

For the rigorous justification of the above classification we determine the homeomor-
phism yielding the conjugacy.

To given numbers a, b ∈ R \ {0} we look for a homeomorphism h : R→ R, for which
h(ax) = bh(x) holds for all x. The homeomorphism h can be looked for in the form

h(x) =

{
xα if x > 0
−(−x)α if x < 0

If a, b > 0 and x > 0, then from equation h(ax) = bh(x) we get aαxα = bxα, hence
aα = b, i.e. α = ln b

ln a
. The function h is a homeomorphism, if α > 0, that holds, if a and

b lie on the same side of 1. Thus if a, b > 1, then the two equations are C0 conjugate,
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and similarly, if a, b ∈ (0, 1), then the two equations are also C0 conjugate. (It can be
seen easily that the equation h(ax) = bh(x) holds also for negative values of x.) One
can prove similarly, that if a, b < −1 or if a, b ∈ (−1, 0), then the two equations are
C0 conjugate. Thus using the above homeomorphism h(x) = |x|αsgn(x) we can prove
that C0 conjugacy divides GL(R) at most into six classes. It is easy to show that there
are in fact six classes, that is taking two elements from different classes they are not C0

conjugate, i.e. it cannot be given a homeomorphism, for which h(ax) = bh(x) holds for
all x.

2.3.3 Continuous time case in n dimension

Let us consider the system of linear differential equations ẋ = Ax, where A is an n× n
matrix. The C0 classification is based on the stable, unstable and center subspaces, the
definitions and properties of which are presented first. Let us denote by λ1, λ2, . . . , λn the
eigenvalues of the matrix (counting with multiplicity). Let us denote by u1, u2, . . . , un
the basis in Rn that yields the real Jordan canonical form of the matrix. The general
method for determining this basis would need sophisticated preparation, however, in the
most important special cases the basis can easily be given as follows. If the eigenval-
ues are real and different, then the basis vectors are the corresponding eigenvectors. If
there are complex conjugate pairs of eigenvalues, then the real and imaginary part of
the corresponding complex eigenvector should be put in the basis. If there are eigenval-
ues with multiplicity higher than 1 and lower dimensional eigenspace, then generalised
eigenvectors have to be put into the basis. For example, if λ is a double eigenvalue with
a one dimensional eigenspace, then the generalised eigenvector v is determined by the
equation Av = λv + u, where u is the unique eigenvector. We note, that in this case v
is a vector that is linearly independent from u and satisfying (A − λI)2v = 0, namely
(A− λI)2v = (A− λI)u = 0. Using this basis the stable, unstable and center subspaces
can be defined as follows.

Definition 2.8.. Let {u1, . . . , un} ⊂ Rn be the basis determining the real Jordan canon-
ical form of the matrix A. Let λk be the eigenvalue corresponding to uk. The subspaces

Es(A) = 〈{uk : Reλk < 0}〉, Eu(A) = 〈{uk : Reλk > 0}〉,

Ec(A) = 〈{uk : Reλk = 0}〉

are called the stable, unstable and center subspaces of the linear system ẋ = Ax. (〈·〉
denotes the subspace spanned by the vectors given between the brackets.)

The most important properties of these subspaces can be summarised as follows.

Theorem 2.9.. The subspaces Es(A), Eu(A), Ec(A) have the following properties.
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1. Es(A)⊕ Eu(A)⊕ Ec(A) = Rn

2. They are invariant under A (that is A(Ei(A)) ⊂ Ei(A), i = s, u, c), and under eAt.

3. For all p ∈ Es(A) we have eAtp→ 0, if t→ +∞, moreover, there exists K,α > 0,
for which |eAtp| ≤ Ke−αt|p|, if t ≥ 0.

4. For all p ∈ Eu(A) we have eAtp→ 0, ha t→ −∞, moreover, there exists L, β > 0,
for which |eAtp| ≤ Leβt|p|, if t ≤ 0.

The invariant subspaces can be shown easily for the matrix A =

(
1 0
0 −1

)
determin-

ing a saddle point. Then the eigenvalues of the matrix are 1 and −1, the corresponding
eigenvectors are (1, 0)T and (0, 1)T . Hence the stable subspace is the vertical and the
unstable subspace is the horizontal coordinate axis, as it is shown in Figure 2.3.

Figure 2.3: The stable and unstable subspaces for a saddle point.

The dimensions of the stable, unstable and center subspaces will play an important
role in the C0 classification of linear systems. First, we introduce notations for the
dimensions of these invariant subspaces.

Definition 2.10.. Let s(A) = dim(Es(A)), u(A) = dim(Eu(A)) and c(A) = dim(Ec(A))
denote the dimensions of the stable, unstable and center subspaces of a matrix A, respec-
tively.

The spectrum, i.e. the set of eigenvalues of the matrix A will be denoted by σ(A).
The following set of matrices is important from the classification point of view. The
elements of

EL(Rn) = {A ∈ L(Rn) : Reλ 6= 0, ∀λ ∈ σ(A)},
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are called hyperbolic matrices in the continuous time case.
First, these hyperbolic systems will be classified according to C0-conjugacy. In order

to carry out that we will need the Lemma below.

Lemma 2.11.. 1. If s(A) = n, then the matrices A and −I are C0 conjugate.

2. If u(A) = n, then the matrices A and I are C0 conjugate.

Proof. We prove only the first statement. The second one follows from the first one if it
is applied to the matrix −A. The proof is divided into four steps.
a. The solution of the differential equation ẋ = Ax starting from the point p is x(t) =
eAtp, the solution of the differential equation ẏ = −y starting from the same point
is y(t) = e−tp. According to the theorem about quadratic Lyapunov functions there
exists a positive definite symmetric matrix B ∈ Rn×n, such that for the corresponding
quadratic form QB(p) = 〈Bp, p〉 it holds that LAQB is negative definite. We recall that
(LAQB)(p) = 〈Q′B(p), Ap〉. The level set of the quadratic form QB belonging to the value
1 is denoted by S := {p ∈ Rn : QB(p) = 1}.
b. Any non-trivial trajectory of the differential equation ẋ = Ax intersects the set S

exactly once, that is for any point p ∈ Rn \ {0} there exists a unique number τ(p) ∈ R,
such that eAτ(p)p ∈ S. Namely, the function V ∗(t) = QB(eAtp) is strictly decreasing for
any p ∈ Rn \ {0} and lim+∞V

∗ = 0, lim−∞V
∗ = +∞. The function τ : Rn \ {0} → R

is continuous (by the continuous dependence of the solution on the initial condition),
moreover τ(eAtp) = τ(p)− t.
c. Now, the homeomorphism taking the orbits of the two systems onto each other can

be given as follows

h(p) := e(A+I)τ(p)p, if p 6= 0, and h(0) = 0.

This definition can be explained as follows. The mapping takes the point first to the set
S along the orbit of ẋ = Ax. The time for taking p to S is denoted by τ(p). Then it
takes this point back along the orbit of ẏ = −y with the same time, see Figure 2.4.
d. In this last step, it is shown that h is a homeomorphism and maps orbits to orbits.

The latter means that h(eAtp) = e−th(p). This is obvious for p = 0, otherwise, i.e. for
p 6= 0 we have

h(eAtp) = e(A+I)τ(eAtp)eAtp = e(A+I)(τ(p)−t)eAtp = e(A+I)τ(p)e−tp = e−th(p).

Thus it remains to prove that h is a homeomorphism. Since L−IQB = Q−2B is negative
definite, the orbits of ẏ = −y intersect the set S exactly once, hence h is bijective (its
inverse can be given in a similar form). Because of the continuity of the function τ the
functions h and h−1 are continuous at every point except 0. Thus the only thing that
remained to be proved is the continuity of h at zero. In order to that we show that

lim
p→0

eτ(p)eAτ(p)p = 0.
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Since eAτ(p)p ∈ S and S is bounded, it is enough to prove that limp→0 τ(p) = −∞, that
is for any positive number T there exists δ > 0, such that it takes at least time T to get
from the set S to the ball Bδ(0) along a trajectory of ẋ = Ax. In order to that we prove
that there exists γ < 0, such that for all points p ∈ S we have eγt ≤ QB(eAtp), that is the
convergence of the solutions to zero can be estimated also from below. (Then obviously
|eAtp| can also be estimated from below.) Let C be the negative definite matrix, for which
LAQB = QC . The negative definiteness of C and the positive definiteness of B imply
that there exist α < 0 and β > 0, such that QC(p) ≥ α|p|2 and QB(p) ≥ β|p|2 for all
p ∈ Rn. Let V ∗(t) := QB(eAtp) (for an arbitrary point p ∈ S), then V̇ ∗(t) = QC(eAtp),
hence V̇ ∗(t)QB(eAtp) = V ∗(t)QC(eAtp) implying βV̇ ∗(t) ≥ αV ∗(t). Let γ := α

β
, then

Gronwall’s lemma implies that V ∗(t) ≥ eγt, that we wanted to prove.

Figure 2.4: The homeomorphism h taking the orbits of ẋ = Ax to the orbits of ẏ = −y.

Using this lemma it is easy to prove the theorem below about the classification of
hyperbolic linear systems.

Theorem 2.12.. The hyperbolic matrices A,B ∈ EL(Rn) are C0 conjugate, and at
the same time C0 equivalent, if and only if s(A) = s(B). (In this case, obviously,
u(A) = u(B) holds as well, since the center subspaces are zero dimensional.)

The C0 classification is based on the strong theorem below, the proof of which is
beyond the framework of this lecture notes.
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Theorem 2.13. (Kuiper). Let A,B ∈ L(Rn) be matrices with c(A) = c(B) = n.
These are C0 equivalent, if and only if they are linearly equivalent.

The full classification below follows easily from the two theorems above.

Theorem 2.14.. The matrices A,B ∈ L(Rn) are C0 equivalent, if and only if s(A) =
s(B), u(A) = u(B) and their restriction to their center subspaces are linearly equivalent
(i.e. A|Ec and B|Ec are linearly equivalent).

Example 2.1. The space of two-dimensional linear systems, that is the space L(R2) is
divided into 8 classes according to C0 equivalence. We list the classes according to the
dimension of the center subspaces of the corresponding matrices.

1. If c(A) = 0, then the dimension of the stable subspace can be 0, 1 or 2, hence there
are three classes. The simplest representants of these classes are

A =

(
1 0
0 1

)
, A =

(
1 0
0 −1

)
, A =

(
−1 0
0 −1

)
,

corresponding to the unstable node (or focus), saddle and stable node (or focus),
respectively. (We recall that the node and focus are C0 conjugate.) The phase
portraits belonging to these cases are shown in Figures 2.5, 2.6 and 2.7.

Figure 2.5: Unstable node.

2. If c(A) = 1, then the dimension of the stable subspace can be 0 or 1, hence there
are two classes. The simplest representants of these classes are

A =

(
1 0
0 0

)
, A =

(
−1 0
0 0

)
.

The phase portraits belonging to these cases are shown in Figures 2.8 and 2.9.
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Figure 2.6: Saddle point.

Figure 2.7: Stable node.

3. If c(A) = 2, then the classes are determined by linear equivalence. If zero is a
double eigenvalue, then we get two classes, and all matrices having pure imaginary
eigenvalues are linearly equivalent to each other, hence they form a single class.
Hence there are 3 classes altogether, simple representants of which are

A =

(
0 0
0 0

)
, A =

(
0 1
0 0

)
, A =

(
0 −1
1 0

)
.

The last one is the center. The phase portraits belonging to these cases are shown
in Figures 2.10, 2.11 and 2.12.
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Figure 2.8: Infinitely many unstable equilibria.

Figure 2.9: Infinitely many stable equilibria.

It can be shown similarly that the space L(R3) of 3-dimensional linear systems is
divided into 17 classes according to C0 equivalence.

The space L(R4) of 4-dimensional linear systems is divided into infinitely many classes
according to C0 equivalence, that is there are infinitely many different 4-dimensional
linear phase portraits.
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Figure 2.10: Every point is an equilibrium.

Figure 2.11: Degenerate equilibria lying along a line.

2.3.4 Discrete time case in n dimension

Consider the system defined by the linear recursion xk+1 = Axk, where A is an n × n
matrix. The C0 classification uses again the stable, unstable and center subspaces, that
will be defined first, for discrete time systems. Let us denote the eigenvalues of the
matrix with multiplicity by λ1, λ2, . . . , λn. Let u1, u2, . . . , un denote that basis in Rn in
which the matrix takes it Jordan canonical form. Using this basis the stable, unstable
and center subspaces can be defined as follows.

Definition 2.15.. Let {u1, . . . , un} ⊂ Rn be the above basis and let λk be the eigenvalue
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Figure 2.12: Center.

corresponding to uk (note that uk may not be an eigenvector). The subspaces

Es(A) = 〈{uk : |λk| < 1}〉, Eu(A) = 〈{uk : |λk| > 1}〉,

Ec(A) = 〈{uk : |λk| = 1}〉
are called the stable, unstable and center subspaces belonging to the matrix A ∈ GL(Rn).
(The notation 〈·〉 denotes the subspace spanned by the vectors between the brackets.)

The most important properties of these subspaces are summarised in the following
theorem.

Theorem 2.16.. The subspaces Es(A), Eu(A), Ec(A) have the following properties.

1. Es(A)⊕ Eu(A)⊕ Ec(A) = Rn

2. They are invariant under A (that is A(Ei(A)) ⊂ Ei(A), i = s, u, c).

3. For any p ∈ Es(A) we have Anp→ 0, if n→ +∞.

4. For any p ∈ Eu(A) we have A−np→ 0, if n→ +∞.

The dimensions of the stable, unstable and center subspaces will play an important
role in the C0 classification of linear systems. First, we introduce notations for the
dimensions of these invariant subspaces.

Definition 2.17.. Let s(A) = dim(Es(A)), u(A) = dim(Eu(A)) and c(A) = dim(Ec(A))
denote the dimensions of the stable, unstable and center subspaces of a matrix A, respec-
tively.
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The following set of matrices is important from the classification point of view. The
elements of

HL(R) = {A ∈ GL(Rn) : |λ| 6= 1 ∀λ ∈ σ(A)},

are called hyperbolic matrices in the discrete time case.
In the discrete time case only the hyperbolic systems will be classified according to

C0-conjugacy. In order to carry out that we will need the Lemma below.

Lemma 2.18.. Let the hyperbolic matrices A,B ∈ HL(Rn) be C0 conjugate, that is
there exists a homeomorphism h : Rn → Rn, for which h(Ax) = Bh(x) for all x ∈ Rn.
Then the following statements hold.

1. h(0) = 0,

2. h
(
Es(A)

)
= Es(B), that is h takes the stable subspace to stable subspace; h

(
Eu(A)

)
=

Eu(B), that is h takes the unstable subspace to unstable subspace

3. s(A) = s(B), u(A) = u(B).

Proof. 1. Substituting x = 0 into equation h(Ax) = Bh(x) leads to h(0) = Bh(0). This
implies that h(0) = 0, because the matrix B is hyperbolic, that is 1 is not an eigenvalue.

2. If x ∈ Es(A), then An → 0 as n → ∞, hence h(Anx) = Bnh(x) implies that
Bnh(x) tends also to zero. Therefore h(x) is in the stable subspace of B. Thus we
showed that h

(
Es(A)

)
⊂ Es(B). Using similar arguments for the function h−1 we get

that h−1
(
Es(A)

)
⊂ Es(B) yielding Es(B) ⊂ h

(
Es(A)

)
. Since the two sets contain each

other, they are equal h
(
Es(A)

)
= Es(B).

3. Since there is a homeomorphism taking the subspace Es(A) to the subspace Es(B),
their dimensions are equal, i.e. s(A) = s(B), implying also u(A) = u(B) since the
dimensions of the center subspaces are zero.

In the case of continuous time linear systems we found that s(A) = s(B) is not only
a necessary, but also a sufficient condition for the C0 conjugacy of two hyperbolic linear
systems. Now we will investigate in the case of a one-dimensional and a two-dimensional
example if this condition is sufficient or not for discrete time linear systems.

Example 2.2. Consider the one-dimensional linear equations given by the numbers
(one-by-one matrices) A = 1

2
and B = −1

2
. Both have one dimensional stable sub-

space, that is s(A) = s(B) = 1, since the orbits of both systems are formed by geometric
sequences converging to zero. However, as it was shown in Section 2.3.2, these two
equations are not C0 conjugate. It was proved there that C0 conjugacy divides the space
GL(R) into six classes.
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This example shows that s(A) = s(B) is not sufficient for the C0 conjugacy of the
two equations. Despite of this seemingly negative result, it is worth to investigate the
following two dimensional example, in order to get intuition for the classification of
hyperbolic linear systems.

Example 2.3. Consider the two-by-two matrices A = 1
2
I and B = −1

2
I, where I is the

unit matrix. The stable subspace is two-dimensional for both systems, that is s(A) =
s(B) = 2, since their orbits are given by sequences converging to zero. We will show that
these matrices are C0 conjugate. We are looking for a homeomorphism h : R2 → R2

satisfying h(1
2
x) = −1

2
h(x) for all x ∈ R2. It will be given in such a way that circles

centered at the origin remain invariant, they will be rotated by different angles depending
on the radius of the circle. Let us start from the unit circle with radius one and define h as
the identity map on this circle, i.e. h(x) = x is |x| = 1. Then equation h(1

2
x) = −1

2
h(x)

defines h along the circle of radius 1/2, namely h rotates this circle by π, i.e. h(x) = −x
is |x| = 1/2. In the annulus between the two circles the homeomorphism can be defined
arbitrarily. Then equation h(1

2
x) = −1

2
h(x) defines h again in the annulus between the

circles of radius 1/2 and 1/4. Once the function is known in this annulus the equation
defines again its values in the annulus between the circles of radius 1/4 and 1/8. In a
similar way, the values of h in the annulus between the circles of radius 1 and 2 are
defined by the equation h(1

2
x) = −1

2
h(x) based on the values in the annulus determined

by the circles of radius 1/2 and 1. It can be easily seen that the angle of rotation on the
circle of radius 2k has to be −kπ. Thus let the angle of rotation on the circle of radius
r be −π log2(r). This ensures that the angle of rotation is a continuous function of the
radius and for r = 2k it is −kπ. This way the function h can be given explicitly on the
whole plane as follows

h(x) = R(−π log2(|x|))x, where R(α) =

(
cosα sinα
− sinα cosα

)
This function is obviously bijective, since the circles centered at the origin are invariant
and the map is bijective on these circles. Its continuity is also obvious except at the
origin. The continuity at the origin can be proved by using the above formula, we omit
here the details of the proof.

We note that in 3-dimension the matrices A = 1
2
I and B = −1

2
I, where I is the

unit matrix of size 3 × 3, are not C0 conjugate. Thus we found that s(A) = s(B) is
not a sufficient condition of C0 conjugacy. The sufficient condition is formulated in the
following lemma that we do not prove here.

Lemma 2.19.. Assume that s(A) = s(B) = n (or u(A) = u(B) = n). Then A and B
are C0 conjugate, if and only if sgn detA = sgn detB.

This lemma enables us to formulate the following necessary and sufficient condition
for the C0 conjugacy of matrices.
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Theorem 2.20.. The hyperbolic linear maps A,B ∈ HL(Rn) are C0 conjugate, if and
only if

• s(A) = s(B)

• sgn detA|Es(A) = sgn detB|Es(B)

• sgn detA|Eu(A) = sgn detB|Eu(B)

Example 2.4. According to this theorem the matrices A = 1
2
I and B = −1

2
I, where I

is the n×n unit matrix, are C0 conjugate, if and only if n is even. Namely, in this case
the determinant of the matrix −I is also positive, while for odd values of n it is negative.
Thus, as we have already shown, the matrices

A =

(
1
2

0
0 1

2

)
and B =

(
−1

2
0

0 −1
2

)
are C0 conjugate.

Example 2.5. Using the above theorem, it is easy to prove that the space HL(R2) of
hyperbolic linear maps is divided into 8 classes according to C0 conjugacy. The proof of
this is left to the Reader.

2.4 Exercises

1. Which one of the following matrices in L(R2) is C1 conjugate to the matrix(
1 0
0 −1

)
?

A =

(
1
2

0
0 1

2

)
, B =

(
−1

2
0

0 −1
2

)
, C =

(
−1

2
0

0 1
2

)
Answer: none of them.

2. Which one of the following matrices in L(R2) is C0 conjugate to the matrix(
1 0
0 −1

)
?

A =

(
1
2

0
0 1

2

)
, B =

(
−1

2
0

0 −1
2

)
, C =

(
−1

2
0

0 1
2

)
Answer: C.
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3. Which one of the following matrices in L(R2) is C0 equivalent to the matrix(
1 0
0 −1

)
?

A =

(
1
2

0
0 1

2

)
, B =

(
−1

2
0

0 −1
2

)
, C =

(
−1

2
0

0 1
2

)
Answer: C.

4. Which one of the following matrices in L(R3) is C0 equivalent to the matrix1 0 0
0 −1 0
1 1 1

?

A =

1
2

0 0
0 1

2
0

1 1 1

 , B =

1
2

0 0
0 1

2
0

1 1 −1

 , C =

−1
2

0 0
0 1

2
0

1 1 −1


Answer: B.

5. Which one of the following matrices in GL(R2) is C1 conjugate to the matrix(
2 0
0 −2

)
?

A =

(
1
2

0
0 1

2

)
, B =

(
3 0
0 4

)
, C =

(
−3 0
0 4

)
Answer: none of them.

6. Which one of the following matrices in GL(R2) is C0 conjugate to the matrix(
2 0
0 −2

)
?

A =

(
1
2

0
0 1

2

)
, B =

(
3 0
0 4

)
, C =

(
−3 0
0 4

)
Answer: C.

7. Which one of the following matrices in L(R2) is hyperbolic, that is which one is in
the set EL(R2)?

A =

(
0 2
−1 0

)
, B =

(
1 −1
2 3

)
, C =

(
3 2
6 4

)
Answer: B.
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8. Which one of the following matrices in GL(R2) is hyperbolic, that is which one is
in the set HL(R2)?

A =

(
1 −1
2 3

)
, B =

(
0 1

2

−2 0

)
, C =

(
4 2
6 5

)
Answer: A.

9. Which one of the following systems is orbitally equivalent to the linear differential

equation belonging to the matrix

(
1 0
0 −1

)
?

ẋ =

(
2 0
0 −2

)
x,

(
ẏ1

ẏ2

)
=

(
y3

1 + y1y
2
2

−y2
1y2 − y3

2

)
Answer: the first one.
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Chapter 3

Local classification, normal forms
and the Hartman-Grobman theorem

Consider the n-dimensional system of autonomous differential equations

ẋ(t) = f(x(t)). (3.1)

There is no general method for solving this system, hence the most important way of
getting information about the solutions is to determine the phase portrait. The constant
solutions x(t) ≡ p can be obtained by solving the system of algebraic equations f(p) = 0.
The solution p of this system is called an equilibrium or steady state of the dynamical
system. The behaviour of trajectories in a neighbourhood of a steady state can be
investigated by linearisation that can be explained simply as follows. Introducing the
function y(t) = x(t)− p the differential equation takes the form

ẏ(t) = ẋ(t) = f(x(t)) = f(p) + f ′(p)y(t) + r(y(t)) = f ′(p)y(t) + r(y(t)),

where r denotes the remainder term. For small y, i.e. when x is close to p, the remainder
can be neglected with respect to the linear term (assuming that it is not too small). Hence
it can be expected that the local phase portrait in a neighbourhood of the equilibrium p
is determined by the linear equation

ẏ(t) = f ′(p)y(t) (3.2)

that is called the linearised equation at the point p, since it is given by the Jacobian of f .
In order to make this argumentation rigorous we have to define two things. First, what
does it mean that the linear term is not too small, second, what does the local phase
portrait mean.

Concerning these questions, the stability of steady states is investigated in an intro-
ductory differential equation course. First, we briefly summarise these notions and the
corresponding results.
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Let us denote by t 7→ ϕ(t, p) the solution of (3.1) that satisfies the initial condition
x(0) = p, and denote by I(p) the interval in which this solution is defined.

Definition 3.1.. An equilibrium point p ∈ Rn of system (3.1) is called stable, if for any
ε > 0 there exists δ > 0, such that

q ∈ Rn, |q − p| < δ, t ≥ 0 imply |ϕ(t, q)− p| < ε.

The equilibrium is called asymptotically stable, if it is stable and |ϕ(t, q) − p| → 0 as
t → +∞ for the above q, see Figure 3.1. The equilibrium is called unstable, if it is not
stable.

Figure 3.1: An asymptotically stable equilibrium.

The linearisation determines stability in the following cases.

Theorem 3.2..

1. If the real parts of the eigenvalues of the matrix f ′(p) are negative, then p is an
asymptotically stable equilibrium of system (3.1).

2. If the matrix f ′(p) has at least one eigenvalue with positive real part, then p is an
unstable equilibrium of system (3.1).

This theorem can be applied when the stable subspace is n-dimensional, or the un-
stable subspace is at least one dimensional. More general statements can be formulated
for given dimensions of the invariant subspaces, these are the stable, unstable and center
manifold theorems that will be dealt with in the next section. In this section we investi-
gate the problem of finding the simplest system the local phase portraits of which is the
same as that of the given system at the given point. In order to formulate this rigorously,
we introduce the notion of local equivalence.
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Definition 3.3.. Let (M,ϕ), (N,ψ) be dynamical systems and p ∈ M , q ∈ N be given
points. The dynamical system ϕ at the point p and the dynamical system ψ at the point q
are Ck equivalent (conjugate), if there is a neighbourhood U of point p, a neighbourhood
V of the point q and a Ck-diffeomorphism h : U → V taking the orbits into each other
(by preserving time) and satisfying h(p) = q.

The main idea of local investigation is that the terms of the power series expansion
of f at the point p, i.e. f(x) = f(p) + f ′(p) · (x − p) + . . . determines the local phase
portrait at the point p. In this section the theorems related to this question are dealt
with. These can be summarised briefly as follows.

• Flow-box theorem: The nonzero zeroth order term determines the local phase
portrait.

• Hartman–Grobman theorem: A hyperbolic linear term determines the local phase
portrait.

• Theory of normal forms: The resonant higher order terms determine the local phase
portrait.

The flow-box theorem is formulated here, the two other theorems are dealt with in
separate subsections. The flow-box theorem describes the behaviour at a non-equilibrium
point, while the other two theorems deal with steady states. According to that theorem
the local phase portrait at a non-equilibrium point is Ck conjugate to that of a system
the orbits of which are parallel straight lines.

Theorem 3.4. (Flow-box theorem). If f(p) 6= 0, then the system ẋ = f(x) at the
point p and the system ẏ = f(p) at the origin are locally Ck conjugate (assuming that
f ∈ Ck). That is, when f(p) 6= 0, i.e. p is not an equilibrium point, then the zeroth
order term of the expansion determines the local phase portrait.

3.1 Hartman–Grobman theorem

Let D ⊂ Rn be a connected open set, f : D → Rn be a C1 (continuously differentiable)
function, p∗ ∈ D be an equilibrium point, i.e. f(p∗) = 0. The solution of the system

ẋ(t) = f(x(t)) (3.3)

satisfying the initial condition x(0) = p is denoted by x(t) = ϕ(t, p). The notation
ϕt(p) = ϕ(t, p) will be used; then ϕt : Rn → Rn. The Hartman–Grobman theorem states
that the linear part of the system at a hyperbolic equilibrium determines the local phase
portrait up to topological equivalence. Let A = f ′(p∗) be the Jacobian matrix at p∗.
Then the linearised system is

ẏ(t) = Ay(t). (3.4)
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Figure 3.2: Flow-box theorem.

Theorem 3.5. (Hartman–Grobman). Let D, f , p∗ be given as above and assume
that the matrix A is hyperbolic, i.e. the real parts of its eigenvalues are non-zero. Then
system (3.3) at the point p∗ and system (3.4) at the origin are locally topologically con-
jugate. That is there exist a neighbourhood U ⊂ Rn of p∗, a neighbourhood V ⊂ Rn of
the origin and a homeomorphism h : U → V , for which

h(ϕ(t, p)) = eAth(p) (3.5)

for all p ∈ U and for all t ∈ R, for which ϕ(t, p) ∈ U holds. That is, in a short form
h ◦ ϕt = eAt ◦ h.

The theorem will be proved in the following four steps.

1. It is shown that p∗ = 0 can be assumed without loss of generality.

2. The function f is extended to the whole space Rn in such a way that it is equal to
its own linear part outside a suitably chosen ball. It is shown that the extended
system and the linear part are (globally) topologically conjugate. This statement
is referred to as the global version of the Hartman–Grobman theorem.

3. The global version is reduced to the discrete time version of the Hartman–Grobman
theorem.
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4. Proof of the discrete time version of the Hartman–Grobman theorem, that is also
referred to as Hartman–Grobman theorem for maps.

The following notations will be used:

Br = {p ∈ Rn : |p| < r}
C0(Rn,Rn) = {g : Rn → Rn : g is continuous }
C1(Rn,Rn) = {g : Rn → Rn : g is continuously differentiable }
C0
b (Rn,Rn) = {g : Rn → Rn : g is bounded and continuous }

for a ∈ C0(Rn,Rn) and for b ∈ C1(Rn,Rn)

‖a‖0 = sup
Rn

|a| ‖b‖1 = ‖b‖0 + ‖b′‖0

Before proving the theorem we formulate the above mentioned versions of the Hartman–
Grobman theorem.

Theorem 3.6. (Hartman–Grobman global version). Let A ∈ L(Rn) be a hyper-
bolic linear map, a ∈ C1(Rn,Rn), a(0) = 0, a′(0) = 0 and let f(p) = Ap + a(p). The
solution of system (3.3) is denoted by ϕ(·, p). The equilibrium point is the origin. Then
there exists a number ν > 0, such that for a function a with compact support and satis-
fying ‖a‖1 < ν, there exists a homeomorphism h : Rn → Rn satisfying

h(ϕ(t, p)) = eAth(p) (3.6)

for all p ∈ Rn and for all t ∈ R.

Theorem 3.7. (Hartman–Grobman for maps). Let L ∈ GL(Rn) be a hyperbolic
linear map, that is the absolute value of its eigenvalues are not equal to 1 and to 0.
Then there exists a number µ > 0, such that for a function F ∈ C1(Rn,Rn) satisfying
‖F‖1 < µ, there exists g ∈ C0

b (Rn,Rn), for which H = id + g is a homeomorphism and

H ◦ (L+ F ) = L ◦H. (3.7)

Now we turn to the proof of the Hartman–Grobman theorem (Theorem 3.5.).

3.1.1 STEP 1 of the proof of Theorem 3.5.

Proposition 3.1. Assume that the Hartman–Grobman theorem is proved when p∗ = 0.
Then the theorem holds for any p∗.
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Proof. Let l : Rn → Rn be the translation l(p) = p−p∗. Let y : R→ Rn, y(t) = x(t)−p∗.
Then ẏ(t) = ẋ(t) = f(x(t)) = f(y(t) + p∗), that is y is a solution of the differential
equation

ẏ(t) = g(y(t)), (3.8)

g = f ◦ l−1. The equilibrium of this equation is the origin. Let ψ(·, q) denote the solution
of this differential equation satisfying the initial condition y(0) = q. It is easy to see that
ψ(t, q) = ϕ(t, q + p∗)− p∗, that is

l ◦ ϕt = ψt ◦ l. (3.9)

Since by the hypothesis the Hartman–Grobman theorem is true for equation (3.8), there
is a homeomorphism h1, for which

h1 ◦ ψt = eAt ◦ h1, (3.10)

where A = g′(0) = f ′(p∗). Composing equation (3.10) with l from the right h1 ◦ ψt ◦ l =
eAt ◦ h1 ◦ l. Applying (3.9) we get h1 ◦ l ◦ ϕt = eAt ◦ h1 ◦ l. Introducing h = h1 ◦ l we ge
the desired statement, because, being the composition of two homeomorphisms, h itself
is a homeomorphism.

3.1.2 STEP 2 of the proof of Theorem 3.5.

Using the extension lemma below we prove that the global version of the Hartman–
Grobman theorem (Theorem 3.6.) implies the local version (Theorem 3.5.). The technical
proof of the lemma will not be shown here.

Lemma 3.8.. Let f ∈ C1(BR,Rn) and let A = f ′(0). For any number ν > 0 there exist
r > 0 and a ∈ C1(Rn,Rn), for which

1. |p| < r implies a(p) = f(p)− Ap,

2. |p| > 2r implies a(p) = 0,

3. ‖a‖1 < ν.

Proof of Theorem 3.5.. According to Proposition 3.1 it is enough to prove the theorem in
the case p∗ = 0. Let ν > 0 be the number given by Theorem 3.6. (it depends only on the
matrix A). The extension lemma yields a number r > 0 and a function a ∈ C1(Rn,Rn)
to this value of ν. Let f = A + a and denote by ϕ(·, p) the solution of the differential
equation ẋ(t) = f(x(t)). Then the functions f and f coincide in the ball Br, hence for
all p ∈ Br and for all t satisfying ϕ(t, p) ∈ Br the equality ϕ(t, p) = ϕ(t, p) holds. The
function a satisfies the assumptions of Theorem 3.6., hence according to that theorem
there exists a homeomorphism h : Rn → Rn, for which h◦ϕt = eAt ◦h. Then introducing
U = Br, h = h|U and V = h(Br) we get the desired statement.
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3.1.3 STEP 3 of the proof of Theorem 3.5.

In this section we prove that the global version of the Hartman–Grobman theorem (The-
orem 3.6.) follows from the Hartman–Grobman theorem for maps.

Proof of Theorem 3.6.. Applying the variation of constants formula to the differential
equation ẋ(t) = Ax(t) + a(x(t)) with initial condition x(0) = p one obtains

ϕ(t, p) = eAtp+

t∫
0

eA(t−s)a(ϕ(s, p))ds .

Substituting t = 1

ϕ(1, p) = eAp+

1∫
0

eA(1−s)a(ϕ(s, p))ds . (3.11)

Let

L = eA and F (p) =

1∫
0

eA(1−s)a(ϕ(s, p))ds .

Let us choose the number µ > 0 to the matrix L according to Theorem 3.7.. Then it is
easy to show that there exists a number ν > 0, for which ‖a‖1 < ν implies ‖F‖1 < µ.

Since the eigenvalues of the matrix A have non-zero real part, the absolute value
of the eigenvalues of L are not equal to 1. Thus the assumptions of Theorem 3.7. are
fulfilled. Therefore there exists a unique function g ∈ C0

b (Rn,Rn), for which

(id + g) ◦ (L+ F ) = L ◦ (id + g) . (3.12)

Now we show that by choosing h = id+g the statement to be proved, i.e. h◦ϕt = eAt ◦h
holds. In order to prove that it is enough to show that the function

α(p) = e−Ath(ϕ(t, p))

coincides with the function h. This will be verified if we prove that the function α − id
satisfies (3.12) and α − id ∈ C0

b (Rn,Rn) holds as well, because the function g is unique
in the given function space. These two statement will be proved below.

According to equation (3.12)

h(ϕ(1, p)) = eAh(p)

holds for all p ∈ Rn. Hence

[α ◦ (L+ F )](p) = α(ϕ(1, p)) = e−Ath(ϕ(t, ϕ(1, p))) = e−Ath(ϕ(t+ 1, p)) =

e−Ath(ϕ(1, ϕ(t, p))) = e−AteAh(ϕ(t, p)) = eAe−Ath(ϕ(t, p)) = (L ◦ α)(p),
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which proves that the function α− id satisfies (3.12). On the other hand,

(α− id)(p) = e−Ath(ϕ(t, p))− p = e−At(h(ϕ(t, p))− ϕ(t, p)) + e−Atϕ(t, p)− p .

The first term of the right hand side is bounded (in the variable p), since h − id is
bounded in Rn. The second term is also bounded because for large values of |p| we have
a(p) = 0, hence the equation is linear there, implying ϕ(t, p) = eAtp. This proves that
α− id ∈ C0

b (Rn,Rn) that verifies the statement.

3.1.4 STEP 4 of the proof of Theorem 3.5.

Proof of Theorem 3.7.. The proof is divided into five steps.
1. Let Es and Eu be the stable and unstable subspaces belonging to the linear mapping
L. It is known that these are invariant, i.e. L(Es) ⊂ Es and L(Eu) ⊂ Eu), and they
span the whole space, that is Es

⊕
Eu = Rn. Let

Ls = L|Es , Lu = L|Eu .

