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Introduction

In contrast with quantum field theory, classical field theory can be formu-

lated in a strict mathematical way by treating classical fields as sections

of smooth fibre bundles [9, 17, 21, 24]. This also is the case of time-

dependent non-relativistic mechanics on fibre bundles over R [10, 16, 19].

This book aim to compile the relevant material on fibre bundles, jet

manifolds, connections, graded manifolds and Lagrangian theory [9, 17,

22].

The book is based on the graduate and post graduate courses of lec-

tures given at the Department of Theoretical Physics of Moscow State

University (Russia). It addresses to a wide audience of mathematicians,

mathematical physicists and theoreticians. It is tacitly assumed that

the reader has some familiarity with the basics of differential geometry

[11, 13, 26].

Throughout the book, all morphisms are smooth (i.e. of class C∞)

and manifolds are smooth real and finite-dimensional. A smooth real

manifold is customarily assumed to be Hausdorff and second-countable

(i.e., it has a countable base for topology). Consequently, it is a lo-

cally compact space which is a union of a countable number of compact

subsets, a separable space (i.e., it has a countable dense subset), a para-

compact and completely regular space. Being paracompact, a smooth

manifold admits a partition of unity by smooth real functions. Unless

otherwise stated, manifolds are assumed to be connected (and, conse-

quently, arcwise connected). We follow the notion of a manifold without

boundary.
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Chapter 1

Geometry of fibre bundles

Throughout the book, fibre bundles are smooth finite-dimensional and

locally-trivial.

1.1 Fibre bundles

Let Z be a manifold. By

πZ : TZ → Z, π∗
Z : T ∗Z → Z

are denoted its tangent and cotangent bundles, respectively. Given

coordinates (zα) on Z, they are equipped with the holonomic coordinates

(zλ, żλ), ż′λ =
∂z′λ

∂zμ
żμ,

(zλ, żλ), ż′λ =
∂z′μ

∂zλ
żμ,

with respect to the holonomic frames {∂λ} and coframes {dzλ} in the

tangent and cotangent spaces to Z, respectively. Any manifold mor-

phism f : Z → Z ′ yields the tangent morphism

Tf : TZ → TZ ′, ż′λ ◦ Tf =
∂fλ

∂xμ
żμ.

Let us consider manifold morphisms of maximal rank. They are im-

mersions (in particular, imbeddings) and submersions. An injective im-

mersion is a submanifold, and a surjective submersion is a fibred manifold

(in particular, a fibre bundle).

7



8 CHAPTER 1. GEOMETRY OF FIBRE BUNDLES

Given manifolds M and N , by the rank of a morphism f : M → N

at a point p ∈ M is meant the rank of the linear morphism

Tpf : TpM → Tf(p)N.

For instance, if f is of maximal rank at p ∈ M , then Tpf is injective when

dim M ≤ dim N and surjective when dim N ≤ dim M . In this case, f is

called an immersion and a submersion at a point p ∈ M , respectively.

Since p → rankpf is a lower semicontinuous function, then the mor-

phism Tpf is of maximal rank on an open neighbourhood of p, too. It

follows from the inverse function theorem that:

• if f is an immersion at p, then it is locally injective around p.

• if f is a submersion at p, it is locally surjective around p.

If f is both an immersion and a submersion, it is called a local diffeo-

morphism at p. In this case, there exists an open neighbourhood U of p

such that f : U → f(U) is a diffeomorphism onto an open set f(U) ⊂ N .

A manifold morphism f is called the immersion (resp. submersion) if

it is an immersion (resp. submersion) at all points of M . A submersion

is necessarily an open map, i.e., it sends open subsets of M onto open

subsets of N . If an immersion f is open (i.e., f is a homeomorphism

onto f(M) equipped with the relative topology from N), it is called the

imbedding.

A pair (M, f) is called a submanifold of N if f is an injective im-

mersion. A submanifold (M, f) is an imbedded submanifold if f is an

imbedding. For the sake of simplicity, we usually identify (M, f) with

f(M). If M ⊂ N , its natural injection is denoted by iM : M → N .

There are the following criteria for a submanifold to be imbedded.

Theorem 1.1.1: Let (M, f) be a submanifold of N .

(i) The map f is an imbedding iff, for each point p ∈ M , there exists

a (cubic) coordinate chart (V, ψ) of N centered at f(p) so that f(M)∩V

consists of all points of V with coordinates (x1, . . . , xm, 0, . . . , 0).



1.1. FIBRE BUNDLES 9

(ii) Suppose that f : M → N is a proper map, i.e., the pre-images of

compact sets are compact. Then (M, f) is a closed imbedded submani-

fold of N . In particular, this occurs if M is a compact manifold.

(iii) If dim M = dim N , then (M, f) is an open imbedded submanifold

of N . �

A triple

π : Y → X, dim X = n > 0, (1.1.1)

is called a fibred manifold if a manifold morphism π is a surjective sub-

mersion, i.e., the tangent morphism Tπ : TY → TX is a surjection. One

says that Y is a total space of a fibred manifold (1.1.1), X is its base, π

is a fibration, and Yx = π−1(x) is a fibre over x ∈ X.

Any fibre is an imbedded submanifold of Y of dimension dim Y −

dim X.

Theorem 1.1.2: A surjection (1.1.1) is a fired manifold iff a manifold

Y admits an atlas of coordinate charts (UY ; xλ, yi) such that (xλ) are

coordinates on π(UY ) ⊂ X and coordinate transition functions read

x′λ = fλ(xμ), y′i = f i(xμ, yj).

These coordinates are called fibred coordinates compatible with a fibra-

tion π. �

By a local section of a surjection (1.1.1) is meant an injection s : U →

Y of an open subset U ⊂ X such that π ◦ s = Id U , i.e., a section sends

any point x ∈ X into the fibre Yx over this point. A local section also is

defined over any subset N ∈ X as the restriction to N of a local section

over an open set containing N . If U = X, one calls s the global section.

Hereafter, by a section is meant both a global section and a local section

(over an open subset).

Theorem 1.1.3: A surjection π (1.1.1) is a fibred manifold iff, for each

point y ∈ Y , there exists a local section s of π : Y → X passing through

y. �
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The range s(U) of a local section s : U → Y of a fibred manifold

Y → X is an imbedded submanifold of Y . It also is a closed map, which

sends closed subsets of U onto closed subsets of Y . If s is a global section,

then s(X) is a closed imbedded submanifold of Y . Global sections of a

fibred manifold need not exist.

Theorem 1.1.4: Let Y → X be a fibred manifold whose fibres are

diffeomorphic to R
m. Any its section over a closed imbedded submanifold

(e.g., a point) of X is extended to a global section. In particular, such a

fibred manifold always has a global section. �

Given fibred coordinates (UY ; xλ, yi), a section s of a fibred manifold

Y → X is represented by collections of local functions {si = yi ◦ s} on

π(UY ).

A fibred manifold Y → X is called a fibre bundle if admits a fibred

coordinate atlas {(π−1(Uξ); x
λ, yi)} over a cover {π−1(Uι)} of Y which

is the inverse image of a cover U = {Uξ} is a cover of X. In this case,

there exists a manifold V , called a typical fibre, such that Y is locally

diffeomorphic to the splittings

ψξ : π−1(Uξ) → Uξ × V, (1.1.2)

glued together by means of transition functions

�ξζ = ψξ ◦ ψ−1
ζ : Uξ ∩ Uζ × V → Uξ ∩ Uζ × V (1.1.3)

on overlaps Uξ ∩Uζ . Transition functions �ξζ fulfil the cocycle condition

�ξζ ◦ �ζι = �ξι (1.1.4)

on all overlaps Uξ ∩ Uζ ∩ Uι. Restricted to a point x ∈ X, trivialization

morphisms ψξ (1.1.2) and transition functions �ξζ (1.1.3) define diffeo-

morphisms of fibres

ψξ(x) : Yx → V, x ∈ Uξ, (1.1.5)

�ξζ(x) : V → V, x ∈ Uξ ∩ Uζ . (1.1.6)
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Trivialization charts (Uξ, ψξ) together with transition functions �ξζ (1.1.3)

constitute a bundle atlas

Ψ = {(Uξ, ψξ), �ξζ} (1.1.7)

of a fibre bundle Y → X. Two bundle atlases are said to be equivalent

if their union also is a bundle atlas, i.e., there exist transition functions

between trivialization charts of different atlases.

A fibre bundle Y → X is uniquely defined by a bundle atlas. Given

an atlas Ψ (1.1.7), there is a unique manifold structure on Y for which

π : Y → X is a fibre bundle with the typical fibre V and the bundle

atlas Ψ. All atlases of a fibre bundle are equivalent.

Remark 1.1.1: The notion of a fibre bundle introduced above is the

notion of a smooth locally trivial fibre bundle. In a general setting, a

continuous fibre bundle is defined as a continuous surjective submersion

of topological spaces Y → X. A continuous map π : Y → X is called a

submersion if, for any point y ∈ Y , there exists an open neighborhood

U of the point π(y) and a right inverse σ : U → Y of π such that

σ◦π(y) = y, i.e., there exists a local section of π. The notion of a locally

trivial continuous fibre bundle is a repetition of that of a smooth fibre

bundle, where trivialization morphisms ψξ and transition functions �ξζ

are continuous. �

We have the following useful criteria for a fibred manifold to be a

fibre bundle.

Theorem 1.1.5: If a fibration π : Y → X is a proper map, then Y → X

is a fibre bundle. In particular, a fibred manifold with a compact total

space is a fibre bundle. �

Theorem 1.1.6: A fibred manifold whose fibres are diffeomorphic either

to a compact manifold or R
r is a fibre bundle. �

A comprehensive relation between fibred manifolds and fibre bundles
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is given in Remark 3.1.2. It involves the notion of an Ehresmann con-

nection.

Unless otherwise stated, we restrict our consideration to fibre bundles.

Without a loss of generality, we further assume that a cover U for a bundle

atlas of Y → X also is a cover for a manifold atlas of the base X. Then,

given a bundle atlas Ψ (1.1.7), a fibre bundle Y is provided with the

associated bundle coordinates

xλ(y) = (xλ ◦ π)(y), yi(y) = (yi ◦ ψξ)(y), y ∈ π−1(Uξ),

where xλ are coordinates on Uξ ⊂ X and yi, called fibre coordinates, are

coordinates on a typical fibre V .

The forthcoming Theorems 1.1.7 – 1.1.9 describe the particular covers

which one can choose for a bundle atlas. Throughout the book, only

proper covers of manifolds are considered, i.e., Uξ �= Uζ if ζ �= ξ. Recall

that a cover U′ is a refinement of a cover U if, for each U ′ ∈ U′, there

exists U ∈ U such that U ′ ⊂ U . If a fibre bundle Y → X has a bundle

atlas over a cover U of X, it admits a bundle atlas over any refinement

of U.

A fibred manifold Y → X is called trivial if Y is diffeomorphic to

the product X × V . Different trivializations of Y → X differ from each

other in surjections Y → V .

Theorem 1.1.7: Any fibre bundle over a contractible base is trivial. �

However, a fibred manifold over a contractible base need not be trivial,

even its fibres are mutually diffeomorphic.

It follows from Theorem 1.1.7 that any cover of a base X consisting

of domains (i.e., contractible open subsets) is a bundle cover.

Theorem 1.1.8: Every fibre bundle Y → X admits a bundle atlas over

a countable cover U of X where each member Uξ of U is a domain whose

closure U ξ is compact. �
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If a base X is compact, there is a bundle atlas of Y over a finite cover

of X which obeys the condition of Theorem 1.1.8.

Theorem 1.1.9: Every fibre bundle Y → X admits a bundle atlas over

a finite cover U of X, but its members need not be contractible and

connected. �

Morphisms of fibre bundles, by definition, are fibrewise morphisms,

sending a fibre to a fibre. Namely, a bundle morphism of a fibre bundle

π : Y → X to a fibre bundle π′ : Y ′ → X ′ is defined as a pair (Φ, f) of

manifold morphisms which form a commutative diagram

Y
Φ−→ Y ′

π
� �

π′

X
f
−→X ′

, π′ ◦ Φ = f ◦ π.

Bundle injections and surjections are called bundle monomorphisms

and epimorphisms, respectively. A bundle diffeomorphism is called a

bundle isomorphism, or a bundle automorphism if it is an isomorphism

to itself. For the sake of brevity, a bundle morphism over f = Id X is

often said to be a bundle morphism over X, and is denoted by Y −→
X

Y ′.

In particular, a bundle automorphism over X is called a vertical auto-

morphism.

A bundle monomorphism Φ : Y → Y ′ over X is called a subbundle

of a fibre bundle Y ′ → X if Φ(Y ) is a submanifold of Y ′. There is the

following useful criterion for an image and an inverse image of a bundle

morphism to be subbundles.

Theorem 1.1.10: Let Φ : Y → Y ′ be a bundle morphism over X. Given

a global section s of the fibre bundle Y ′ → X such that s(X) ⊂ Φ(Y ), by

the kernel of a bundle morphism Φ with respect to a section s is meant

the inverse image

Ker sΦ = Φ−1(s(X))



14 CHAPTER 1. GEOMETRY OF FIBRE BUNDLES

of s(X) by Φ. If Φ : Y → Y ′ is a bundle morphism of constant rank over

X, then Φ(Y ) and Ker sΦ are subbundles of Y ′ and Y , respectively. �

Let us describe the following standard constructions of new fibre bun-

dles from the old ones.

• Given a fibre bundle π : Y → X and a manifold morphism f : X ′ →

X, the pull-back of Y by f is called the manifold

f ∗Y = {(x′, y) ∈ X ′ × Y : π(y) = f(x′)} (1.1.8)

together with the natural projection (x′, y) → x′. It is a fibre bundle

over X ′ such that the fibre of f ∗Y over a point x′ ∈ X ′ is that of Y over

the point f(x′) ∈ X. There is the canonical bundle morphism

fY : f ∗Y � (x′, y)|π(y)=f(x′) →
f

y ∈ Y. (1.1.9)

Any section s of a fibre bundle Y → X yields the pull-back section

f ∗s(x′) = (x′, s(f(x′))

of f ∗Y → X ′.

• If X ′ ⊂ X is a submanifold of X and iX ′ is the corresponding natural

injection, then the pull-back bundle

i∗X ′Y = Y |X ′

is called the restriction of a fibre bundle Y to the submanifold X ′ ⊂ X.

If X ′ is an imbedded submanifold, any section of the pull-back bundle

Y |X ′ → X ′

is the restriction to X ′ of some section of Y → X.

• Let π : Y → X and π′ : Y ′ → X be fibre bundles over the same base

X. Their bundle product Y ×X Y ′ over X is defined as the pull-back

Y ×
X

Y ′ = π∗Y ′ or Y ×
X

Y ′ = π′∗Y

together with its natural surjection onto X. Fibres of the bundle product

Y × Y ′ are the Cartesian products Yx × Y ′
x of fibres of fibre bundles Y

and Y ′.
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Let us consider the composition

π : Y → Σ → X (1.1.10)

of fibre bundles

πY Σ : Y → Σ, (1.1.11)

πΣX : Σ → X. (1.1.12)

One can show that it is a fibre bundle, called the composite bundle.

It is provided with bundle coordinates (xλ, σm, yi), where (xλ, σm) are

bundle coordinates on the fibre bundle (1.1.12), i.e., transition functions

of coordinates σm are independent of coordinates yi.

Theorem 1.1.11: Given a composite bundle (1.1.10), let h be a global

section of the fibre bundle Σ → X. Then the restriction

Y h = h∗Y (1.1.13)

of the fibre bundle Y → Σ to h(X) ⊂ Σ is a subbundle of the fibre

bundle Y → X. �

Theorem 1.1.12: Given a section h of the fibre bundle Σ → X and a

section sΣ of the fibre bundle Y → Σ, their composition s = sΣ ◦ h is

a section of the composite bundle Y → X (1.1.10). Conversely, every

section s of the fibre bundle Y → X is a composition of the section

h = πY Σ ◦ s of the fibre bundle Σ → X and some section sΣ of the fibre

bundle Y → Σ over the closed imbedded submanifold h(X) ⊂ Σ. �

1.2 Vector and affine bundles

A vector bundle is a fibre bundle Y → X such that:

• its typical fibre V and all the fibres Yx = π−1(x), x ∈ X, are real

finite-dimensional vector spaces;
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• there is a bundle atlas Ψ (1.1.7) of Y → X whose trivialization

morphisms ψξ (1.1.5) and transition functions �ξζ (1.1.6) are linear iso-

morphisms.

Accordingly, a vector bundle is provided with linear bundle coordinates

(yi) possessing linear transition functions y′i = Ai
j(x)yj. We have

y = yiei(π(y)) = yiψξ(π(y))−1(ei), π(y) ∈ Uξ, (1.2.1)

where {ei} is a fixed basis for the typical fibre V of Y , and {ei(x)} are

the fibre bases (or the frames) for the fibres Yx of Y associated to the

bundle atlas Ψ.

By virtue of Theorem 1.1.4, any vector bundle has a global section,

e.g., the canonical global zero-valued section 0̂(x) = 0. Global sections

of a vector bundle Y → X constitute a projective C∞(X)-module Y (X)

of finite rank. It is called the structure module of a vector bundle.