It can be shown that by the suitable choice of the norm (or, in other words, by the
suitable choice of the basis in the subspaces) one can achieve ‖Ls‖ < 1 and ‖L−1

u ‖ < 1.
Let

r = max{‖Ls‖, ‖L−1
u ‖} < 1 .

2. In this step we prove that there exists a positive number µ > 0, for which in the case
‖F‖1 < µ the function L+F is invertible. In order to prove that we apply the following
global inverse function theorem.
Global inverse function theorem Let φ ∈ C1(Rn,Rn) be a function, for which φ′(p)−1

exists for all p ∈ Rn and there exists K > 0, such that ‖φ′(p)−1‖ ≤ K. Then φ is a
homeomorphism.

Let φ = L+ F , then φ′ = L+ F ′. Hence there exists µ > 0, such that the conditions
of the global inverse function theorem hold for φ, if ‖F‖1 < µ. (We do not check these
conditions in detail.) Thus the function L+ F is a homeomorphism.
3. Now we transform equation (3.7) to a form, for which the Contraction Mapping

Principle can be applied to determine the function g.
It is easy to see that (3.7) is equivalent to equation

F + g ◦ (L+ F ) = L ◦ g . (3.13)

Composing this equation by the function (L+ F )−1 from right we get

g = −F ◦ (L+ F )−1 + L ◦ g ◦ (L+ F )−1 , (3.14)

and then composing by the function L−1 from left we arrive to

L−1 ◦ F + L−1 ◦ g ◦ (L+ F ) = g . (3.15)
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Since Es
⊕

Eu = Rn, for both F and g it can be introduced the functions Fs, gs : Rn → Es
and Fu, gu : Rn → Eu, in such a way that

g = gs + gu and F = Fs + Fu

hold. It is obvious that g ∈ C0
b (Rn,Rn) implies gs, gu ∈ C0

b (Rn,Rn) as well. Define the
operator T for a function g ∈ C0

b (Rn,Rn) as follows.

T (g) = L ◦ gs ◦ (L+ F )−1 − Fs ◦ (L+ F )−1 + L−1 ◦ gu ◦ (L+ F ) + L−1 ◦ Fu . (3.16)

We show that if g is a fixed point of T , then H = id + g is a solution of equation (3.7).
Namely, for an arbitrary p ∈ Rn

(L◦gs◦(L+F )−1−Fs◦(L+F )−1)(p) ∈ Es and (L−1◦gu◦(L+F )+L−1◦Fu)(p) ∈ Eu

hold. Hence according to g = gs+gu the equality T (g) = g can hold only if the following
two equations hold

L ◦ gs ◦ (L+ F )−1 − Fs ◦ (L+ F )−1 = gs and L−1 ◦ gu ◦ (L+ F ) + L−1 ◦ Fu = gu .

These equations yield

L ◦ gs = gs ◦ (L+ F ) + Fs and L ◦ gu = gu ◦ (L+ F ) + Fu .

Adding these equations and using the linearity of L one obtains (3.13), which is equivalent
to equation (3.7).
4. In this step we prove that the operator T maps the space C0

b (Rn,Rn) into itself,
and choosing a suitable norm on the space the mapping T is a contraction. Hence
the existence and uniqueness of the function g follows from the Contraction Mapping
Principle.

The operator T is obviously defined on the whole space C0
b (Rn,Rn), and for every

g ∈ C0
b (Rn,Rn) the function T (g) is a continuous function on Rn. We show that T (g)

is a bounded function verifying that T maps the space C0
b (Rn,Rn) into itself. The

boundedness follows from the fact that each term in the right hand side of (3.16) is a
bounded function. For example, in the case of the last term

|(L−1 ◦ Fu)(p)| = |L−1Fu(p)| ≤ ‖L−1‖‖F‖0

holds for all p ∈ Rn. The proof is similar for the other terms.
Now we prove that T is a contraction. The norm is defined as follows. For g ∈

C0
b (Rn,Rn) let

‖g‖∗ = ‖gs‖0 + ‖gu‖0 .
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It can be easily proved that this defines a norm and the space C0
b (Rn,Rn) endowed with

this norm is complete. In order to prove that T is contractive we use the relations

(T (g))s = L ◦ gs ◦ (L+ F )−1 − Fs ◦ (L+ F )−1 ,

(T (g))u = L−1 ◦ gu ◦ (L+ F ) + L−1 ◦ Fu ,

and the fact that for g, g ∈ C0
b (Rn,Rn) we have that (g + g)s = gs + gs, and (g + g)u =

gu + gu. For arbitrary g, g ∈ C0
b (Rn,Rn)

‖T (g)− T (g)‖∗ = ‖(T (g)− T (g))s‖0 + ‖(T (g)− T (g))u‖0 =

‖L◦ gs ◦ (L+F )−1−L◦ gs ◦ (L+F )−1‖0 +‖L−1 ◦ gu ◦ (L+F )−L−1 ◦ gu ◦ (L+F )‖0 =

sup
p∈Rn

|Lsgs((L+ F )−1(p))− Lsgs((L+ F )−1(p))|+

sup
p∈Rn

|L−1
u gu((L+ F )(p))− L−1

u gu((L+ F )(p))| ≤

‖Ls‖‖gs − gs‖0 + ‖L−1
u ‖‖gu − gu‖0 ≤ r(‖(g − g)s‖0 + ‖(g − g)u‖0) ≤ r‖g − g‖∗ .

Thus r < 1 ensures that T is a contraction, hence it has a unique fixed point g ∈
C0
b (Rn,Rn).

5. It remained to show that the function H = id + g is a homeomorphism. This will
be proved by constructing the inverse of H as a solution of an equation similar to (3.7),
and by proving that this equation has a unique solution. Repeating the steps 3. and 4.
one can show that there exists a unique function g∗ ∈ C0

b (Rn,Rn), such that

(L+ F ) ◦ (id + g∗) = (id + g∗) ◦ L . (3.17)

On the other hand, substituting F ≡ 0 into equation (3.7) we get

L ◦ (id + g) = (id + g) ◦ L . (3.18)

The only solution of this equation is g ≡ 0.
We show that if g ∈ C0

b (Rn,Rn) is the unique solution of equation (3.7), then the
inverse of H = id + g is the function H∗ = id + g∗. Equations (3.7) and (3.17) yield

L ◦H ◦H∗ = H ◦ (L+ F ) ◦H∗ = H ◦H∗ ◦ L .

Let g = H ◦ H∗ − id. Then g is a solution of (3.18). If we prove that g ∈ C0
b (Rn,Rn),

then by the uniqueness g ≡ 0, that is id = H ◦H∗. This can be shown as follows.

g = H ◦H∗ − id = (id + g) ◦ (id + g∗)− id = g∗ + g ◦ (id + g∗) .

The function in the right hand side is obviously continuous and bounded, which proves
the statement. It can be proved similarly that id = H∗ ◦ H, hence H is a continuous
bijection implying that it is a homeomorphism.

44



The examples below illustrate the necessity of the assumption on hyperbolicity.
Namely, if the linear part is not hyperbolic, then the linearised system and the non-
linear system may have different local phase portraits.

Example 3.1. Consider the two dimensional system

ẋ = −y − xy2 − x3, (3.19)

ẏ = x− y3 − x2y. (3.20)

The origin is an equilibrium of this system. The linearized system at the origin is given

by the matrix A =

(
0 −1
1 0

)
, which determines a center. Hence the linear part is not

hyperbolic. The phase portrait of the non-linear system can be obtained by polar coordi-
nate transformation. Introducing the functions r and φ by the transformation formulas
x(t) = r(t) cos(φ(t)) and y(t) = r(t) sin(φ(t)), one obtains after differentiation

ẋ = ṙ cos(φ)− rφ̇ sin(φ), ẏ = ṙ sin(φ) + rφ̇ cos(φ).

Multiplying the first equation by cos(φ) and the second equation by sin(φ), then adding
the equations and using the differential equations for x and for y we arrive to ṙ = −r3.
Carrying out a similar calculation, but now the first equation is multiplied by sin(φ) and
the second one by cos(φ) we get φ̇ = 1. Hence the function r is strictly decreasing and
tends to zero, while φ is a strictly increasing function tending to infinity. These facts
obviously imply that the origin is a stable focus, as it can be seen in Figure 3.1.4. Thus
the non-linear system is not locally topologically equivalent to its linear part at the origin.

The phase portrait of system (3.19)-(3.20).
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Example 3.2. Consider the two dimensional system

ẋ = −y + xy2 + x3, (3.21)

ẏ = x+ y3 + x2y. (3.22)

The origin is an equilibrium of this system. The linearized system at the origin is given

by the matrix A =

(
0 −1
1 0

)
, which determines a center. Hence the linear part is not

hyperbolic. The phase portrait of the non-linear system can be obtained again by polar
coordinate transformation. Introducing the functions r and φ by the transformation
formulas x(t) = r(t) cos(φ(t)) and y(t) = r(t) sin(φ(t)), one obtains after differentiation

ẋ = ṙ cos(φ)− rφ̇ sin(φ), ẏ = ṙ sin(φ) + rφ̇ cos(φ).

Multiplying the first equation by cos(φ) and the second equation by sin(φ), then adding
the equations and using the differential equations for x and for y we arrive to ṙ = r3.
Carrying out a similar calculation, but now the first equation is multiplied by sin(φ) and
the second one by cos(φ) we get φ̇ = 1. Hence the function r is strictly increasing and
tends to infinity, and similarly φ is a strictly increasing function tending to infinity.
These facts obviously imply that the origin is an unstable focus, as it can be seen in
Figure 3.1.4. Thus the non-linear system is not locally topologically equivalent to its
linear part at the origin.

The phase portrait of system (3.21)-(3.22).

3.2 Normal forms

Let f : Rn → Rn be a k times continuously differentiable function that will be denoted
shortly by f ∈ Ck. Sometimes it is assumed that f is infinitely many times differentiable,
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this will be denoted by f ∈ C∞. If in addition, f is analytic, that is it is equal to the
sum of its Taylor series, then the notation f ∈ Cω is used.

The main idea of deriving normal forms can be briefly summarised as follows. In
order to simplify the differential equation ẋ(t) = f(x(t)) let us introduce the function
y(t) by the transformation x = h(y), where h is a diffeomorphism. The differential
equation can be easily derived for the function y in the following way. Differentiating
the relation x(t) = h(y(t)) we get ẋ = h′(y) · ẏ, on the other hand, ẋ = f(x) = f

(
h(y)

)
implies h′(y) · ẏ = f

(
h(y)

)
, hence for y the differential equation ẏ(t) = g(y(t)) holds,

where f and g are related by
h′ · g = f ◦ h. (3.23)

According to Proposition 2.5 this means that the dynamical systems corresponding to the
differential equations ẋ(t) = f(x(t)) and ẏ(t) = g(y(t)) are Ck conjugate, once h ∈ Ck.
The aim is to choose the diffeomorphism h in such a way that the Taylor expansion of g
contains as few terms as possible (in this case the phase portrait of ẏ(t) = g(y(t)) is easier
to determine than that of system ẋ(t) = f(x(t))). In other words, by the transformation
h we try to find those terms in the expansion of f that play role in determining the phase
portrait.

The local phase portrait will be investigated in a neighbourhood of an equilibrium
point p. As a preliminary step the equilibrium is shifted to the origin and the linear part is
transformed to Jordan canonical form. That is the function y = x−p is introduced first.
For this function the differential equation takes the form ẏ = g(y), where g(y) = f(y+p).
In order to get the Jordan canonical form let us introduce the invertible matrix P ∈ Rn×n,
and let y be defined by the linear transformation x = Py. Then P ẏ = f

(
P (y)

)
, that

is ẏ = g(y), where g(y) = P−1 · f(Py). Then the Jacobian of system ẏ = g(y) at the
origin g′(0) = P−1 · f ′(0) · P can be considered as the Jordan canonical form of the
Jacobian f ′(0) with a suitably chosen matrix P . Hence we can assume without loss of
generality that the equilibrium of system ẋ(t) = f(x(t)) is the origin (i.e. f(0) = 0) and
the Jacobian f ′(0) is in Jordan canonical form.

Now, the aim is to transform the system to the simplest possible form. We illustrate
first the method in the one dimensional case. Let f(x) = Ax + ar · xr + o(xr), where
r ≥ 2 and o(xr) denotes a function containing only the terms that are higher order than
r, that is a function, for which o(xr)/xr converges to zero as x→ 0. Let us look for the
function h in the form h(x) = x+hr ·xr. Let us check, based on equation (3.23), whether
the function g can be chosen in the form g(x) = Ax+o(xr). Since h′(x) = 1+r ·hr ·xr−1,
therefore assuming g(x) = Ax+ o(xr) the left hand side of (3.23) takes the form

h′(x)g(x) = Ax+ Arhrx
r + o(xr),

on the other hand, the right hand side of (3.23) is

f
(
h(x)

)
= Ax+ Ahrx

r + arx
r + o(xr).
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If the coefficients of the terms of order r are equal, then Arhr = Ahr + ar, from which
the unknown coefficient hr of function h can be determined as

hr =
ar

A(r − 1)
,

if A 6= 0 holds. Thus in the one dimensional case, if the linear part is non-zero, then all
the higher order terms can be transformed out, which means that the system is locally
C∞ conjugate to its linear part. In fact, using the above procedure the nonlinear terms
can be transformed out step by step after each other as follows. First, the second degree
polynomial H2(x) = x + h2 · x2 is used, with h2 = a2/A. Then the function G2 takes
the form G2(x) = Ax + o(x2) and satisfies (3.23), that is H ′2 · G2 = f ◦ H2. Then for
the function G2(x) = Ax + b3x

3 + o(x3) we determine a function H3(x) = x + h3 · x3.
In this function h3 = b3/2A, hence G3(x) = Ax + o(x3) and satisfies (3.23), that is
H ′3 ·G3 = G2 ◦H3. Now let h = H2 ◦H3, then h′ = (H ′2 ◦H3) ·H ′3, therefore

f ◦ h = f ◦H2 ◦H3 = (H ′2 ·G2) ◦H3 = (H ′2 ◦H3) · (G2 ◦H3)) =

(H ′2 ◦H3) ·H ′3 ·G3 = h′ ·G3.

Thus we have f ◦ h = h′ · G3, which means that the transformation h = H3 ◦ H2 leads
to an equation that does not contain second and third degree terms. Following this
procedure, assume that the function Gk−1 containing only terms of degree k − 1 and
higher, is already determined. Then by a suitable coefficient hk of the function Hk we
can achieve that the function Gk determined by the equation

H ′k ·Gk = Gk−1 ◦Hk

contains no terms of degree smaller than k. Hence the mapping h given by the infinite
composition h = H2 ◦ H3 ◦ . . . transforms the equation to its linear part, i.e. equation
(3.23) holds with the linear function g(x) = Ax. Here a difficult question arises, namely
the convergence of the infinite composition. At the end of this section a theorem will
be formulated about the convergence. Now, we extend the procedure to the case of
n-dimensional systems.

Thus let us consider the system ẋ(t) = f(x(t)), the equilibrium of which is the origin,
and assume that the linearised system, i.e. the Jacobian A = f ′(0) is a diagonal matrix.
That is

f(x) = Ax+ a(x) + o(xr),

where

A =

λ1 0
. . .

0 λn
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is diagonal and the nonlinear part a(x) contains only terms of degree r and higher, that
is a(x) can be expressed as the linear combination of terms in the form

ei · xm1
1 · xm2

2 · · · · · xmn
n , m1 +m2 + · · ·+mn = r,

where ei ∈ Rn is the i-th unit vector (its i-th coordinate is 1, its other coordinates are
0). For example, in the case n = 2, r = 2 the function a(x) is in the space

V2 = span

{(
x2

1

0

)
,

(
x1x2

0

)
,

(
x2

2

0

)
,

(
0

x2
1

)
,

(
0

x1x2

)
,

(
0

x2
2

)}
.

Thus system ẋ(t) = f(x(t)) can be written in the form

ẋ1 = λ1x1 + a20x
2
1 + a11x1x2 + a02x

2
2 + o(x3),

ẋ2 = λ2x2 + b20x
2
1 + b11x1x2 + b02x

2
2 + o(x3).

For an arbitrary n and r the function a(x) is an element of the similarly defined space

Vr = span{ei · xm1
1 · xm2

2 · · · · · xmn
n : m1 +m2 + · · ·+mn = r, i = 1, 2, . . . , n.}

The homeomorphism h is searched in the form h(x) = x+H(x), where H(x) ∈ Vr is also
a linear combination of terms of order r. The aim is to choose a function H, for which
equation (3.23) holds with a function g that can be written in the form g(x) = Ax+o(xr).
The left hand side of equation (3.23) is

(f ◦ h)(x) = Ax+ AH(x) + a(x+H(x)) + o(xr) = Ax+ AH(x) + a(x) + o(xr)

because a(x + H(x)) = a(x) + o(xr), by using the power series expansion of a. On the
other hand

h′(x) · g(x) = (I +H ′(x)) · (Ax+ o(xr)) = Ax+H ′(x) · Ax+ o(xr).

Since the terms of degree r are equal on the left and right hand side, we get the following
equation for H

H ′(x)Ax− AH(x) = a(x).

This equation is referred to as the homological equation. Let us introduce the linear map-
ping LA : Vr → Vr that associates to a function H the left hand side of the homological
equation, i.e.

(LAH)(x) = H ′(x)Ax− AH(x).

The homological equation has a unique solution to each function a ∈ Vr, if and only if
LA is bijective, that is the following proposition holds.

Proposition 3.2. If 0 is not an eigenvalue of the mapping LA, then the terms of degree
r can be transformed out.
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Let us investigate the effect of the mapping LA on the basis elements of Vr. Introducing
the notation xm = xm1

1 · xm2
2 · · · · · xmn

n one can prove the following statement.

Lemma 3.9..

LA(eix
m) = eix

m

( n∑
k=1

mkλk − λi
)
,

where the numbers mk are the coordinates of m, and λ1, λ2, . . . , λn are the eigenvalues
in the diagonal of the matrix A.

Proof. Since the function H is given by

H(x) = eix
m =



0
...
0

xm1
1 xm2

2 . . . xmn
n

0
...
0


,

we have

AH(x) = eix
m =



0
...
0

λix
m1
1 xm2

2 . . . xmn
n

0
...
0


= λieix

m.

On the other hand

H ′(x) =



0
...
0

m1
xm

x1
m2

xm

x2
. . . mn

xm

xn

0
...
0


and

Ax =


λ1x1

λ2x2
...

λnxn

 ,
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implying

H ′(x)Ax =



0
...
0

xm
∑n

k=1 mkλk
0
...
0


= eix

m

n∑
k=1

mkλk.

The equations above yield

H ′(x)Ax− AH(x) = eix
m

( n∑
k=1

mkλk − λi
)
,

that was to be proved.

According to this lemma the eigenvalues of the mapping LA can be written in the
form

∑n
k=1 mkλk−λi, the corresponding eigenvectors are the functions of the form eix

m.
Since these are exactly the functions that span the vector space Vr, we found so many
eigenvalues as the dimension of the vector space Vr. Therefore all eigenvalues of LA can
be written in the form

∑n
k=1 mkλk − λi. Hence if these are nonzero numbers, then the

mapping LA is bijective. Based on this formula let us introduce the following notion.

Definition 3.10.. The set of eigenvalues of the matrix A are called resonant, if there
exists i ∈ {1, 2, . . . , n}, and there are nonnegative integers m1,m2, . . . ,mn, for which
m1 +m2 + . . .+mn ≥ 2 and λi =

∑n
k=1mkλk. If this holds, then the term eix

m is called
a resonant term.

Thus if the eigenvalues of the matrix A are non-resonant, then the mapping LA is bijec-
tive. This implies that there is a sequence of diffeomorphisms, the composition of which
is a diffeomorphism that shows that the system and its linear part are C∞ conjugate.
(Consequently, they are Ck conjugate for any k.) The convergence of the infinite compo-
sition can be verified under suitable conditions. This is formulated in the next theorem.

Theorem 3.11. (Poincaré). 1. If the eigenvalues of the matrix A are non-resonant,
then all non-linear terms can be formally transformed out from the system .

2. If the eigenvalues of the matrix A are non-resonant and the convex hull of the
eigenvalues in the complex plane does not contain the origin, then system ẋ = f(x)
and its linear part ẏ = Ay are locally C∞ conjugate at the origin.
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Example 3.3. If the system is n = 2 dimensional, then the resonant terms of degree 2
can be occur as follows.

m = (0, 2), 0 · λ1 + 2 · λ2 = λ1 or λ2

m = (1, 1), 1 · λ1 + 1 · λ2 = λ1 or λ2

m = (2, 0), 2 · λ1 + 0 · λ2 = λ1 or λ2

For example, in the case λ1 = 0 or λ2 = 0, we get resonance with m = (1, 1), hence the
term x1x2 cannot be transformed out.

3.3 Exercises

1. If the system is n = 2 dimensional, and the eigenvalues of the matrix A are ±i,
then which of the terms below is resonant?

(A) x1x2, (B) x2
1, (C) x1x

2
2

Answer: (C).

2. If the system is n = 2 dimensional, and the eigenvalues of the matrix A are ±1,
then which of the terms below is resonant?

(A) x1x2, (B) x2
1, (C) x1x

2
2

Answer: (C).
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Chapter 4

Stable, unstable and center manifold
theorems

For linear systems the stable, unstable and center subspaces were introduced in Definition
2.8.. These subspaces are invariant, that is trajectories do not leave them. In this
section we show that in non-linear systems the role of invariant subspaces is taken over
by invariant manifolds. The proof of the stable and unstable manifold theorem is less
technical, this will be dealt with in the first section. The center manifold theorem and
its applications are presented in a separate section.

4.1 Stable and unstable manifold theorem

As a motivation for the theorem let us investigate first the following two simple systems.

Example 4.1. Let us consider the linear system

ẋ1 = −x1

ẋ2 = x2

that has a saddle point. In this system the stable subspace Es is the horizontal axis, while
the unstable subspace Eu is the vertical axis as it is shown in Figure 4.1. Note that there
is no other invariant one-dimensional subspace (i.e. there is no other line through the
origin that is not left by the trajectories).

Stable and unstable subspaces in Example 4.1.
The example below shows how the invariant subspaces are changed by a non-linear

perturbation of the above linear system.
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Example 4.2. Let us consider the non-linear system

ẋ1 = −x1,

ẋ2 = x2 + x2
1.

The first equation is independent, its solution can be given as x1(t) = e−tc1. Substituting
this solution into the second equation we arrive to an inhomogeneous linear differential

equation that can be solved as x2(t) = et · c2 +
c21
3

(et − e−2t). These solutions satisfy the

initial conditions x1(0) = c1, x2(0) = c2. Note that if c2 +
c21
3

= 0 holds for the initial

conditions, then for any time t the same relation x2(t) +
x21(t)

3
= 0 holds. That is the set

Ws = {(c1, c2) ∈ R2 : c2 +
c2

1

3
= 0}

is invariant, i.e. the trajectories do not leave it. The solutions starting from this set
tend to the origin as time goes to infinity. This is why it is called stable manifold, this
is the set that took over the role of the stable subspace. The invariant manifold is easier
to determine, since the vertical axis is invariant and along this line trajectories tend to
infinity. Thus the invariant manifold is the Wu = {(0, c2) ∈ R2 : c2 ∈ R} subspace. The
invariant manifolds are shown in Figure 4.1.

Stable and unstable manifolds in Example 4.2.

4.1.1 General approach

Based on the above motivating examples let us turn now to the general case. In order
to avoid the technical definition of differentiable manifolds, they will be substituted by
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graphs of differentiable functions. We note that the manifold generalises the notion of
curves and surfaces, hence instead of the abstract notion we can think of these simple
geometrical objects. If the Reader wants to know more about manifolds, then we suggest
to read Section 2.7 in Perko’s book [19].

Let f : Rn → Rn be a continuously differentiable function, for which f(0) = 0. Hence
the origin is an equilibrium of system ẋ = f(x). The solution starting from point p is
denoted by ϕ(t, p). Assume that the Jacobian f ′(0) has no eigenvalues with zero real
part, i.e. the origin is a hyperbolic equilibrium. The dimension of the stable subspace
Es is denoted by k, and that of the unstable subspace Eu is n− k.

Theorem 4.1. (Stable and unstable manifold). There is a neighbourhood U of the
origin and there exist continuously differentiable functions Ψ : Es ∩ U → Eu and Φ :
Eu ∩ U → Es, for which the k-dimensional local stable and n − k-dimensional local
unstable manifolds

W loc
s = {(q,Ψ(q)) ∈ Rn : q ∈ Es ∩ U} and W loc

u = {(r,Φ(r)) ∈ Rn : r ∈ Eu ∩ U}

have the following properties. (We note that the vectors q and Φ(r) above have k coor-
dinates, while the vectors r and Ψ(q) have n− k coordinates.)

1. W loc
s is positively invariant, W loc

u is negatively invariant.

2. The manifold W loc
s is tangential to the subspace Es at the origin, and the manifold

W loc
u is tangential to the subspace Eu at the origin.

3. If p ∈ W loc
s , then lim

t→∞
ϕ(t, p) = 0.

4. If p ∈ W loc
u , then lim

t→−∞
ϕ(t, p) = 0.
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Proof. It is enough to prove the statement concerning the stable manifold, because the
unstable manifold of the system ẋ = f(x) is the same as the stable manifold of the
system ẋ = −f(x). This part of the proof will be divided into three steps.
STEP 1.

First, the linear part is transformed to Jordan canonical form. The Jordan canonical
form of the matrix f ′(0) is:

J =

(
B 0
0 C

)
,

where the real part of the eigenvalues of B ∈ Rk×k are negative and the real part of
the eigenvalues of C ∈ Rn−k×n−k are positive. Let P be the matrix that transforms the
Jacobian f ′(0) to Jordan canonical form, that is Pf ′(0)P−1 = J . Introducing the new
variable x̃ = Px one obtains

˙̃x = Pẋ = Pf(x) = Pf ′(0)x+ P
(
f(x)− f ′(0)x

)
=

= Pf ′(0)P−1x̃+ P
(
f(P−1x̃)− f ′(0)P−1x̃

)
that is

˙̃x = Jx̃+ a(x̃), (4.1)

where a(0) = 0 ∈ Rn and a′(0) = 0 ∈ Rn×n. Let us now consider the differential equation
for the function x̃. The stable and unstable subspaces of this equation are

Ẽs = {p ∈ Rn : pk+1 = pk+2 = . . . pn = 0}, Ẽu = {p ∈ Rn : p1 = p2 = . . . pk = 0}.

Thus the phase space Rn can be split up as a direct sum of a k dimensional and an
n − k dimensional subspace. In order to define the stable manifold, the continuously
differentiable functions ψk+1, ψk+2, . . . , ψn : Es ∩ U → R of k variable will be given, in
such a way that the set

W̃ loc
s = {

(
p1, p2, . . . , pk, ψk+1(p1, . . . , pk), . . . , ψn(p1, . . . , pk)

)
:

(p1, . . . , pk, 0, . . . , 0) ∈ Es ∩ U}

will be positively invariant and the trajectories in it tend to the origin. Figure 4.1 shows
the graph of ψ3 in the case n = 3 and k = 2, that determines the two-dimensional stable
manifold.

Since the new and the original variables are related by the transformation x̃ = Px,
the stable manifold W̃ loc

s corresponding to equation (4.1) yields the stable manifold of the
original equation through the linear transformation P−1W̃ loc

s = W loc
s . Thus it is enough

to prove the theorem for the equation (4.1), that is in the case when the linear part is
in Jordan canonical form. In the next steps we assume that the linear part is in Jordan
canonical form, hence we use the notation W loc

s instead of W̃ loc
s .

STEP 2
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Figure 4.1: In the case n = 3 and k = 2 the stable manifold is given by the graph of the
function ψ3.

Since system (4.1) is in the form of a direct sum, we introduce the following notations.
For an arbitrary v ∈ Rn let v = vs + vu, where

vs =



v1
...
vk
0
...
0


, vu =



0
...
0

vk+1
...
vn


.

Moreover, let

Js =

(
B 0
0 0

)
, Ju =

(
0 0
0 C

)
.

If x is a solution of system (4.1) and a = as + au, then for the functions xs and xu

ẋs = Jsxs + as(x) (4.2)

ẋu = Juxu + au(x) (4.3)

hold. Applying the variation of constants formula to equation (4.1) one obtains

x(t) = eJtp+

∫ t

0

eJ(t−τ)a(x(τ))dτ,

57



in which

eJt =

(
eBt 0
0 eCt

)
.

The variation of constants formula can also be applied to equations (4.2) and (4.3).

xs(t) = eJstps +

∫ t

0

eJs(t−τ)a(x(τ))dτ (4.4)

xu(t) = eJutpu +

∫ t

0

eJu(t−τ)a(x(τ))dτ, (4.5)

where

eJst =

(
eBt 0
0 0

)
and eJut =

(
0 0
0 eCt

)
,

therefore eJstau = 0, that is eJstas = eJsta, and similarly, because of eJutas = 0 we get
eJutau = eJuta.

In a point p = ps + pu of the stable manifold ps = (p1, p2, . . . , pk, 0, . . . , 0)T ,

pu = (0, . . . , 0, ψk+1(p1, . . . , pk), . . . , ψn(p1, . . . , pk))
T ,

and the latter has to be chosen in such a way that the solution starting from p should
converge to the origin, i.e. lim

t→∞
xu(t) = 0 holds. According to equation (4.5), this can

hold if pu +
∫∞

0
e−Juτa(x(τ))dτ = 0, since the eigenvalues of matrix C have positive real

part, hence the norm of the matrix eJut tends to infinity. If pu is chosen this way, then

xu(t) = −eJut
∫ ∞
t

e−Juτa(x(τ))dτ.

Substituting this expression into equation x = xs + xu we get

x(t) = eJstps +

∫ t

0

eJs(t−τ)a(x(τ))dτ −
∫ ∞
t

eJu(t−τ)a(x(τ))dτ. (4.6)

It will be shown in STEP 3 that there is suitable neighbourhood U of the origin, such that
for all ps ∈ Es ∩ U the above equation has a solution x. Then let ψj(p1, p2, . . . , pk) :=
xj(0), j = k + 1, . . . , n. The stable manifold W loc

s defined by these functions has the
properties listed in the theorem, because an estimate to be verified also in STEP 3,
implies that for all p ∈ W loc

s the function x given by (4.6) satisfies lim
t→∞

x(t) = 0, that is

lim
t→∞

ϕ(t, p) = 0. On the other hand, the above derivation for (4.6) shows that in the case

p /∈ W loc
s the limit condition lim

t→∞
ϕ(t, p) = 0 cannot hold, therefore W loc

s is positively

invariant. Namely, if a solution starting from a point p ∈ W loc
s left the manifold W loc

s ,
then it would not tend to zero as t→∞.
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STEP 3
Here we prove that if ps ∈ Es is close enough to the origin, then there exists a

function x satisfying equation (4.6) and for which lim
t→∞

x(t) = 0 holds. The existence of x

will be proved by successive approximation. Consider the space X = Cb([0,+∞),Rn) of
bounded and continuous functions endowed with the norm ‖x‖ = sup[0,+∞) |x|. Introduce
the operator T : X → X based on the right hand side of equation (4.6) as(

T (x)
)
(t) = eJstps +

∫ t

0

eJs(t−τ)a(x(τ))dτ −
∫ ∞
t

eJu(t−τ)a(x(τ))dτ.

It is obvious that T is defined on the whole space X, and it is easy to prove that it maps
to X, i.e. it maps the space X into itself. Our aim is to show that it has a fixed point x
that will be the solution of equation (4.6). Let x0 ∈ X, x0 ≡ 0 and define the sequence
of functions (xn) ⊂ X recursively by xn+1 = T (xn). It can be shown by induction that

|xn+1(t)− xn(t)| ≤ K|ps|e−αt

2n
,

where K > 0 and α > 0 are constants, for which the estimates

‖eJst‖ ≤ Ke−(α+σ)t, ‖e−Jut‖ ≤ Ke−σt

hold for all t ≥ 0 with some σ > 0. Hence (xn) ⊂ X is a Cauchy sequence, therefore
it converges to a point x ∈ X, because X is a complete normed space. It can be
shown that T is continuous, hence taking n→∞ in the recursion xn+1 = T (xn) we get
x = T (x) yielding the desired fixed point. Moreover, it can be shown also by induction
that ‖xn(t)‖ ≤ Ce−αt for all t ≥ 0, hence taking again the limit n→∞ we get the same
estimate also for x, proving that x tends to zero as t→∞.

4.1.2 Global stable and unstable manifolds

The global stable and unstable manifolds can be defined by using the local manifolds
W loc
s and W loc

u . The global manifolds typically cannot be given as graphs of suitable
functions. The stable manifold is defined as the set of points from which the solution
tends to the origin. Since these trajectories lie in the local stable manifold when they
are close to the origin, it is reasonable to define the global stable manifold as follows

Ws :=
⋃
t≤0

ϕ(t,W loc
s ).

The unstable manifold is the set of points from which the solution tends to the origin
as t→ −∞. These trajectories lie in the local unstable manifold when they are close to
the origin, hence the global unstable manifold is defined as follows

Wu :=
⋃
t≥0

ϕ(t,W loc
u ).
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The global stable and unstable manifolds may have common points, this situation is
shown in Figure 4.2. The system, the phase portrait of which is shown in the Figure,
has a homoclinic orbit that is the intersection of the stable and unstable manifolds.

Figure 4.2: Homoclinic orbit as the intersection of the stable and unstable manifolds.

4.2 Center manifold theorem

Before formulating the center manifold theorem let us consider the following motivating
example.

Example 4.3. Consider the system

ẋ = xy + x3

ẏ = −y − 2x2

and investigate its local phase portrait in the neighbourhood of the origin. The Jacobian

obtained by linearisation is

(
0 0
0 −1

)
, its eigenvalues are 0 and −1. Thus the origin

is not a hyperbolic equilibrium, therefore the linearisation does not determine the local
phase portrait. Since there is negative eigenvalue, the system has a one dimensional sta-
ble manifold, along which the trajectories tend to the origin. At the end of this section it
will be shown that there is an invariant center manifold that is tangential to the center
subspace belonging to the eigenvalue 0, and the behaviour of the trajectories in this man-
ifold can easily be determined by investigating the phase portrait of a one-dimensional
system.
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4.2.1 General approach

Let us consider again a general autonomous system ẋ = f(x), and assume that the
origin is an equilibrium, that is f(0) = 0, and the Jacobian is written in the form

f ′(0) =

(
B 0
0 C

)
, where the eigenvalues of B have zero real part, the eigenvalues of C

have non-zero real part. Thus using the notation x =

(
y
z

)
the system takes the form

ẏ = By + g(y, z) (4.7)

ż = Cz + h(y, z), (4.8)

where it is assumed that the derivatives of g and h are zero at the origin.

Theorem 4.2. (Center manifold). There is a neighbourhood U of the origin and there
exists a differentiable map ψ : Ec ∩ U → Es ⊕ Eu that satisfy the following conditions.

1. ψ(0) = 0, ψ′(0) = 0.

2. The local center manifold W loc
c = {(pc, ψ(pc)) : pc ∈ Ec ∩ U} is locally invariant,

i.e. if p ∈ W loc
c and ϕ(t, p) ∈ U , then ϕ(t, p) ∈ W loc

c .

Proof. The technical details make the proof of the theorem considerably long, hence we
present here only the main ideas of the proof based on the book by Chow and Hale [8].

Consider a solution

(
y(t)
z(t)

)
starting from the point (pc, ψ(pc)) . The invariance of the

manifold requires

ẏ = By + g(y, ψ(y)) (4.9)

ż = Cz + h(y, ψ(y)). (4.10)

Applying the variation of constants formula to the second equation with a starting point
t = τ

z(t) = eC(t−τ) · z(τ) +

∫ t

τ

eC(t−s)h

(
y(s), ϕ

(
y(s)

))
ds.