Theorem 1.2.1: Let a vector bundle Y → X admit m = dim V nowhere

vanishing global sections si which are linearly independent, i.e.,
m
∧ si �= 0.

Then Y is trivial. �

Remark 1.2.1: Theorem 8.6.3 state the categorial equivalence between

the vector bundles over a smooth manifold X and projective C∞(X)-

modules of finite rank. Therefore, the differential calculus (including

linear differential operators, linear connections) on vector bundles can

be algebraically formulated as the differential calculus on these modules.

�

By a morphism of vector bundles is meant a linear bundle morphism,

which is a fibrewise map whose restriction to each fibre is a linear map.

Given a linear bundle morphism Φ : Y ′ → Y of vector bundles over

X, its kernel Ker Φ is defined as the inverse image Φ−1(0̂(X)) of the

canonical zero-valued section 0̂(X) of Y . By virtue of Theorem 1.1.10,

if Φ is of constant rank, its kernel and its range are vector subbundles of
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the vector bundles Y ′ and Y , respectively. For instance, monomorphisms

and epimorphisms of vector bundles fulfil this condition.

There are the following particular constructions of new vector bundles

from the old ones.

• Let Y → X be a vector bundle with a typical fibre V . By Y ∗ → X

is denoted the dual vector bundle with the typical fibre V ∗ dual of V .

The interior product of Y and Y ∗ is defined as a fibred morphism

� : Y ⊗ Y ∗ −→
X

X × R.

• Let Y → X and Y ′ → X be vector bundles with typical fibres V

and V ′, respectively. Their Whitney sum Y ⊕
X

Y ′ is a vector bundle over

X with the typical fibre V ⊕ V ′.

• Let Y → X and Y ′ → X be vector bundles with typical fibres V

and V ′, respectively. Their tensor product Y ⊗
X

Y ′ is a vector bundle

over X with the typical fibre V ⊗ V ′. Similarly, the exterior product of

vector bundles Y ∧
X

Y ′ is defined. The exterior product

∧Y = X × R⊕
X

Y ⊕
X

2
∧Y ⊕

X
· · ·

k
∧Y, k = dim Y − dim X, (1.2.2)

is called the exterior bundle.

Remark 1.2.2: Given vector bundles Y and Y ′ over the same base X,

every linear bundle morphism

Φ : Yx � {ei(x)} → {Φk
i (x)e′k(x)} ∈ Y ′

x

over X defines a global section

Φ : x → Φk
i (x)ei(x) ⊗ e′k(x)

of the tensor product Y ⊗ Y ′∗, and vice versa. �

A sequence

Y ′ i−→Y
j

−→Y ′′
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of vector bundles over the same base X is called exact at Y if Ker j =

Im i. A sequence of vector bundles

0 → Y ′ i−→Y
j

−→Y ′′ → 0 (1.2.3)

over X is said to be a short exact sequence if it is exact at all terms Y ′,

Y , and Y ′′. This means that i is a bundle monomorphism, j is a bundle

epimorphism, and Ker j = Im i. Then Y ′′ is the factor bundle Y/Y ′

whose structure module is the quotient Y (X)/Y ′(X) of the structure

modules of Y and Y ′. Given an exact sequence of vector bundles (1.2.3),

there is the exact sequence of their duals

0 → Y ′′∗ j∗

−→Y ∗ i∗−→Y ′∗ → 0.

One says that an exact sequence (1.2.3) is split if there exists a bundle

monomorphism s : Y ′′ → Y such that j ◦ s = Id Y ′′ or, equivalently,

Y = i(Y ′) ⊕ s(Y ′′) = Y ′ ⊕ Y ′′.

Theorem 1.2.2: Every exact sequence of vector bundles (1.2.3) is split.

�

The tangent bundle TZ and the cotangent bundle T ∗Z of a manifold

Z exemplify vector bundles.

Remark 1.2.3: Given an atlas ΨZ = {(Uι, φι)} of a manifold Z, the

tangent bundle is provided with the holonomic bundle atlas

ΨT = {(Uι, ψι = Tφι)}, (1.2.4)

where Tφι is the tangent morphism to φι. The associated linear bundle

coordinates are holonomic (or induced) coordinates (żλ) with respect to

the holonomic frames {∂λ} in tangent spaces TzZ. �

The tensor product of tangent and cotangent bundles

T = (
m
⊗TZ) ⊗ (

k
⊗T ∗Z), m, k ∈ N, (1.2.5)
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is called a tensor bundle, provided with holonomic bundle coordinates

ẋα1···αm

β1···βk
possessing transition functions

ẋ′α1···αm

β1···βk
=

∂x′α1

∂xμ1
· · ·

∂x′αm

∂xμm

∂xν1

∂x′β1
· · ·

∂xνk

∂x′βk
ẋμ1···μm

ν1···νk
.

Let πY : TY → Y be the tangent bundle of a fibre bundle π : Y →

X. Given bundle coordinates (xλ, yi) on Y , it is equipped with the

holonomic coordinates (xλ, yi, ẋλ, ẏi). The tangent bundle TY → Y has

the subbundle V Y = Ker (Tπ), which consists of the vectors tangent to

fibres of Y . It is called the vertical tangent bundle of Y and is provided

with the holonomic coordinates (xλ, yi, ẏi) with respect to the vertical

frames {∂i}. Every bundle morphism Φ : Y → Y ′ yields the linear

bundle morphism over Φ of the vertical tangent bundles

V Φ : V Y → V Y ′, ẏ′i ◦ V Φ =
∂Φi

∂yj
ẏj. (1.2.6)

It is called the vertical tangent morphism.

In many important cases, the vertical tangent bundle V Y → Y of a

fibre bundle Y → X is trivial, and is isomorphic to the bundle product

V Y = Y ×
X

Y (1.2.7)

where Y → X is some vector bundle. It follows that V Y can be pro-

vided with bundle coordinates (xλ, yi, yi) such that transition functions

of coordinates yi are independent of coordinates yi. One calls (1.2.7) the

vertical splitting. For instance, every vector bundle Y → X admits the

canonical vertical splitting

V Y = Y ⊕
X

Y. (1.2.8)

The vertical cotangent bundle V ∗Y → Y of a fibre bundle Y → X

is defined as the dual of the vertical tangent bundle V Y → Y . It is

not a subbundle of the cotangent bundle T ∗Y , but there is the canonical

surjection

ζ : T ∗Y � ẋλdxλ + ẏidyi → ẏidyi ∈ V ∗Y, (1.2.9)
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where {dyi}, possessing transition functions

dy′i =
∂y′i

∂yj
dyj,

are the duals of the holonomic frames {∂i} of V Y .

For any fibre bundle Y , there exist the exact sequences of vector

bundles

0 → V Y −→TY
πT−→Y ×

X
TX → 0, (1.2.10)

0 → Y ×
X

T ∗X → T ∗Y → V ∗Y → 0. (1.2.11)

Their splitting, by definition, is a connection on Y → X.

For the sake of simplicity, we agree to denote the pull-backs

Y ×
X

TX, Y ×
X

T ∗X

by TX and T ∗X, respectively.

Let π : Y → X be a vector bundle with a typical fibre V . An

affine bundle modelled over the vector bundle Y → X is a fibre bundle

π : Y → X whose typical fibre V is an affine space modelled over V such

that the following conditions hold.

• All the fibres Yx of Y are affine spaces modelled over the corre-

sponding fibres Y x of the vector bundle Y .

• There is an affine bundle atlas

Ψ = {(Uα, ψχ), �χζ}

of Y → X whose local trivializations morphisms ψχ (1.1.5) and transition

functions �χζ (1.1.6) are affine isomorphisms.

Dealing with affine bundles, we use only affine bundle coordinates (yi)

associated to an affine bundle atlas Ψ. There are the bundle morphisms

Y ×
X

Y −→
X

Y, (yi, yi) → yi + yi,

Y ×
X

Y −→
X

Y , (yi, y′i) → yi − y′i,

where (yi) are linear coordinates on the vector bundle Y .
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By virtue of Theorem 1.1.4, affine bundles have global sections, but

in contrast with vector bundles, there is no canonical global section of an

affine bundle. Let π : Y → X be an affine bundle. Every global section

s of an affine bundle Y → X modelled over a vector bundle Y → X

yields the bundle morphisms

Y � y → y − s(π(y)) ∈ Y , (1.2.12)

Y � y → s(π(y)) + y ∈ Y. (1.2.13)

In particular, every vector bundle Y has a natural structure of an affine

bundle due to the morphisms (1.2.13) where s = 0̂ is the canonical zero-

valued section of Y . For instance, the tangent bundle TX of a manifold

X is naturally an affine bundle ATX called the affine tangent bundle.