Let τ < 0, then substituting t = 0 into this equation

ψ(pc) = z(0) = e−Cτ · z(τ) +

∫ 0

τ

e−Csh

(
y(s), ψ

(
y(s)

))
ds. (4.11)

For simplicity, let us consider only the case when the eigenvalues of C have negative
real part. (The general case can be dealt with in a similar way.) For the solutions in the
center manifold z(t) cannot tend to infinity as t→ −∞, therefore

lim
τ→−∞

e−Cτz(τ) = 0,
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hence equation (4.11) implies

ψ(pc) =

∫ 0

−∞
e−Csh(y(s), ψ(y(s)))ds.

Thus the procedure is as follows. For a given function ψ solve differential equation (4.9)
subject to the initial condition y(0) = pc, and define the operator

(T (ψ))(pc) =

∫ 0

−∞
e−Csh(y(s), ψ(y(s)))ds.

Choosing an appropriate Banach space this operator is a contraction, hence by Banach’s
fixed point theorem it has a fixed point. This fixed point yields the function ψ determin-
ing the local center manifold.

The following corollary of the center manifold theorem, called the center manifold
reduction theorem, enables us to determine the local phase portrait in the neighbourhood
of a non-hyperbolic equilibrium. The proof of this theorem can be found in the book by
Carr [5].

Theorem 4.3. (Center manifold reduction). Consider system (4.7)-(4.8) and as-
sume that the above assumptions hold. Let ψ be the function determining the local center
manifold. By using the so-called center manifold reduction introduce the system

u̇ = Bu+ g(u, ψ(u)) (4.12)

v̇ = Cv, (4.13)

in which the linearisation is used in the hyperbolic part. Then system (4.7)-(4.8) and
system (4.12)-(4.13) are locally topologically equivalent in the origin.

Remark 4.1. This theorem can be considered as the generalisation of the Hartman–
Grobman theorem to the case of non-hyperbolic linear part. The theorem enables us to
reduce the dimension, because the phase portrait of the linear system v̇ = Cv can easily be
determined, hence in order to characterise the full phase portrait it is enough to determine
the phase portrait of the lower dimensional non-linear system u̇ = Bu+ g(u, ψ(u)).

In the next subsection it is shown how center manifold reduction can be used to
characterise the local phase portrait.

4.2.2 Approximation of the center manifold

In order to apply center manifold reduction the function ψ determining the center mani-
fold has to be determined. In most of the cases it is not possible to calculate this function
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explicitly. In this subsection it is shown that it is enough to calculate an approximation
of the center manifold and even this approximation enables us to use the center manifold
reduction.

Assume that the solution x(t) =

(
y(t)
z(t)

)
lies in the center manifold. The invariance

of the manifold implies z(t) = ψ(y(t)). Differentiating this equation we get ż = ψ′(y) · ẏ,
therefore

ż = Cy + h(y, ψ(y)) = ψ′(y) · (By + g(y, ψ(y))), (4.14)

which can be considered as an equation determining the function ψ. This equation does
not enable us to use Banach’s fixed point theorem to prove the existence of the center
manifold, however, it is useful in calculating the coefficients of the power series expansion
of the function ψ. According to the following theorem, if this equation holds for the terms
in the power series of a function ψ̃ up to degree r, then this function approximates ψ in
order r.

Theorem 4.4. (Approximation of the center manifold). Let ψ̃ : Ec∩U → Es⊕Eu
be a function, for which

1. ψ̃(0) = 0, ψ̃′(0) = 0.

2. (4.14) holds in order r.

Then |ψ(y) − ψ̃(y)| = O(|y|r), that is the power series expansions of ψ and ψ̃ coincide
up to degree r.

As an application of the above results let us consider again the example shown at the
beginning of this section.

Example 4.4.

ẋ = xy + x3 (4.15)

ẏ = −y − 2x2. (4.16)

The Jacobian is f ′(0, 0) =

(
0 0
0 −1

)
, the stable subspace Es is determined by (0, 1), the

center subspace Ec is given by (1, 0). The approximation of the function ψ determining
the center manifold can be given in the form ψ(x) = a2x

2 + a3x
3 + . . ., because the

center manifold is tangential to the center subspace at the origin, that is ψ can be given
as a function of x and ψ(0) = 0 = ψ′(0). The invariance of the manifold implies
y(t) = ψ(x(t)), the derivative of which yields ẏ(t) = ψ′(x(t)) · ẋ(t). Substituting the
derivatives of x and y from the differential equations to this equation one obtains −ψ(x)−
2x2 = ψ′(x)(x · ψ(x) + x3). Using the power series expansion of ψ the coefficients of the
corresponding terms are equal in the left and right hand sides. Using the coefficients of

63



the quadratic term x2 on both sides we get −a2 − 2 = 0 yielding a2 = −2. Hence the
function defining the center manifold can be given as ψ(x) = −2x2 + O(x3). Thus the
approximation of the center manifold up to second degree can be given as ψ̃(x) = −2x2.
Substituting ψ(x) = −2x2 +O(x3) into the first equation of the reduced system

ẋ = x(−2x2 + a3x
3 + . . .) + x3 = −x3 +O(x4)

The local phase portrait at the origin does not depend on the terms of O(x4), because
they do not have influence on the direction field. In this one-dimensional system the
trajectories tend to the origin, hence along the center manifold the trajectories tend to
the origin. Since the other eigenvalue of the system is negative, all solutions in a neigh-
bourhood of the origin tend to the origin, thus according to the center manifold reduction
the origin is asymptotically stable. The phase portrait is shown in Figure 4.4.

The phase portrait of system (4.15)-(4.16).

4.3 Exercises

1. Determine the steady states and the local phase portraits at those points in the
following two-dimensional systems.

(a) ẋ = y, ẏ = − sinx− 3y

Answer: The equilibria are (kπ, 0) for all k ∈ Z. The Jacobian of the system
is

J =

(
0 1

− cosx −3

)
.
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The trace of the Jacobian is Tr(J) = −3, its determinant is Det(J) = cosx.
Using these we can get the sign of the real parts of the eigenvalues. For even
values of k the steady state is a stable node, for odd values of k it is a saddle.

(b) ẋ = y2 − 1, ẏ = x2 + y2 − 2

Answer: Starting from the first equation the second coordinates of the equi-
libria are ±1, then the second equation yields that the first coordinates are
also ±1 independently of the first coordinate. Hence the steady states are
(1, 1), (1,−1), (−1, 1), (−1,−1). The Jacobian of the system is

J =

(
0 2y

2x 2y

)
hence Tr(J) = 2y, Det(J) = −4xy, Tr2(J) − 4Det(J) = 4y(y + 4x). At the
points (1, 1) and (−1,−1) we have Det(J) < 0, hence these are saddle points.
At the point (1,−1) we have Tr(J) < 0, Det(J) > 0 and Tr2(J)−4Det(J) <
0, hence this is a stable focus. Finally, at the point (−1, 1) we have Tr(J) > 0,
Det(J) > 0 and Tr2(J)− 4Det(J) < 0, hence this is an unstable focus.

(c) ẋ = x2 + y2 − 25, ẏ = xy − 12

Answer: The second equation yields y = 12/x. Substituting this into the first
equation x4−25x2+122 = 0, implying x = ±3 or x = ±43. The corresponding
values of y are given by y = 12/x. Hence the steady states are (3, 4), (−3,−4),
(4, 3), (−4,−3). The Jacobian of the system is

J =

(
2x 2y
y x

)
,

hence Tr(J) = 3x, Det(J) = 2(x2 − y2), Tr2(J) − 4Det(J) = x2 + 8y2 >
0. At the points (3, 4) and (−3,−4) we have Det(J) < 0, hence these are
saddle points. At the point (4, 3) we have Tr(J) > 0, Det(J) > 0 and
Tr2(J)−4Det(J) > 0, hence it is a stable node. Finally, at the point (−4,−3)
we have Tr(J) < 0, Det(J) > 0 and Tr2(J)−4Det(J) > 0, hence it is a stable
node.

(d) ẋ = −y, ẏ = x3 − x+ xy

Answer: The first equation yields y = 0, then from the second x = 0, x = 1
or x = −1 follows. Hence the steady states are (0, 0), (1, 0), (−1, 0). The
Jacobian of the system is

J =

(
0 −1

3x2 − 1 + y x

)
,

hence Tr(J) = x, Det(J) = 3x2−1+y, Tr2(J)−4Det(J) = 4−11x2−4y. At
the point (0, 0) we have Det(J) < 0, hence it is a saddle. At the point (1, 0)
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we have Tr(J) > 0, Det(J) > 0 and Tr2(J) − 4Det(J) < 0, hence it is an
unstable focus. Finally, at the point (−1, 0) we have Tr(J) < 0, Det(J) > 0
and Tr2(J)− 4Det(J) < 0, hence it is a stable focus.

(e) ẋ = y − x2 − x, ẏ = 3x− x2 − y
Answer: Adding the two equations we get 2y − 4x = 0, that is y = 2x.
Substituting this into the first equation x − x2 = 0, yielding x = 0 or x = 1.
Hence the steady states are (0, 0) and (1, 2). The Jacobian of the system is

J =

(
−2x− 1 1
3− 2x −1

)
.

At the point (0, 0) we have Tr(J(0, 0)) = −2, Det(J(0, 0)) = −2, hence
the point (0, 0) is a saddle. At the point (1, 2) we have Tr(J(1, 2)) = −4,
Det(J(1, 2)) = 2, Tr2(J(1, 2))− 4Det(J(1, 2)) > 0, hence the point (1, 2) is a
stable node.

2. Determine the steady states, and the dimension of the stable unstable and center
subspaces at the steady states in the following three-dimensional systems.

(a) ẋ = y, ẏ = z, ż = x2 − yz − 1

Answer: The first two equations yield y = 0 and z = 0, hence from the
third one we get x = 1 or x = −1. Hence the steady states are (1, 0, 0) and
(−1, 0, 0). The Jacobian of the system is

J =

 0 1 0
0 0 1

2x −z −y

 ,

its characteristic equation at the points (±1, 0, 0) are λ3 = ±2. At the point
(1, 0, 0) the eigenvalues of the Jacobian (i.e. the solutions of equation λ3 = 2)
are λ1 = 3

√
2, λ2,3 = 3

√
2(cos(2π/3) ± i sin(2π/3)). Therefore dim(Es) = 2

and dim(Eu) = 1. At the point (−1, 0, 0) the eigenvalues of the Jacobian (i.e.
the solutions of equation λ3 = −2) are λ1 = − 3

√
2, λ2,3 = − 3

√
2(cos(2π/3) ±

i sin(2π/3)). Therefore dim(Es) = 1 and dim(Eu) = 2.

(b) ẋ = y + z, ẏ = x2 − 2y, ż = x+ y

Answer: The third equation yields y = −x, then the second yields x2+2x = 0,
hence x = 0 or x = −2. Then y = 0 and y = 2, and from the first equation
z = 0 and z = −2. Hence the steady states are (0, 0, 0) and (−2, 2,−2). The
Jacobian of the system is

J =

 0 1 1
2x −2 0
1 1 0

 .
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Its characteristic equation is λ3 + 2λ2−λ(1 + 2x)−2(1 +x) = 0. At the point
(0, 0, 0) the characteristic equation is λ3 + 2λ2 − λ− 2 = 0. Observe that one
of its roots is λ1 = 1, hence λ3 + 2λ2 − λ − 2 = (λ − 1)(λ2 + 3λ + 2). The
roots of the quadratic term are λ2 = 1, λ3 = 2. Hence at the point (0, 0, 0)
we have dim(Eu) = 3. At the points (−2, 2,−2) the characteristic equation
is λ3 + 2λ2 + 3λ + 2 = 0. Observe that one of its roots is λ1 = −1, hence
λ3 + 2λ2 + 3λ+ 2 = (λ+ 1)(λ2 +λ+ 2). The roots of the quadratic term have
negative real part, therefore at the point (−2, 2,−2) we have dim(Es) = 3.

3. In the Lorenz system ẋ = σ(y − x), ẏ = ρx− y − xz, ż = −βz + xy determine the
dimension of the stable unstable and center subspaces at the origin for different
values of the parameters σ, ρ, β > 0.

Answer: The Jacobian at the origin is

J =

−σ σ 0
ρ −1 0
0 0 −β

 .

Its characteristic equation is λ3+λ2(β+σ+1)+λ(β(σ+1)+σ(1−ρ))+βσ(1−ρ) = 0.
One of its roots is β, hence the other two roots can be obtained as a solution of a
quadratic equation as

λ1,2 =
1

2
(−1− σ ±

√
(1 + σ)2 − 4σ(1− ρ))

It is easy to see, that for ρ < 1 all the three roots are negative, that is the stable
subspace is three dimensional. If ρ = 1, then one of the eigenvalues is zero, the
other two eigenvalues are negative, hence the stable subspace is two dimensional,
and the dimension of the center subspace is 1. If ρ > 1, then λ1 > 0, λ2, λ3 < 0,
hence the unstable subspace is one dimensional, and the stable subspace is two
dimensional.

4. In the Lorenz system ẋ = σ(y − x), ẏ = ρx− y − xz, ż = −βz + xy determine the
steady states and their stability for different values of the parameters σ, ρ, β > 0.

Answer: The first equation yields y = x, then the last implies z = x2/β. Substi-
tuting these into the second equation x(ρ−1)β = x3. Then x1 = 0 is a solution for
any values of the parameters, and for ρ > 1 x2,3 = ±

√
(ρ− 1)β are also solutions.

Thus for ρ ≤ 1 the only steady state is (0, 0, 0), while for ρ > 1 there are two more
equilibria (x2, x2, ρ− 1) and (x3, x3, ρ− 1). The Jacobian of the system is

J =

 −σ σ 0
ρ− z −1 −x
y x −β

 .
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The characteristic equation of the Jacobian at the origin is λ3 + λ2(β + σ + 1) +
λ(β(σ+1)+σ(1−ρ))+βσ(1−ρ) = 0. Let us apply now the Routh–Hurwitz criterion
to decide the stability of the origin. From the coefficients of the characteristic
polynomial one can build up the Routh–Hurwitz matrix as follows. β + σ + 1 1 0

βσ(1− ρ) β(σ + 1) + σ(1− ρ) β + σ + 1
0 0 βσ(1− ρ)


All the eigenvalues have negative real part if and only if this matrix is positive
definite, that is when the leading principal minors ∆1, ∆2, ∆3 are all positive.
Since ∆1 = β + σ + 1 > 0, and ∆3 = ∆2βσ(1 − ρ), the point can be stable when
∆2 > 0 and ρ < 1. For ∆2 we have

∆2 = (β + σ + 1)(β(σ + 1) + σ(1− ρ))− βσ(1− ρ)

= (β2 + β(σ + 1) + σ(1− ρ))(σ + 1)

which is positive, if ρ < 1. Hence the origin is asymptotically stable for ρ < 1 and
unstable for ρ > 1. The Jacobian at the point (x2, x2, ρ− 1) is −σ σ 0

1 −1 −
√
β(ρ− 1)√

β(ρ− 1)
√
β(ρ− 1) −β

 .

Its characteristic equation is

λ3 + λ2(β + σ + 1) + λβ(σ + ρ) + 2βσ(ρ− 1) = 0.

Let us apply again the Routh–Hurwitz criterion to decide the stability of the point
(x2, x2, ρ− 1). From the coefficients of the characteristic polynomial one can build
up the Routh–Hurwitz matrix as follows. β + σ + 1 1 0

2βσ(ρ− 1) β(σ + ρ) β + σ + 1
0 0 2βσ(ρ− 1)


All the eigenvalues have negative real part if and only if this matrix is positive
definite, that is when the leading principal minors ∆1, ∆2, ∆3 are all positive.
Since ∆1 = β + σ + 1 > 0 and ∆3 = 2βσ(ρ − 1)∆2, the point can be stable when
∆2 > 0 and ρ > 1. The determinant

∆2 = β(β + σ + 1)(σ + ρ) + 2βσ(1− ρ)

= β(σ(β + σ + 3)− ρ(σ − β − 1))
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is positive for any ρ > 1, if σ − β − 1 < 0, and for 1 < ρ < ρH := σ σ+β+3
σ−β−1

,

if σ − β − 1 > 0. In this case the point (x2, x2, ρ − 1) is asymptotically stable.
We note that in the case ∆2 < 0 the Jacobian has two complex eigenvalues with
positive real part. By using the symmetry of the system we get the same condition
on the stability of the point (x3, x3, ρ− 1) as for the point (x2, x2, ρ− 1).
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Chapter 5

Global phase portrait, periodic
orbits, index of a vector field

5.1 Investigating the global phase portrait by using

the local ones

In the previous sections we studied how can the local phase portrait of a differential
equation ẋ = f(x) be determined in the neighbourhood of a given point. The results
presented can be summarised briefly as follows.

• If the given point p is not an equilibrium, then the flow-box theorem can be applied,
hence the local phase portrait at the point p is given by straight lines parallel to
the vector f(p).

• If the given point p is an equilibrium, then the local phase portrait can be charac-
terised by using the linearisation f ′(p).

– If the linear part is hyperbolic, that is the eigenvalues of f ′(p) have non-zero
real part, then according to the Hartman-Grobman theorem the phase portrait
is locally conjugate to that of the linearised system.

– If the linear part is not hyperbolic, then higher order terms play role in deter-
mining the phase portrait. The effect of these terms can be studied by using
the following tools.

∗ Finding the normal form of the system.

∗ Using center manifold reduction.

The aim of this section is to show methods for studying the global phase portrait
by using the local phase portraits determined at different points. In the case of one
dimensional systems we can achieve full classification by using this approach. This will
be shown in the first subsection.
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5.1.1 Global phase portraits of one dimensional systems

The phase portrait of a one dimensional system can be simply obtained based on the
sign of the right hand side. This is illustrated in the case of a simple example.

Example 5.1. Consider the differential equation ẋ = x− x3. The zeros of the function
f(x) = x − x3 are −1, 0, and 1. The sign of the function can simply be determined
in the segments determined by these points. In the intervals (−∞,−1) and (0, 1) the
function is positive, while in the intervals (−1, 0) and (1,+∞) it is negative. The graph
of the function is shown in Figure 5.1. Thus the equation has three equilibria −1, 0, and
1. There are two orbits directed positively, these are (−∞,−1) and (0, 1), and there are
two negatively directed orbits (−1, 0) and (1,+∞). Hence by determining the sign of the
function one can get the global phase portrait shown in Figure 5.1.

Figure 5.1: The phase portrait of the differential equation ẋ = x− x3.

Let us turn now to the classification of the phase portraits of the one dimensional
dynamical systems of the form ẋ = f(x), where f : R→ R is a continuously differentiable
function. The classification is based on the number of zeros of the function f as it is
suggested by the above example.

• If the function f has no zeros, then there is no steady state. Then the phase
portrait is equivalent to that of the equation ẋ = 1 that is shown in Figure 5.2.
(We note that the phase portrait is equivalent to this one also in the case when f
is negative.)
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• If the function f has one zero, then there is a unique equilibrium. Then the
dynamical system is equivalent to one of the three equations below, their phase
portrait are shown in Figure 5.3.

� ẋ = −x
� ẋ = x

� ẋ = x2

• If the function f has two zeros, then there are two equilibria. Each of them can
be stable, unstable or neutral (stable from one side and unstable from the other
side). Then there are four combinations of the two steady states: 1. a stable and
an unstable point, 2. a stable and a neutral point, 3. an unstable and a neutral
point, 4. two neutral points. The phase portraits corresponding to these cases are
shown in Figure 5.4.

Equations having n equilibria can be classified similarly. We note that there can be
infinitely many steady states, for example in the case of f(x) = sin x, moreover, the
equilibria may accumulate as for the function f(x) = x2 · sin 1

x
. These cases are not dealt

with here.

Figure 5.2: The phase portrait of ẋ = f(x) when the function f has no zeros.
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Figure 5.3: The three possible phase portraits of ẋ = f(x) when the function f has one
zero.

Figure 5.4: The four possible phase portraits of ẋ = f(x) when the function f has two
zeros.
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5.1.2 Global phase portraits of two dimensional systems

Consider the system

ẋ = P (x, y),

ẏ = Q(x, y)

of two differential equations, where P,Q : R2 → R are continuously differentiable func-
tions. The goal here is to characterise the global phase portrait. The following methods
will be presented.

• Determining the direction field and the nullclines.

• Transforming the system to polar coordinates or to a complex variable.

• Finding a first integral or a Lyapunov function.

• Exploiting the symmetry of the vector field (P,Q).

Beyond these methods it is always useful to solve the differential equations numeri-
cally from suitably chosen initial conditions. In the next subsections we deal with these
methods and show by examples how they can be applied.

Direction field and nullclines

The direction field of the differential equation is the function (P,Q) : R2 → R2 that
associates a two dimensional vector to each point of the phase plane. This vector is the
tangent of the trajectory at the given point. In order to characterise the phase portrait
it is often enough to know if the vectors of the direction field point up or down, and to
the left or to the right. In order to see this the nullclines

N1 := {p ∈ R2 : P (p) = 0} N2 := {p ∈ R2 : Q(p) = 0}

can help. The null cline N1 divides the phase plane into two parts (these are not nec-
essarily connected sets). In one of these, in which P > 0, trajectories move to the right
(since ẋ > 0 there), in the other part, in which P < 0, trajectories move to the left (since
ẋ < 0 there). Similarly, the null cline N2 divides the phase plane into two parts (these
are not necessarily connected sets). In one of these, in which Q > 0, trajectories move
up (since ẏ > 0 there), in the other part, in which Q < 0, trajectories move down (since
ẏ < 0 there). Thus the nullclines N1 and N2 divide the phase plane into four parts, in
each of them it can be decided if the trajectories move up or down, and to the left or to
the right. (We use the terminology that ”the trajectory moves”, in fact the point ϕ(t, p)
moves along the trajectory as t is varied.)
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The intersection points of the nullclines are the equilibria where both P and Q are
equal to zero. In the neighbourhood of the steady states the phase portraits can be
determined by linearisation. In order to get the global picture it is useful to determine
the behaviour of the separatrices of the saddle points, i.e. the trajectories converging to
saddle points as t → +∞ or as t → −∞. We illustrate this approach by the following
examples.

Example 5.2. Consider the system

ẋ = x− xy, ẏ = x2 − y.

The equation of the null cline N1 is x(1 − y) = 0. That is this null cline consists of
two lines, the line {(x, y) ∈ R2 : x = 0} and the line {(x, y) ∈ R2 : y = 1}. These
lines divide the phase plane into four domains. In the upper right and lower left domain
the trajectories move to the left, while in the other two domains they move to the right.
Since the line x = 0 is contained in the null cline, it is an invariant line (this can also be
easily seen from the fact that x = 0 implies ẋ = 0). The equation of the null cline N2 is
y = x2, hence this is a parabola. Above the parabola ẏ < 0, hence trajectories are moving
down, while below the parabola ẏ > 0, hence trajectories are moving up. The nullclines
divide the phase plane into 8 parts. In Figure 5.2 an arrow represents the direction field
in each region. The equilibria and their types can simply be determined. The point (0, 0)
is a saddle, the steady states (1, 1) and (−1, 1) are stable foci. The stable manifold of the
saddle is the invariant line x = 0. Using the arrows of the direction field it can be shown
that the two trajectories in the unstable manifold of the saddle point tend to the focus
points. In a similar way, it can be shown that the trajectories starting in the right half
plane tend to the stable focus (1, 1) as t→ +∞, and those starting in the left half plane
tend to the stable focus (−1, 1) as t → +∞. Hence we get the phase portrait shown in
Figure 5.2.

The phase portrait of the system in Example 5.2 is determined by using the direction
field.

Example 5.3. Consider the system

ẋ = 2x+ y2 − 1, ẏ = 6x− y2 + 1.

First, let us determine the equilibria. Adding the two equations 8x = 0, then from the
first one y = ±1. Therefore the equilibria are (0, 1) and (0,−1). The Jacobian of the
system is

J =

(
2 2y
6 −2y

)
.

At the steady state (0, 1) the Jacobian is J(0, 1) =

(
2 2
6 −2

)
, for which Tr(J(0, 1)) = 0,

Det(J(0, 1)) = −16, hence (0, 1) is a saddle point. At the steady state (0,−1) the
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Jacobian is J(0,−1) =

(
2 −2
6 2

)
, for which Tr(J(0,−1)) = 4, Det(J(0,−1)) = 16,

Tr2(J(0,−1)) − 4Det(J(1, 2)) < 0, hence (0,−1) is an unstable focus. The equation of
the null cline N1 is x = (1 − y2)/2, hence this determines a parabola dividing the plane
into two regions. In the domain on the right hand side the trajectories move to the right,
and in the domain on the left hand side the trajectories move to the left. The equation
of the null cline N2 is x = (y2 − 1)/6, which is also a parabola dividing the plane into
two regions. In the domain on the right hand side the trajectories move up, and in the
domain on the left hand side the trajectories move down. The two nullclines divide the
plane into five parts. The trajectories in the unstable manifold of the saddle point tend to
infinity. The trajectories in the stable manifold of the saddle tend to the unstable focus
and to infinity as t → −∞. (These are shown in red in Figure 5.3.) Computing some
trajectories numerically we get the phase portrait shown in Figure 5.3.

The phase portrait of the system in Example 5.3 is determined by using the direction
field.

Example 5.4. Consider the system

ẋ = xy − 4, ẏ = (x− 4)(y − x).

First, let us determine the equilibria. The second equation yields x = 4 or y = x, then
the first one implies y = 1 and x = ±2. Therefore the equilibria are (4, 1), (2, 2) and
(−2,−2). The Jacobian of the system is

J =

(
y x

y − 2x+ 4 x− 4

)
.
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At the steady state (4, 1) the Jacobian is J(4, 1) =

(
1 4
−3 0

)
, for which Tr(J(4, 1)) = 1,

Det(J(4, 1)) = 9, Tr2(J(4, 1))− 4Det(J(4, 1)) < 0, hence (4, 1) is an unstable focus. At

the steady state (2, 2) the Jacobian is J(2, 2) =

(
2 2
2 −2

)
, for which Tr(J(2, 2)) = 0,

Det(J(2, 2)) = −8, hence (2, 2) is a saddle. At the steady state (−2,−2) the Jacobian

is J(−2,−2) =

(
−2 −2
6 −6

)
, for which Tr(J(−2,−2)) = −8, Det(J(−2,−2)) = 24,

Tr2(J(−2,−2))− 4Det(J(−2,−2)) < 0, hence (−2,−2) is a stable focus. The equation
of the null cline N1 is y = 4/x, which is a hyperbola dividing the plane into three regions.
In the middle domain (between the two branches) the trajectories move to the left, while
in the other two domains they move to the right. The null cline N2 consists of the lines
x = 4 and x = y that divide the plane into four parts. In the upper left and lower right
domains the trajectories move down, while in the upper right and lower left domains
they move up. The two nullclines divide the plane into 9 parts. The trajectories in the
unstable manifold of the saddle point tend to the stable focus. The trajectories in the
stable manifold of the saddle tend to the unstable focus and to infinity as t → −∞. All
other trajectories tend to the stable focus as t → +∞. Computing some trajectories
numerically we get the phase portrait shown in Figure 5.4.

The phase portrait of the system in Example 5.4 is determined by using the direction
field.
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Transforming the system to polar coordinates or to a complex variable

Introduce the functions r and φ to system ẋ = P (x, y), ẏ = Q(x, y) by the transformation
formulas x(t) = r(t) cos(φ(t)), y(t) = r(t) sin(φ(t)). These yield

ẋ = ṙ cos(φ)− rφ̇ sin(φ), ẏ = ṙ sin(φ) + rφ̇ cos(φ).

Multiplying the first equation by cos(φ) and the second one by sin(φ), then adding the
two equations and using the differential equations one obtains

ṙ = P (r cos(φ), r sin(φ)) cos(φ) +Q(r cos(φ), r sin(φ)) sin(φ).

In a similar way, multiplying the first equation by sin(φ) and the second one by cos(φ),
then subtracting the two equations and using the differential equations one obtains

φ̇ = Q(r cos(φ), r sin(φ)) cos(φ)− P (r cos(φ), r sin(φ)) sin(φ).

In certain cases the differential equations obtained for r and φ are simple enough to
determine the phase portrait belonging to them. The simplest example is the center
when the equations are ẋ = −y and ẏ = x. Then the equations for the polar coordinates
take the form ṙ = 0 and φ̇ = 1, showing that the orbits are circles centered at the origin.

Another useful transformation can be z(t) = x(t) + iy(t). For this new function the
differential equation takes the form

ż = ẋ+ iẏ = P (Re(z), Im(z)) + iQ(Re(z), Im(z)).
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The transformation is effective if the right hand side can be expressed in terms of z
without using the real and imaginary parts. The simplest example is the center when
the equations are ẋ = −y and ẏ = x yielding to ż = iz. The solution of this equation is
z(t) = exp(it), that gives explicitly the time dependence of x and y, moreover, it implies
simply that |z(t)| is constant in time, hence the orbits are circles centered at the origin.

Example 5.5. Consider the system

ẋ = x(1− x2 − y2)− y, ẏ = y(1− x2 − y2) + x.

Following the above approach introduce r and φ by using the transformation formulas
x(t) = r(t) cos(φ(t)), y(t) = r(t) sin(φ(t)). Then for the polar coordinates we get the
differential equations ṙ = r(1−r2) and φ̇ = 1. Since r = 1 implies ṙ = 0, the circle r = 1
is invariant and φ̇ = 1 yields that the trajectory along the circle rotate counterclockwise.
If r < 1, then ṙ > 0, thus the radius is increasing inside the circle that is the trajectories
tend to the circle. If r > 1, then ṙ < 0, thus the radius is decreasing outside the circle
that is these trajectories also tend to the circle. Therefore the phase portrait looks like as
it is shown in Figure 5.5.

The phase portrait of the system in Example 5.5 is determined by using polar coordi-
nate transformation.

The next example shows an application of using complex coordinates.

Example 5.6. Consider the system

ẋ = x2 − y2, ẏ = 2xy.
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Introducing the complex variable z(t) = x(t) + iy(t) the differential equation takes the
form ż = ẋ+ iẏ = P (Re(z), Im(z)) + iQ(Re(z), Im(z)), that is ż = z2. This differential
equation can be solved by the method of separating the variables. Divide the equation by
z2 and then integrate. The solution is z(t) = 1

c−t , where c ∈ C is an arbitrary complex
constant. Let us determine the trajectories starting from the vertical coordinate axis, i.e.
satisfying the initial condition z(0) = Ki. In this case c = 1/Ki, where K ∈ R is an
arbitrary real constant. Thus z(t) = Ki

1−tKi = Ki−tK2

1+t2K2 . Since x and y are the real and

imaginary parts of z, we get x(t) = −tK2

1+t2K2 and y(t) = K
1+t2K2 . Eliminating t from these

two equations (expressing t in terms of y and then substituting this expression into the
equation of x) we arrive to x2 = (K − y)y. This is equivalent to x2 + (y −K)2 = K2,
which is the equation of a circle with radius K and centered at the point (0, K). Hence the
equilibrium is the origin, the horizontal axis is an invariant line, along which trajectories
move to the right, and the other trajectories are homoclinic orbits lying on circles centered
on the vertical axis and containing the origin. These circles in the upper half plane are
oriented counterclockwise, while those in the lower half plane are oriented clockwise. The
phase portrait is shown in Figure 5.6.

The phase portrait of the system in Example 5.6 is determined transforming the sys-
tem to complex variable.

First integral and Lyapunov function

The function V : R2 → R is a first integral to system ẋ = P (x, y), ẏ = Q(x, y), if
P∂1V + Q∂2V = 0. Using a first integral the phase portrait can easily be obtained,

80



because trajectories lie on the level curves of the first integral. As an example let us
consider the Lotka–Volterra system

ẋ = x− xy, ẏ = xy − y.

Dividing the two equations by each other and assuming that y can be expressed in terms
of x (at least in a suitable domain) we get the following differential equation for the

function x 7→ y(x): dy
dx

= y(x−1)
x(1−y)

. This can be solved by using the method of separating the

variables. Taking the terms containing y to the left hand side 1−y
y

dy
dx

= x−1
x

. Integrating

the equation we get ln(|y|)−y = x−ln(|x|)+K, where K is an arbitrary constant. Hence
the function V (x, y) = ln(|x|) − x + ln(|y|) − y is a first integral, that can be checked
easily by differentiation (if the above derivation does not seem to be reliable). Namely,
LfV (x, y) = (1/x− 1)x(1− y) + (1/y − 1)y(x− 1) = 0, where LfV is the Lie-derivative
of V along the vector field given by f . We note that searching for a first integral in the
form V (x, y) = F (x) + G(y) we arrive to the same function V . It can be shown that
the level curves of this function V in the positive quadrant are closed curves, hence the
orbits with positive coordinates are periodic as it is shown in Figure 5.5.

Figure 5.5: The phase portrait of the Lotka–Volterra system.

There is no general method for finding a first integral, however, for an important class
of dynamical systems, namely for Hamiltonian systems the first integral can be explicitly
given.

The two dimensional system ẋ = P (x, y), ẏ = Q(x, y) is called Hamiltonian if there
exists a differentiable function H : R2 → R, for which P = ∂2H and Q = −∂1H. Apply-
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ing the theorem about the necessary condition of the existence of primitive functions we
get that if the system is Hamiltonian, then ∂1P = −∂2Q, that is ∂1P +∂2Q = 0, yielding
that the divergence of the right hand side is zero. The Jacobian of a Hamiltonian system
takes the form

J =

(
∂12H ∂22H
−∂11H −∂21H.

)
The trace of this matrix is Tr(J) = 0, hence linearisation shows that an equilibria
is either a saddle or a center. On the other hand, Det(J) = Det(H ′′(x, y)), hence
the equilibrium is a saddle if Det(H ′′(x, y)) < 0, i.e. when H ′′(x, y) is indefinite. If
Det(H ′′(x, y)) > 0, that is (x, y) is an extremum of H, then the equilibrium is a center,
because in a neighbourhood of an extremum the level curves of H are closed curves.

Example 5.7. Consider the system

ẋ = 1− x2 − y2, ẏ = 2xy.

Since ∂1P (x, y) + ∂2Q(x, y) = −2x+ 2x = 0, the system is Hamiltonian. Integrating the
function P with respect to y the Hamiltonian function can be given in the form H(x, y) =
y−x2y−y3/3+C(x), where C is an arbitrary differentiable function. Differentiating this
function with respect to x and using the relation Q = −∂1H we get C ′(x) = 0, hence the
function C is a constant function, which can be assumed to be the zero function without
loss of generality. Therefore the Hamiltonian is H(x, y) = y − x2y − y3/3. Before
determining the level curves of H it is useful to find the steady states and draw the
direction field. For the equilibria the second equation yields x = 0 or y = 0. Substituting
these values into the first equation one obtains y = ±1 or x = ±1. Therefore the
equilibria are (0, 1), (0,−1), (1, 0) and (−1, 0). The type of the steady states is determined
by the sign of Det(H ′′(x, y)). In this case Det(H ′′(x, y)) = −4x2 + 4y2. Hence (1, 0) and
(−1, 0) are saddle points, (0, 1) and (0,−1) are centers. The level curve H = 0 consists
of two parts. On one hand it contains the x coordinate axis and on the other hand,
the ellipse 1 = x2 + y2/3 connecting the two saddle points in the upper and lower half
plane. The level curves corresponding to negative values of H are closed curves around
the centers and lying inside the ellipse. The level curves corresponding to positive values
of H tend to +∞ and to −∞ along the x axis and pass round the ellipse in the upper
and lower half plane. The direction of the trajectories can easily be obtained from the
second equation according to the sign of ẏ. Computing some trajectories numerically we
get the phase portrait shown in Figure 5.7.

The phase portrait of the Hamiltonian system in Example 5.7.

An important special case of Hamiltonian systems is ẍ + U ′(x) = 0 describing a
mechanical system with one degree of freedom. The corresponding first order system
takes the form ẋ = y, ẏ = −U ′(x). The first integral of this system can be given as
V (x, y) = y2/2 + U(x), namely, its Lie derivative along the vector field is LfV (x, y) =
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−yU ′(x) + yU ′(x) = 0. Thus the trajectories lie on the level curves of the function V .
Thus in order to determine the phase portrait one has to find the level curves of V and
then determine the direction of the trajectories based on the sign of ẋ and ẏ. The level
curves of V can be found by using the graph of the function U in the plane (x, U). Then
taking the y axis orthogonal to this plane we plot the parabola y2/2 in the plane (y, U).
Finally, moving this parabola along the graph of the function U we get a surface, which
is the graph of the function V . Then the level curves of V can be simply obtained by
cutting this surface by horizontal planes. The Jacobian of the system is

J =

(
0 1

−U ′′(x) 0

)
.