Theorem 1.2.3: Any affine bundle Y → X admits bundle coordi-

nates (xλ, ỹi) with linear transition functions ỹ′i = Ai
j(x)ỹj (see Example

4.8.2). �

By a morphism of affine bundles is meant a bundle morphism Φ :

Y → Y ′ whose restriction to each fibre of Y is an affine map. It is

called an affine bundle morphism. Every affine bundle morphism Φ :

Y → Y ′ of an affine bundle Y modelled over a vector bundle Y to an

affine bundle Y ′ modelled over a vector bundle Y
′
yields an unique linear

bundle morphism

Φ : Y → Y
′
, y′i ◦ Φ =

∂Φi

∂yj
yj, (1.2.14)

called the linear derivative of Φ.

Similarly to vector bundles, if Φ : Y → Y ′ is an affine morphism of

affine bundles of constant rank, then Φ(Y ) and Ker Φ are affine subbun-

dles of Y ′ and Y , respectively.

Every affine bundle Y → X modelled over a vector bundle Y → X

admits the canonical vertical splitting

V Y = Y ×
X

Y . (1.2.15)
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Note that Theorems 1.1.8 and 1.1.9 on a particular cover for bundle

atlases remain true in the case of linear and affine atlases of vector and

affine bundles.

1.3 Vector fields

Vector fields on a manifold Z are global sections of the tangent bundle

TZ → Z.

The set T (Z) of vector fields on Z is both a C∞(Z)-module and a

real Lie algebra with respect to the Lie bracket

u = uλ∂λ, v = vλ∂λ,

[v, u] = (vλ∂λu
μ − uλ∂λv

μ)∂μ.

Given a vector field u on X, a curve

c : R ⊃ (, ) → Z

in Z is said to be an integral curve of u if Tc = u(c). Every vector field

u on a manifold Z can be seen as an infinitesimal generator of a local

one-parameter group of diffeomorphisms (a flow), and vice versa. One-

dimensional orbits of this group are integral curves of u. A vector field is

called complete if its flow is a one-parameter group of diffeomorphisms

of Z. For instance, every vector field on a compact manifold is complete.

A vector field u on a fibre bundle Y → X is called projectable if it

projects onto a vector field on X, i.e., there exists a vector field τ on X

such that

τ ◦ π = Tπ ◦ u.

A projectable vector field takes the coordinate form

u = uλ(xμ)∂λ + ui(xμ, yj)∂i, τ = uλ∂λ. (1.3.1)

Its flow is a local one-parameter group of automorphisms of Y → X over

a local one-parameter group of diffeomorphisms of X whose generator
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is τ . A projectable vector field is called vertical if its projection onto X

vanishes, i.e., if it lives in the vertical tangent bundle V Y .

A vector field τ = τλ∂λ on a base X of a fibre bundle Y → X gives rise

to a vector field on Y by means of a connection on this fibre bundle (see

the formula (3.1.6)). Nevertheless, every tensor bundle (1.2.5) admits

the canonical lift of vector fields

τ̃ = τμ∂μ + [∂ντ
α1ẋνα2···αm

β1···βk
+ . . . − ∂β1

τ νẋα1···αm

νβ2···βk
− . . .]∂̇β1···βk

α1···αm
, (1.3.2)

where we employ the compact notation

∂̇λ =
∂

∂ẋλ
. (1.3.3)

This lift is functorial, i.e., it is an R-linear monomorphism of the Lie

algebra T (X) of vector fields on X to the Lie algebra T (Y ) of vector

fields on Y (see Section 5.1). In particular, we have the functorial lift

τ̃ = τμ∂μ + ∂ντ
αẋν ∂

∂ẋα
(1.3.4)

of vector fields on X onto the tangent bundle TX and their functorial

lift

τ̃ = τμ∂μ − ∂βτ
νẋν

∂

∂ẋβ

(1.3.5)

onto the cotangent bundle T ∗X.

A fibre bundle admitting functorial lift of vector fields on its base is

called the natural bundle (see Chapter 5).

A subbundle T of the tangent bundle TZ of a manifold Z is called a

regular distribution (or, simply, a distribution). A vector field u on Z is

said to be subordinate to a distribution T if it lives in T. A distribution

T is called involutive if the Lie bracket of T-subordinate vector fields

also is subordinate to T.

A subbundle of the cotangent bundle T ∗Z of Z is called a codistri-

bution T∗ on a manifold Z. For instance, the annihilator AnnT of a

distribution T is a codistribution whose fibre over z ∈ Z consists of

covectors w ∈ T ∗
z such that v�w = 0 for all v ∈ Tz.
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Theorem 1.3.1: Let T be a distribution and AnnT its annihilator. Let

∧AnnT(Z) be the ideal of the exterior algebra O∗(Z) which is generated

by sections of AnnT → Z. A distribution T is involutive iff the ideal

∧AnnT(Z) is a differential ideal, i.e.,

d(∧AnnT(Z)) ⊂ ∧AnnT(Z).

�

The following local coordinates can be associated to an involutive

distribution.

Theorem 1.3.2: Let T be an involutive r-dimensional distribution on

a manifold Z, dim Z = k. Every point z ∈ Z has an open neighborhood

U which is a domain of an adapted coordinate chart (z1, . . . , zk) such

that, restricted to U , the distribution T and its annihilator AnnT are

spanned by the local vector fields ∂/∂z1, · · · , ∂/∂zr and the one-forms

dzr+1, . . . , dzk, respectively. �

A connected submanifold N of a manifold Z is called an integral

manifold of a distribution T on Z if TN ⊂ T. Unless otherwise stated,

by an integral manifold is meant an integral manifold of dimension of

T. An integral manifold is called maximal if no other integral manifold

contains it. The following is the classical theorem of Frobenius.

Theorem 1.3.3: Let T be an involutive distribution on a manifold Z.

For any z ∈ Z, there exists a unique maximal integral manifold of T

through z, and any integral manifold through z is its open subset. �

Maximal integral manifolds of an involutive distribution on a manifold

Z are assembled into a regular foliation F of Z. A regular r-dimensional

foliation (or, simply, a foliation) F of a k-dimensional manifold Z is de-

fined as a partition of Z into connected r-dimensional submanifolds (the

leaves of a foliation) Fι, ι ∈ I, which possesses the following properties.

A foliated manifold (Z,F) admits an adapted coordinate atlas

{(Uξ; z
λ; zi)}, λ = 1, . . . , n − r, i = 1, . . . , r, (1.3.6)
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such that transition functions of coordinates zλ are independent of the

remaining coordinates zi and, for each leaf F of a foliation F , the con-

nected components of F ∩ Uξ are given by the equations zλ =const.

These connected components and coordinates (zi) on them make up a

coordinate atlas of a leaf F .

It should be emphasized that leaves of a foliation need not be closed or

imbedded submanifolds. Every leaf has an open tubular neighborhood

U , i.e., if z ∈ U , then a leaf through z also belongs to U .

A pair (Z,F) where F is a foliation of Z is called a foliated manifold.

For instance, any submersion f : Z → M yields a foliation

F = {Fp = f−1(p)}p∈f(Z)

of Z indexed by elements of f(Z), which is an open submanifold of M ,

i.e., Z → f(Z) is a fibred manifold. Leaves of this foliation are closed

imbedded submanifolds. Such a foliation is called simple. It is a fibred

manifold over f(Z). Any (regular) foliation is locally simple.

1.4 Exterior and tangent-valued forms

An exterior r-form on a manifold Z is a section

φ =
1

r!
φλ1...λr

dzλ1 ∧ · · · ∧ dzλr

of the exterior product
r
∧T ∗Z → Z, where

dzλ1 ∧ · · · ∧ dzλr =
1

r!
ελ1...λr

μ1...μr
dxμ1 ⊗ · · · ⊗ dxμr ,

ε...λi...λj ...
...μp...μk... = −ε...λj ...λi...

...μp...μk... = −ε...λi...λj ...
...μk...μp...,

ελ1...λr
λ1...λr

= 1.

Let Or(Z) denote the vector space of exterior r-forms on a manifold

Z. By definition, O0(Z) = C∞(Z) is the ring of smooth real functions on

Z. All exterior forms on Z constitute the N-graded commutative algebra
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O∗(Z) of global sections of the exterior bundle ∧T ∗Z (1.2.2) endowed

with the exterior product

φ =
1

r!
φλ1...λr

dzλ1 ∧ · · · ∧ dzλr , σ =
1

s!
σμ1...μs

dzμ1 ∧ · · · ∧ dzμs,

φ ∧ σ =
1

r!s!
φν1...νr

σνr+1...νr+s
dzν1 ∧ · · · ∧ dzνr+s =

1

r!s!(r + s)!
εν1...νr+s

α1...αr+s
φν1...νr

σνr+1...νr+s
dzα1 ∧ · · · ∧ dzαr+s,

such that

φ ∧ σ = (−1)|φ||σ|σ ∧ φ,

where the symbol |φ| stands for the form degree. An algebra O∗(Z) also

is provided with the exterior differential

dφ = dzμ ∧ ∂μφ =
1

r!
∂μφλ1...λr

dzμ ∧ dzλ1 ∧ · · · ∧ dzλr

which obeys the relations

d ◦ d = 0, d(φ ∧ σ) = d(φ) ∧ σ + (−1)|φ|φ ∧ d(σ).