Its trace is Tr(J) = 0, and determinant is Det(J) = U ′′(x). Therefore if U ′′(x) < 0,
then the steady state (x, 0) is a saddle, while in the case U ′′(x) > 0 the point (x, 0) is a
minimum point of V , hence it is a center.

Example 5.8. Consider the system

ẋ = y, ẏ = x− x2.

The steady states are (0, 0) and (1, 0). In this case U(x) = x3/3 − x2/2, hence the first
integral is V (x, y) = y2/2 + x3/3 − x2/2. The function U has a maximum at 0 and
a minimum at 1, therefore (0, 0) is a saddle and (1, 0) center. Draw the graph of the
function U , then following the above approach determine the level curves of V . The level
curve corresponding to V = 0 contains the origin and a loop in the right half plane. The
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level curves corresponding to negative values of V are closed curves inside the loop, at
the point (1, 0) there is a local minimum of V . The curves in the left half plane also
correspond to negative values of V . The positive level curves are connected sets tending
to infinity and passing round the loop. The direction of the trajectories can be obtained
easily from the first differential equation. Namely, in the upper half plane, where y > 0
the trajectories move to the right, since ẋ > 0 there. Similarly, in the lower half plane
the trajectories move to the left. The phase portrait is shown in Figure 5.8.

The phase portrait of the system in Example 5.8.

Example 5.9. Consider the following perturbation of the system in the previous example

ẋ = y, ẏ = x− x2 + cy.

The steady states are (0, 0) and (1, 0). Let us calculate the Lie derivative of the first
integral V (x, y) = y2/2 + x3/3 − x2/2 in Example 5.8. A simple calculation shows that
LfV (x, y) = cy2, the sign of which is the same as the sign of c. Hence in the case
c < 0 the value of V decreases along the trajectories. Therefore the orbit in the unstable
manifold of the saddle tends to the stable focus (1, 0). The phase portrait is shown in
Figure 5.9. In the case c > 0 the value of V increases along the trajectories. Therefore
the orbit in the stable manifold of the saddle tends to the unstable focus (1, 0) as t→ −∞.
The phase portrait is shown in Figure 5.9.

The phase portrait of the system in Example 5.9 for c < 0.
The phase portrait of the system in Example 5.9 for c > 0.
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Phase portrait of a vector field with symmetry

The information obtained from the direction field can be supplemented by the symmetry
of the vector field. One of the simplest examples is the non-linear center, the existence
of which cannot be deduced from the direction field or from linearisation. In this case
it may help to know that the orbits are symmetric to an axis through an equilibrium.
This fact can be verified from the differential equations without knowing the solutions.
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Namely, let us consider a general (possibly n-dimensional) system ẋ(t) = f(x(t)). Let
T : Rn → Rn be a transformation taking the orbits into each other. If the mapping
T maps the positive part (t > 0) of an orbit starting from the point p ∈ Rn onto the
negative part of the orbit starting from T (p), then

ϕ(−t, T (p)) = T (ϕ(t, p))

holds for all t. Differentiating this relation with respect to t we get −ϕ̇(−t, T (p)) =
T ′(ϕ(t, p))ϕ̇(t, p). Then substituting t = 0 yields

−f(T (p)) = T ′(p)f(p).

In order to check this relation the solutions are not needed.
Let us consider two important 2-dimensional consequences of this relation. Namely,

let us formulate the condition ensuring that the trajectories are symmetric to one of the
coordinate axes. The reflection to the vertical axis can be given as T (x, y) = (−x, y).

Its derivative is the matrix T ′ =

(
−1 0
0 1

)
. Hence using the above formula, the tra-

jectories of the system ẋ = P (x, y), ẏ = Q(x, y) are symmetric to the vertical axis, if
−(P (−x, y), Q(−x, y)) = T ′(P (x, y), Q(x, y)), that is

P (−x, y) = P (x, y), −Q(−x, y) = Q(x, y).

The reflection to the horizontal axis can be given as T (x, y) = (x,−y). Its derivative is

the matrix T ′ =

(
1 0
0 −1

)
. Hence using the above formula, the trajectories of the system

ẋ = P (x, y), ẏ = Q(x, y) are symmetric to the horizontal axis, if−(P (x,−y), Q(x,−y)) =
T ′(P (x, y), Q(x, y)), that is

−P (x,−y) = P (x, y), Q(x,−y) = Q(x, y).

Example 5.10. Consider the system

ẋ = 1− x2 − y2, ẏ = 2x.

Let us find first the equilibria. From the second equation x = 0, then the first one implies
y = ±1. Therefore the equilibria are (0, 1) and (0,−1). The Jacobian of the system is

J =

(
−2x −2y

2 0

)
.

At the point (0, 1) the Jacobian is J(0, 1) =

(
0 −2
2 0

)
, for which Tr(J(0, 1)) = 0,

Det(J(0, 1)) = 4, Tr2(J(0, 1)) − 4Det(J(0, 1)) < 0, hence the type of the steady state
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(0, 1) cannot be decided by using linearisation (the eigenvalues are pure imaginary). At

the point (0,−1) the Jacobian takes the form J(0,−1) =

(
0 2
2 0

)
, for which Tr(J(0,−1)) =

0, Det(J(0,−1)) = −4, hence (0,−1) is a saddle point. The equation of the nullcline
N1 is x2 + y2 = 1, hence this null cline is a circle centered at the origin, dividing the
plane into two parts. In the outer part the trajectories move to the left, while inside the
circle they move to the right. The nullcline N2 is the vertical axis, dividing the plane
into two parts. In the left half plane ẏ < 0, hence trajectories are moving down there,
in the right half plane ẏ > 0, hence trajectories are moving up there. The nullclines di-
vide the phase plane into four parts. In Figure 5.10 an arrow shows the direction of the
trajectories in each part. One of the trajectories in the unstable manifold of the saddle
point passes round the point (0, 1), the other one tends to −∞. One of the trajectories
in the stable manifold of the saddle point passes round the point (0, 1), the other one
comes from −∞. For the full characterization of the behaviour of the trajectories ob-
serve that the phase portrait is symmetric to the vertical axis. This is shown by the fact
that P (−x, y) = P (x, y) and −Q(−x, y) = Q(x, y) hold. Hence the equilibrium (0, 1)
is surrounded by periodic orbits, i.e. it is a center and a trajectory in the stable and
in the unstable manifold of the saddle point forms a homoclinic orbit. Computing some
trajectories numerically we get the phase portrait shown in Figure 5.10.

The phase portrait of the system in Example 5.10.

The above examples show that for two dimensional systems the global phase por-
trait cannot be typically obtained from the local phase portraits. Namely, there global
structures may occur. In two dimensional systems these can be
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• periodic orbits

• homoclinic orbits

• heteroclinic orbits.

In the next section the first of them will be dealt with.

5.2 Periodic orbits

Consider the system of differential equations

ẋ(t) = f(x(t)),

where f : Rn → Rn is a continuously differentiable function. The solution starting from
the point p is denoted by ϕ(t, p).

Definition 5.1.. The point p is called a periodic point if there exists T > 0, for which
ϕ(T, p) = p and p is not an equilibrium. The orbit of p is called a periodic orbit, the
smallest value of T is called the period of the orbit.

The two most important questions concerning periodic orbits are the following.

1. How can be verified the existence or non-existence of the periodic orbit?

2. How does the local phase portrait look like in a neighbourhood of a periodic orbit?

We note that these questions were addressed concerning the steady states. In that case
the first question leads to solving the system of algebraic equations f(p) = 0, or to
studying the existence of its solutions. The second question can be answered with the
help of the Jacobian matrix at the equilibria. The corresponding question concerning
periodic orbits is more difficult because of the non-local nature of periodic orbits. The
most well-known results will be dealt with in the next two subsections together with an
important open problem for periodic orbits.

5.2.1 Existence of periodic orbits

The existence of periodic orbits in two dimensional systems can be verified by using the
Poincaré-Bendixson theorem. Before stating the theorem a motivating example is shown
to illustrate the key idea of the proof.
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Example 5.11. Consider the system

ẋ = x− y − x3

ẏ = x+ y − y3.

Plotting the nullclines y = x− x3 and x = y3− y one can see that the trajectories rotate
around the origin, however, it cannot be directly seen if they are tending to the origin or
to infinity, see Figure 5.11.

The nullclines and the direction field of the system in Example 5.11.
In order to investigate this question introduce the Lyapunov function V (x, y) := x2 +

y2. For an arbitrary solution (x(t), y(t)) let V ∗(t) = x2(t) + y2(t). Then using the
differential equations V̇ ∗(t) = 2(x2(t) + y2(t)−x4(t)− y4(t)). The sign of this expression
can help in understanding the behaviour of the trajectories. The following two statements
can be proved by elementary calculations. If x2 + y2 < 1, then x2 + y2 − x4 − y4 > 0,
and x2 + y2 > 2 implies x2 + y2 − x4 − y4 < 0. This means that the trajectories are
spiraling away from the origin inside the unit disc, while they are spiraling inward outside
the circle of radius

√
2. Hence the annular domain bordered by the circles of radius 1

and
√

2 is positively invariant, i.e. trajectories cannot leave this region. Consider the
segment of the horizontal axis with end points 1 and

√
2 an define the Poincaré map

P : [1,
√

2] → [1,
√

2] in this set as follows. For a given q ∈ [1,
√

2] let P (q) ∈ [1,
√

2]
be the point to which the trajectory starting from q returns after one rotation, see the
schematic Figure 5.6.

It can be proved that the Poincaré map is continuous, hence it maps the interval
[1,
√

2] into itself continuously, thus it has a fixed point p ∈ [1,
√

2], for which P (p) = p

89



Figure 5.6: The Poincaré map and a periodic orbit starting from p.

holds. This point is a periodic point, because the trajectory starting from this point returns
to the same point.

Generalising the idea used in this example, the following theorem can be proved.

Theorem 5.2. (Poincaré–Bendixson (weak form)). Let f : R2 → R2 be a continu-
ously differentiable function and consider the two dimensional system ẋ(t) = f(x(t)). If
K ⊂ R2 is a positively invariant, compact set that contains no equilibria, then there is a
periodic orbit in it.

We do not present the proof here, it can be found in [19]. We note that the role of K
is played by the annular domain bordered by the circles of radius 1 and

√
2 in the above

example.
The Poincaré–Bendixson theorem gives a sufficient condition for the existence of a

periodic orbit in two dimensional systems. The applicability of the theorem relies on the
construction of the set K that may be extremely difficult in some cases. Therefore to have
a condition for the non-existence of periodic orbits is often very useful. The non-existence
of periodic orbits can be proved by Bendixson’s criterion and by the Bendixson–Dulac
criterion, that will be dealt with now.

Both criteria can be proved by using the following simple version of Stokes’s theorem.
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Lemma 5.3.. Let D ⊂ R2 be a simply connected open set and G : D → R2 be a
differentiable function. Then∫

D

(∂1G1 + ∂2G2) =

∫
∂D

(−G2, G1).

Using this lemma we prove first Bendixson’s criterion.

Theorem 5.4. (Bendixson’s criterion). Assume that H ⊂ R2 is a simply connected
open domain, in which the divergence divf = ∂1f1 + ∂2f2 has a given sign and it is zero
at most in the points of a curve. Then system ẋ(t) = f(x(t)) has no periodic orbit lying
completely in H.

Proof. Assume that there is a periodic orbit Γ in the set H. Denote by D the interior of
Γ. Applying Stokes’s theorem for the function f in the domain D we get a contradiction.
Namely, the left hand side has a given sign (according to the sign of the divergence),
while the right hand side is zero that can be proved as follows. The vector (−f2, f1)
is orthogonal to the curve ∂D, because this curve is the periodic orbit itself. Hence
denoting the periodic orbit by γ(t) the right hand side in Stokes’s theorem takes the
form ∫

Γ

(−f2, f1) =

∫ T

0

(
− f2(γ(t)) · γ̇1(t) + f1(γ(t)) · γ̇2(t)

)
dt

=

∫ T

0

(
− γ̇2γ̇1 + γ̇1γ̇2

)
dt = 0.

This theorem can be generalised to derive the Bendixson–Dulac criterion.

Theorem 5.5. (Bendixson–Dulac criterion). Let H ⊂ R2 be a simply connected
open domain and let B : H → R be a differentiable function, for which div(Bf) has a
given sign and it is zero at most in the points of a curve. Then system ẋ(t) = f(x(t))
has no periodic orbit lying completely in H.

Proof. The proof is similar to the previous one, however, instead of f the reasoning is
applied to the function Bf .

Now, examples are shown for the application of the non-existence theorems.

Example 5.12. Consider the differential equation

ẋ = x− xy2 + y3

ẏ = 3y − x2y + x3.

Then ∂1f1(x, y) + ∂2f2(x, y) = 1 − y2 + 3 − x2 = 4 − (x2 + y2), which is positive inside
the circle of radius 2 and centered at the origin. Hence in this disk the system has no
periodic orbit.
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Example 5.13. The system

ẋ = x+ y2 + x3 ẏ = −x+ y + x2y

has no periodic orbit according to Bendixson’s criterion. Namely, divf(x, y) = 2+4x2 > 0
at each point of the phase plane.

All the results presented in this section correspond to the two dimensional case. In
higher dimension these theorems have no counter part, because of topological reasons.
The investigation of the existence of periodic orbits in higher dimensional phase spaces
is beyond the scope of this lecture notes. The difficulty of this problem is also illustrated
by Hilbert’s 16th problem that has remained open for more than 110 years.

Hilbert’s 16th problem
Let P and Q be polynomials of degree n. How many limit cycles can be at most in

the following system?

ẋ = P (x, y)

ẏ = Q(x, y)

In the case n = 1, i.e. when the system is linear, there is no limit cycle (periodic orbits
may exist only in the case of a center, however these periodic orbits are not isolated). In
the case n = 2 Shi, Chen and Wang proved in 1979 that there can be four limit cycles.
It is conjectured that this is the maximal number of limit cycles in the quadratic case,
however it has not been proved yet. The partial result can be found in review articles
and a good summary can be read in the book by Perko [19].

5.2.2 Local phase portrait in a neighbourhood of a periodic
orbit

In this subsection it is shown how can the local phase portrait be investigated in a neigh-
bourhood of a periodic orbit. The stability of periodic orbits and their stable, unstable
and center manifolds will be dealt with. The most important tool of the investigation is
the Poincaré map, by the use of which the problem can be reduced to the study of the
local phase portrait of discrete time dynamical systems at steady states.

Let M ⊂ Rn be a domain and let ϕ : R ×M → M be a dynamical system. Let
p ∈ M be a periodic point with period T , that is ϕ(T, p) = p. Introduce the notations
γ(t) := ϕ(t, p) and Γ := {γ(t) : t ∈ [0, T ]}.

Definition 5.6.. Let L ⊂ Rn be an n − 1 dimensional hyperplane with normal ν. A
connected subset Σ ⊂ L is called a transversal section, if 〈ν, ∂tϕ(0, q)〉 6= 0 for all q ∈ Σ.
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Let Σ be a transversal section containing p in its interior. Using the implicit function
theorem the following statement can be shown.

Proposition 5.1. (Existence of the Poincaré map) The point p has a neighbourhood
U ⊂ Σ and there exists a continuously differentiable function Θ : U → R, for which
Θ(p) = T and ϕ(Θ(q), q) ∈ Σ, for all q ∈ U .

Definition 5.7.. The function P : U → Σ, P (q) = ϕ(Θ(q), q) is called the Poincaré
map (belonging to the transversal section Σ).

The Poincaré map depends on the choice of the point p and that of the transversal
section Σ. The next proposition shows that different Poincaré maps can be transformed
to each other by a suitable coordinate transformation.

Proposition 5.2. Let p1, p2 ∈ Γ, and let Σ1,Σ2 be transversal sections containing the
corresponding points. Let Ui ⊂ Σi (i = 1, 2) be open sets, in which the Poincaré maps
Pi : Ui → Σi (i = 1, 2) are defined. Then there exists a neighbourhood V ⊂ U1 of the point
p1 and there exists a differentiable function S : V → U2, for which P2(S(p)) = S((P1(p))
holds for all p ∈ V .

Corollary 5.8.. The eigenvalues of the matrices P ′1(p1) and P ′2(p2) coincide.

If P (U) ⊂ U , then the Poincaré map P defines a discrete time dynamical system
(more precisely a semi-dynamical system) ψ : N × U → U in the following way. Let
ψ(n, q) = P n(q), where P n = P ◦ P ◦ . . . ◦ P denotes the composition with n terms.
(The notion semi-dynamical system is used, because it is not defined for negative values
of n.) Since P (p) = p, the point p is a steady state of the dynamical system ψ. It will
be shown that its stability determines that of the periodic orbit Γ. Hence we will recall
the definition of stability for a fixed point of a discrete time dynamical and the results
about linearisation at a fixed point. These will be dealt with in detail in Section 8.

Let G ⊂ Rk be an open set and let g : G→ G be a diffeomorphism. Then g defines a
discrete time dynamical system ψ : Z×G→ G, by the definition ψ(n, q) = gn(q), where
gn = g ◦ g ◦ . . .◦ g is a composition of n terms. If n < 0, then let gn = g−1 ◦ g−1 ◦ . . .◦ g−1

be a composition of −n terms.

Definition 5.9.. The point p ∈ G is an equilibrium or fixed point of the dynamical
system ψ, if g(p) = p (that is ψ(n, p) = p, for all n ∈ Z).

Definition 5.10.. The fixed point p is called stable, if for any ε > 0 there exists δ > 0,
such that |q−p| < δ and n ∈ N imply |gn(q)−p| < ε. The fixed point p is called unstable,
if it is not stable.

The fixed point p is called asymptotically stable, if it is stable and |q − p| < δ implies
limn→∞ g

n(q) = p.
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The stability of the fixed point can be determined by linearisation as it was shown
for continuous time dynamical systems.

Theorem 5.11.. (Stability of the fixed point) If |λ| < 1 for all eigenvalues of the matrix
g′(p), then the fixed point p is asymptotically stable.

Let us return now to the investigation of the Poincaré map P : U → Σ. It will be
studied how the stability of a fixed point of the Poincaré map determines the stability of
the periodic orbit Γ containing the given fixed point. A first, and important observation
is that the periodic orbit cannot be asymptotically stable, because the distance between
two solutions starting from two different points of the periodic orbit does not tend to
zero. Despite of this fact, trajectories may converge to the periodic orbit, hence it can
be stable as a set, in a suitable sense. For example, it can be an ω limit set or an
attractor. Therefore in order to characterise its stability the notion of orbital stability
will be introduced. The following usual definition for the distance of a set and a point is
used.

d(q,Γ) = inf{|q − γ(t)| : t ∈ [0, T ]}.

Definition 5.12.. The periodic solution γ is called orbitally stable, if for all ε > 0 there
exists δ > 0, for which d(q,Γ) < δ and t ≥ 0 imply d(ϕ(t, q),Γ) < ε.

The periodic solution γ is called orbitally asymptotically stable, if it is orbitally stable
and

lim
t→∞

d(ϕ(t, q),Γ) = 0.

The periodic orbit Γ is a limit cycle, if there is a point q /∈ Γ, for which Γ ⊂ ω(q) or
Γ ⊂ α(q).

The periodic orbit Γ is a stable limit cycle, if γ orbitally asymptotically stable.

Let Σ be a transversal section containing the point p, let U ⊂ Σ be a neighbourhood
of p and let P : U → Σ be the Poincaré map.

Theorem 5.13.. If p is a (asymptotically) stable fixed point of the Poincaré map P ,
then the periodic solution γ is orbitally (asymptotically) stable.

The proof is technical, the key ideas of the proof can be found in the books [19, 26].
Thus the stability of the periodic orbit is determined by the eigenvalues of the derivative
of the Poincaré map at its fixed point.

Definition 5.14.. The eigenvalues of the ((n− 1)× (n− 1)) matrix P ′(p) are called the
characteristic multipliers of the periodic orbit Γ.

According to Corollary 5.8. the characteristic multipliers do not depend on the choice
of p, Σ and the Poincaré map. On the other hand, Theorem 5.11. implies that they
characterise the stability of the fixed point of the Poincaré map. Therefore we get the
following theorem.
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Theorem 5.15. (Andronov–Witt). If the absolute values of all characteristic multi-
pliers of Γ are less than 1, then Γ is a stable limit cycle.

For two dimensional systems there is a single characteristic multiplier P ′(p). It can
be shown (see Theorem 2 in Section 3.4 in Perko’s book [19]), that this can be given in
the form

P ′(p) = exp

(∫ T

0

divf(γ(t))

)
,

where divf = ∂1f1 +∂2f2 denotes the divergence of f . Thus, if the divergence is negative
along the periodic orbit, then it is a stable limit cycle, while if it is positive along the
periodic orbit, then it is an unstable limit cycle.

In the two dimensional case the periodic orbit has only one characteristic multiplier
and an invariant manifold that is either stable or unstable. In higher dimension it may
happen that the periodic orbit is attracting in one direction and repelling in another
direction, hence the local phase portrait has a saddle-like structure. In that case the local
behaviour of trajectories in a neighbourhood of the periodic orbit can be characterised by
the dimension of the stable, unstable and center manifolds. The introduction of invariant
manifolds of periodic orbits is illustrated first with the following example.

Example 5.14. Consider the following three variable system.

ẋ = −y + x(1− x2 − y2)

ẏ = x+ y(1− x2 − y2)

ż = z

It can be easily seen that the horizontal (x, y) plane and the vertical z axis are invariant,
that is trajectories do not leave them. The unit circle centered at the origin and lying in
the horizontal plane is a periodic orbit. The trajectories starting in the horizontal plane
tend to this limit cycle. The vertical cylinder containing this circle is also invariant,
however, the trajectories moving in this cylinder spiral towards infinity, because in the
upper half space z is increasing and in the lower half space it is decreasing. Therefore
the stable manifold of the periodic orbit is the horizontal plane and its unstable manifold
is the vertical cylinder as it is shown in Figure 5.14.

Invariant manifolds for the differential equation in Example 5.14.

Let us turn now to the definition of the stable, unstable and center manifolds of a
periodic orbit.

Let M ⊂ Rn be a connected open set and let ϕ : R × M → M be a dynamical
system. Let p ∈M be a periodic point with period T , that is ϕ(T, p) = p. The notations
γ(t) := ϕ(t, p) and Γ := {γ(t) : t ∈ [0, T ]} are used again. The characteristic multipliers
of the periodic orbit Γ are denoted by µ1, µ2, . . . , µn−1.
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Theorem 5.16. (Stable and unstable manifold theorem). Assume that there are
k characteristic multipliers of Γ within the unit disk (that is having absolute value less
than one) and outside the unit disk there are n − 1 − k (having absolute value greater
than one). Then for some δ > 0 let W loc

s (Γ) be the set of those points q ∈ Rn, for which

1. d(ϕ(t, q),Γ)→ 0 as t→∞,

2. d(ϕ(t, q),Γ) < δ, if t ≥ 0.

Moreover, let W loc
u (Γ) be the set of those points q ∈ Rn, for which

1. d(ϕ(t, q),Γ)→ 0 as t→ −∞,

2. d(ϕ(t, q),Γ) < δ, if t ≤ 0.

Then there exist δ > 0, such that W loc
s (Γ) is a k + 1 dimensional positively invariant

differentiable manifold and W loc
u (Γ) is an n− k dimensional negatively invariant differ-

entiable manifold, that are called the stable and unstable manifolds of the periodic orbit
Γ. These manifolds intersect transversally at the points of Γ.

The global stable and unstable manifolds can be defined similarly to the case of
equilibria, using the local stable and unstable manifolds W loc

s (Γ) and W loc
u (Γ). The

stable manifold is defined in such a way that the trajectories starting in that manifold
tend to the periodic orbit Γ. Since these trajectories are in the local stable manifold in
a neighbourhood of the periodic orbit, the global stable manifold can be defined by

Ws(Γ) :=
⋃
t≤0

ϕ(t,W loc
s (Γ)).
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The unstable manifold is defined in such a way that the trajectories starting from it
tend to Γ as t → −∞. Since these trajectories are in the local unstable manifold in a
neighbourhood of the periodic orbit, the global unstable manifold can be defined by

Wu(Γ) :=
⋃
t≥0

ϕ(t,W loc
u (Γ)).

If there are characteristic multipliers with absolute value 1, then besides these invariant
manifolds the periodic orbit has a center manifold denoted by Wc(Γ). Its dimension is
m+ 1 if there are m characteristic multipliers along the unit circle.

Example 5.15. Consider the following three variable system.

ẋ = −y
ẏ = x

ż = −z

It can be easily seen that the horizontal plane (x, y) and the vertical axis z are invariant,
that is trajectories do not leave them. In the horizontal plane the orbits are circles
centered at the origin. Consider the unit circle as a periodic orbit. Its center manifold is
the horizontal plane, and the stable manifold is the vertical cylinder containing the circle.
The later statement is proved by the fact that the cylinder is invariant and for positive
values of z its time derivative is negative, while for negative values the time derivative
is positive. These invariant manifolds are shown in Figure 5.15.

Invariant manifolds for the differential equation in Example 5.15.
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5.3 Index theory for two dimensional systems

An important tool for investigating the global phase portrait in two dimension is the
index of the vector field. The index is a topological invariant that can be defined also
in higher dimension, however it is dealt with here only for two dimensional systems.
Consider the system

ẋ = P (x, y)

ẏ = Q(x, y)

and take a continuous simple closed curve γ : [a, b] → R2 (it is not assumed to be an
orbit of the differential equation). The index of γ, denoted by ind(γ) is an integer that
gives the number of rotations of the vector field (P (γ(s)), Q(γ(s))) while s moves in the
interval [a, b]. It can be seen easily that the index of a curve making a round around a
(stable or unstable) node is 1, while that around a saddle point the index is -1. These
statements can be proved also formally once the index is defined by a formula. This is
what will be shown now.

Denote by Θ(x, y) the angle of the vector (P (x, y), Q(x, y)) with the x coordinate axis
at a given point (x, y). Given a curve γ : [a, b] → R2 let Θ∗(s) = Θ(γ(s)) for s ∈ [a, b].
Then

tanΘ∗(s) =
Q(γ(s))

P (γ(s))
.

Differentiating with respect to s one obtains

1

cos2 Θ∗(s)
· Θ̇∗(s) =

(
∂1Q(γ(s)) · γ̇1(s) + ∂2Q(γ(s)) · γ̇2(s)

)
P (γ(s))

P 2(γ(s))
−

−

(
∂1P (γ(s)) · γ̇1(s) + ∂2P (γ(s)) · γ̇2(s)

)
Q(γ(s))

P 2(γ(s))
.

Using that
1

cos2 Θ∗
= tg2Θ∗ + 1 =

Q2

P 2
+ 1 =

Q2 + P 2

P 2

the derivative Θ̇∗ can be expressed as

Θ̇∗(s) =
P (∂1Qγ̇1 + ∂2Qγ̇2)−Q(∂1P γ̇1 + ∂2P γ̇2)

P 2 +Q2
.

The rotation of the vector (P (γ(s)), Q(γ(s))) can be given by the integral

1

2π

∫ b

a

Θ̇∗(s)ds

hence the index of the curve can be defined as follows.
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Definition 5.17.. Let γ : [a, b] → R2 be a continuous simple closed curve, that do not
pass through any equilibrium. Then its index with respect to the system ẋ = P (x, y)
ẏ = Q(x, y) is

ind(γ) =
1

2π

∫ b

a

P (∂1Qγ̇1 + ∂2Qγ̇2)−Q(∂1P γ̇1 + ∂2P γ̇2)

P 2 +Q2
.

Example 5.16. Compute the index of a curve encircling an unstable node. The origin
is an unstable node of the system

ẋ = x

ẏ = y.

Let γ(t) = (cos t, sin t), t ∈ [0, 2π] be the parametrisation of the unit circle centered at the
origin. Then the vector field’s direction is radial and pointing outward at each point of
the curve as it is shown in Figure ??, therefore its rotation is 2π, hence the index of the
curve is 1. This can be computed also by the formal definition as follows. In this case

P (x, y) = x, ∂1P = 1, ∂2P = 0

Q(x, y) = y, ∂1Q = 0, ∂2Q = 1

and γ̇1 = − sin t, γ̇2 = cos t. Hence the definition yields

ind(γ) =
1

2π

∫ 2π

0

cos t(cos t)− sin t(− sin t)

cos2 t+ sin2 t
dt = 1.

Example 5.17. Compute the index of a curve encircling a stable node. The origin is a
stable node of the system

ẋ = −x
ẏ = −y.

Let γ(t) = (cos t, sin t), t ∈ [0, 2π] be the parametrisation of the unit circle centered at
the origin. Then the vector field’s direction is radial and pointing inward at each point of
the curve as it is shown in Figure ??, therefore its rotation is 2π, hence the index of the
curve is 1. This can be computed also by the formal definition as follows. In this case

P (x, y) = −x, ∂1P = −1, ∂2P = 0

Q(x, y) = −y, ∂1Q = 0, ∂2Q = −1

and γ̇1 = − sin t, γ̇2 = cos t. Hence the definition yields

ind(γ) =
1

2π

∫ 2π

0

− cos t(− cos t) + sin t(sin t)

cos2 t+ sin2 t
dt = 1.
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Example 5.18. Compute the index of a curve encircling a saddle. The origin is a saddle
point of the system

ẋ = x

ẏ = −y.

Let γ(t) = (cos t, sin t), t ∈ [0, 2π] be the parametrisation of the unit circle centered at
the origin. Then the vector field’s direction is shown in Figure ??, therefore its rotation
is −2π, hence the index of the curve is -1. This can be computed also by the formal
definition as follows. In this case

P (x, y) = x, ∂1P = 1, ∂2P = 0

Q(x, y) = −y, ∂1Q = 0, ∂2Q = −1

and γ̇1 = − sin t, γ̇2 = cos t. Hence the definition yields

ind(γ) =
1

2π

∫ 2π

0

cos t(− cos t) + sin t(− sin t)

cos2 t+ sin2 t
dt = −1.

The following proposition makes the computation of the index easier and it is also
important from the theoretical point of view. We do not prove it rigorously, however,
geometrically it is easy to see.

Proposition 5.3. For an arbitrary curve γ and for an arbitrary vector field (P,Q) the
following statements hold.

1. The index ind(γ) depends continuously on the curve γ, if it does not pass through
an equilibria.

2. The index ind(γ) depends continuously on the functions P and Q, if the curve does
not pass through an equilibria.

Since the index is an integer value, the continuous dependence implies the following.

Corollary 5.18.. For an arbitrary curve γ and vector field (P,Q) the index ind(γ) is
constant as the curve or the vector field is changed, if the curve does not pass through an
equilibria of the vector field.

This corollary enables us to prove global results about the phase portrait.

Proposition 5.4. If there is no equilibrium inside γ, then ind(γ) = 0.
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Figure 5.7: The index of a curve is zero, if it does not contain any equilibrium in its
interior.

Proof. If there is no equilibrium inside γ, then it can be shrunk to a single point without
crossing an equilibrium. In Figure 5.7 one can see that if γ is shrunk to a certain small
size then the rotation of the vector field along that curve is 0, hence the index of the
curve is 0. Since the index is not changed as the curve is shrunk, the index of γ is also
0.

The corollary above also enables us to define the index of an equilibrium.

Definition 5.19.. Let (x0, y0) be an isolated equilibrium of system ẋ = P (x, y) ẏ =
Q(x, y). Then the index of this steady state is defined as the index of a curve encir-
cling (x0, y0) but not containing any other equilibrium in its interior. (According to the
corollary this is well-defined.)

Based on the examples above we have the following proposition about the indices of
different equilibria.

Proposition 5.5. The index of a saddle point is −1, while the index of a node or a
focus is 1.

The following proposition can also be proved by varying the curve continuously.
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Proposition 5.6. Let (xi, yi), i = 1, 2, . . . k be the equilibria in the interior of the curve
γ. Then the index of the curve is equal to the sum of the indices of the equilibria, that is

ind(γ) =
k∑
i=1

ind(xi, yi).

It can be seen in Figure 5.8 that in the case when γ is a periodic orbit, the rotation
of the vector field along gamma is 2π, yielding the following.

Figure 5.8: Computing the index of a periodic orbit.

Proposition 5.7. If γ is a periodic orbit, then ind(γ) = 1.

This proposition together with the previous one we immediately get the following.

Corollary 5.20.. If γ is a periodic orbit, then it contains at least one equilibrium in its
interior. Moreover, the sum of the indices of these equilibria is 1.

We note that the index can be defined also for differential equations on other two
dimensional manifolds, for example, on the sphere, or torus. The Poincaré’s index the-
orem states that the sum of the indices on a compact manifold is equal to the Euler
characteristic of the manifold, which is 2 for the sphere and 0 for the torus. Thus the
sum of the indices of equilibria on the sphere is 2.
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5.4 Behaviour of trajectories at infinity

One of the difficulties of classifying two dimensional phase portraits is caused by non-
compactness of the phase plane, that makes it difficult to catch the behaviour of tra-
jectories at infinity. This problem can be handled by projecting the phase plane to a
compact manifold. Here the Poincaré center projection is presented that maps the plane
to the upper hemisphere and takes the points at infinity to the equator of the sphere.
By using that the structure of the phase portrait at infinity can be studied in detail.

Let us consider the unit sphere centered at the origin and a plane tangential to the
sphere at the point (0, 0, 1) (i.e. at the north pole). Let the origin of the plane be at the
tangent point, the coordinates in the plane are denoted by (x, y). The space coordinates
are denoted by X, Y, Z. The points of the plane are projected to the upper hemisphere
as follows. Take a point (x, y) in the plane, connect to the origin of the space and
associate to (x, y) the intersection point of the ray (from the origin to (x, y)) and the
upper hemisphere. In Figure 5.9 there are similar triangles leading to the coordinate
transformation x = X/Z.

Figure 5.9: The projection of the plane to the upper hemisphere.

Thus let us introduce the space coordinates X, Y, Z in terms of the (x, y) coordinates
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of the plane as follows

X = xZ

Y = yZ

Z =
1√

x2 + y2 + 1
.

We will now investigate how this coordinate transformation effects the phase portrait of
the differential equations

ẋ = P (x, y) (5.1)

ẏ = Q(x, y). (5.2)

Differentiating the identities defining the projection leads to the system of differential
equations

Ẋ = ẋZ + xŻ

Ẏ = ẏZ + yŻ

Ż = −Z3(xẋ+ yẏ).

Substituting the differential equations (5.1)-(5.2) into these equations and using the
equations of the transformation one obtains

Ẋ = Z · P
(X
Z
,
Y

Z

)
− Z ·X ·

(
XP

(X
Z
,
Y

Z

)
+ Y Q

(X
Z
,
Y

Z

))
.

The differential equations for Y and Z can be obtained similarly. For the sake of simplic-

ity we write P instead of P
(
X
Z
, Y
Z

)
, and similarly for Q. Then the differential equations

for the new variables take the form

Ẋ = ZP − ZX(XP + Y Q) (5.3)

Ẏ = ZQ− ZY (XP + Y Q) (5.4)

Ż = −Z3(XP + Y Q). (5.5)

It can easily be checked that the unit sphere is invariant for this system. The phase
portrait on the sphere is equivalent to that on the plane (x, y). However, we can see the
trajectories at infinity on the sphere, these are the trajectories moving along the equator,
i.e. in the plane Z = 0.

It will be shown for some linear systems how the known phase portrait can be ex-
tended to infinity.
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Example 5.19. Consider the linear system

ẋ = x

ẏ = −y

with a saddle point. Then P (x, y) = x, Q(x, y) = −y, hence ZP = X, ZQ = −Y and
Z(XP + Y Q) = X2 − Y 2. Substituting these into system (5.3)-(5.5), one obtains the
system

Ẋ = X(1−X2 + Y 2)

Ẏ = Y (−1−X2 + Y 2)

Ż = −Z(X2 − Y 2)

for the new variables. Let us investigate the phase portrait on the sphere. The finite
equilibria are (0, 0, 1) and (0, 0,−1). These are saddle points, because the original point
in the plane is also a saddle. Let us turn now to the equilibria at infinity. The third
coordinate of these is Z = 0, hence these are given by equation X2 + Y 2 = 1. This
equation yields X = 0 and Y = ±1 or X = ±1 and Y = 0. Hence there are four
equilibria at infinity, namely (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0). Their type can be
obtained as follows. In the point (1, 0, 0) project the equation to the plane X = 1, then
we get the two variable system

Ẏ = Y (−2 + Y 2)

Ż = −Z(1− Y 2).

Its steady state is (0, 0) (corresponding to (1, 0, 0)). The Jacobian of the system at (0, 0)
is (

−2 0
0 −1

)
,

hence (0, 0) is a stable node, implying that (1, 0, 0) is a stable node. The remaining three
steady states can be studied in a similar way. The point (−1, 0, 0) is also a stable node,
while the points (0, 1, 0) and (0,−1, 0) are unstable nodes. Therefore we get the phase
portrait in the upper hemisphere as it is shown in Figure 5.10. (The phase portrait is
projected from the upper hemisphere to the plane of the equator vertically.) One can
observe that there are 6 equilibria in the whole sphere all together. Two of them are
saddles (with index -1) and the remaining four are nodes (with index 1). Hence the sum
of the indices is 2(−1) + 4 = 2 = χ(S2) yielding the Euler characteristic of the sphere,
as it is stated by Poincaré’s index theorem.

Example 5.20. Consider the linear system

ẋ = x− y
ẏ = x+ y
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Figure 5.10: The complete phase portrait for a saddle.

with an unstable focus. Then P (x, y) = x − y, Q(x, y) = x + y, yielding ZP = X − Y ,
ZQ = X + Y and Z(XP + Y Q) = X2 + Y 2. Substituting these equations into system
(5.3)-(5.5) leads to

Ẋ = X − Y −X(X2 + Y 2)

Ẏ = X + Y − Y (X2 + Y 2)

Ż = −Z2(X2 + Y 2).

Let us investigate the phase portrait on the sphere. The finite equilibria are (0, 0, 1) and
(0, 0,−1). These are unstable foci, because the original point in the plane is also an
unstable focus. Let us turn now to the equilibria at infinity. The third coordinate of these
is Z = 0, hence these are given by equation X2 +Y 2 = 1. Substituting this equation into
the first two equations one can see that there are no solutions, that is the system has no
equilibrium point at infinity. Therefore we get the phase portrait in the upper hemisphere
as it is shown in Figure 5.11. (The phase portrait is projected from the upper hemisphere
to the plane of the equator vertically.) One can observe that there are two equilibria in
the whole sphere all together, both of them are unstable foci (with index 1). Hence the
sum of the indices is 2 = χ(S2) yielding the Euler characteristic of the sphere, as it is
stated by Poincaré’s index theorem.
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Figure 5.11: The complete phase portrait for an unstable focus.

5.5 Exercises

1. Let f : R → R be a differentiable function. If f has three zeros, then how many
classes are under topological equivalence for the equations of the form ẋ = f(x)?

(A) 10, (B) 9, (C) 8

Answer: (A).

2. Let f : R → R be a differentiable function. If f has four zeros, then how many
classes are under topological equivalence for the equations of the form ẋ = f(x)?

(A) 15, (B) 16, (C) 17

Answer: (B).

3. How many equilibria are at infinity for the system

ẋ = −y
ẏ = x

with a center at the origin?

(A) 2, (B) 3, (C) 0

Answer: (C).
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4. How many equilibria are at infinity for the system

ẋ = x

ẏ = y

with a node at the origin?

(A) 4, (B) 3, (C) 0

Answer: (A).
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Chapter 6

Introduction to bifurcation theory
and structural stability

In the previous chapters several methods were shown for the investigation of the phase
portrait of systems of differential equations. Systems occurring in applications typically
contain parameters, hence it is a natural question how the phase portrait changes as the
values of the parameters are varied. Changing a parameter the solution of the differential
equation changes, however, qualitative change in the behaviour of the solutions occurs
only at a few (isolated) values of the parameter. As an illustration, consider the differen-
tial equation ẋ = ax, in which a ∈ R is a parameter. The solution can be easily given as
x(t) = eatx(0) that obviously depends on a, but as the value of a is changed from a = 1
to a = 1.01, then there is no qualitative change in the solution. However, changing the
value of a around zero we can observe qualitative change in the behaviour. For a = 0 all
solutions are constant functions, for negative values of a the solutions tend to zero, while
for positive values of a they tend to infinity. The bifurcation is the qualitative change in
the phase portrait. The bifurcation occurs at those parameter values for which the phase
portrait is not topologically equivalent to those belonging to nearby parameter values.
This is formulated in the following definition.

Consider the equation ẋ(t) = f(x(t), λ), where f : Rn × Rk → Rn is a continuously
differentiable function and λ ∈ Rk is a parameter.

Definition 6.1.. The parameter value λ0 ∈ Rk is called regular, if there exists δ > 0,
for which |λ − λ0| < δ implies that the system f(·, λ) is topologically equivalent to the
system f(·, λ0). At the parameter value λ0 ∈ Rk there is a bifurcation if it is not regular.

In the first section several types of bifurcations will be shown through examples. The
most important two bifurcations will be dealt with in detail in the next section, where
also sufficient conditions will be given for these bifurcations. In the last section the
structural stability is introduced and studied.
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6.1 Normal forms of elementary bifurcations

In this section the normal forms of the most frequently occurring bifurcations are pre-
sented, that is the simplest systems are shown, where these bifurcations can be observed.

Example 6.1. Consider the differential equation ẋ = λ − x, in which λ ∈ R is a pa-
rameter. For a given value of λ the equilibrium is the point x = λ. This point is globally
asymptotically stable for all values of λ, that is trajectories are tending to this point.
The phase portrait for different values of λ can be shown in a coordinate system, where
the horizontal axis is for λ and for a given value of λ the corresponding phase portrait
is given on the vertical line at λ, as it is shown in Figure 6.1. This Figure shows that
the phase portrait is the same for all values of λ, that is all values of λ are regular, i.e.
there is no bifurcation. The topological equivalence of the phase portraits corresponding
to different values of λ can be formally verified by determining the homeomorphism the
orbits to each other. For example, the orbits for λ = 0 can be taken to those belonging
to λ = 1 by the homeomorphism h(p) = p− 1.

Figure 6.1: The phase portrait of the differential equation ẋ = λ− x for different values
of the parameter λ.

The animation shows how the phase portrait of the differential equation in Example
6.1 changes as λ is varied between −1 and 1.

Let us now turn to differential equations where bifurcation may occur. The simplest
of them is the fold bifurcation that is also called saddle-node bifurcation.
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Example 6.2 (fold or saddle-node bifurcation). Consider the differential equation
ẋ = λ − x2, where λ ∈ R is a parameter. In this case the existence of the equilibrium
depends on the parameter λ. If λ < 0, then there is no equilibrium, for λ = 0 the origin
x = 0 is an equilibrium, and for λ > 0 there are two equilibria x = ±

√
λ. The phase

portrait can be shown for different values of λ by using the same method as in the previous
example, as it is shown in Figure 6.2. It can be seen in the Figure that the bifurcation
is at λ = 0, since the phase portrait is different for positive and negative values of the
parameter. The values λ 6= 0 are regular, because choosing a positive or negative value
of λ the phase portrait does not change as λ is varied in a suitably small neighbourhood.
The topological equivalence of the phase portraits corresponding to different non-zero
values of λ can be formally verified by determining the homeomorphism taking the orbits
to each other. For example, the orbits for λ < 0 can be taken to each other by the
homeomorphism h(p) = p. For positive values of λ the orbits for can be taken to each
other by a piece-wise linear homeomorphism. The bifurcation in this example is called
fold or saddle-node bifurcation. The latter refers to the bifurcation in the two dimensional
system ẋ = λ− x2, ẏ = −y that is illustrated by the animation ??.

Figure 6.2: Fold or saddle-node bifurcation in the differential equation ẋ = λ − x2 at
λ = 0.

The animation shows how the phase portrait of the differential equation ẋ = λ − x2

changes as λ is varied between −1 and 1.
Saddle-node bifurcation in the two dimensional system ẋ = λ− x2, ẏ = −y at λ = 0.
Animations belonging to these differential equations can be found at http: // www.

cs. elte. hu/ ~simonp/ DinRJegyz/ .
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Example 6.3 (Transcritical bifurcation). Consider the differential equation ẋ = λx−
x2, where λ ∈ R is a parameter. The point x = 0 is an equilibrium for any value of λ.
Besides this point x = λ is also an equilibrium, therefore in the case λ 6= 0 there are
two equilibria, while for λ = 0 there is only one. Hence there is a bifurcation at λ = 0.
The phase portrait can be shown for different values of λ by using the same method as
in Example 6.1, as it is shown in Figure 6.3. It can be seen in the Figure that the bi-
furcation is at λ = 0, since the phase portrait for non-zero values of the parameter is
different from that of belonging to λ = 0. The values λ 6= 0 are regular, because choosing
a positive or negative value of λ the phase portrait does not change as λ is varied in a
suitably small neighbourhood. For negative values of λ the point x = 0 is stable and x = λ
is unstable, while for positive λ values it is the other way around. This bifurcation is
called transcritical because of the exchange of stability. The topological equivalence of the
phase portraits corresponding to different non-zero values of λ can be formally verified
by determining the homeomorphism taking the orbits to each other.

Figure 6.3: Transcritical-bifurcation in the differential equation ẋ = λx− x2 at λ = 0.

The animation shows how the phase portrait of the differential equation ẋ = λx− x2

changes as λ is varied between −1 and 1.

Example 6.4 (Pitchfork bifurcation). Consider the differential equation ẋ = λx −
x3, where λ ∈ R is a parameter. The point x = 0 is an equilibrium for any value of λ.
Besides this point x = ±

√
λ is also an equilibrium if λ > 0. Thus for λ < 0 there is a

unique equilibrium, while for λ > 0 there are 3 equilibria. Hence there is a bifurcation
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at λ = 0. The phase portrait can be shown for different values of λ by using the same
method as in Example 6.1, as it is shown in Figure 6.4. It can be seen in the Figure that
the bifurcation is at λ = 0, since the phase portrait for non-zero values of the parameter is
different from that of belonging to λ = 0. The values λ 6= 0 are regular, because choosing
a positive or negative value of λ the phase portrait does not change as λ is varied in a
suitably small neighbourhood. For negative values of λ the equilibrium point x = 0 is
globally stable. For positive values of λ the points x = ±

√
λ take over stability. This

bifurcation is called pitchfork bifurcation because of the shape of the bifurcation curve.
The topological equivalence of the phase portraits corresponding to different non-zero
values of λ can be formally verified by determining the homeomorphism taking the orbits
to each other.

Figure 6.4: Pitchfork bifurcation in the differential equation ẋ = λx− x3 at λ = 0.

The animation shows how the phase portrait of the differential equation ẋ = λx− x3

changes as λ is varied between −1 and 1.

The next example shows how the bifurcation diagram changes by introducing a second
parameter.

Example 6.5. Consider the differential equation ẋ = λx − x3 + ε, where λ ∈ R and
ε ∈ R are two parameters. First the value of λ is fixed and it is investigated how the phase
portrait changes as ε is varied. The equilibria are located along the curve ε = x3 − λx,
the shape of which depends on the sign of λ. If λ < 0, then it is strictly monotone, while
for λ > 0, it has a local maximum and minimum. The curve is shown in Figure 6.5
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for λ = −1 and for λ = 1. It can be seen that in the case λ = −1 all values of ε are
regular, because the phase portrait does not change, for all values of ε there is a unique
globally attracting equilibrium. In the case of λ = 1 the phase portrait changes at ε1 and
at ε2, at these parameter values fold bifurcation occurs, because two equilibria appear and
disappear. Thus changing the value of λ the shape of the bifurcation curve in ε changes
as λ crosses zero. The evolution of the bifurcation curve is shown by the animation ??
and in Figure 6.6.

Using the three dimensional bifurcation diagram one can determine how the bifurca-
tion curve λ = x2− ε/x (for the parameter λ) looks like when ε is fixed. First, the value
ε = 0 is fixed and take the section of the surface shown in Figure 6.6 with the plane
ε = 0. Then we get the curve of the pitchfork bifurcation shown in Figure 6.4. Then
choosing a negative value of ε, say ε = −1 and taking the section of the surface shown in
Figure 6.6 with the plane ε = −1 we get the curve λ = x2 + 1/x shown in the left part of
Figure 6.7. Choosing now a positive value of ε, say ε = 1 and taking the section of the
surface shown in Figure 6.6 with the plane ε = 1 we get the curve λ = x2−1/x shown in
the right part of Figure 6.7. This Figure also shows that an arbitrarily small perturbation
of the equation of the pitchfork bifurcation destroys this bifurcation and fold bifurcation
occurs instead. This means that in one-parameter systems the pitchfork bifurcation is
not typical because it contains a degeneracy of codimension two, hence it can be observed
in systems with two parameters.

Figure 6.5: The bifurcation diagram with respect to ε in the differential equation ẋ =
λx− x3 + ε for λ = −1 and for λ = 1.
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The animation shows how the bifurcation diagram with respect to ε of the differential
equation ẋ = λx− x3 + ε changes as λ is varied between −1 and 1.

Animations belonging to these differential equations can be found at http: // www.

cs. elte. hu/ ~simonp/ DinRJegyz/ .

Figure 6.6: The two-parameter bifurcation diagram of the differential equation ẋ =
λx− x3 + ε.

The animation shows how the bifurcation diagram with respect to λ of the differential
equation ẋ = λx− x3 + ε changes as ε is varied between −1 and 1.

Now we turn to bifurcations occurring in at least two dimensional systems.

Example 6.6 (Andronov–Hopf bifurcation). Consider the differential equation ṙ =
λr + σr3, φ̇ = 1 given in polar coordinates, where λ ∈ R and σ ∈ R are parameters.
First, fix the value σ = −1 (any σ < 0 yields the same phenomenon) and see how the
phase portrait changes as the value of λ is varied. The origin is an equilibrium for any
value of λ and its stability can be easily determined from the differential equation for r.
Namely, in the case λ < 0, we have ṙ = λr − r3 < 0, hence r is strictly decreasing and
converges to zero, therefore the solutions tend to the origin. However, for λ > 0 and
r <
√
λ we have ṙ = r(λr − r2) > 0, hence r is strictly increasing, therefore the origin

is unstable. Moreover, for r =
√
λ we have ṙ = 0, that is the circle with radius

√
λ is a

periodic orbit that is orbitally asymptotically stable, because inside the circle ṙ > 0 and
outside ṙ < 0. This phenomenon is illustrated in Figure 6.8. In the Figure the behaviour
of r is shown as λ is varied. The bifurcation is at λ = 0 and the values λ 6= 0 are regular.
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Figure 6.7: The bifurcation diagram with respect to λ in the differential equation ẋ =
λx− x3 + ε for ε = −1 and for ε = 1.

The bifurcation in the two dimensional phase space is shown in Figure 6.9. If λ < 0,
then the origin is globally asymptotically stable, while for λ > 0 the origin is unstable
and the stability is taken over by a stable limit cycle, the size of which is increasing as√
λ. This bifurcation is called supercritical Andronov–Hopf bifurcation.

The animation shows how the phase portrait of the differential equation ṙ = λr − r3

changes as λ is varied between −0.1 and 0.1.
Returning to the differential equation ṙ = λr + σr3, φ̇ = 1 consider the case of

positive σ values, say let σ = 1. The origin is an equilibrium again the stability of
which is changed in the same way with λ as before, however, the periodic solution now
appears for λ < 0, and it is unstable. The behaviour of r as λ is varied is shown in
Figure 6.10. The origin loses its stability for λ > 0, however, in this case the periodic
orbit does not take over the stability, the trajectories tend to infinity. The bifurcation in
the two dimensional phase space is shown in Figure 6.11. If λ < 0, then the origin is
stable but its domain of attraction is only the interior of the periodic orbit. If λ > 0,
then the origin is unstable and the trajectories tend to infinity. This bifurcation is called
subcritical Andronov–Hopf bifurcation.

The animation shows how the phase portrait of the differential equation ṙ = λr + r3

changes as λ is varied between −0.1 and 0.1.

In the previous examples the bifurcation occurred locally in the phase space, in a
neighbourhood of an equilibrium. These kind of bifurcations are called local bifurcations.
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Figure 6.8: Bifurcation of the differential equation ṙ = λr − r3 at λ = 0.

Figure 6.9: Supercritical Andronov–Hopf bifurcation, the origin looses its stability and
a stable limit cycle is born.

In the rest of this section global (non-local) bifurcations will be shown, where global
structures appear as the parameter is varied. These local structures will be periodic,
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Figure 6.10: Bifurcation of the differential equation ṙ = λr + r3 at λ = 0.

Figure 6.11: Subcritical Andronov–Hopf bifurcation, the origin loses its stability and the
unstable limit cycle disappears.

homoclinic and heteroclinic orbits.

Example 6.7 (Fold bifurcation of periodic orbits). Consider the differential equa-
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tion ṙ = r(λ− (r − 1)2), φ̇ = 1 given in polar coordinates, where λ ∈ R is a parameter.
Similarly to the previous example, investigate first the behaviour of r as λ is varied. The
bifurcation diagram is shown in Figure 6.12. If λ < 0, then ṙ = r(λ−(r−1)2) < 0, hence
r is strictly decreasing and converges to zero, therefore the solutions tend to the origin.
If λ is positive and close to zero (λ < 1), then for λ = (r − 1)2 we have ṙ = 0, that is
the circles with radius 1 ±

√
λ and centered at the origin are periodic orbits. The inner

circle is unstable, while the outer one is stable. Thus the bifurcation occurs at λ = 0.
(We note that the inner cycle disappears at λ = 1, but this bifurcation is not studied
here.) The bifurcation in the two dimensional phase space is shown in Figure 6.13. If
λ < 0, then the origin is globally asymptotically stable. At the bifurcation value λ = 0
two limit cycles are born with radii close to 1. It is important to note that in the case of
Andronov–Hopf bifurcation the radius of the limit cycle born is zero. If 0 < λ < 1, then
one of the limit cycles is stable, the other one is unstable. The phenomenon is similar to
the fold bifurcation, but in this case instead of equilibria periodic orbits are born. Hence
this bifurcation is called fold bifurcation of periodic orbits.

Figure 6.12: Bifurcation of the differential equation ṙ = r(λ− (r − 1)2) at λ = 0.

The animation shows how the phase portrait of the differential equation ṙ = r(λ −
(r − 1)2) changes as λ is varied between −0.1 and 0.1.

Example 6.8 (Homoclinic bifurcation). Consider the two dimensional system

ẋ = y, ẏ = x− x2 + λy,
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Figure 6.13: Fold-bifurcation for periodic orbits. At λ = 0 a stable and an unstable
periodic orbit are born with radius close to 1.

where λ ∈ R is a parameter. It is known that for λ = 0 the function H(x, y) = x3

3
− x2

2
+ y2

2

is a first integral. Namely, let H∗(t) = H(x(t), y(t)), then

Ḣ∗(t) = x2(t) · ẋ(t)− x(t) · ẋ(t) + y(t) · ẏ(t) = λy2(t).

Thus for λ = 0 the value of the function H is constant along trajectories. Moreover, H
can also serve as a Lyapunov function. Since for λ > 0, it is increasing along trajectories
and for λ < 0 it is decreasing along trajectories. The phase portrait is determined first
for λ = 0. Then simply the level curves of H are to be determined, since the orbits lie
on the level curves. This way the phase portrait given in Figure 6.14 is obtained. Let
us consider now the case λ < 0. The equilibria remain at (0, 0) and at (1, 0) as for
λ = 0. The origin remains a saddle point, but the point (1, 0) becomes a stable focus.
Using that H is decreasing along trajectories, the trajectory along the unstable manifold
of the saddle point in the first quadrant tends to the stable focus. Hence also using the
direction field one obtains the phase portrait shown in Figure 6.15. The case λ > 0 can
be investigated similarly. The equilibria are again the points (0, 0) and (1, 0), the origin
remains a saddle, but the point (1, 0) is an unstable focus. Using that H is now increasing
along trajectories, the trajectory along the stable manifold of the saddle point in the right
half plane tends to the unstable focus as time goes to −∞. Hence also using the direction
field one obtains the phase portrait shown in Figure 6.15. Thus the bifurcation occurs
at λ = 0. In that case the stable and unstable manifolds of the saddle point form a
homoclinic orbit, hence the bifurcation is called homoclinic bifurcation.
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Figure 6.14: The phase portrait of system ẋ = y, ẏ = x− x2 + λy for λ = 0.

Figure 6.15: The phase portrait of system ẋ = y, ẏ = x − x2 + λy for λ < 0 (left) and
for λ > 0 (right).

The animation shows how the phase portrait of the differential equation ẋ = y, ẏ =
x− x2 + λy changes as λ is varied between −0.3 and 0.3.

121



Animations belonging to this differential equation can be found at http: // www. cs.
elte. hu/ ~simonp/ DinRJegyz/ .

Example 6.9 (Heteroclinic bifurcation). Consider the two dimensional system

ẋ = 1− x2 − λxy, ẏ = xy + λ(1− x2),

where λ ∈ R is a parameter. In order to find the steady states multiply the second
equation by λ, then add it to the first equation. This leads to (1− x2)(1 +λ2) = 0, hence
the first coordinate of a steady state can be x = ±1 and using the second equation y = 0.
Thus the equilibria are (±1, 0). The phase portrait is determined first for λ = 0. Using
the direction field the phase portrait can be easily given as it is shown in Figure 6.16.
The segment of the x coordinate axis between −1 and 1 is a heteroclinic orbit connecting
the two saddle points. It will be investigated what happens to this orbit as the value of λ
is varied. It is easy to verify that the steady states (±1, 0) remain saddle points as λ is
changed. If λ < 0, then for y = 0 and x ∈ (−1, 1) we have ẋ > 0 and ẏ = λ(1− x2) < 0,
hence the trajectories cross the x axis to the right and down. Hence the trajectory on the
right part of the unstable manifold of the saddle point (−1, 0) lies in the lower half plane
and tends to infinity as it is shown in Figure 6.17. Thus for λ < 0 the heteroclinic orbit
connecting the saddle points does not exist. The situation is similar in the case λ > 0.
In this case for y = 0 and x ∈ (−1, 1) we have ẋ > 0 and ẏ = λ(1− x2) > 0, hence the
trajectories cross the x axis to the right and up. Hence the trajectory on the right part of
the unstable manifold of the saddle point (−1, 0) lies in the upper half plane and tends
to infinity as it is shown in Figure 6.17. Thus varying the value of λ a heteroclinic orbit
appears at λ = 0, hence this bifurcation is called heteroclinic bifurcation

The animation shows how the phase portrait of the differential equation ẋ = 1−x2−
λxy, ẏ = xy + λ(1− x2) changes as λ is varied between −0.5 and 0.5.

Animations belonging to this differential equation can be found at http: // www. cs.
elte. hu/ ~simonp/ DinRJegyz/ .

6.2 Necessary conditions of bifurcations

The examples of the previous section show that local bifurcation may occur at non-
hyperbolic equilibria. This statement will be proved generally in this section. The
notion of local bifurcation is defined first. Consider a general system of the form ẋ(t) =
f(x(t), λ), where f : Rn×Rk → Rn is a continuously differentiable function, and λ ∈ Rk

is a parameter.

Definition 6.2.. The pair (x0, λ0) is called locally regular, if there exist a neighbourhood
U ⊂ Rn of x0 and δ > 0, such that for |λ − λ0| < δ the systems f |U(·, λ0) and f |U(·, λ)
are topologically equivalent (that is the phase portraits are topologically equivalent in U).
There is a local bifurcation at (x0, λ0), if (x0, λ0) is not locally regular.
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Figure 6.16: The phase portrait of system ẋ = 1−x2−λxy, ẏ = xy+λ(1−x2) for λ = 0.

Figure 6.17: The phase portrait of system ẋ = 1−x2−λxy, ẏ = xy+λ(1−x2) for λ < 0
(left) and for λ > 0 (right).

First, it is shown that local bifurcation may occur only at an equilibrium.
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Proposition 6.1. If f(x0, λ0) 6= 0, then (x0, λ0) is locally regular.

Proof. For simplicity, the proof is shown for the case n = 1. Without loss of generality
one can assume that f(x0, λ0) > 0. Then the continuity of f implies that there exist a
neighbourhood U ⊂ Rn of x0 and δ > 0, such that in the set U × [λ0− δ, λ0 + δ] the value
of f is positive. Hence in this set the trajectories are segments directed upward, as it is
shown in Figure 6.18. Hence the phase portraits are obviously topologically equivalent
in U for all λ ∈ (λ0 − δ, λ0 + δ). (The homeomorphism taking the orbits into each other
is the identity.) We note that for n > 1 the proof is similar by using the local flow box
theorem.

Figure 6.18: The trajectories in a neighbourhood U of a non-equilibrium point are the
same for all values of the parameter λ.

It will be shown that at a hyperbolic equilibrium local bifurcation cannot occur.

Proposition 6.2. If f(x0, λ0) = 0 and ∂xf(x0, λ0) is hyperbolic, then (x0, λ0) is locally
regular. (Here ∂xf(x0, λ0) denotes the Jacobian matrix of f .)

Proof. For simplicity, the proof is shown again for the case n = 1. Without loss of
generality one can assume that ∂xf(x0, λ0) < 0. Then according to the implicit function
theorem there exist δ > 0 and a differentiable function g : (λ0 − δ, λ0 + δ) → R, for
which g(λ0) = x0 and f(g(λ), λ) ≡ 0 for all λ ∈ (λ0 − δ, λ0 + δ), moreover, there is
neighbourhood U of x0, such that in other points of the set U × (λ0 − δ, λ0 + δ) the
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function f is nonzero. Since f is continuously differentiable, the number δ can be chosen
so small that ∂xf(g(λ), λ) < 0 holds for all λ ∈ (λ0 − δ, λ0 + δ). Hence for these values
of λ there is exactly one stable equilibrium in U and the trajectories tend to this point
as it is shown in Figure 6.19. Therefore the phase portraits are obviously topologically
equivalent in U for all λ ∈ (λ0 − δ, λ0 + δ). (The homeomorphism taking the orbits into
each other is a translation taking the steady states to each other.) We note that for
n > 1 the proof is similar by using the Hartman–Grobman theorem.

Figure 6.19: The phase portraits in a neighbourhood U of a hyperbolic equilibrium are
the same for all values of the parameter λ.

6.3 Structural stability

In the course of studying bifurcations a system of differential equations ẋ(t) = f(x(t))
was considered to be a member of a k parameter family ẋ(t) = f(x(t), λ) and it was
investigated how the phase portrait is changing as the k dimensional parameter λ is var-
ied. Here a more general approach is shown, where all C1 perturbations are investigated
together with the system ẋ(t) = f(x(t)), that is the right hand side f is considered as
an element of a function space. In the case of bifurcations a value of the parameter was
called regular if the corresponding system was topologically equivalent to all other sys-
tems belonging to nearby parameter values. The generalisation of this is the structurally
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stable system that is topologically equivalent to all other systems that are sufficiently
close in the C1 norm.

For formulating the definition in abstract terms let X be a topological space and let
∼⊂ X × X be an equivalence relation. (If the Reader is not familiar with the notion
of topological spaces, he or she may have a metric or normed space in mind.) In our
case the topological space will be a suitable function space with the C1 topology and the
equivalence relation will be the topological equivalence.

Definition 6.3.. An element x ∈ X is called structurally stable, if it has a neighbourhood
U ⊂ X, for which y ∈ U implies x ∼ y.

An element x ∈ X is called a bifurcation point, if it is not structurally stable.

In other words, we can say that x ∈ X is structurally stable, if it is an interior
point of an equivalence class, and it is bifurcation point if it is a boundary point of
an equivalence class. This interpretation enables us to define the co-dimension of a
bifurcation. The co-dimension of a bifurcation is the co-dimension of the surface that
forms the boundary in a neighbourhood of the given bifurcation point. In Figure 6.20
the point A is structurally stable, point B is a one co-dimensional bifurcation point
and point C is a two co-dimensional bifurcation point. This can also be formulated as
follows. There is a curve through B that intersects both domains that are separated by
the border containing B, while there is no such curve through C. The classes touching C
can be reached by a two parameter family, i.e. a surface in the space. This is formulated
rigorously in the following definition.

Definition 6.4.. A bifurcation point x ∈ X is called k co-dimensional, if there is a
continuous function g : Rk → X, for which g(0) = x and the point x has a neighbourhood
U and it has an open dense subset V , such that for all y ∈ V there is an α ∈ Rk satisfying
g(α) ∼ y, and k is the smallest dimension with these properties.

Now the abstract definitions are applied in the context of differential equations.
As it was mentioned above the equivalence relation will be the topological equivalence,

because two differential equations are considered to be in the same class if they have
similar phase portraits. Let us choose now a suitable topological space X.

Consider the differential equation ẋ(t) = f(x(t)), where f : Rn → Rn is a continu-
ously differentiable function. The space X can be chosen as the space of continuously
differentiable functions with a suitable norm or topology. Let us start from C0 or supre-
mum topology that will be denoted by ‖f‖0 and is given by sup |f | on a suitably chosen
set. (Later it will be investigated how the finiteness of this supremum can be ensured.)
A simple one dimensional example shows that this topology is not a suitable choice.
Namely, consider the differential equation ẋ = x given by the identity f(x) = x. To this
function f one can find a function g that is arbitrarily close to f in the C0 topology and
has more than one root. Hence the phase portrait of the differential equation ẏ = g(y)
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Figure 6.20: Structurally stable (A), one co-dimensional (B) and two co-dimensional (C)
bifurcation points in a topological space X.

is not topologically equivalent to the phase portrait of ẋ = x. This example shows that
choosing the C0 norm on the space X only those systems can be structurally stable that
have no equilibrium. This would give a very restrictive definition of structural stability,
most of the equivalence classes would not have interior points. A better norm for our
purposes is the C1 norm that is given by ‖f‖1 = ‖f‖0 + ‖f ′‖0. Namely, let us consider
again the identity function f(x) = x and the corresponding differential equation ẋ = x.
If a function g is close to f in C1 norm, then it has also a unique zero, hence the corre-
sponding differential equation ẏ = g(y) is topologically equivalent to the equation ẋ = x.
Therefore the equation ẋ = x having a hyperbolic equilibrium is structurally stable,
when the C1 norm is used. The C1 norm of a continuously differentiable function is not
necessarily finite if the domain of the function is not compact. Therefore investigating
structural stability is more convenient for dynamical systems with compact state space.
If the state space is one dimensional, then the most straightforward choice for the state
space is the circle. This case will be dealt with in the next subsection.

6.3.1 Structural stability of one dimensional systems

Let us introduce the space X = C1(S1,R) that consists of continuously differentiable
functions f : R → R, which are periodic with period 1, that is f(x + 1) = f(x) for all
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x ∈ R. This space will be endowed with the norm

‖f‖1 = max
[0,1]
|f |+ max

[0,1]
|f ′|.

It will be shown that those systems are structurally stable, for which all equilibria are
hyperbolic. Introduce the following notation for these systems.

G = {f ∈ X : f(x) = 0⇒ f ′(x) 6= 0}

In the proof of the theorem the following notion and lemma are crucial.

Definition 6.5.. Let f : R → R be a continuously differentiable function. The value y
is called a regular value of f , if f(x) = y implies f ′(x) 6= 0. In the higher dimensional
case when f : Rn → Rn the assumption is that f(x) = y implies det f ′(x) 6= 0. If y is
not a regular value, then it is called a critical value of f .

Lemma 6.6. (Sard). If f : Rn → Rn is a continuously differentiable function, then the
set of its critical values has measure zero.

The lemma is not proved here, because its proof is beyond the topics of this lecture
notes. Using the lemma the following proposition can be proved.

Proposition 6.3. The above set G of dynamical systems having only hyperbolic equilib-
ria is dense in the space X = C1(S1,R).

Proof. A function is in the set G, if and only if 0 is its regular value. Let f ∈ X and
ε > 0 be arbitrary. It has to be shown that there exists g ∈ G, for which ‖f − g‖1 < ε.
If 0 is a regular value of f , then g = f is a suitable choice, since then f ∈ G. If 0 is
not a regular value, then chose a positive regular value c < ε. The existence of this c
is guaranteed by Sard’s lemma. Then let g = f − c, therefore ‖f − g‖1 = c < ε and
g(x) = 0 implies f(x) = c, hence the regularity of c yields f ′(x) 6= 0, which directly gives
g′(x) 6= 0. Thus 0 is a regular value of g, that is g ∈ G.

In the proof of the theorem we use the fact that if a function has a degenerate zero,
then a small C1 perturbation makes it constant zero in a neighbourhood of the zero. This
statement can easily be seen geometrically, in the next proposition we give a rigorous
proof.

Proposition 6.4. Let f ∈ X and assume that for some x ∈ (0, 1) we have f(x) = 0 =
f ′(x). Then for any ε > 0 and α > 0 there exists a function g ∈ X, for which the
following statements hold.

1. f(y) = g(y) for all y /∈ (x− α, x+ α),
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2. g is constant 0 in a neighbourhood of x,

3. ‖f − g‖1 < ε.

Proof. Let η : R→ [0, 1] be a C1 function (in fact it can be chosen as a C∞ function), that
is constant zero outside the interval [−1, 1] and constant 1 in the interval (−1/2, 1/2).
The maximum of |η′| is denoted by M . The assumption on f implies that there exists a
positive number β < α, for which

|f(y)| < ε

4M
|y − x| (6.1)

holds for all y ∈ (x− β, x+ β). Let δ < β be a positive number, for which

max
[x−δ,x+δ]

|f | < ε

2
and max

[x−δ,x+δ]
|f ′| < ε

4
. (6.2)

Then let g ∈ X be given as follows

g(y) = f(y)

(
1− η

(
y − x
δ

))
.

Now it is checked that g satisfies the conditions. If |y− x| ≥ α, then |y− x| > δ yielding
η
(
y−x
δ

)
= 0, hence the first condition holds, i.e. g(y) = f(y). If |y − x| < δ/2, then

η
(
y−x
δ

)
= 1, hence the second condition holds, i.e. g is constant zero in a neighbourhood

of x. In order to check the last condition we use that

f(y)− g(y) = f(y)η

(
y − x
δ

)
. (6.3)

Therefore f−g is zero in [x−δ, x+δ], hence it is enough to prove that for all y ∈ [x−δ, x+δ]
the following holds

|f(y)− g(y)| < ε

2
and |f ′(y)− g′(y)| < ε

2
. (6.4)

For proving both inequalities one can use (6.3). This yields for y ∈ [x − δ, x + δ] that
|f(y) − g(y)| < |f(y)| < ε

2
, where the first inequality of (6.2) was used. Differentiating

(6.3)

f ′(y)− g′(y) = f ′(y)η

(
y − x
δ

)
+ f(y)η′

(
y − x
δ

)
1

δ
.

Applying the second equation in (6.2), the inequality (6.1) and that M is the maximum
of |η′| leads to

|f ′(y)− g′(y)| < ε

4
+

ε

4M
|y − x|M

δ
.
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Since y ∈ [x−δ, x+δ], we have |y−x| ≤ δ, hence the previous estimate can be continued
as

|f ′(y)− g′(y)| < ε

4
+

ε

4M
δ
M

δ
=
ε

2
.

Hence the desired estimates in (6.4) are proved.

The next statement can be verified in an elementary way.

Proposition 6.5. If all the equilibria of the differential equation ẋ = f(x) are hyperbolic,
then there are at most finitely many of them in [0, 1].

Proof. Assume that there are infinitely many equilibria in [0, 1]. Then one can choose
a convergent sequence of equilibria tending to a point x ∈ [0, 1]. Then since f is con-
tinuously differentiable we have f(x) = 0 and f ′(x) = 0, that is x is not a hyperbolic
equilibria, which is a contradiction.

Now we turn to the characterisation of one dimensional structurally stable systems.

Theorem 6.7.. The dynamical system belonging to the function f ∈ X is structurally
stable, if and only if all equilibria of f are hyperbolic, that is f ∈ G. Moreover, the set
G of structurally stable systems is open and dense in the space X.