The exterior differential d makes O∗(Z) into a differential graded algebra

(henceforth DGA) which is the minimal Chevalley–Eilenberg differential

calculus O∗A over the real ring A = C∞(Z). Its de Rham complex is

(8.6.5).

Given a manifold morphism f : Z → Z ′, any exterior k-form φ on Z ′

yields the pull-back exterior form f ∗φ on Z given by the condition

f ∗φ(v1, . . . , vk)(z) = φ(Tf(v1), . . . , T f(vk))(f(z))

for an arbitrary collection of tangent vectors v1, · · · , vk ∈ TzZ. We have

the relations

f ∗(φ ∧ σ) = f ∗φ ∧ f ∗σ, df ∗φ = f ∗(dφ).

In particular, given a fibre bundle π : Y → X, the pull-back onto

Y of exterior forms on X by π provides the monomorphism of graded
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commutative algebras O∗(X) → O∗(Y ). Elements of its range π∗O∗(X)

are called basic forms. Exterior forms

φ : Y →
r
∧T ∗X, φ =

1

r!
φλ1...λr

dxλ1 ∧ · · · ∧ dxλr ,

on Y such that u�φ = 0 for an arbitrary vertical vector field u on Y are

said to be horizontal forms. Horizontal forms of degree n = dim X are

called densities. We use for them the compact notation

L =
1

n!
Lμ1...μn

dxμ1 ∧ · · · ∧ dxμn = Lω, L = L1...n,

ω = dx1 ∧ · · · ∧ dxn =
1

n!
εμ1...μn

dxμ1 ∧ · · · ∧ dxμn, (1.4.1)

ωλ = ∂λ�ω, ωμλ = ∂μ�∂λ�ω,

where ε is the skew-symmetric Levi–Civita symbol with the component

εμ1...μn
= 1.

The interior product (or contraction) of a vector field u and an exterior

r-form φ on a manifold Z is given by the coordinate expression

u�φ =
r∑

k=1

(−1)k−1

r!
uλkφλ1...λk...λr

dzλ1 ∧ · · · ∧ d̂z
λk

∧ · · · ∧ dzλr =

1

(r − 1)!
uμφμα2...αr

dzα2 ∧ · · · ∧ dzαr ,

where the caret ̂ denotes omission. It obeys the relations

φ(u1, . . . , ur) = ur� · · ·u1�φ,

u�(φ ∧ σ) = u�φ ∧ σ + (−1)|φ|φ ∧ u�σ.

The Lie derivative of an exterior form φ along a vector field u is

Luφ = u�dφ + d(u�φ),

Lu(φ ∧ σ) = Luφ ∧ σ + φ ∧ Luσ.

It is a derivation of the graded algebra O∗(Z) such that

Lu ◦ Lu′ − Lu′ ◦ Lu = L[u,u′].

In particular, if f is a function, then

Luf = u(f) = u�df.
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An exterior form φ is invariant under a local one-parameter group of

diffeomorphisms G(t) of Z (i.e., G(t)∗φ = φ) iff its Lie derivative along

the infinitesimal generator u of this group vanishes, i.e., Luφ = 0.

A tangent-valued r-form on a manifold Z is a section

φ =
1

r!
φμ

λ1...λr
dzλ1 ∧ · · · ∧ dzλr ⊗ ∂μ (1.4.2)

of the tensor bundle

r
∧T ∗Z ⊗ TZ → Z.

Remark 1.4.1: There is one-to-one correspondence between the tangent-

valued one-forms φ on a manifold Z and the linear bundle endomor-

phisms

φ̂ : TZ → TZ, φ̂ : TzZ � v → v�φ(z) ∈ TzZ, (1.4.3)

φ̂∗ : T ∗Z → T ∗Z, φ̂∗ : T ∗
z Z � v∗ → φ(z)�v∗ ∈ T ∗

z Z, (1.4.4)

over Z (see Remark 1.2.2). For instance, the canonical tangent-valued

one-form

θZ = dzλ ⊗ ∂λ (1.4.5)

on Z corresponds to the identity morphisms (1.4.3) and (1.4.4). �

Remark 1.4.2: Let Z = TX, and let TTX be the tangent bundle of

TX. There is the bundle endomorphism

J(∂λ) = ∂̇λ, J(∂̇λ) = 0 (1.4.6)

of TTX over X. It corresponds to the canonical tangent-valued form

θJ = dxλ ⊗ ∂̇λ (1.4.7)

on the tangent bundle TX. It is readily observed that J ◦ J = 0. �
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The space O∗(Z) ⊗ T (Z) of tangent-valued forms is provided with

the Frölicher–Nijenhuis bracket

[ , ]FN : Or(Z) ⊗ T (Z) ×Os(Z) ⊗ T (Z) → Or+s(Z) ⊗ T (Z),

[α ⊗ u, β ⊗ v]FN = (α ∧ β) ⊗ [u, v] + (α ∧ Luβ) ⊗ v − (1.4.8)

(Lvα ∧ β) ⊗ u + (−1)r(dα ∧ u�β) ⊗ v + (−1)r(v�α ∧ dβ) ⊗ u,

α ∈ Or(Z), β ∈ Os(Z), u, v ∈ T (Z).

Its coordinate expression is

[φ, σ]FN =
1

r!s!
(φν

λ1...λr
∂νσ

μ
λr+1...λr+s

− σν
λr+1...λr+s

∂νφ
μ
λ1...λr

−

rφμ
λ1...λr−1ν

∂λr
σν

λr+1...λr+s
+ sσμ

νλr+2...λr+s
∂λr+1

φν
λ1...λr

)

dzλ1 ∧ · · · ∧ dzλr+s ⊗ ∂μ,

φ ∈ Or(Z) ⊗ T (Z), σ ∈ Os(Z) ⊗ T (Z).

There are the relations

[φ, σ]FN = (−1)|φ||ψ|+1[σ, φ]FN, (1.4.9)

[φ, [σ, θ]FN]FN = [[φ, σ]FN, θ]FN + (−1)|φ||σ|[σ, [φ, θ]FN]FN, (1.4.10)

φ, σ, θ ∈ O∗(Z) ⊗ T (Z).

Given a tangent-valued form θ, the Nijenhuis differential on O∗(Z)⊗

T (Z) is defined as the morphism

dθ : ψ → dθψ = [θ, ψ]FN, ψ ∈ O∗(Z) ⊗ T (Z).

By virtue of (1.4.10), it has the property

dφ[ψ, θ]FN = [dφψ, θ]FN + (−1)|φ||ψ|[ψ, dφθ]FN.

In particular, if θ = u is a vector field, the Nijenhuis differential is the

Lie derivative of tangent-valued forms

Luσ = duσ = [u, σ]FN =
1

s!
(uν∂νσ

μ
λ1...λs

− σν
λ1...λs

∂νu
μ +

sσμ
νλ2...λs

∂λ1
uν)dxλ1 ∧ · · · ∧ dxλs ⊗ ∂μ, σ ∈ Os(Z) ⊗ T (Z).
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Let Y → X be a fibre bundle. We consider the following subspaces

of the space O∗(Y ) ⊗ T (Y ) of tangent-valued forms on Y :

• horizontal tangent-valued forms

φ : Y →
r
∧T ∗X ⊗

Y
TY,

φ = dxλ1 ∧ · · · ∧ dxλr ⊗
1

r!
[φμ

λ1...λr
(y)∂μ + φi

λ1...λr
(y)∂i],

• projectable horizontal tangent-valued forms

φ = dxλ1 ∧ · · · ∧ dxλr ⊗
1

r!
[φμ

λ1...λr
(x)∂μ + φi

λ1...λr
(y)∂i],

• vertical-valued form

φ : Y →
r
∧T ∗X ⊗

Y
V Y,

φ =
1

r!
φi

λ1...λr
(y)dxλ1 ∧ · · · ∧ dxλr ⊗ ∂i,

• vertical-valued one-forms, called soldering forms,

σ = σi
λ(y)dxλ ⊗ ∂i,

• basic soldering forms

σ = σi
λ(x)dxλ ⊗ ∂i.