Proof. Assume first that f is structurally stable and prove f ∈ G. Since f is equivalent
to the systems in a neighbourhood and G is dense, there exists in this neighbourhood a
function g ∈ G. Hence all the roots of g are hyperbolic, implying that there are finitely
many of them, therefore the equivalence of f and g implies that f has finitely many
roots. We show that all of them are hyperbolic. Since the roots are isolated, if one
of them were not be hyperbolic, then according to Proposition 6.4 an arbitrarily small
C1 perturbation would make it constant zero. That would mean that arbitrarily close
to f there is a function, which is zero in an interval, hence it is not equivalent to f
contradicting to the fact that f is structurally stable. This proves the first implication.

Assume now that f ∈ G and prove that f is structurally stable. Proposition 6.5
yields that f has finitely many roots. If it has no zeros at all, then the functions close to
f in the C1 norm cannot have zeros, hence they are equivalent to f . If f has zeros, then
it can be easily seen that functions close to f has the same number of zeros and the sign
changes at the zeros are the same as those for f . This implies that their phase portraits
are equivalent to that belonging to f .

6.3.2 Structural stability of higher dimensional systems

In the previous section it was shown that in a one dimensional system the phase portrait
can change only in a neighbourhood of non-hyperbolic equilibrium. In two dimensional
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systems there are bifurcations that are not related to equilibria, namely, the fold bifur-
cation of periodic orbits, the homoclinic and heteroclinic bifurcation.

Briefly, it can be said that those two dimensional systems are structurally stable, in
which these cannot occur, that is all equilibria and periodic orbits are hyperbolic and
there are no trajectories connecting saddle points. This was proved first by Andronov and
Pontryagin in 1937 for two dimensional systems defined in a positively invariant bounded
domain. The exact formulation of this statement is Theorem 2.5 in Kuznetsov’s book [17].
The analogous statement for compact two dimensional manifolds was proved by Peixoto
in 1962. This statement will be formulated below. Let S2 denote the two dimensional
sphere and introduce the space X = C1(S2,R2) as the space of vector fields on the sphere.
A vector field, as the right hand side of a differential equation determines a phase portrait
on the sphere S2. Defining their topological equivalence as above, Definition 6.3. gives
the structurally stable systems in X. These are characterised by the following theorem.

Theorem 6.8. (Peixoto). The dynamical system given by the vector field f ∈ X is
structurally stable if and only if

• there are finitely many equilibria and all of them are hyperbolic,

• there are finitely many periodic orbits and all of them are hyperbolic,

• there are no trajectories connecting saddle points (heteroclinic or homoclinic or-
bits).

Moreover, the set of structurally stable systems is open and dense in the space X.

We note that the theorem was proved in a more general way for compact two dimensional
manifolds. For this general case an extra assumption is needed for structural stability.
Even in the case of a torus one can give a structurally unstable system that do not violates
any of the assumption of the theorem. In the general case it has to be assumed that the
non-wandering points can only be equilibria or periodic points. The general formulation
of the theorem can be found in Perko’s book [19] and in the book by Wiggins [27].

Based on the cases of one and two dimensional systems one can formulate a conjec-
ture about the structural stability of systems with arbitrary dimension. This conjecture
motivated the following definition of Morse–Smale systems.

Definition 6.9.. A dynamical systems is called a Morse–Smale system, if

• there are finitely many equilibria and all of them are hyperbolic,

• there are finitely many periodic orbits and all of them are hyperbolic,

• their stable and unstable manifolds intersect each other transversally,

• the non-wandering points can only be equilibria or periodic points.
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It can be shown that Morse–Smale system are structurally stable, however, the op-
posite is not true for more than two dimensional systems, as it was shown by Smale in
1966. If the phase space is at least three dimensional, then there are structurally stable
systems with strange attractors as non-wandering sets, containing chaotic orbits. More-
over, it can be proved that in the case of at least three dimensional systems the space
of C1 systems contains open sets containing only structurally unstable systems. That is
the structurally stable systems do not form a dense and open subset, moreover, the set
of them cannot be given as the intersection of open dense sets, that is the structurally
stable systems are not generic among three or higher dimensional systems. This means
that topological equivalence does not divide the space of C1 systems into open sets as it
is shown in Figure 6.20. The investigation of structural stability in higher dimensional
systems is based on a two dimensional map introduced by Smale and named as Smale
horseshoe. This map is dealt with in detail in the book by Guckenheimer and Holmes
[11] and in Wiggins’s monograph [27].
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Chapter 7

One co-dimensional bifurcations, the
saddle-node and the Andronov-Hopf
bifurcations

It was shown in Section 6.2 that local bifurcations may occur only at non-hyperbolic
equilibria. In this chapter it is shown that at these points either saddle-node or Andronov-
Hopf bifurcation occurs typically. The type of bifurcation depends on the degeneracy of
the linear part, namely, if there is a zero eigenvalue, then saddle-node bifurcation may
occur, while having pure imaginary eigenvalues may indicate Andronov-Hopf bifurcation.
The sufficient conditions of these bifurcations involve the higher order terms of the right
hand side. The detailed presentation of these two bifurcations aims at presenting the
approach of bifurcation theory that consists of the following steps. The bifurcation is
observed first in a simple system that is typically the normal form of the bifurcation.
Then the change in the phase portrait at the bifurcation is formulated in geometrical
terms (e.g. the steady state looses its stability and a stable limit cycle is born). Finally, a
sufficient condition is established that ensures that the given change occurs in the phase
portrait. This program is carried out for the saddle-node and for the Andronov-Hopf
bifurcation. In the second part of the chapter it is shown how bifurcation curves can be
analytically determined in two-parameter systems by using the parametric representation
method, and how the Takens–Bogdanov bifurcation points can be given as the common
points of the saddle-node and Andronov-Hopf bifurcation curves.

7.1 Saddle-node bifurcation

Recall that in the differential equation ẋ = λ− x2 saddle-node or fold bifurcation occurs
at λ = 0. This means that for λ < 0, there is no equilibrium, if λ = 0, then there is a
degenerate equilibrium at x = 0 and for λ > 0 there are two equilibria at x = ±

√
λ, one
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of them is stable, the other one is unstable. That is the first step, the identification of
the bifurcation in a simple case.

The second step is to define what kind of change in the phase portrait will be called
a fold or saddle-node bifurcation. Consider the differential equation ẋ(t) = f(x(t), λ),
where f : R×R→ R is a continuously differentiable function and λ ∈ R is a parameter.

Definition 7.1.. There is a fold or saddle-node bifurcation at the point (x0, λ0) ∈ R2, if
the point x0 has a neighbourhood U ⊂ R and there exists δ > 0, such that

• for λ0 − δ < λ < λ0 there is no equilibrium (there are 2 equilibria) in U ;

• for λ = λ0 there is a single equilibrium in U ;

• for λ0 < λ < λ0 + δ there are 2 equilibria (there is no equilibrium) in U .

That is, there is no equilibrium before λ0 and there are two of them after λ0 or vice versa,
as it is shown in Figure 7.1.

Figure 7.1: Saddle-node or fold bifurcation at the point (x0, λ0) ∈ R2.

We note that under some natural assumptions on the smoothness of the function f
the above conditions mean that the curve {(x, λ) ∈ R2 : f(x, λ) = 0} in the rectangle
(λ0− δ, λ0 + δ)×U lies on one side of the line λ = λ0 and divides the rectangle into two
parts according to the sign of f .
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Using Figure 7.1 the definition can be reformulated as follows. (This definition is
introduced in the book by Kuznetsov [17].) Consider the differential equation ẋ = λ−x2,
as the normal form of the bifurcation, in the domain (−1, 1) × (−1, 1). (In this case
λ0 = 0 and x0 = 0.) There is a fold or saddle-node bifurcation in the differential
equation ẋ(t) = f(x(t), λ) at (x0, λ0) ∈ R2, if the point x0 has a neighbourhood U ⊂ R
and there exists δ > 0, for which a homeomorphism p : (−1, 1) → (λ0 − δ, λ0 + δ) can
be given, such that the phase portrait of ẋ = λ − x2 in the interval (−1, 1) belonging
to λ is topologically equivalent to the phase portrait of ẋ(t) = f(x(t), p(λ)) in U . That
is the map p relates the parameter values in the two systems that give the same phase
portraits.

Consider the following simple example, where fold bifurcation occurs.

Example 7.1. The equilibria of the differential equation ẋ = λ−x2 +x3 are given by the
curve λ = x2 − x3 that touches the vertical line λ = 0 at the point (0, 0). Then choosing
a small enough number δ > 0 and a suitable interval U containing zero the conditions in
the definition are fulfilled as it is shown in Figure 7.2.

Figure 7.2: Fold bifurcation at the point (0, 0) in the differential equation ẋ = λ−x2 +x3.

The next theorem yields a sufficient condition in terms of the derivatives of f at the
point (x0, λ0) for the appearance of fold bifurcation in the differential equation ẋ(t) =
f(x(t), λ).
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Theorem 7.2.. Let f : R × R → R be a twice continuously differentiable function and
consider the differential equation ẋ(t) = f(x(t), λ). Assume that f(x0, λ0) = 0 and
∂xf(x0, λ0) = 0. (These are the necessary conditions for a local bifurcation.) If besides
these the conditions

∂λf(x0, λ0) 6= 0 and ∂xxf(x0, λ0) 6= 0

hold, then fold bifurcation occurs at the point (x0, λ0).

Proof. The implicit function theorem is used to express λ in terms of x from equation
f(x, λ) = 0. This can be done because ∂λf(x0, λ0) 6= 0, that is the condition of the
implicit function theorem is fulfilled. According to the theorem the point x0 has a
neighbourhood U and there is a twice continuously differentiable function g : U → R,
for which g(x0) = λ0 and f(x, g(x)) = 0 for all x ∈ U , moreover, there exists δ > 0, such
that there is no other solution of equation f(x, λ) = 0 in (λ0− δ, λ0 + δ)×U . That is the
solution is λ = g(x). As it was remarked above, it is enough to prove that the graph of
function g lies on one side of the line λ = λ0 locally. In order to prove that it is sufficient
to show that g′(x0) = 0 and g′′(x0) 6= 0. Differentiating equation f(x, g(x)) = 0

∂1f(x, g(x)) + ∂2f(x, g(x))g′(x) = 0, (7.1)

substituting x = x0 and using g(x0) = λ0 leads to

∂xf(x0, λ0) + ∂λf(x0, λ0)g′(x0) = 0.

The assumptions of the theorem yield ∂xf(x0, λ0) = 0 and ∂λf(x0, λ0) 6= 0, therefore
g′(x0) = 0.

Differentiating equation (7.1) substituting x = x0 and using g′(x0) = 0 yield

∂xxf(x, g(x)) + ∂λf(x, g(x))g′′(x) = 0,

leading to g′′(x0) 6= 0 by using again the assumptions of the theorem.

We note that a similar but technically more complicated sufficient condition can be
formulated in the case of higher dimensional phase space. The n dimensional generali-
sation of the theorem was proved by Sotomayor in 1976. This can be found in Perko’s
book [19] as Theorem 1 in Chapter 4.

7.2 Andronov–Hopf bifurcation

The simplest system where Andronov–Hopf bifurcation occurs is ṙ = λr + σr3, φ̇ = −1.
The bifurcation occurs as λ crosses zero. There are two types of this bifurcation. In the

136



supercritical case when σ < 0 the phase portrait changes as follows. If λ < 0, then the
origin is globally asymptotically stable, while in the case λ > 0 the origin is unstable and
a stable limit cycle appears around the origin, the size of which increases with λ. In the
subcritical case when σ > 0, the limit cycle is unstable and appears for λ < 0.

The system given in polar coordinates takes the following form in cartesian coordi-
nates.

ẋ1 = λx1 + x2 + σx1(x2
1 + x2

2), (7.2)

ẋ2 = −x1 + λx2 + σx2(x2
1 + x2

2) (7.3)

A sufficient condition will be given for this bifurcation in a general system of the form
ẋ(t) = f(x(t), λ) at the parameter value λ0 in the point x0, where f : R2 × R→ R2 is a
smooth enough function. Since x0 is an equilibrium, we have f(x0, λ0) = 0 and according
to Proposition 6.2 it cannot be hyperbolic, hence the eigenvalues of the Jacobian matrix
∂xf(x0, λ0) have zero real part. In the previous section it was shown that in the case
when 0 is an eigenvalue, saddle-node bifurcation occurs. The above example shows that
at the bifurcation the Jacobian matrix has pure imaginary eigenvalues. Therefore it is
assumed that the eigenvalues of the matrix ∂xf(x0, λ0) are ±iω. It will be shown that
under suitable transversality conditions Andronov–Hopf bifurcation occurs in the point
x0 at λ0. The bifurcation is defined by using its geometrical characterisation.

Definition 7.3.. At the parameter value λ0 supercritical Andronov–Hopf bifurcation oc-
curs in the point x0, if there exists δ > 0 and a neighbourhood U of x0, for which

• λ0− δ < λ ≤ λ0 (or λ0 ≤ λ < λ0 + δ) implies that there is a stable equilibrium and
no limit cycle in U ;

• λ0 < λ < λ0 + δ (or λ0 − δ < λ < λ0) implies that there is an unstable equilibrium
and a stable limit cycle in U .

Definition 7.4.. At the parameter value λ0 subcritical Andronov–Hopf bifurcation oc-
curs in the point x0, if there exists δ > 0 and a neighbourhood U of x0, for which

• λ0− δ < λ ≤ λ0 (or λ0 ≤ λ < λ0 + δ) implies that there is a stable equilibrium and
an unstable limit cycle in U ;

• λ0 < λ < λ0 + δ (or λ0 − δ < λ < λ0) implies that there is an unstable equilibrium
and no limit cycle in U .

We note that this definition can also be formulated in a slightly more general form
as it is presented in Kuznetsov’s book [17] as follows. Consider system (7.2)-(7.3), the
normal form of the Andronov–Hopf bifurcation, in the set B(0, 1)×(−1, 1), where B(0, 1)
is the open unit disk centered at the origin in the phase plane. (In this case λ0 = 0 and
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x0 = 0.) According to the alternative definition there is Andronov–Hopf bifurcation
in the system ẋ(t) = f(x(t), λ) at (x0, λ0) ∈ R2, if the point x0 has a neighbourhood
U ⊂ R2 and there exists δ > 0, for which there exist a homeomorphism p : (−1, 1) →
(λ0−δ, λ0 +δ), such that the phase portrait of system (7.2)-(7.3) in B(0, 1) and belonging
to λ is topologically equivalent to the phase portrait of system ẋ(t) = f(x(t), p(λ)) in
U . Thus the homeomorphism p relates the parameter values yielding the same phase
portrait.

After transforming system (7.2)-(7.3) to polar coordinates it is obvious that Andronov–
Hopf bifurcation occurs according to the definition. The goal of this section is to give
a sufficient condition for the Andronov–Hopf bifurcation in a general system (when the
periodic orbit is not a circle, hence polar coordinates cannot help). The sufficient con-
dition is proved first for simpler systems and finally for the most general case. This way
the ideas of the proof can be understood more easily.

There are two different ways of proving the theorem about the sufficient condition.
One of them is based on application of the Poincaré map, the other one uses a Lyapunov
function to construct a positively invariant domain containing a periodic orbit according
to the Poincaré-Bendixson theorem. The relation of the two methods is dealt with in
Chicone’s book [7]. Here the second method will be applied, the Lyapunov function will
be constructed to the system at the bifurcation value.

7.2.1 Construction of the Lyapunov function

The following notations will be used. Let Hk denote the space of homogeneous polyno-
mials of degree k in the form

P (x1, x2) = p0x
k
1 + p1x

k−1
1 x2 + p2x

k−2
1 x2

2 + . . .+ pkx
k
2.

The following simple propositions will be used to estimate the values of these polynomials.

Proposition 7.1. Let P ∈ H2, then

|P (x1, x2)| ≤ K(x2
1 + x2

2),

where K = |p0|+ |p1|+ |p2|.

Proposition 7.2. Let P ∈ H3, then there exists a continuous function r : R2 → R, for
which r(0, 0) = 0 and

|P (x1, x2)| ≤ r(x1, x2)(x2
1 + x2

2).

The second proposition follows easily from the first one, which can be proved by using
the simple inequality 2x2

1x
2
2 ≤ (x2

1 + x2
2)2.
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The Lyapunov function is constructed to the system

ẋ1 = x2 + A2(x1, x2) + A3(x1, x2) + A4(x1, x2), (7.4)

ẋ2 = −x1 +B2(x1, x2) +B3(x1, x2) +B4(x1, x2), (7.5)

where A2, B2 ∈ H2 are homogeneous polynomials of degree 2, A3, B3 ∈ H3 are homoge-
neous polynomials of degree 3, and the functions A4, B4 contain the higher order terms
that means that there are constants c1, c2 ∈ R, such that

|A4(x1, x2)| ≤ c1(x2
1 + x2

2)2, |B4(x1, x2)| ≤ c2(x2
1 + x2

2)2. (7.6)

Let us look for the Lyapunov function in the form

V (x1, x2) =
1

2
(x2

1 + x2
2) + P3(x1, x2) + P4(x1, x2),

where P3 ∈ H3 are homogeneous polynomials of degree 3 and P4 ∈ H4 are homogeneous
polynomials of degree 4. Then the Lie derivative of the function V is

LfV = ∂1V f1 + ∂2V f2

= (x1 + ∂1P3 + ∂1P4)(x2 + A2 + A3 + A4)

+ (x2 + ∂2P3 + ∂2P4)(−x1 +B2 +B3 +B4)

= Q3 +Q4 +Q5,

where the arguments of the functions are omitted for the sake of simplicity and

Q3 = x1A2 + x2B2 + x2∂1P3 − x1∂2P3,

Q4 = x1A3 + x2B3 + A2∂1P3 +B2∂2P3 + x2∂1P4 − x1∂2P4,

and Q5 contains the terms of degree at least five, that is there exists a continuous function
r : R2 → R, for which r(0, 0) = 0 and

|Q5(x1, x2)| ≤ r(x1, x2)(x2
1 + x2

2)2. (7.7)

In order to prove that V is a suitable Lyapunov function we will prove the following
statements.

1. The polynomial P3 can be chosen in such a way that Q3 = 0 holds.

2. The polynomial P4 can be chosen in such a way that Q4 is positive or negative
definite. (Under a certain transversality conditon.)

3. The term Q5 can be estimated in such a way that Q4 + Q5 is also definite in a
neighbourhood of the origin.
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The linear mapping Tk : Hk → Hk

Tk(P ) = x2∂1P − x1∂2P

plays an important role in the proof. The above formulas can be written in the following
form by using the mapping Tk.

Q3 = x1A2 + x2B2 + T3(P3),

Q4 = x1A3 + x2B3 + A2∂1P3 +B2∂2P3 + T4(P4).

The space Hk can be identified with Rk+1, therefore there is a (k + 1)× (k + 1) matrix
corresponding to the linear mapping Tk. Using the basis {xk1, xk−1

1 x2, . . . , x
k
2} the matrices

in the cases k = 3 and k = 4 are

T3 =


0 −1 0 0
3 0 −2 0
0 2 0 −3
0 0 1 0

 , T4 =


0 −1 0 0 0
4 0 −2 0 0
0 3 0 −3 0
0 0 2 0 −4
0 0 0 1 0

 .

It can be checked easily that detT3 6= 0, hence T3 is an isomorphism, thus there exists a
polynomial P3 ∈ H3, such that

T3(P3) = −x1A2 − x2B2, (7.8)

yielding Q3 = 0. This proves statement 1 above.
In order to prove statement 2, introduce c0, c1, . . . , c4 in such a way that

c0x
4
1 + c1x

3
1x2 + c2x

2
1x

2
2 + c3x1x

3
2 + c4x

4
2 = x1A3 + x2B3 + A2∂1P3 +B2∂2P3 (7.9)

holds. It will be shown that with a suitable choice of P4 one can guarantee

Q4(x1, x2) = K(x2
1 + x2

2)2

with some constant K. It is enough to verify that

K(1, 0, 2, 0, 1)T − (c0, c1, c2, c3, c4) ∈ ImT4. (7.10)

The range of the linear mapping T4 consists of those vectors that are orthogonal to the
kernel of its transpose. Using the matrix of T4 it is easy to see that the kernel of its
transpose is spanned by the vector (3, 0, 1, 0, 3)T (since (3, 0, 1, 0, 3)T4 is the null vector).
Hence (7.10) holds if

0 = 3(K − c0) + 2K − c2 + 3(K − c4) = 8K − (3c0 + c2 + 3c4),
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that is K = 3c0+c2+3c4
8

.
In order to get the coefficients ci the coefficients of P3 are needed. Determine the

polynomial in the form

P3(x1, x2) = q0x
3
1 + q1x

2
1x2 + q2x1x

2
2 + q3x

3
2

and for the coefficients of the polynomials A2 and B2 introduce the notations

A2(x1, x2) = a20x
2
1 + a11x1x2 + a02x

2
2, B2(x1, x2) = b20x

2
1 + b11x1x2 + b02x

2
2. (7.11)

Then equation (7.8) determining the polynomial P3 takes the form
0 −1 0 0
3 0 −2 0
0 2 0 −3
0 0 1 0



q0

q1

q2

q3

 = −


a20

a11

a02

0

−


0
b20

b11

b02


for the unknown coefficients qi. This can be solved as

q0 = −1

3
(2b02 + a11 + b20), q1 = a20

q2 = −b02, q3 =
1

3
(2a20 + b11 + a02).

The coefficients of A3 and B3 are be denoted by

A3(x1, x2) = a30x
3
1 + a21x

2
1x2 + a12x1x

2
2 + a03x

3
2, (7.12)

B3(x1, x2) = b30x
3
1 + b21x

2
1x2 + b12x1x

2
2 + b03x

3
2. (7.13)

Then (7.9) determining the coefficients ci yields

c0 = 3q0a20 + q1b20 + a30,

c4 = 3q3b02 + q2a02 + b03,

c2 = 3q0a02 + 3q3b20 + 2q1a11 + 2q2b11 + q2a20 + q1b02 + a12 + b21.

Substituting the formulas above for the coefficients qi into these equations simple algebra
shows that 3c0 + c2 + 3c4 = L, where

L = 3a30 + 3b03 + a12 + b21 + 2a20b20 − 2a02b02 − a11(a20 + a02) + b11(b20 + b02) (7.14)

is the so-called Lyapunov coefficient. This proves statement 2, because Q4(x1, x2) =
L
8
(x2

1 + x2
2)2 is definite once L 6= 0.
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Let us now turn to the proof of statement 3 in the case L 6= 0. Inequality (7.7) will

be used. Let us choose a number ε > 0, for which |x| < ε implies |r(x)| < |L|
16

. If L > 0,
then |x| < ε, x 6= 0 yields

LfV (x) = Q4(x) +Q5(x) ≥ L

8
(x2

1 + x2
2)2 − L

16
(x2

1 + x2
2)2 =

L

16
(x2

1 + x2
2)2 > 0

proving statement 3. The statement can be verified similarly in the case L < 0 . Sum-
marising the statements above, we proved the following theorem.

Theorem 7.5.. Consider system (7.4)-(7.5), where the polynomials A2, B2 are given in
(7.11) the polynomials A3, B3 are given in (7.12) and (7.13) and the functions A4, B4

satisfy the estimates (7.6). Let the Lyapunov coefficient L be given by (7.14). Then in
the case L < 0 the origin is asymptotically stable, while for L > 0 it is unstable.

The proof of the theorem now is only the simple application of Lyapunov’s theo-
rem about the stability and unstability of an equilibrium by using the above Lyapunov
function.

We note that in the case L = 0 further Lyapunov coefficients can be introduced by
using higher order terms. The stability of the origin is determined by the first non-zero
Lyapunov coefficient. Moreover, Lyapunov also proved that if all coefficients are zero in
an analytic system, then the origin is a center. This theorem is called Lyapunov’s center
theorem, see e.g. in the book by Chicone [7].

7.2.2 Andronov–Hopf bifurcation for linear parameter depen-
dence

Extend system (7.4)-(7.5) with the simplest parameter dependence that appears also in
the normal form (7.2)-(7.3) of the bifurcation, that is consider the system

ẋ1 = λx1 + x2 + A2(x1, x2) + A3(x1, x2) + A4(x1, x2), (7.15)

ẋ2 = −x1 + λx2 +B2(x1, x2) +B3(x1, x2) +B4(x1, x2), (7.16)

where the polynomials A2, B2 are given in (7.11) the polynomials A3, B3 are given in
(7.12) and (7.13) and the functions A4, B4 satisfy the estimates (7.6). Apply the Lya-
punov function

V (x1, x2) =
1

2
(x2

1 + x2
2) + P3(x1, x2) + P4(x1, x2)

introduced above. Then the Lie derivative of the function V is

LfV = ∂1V f1 + ∂2V f2

= (x1 + ∂1P3 + ∂1P4)(λx1 + x2 + A2 + A3 + A4)

+ (x2 + ∂2P3 + ∂2P4)(−x1 + λx2 +B2 +B3 +B4)

= λD +Q4 +Q5,
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where the term Q3 does not present, because it is zero by the suitable choice of P3 and

D(x1, x2) = x2
1 + x2

2 + x1(∂1P3 + ∂1P4) + x2(∂2P3 + ∂2P4).

Since the second degree part of D is a positive definite quadratic form, there exists ε > 0,
for which |x| < 2ε implies D(x1, x2) > 0. We can assume that ε is chosen so small that
Q4 + Q5 is also definite in the ball |x| < 2ε. Consider the case L < 0. Then in the ball
|x| < 2ε we have Q4(x) +Q5(x) < 0, hence in the case λ < 0

LfV (x) = λD(x) +Q4(x) +Q5(x) < 0,

for |x| < 2ε, that is the origin is asymptotically stable. If λ > 0, then linearisation shows
that the origin is unstable. We prove that there exists λ0 > 0, such that for all λ ∈ (0, λ0)
there is a periodic orbit . Let r > 0 be a number, for which V (x) ≤ r implies |x| < 2ε
and let

M = max
V (x)≤r

D(x) > 0, and m = max
V (x)=r

Q4(x) +Q5(x) < 0,

and let λ0 = −m
M

. Then V (x) = r and λ ∈ (0, λ0) imply LfV (x) < λM +m < 0. Hence
the set given by V (x) ≤ r is positively invariant and it contains a single equilibrium the
origin that is unstable. Hence the Poincaré-Bendixson theorem implies that there is a
stable limit cycle in this set. This proves that supercritical Andronov–Hopf bifurcation
occurs at λ = 0. It can be proved similarly that for L > 0 the bifurcation is subcritical.
Summarising, the following theorem is proved.

Theorem 7.6.. Consider system (7.15)-(7.16), where the polynomials A2, B2 are given
in (7.11), the polynomials A3, B3 are given in (7.12) and (7.13) and the functions A4, B4

satisfy the estimates (7.6). Let the Lyapunov coefficient L be given by (7.14). Then in
the case L < 0 supercritical Andronov–Hopf bifurcation occurs at λ = 0, while for L > 0
subcritical Andronov–Hopf bifurcation occurs at λ = 0.

The application of the theorem is illustrated by the following example.

Example 7.2. Investigate Andronov–Hopf bifurcation in the system

ẋ1 = λx1 + x2 + x2
1, (7.17)

ẋ2 = −x1 + λx2 − x2
1 (7.18)

and determine the type of the bifurcation. According to the theorem the sign of the Lya-
punov coefficient L is needed using formula (7.14). In our case A2(x1, x2) = B2(x1, x2) =
x2

1, A3(x1, x2) = B3(x1, x2) = 0 and A4(x1, x2) = B4(x1, x2) = 0. Therefore (7.11) yields
a20 = b20 = 1, and according to (7.12) and (7.13) the other coefficients are zero. Hence
L = 2a20b20 = −2, thus at λ = 0 supercritical Andronov–Hopf bifurcation occurs, that
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is for λ < 0 the origin is asymptotically stable, and in the case λ > 0 it is unstable
surrounded by a stable limit cycle as it is shown in Figure 7.2.

Andronov–Hopf bifurcation in the differential equation of Example 7.2 at λ = 0. The
figure in the left hand side shows the phase portrait for λ < 0, the figure in the right hand
side shows the phase portrait for λ > 0.

7.2.3 Andronov–Hopf bifurcation with general parameter de-
pendence and with linear part in Jordan canonical form

In this subsection system (7.15)-(7.16) is generalised in such a way that the coefficients
may depend on the parameter λ arbitrarily, but the linear part is still in Jordan canonical
form. That is system

ẋ1 = α(λ)x1 + β(λ)x2 + A2(x1, x2) + A3(x1, x2) + A4(x1, x2), (7.19)

ẋ2 = −β(λ)x1 + α(λ)x2 +B2(x1, x2) +B3(x1, x2) +B4(x1, x2) (7.20)

is considered, where the polynomials A2, B2 are given again in (7.11), the polynomials
A3, B3 are given in (7.12) and (7.13) and the functions A4, B4 satisfy the estimates (7.6).
In order to have Andronov-Hopf bifurcation at λ = 0, we assume about the parameter
dependence in the linear part that

α(0) = 0, α′(0) 6= 0, β(0) 6= 0. (7.21)

Namely, the eigenvalues of the linear part are α(λ) + iβ(λ), hence as λ crosses zero, the
pair of eigenvalues crosses the imaginary axis in the complex plane. Thus for example
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in the case α′(0) > 0, the origin is asymptotically stable for λ < 0 and it is unstable for
λ > 0. Using the Lyapunov function introduced above, it will be shown that depending
on the sign of the Lyapunov coefficient L a periodic orbit appears for negative or positive
values of λ.

The Lyapunov function takes again the form

V (x1, x2) =
1

2
(x2

1 + x2
2) + P3(x1, x2) + P4(x1, x2).

The Lie derivative of the this function is

LfV = ∂1V f1 + ∂2V f2

= (x1 + ∂1P3 + ∂1P4)(α(λ)x1 + β(λ)x2 + A2 + A3 + A4)

+ (x2 + ∂2P3 + ∂2P4)(−β(λ)x1 + α(λ)x2 +B2 +B3 +B4)

= α(λ)D +Q3 +Q4 +Q5,

where

D(x1, x2) = x2
1 + x2

2 + x1(∂1P3 + ∂1P4) + x2(∂2P3 + ∂2P4),

Q3 = x1A2 + x2B2 + β(λ)T3(P3),

Q4 = x1A3 + x2B3 + A2∂1P3 +B2∂2P3 + β(λ)T4(P4),

and Q5 contains the higher order terms that satisfy the inequality (7.7). Since the
second degree part of D is a positive definite quadratic form, there exists ε > 0, for
which |x| < 2ε implies D(x1, x2) > 0. We can assume that ε is chosen so small that

|r(x)| < |L|
16

in the ball |x| < 2ε. Hence

|Q5(x1, x2)| ≤ L

16
(x2

1 + x2
2)2. (7.22)

In this case the value β(λ) changes as λ is varied, hence it cannot be assumed that Q3 = 0
for all λ. Instead, P3 can be chosen in such a way that β(0)T3(P3) = −(x1A2 + x2B2)
holds. Then

Q3 = (β(λ)− β(0))T3(P3). (7.23)

Similarly, one can chose a polynomial P4, for which

x1A3 + x2B3 + A2∂1P3 +B2∂2P3 + β(0)T4(P4) =
L

8
(x2

1 + x2
2)2

holds. Then

Q4 = (β(λ)− β(0))T4(P4) +
L

8
(x2

1 + x2
2)2. (7.24)
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It will be proved now that in the case L < 0 and α′(0) > 0 there exists λ0 > 0, such that
for all λ ∈ (0, λ0) there is a periodic orbit around the origin. Let r > 0 be a number, for
which V (x) ≤ r implies |x| < 2ε and let

M = max
V (x)≤r

D(x) > 0, and m = max
V (x)=r

|T3(P3)(x) + T4(P4)(x)|.

Then (7.23) and (7.24) imply that for V (x) = r and λ > 0 we have

LfV (x) = α(λ)D(x) +Q3(x) +Q4(x) +Q5(x)

= α(λ)D(x) + (β(λ)− β(0))(T3(P3)(x) + T4(P4)(x)) +
L

8
(x2

1 + x2
2)2 +Q5(x)

≤ α(λ)M + |β(λ)− β(0)|m+
L

16
(x2

1 + x2
2)2,

where inequality (7.22) was used in the last step. The continuity of the functions α and
β imply that there exist λ0, for which λ ∈ (0, λ0) implies

α(λ)M + |β(λ)− β(0)|m <
L

32
ε4.

Hence V (x) = r and λ ∈ (0, λ0) imply

LfV (x) <
L

32
ε4 < 0.

Therefore the set given by V (x) ≤ r is positively invariant and it contains a single
equilibrium the origin that is unstable. Hence the Poincaré-Bendixson theorem implies
that there is a stable limit cycle in this set. This proves that supercritical Andronov–Hopf
bifurcation occurs at λ = 0. It can be proved similarly that for L > 0 the bifurcation is
subcritical. Summarising, the following theorem is proved.

Theorem 7.7.. Consider system (7.19)-(7.20), where the polynomials A2, B2 are given
in (7.11), the polynomials A3, B3 are given in (7.12) and (7.13) and the functions A4, B4

satisfy the estimates (7.6). Assume that the function α is differentiable, β is continuous
and the conditions (7.21) hold. Let the Lyapunov coefficient L be given by (7.14). Then
in the case L < 0 supercritical Andronov–Hopf bifurcation occurs at λ = 0, while for
L > 0 subcritical Andronov–Hopf bifurcation occurs at λ = 0.

Remark 7.1. We note that the theorem can be generalised to the case when the func-
tions Ai and Bi depend continuously also on the parameter λ. Namely, the Lyapunov
function is constructed to the parameter value λ = 0 and the continuous dependence on
the parameter implies that the sign of LfV is the same for small λ values as for λ = 0.
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7.2.4 Andronov–Hopf bifurcation for arbitrary parameter de-
pendence

Consider now a general two dimensional system ẋ = f(x, λ), where λ ∈ R is a parameter
and x(t) ∈ R2. Assume that for the parameter value λ0 x0 is an equilibrium and the
eigenvalues of the Jacobian are purely imaginary, that is f(x0, λ0) = 0 and the eigenvalues
of ∂xf(x0, λ0) are ±iω. Then the implicit function theorem implies that there exists
δ > 0 and a differentiable function g : (λ0 − δ, λ0 + δ) → R2, such that g(λ0) = x0 and
f(g(λ), λ) = 0 for all λ ∈ (λ0 − δ, λ0 + δ). Introducing the new variable x̃ = x− g(λ), a

new parameter λ̃ = λ− λ0 and f̃(x̃, λ̃) = f(x̃+ g(λ), λ̃+ λ0) one obtains

˙̃x = ẋ = f(x, λ) = f̃(x̃, λ̃)

and
∂xf(x0, λ0) = ∂x̃f̃(0, 0).

Moreover, f̃(0, λ̃) = 0 for all |λ̃| < δ.
It can be easily seen that in the system ẋ = f(x, λ) Andronov–Hopf bifurcation

occurs at λ in the point g(λ), if and only if in the system ˙̃x = f̃(x̃, λ̃) Andronov–Hopf

bifurcation occurs at λ̃ = 0 in the origin. Therefore it is enough to investigate systems,
where the origin remains an equilibrium as the parameter is varied and the bifurcation
is at zero. That is it can be assume without loss of generality that f(0, λ) = 0 for all
λ and the eigenvalues of the matrix ∂xf(0, 0) have zero real part. Thus it is enough to
investigate the bifurcation in systems of the form

ẋ = B(λ)x+ h(x, λ), (7.25)

where h(0) = 0 and h′(0) = 0.
This system can be reduced further by transforming the linear part to Jordan canon-

ical form. Let the eigenvalues of B(λ) be α(λ) ± iβ(λ) and the eigenvectors be s(λ) =
r(λ) ± iq(λ). Introducing the matrix P = (r(λ), k(λ)) ∈ R2×2 let X = P−1 · x be the
new unknown function. For this function the differential equation takes the form

Ẋ = P−1 · ẋ = P−1 · f(x, λ) = P−1 · f(PX, λ).

Then
P−1 · f(PX, λ) = P−1B(λ)PX + P−1h(PX, λ).

Let
A(λ) = P−1B(λ)P, and F (X,λ) = P−1h(PX, λ),

where the definition of P yields

A(λ) =

(
α(λ) β(λ)
−β(λ) α(λ)

)
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and F : R2×R→ R is continuously differentiable with F (0, λ) = 0, ∂xF (0, λ) = 0 ∈ R2×2.
Then for the function X the differential equation takes the form

Ẋ = A(λ)X + F (X,λ).

That is the coordinates of X are solutions of system (7.19)-(7.20) with a possible depen-
dence of Ai and Bi on the parameter λ. Since this system was obtained from system
(7.25) by a linear transformation, Andronov–Hopf bifurcation occurs in this system, if
and only if it occurs in system (7.25). The sufficient condition of the bifurcation for this
system was given in Theorem 7.7.. The Lyapunov coefficient can be expressed in terms
of the coordinates of the function F , because F1 = A2 +A3 +A4 and F2 = B2 +B3 +B4.
Then the Lyapunov coefficient is

L =∂3
1F1 + ∂1∂

2
2F1 + ∂2

1∂2F2 + ∂3
2F2

+ ∂12F1 · (∂2
1F1 + +∂2

2F1)− ∂12F2 · (∂2
1F2 + ∂2

2F2)− ∂2
1F1 · ∂2

1F2 + ∂2
2F1 · ∂2

2F2,

where the partial derivatives are taken at λ = 0 and at the origin, i.e. for example,
∂3

1F1 stands for ∂3
1F1(0, 0). Therefore Theorem 7.7. yields the sufficient condition for the

Andronov–Hopf bifurcation in system (7.25).

Theorem 7.8.. Consider system (7.25), where the eigenvalues of B(λ) are α(λ)± iβ(λ)
and its eigenvectors are s(λ) = r(λ)±iq(λ). Assume that the function α is differentiable,
β is continuous and the conditions (7.21) hold. Denoting by P the matrix, the columns
of which are the vectors r(λ) and q(λ) introduce the function F (X,λ) = P−1h(PX, λ),
and using its partial derivatives at (0, 0) compute the above Lyapunov coefficient L. Then
in the case L < 0 supercritical Andronov–Hopf bifurcation occurs at λ = 0 in the origin,
while for L > 0 the Andronov–Hopf bifurcation at λ = 0 is subcritical.

This theorem enables us to find Andronov–Hopf bifurcation a general two dimensional
system. The theorem can be generalised for arbitrary dimensional phase spaces by using
center manifold reduction. This general formulation can be found in Kuznetsov’ book
[17].

7.2.5 Case study for finding the Andronov–Hopf bifurcation

It was shown in the previous subsection that in order to find the Andronov–Hopf bi-
furcation several transformations of the system are needed and the Lyapunov coefficient
can only be determined after these transformations. In this subsection we illustrate the
whole process by an example.

Consider the following system of differential equations

ẋ = x(x− x2 − y), (7.26)

ẏ = y(x− a), (7.27)
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where a ∈ R is a positive parameter. We note that the equation originates from a chem-
ical reaction (called Lotka–Volterra-autocatalator reaction). The equilibria are (0, 0),
(1, 0) and (a, a− a2). The Jacobian matrix takes the form(

2x− 3x2 − y −x
y x− a

)
.

The point (0, 0) is degenerate, and the equilibrium (1, 0) is a saddle when a > 1 and it is
a stable node when a < 1. Investigate the system at the point (a, a− a2). At this point
the Jacobian matrix is (

a− 2a2 −a
a− a2 0

)
.

If 1
2
< a < 1, then this point is stable, while for 0 < a < 1

2
, it is unstable. Hence at

a = 1
2

Andronov–Hopf bifurcation may occur. Now it will be shown that supercritical
Andronov–Hopf bifurcation occurs at a = 1

2
.

First, the equilibrium is transformed to the origin and the bifurcation value of the
parameter is transformed to zero. That is let ξ = x− a, η = y − a + a2 and λ = 1

2
− a.

Then x = ξ + a, y = η + a− a2 and a = 1
2
− λ. The differential equations yield

ẋ = ξ̇ = ξ · λ(1− 2λ)− η(
1

2
− λ)− ξ · η + ξ2 · (3λ− 1

2
)− ξ3

and

ẏ = η̇ = ξ(η +
1

4
− λ2).

Thus the system is transformed to the form given in (7.25), i.e. the point (0, 0) is an
equilibrium for all λ and the linear part is

B(λ) =

(
λ(1− 2λ) λ− 1

2
1
4
− λ2 0

)
.

The trace of the matrix is Tr = λ(1 − 2λ), that changes sign at λ = 0, hence the
bifurcation may occur at this parameter value. In order to apply Theorem 7.8. we need
the eigenvalues and eigenvectors of this matrix. The characteristic equation is

µ(µ− λ(1− 2λ)) + (−λ+
1

2
)(

1

4
− λ2) = 0,

hence the eigenvalues are

µ1,2 =
λ(1− 2λ)±

√
λ2(1− 2λ)2 − 4(1

2
− λ)(1

4
− λ2)

2
.
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Their real part is α(λ) = λ(1
2
− λ), hence the conditions α(0) = 0 and α′(0) = 1

2
6= 0 are

fulfilled. The imaginary part of the eigenvalues are

β(λ) =

√
λ2(1− 2λ)2 − 4(1

2
− λ)(1

4
− λ2)

2
,

hence β(0) = 1
2
√

2
6= 0. Thus the conditions in (7.21) hold. The matrix belonging to

λ = 0 is (
0 −1

2
1
4

0

)
,

its eigenvalues are ± 1
2
√

2
and its eigenvectors take the form(

1
−i 1√

2

)
=

(
1
0

)
+ i

(
0
− 1√

2

)
.

Introduce the new coordinates u, v by the linear transformation(
ξ
η

)
=

(
1 0
0 −1√

2

)(
u
v

)
The system at λ = 0 takes the form

ξ̇ = −1

2
η − ξη − 1

2
η2 − ξ3,

η̇ =
1

4
ξ + ξη,

In the new coordinates u, v it is

u̇ =
1√
8
v +

1√
2
uv − 1

2
u2 − u3,

v̇ =− 1√
8
u+ uv.

Here the linear part is in Jordan canonical form and the non-linear part F is

F (u, v) =

( 1√
2
uv − 1

2
u2 − u3

uv

)
The following partial derivatives are needed to compute the Lyapunov coefficient.

∂1F1 =
1√
2
v − u− 3u2, ∂2

1F1 = −1− 6u, ∂3
1F1 = −6,
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∂2F1 =
1√
2
, ∂2

2F1 = 0, ∂12F1 =
1√
2
, ∂1F2 = v, ∂2F2 = u.

Taking these partial derivatives at the point (u, v) = (0, 0) and substituting them into
the formula of L we get L = −1/4. Therefore supercritical Andronov–Hopf bifurcation
occurs. In the original system (7.26)-(7.27) the bifurcation is at a = 1/2. Figure 7.2.5
shows that for a > 1/2 the equilibrium (a, a − a2) is stable, while for a < 1/2 it is
unstable and there is a stable limit cycle.

Andronov–Hopf bifurcation in the system (7.26)-(7.27) at a = 1/2. The phase por-
traits are shown for a < 1/2 (left) and for a > 1/2 (right).

7.3 Computing bifurcation curves in two-parameter

systems by using the parametric representation

method

7.3.1 The parametric representation method

The computation of one co-dimensional bifurcation curves in two-parameter systems
often leads to the equation

f(x, u1, u2) = 0,
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where x is the unknown and u1, u2 are given parameters. In this subsection it is shown
that the parametric representation method is a useful tool to compute the bifurcation
curve when the parameters are involved linearly in the above equation (which is often
the case in several applications). Let us assume that

f(x, u1, u2) = f0(x) + f1(x)u1 + f2(x)u2,

where fi : R→ R are continuously differentiable functions.

Definition 7.9.. For a given u ∈ R2 denote by N(u) the number of solutions of f(x, u1, u2) =
0 (that can also be equal to infinity), that is

N(u) := |{x ∈ R : f(x, u) = 0}|.

A pair of parameters will be called bifurcational if the number of solutions is not constant
in its small neighbourhood.

Definition 7.10.. The parameter u0 ∈ R2 is called regular, if it has a neighbourhood
U ⊂ R2, for which u ∈ U implies N(u) = N(u0), that is N is constant in the neighbour-
hood.

The parameter u0 ∈ R2 is called bifurcational, if it is not regular.
The set of bifurcational parameter values is called bifurcation set that is denoted by

B.

According to the implicit function theorem x can be expressed from equation f(x, u1, u2) =
0 in terms of the parameters when ∂xf is not zero. Hence the number of solutions may
change only in the case when ∂xf(x, u1, u2) = 0 holds together with f(x, u1, u2) = 0.
The points satisfying both conditions form the singularity set.

Definition 7.11.. The singularity set belonging to equation f(x, u1, u2) = 0 is

S := {u ∈ R2 : ∃ x ∈ R : f(x, u) = 0 and ∂xf(x, u) = 0}.

The goal of the further investigation is to determine the number and value of the
solutions for a given parameter pair u ∈ R2, and to reveal the relation of the bifurcation
set B and the singularity set S.

When f depends linearly on the parameters u1 and u2, then the singularity set is
given by the system of equations

f0(x) + f1(x)u1 + f2(x)u2 = 0,

f ′0(x) + f ′1(x)u1 + f ′2(x)u2 = 0.

The main idea of the parametric representation method is that in this system x can
be considered as a parameter in terms of which the original parameters u1, u2 can be
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expressed by simply solving a system of linear equations. For sake of brevity, the method
will be presented only in the special case of f1(x) = 1, f2(x) = x. The function f0 will
then be denoted by g. The singularity is given then by

u1 + u2x+ g(x) = 0,

u2 + g′(x) = 0.

Expressing the parameters u1, u2 in terms of x we get

u1 = xg′(x)− g(x),

u2 = −g′(x).

Introduce the curve D : R→ R2 that associates the pair (u1, u2) to x, that is

D1(x) = xg′(x)− g(x), D2(x) = −g′(x).

This curve, that yields the points of the singularity set as a curve parametrised by x, is
called discriminant curve.

Our original goal was to find x in terms of the parameters u1 and u2. Hence introduce
the set

M(x) = {(u1, u2) ∈ R2 : f0(x) + f1(x)u1 + f2(x)u2 = 0}
that contains those parameter pairs, for which x is a solution of the equation. Because of
the linear parameter dependence, this is a line in the parameter plane. One of the most
important results of the parametric representation method is the following tangential
property.

Proposition 7.3 (Tangential property). The line M(x) is tangential to the discrim-
inant curve at the point D(x).

Proof. Since the pair (u1, u2) = D(x) is a solution of equation f(x, u1, u2) = 0, we have
D(x) ∈ M(x), i.e. the point D(x) lies on the line M(x). Thus it is enough to prove
that the tangent vector D′(x) is orthogonal to the normal of the line M(x), which is
the vector (f1(x), f2(x)). This can easily be shown for any differentiable functions fi.
Namely, the pair (u1, u2) = D(x) is a solution of f(x, u1, u2) = 0, i.e.

f0(x) + f1(x)D1(x) + f2(x)D2(x) = 0

holds for all x. Hence differentiating this equation leads to

f ′0(x) + f ′1(x)D1(x) + f ′2(x)D2(x) + f1(x)D′1(x) + f2(x)D′2(x) = 0.

Here f ′0(x) +f ′1(x)D1(x) +f ′2(x)D2(x) = 0, because the pair (u1, u2) = D(x) is a solution
of the equation ∂xf(x, u1, u2) = 0 too, hence

f1(x)D′1(x) + f2(x)D′2(x) = 0,

that proves the desired orthogonality.
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Remark 7.2. We note that the tangential property expresses the well-known fact that
the envelope of the solution curves M(x) of the equation f(x, u1, u2) = 0 is the singularity
set.

In the case of linear parameter dependence the tangential property yields a simple
geometrical method for finding the solutions x of equation f0(x) + f1(x)u1 + f2(x)u2 = 0
for given values of the parameters u1 and u2. Namely, for a given pair (u1, u2) the number
x is a solution of equation f0(x) + f1(x)u1 + f2(x)u2 = 0, if and only if (u1, u2) lies on
the tangent of the D curve drawn at the point corresponding to x, i.e. at D(x).

The application of the method is illustrated by the following examples.

Example 7.3. Let f1(x) = 1, f2(x) = x, f0(x) = g(x) = x2, i.e. consider the quadratic
equation x2 + u2x+ u1 = 0. Then D1(x) = x2, D2(x) = −2x and note that D1 = D2

2/4,
hence the discriminant curve D is a parabola in the parameter plane (u1, u2). Its equation
is 4u1 = u2

2, that is exactly the discriminant of the quadratic equation. For a given pair
(u1, u2) the number x is a solution of equation x2 + u2x+ u1 = 0, if and only if (u1, u2)
lies on the tangent of the D curve drawn at the point corresponding to x. This is shown
in Figure 7.3, where also the direction of the parametrisation of the D curve is shown
by an arrow. The negative values of x belong to the upper branch of the parabola, while
the positive x values correspond to the lower branch. It is easy to see from the figure
that from each point of the domain on the left hand side of the parabola two tangents can
be drawn to the parabola. From the points lying in the right hand side no tangents can
be drawn. This way we arrived in a geometric way to the simple algebraic fact, that in
the case 4u1 < u2

2 the quadratic equation has two solutions, while for 4u1 > u2
2 it has no

solution. Moreover, the tangent points yield information about the value of the solutions.
For example, choosing a parameter pair from the left half plane we get one tangent point
on the upper branch and another one on the lower branch. This proves that in the case
u1 < 0 the equation has one positive and one negative solution. Another simple geometric
fact is that from the quadrant u1, u2 > 0 tangents can only be drawn to the upper branch,
proving that for u1, u2 > 0 the equation can have only negative solutions.

Example 7.4. Let f1(x) = 1, f2(x) = x, f0(x) = g(x) = x3, i.e. consider the cubic
equation x3 + u2x + u1 = 0. Then D1(x) = 2x3, D2(x) = −3x2 and note that 27D2

1 =
−4D3

2, hence the discriminant curve D lies in the lower half plane, it touches the vertical
axis at the origin, where it has a cusp point. Its equation is 27u2

1 + 4u3
2 = 0, that is

exactly the discriminant of the cubic equation. For a given pair (u1, u2) the number x
is a solution of equation x3 + u2x + u1 = 0, if and only if (u1, u2) lies on the tangent
of the D curve drawn at the point corresponding to x. The D curve is shown in Figure
7.4, where also the direction of the parametrisation of the curve is shown by an arrow.
The negative values of x belong to the left branch of the curve, while the positive x values
correspond to the right branch. It is easy to see from the figure that from each point
between the two branches three tangents can be drawn to the curve. From the points
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Figure 7.3: The two tangent lines drawn from the point (u1, u2) to the discriminant curve
belonging to the quadratic equation x2 + u2x + u1 = 0. They touch the curve at the
points corresponding to x1 and x2. These are the solutions of the quadratic equation for
the given value of the parameters.

lying outside the cusp one tangent can be drawn. The numbers in the figure indicate
the number of solutions for parameter pairs chosen from the given domain. Moreover,
the tangent points yield information about the value of the solutions. Here we can again
observe the simple geometric fact that from the quadrant u1, u2 > 0 tangents can only be
drawn to the left branch, proving that for u1, u2 > 0 the equation can have only negative
solutions.

We note, that it can be easily shown that the discriminant curve consists of convex
arcs. The number of tangents that can be drawn to a convex arc can be easily determined
as it is shown in Figure 7.5. This geometrical result is used when the number of solutions
of a quartic equation is studied in the next example.

Example 7.5. Let f1(x) = 1, f2(x) = x, f0(x) = g(x) = −x2 + x4, i.e. consider the
quartic equation u1 + u2x − x2 + x4 = 0. Then D1(x) = 3x4 − x2, D2(x) = 2x − 4x3.
This curve can be plotted in the plane by using the graphs of the coordinate function D1

and D2. The curve has two cusp points as it is shown in Figure 7.6. This figure shows
that from the points of the inner part of the so-called ”swallow-tail” four tangents can
be drawn to the curve. From the points in the outer domain two tangents can be drawn
and from the remaining part of the plane no tangents can be drawn. The numbers in the
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Figure 7.4: The discriminant curve of the cubic equation x3 + u2x + u1 = 0 divides the
parameter plane into two parts according to the number of solutions. In the domain
between the two branches there are three solutions, while outside the cusp there is only
one.

figure indicate the number of tangents, i.e. the number of solutions for parameter pairs
chosen from the given domain.

7.3.2 Bifurcation curves in two-parameter systems

In this subsection it is shown how the saddle-node and Andronov-Hopf bifurcation curves
can be determined in systems of the form ẋ(t) = f(x(t), u1, u2), where the phase space
is two dimensional, i.e. x(t) ∈ R2 and there are two parameters u1 and u2. The goal is
to divide the parameter plane (u1, u2) according to the number and type of equilibria.
The bifurcation curves will be determined by using the parametric representation method
presented in the previous subsection. By plotting these two bifurcation curves one can see
that when they have a common tangent at a point, then this point is Takens–Bogdanov
bifurcation point, at which the linear part has a double zero eigenvalue.

Consider first the following two dimensional system.

ẋ = y, (7.28)

ẏ = u1 + u2 · x+ x2 + x · y. (7.29)
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Figure 7.5: The number of tangents that can be drawn to a convex arc from different
points of the plane.

The equilibria are determined by the equations

0 = y,

0 = u1 + u2x+ x2 + x · 0.

Hence they are determined by a single quadratic equation f(x, u) := u1 + u2x + x2 =
0. The number of solutions of equations of this type can be determined by using the
parametric representation method. The singularity set is given by the equations f(x, u) =
0 and ∂xf(x, u) = 0, that is

u1 + u2x+ x2 = 0

u2 + 2x = 0.

The parameters u1, u2 can be expressed from these equations in terms of x, this way we
get the discriminant curve, that is the parabola

u2 = D2(x) =− 2x,

u1 = D1(x) =x2,

in our case, as it is shown in Figure 7.3.2.
The saddle-node and Andronov-Hopf bifurcation curves in the system (7.28)-(7.29).
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Figure 7.6: The discriminant curve of the quartic equation u1 +u2x−x2 +x4 = 0 divides
the parameter plane into three parts according to the number of solutions. The numbers
in the figure indicate the number of solutions for parameter pairs chosen from the given
domain.

The number of solutions for a given parameter pair (u1, u2) is equal to the number of
tangents that can be drawn to the discriminant curve from the parameter point (u1, u2).
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Thus choosing a parameter pair in the left hand side of the parabola, there are two
equilibria, while for parameter pairs in the right hand side there is no equilibria. That is
the discriminant curve is the saddle-node bifurcation cure. Crossing this curve with the
parameters the number of solutions changes by two.

Let us now determine the Andronov-Hopf bifurcation curve. The Jacobian matrix at
a point (x, y) is (

0 1
u2 + 2x+ y x

)
.

Its trace is Tr = x and its determinant is Det = −(u2 + 2x + y). Let x ∈ R be an
arbitrary number. Then for the Jacobian at the equilibrium (x, 0) we have Tr = x, and
Det = −(u2 + 2x). It is easy to see that the necessary condition of the Andronov-Hopf
bifurcation is Tr = 0 and Det > 0, because in this case the Jacobian has pure imaginary
eigenvalues. The curve determined by these conditions is called now the Andronov-
Hopf bifurcation curve, despite of the fact that at some isolated points of the curve the
Lyapunov coefficient may be zero, hence the sufficient condition may not hold. The
Andronov-Hopf bifurcation consists of those parameter pairs (u1, u2), for which there
exists an equilibrium (x, 0), at which Tr = x = 0 and Det = −(u2 + 2x) > 0. That is
the following should hold

u1 + u2x+ x2 = 0, x = 0, u2 + 2x < 0.

These imply u1 = 0 and u2 < 0, thus the Andronov-Hopf bifurcation curve is the negative
part of the vertical coordinate axis. This half line touches the parabola of the saddle-
node bifurcation, hence the origin is the Takens–Bogdanov bifurcation point, see Figure
7.3.2.

The next example is the normal form of the Takens–Bogdanov bifurcation.

ẋ = y,

ẏ = u1 + u2 · y + x2 + x · y.

The equilibria are determined by the equations

0 = y,

0 = u1 + x2.

Hence they are determined by a single quadratic equation u1 + x2 = 0. The singularity
set is given by the equations f(x, u) = 0 and ∂xf(x, u) = 0, that is

u1 + x2 = 0,

2x = 0.
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It can be seen that the parametric representation method cannot be applied, because
this system cannot be solved for (u1, u2). However, x = 0 implies u1 = 0, hence the
singularity set, that is the saddle-node bifurcation curve is the vertical axis u1 = 0

Let us now determine the Andronov-Hopf bifurcation curve. The Jacobian matrix at
a point (x, y) is (

0 1
2x+ y u2 + x

)
.

Its trace at an equilibrium (x, 0) is Tr = u2 +x = u2 +
√
−u1, by using x2 = −u1, and its

determinant is Det = −2x. Thus the Andronov-Hopf bifurcation curve is the parabola
u2 +

√
−u1 = 0. This touches the vertical axis, i.e. the saddle-node bifurcation curve, at

the origin, hence the origin is the Takens–Bogdanov bifurcation point.
Exercise

Investigate how the saddle-node and Andronov-Hopf bifurcation curves are changing
in the (u1, u2) parameter plane as the parameter a ∈ R is varied in system

ẋ = x− y,
ẏ = u1 + u2 · y + a · x · y2.
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Chapter 8

Discrete dynamical systems,
symbolic dynamics, chaotic
behaviour

8.1 Discrete dynamical systems

Let M ⊂ Rk be a domain and f : M → M be a diffeomorphism (i.e. a differentiable
bijection with differentiable inverse). Let fn = f ◦f ◦ . . .◦f be a composition of n terms,
that is fn(p) = f(f(. . . f(p) . . .)). If n < 0, then let fn = (f−1)−n, where the inverse
of f is applied in the composition (−n) times. Then the function ϕ(n, p) = fn(p),
ϕ : Z ×M → M defines a discrete time dynamical system. The discrete dynamical
system can also be given in the form of a recursion

xn+1 = f(xn), x0 = p,

then ϕ(n, p) = xn. The orbit starting from the point p is the discrete set of points
{ϕ(n, p) : n ∈ Z} or a bi-infinite sequence.

Definition 8.1.. The point p ∈ M is called a fixed point of the dynamical system, if
f(p) = p, that is ϕ(n, p) = p for all n ∈ Z. In this case the orbit of p consists of a single
point.

The stability of a fixed point can be defined analogously to the continuous time case.

Definition 8.2.. The fixed point p ∈ M is called stable, if for any ε > 0 there exists a
positive number δ, such that |q − p| < δ implies |ϕ(n, q)− p| < ε for all n ∈ N.

The fixed point p ∈M is called asymptotically stable, if it is stable and lim
n→∞

ϕ(n, p) =
p.

The fixed point p ∈M is called unstable, if it is not stable.
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These notions are illustrated by one dimensional linear examples.

Example 8.1. For a given a ∈ R let f(x) = ax and x0 = p. If a = 2, i.e. f(x) = 2x,
then ϕ(n, p) = 2np that tends to infinity as n→∞. Hence the fixed point 0 is unstable.

If a = −1, i.e. f(x) = −x, then ϕ(n, p) = (−1)np, hence the orbits consist of two
points (since xn+2 = xn). These orbits will be referred to as 2-periodic orbits. In this
case the fixed point 0 is stable but not asymptotically stable.

If a = 1/2, i.e. f(x) = x/2, then ϕ(n, p) = (1/2)np, hence the orbits tend to zero as
n→∞. Therefore the fixed point 0 is asymptotically stable.

In general, 0 is a fixed point of the dynamical system corresponding to the map f(x) =
a·x. This point is asymptotically stable, if |a| < 1, because ϕ(n, p) = an ·p→ 0, if |a| < 1.
The fixed point is unstable, if |a| > 1, and stable but not asymptotically stable, if |a| = 1.

The stability of a hyperbolic fixed point can be investigated by linearisation, also
analogously to the continuous time case. This is formulated for one dimensional systems
below.

Theorem 8.3.. Let f : R → R be a differentiable function, and let p be a fixed point
of the dynamical system defined by the recursion xn+1 = f(xn), that is f(p) = p. If
|f ′(p)| < 1, then p is asymptotically stable and in the case |f ′(p)| > 1, p is unstable.

Proof. Since lim
x→p

f(x)−f(p)
x−p = f ′(p), there exists ε > 0 and a < 1, such that for all

x ∈ (p − ε, p + ε) one has |f(x)−f(p)
x−p | < a, implying |f(x) − f(p)| < a · |x − p|, that is

|f(x) − p| < a · |x − p|. Therefore x ∈ (p − ε, p + ε) implies f(x) ∈ (p − ε, p + ε) and
|f 2(x)− f 2(p)| < a · |f(x)− f(p)| < a2 · |x− p|. By induction we obtain

|fk(x)− fk(p)| < ak · |x− p| → 0,

as k → ∞. This means that solutions starting in a neighbourhood of the fixed point
remain close to it and converge to it as k →∞. Hence the fixed point is asymptotically
stable. The instability in the case |f ′(p)| > 1 can be verified similarly.

Definition 8.4.. The point p ∈ M is called a periodic point, if there exist an integer
k > 1, such that fk(p) = p and p is not a fixed point. The smallest integer k > 1 with
this property is called the period of the point p. The orbit {p, f(p), f 2(p), . . . , fk−1(p)} is
called a k-periodic orbit.

Notice that fk(p) = p means that p is a fixed point of the map fk. Based on this
observation one can define the stability of a periodic orbit as follows.

Definition 8.5.. The k-periodic orbit starting at p is called (asymptotically) stable, if p
is an (asymptotically) stable fixed point of the map fk. The instability of a periodic orbit
can be defined similarly.

162



According to the above theorem the stability of a periodic orbit is determined by
(fk)′. Notice that the chain rule implies (f 2)′(p) = f ′(f(p))f ′(p). Similarly one obtains
(f 3)′(p) = f ′(f 2(p))·f ′(f(p))·f ′(p). Introducing the notation p1 = p, p2 = f(p1), . . . , pk =
fk−1(p1) for the points of a k periodic orbit leads to

(fk)′(p) = f ′(pk) · f ′(pk−1) · . . . · f ′(p1).

Hence the above theorem yields the following one for the stability of periodic orbits.

Theorem 8.6.. Let f : R → R be a differentiable function, and let p be a k-periodic
point of the dynamical system defined by the recursion xn+1 = f(xn), that is fk(p) = p.
The k-periodic orbit {p1, p2, . . . , pk} is asymptotically stable if |f ′(p1) · . . . · f ′(pk)| < 1.

8.1.1 Logistic map

The notions introduced above will now be illustrated in the case of the logistic map.
Moreover, this dynamical system will lead us to the definition of the chaotic orbit.

The logistic map is the function f(x) = ax(1 − x), that will be considered in the
interval [0, 1]. It will be assumed about the parameter a ∈ R that 0 < a ≤ 4, namely in
this case the function maps the interval [0, 1] into itself.

The fixed points of the map are given by the equation ax(1 − x) = x as x = 0 and
x = 1− 1

a
. The latter lies in the interval [0, 1] only for a > 1.

The goal of our investigation is to understand how the behaviour of the orbits changes
as the parameter a ∈ [0, 4] is varied.

Let us determine first the stability of the fixed points. The derivative of the map is
f ′(x) = a − 2ax, hence f ′(0) = a and f ′( 1

a
) = 2 − a. The stability of the fixed point

is guaranteed by the condition |f ′(p)| < 1, hence in the case 0 < a < 1 the fixed point
0 is asymptotically stable, and for 1 < a < 3 the fixed point 1

a
becomes asymptotically

stable. It can be proved that in these cases they are globally asymptotically stable in
the interval [0, 1], i.e. we have the following proposition.

Proposition 8.1. 1. If 0 < a < 1, then for any initial condition x0 ∈ [0, 1] the
solution converges to the fixed point 0, that is for the sequence xn+1 = axn(1− xn)
we have xn → 0 as n→∞.

2. If 1 < a < 3, then for any initial condition x0 ∈ (0, 1) the solution converges to the
fixed point 1− 1

a
, that is for the sequence xn+1 = axn(1− xn) we have xn → 1− 1

a

as n→∞.

It is a natural question, what happens as the value of a is increased further, that is for
a > 3 what can be said about the asymptotic behaviour of the sequence. Numerical
experiments show that a 2-periodic orbit appears and takes over attractivity. Let us
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compute this 2-periodic orbit. Denoting its points by x0 and x1 we arrive to the equations
x1 = ax0(1− x0) and x0 = ax1(1− x1) leading to

x0 = a2x0(1− x0)(1− ax0(1− x0)).

It is easy to see that x0 = 0 and x0 = 1 − 1
a

are solutions of this quartic equation,
because fixed points are also 2-periodic. Factoring out these roots we arrive to a quadratic
equation, the roots of which can easily be computed. It turns out that these roots are
real if and only if a > 3, that is the 2-periodic orbit is born exactly when the fixed point
x0 = 1− 1

a
looses its stability. The stability of the 2-periodic orbit can also be determined

analytically. Denoting by x0 and x1 the points of the periodic orbit, the stability requires
|f ′(x0)f ′(x1)| < 1. A straightforward but tiresome calculation shows that this holds if
3 < a < 1 +

√
6. Thus we have proved the following.

Proposition 8.2. 1. If a > 3, then there exists a 2-periodic orbit, that is there exist
numbers x0, x1 ∈ [0, 1], satisfying the equations x1 = ax0(1− x0) and x0 = ax1(1−
x1).

2. If 3 < a < 1 +
√

6, then the 2-periodic orbit is asymptotically stable.

The next question is that what happens as the value of a is increased further, that is for
a > 1+

√
6 what can be said about the asymptotic behaviour of the sequence. Numerical

experiments show that a 4-periodic orbit appears and takes over attractivity. However,
this cannot be determined analytically. The numerical investigation shows that for a
narrow range of a values it is stable and when it looses its stability an 8-periodic orbit
appears. This also looses its stability soon as a is increased and a 16-periodic orbit
appears. This process is continued with periodic orbits of period 2k, that is called period
doubling. This is a sequence of bifurcations that is illustrated in Figure 8.1. In this
Figure a is varied along the horizontal axis, and the asymptotic state of the sequence is
plotted along the vertical direction. When there is an asymptotically stable fixed point,
then this is a single point. If there is an asymptotically stable periodic orbit, then it
consists of its points. The figure can be constructed only numerically by applying the
recursion until the orbit gets close enough to the asymptotic state.

Denote by an the value of a, where the 2n-periodic orbit appears. Thus a1 = 3,
a2 = 1 +

√
6, ... The further values cannot be determined analytically, but numerical

computations show that the sequence ak has a limit and lim ak ≈ 3.569946. There is no
theoretical formula yielding this limit, however, for the relative change in the sequence
the following nice result was obtained by Feigenbaum in 1975.

lim
n→∞

an − an−1

an+1 − an
= 4, 669201609 . . . .

This is important from the theoretical point of view, because period doubling occurs also
for other dynamical systems, such as f(x) = a−x2 or f(x) = a sinx and introducing the

164



Figure 8.1: Period doubling for the logistic map. The change in the asymptotic state as
the parameter a is varied.

sequence an in the same way, the limit above has always the same value, that is called
Feigenbaum number.

8.1.2 Chaotic orbits

The detailed study of chaos is beyond the topic of this lecture notes here only a definition
of chaotic orbits is introduced and it is shown that in two simple systems there are chaotic
orbits. The most important elements of chaotic behaviour are the following.

• Sensitive dependence on initial conditions in a bounded set.

• Aperiodicity.

The definitions are formulated for one dimensional systems for the sake of simplicity,
obviously all of them can be extended to higher dimensional systems.

Let f : R → R be a continuously differentiable function and consider the dynamical
system given by the recursion

xn+1 = f(xn).

First the sensitive dependence on initial conditions is defined.

Definition 8.7.. At a point p ∈ R the solution depends sensitively on the initial condi-
tion, if there exists a number δ > 0, such that for all ε > 0 there exists q ∈ (p− ε, p+ ε)
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and k ∈ N, for which |fk(q) − fk(p)| ≥ δ, that is the distance between the solutions
starting from q and p becomes greater than a given number.

We note that sensitive dependence occurs in an unstable linear system in a trivial way.
Namely, for the function f(x) = 2x the orbit is given by fk(q) = 2kq, hence the distance
between the points of two orbits increases exponentially. The sensitive dependence is
related to chaos when the orbits are bounded.

The local measure for the change of the distance between orbits at a point can be
given by the derivative of the function, because

f(q)− f(p) = f ′(p)(q − p) + o(q − p).

Hence in the case |f ′(p)| < 1, the map is a local contraction around the point p, while
for |f ′(p)| > 1, the function is a local expansion in a neighbourhood of p. Following the
orbit of a point p at the point fk(p) the function can be a local expansion or a local
contraction depending on k. Computing the average along the orbit of p one obtains if
there is sensitive dependence on initial conditions at the point p. To measure this average
the Lyapunov number and Lyapunov exponent were introduced.

Definition 8.8.. Let f : R→ R be a continuously differentiable function. The Lyapunov
number belonging to a point p ∈ R is

L(p) = lim
n→∞

(|f ′(p)| · |f ′(f(p))| · . . . · |f ′(fn−1(p))|)
1
n .

The Lyapunov exponent belonging to a point p is its logarithm h(p) = lnL(p), that is

h(p) = lim
n→∞

1

n
· [ln |f ′(p)|+ ln |f ′(f(p))|+ . . .+ ln |f ′(fn−1(p))|].

If L(p) > 1, or in other words h(p) > 0, then the solution depends sensitively on initial
conditions at the point p.

Let us turn to the other characteristic of chaos, the aperiodicity.

Definition 8.9.. A point p ∈ R is called asymptotically periodic, if there is a periodic
point q, for which

lim
n→∞

|ϕ(n, p)− ϕ(n, q)| = 0

(that is the orbit starting at p converges to a periodic orbit).

Based on these definitions one can define the notion of a chaotic orbit.

Definition 8.10.. Let f : R → R be a continuously differentiable function. The orbit
starting at a point p ∈ R is called chaotic, if it is
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1. bounded,

2. not asymptotically periodic,

3. h(p) > 0, that is it depends sensitively on initial conditions.

Although the definition of chaos can be relatively simply formulated, it is far from
obvious to prove that a given system has chaotic orbits. The numerical investigation of
the logistic map revealed that it may have chaotic orbits when the value of the parameter
a is close to 4. However, it seems to be difficult to prove this directly. Instead, we
introduce first another mapping, the tent map, and prove that is has chaotic orbits, by
using symbolic dynamics. Then it will be shown that the logistic map for a = 4 and the
tent map are topologically conjugate, hence the logistic map has chaotic orbits.

The tent map is defined as T (x) = 1− |2x− 1|. It maps the interval [0, 1] into itself,
this will be considered the phase space. Let us check the conditions in the definition
of chaotic orbits. Since the interval [0, 1] is positively invariant under T , the orbits
are bounded (for positive k values). The definition of the Lyapunov exponent uses the
derivative of the function hence it can be only for those orbits that avoid the point
1/2, where the function T is not differentiable. For these points |T ′(p)| = 2, hence
h(p) = ln 2 > 0. Thus an orbit is chaotic if it is not asymptotically periodic. In the next
subsection it will be shown, by using symbolic dynamics, that the points of the interval,
with a countable number of exception, are not asymptotically periodic, that implies the
following statement.

Proposition 8.3. The tent map T (x) = 1− |2x− 1| has infinitely many chaotic orbits.

In the case of the logistic map the Lyapunov exponent is difficult to determine, instead
the conjugacy with the tent map is proved. Consider the homeomorphism H : [0, 1] →
[0, 1],

H(x) = sin2
(πx

2

)
.

We show that H(T (x)) = f(H(x)) holds, where f is the logistic map. Namely, on one
hand

f(H(x)) = 4 sin2
(πx

2

)(
1− sin2

(πx
2

))
= 4 sin2

(πx
2

)
cos2

(πx
2

)
= sin2(πx),

on the other hand x ∈ [0, 1/2) implies T (x) = 2x, hence

H(T (x)) = sin2

(
π2x

2

)
= sin2(πx).