Remark 1.4.3: The tangent bundle TX is provided with the canonical

soldering form θJ (1.4.7). Due to the canonical vertical splitting

V TX = TX ×
X

TX, (1.4.11)

the canonical soldering form (1.4.7) on TX defines the canonical tangent-

valued form θX (1.4.5) on X. By this reason, tangent-valued one-forms

on a manifold X also are called soldering forms. �

Remark 1.4.4: Let Y → X be a fibre bundle, f : X ′ → X a manifold

morphism, f ∗Y → X ′ the pull-back of Y by f , and

fY : f ∗Y → Y
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the corresponding bundle morphism (1.1.9). Since

V f ∗Y = f ∗V Y = f ∗
Y V Y, Vy′Y ′ = VfY (y′)Y,

one can define the pull-back f ∗φ onto f ∗Y of any vertical-valued form φ

on Y in accordance with the relation

f ∗φ(v1, . . . , vr)(y′) = φ(TfY (v1), . . . , T fY (vr))(fY (y′)).

�

We also mention the TX-valued forms

φ : Y →
r
∧T ∗X ⊗

Y
TX, (1.4.12)

φ =
1

r!
φμ

λ1...λr
dxλ1 ∧ · · · ∧ dxλr ⊗ ∂μ,

and V ∗Y -valued forms

φ : Y →
r
∧T ∗X ⊗

Y
V ∗Y, (1.4.13)

φ =
1

r!
φλ1...λridxλ1 ∧ · · · ∧ dxλr ⊗ dyi.

It should be emphasized that (1.4.12) are not tangent-valued forms, while

(1.4.13) are not exterior forms. They exemplify vector-valued forms.

Given a vector bundle E → X, by a E-valued k-form on X, is meant a

section of the fibre bundle

(
k
∧T ∗X)⊗

X
E∗ → X.
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Chapter 2

Jet manifolds

There are different notions of jets. Here we are concerned with jets of

sections of fibre bundles. They are the particular jets of maps and the

jets of submanifolds. Let us also mention the jets of modules over a

commutative ring. In particular, given a smooth manifold X, the jets

of a projective C∞(X)-module P of finite rank are exactly the jets of

sections of the vector bundle over X whose module of sections is P in

accordance with the Serre–Swan Theorem 8.6.3. The notion of jets is

extended to modules over graded commutative rings. However, the jets

of modules over a noncommutative ring can not be defined.

2.1 First order jet manifolds

Given a fibre bundle Y → X with bundle coordinates (xλ, yi), let us

consider the equivalence classes j1
xs of its sections s, which are identified

by their values si(x) and the values of their partial derivatives ∂μs
i(x) at

a point x ∈ X. They are called the first order jets of sections at x. One

can justify that the definition of jets is coordinate-independent. The key

point is that the set J1Y of first order jets j1
xs, x ∈ X, is a smooth

manifold with respect to the adapted coordinates (xλ, yi, yi
λ) such that

yi
λ(j

1
xs) = ∂λs

i(x), y′
i
λ =

∂xμ

∂x′λ
(∂μ + yj

μ∂j)y
′i. (2.1.1)

33
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It is called the first order jet manifold of a fibre bundle Y → X. We call

(yi
λ) the jet coordinates.

The jet manifold J1Y admits the natural fibrations

π1 : J1Y � j1
xs → x ∈ X, (2.1.2)

π1
0 : J1Y � j1

xs → s(x) ∈ Y. (2.1.3)

A glance at the transformation law (2.1.1) shows that π1
0 is an affine

bundle modelled over the vector bundle

T ∗X ⊗
Y

V Y → Y. (2.1.4)

It is convenient to call π1 (2.1.2) the jet bundle, while π1
0 (2.1.3) is said

to be the affine jet bundle.

Let us note that, if Y → X is a vector or an affine bundle, the jet

bundle π1 (2.1.2) is so.

Jets can be expressed in terms of familiar tangent-valued forms as

follows. There are the canonical imbeddings

λ(1) : J1Y →
Y

T ∗X ⊗
Y

TY,

λ(1) = dxλ ⊗ (∂λ + yi
λ∂i) = dxλ ⊗ dλ, (2.1.5)

θ(1) : J1Y →
Y

T ∗Y ⊗
Y

V Y,

θ(1) = (dyi − yi
λdxλ) ⊗ ∂i = θi ⊗ ∂i, (2.1.6)

where dλ are called total derivatives, and θi are local contact forms.

Remark 2.1.1: We further identify the jet manifold J1Y with its

images under the canonical morphisms (2.1.5) and (2.1.6), and represent

the jets j1
xs = (xλ, yi, yi

μ) by the tangent-valued forms λ(1) (2.1.5) and

θ(1) (2.1.6). �

Any section s of Y → X has the jet prolongation to the section

(J1s)(x) = j1
xs, yi

λ ◦ J1s = ∂λs
i(x),

of the jet bundle J1Y → X. A section of the jet bundle J1Y → X is

called integrable if it is the jet prolongation of some section of Y → X.
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Remark 2.1.2: By virtue of Theorem 1.1.4, the affine jet bundle

J1Y → Y admits global sections. If Y is trivial, there is the canonical

zero section 0̂(Y ) of J1Y → Y taking its values into centers of its affine

fibres. �

Any bundle morphism Φ : Y → Y ′ over a diffeomorphism f admits a

jet prolongation to a bundle morphism of affine jet bundles

J1Φ : J1Y −→
Φ

J1Y ′, y′
i
λ ◦ J1Φ =

∂(f−1)μ

∂x′λ
dμΦ

i. (2.1.7)

Any projectable vector field u (1.3.1) on a fibre bundle Y → X has a

jet prolongation to the projectable vector field

J1u = r1 ◦ J1u : J1Y → J1TY → TJ1Y,

J1u = uλ∂λ + ui∂i + (dλu
i − yi

μ∂λu
μ)∂λ

i , (2.1.8)

on the jet manifold J1Y . To obtain (2.1.8), the canonical bundle mor-

phism

r1 : J1TY → TJ1Y, ẏi
λ ◦ r1 = (ẏi)λ − yi

μẋ
μ
λ

is used. In particular, there is the canonical isomorphism

V J1Y = J1V Y, ẏi
λ = (ẏi)λ. (2.1.9)

2.2 Higher order jet manifolds

The notion of first jets of sections of a fibre bundle is naturally extended

to higher order jets.

Let Y → X be a fibre bundle. Given its bundle coordinates (xλ, yi),

a multi-index Λ of the length |Λ| = k throughout denotes a collection of

indices (λ1...λk) modulo permutations. By Λ+Σ is meant a multi-index

(λ1 . . . λkσ1 . . . σr). For instance λ + Λ = (λλ1...λr). By ΛΣ is denoted

the union of collections (λ1 . . . λk; σ1 . . . σr) where the indices λi and σj
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are not permitted. Summation over a multi-index Λ means separate

summation over each its index λi. We use the compact notation

∂Λ = ∂λk
◦ · · · ◦ ∂λ1

, Λ = (λ1...λk).

The r-order jet manifold JrY of sections of a bundle Y → X is defined

as the disjoint union of equivalence classes jr
xs of sections s of Y → X

such that sections s and s′ belong to the same equivalence class jr
xs iff

si(x) = s′
i
(x), ∂Λsi(x) = ∂Λs′

i
(x), 0 < |Λ| ≤ r.

In brief, one can say that sections of Y → X are identified by the r + 1

terms of their Taylor series at points of X. The particular choice of

coordinates does not matter for this definition. The equivalence classes

jr
xs are called the r-order jets of sections. Their set JrY is endowed with

an atlas of the adapted coordinates

(xλ, yi
Λ), yi

Λ ◦ s = ∂Λsi(x), 0 ≤ |Λ| ≤ r, (2.2.1)

y′
i
λ+Λ =

∂xμ

∂′xλ
dμy

′i
Λ, (2.2.2)

where the symbol dλ stands for the higher order total derivative

dλ = ∂λ +
∑

0≤|Λ|≤r−1

yi
Λ+λ∂

Λ
i , d′λ =

∂xμ

∂x′λ
dμ. (2.2.3)

These derivatives act on exterior forms on JrY and obey the relations

[dλ, dμ] = 0, dλ ◦ d = d ◦ dλ,

dλ(φ ∧ σ) = dλ(φ) ∧ σ + φ ∧ dλ(σ), dλ(dφ) = d(dλ(φ)),

dλ(dxμ) = 0, dλ(dyi
Λ) = dyi

λ+Λ.

We use the compact notation

dΛ = dλr
◦ · · · ◦ dλ1

, Λ = (λr...λ1).