If x ∈ (1/2, 1], then T (x) = 2− 2x, and this implies similarly that H(T (x)) = sin2(πx).
Thus the homeomorphism H takes the orbits of the tent map to the orbits of the

logistic map, that proves the following statement.

Proposition 8.4. The logistic map has infinitely many chaotic orbits.

167



8.1.3 Symbolic dynamics

Here the symbolic dynamics is introduced for the tent map, although it can be defined
for a wide class of maps in a similar way. Let T : [0, 1] → [0, 1], T (x) = 1− |2x− 1| be
the tent map and let

Λ = {x ∈ [0, 1] : T n(x) 6= 1

2
,∀n ∈ N}

be the set of those points, from which the orbit avoids the point 1/2. The tent map will
be considered in this set. The interval [0, 1] will be divided into a left and a right part
denoted by IL = [0, 1

2
), IR = (1

2
, 1].

Let Σ be the set of sequences of two symbols L and R, i.e. Σ = {a : N → {L,R}},
that is, if a ∈ Σ, then a = (a0a1a2 . . .), where ai = L or ai = R for all i. Introduce the
mapping Φ : Λ→ Σ

(Φ(x))n =

{
L if fn(x) ∈ IL
R if fn(x) ∈ IR

.

That is the n-th term of the sequence (Φ(x)) is L, if the orbit starting from x is in
the left part after n steps. Similarly, the n-th term of the sequence (Φ(x)) is R, if the
orbit starting from x is in the right part after n steps. The mapping Φ associates L,R
sequences to the points of the set Λ ⊂ [0, 1]. For example, the sequence associated to the
point 0 is L,L, L, . . ., because 0 is a fixed point and the orbit starting from it is always
in the left part. Similarly, the sequence associated to the fixed point 2/3 is R,R,R, . . .,
because the orbit starting from this point is always in the right part. The orbit starting
from 1 jumps to the fixed point 0, hence the corresponding sequence is R,L, L, L, . . ..
An important property of the map Φ is that it is bijective between the set Λ and the set
of L,R sequences. This will be proved first.

Proposition 8.5. The mapping Φ : Λ → Σ is injective, that is different points yield
different sequences.

Proof. Let x, y ∈ Λ, x 6= y. It will be shown that Φ(x) 6= Φ(y). If x and y are in the same
part of the interval, then |f(x)− f(y)| = 2|x− y|, because the slope of the tent map is
either 2 or −2. Assume on contrary that Φ(x) = Φ(y). Then fn(x) and fn(y) are in the
same part of the interval for all n ∈ N. Hence |f 2(x)−f 2(y)| = 2|f(x)−f(y)| = 22|x−y|
and by induction |fn(x) − fn(y)| = 2n|x − y|, yielding |fn(x) − fn(y)| → ∞, that
contradicts to the boundedness of the orbits.

Proposition 8.6. The mapping Φ : Λ → Σ is surjective, that is to any L,R sequence
there is a point in Λ, to which this sequence corresponds.

Proof. Take a point x ∈ Λ and consider the first few terms of the corresponding sequence.
For example, let the first three terms are L,R, L. The first L means that x ∈ [0, 1/2), the
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second symbol R shows that inside this interval x is in the right part, i.e. x ∈ (1/4, 1/2).
Since the third symbol is L, we have that x ∈ (3/8, 1/2). Each term of the sequence
shrinks the interval, where x can be, to the half of the previous one. Hence Cantor’s
intersection theorem implies that there is a unique point in the interval to which a given
sequence belongs.

The point of our phase space have been associated to L,R sequences, now a dynamics
is defined in the set of sequences that will be conjugate to the tent map.

Proposition 8.7. Let σ : Σ→ Σ, be the shift map defined by σ(a0a1a2 . . .) = (a1a2a3 . . .).
Then Φ ◦ T = σ ◦ Φ, that is T and σ are conjugate.

Proof. Let Φ(x) = (a0a1a2 . . .), then x ∈ Ia0 , T (x) ∈ Ia1 , T 2(x) ∈ Ia2 , . . .. This means
that Φ(T (x)) = (a1a2 . . .), because T (x) ∈ Ia1 , T

2(x) = T (T (x)) ∈ Ia2 , . . .. Hence
σ(Φ(x)) = (a1a2 . . .) = Φ(T (x)), that we wanted to prove.

Corollary 8.11.. The sequence a ∈ Σ is a k-periodic point of the shift map σ, if and
only if x = Φ−1(a) ∈ Λ is a k-periodic point of the tent map T .

This is a very useful corollary, because the periodic orbits of the shift map are ex-
tremely easy to determine, while it is difficult to do the same for the tent map. For
example, the sequence L,R, L,R, L,R, . . . is a 2-periodic point of σ, for shifting this se-
quence twice we get back itself. To construct a three periodic orbit there are the following
possibilities. The following triples are to be repeated:

LLR,LRL,RLL, or RRL,RLR,LRR.

Based on these examples one can easily derive the following statement.

Proposition 8.8. For any k ∈ N the shift map σ has finitely many k-periodic points,
hence the same is true for the tent map, because their conjugacy.

For proving the existence of chaotic orbits the asymptotically periodic orbits of the
tent map T are to be investigated. Observe, that all periodic orbits of the tent map
are unstable, because |T ′| = 2 and the theorem about the stability of periodic orbits
applies. Hence a point p is asymptotically periodic if it is periodic itself or there exist
n ∈ N, such that fn(p) is periodic. These are called eventually periodic points. The
conjugacy of T and σ implies that x ∈ Λ is an eventually periodic point of T , if and
only if Φ(x) is an eventually periodic point of σ. The eventually periodic points of σ are
easy to generate. Namely, taking a periodic sequence an arbitrary finite sequence can be
put at the beginning. For example the sequence L,L, L, L,R, L,R, L,R, . . . is eventually
2-periodic, because after three shifts it yields a 2-periodic sequence L,R, L,R, L,R, . . ..
This construction shows that there are countably many eventually k-periodic sequences,
hence in total there are countably many eventually periodic sequences. This proves the
following statement.
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Proposition 8.9. The tent map has countably many asymptotically periodic points.

Therefore using also the results of the previous subsection we have that most of the
orbits are chaotic.

Theorem 8.12.. In the case of the tent map and the logistic map for a = 4 there
is a countable set in the interval, such that choosing any point outside this set, the
corresponding orbit is chaotic.
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Chapter 9

Reaction-diffusion equations

Reaction-diffusion equations are semilinear parabolic partial differential equations, that
can be written in the form

∂tu = D∆u+ f(u), (9.1)

where u : R+ × Rn → Rm is the unknown function, f : Rm → Rm is a continuously
differentiable function and D is a diagonal matrix with positive elements (differentiation
with respect to time and space variables is applied coordinate-wise to the function u).
The equation may subject to different boundary conditions. For example, in the case of
travelling waves the equation is considered in the whole space Rn, when the boundary
conditions contain some conditions about the boundedness of u or its limit at infinity. In
the case of a bounded space domain all the three well-known boundary conditions can
be used. Besides boundary conditions the equation is also subject to an initial condition,
u(·, 0) is given. The name of the equation originates from the application in chemistry,
when a system of reactions is considered and uk(t, x) denotes the concentration of the
k-th (k = 1, 2, . . . ,m) species at time t in the point x. The first term of the right hand
side describes diffusion and the second term stands for reactions. However, these type of
equations often appear in physics, biology and economics modeling several phenomena
as epidemic propagation, population dynamics or pattern formation.

The theory of reaction-diffusion equations originates, besides different applications,
from the theory of dynamical systems. Namely, introducing the function U(t) = u(·, t)
system (9.1) takes the form

U̇(t) = AU(t) + F (U(t)) (9.2)

that is an abstract Cauchy problem. It is a natural mathematical question how the results
corresponding to the system of ordinary differential equations (ODE) ẋ(t) = f(x(t)) (a
dynamical system with finite state space) can be generalised to the system (9.2) with
infinite dimensional state space. It is known that the solutions of the ODE form a
dynamical system. In the case of system (9.2) it is much harder to prove, because the
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operator A in the right hand side is not bounded. The theory of operator semigroups
(developed from the 1950’s) enables us to prove the existence and uniqueness of solutions
of the Cauchy problem (9.2) that can be found for example in the books by Henry, Pazy
or Cazenave and Haraux [6, 14, 18]. Once it is proved that the Cauchy problem (9.2)
determines a dynamical system (in fact a semi-dynamical system, where trajectories are
defined only for nonnegative time), one can study qualitative properties of solutions. This
includes the investigation of the existence, number and stability of stationary, periodic
or travelling wave solutions. Besides these solutions of special form, it is important to
understand the long time (asymptotic) behaviour of solutions, to prove the existence of
attractors and find their basins of attraction. These questions are dealt with in detail in
Robinson’s book [21].

To present even the most important result of the theory of reaction-diffusion equations
a whole book would not be enough, hence in this lecture notes the goal is only to deal
with two simple questions, the existence of stationary solutions and the existence and
stability of travelling wave solutions in the case of a single equation, i.e. when m = 1 in
(9.1).

9.1 Stationary solutions of reaction-diffusion equa-

tions

In this section the elementary results concerning the number of stationary solutions of
a single (m = 1) reaction-diffusion equation are dealt with. Let Ω ⊂ Rn be a bounded
domain with smooth boundary, in the one space dimensional case it will be an open
interval, and consider the semilinear elliptic problem

∆u+ f(u) = 0

subject to Dirichlet boundary condition, that is u|∂Ω = 0. The goal of our investigation is
to determine the exact number of positive solutions. This is an extremely widely studied
question, there are thousands of publications investigating the question for different types
of domains and for different non-linearities. Here we consider only the one dimensional
case when Ω is an interval. It can be assumed without loss of generality that Ω = (−R,R)
with a given number R, because the equation is autonomous, hence the space variable
can be transformed to this interval. Thus the boundary value problem

u′′(x) + f(u(x)) =0 (9.3)

u(−R) = u(R) =0 (9.4)
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will be investigated. It is easy to prove that positive solutions are even functions, that is
u(−x) = u(x), hence the problem can be reduced to the boundary value problem (BVP)

u′′(x) + f(u(x)) =0 (9.5)

u′(0) = 0, u(R) =0. (9.6)

Thus the goal is to determine the number of positive solutions of this problem.
The so-called shooting method, applying the ”time-map”, will be used. This method

reduces the problem to the investigation of an initial value problem, that is the differential
equation (9.5) is considered with the initial condition

u(0) = c, u′(0) = 0 (9.7)

with some c > 0. According to the theorem on existence and uniqueness of solutions of
the initial value problem (IVP) there exist a unique solution u(·, c) of the IVP to any
c > 0. Then the solution of the BVP is searched by the shooting method, that is the
value of c is changed until the first root of the solution is at R. In order to that introduce
the time-map

T (c) = min{r > 0 : u(r, c) = 0} ; D(T ) = {c > 0 : ∃r > 0 u(r, c) = 0}. (9.8)

Thus the number of positive solutions of the BVP (9.5)-(9.6) is equal to the number of
solutions of the equation T (c) = R.

Notice that the differential equation has the following first integral

H(x) := u′(x)2 + 2F (u(x)), (9.9)

where F (u) :=
∫ u

0
f . Differentiation shows that H ′ = 0, that is H is constant along the

solutions of the differential equation. The initial condition (9.7) yields that this constant
is 2F (c), hence for all x ∈ [0, T (c)] the identity

u′(x)2 + 2F (u(x)) = 2F (c)

holds. Since only positive solutions are considered and u(R) = 0, it is easy to see that
u′ < 0, hence the above equation yields

u′(x) = −
√

2F (c)− 2F (u(x)).

Integration leads to
T (c)∫
0

u′(x)√
2F (c)− 2F (u(x))

dx = −T (c).
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Substituting s = u(x) yields

T (c) =

c∫
0

1√
2F (c)− 2F (s)

ds,

then introducing the new variable t = s/c

T (c) =

1∫
0

c√
2F (c)− 2F (ct)

dt. (9.10)

This formula enables us to determine the exact number of solutions of equation T (c) = R
for different nonlinearities. This will be illustrated by the following example.

Example 9.1. Determine the number of positive solutions of the BVP

u′′(x) + u(x)(1− u(x)) =0 (9.11)

u(−R) = u(R) =0 (9.12)

for different values of R. As it was shown above, it is enough to determine the number
of solutions of equation T (c) = R. The integral giving the function T is computed for
the nonlinearity f(u) = u(1− u). Then F (u) = u2/2− u3/3, hence from (9.10)

T (c) =

1∫
0

1√
1− t2 − 2c

3
(1− t3)

dt.

It can be easily seen that T is defined in the interval [0, 1), and it is strictly increasing,
because the variable c is contained in the denominator with negative sign. Moreover,

T (0) =

1∫
0

1√
1− t2

dt =
π

2
.

An elementary estimate of the integral shows that lim
c→1

T (c) = ∞. Thus the range of T

is the half line [π/2,∞), and all values in that are assumed by T exactly once, that is
T is a bijection between the interval [0, 1) and the half line [π/2,∞). This proves that
equation T (c) = R, together with the BVP (9.11)-(9.12), have a unique positive solution
if R ≥ π/2, and there is no positive solution if R < π/2.
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9.2 Travelling wave solutions of reaction-diffusion equa-

tions

In this section we remain in the case when the space domain is one dimensional, that is
n = 1, however it will be unbounded. Thus consider the reaction-diffusion equation

∂tu = ∂xxu+ f(u), (9.13)

where u : R+ × R → R is the unknown function and f : R → R is a continuously
differentiable function again.

The solution of the form u(t, x) = U(x− ct), where U : R→ R is called a travelling
wave solution propagating with velocity c. Then function U satisfies the differential
equation

U ′′(y) + cU ′(y) + f(U(y)) = 0, (y = x− ct). (9.14)

This second order differential equation requires boundary conditions. For given numbers
U−, U+ ∈ R the solution satisfying the boundary conditions

lim
−∞

U = U−, lim
+∞

U = U+

is called a front, if U− 6= U+, and it is called a pulse if U− = U+. If the function U is
periodic, then the solution is called a wave train.

9.2.1 Existence of travelling waves

In order to prove the existence of a travelling wave, it has to be shown that there exists
c ∈ R, for which equation (9.14) has a solution satisfying the prescribed boundary
condition. The prototype of these proofs is presented below. Consider the differential
equation

U ′′(y) + cU ′(y) + f(U(y)) = 0 (9.15)

subject to boundary conditions

lim
−∞

U = 1, lim
+∞

U = 0. (9.16)

This problem with the nonlinearity f(u) = u(1 − u) was first studied by Kolmogorov,
Petrovskii and Piscunov, hence it is often referred to as KPP equation. Another impor-
tant nonlinearity is f(u) = u(1 − u)(u − a), with some a ∈ (0, 1), that originates from
the FitzHugh–Nagumo (FHN) equation. These cases are dealt with in detail in Fife’s
book [10]. There is a significant theoretical difference between the two cases from the
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travelling wave point of view. Namely, consider the first order system corresponding to
the second order differential equation (9.15).

U ′ = V (9.17)

V ′ = −f(U)− cV (9.18)

The equilibria of this system are (0, 0) and (1, 0). Based on the boundary conditions it
can be proved that the limit of U ′ at ±∞ is 0, hence the travelling wave corresponds to a
heteroclinic orbit connecting the two equilibria (0, 0) and (1, 0). In the case of the KPP
equation if c > 0, then one of them is a stable node, the other one is a saddle, and the
trajectory in the unstable manifold of the saddle tends to the stable node. Thus for any
c > 0 there is a travelling wave solution. It can be shown that this solution is positive if
c > 2, while it changes sign otherwise. It can also be also shown that among all travelling
waves only that belonging to c = 2 is stable. In the case of the FitzHugh–Nagumo type
nonlinearity both equilibria are saddles, hence the heteroclinic orbit is not typical. It can
be shown that there is a unique value of c when it exists, that is travelling wave exists
only for this special value of c.

Given a function f simple phase plane analysis helps to prove the existence of a het-
eroclinic orbit, i.e. the existence of a travelling wave solution. Fife proved the following
statement about travelling waves in [10] Theorem 4.15.

Theorem 9.1.. Let f ∈ C1(0, 1) be a function, for which f(0) = f(1) = 0.

• If f > 0 in the interval (0, 1), then there exists a number c∗, such that in the case
c > c∗ there is a travelling wave solution of (9.15) satisfying the boundary condition
(9.16).

• If there exists a ∈ (0, 1), for which f < 0 in the interval (0, a) and f > 0 holds
in interval (a, 1), then there is a unique value of c, for which there is a travelling
wave solution of (9.15) satisfying the boundary condition (9.16).

9.2.2 Stability of travelling waves

Equation (9.14) determining travelling waves is autonomous, hence if U is a solution,
then all of its translations are also solutions, that is U∗(y) = U(y+ y0) is also a solution
of (9.14) for any y0 ∈ R. Thus the stability of travelling waves can only be defined as
orbital stability (similarly to the stability of a periodic orbit). In this case the asymptotic
stability is referred to as stability.

Definition 9.2.. The travelling wave solution U is said to be stable, if for a solution u
of (9.13) with |u(0, x) − U(x)| is small enough for all x ∈ R, there exists x0 ∈ R, such
that

sup
x∈R
|u(t, x)− U(x0 + x− ct)| → 0
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as t → ∞, i.e. starting from a small perturbation of U the solution tends to a shift of
U .

In this case of a single equation (9.14) a comparison theorem can be derived from the
maximum principle that enables us to prove theorems on the stability of the travelling
wave, see [10]. Then stronger statements about the basin of attraction of travelling waves
can also be proved. In the case of the KPP equation it is shown in [10] that for a step
function as initial condition u(0, ·), that is 1 for positive values of x and 0 for negative
values of x, there is a function ψ, such that

sup
x∈R
|u(t, x)− U(ψ(t) + x− c∗t)| → 0 (9.19)

as t → ∞ and ψ′(t) → 0, where c∗ is the minimal velocity given in Theorem 9.1.. For
the sign changing, FHN type nonlinearity the following theorem is proved in [10].

Theorem 9.3.. Let f ∈ C1(0, 1) be a function, for which f(0) = f(1) = 0 and there
exists a ∈ (0, 1), for which f < 0 in the interval (0, a) and f > 0 holds in the interval
(a, 1). Then the unique travelling wave is stable.

The local stability of travelling waves can be investigated by linearisation. Substi-
tuting u(t, x) = U(x − ct) + v(t, x − ct) into (9.13), using the linear approximation
f(U) + f ′(U)v for f(U + v) and equation (9.14) for U leads to the following linear
parabolic equation for v

∂tv = ∂yyv + c∂yv + f ′(U(y))v. (9.20)

Then the following two questions arise.

• What is the condition for the stability of the zero solution of the linear equation
(9.20)?

• Does the stability of the linear equation imply the stability of the travelling wave?

The first question can be answered by substituting v(t, y) = exp(λt)V (y) into the
linear equation (9.20). Then for the function V we get

V ′′(y) + cV ′(y) + f ′(U(y))V (y) = λV (y). (9.21)

The solution in the above form tend to zero if Reλ < 0. Thus it can be expected that
the stability of the linear equation (9.20) is determined by the spectrum of the second
order differential operator

(LV )(y) = V ′′(y) + cV ′(y) + f ′(U(y))V (y), (9.22)
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considered in the space BUC(R,C) ∩ C2(R,C). It is important to note that 0 is an
eigenvalue of the operator with eigenfunction U ′. (This follows simply by differentiating
equation (9.14).) This is related to the fact that all translations of a travelling wave
solution are also travelling waves, i.e. the stability of the travelling wave is only orbital
stability. Thus the spectrum of L cannot be completely in the left half of the complex
plane, 0 is always an eigenvalue. The above questions are answered in Chapter 25 of
Smoller’s book [25].

Theorem 9.4.. If 0 is a simple eigenvalue of the operator L, for the other eigenvalues
Reλ < 0 and there exists β < 0, such that Reλ < β for all λ ∈ σess(L), then the travelling
wave U is stable.

Here the essential spectrum is understood in the following sense.

σess(L) := {λ ∈ σ(L) | λ is not an isolated eigenvalue with finite multiplicity }.

The spectrum of the linearised operator

In this subsection the spectrum of the operator

(LV )(y) = V ′′(y) + cV ′(y) +Q(y)V (y), (9.23)

defined in the space BUC(R,C)∩C2(R,C) is studied. This operator was derived as the
linearisation around a travelling wave, hence Q(y) = f ′(U(y)). Now it is only assumed
about Q that Q : R→ R is continuous and the limits Q± = limy→±∞Q(y) are finite.

The spectrum cannot be determined explicitly in the general case because a second
order linear differential equation cannot be solved explicitly in general. However, in the
case of constant coefficients, i.e. when Q is a constant function the spectrum can be
determined. This will be carried out in the next example, the result of which will be
useful in the general case.

Example 9.2. Let c, q ∈ R be given numbers and consider the operator

LV = V ′′ + cV ′ + qV

with constant coefficients. The number λ ∈ C is a regular value of L, if the differential
equation

V ′′ + cV ′ + (q − λ)V = W (9.24)

has a unique solution V ∈ BUC(R,C) that depends continuously on W ∈ BUC(R,C).
The solution of the homogeneous equation (when W = 0) can be given as

V (y) = c1 exp(µ1y) + c2 exp(µ2y),
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where µ1,2 are the solutions of the quadratic equation µ2 + cµ + q − λ = 0. We have
V ∈ BUC(R,C), if and only if Reµ1,2 = 0, that holds when

Reλ = q −
(

Imλ

c

)2

.

The spectrum of L consists of those complex values λ that satisfy this equation. The
inhomogeneous equation (W 6= 0) can be solved by using the variation of constants for-
mula. It can be shown that if λ is not a solution of the above equation, then (9.24) has
a unique solution V ∈ BUC(R,C) that depends continuously on W ∈ BUC(R,C), that
is λ is a regular value. Thus the spectrum of L is the parabola

σ(L) = σess(L) = P := {λ1 + iλ2 ∈ C | λ1 = q −
(
λ2

c

)2

},

that is shown in Figure 9.1. If c = 0, then the spectrum is the half line H = {λ1 < q}.

Figure 9.1: The spectrum of the operator LV = V ′′ + cV ′ + qV .

Invariant subspaces characterising the spectrum

Let us return to the investigation of the general operator (9.23). Introduce the first order
system corresponding to the second order equation LV = λV . Let X1 = V , X2 = V ′,
then the first order system takes the form

X ′(y) = AλX(y), (9.25)

where

Aλ(y) =

(
0 I

λI −Q(y) −c

)
. (9.26)
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Since Q has limits at ±∞, the limits

A±λ = lim
y→±∞

Aλ(y)

exist. The stable, unstable and center subspaces of the matrices A±λ will play an impor-
tant role. Their dimensions for A+

λ will be denoted by n+
u (λ), n+

s (λ) and n+
c (λ). The

dimensions n−u (λ), n−s (λ), n−c (λ) are defined similarly for the matrix A−λ .
In Example 9.2 we can see how these dimensions are related to the spectrum of L.

In the example LV = V ′′ + cV ′ + qV , hence

A+
λ = A−λ =

(
0 1

λ− q −c

)
.

The characteristic equation of this matrix is µ2 + cµ+ q−λ = 0. It can be easily proved
that in the case c > 0 the following statements hold.

• If Reλ < q −
(

Imλ
c

)2

, then Reµ1 < 0, Reµ2 < 0, hence n±s (λ) = 2, n±u (λ) = 0,

n±c (λ) = 0.

• If Reλ = q −
(

Imλ
c

)2

, then Reµ1 = 0, Reµ2 < 0, hence n±s (λ) = 1, n±u (λ) = 0,

n±c (λ) = 1.

• If Reλ > q −
(

Imλ
c

)2

, then Reµ1 > 0, Reµ2 < 0, hence n±s (λ) = 1, n±u (λ) = 1,

n±c (λ) = 0.

The dimensions of the invariant subspaces are summarised in Figure 9.2.
In Example 9.2 one can see that the spectrum is the parabola shown in Figure 9.2.

This consists of those values of λ, for which n±c (λ) > 0. According to the next theorem
these numbers belong to the spectrum also in the general case. However, in that case
there can be λ values in the spectrum, for which n±c (λ) = 0.

Theorem 9.5.. Assume that at least one of the conditions below hold.

(a) n+
c (λ) > 0 and

∫ +∞
0
|Aλ(y)− A+

λ | <∞

(b) n−c (λ) > 0 and
∫ 0

−∞ |Aλ(y)− A−λ | <∞.

Then λ ∈ σ(L).

The theorem is proved in [23].
Thus it is enough to consider the case n+

c (λ) = 0 = n−c (λ). Then using exponential
dichotomies and perturbation theorems the following theorem can be proved, see [9].
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Figure 9.2: The dimensions of the invariant subspaces corresponding to the operator
LV = V ′′ + cV ′ + qV with constant coefficients.

Theorem 9.6.. Assume that n+
c (λ) = 0 = n−c (λ).

• There exists an n+
s (λ) dimensional subspace E+

s (λ) ⊂ C2, starting from which the
solutions of (9.25) tend to zero at infinity.

• There exists an n−u (λ) dimensional subspace E−u (λ) ⊂ C2, starting from which the
solutions of (9.25) tend to zero at −∞.

If a non-zero initial condition is in E+
s (λ) and in E−u (λ), then the solution starting

from this point tends to zero both at +∞ and at −∞. Therefore λ is an eigenvalue if
dim(E+

s (λ)∩E−u (λ)) > 0. Using exponential dichotomies the following theorem is proved
in [23].

Theorem 9.7.. Assume that n+
c (λ) = 0 = n−c (λ).

(i) The number λ is an eigenvalue of L, if and only if dim(E+
s (λ) ∩ E−u (λ)) > 0.

(ii) The number λ is a regular value of L, if and only if E+
s (λ)⊕ E−u (λ) = C2.

Using thatE+
s (λ)⊕E−u (λ) = C2 is equivalent to the conditions dimE+

s (λ)+dimE−u (λ) =
2 and dim(E+

s (λ) ∩ E−u (λ)) = 0, the following corollary can easily be verified.
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Corollary 9.8.. Assume that n+
c (λ) = 0 = n−c (λ).

1. If dimE+
s (λ) + dimE−u (λ) > 2, then λ is an eigenvalue of L.

2. If dimE+
s (λ) + dimE−u (λ) < 2, then λ ∈ σ(L).

3. If dimE+
s (λ) + dimE−u (λ) = 2 and dim(E+

s (λ) ∩ E−u (λ)) = 0, then λ is a regular
value of L.

4. If dimE+
s (λ)+dimE−u (λ) = 2 and dim(E+

s (λ)∩E−u (λ)) > 0, then λ is an eigenvalue
of L.

Stability of the travelling wave

Consider again the travelling wave equation

U ′′ + cU ′ + f(U) =0 (9.27)

U(−∞) = U−, U(+∞) =U+, (9.28)

for the function U : R → R, where f ∈ C1(R,R), U−, U+ ∈ R and assume that c ≥ 0
(this can be achieved by changing U− and U+). The linear operator determining the
stability of U is

L(V ) = V ′′ + cV ′ + f ′(U)V. (9.29)

The function q(y) = f ′(U(y)) is continuous and has limits at ±∞:

q+ = f ′(U+), q− = f ′(U−). (9.30)

If U converges exponentially at ±∞ to the values U+ and U−, then the integrals in
Theorem 9.5. are convergent. The eigenvalues µ1,2 of the matrices A±λ are determined
by the characteristic equation

µ2 + cµ+ q± − λ = 0. (9.31)

The essential spectrum is determined by those values of λ, for which n+
c (λ) ≥ 1 and

n−c (λ) ≥ 1. If n+
c (λ) ≥ 1, then µ = iω is a solution of (9.31). Substituting this into (9.31)

we get that those λ values, for which n+
c (λ) ≥ 1 lie on the parabola

P+ = {λ1 + iλ2 ∈ C | λ1 = q+ −
(
λ2

c

)2

}. (9.32)

It can be easily seen that in the left hand side of the parabola dimE+
s (λ) = 2 holds,

while on the right hand side dimE+
s (λ) = 1, as it is shown in Figure 9.2.2. Similarly,

those values of λ, for which n−c (λ) ≥ 1 lie on the parabola

P− = {λ1 + iλ2 ∈ C | λ1 = q− −
(
λ2

c

)2

}. (9.33)
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It can be easily seen that in the left hand side of the parabola dimE−u (λ) = 0 holds,
while on the right hand side dimE−u (λ) = 1, as it is shown also in Figure 9.2.2.

The spectrum of the operator given in (9.29). The parabolas P+ and P− are deter-
mined by (9.32) and (9.33). The numbers in the upper part denote the dimensions of the
subspaces E+

s (λ), the numbers in the lower part denote the dimensions of the subspaces
E−u (λ).

Using Theorem 9.5. and Corollary 9.8. we get the following theorem about the
spectrum of the operator L.

Theorem 9.9.. • The essential spectrum of L is formed by the parabolas P+, P−
and the domain between them. If q+ > q−, then every point between the parabolas
is an eigenvalue, while in the case q+ < q− these points are not eigenvalues, see
Figure 9.2.2b.

• The points in the left hand side of both parabolas are regular values of L.

• The points in the right hand side of both parabolas are regular values or isolated
eigenvalues of L.

In this simple case of a single equation it can be determined by analytic (not numerical)
calculation if there are isolated eigenvalues of L in the right half of the complex plane.

Let λ be an isolated eigenvalue with eigenfunction V . Then it can be proved that for
the function w(x) = V (x) exp(cx/2) we have w ∈ L2(R) and

lim
±∞

w = lim
±∞

w′ = 0. (9.34)
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Differentiation shows that

w′′ + (q(x)− c2

4
)w = λw. (9.35)

Multiplying by the conjugate of w and integrating from −∞ to +∞ leads to

+∞∫
−∞

(q(x)− c2

4
)|w(x)|2 − |w′(x)|2dx = λ

+∞∫
−∞

|w(x)|2. (9.36)

These imply the following propositions.

Proposition 9.1. The isolated eigenvalues of L are real and less than max |q| − c2/4
and the corresponding eigenspace is one dimensional.

Proof. In equation (9.36) all integrals are real, hence λ is also real. One can assume that∫ +∞
−∞ |w(x)|2 = 1, hence (9.36) implies λ < max |q|−c2/4. Let V1 and V2 be eigenfunctions

belonging to λ. It will be shown that they differ from each other only in a constant factor.
Let wi(x) = Vi(x) exp(cx/2), i = 1, 2. Using equation (9.35)

(w′1w2 − w1w
′
2)
′
= w′′1w2 − w1w

′′
2 = 0.

Hence w′1w2−w1w
′
2 is a constant function. The boundary conditions (9.34) imply w′1w2−

w1w
′
2 = 0, hence in an interval, where w2 does not vanish we get (w1/w2)′ = 0, that is

w1/w2 is a constant function. The uniqueness of the solution of (9.35) yields that w1 and
w2 differ from each other only in a constant factor. Hence this is true also for V1 and
V2.

Proposition 9.2. Let λ1 and λ2 be isolated eigenvalues of L and V1, V2 be the corre-
sponding eigenfunctions.

• Let y1 and y2 be consecutive roots of V2. If V1 does not vanish in the closed interval
[y1, y2], then λ1 > λ2.

• If neither V1 nor V2 changes sign in R, then λ1 = λ2 and V1 = cV2 with some
constant.

Proof. Let wi(x) = Vi(x) exp(cx/2), i = 1, 2, they satisfy equation (9.35). Multiply the
equation of w1 by w2 and the equation of w2 by w1 and subtract them. Then we get

w′′1w2 − w1w
′′
2 = (λ1 − λ2)w1w2.
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Integrate this from y1 to y2. After integrating by parts and using w2(y1) = w2(y2) = 0
yields

w′2(y1)w1(y1)− w′2(y2)w1(y2) = (λ1 − λ2)

∫ y2

y1

w1w2. (9.37)

One can assume that w1 and w2 are positive in the interval (y1, y2). This implies w′2(y1) >
0 and w′2(y2) < 0. (The strict inequality follows from the uniqueness of the solution, since
w′2(y1) = 0 together with w2(y1) = 0 would imply that w2 is the zero function). Thus the
left hand side of (9.37) is positive. Since the integral in the right hand side is positive,
λ1 − λ2 > 0, that we wanted to prove.

To prove the second part equation (9.37) is used again. Take now y1 = −∞ and
y2 = +∞. Then the left hand side of (9.37) is zero, hence λ1 − λ2 = 0, because the
integral is not zero. Proposition 9.1 implies that the eigenspace corresponding to λ1 is
one dimensional, hence there is constant c, for which V1 = cV2.

Proposition 9.3. The eigenfunction belonging to the greatest eigenvalue of L has no
root, hence it can be assumed to be positive.

Proof. Introduce the functional

I(w) =

+∞∫
−∞

(q(x)− c2

4
)w(x)2 − w′(x)2dx, w ∈ L2(R),

+∞∫
−∞

|w(x)|2 = 1.

It can be shown that the greatest eigenvalue of L is the maximum of I. Assume that
a function w has a root. Then let w̃ be a function that coincides with w outside a
neighbourhood of the root and it is zero in a neighbourhood. It can be shown that
I(w̃) > I(w), if the neighbourhood is small enough. Hence, if w is the eigenfunction
belonging to the greatest eigenvalue of L, then this yields the maximum of I, hence it
has no root.

Recall that 0 is an eigenvalue of L with eigenfunction U ′. If U ′ changes sign, then
Proposition 9.3 implies that 0 is not the greatest eigenvalue, that is the operator L
has at least one positive eigenvalue. If U ′ does not change sign, then Proposition 9.2
implies that 0 is a simple eigenvalue, and the eigenfunctions that are linearly independent
change sign, hence they are negative. Hence the following statement is proved about the
eigenvalues of L.

Theorem 9.10.. • If U ′ changes sign, then the operator L has at least one positive
eigenvalue.

• If U ′ does not change sign, then 0 is a simple eigenvalue of L and the other isolated
eigenvalues are negative.
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Thus linearisation yields the following stability results for travelling waves, by using
Theorems 9.4., 9.9. and 9.10..

Theorem 9.11.. If the function U is strictly monotone and the inequalities f ′(U−) < 0
and f ′(U+) < 0 hold, then the travelling wave is stable. If U is not monotone, then it is
unstable.

Proof. If the function U is strictly monotone, then U ′ does not change sign, hence ac-
cording to Theorem 9.10. 0 is a simple eigenvalue of L and the other isolated eigenvalues
are negative. The inequalities f ′(U−) < 0 and f ′(U+) < 0 imply that the parabolas
determining the essential spectrum in Theorem 9.9. lie in the left half plane. Thus for
the spectrum of L the conditions of Theorem 9.4. hold, therefore the travelling wave is
stable.

If U is not monotone, then U ′ changes sign, hence according to Theorem 9.10. L has
at least one positive eigenvalue, therefore U is unstable.

Finally, let us investigate the consequences of this theorem in the case of the KPP
and FHN equations.

In the FHN case, such as f(u) = u(1 − u)(u − a), it was shown that the travelling
wave corresponds to a heteroclinic orbit connecting two saddle points and exist for only
a special value of c. Simple phase plane analysis shows that U ′ does not change sign.
i.e. U is strictly monotone. In our case U− = 1 and U+ = 0 hold for the limits, hence
the conditions f ′(U−) < 0 and f ′(U+) < 0 hold. Thus Theorem 9.11. yields that the
travelling wave in the FHN case is stable.

In the KPP case, when f(u) = u(1−u) it was shown that the heteroclinic orbit exist
for all c > 0 and connects a saddle point to a stable node or focus. If 0 < c < 2, then
it is a focus, hence U is not monotone, thus the travelling wave is unstable. If c ≥ 2,
then the heteroclinic orbit connects a saddle to a stable node and U ′ does not change
sign. i.e. U is strictly monotone. However, U− = 1 and U+ = 0, hence f ′(U−) < 0 and
f ′(U+) > 0, thus Theorem 9.11. cannot be applied to prove stability. In Section 4.5 of
Fife’s book [10] it is shown that the travelling wave is not stable in the sense of Definition
9.2., however, the travelling wave belonging to c = 2 is stable in the sense defined in
equation (9.19).
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1987.
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