The coordinates (2.2.1) bring the set JrY into a finite-dimensional

manifold. The coordinates (2.2.1) are compatible with the natural sur-

jections

πr
k : JrY → JkY, r > k,
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which form the composite bundle

πr : JrY
πr

r−1−→ Jr−1Y
πr−1

r−2−→· · ·
π1

0−→Y
π−→X

with the properties

πk
s ◦ πr

k = πr
s, πs ◦ πr

s = πr.

A glance at the transition functions (2.2.2) shows that the fibration

πr
r−1 : JrY → Jr−1Y

is an affine bundle modelled over the vector bundle

r
∨T ∗X ⊗

Jr−1Y
V Y → Jr−1Y. (2.2.4)

Remark 2.2.1: Let us recall that a base of any affine bundle is a

strong deformation retract of its total space. Consequently, Y is a strong

deformation retract of J1Y , which in turn is a strong deformation retract

of J2Y , and so on. It follows that a fibre bundle Y is a strong deformation

retract of any finite order jet manifold JrY . Therefore, by virtue of the

Vietoris–Begle theorem, there is an isomorphism

H∗(JrY ; R) = H∗(Y ; R) (2.2.5)

of cohomology of JrY and Y with coefficients in the constant sheaf R.

�

Remark 2.2.2: To introduce higher order jet manifolds, one can use

the construction of repeated jet manifolds. Let us consider the r-order

jet manifold JrJkY of a jet bundle JkY → X. It is coordinated by

(xμ, yi
ΣΛ), |Λ| ≤ k, |Σ| ≤ r. There is a canonical monomorphism

σrk : Jr+kY → JrJkY, yi
ΣΛ ◦ σrk = yi

Σ+Λ.

�

In the calculus in higher order jets, we have the r-order jet prolon-

gation functor such that, given fibre bundles Y and Y ′ over X, every
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bundle morphism Φ : Y → Y ′ over a diffeomorphism f of X admits the

r-order jet prolongation to a morphism of r-order jet manifolds

JrΦ : JrY � jr
xs → jr

f(x)(Φ ◦ s ◦ f−1) ∈ JrY ′. (2.2.6)

The jet prolongation functor is exact. If Φ is an injection or a surjection,

so is JrΦ. It also preserves an algebraic structure. In particular, if

Y → X is a vector bundle, JrY → X is well. If Y → X is an affine

bundle modelled over the vector bundle Y → X, then JrY → X is an

affine bundle modelled over the vector bundle JrY → X.

Every section s of a fibre bundle Y → X admits the r-order jet

prolongation to the integrable section (Jrs)(x) = jr
xs of the jet bundle

JrY → X.

Let O∗
k = O∗(JkY ) be the DGA of exterior forms on a jet manifold

JkY . Every exterior form φ on a jet manifold JkY gives rise to the pull-

back form πk+i
k

∗φ on a jet manifold Jk+iY . We have the direct sequence

of C∞(X)-algebras

O∗(X)
π∗

−→O∗(Y )
π1

0
∗

−→O∗
1

π2
1
∗

−→· · ·
πr

r−1
∗

−→O∗
r .

Remark 2.2.3: By virtue of de Rham Theorem 8.6.4, the cohomology

of the de Rham complex of O∗
k equals the cohomology H∗(JkY ; R) of JkY

with coefficients in the constant sheaf R. The latter in turn coincides

with the sheaf cohomology H∗(Y ; R) of Y (see Remark 2.2.1) and, thus,

it equals the de Rham cohomology H∗
DR(Y ) of Y . �

Given a k-order jet manifold JkY of Y → X, there exists the canonical

bundle morphism

r(k) : JkTY → TJkY

over a surjection

JkY ×
X

JkTX → JkY ×
X

TX
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whose coordinate expression is

ẏi
Λ ◦ r(k) = (ẏi)Λ −

∑
(ẏi)μ+Σ(ẋμ)Ξ, 0 ≤ |Λ| ≤ k,

where the sum is taken over all partitions Σ + Ξ = Λ and 0 < |Ξ|. In

particular, we have the canonical isomorphism over JkY

r(k) : JkV Y → V JkY, (ẏi)Λ = ẏi
Λ ◦ r(k). (2.2.7)

As a consequence, every projectable vector field u (1.3.1) on a fibre

bundle Y → X has the following k-order jet prolongation to a vector

field on JkY :

Jku = r(k) ◦ Jku : JkY → TJkY,

Jku = uλ∂λ + ui∂i +
∑

0<|Λ|≤k

(dΛ(ui − yi
μu

μ) + yi
μ+Λuμ)∂Λ

i , (2.2.8)

(cf. (2.1.8) for k = 1). In particular, the k-order jet prolongation (2.2.8)

of a vertical vector field u = ui∂i on Y → X is a vertical vector field

Jku = ui∂i +
∑

0<|Λ|≤k

dΛui∂Λ
i (2.2.9)

on JkY → X due to the isomorphism (2.2.7).

A vector field ur on an r-order jet manifold JrY is called projectable

if, for any k < r, there exists a projectable vector field uk on JkY such

that

uk ◦ πr
k = Tπr

k ◦ ur.

A projectable vector field uk on JkY has the coordinate expression

uk = uλ∂λ +
∑

0≤|Λ|≤k

ui
Λ∂Λ

i

such that uλ depends only on coordinates xμ and every component ui
Λ is

independent of coordinates yi
Ξ, |Ξ| > |Λ|. In particular, the k-order jet

prolongation Jku (2.2.8) of a projectable vector field on Y is a projectable

vector field on JkY . It is called an integrable vector field.
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Let Pk denote a vector space of projectable vector fields on a jet

manifold JkY . It is easily seen that Pr is a real Lie algebra and that the

morphisms Tπr
k, k < r, constitute the inverse system

P0 Tπ1
0←−P1 Tπ2

1←−· · ·
Tπr−1

r−2←−Pr−1 Tπr
r−1←−Pr (2.2.10)

of these Lie algebras. One can show the following.

Theorem 2.2.1: The k-order jet prolongation (2.2.8) is a Lie algebra

monomorphism of the Lie algebra P0 of projectable vector fields on Y →

X to the Lie algebra Pk of projectable vector fields on JkY such that

Tπr
k(J

ru) = Jku ◦ πr
k. (2.2.11)

�

Every projectable vector field uk on JkY is decomposed into the sum

uk = Jk(Tπk
0(uk)) + vk (2.2.12)

of the integrable vector field Jk(Tπk
0(uk)) and a projectable vector field

vk which is vertical with respect to a fibration JkY → Y .

Similarly to the canonical monomorphisms (2.1.5) – (2.1.6), there are

the canonical bundle monomorphisms over JkY :

λ(k) : Jk+1Y −→T ∗X ⊗
JkY

TJkY,

λ(k) = dxλ ⊗ dλ, (2.2.13)

θ(k) : Jk+1Y −→T ∗JkY ⊗
JkY

V JkY,

θ(k) =
∑

|Λ|≤k

(dyi
Λ − yi

λ+Λdxλ) ⊗ ∂Λ
i . (2.2.14)

The one-forms

θi
Λ = dyi

Λ − yi
λ+Λdxλ (2.2.15)

are called the local contact forms. Monomorphisms (2.2.13) – (2.2.14)

yield the bundle monomorphisms over Jk+1Y :

λ̂(k) : TX ×
X

Jk+1Y −→TJkY ×
JkY

Jk+1Y,

θ̂(k) : V ∗JkY ×
JkY

−→T ∗JkY ×
JkY

Jk+1Y
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(cf. (3.2.1) – (3.2.2) for k = 1). These monomorphisms in turn define

the canonical horizontal splittings of the pull-back bundles

πk+1∗
k TJkY = λ̂(k)(TX ×

X
Jk+1Y ) ⊕

Jk+1Y
V JkY, (2.2.16)

ẋλ∂λ +
∑

|Λ|≤k

ẏi
Λ∂Λ

i = ẋλdλ +
∑

|Λ|≤k

(ẏi
Λ − ẋλyi

λ+Λ)∂Λ
i ,

πk+1∗
k T ∗JkY = T ∗X ⊕

Jk+1Y
θ̂(k)(V

∗JkY ×
JkY

Jk+1Y ), (2.2.17)

ẋλdxλ +
∑

|Λ|≤k

ẏΛ
i dyi

Λ = (ẋλ +
∑

|Λ|≤k

ẏΛ
i yi

λ+Λ)dxλ +
∑

ẏΛ
i θi

Λ.

For instance, it follows from the canonical horizontal splitting (2.2.16)

that any vector field uk on JkY admits the canonical decomposition

uk = uH + uV = (uλ∂λ +
∑

|Λ|≤k

yi
λ+Λ∂Λ

i ) + (2.2.18)

∑
|Λ|≤k

(ui
Λ − uλyi

λ+Λ)∂Λ
i

over Jk+1Y into the horizontal and vertical parts.

By virtue of the canonical horizontal splitting (2.2.17), every exterior

one-form φ on JkY admits the canonical splitting of its pull-back onto

Jk+1Y into the horizontal and vertical parts:

πk+1∗
k φ = φH + φV = h0φ + (φ − h0(φ)), (2.2.19)

where h0 is the horizontal projection

h0(dxλ) = dxλ, h0(dyi
λ1···λk

) = yi
μλ1...λk

dxμ.

The vertical part of the splitting is called a contact one-form on Jk+1Y .

Let us consider an ideal of the algebra O∗
k of exterior forms on JkY

which is generated by the contact one-forms on JkY . This ideal, called

the ideal of contact forms, is locally generated by the contact forms θi
Λ

(2.2.15). One can show that an exterior form φ on the a manifold JkY

is a contact form iff its pull-back s∗φ onto a base X by means of any

integrable section s of JkY → X vanishes.
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2.3 Differential operators and equations

Jet manifolds provides the conventional language of theory of differential

equations and differential operators if they need not be linear.

Definition 2.3.1: A system of k-order partial differential equations on

a fibre bundle Y → X is defined as a closed subbundle E of a jet bundle

JkY → X. For the sake of brevity, we agree to call E a differential

equation. �

By a classical solution of a differential equation E on Y → X is meant

a section s of Y → X such that its k-order jet prolongation Jks lives in

E.

Let JkY be provided with the adapted coordinates (xλ, yi
Λ). There

exists a local coordinate system (zA), A = 1, . . . , codimE, on JkY such

that E is locally given (in the sense of item (i) of Theorem 1.1.1) by

equations

EA(xλ, yi
Λ) = 0, A = 1, . . . , codimE. (2.3.1)

Differential equations are often associated to differential operators.

There are several equivalent definitions of differential operators.

Definition 2.3.2: Let Y → X and E → X be fibre bundles, which are

assumed to have global sections. A k-order E-valued differential operator

on a fibre bundle Y → X is defined as a section E of the pull-back bundle

pr1 : Ek
Y = JkY ×

X
E → JkY. (2.3.2)

�

Given bundle coordinates (xλ, yi) on Y and (xλ, χa) on E, the pull-

back (2.3.2) is provided with coordinates (xλ, yj
Σ, χa), 0 ≤ |Σ| ≤ k. With

respect to these coordinates, a differential operator E seen as a closed

imbedded submanifold E ⊂ Ek
Y is given by the equalities

χa = Ea(xλ, yj
Σ). (2.3.3)
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There is obvious one-to-one correspondence between the sections E

(2.3.3) of the fibre bundle (2.3.2) and the bundle morphisms

Φ : JkY −→
X

E, (2.3.4)

Φ = pr2 ◦ E ⇐⇒ E = (Id JkY, Φ).

Therefore, we come to the following equivalent definition of differential

operators on Y → X.

Definition 2.3.3: Let Y → X and E → X be fibre bundles. A bundle

morphism JkY → E over X is called a E-valued k-order differential

operator on Y → X. �

It is readily observed that the differential operator Φ (2.3.4) sends

each section s of Y → X onto the section Φ ◦ Jks of E → X. The

mapping

ΔΦ : S(Y ) → S(E),

ΔΦ : s → Φ ◦ Jks, χa(x) = Ea(xλ, ∂Σsj(x)),

is called the standard form of a differential operator.

Let e be a global section of a fibre bundle E → X, the kernel of a

E-valued differential operator Φ is defined as the kernel

Ker eΦ = Φ−1(e(X)) (2.3.5)

of the bundle morphism Φ (2.3.4). If it is a closed subbundle of the jet

bundle JkY → X, one says that Ker eΦ (2.3.5) is a differential equation

associated to the differential operator Φ. By virtue of Theorem 1.1.10,

this condition holds if Φ is a bundle morphism of constant rank.

If E → X is a vector bundle, by the kernel of a E-valued differential

operator is usually meant its kernel with respect to the canonical zero-

valued section 0̂ of E → X.

In the framework of Lagrangian formalism, we deal with differential

operators of the following type. Let

F → Y → X, E → Y → X
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be composite bundles where E → Y is a vector bundle. By a k-order

differential operator on F → X taking its values into E → X is meant

a bundle morphism

Φ : JkF −→
Y

E, (2.3.6)

which certainly is a bundle morphism over X in accordance with Def-

inition 2.3.3. Its kernel Ker Φ is defined as the inverse image of the

canonical zero-valued section of E → Y . In an equivalent way, the dif-

ferential operator (2.3.6) is represented by a section EΦ of the vector

bundle

JkF ×
Y

E → JkF.

Given bundle coordinates (xλ, yi, wr) on F and (xλ, yi, cA) on E with

respect to the fibre basis {eA} for E → Y , this section reads

EΦ = EA(xλ, yi
Λ, wr

Λ)eA, 0 ≤ |Λ| ≤ k. (2.3.7)

Then the differential operator (2.3.6) also is represented by a function

EΦ = EA(xλ, yi
Λ, wr

Λ)cA ∈ C∞(F ×
Y

E∗) (2.3.8)

on the product F×Y E∗, where E∗ → Y is the dual of E → Y coordinated

by (xλ, yi, cA).

If F → Y is a vector bundle, a differential operator Φ (2.3.6) on the

composite bundle F → Y → X is called linear if it is linear on the fibres

of the vector bundle JkF → JkY . In this case, its representations (2.3.7)

and (2.3.8) take the form

EΦ =
∑

0≤|Ξ|≤k

EA,Ξ
r (xλ, yi

Λ)wr
ΞeA, 0 ≤ |Λ| ≤ k, (2.3.9)

EΦ =
∑

0≤|Ξ|≤k

EA,Ξ
r (xλ, yi

Λ)wr
ΞcA, 0 ≤ |Λ| ≤ k. (2.3.10)
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2.4 Infinite order jet formalism

The finite order jet manifolds JkY of a fibre bundle Y → X form the

inverse sequence

Y
π←− J1Y ←− · · · Jr−1Y

πr
r−1←− JrY ←− · · · , (2.4.1)

where πr
r−1 are affine bundles modelled over the vector bundles (2.2.4).

Its inductive limit J∞Y is defined as a minimal set such that there exist

surjections

π∞ : J∞Y → X, π∞
0 : J∞Y → Y, π∞

k : J∞Y → JkY, (2.4.2)

obeying the relations π∞
r = πk

r ◦ π∞
k for all admissible k and r < k. A

projective limit of the inverse system (2.4.1) always exists. It consists of

those elements

(. . . , zr, . . . , zk, . . .), zr ∈ JrY, zk ∈ JkY,

of the Cartesian product
∏
k

JkY which satisfy the relations zr = πk
r (zk)

for all k > r. One can think of elements of J∞Y as being infinite order

jets of sections of Y → X identified by their Taylor series at points of

X.

The set J∞Y is provided with the projective limit topology. This is

the coarsest topology such that the surjections π∞
r (2.4.2) are continuous.

Its base consists of inverse images of open subsets of JrY , r = 0, . . .,

under the maps π∞
r . With this topology, J∞Y is a paracompact Fréchet

(complete metrizable) manifold modelled over a locally convex vector

space of number series {aλ, ai, ai
λ, · · ·}. It is called the infinite order

jet manifold. One can show that the surjections π∞
r are open maps

admitting local sections, i.e., J∞Y → JrY are continuous bundles. A

bundle coordinate atlas {UY , (xλ, yi)} of Y → X provides J∞Y with the

manifold coordinate atlas

{(π∞
0 )−1(UY ), (xλ, yi

Λ)}0≤|Λ|, y′
i
λ+Λ =

∂xμ

∂x′λ
dμy

′i
Λ. (2.4.3)
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Theorem 2.4.1: A fibre bundle Y is a strong deformation retract of

the infinite order jet manifold J∞Y . �

Corollary 2.4.2: There is an isomorphism

H∗(J∞Y ; R) = H∗(Y ; R) (2.4.4)

between cohomology of J∞Y and Y with coefficients in the sheaf R. �

The inverse sequence (2.4.1) of jet manifolds yields the direct sequence

of DGAs O∗
r of exterior forms on finite order jet manifolds

O∗(X)
π∗

−→O∗(Y )
π1

0
∗

−→O∗
1 −→ · · ·O∗

r−1

πr
r−1

∗

−→O∗
r −→ · · · , (2.4.5)

where πr
r−1

∗ are the pull-back monomorphisms. Its direct limit

O∗
∞Y =

→
limO∗

r (2.4.6)

exists and consists of all exterior forms on finite order jet manifolds

modulo the pull-back identification. In accordance with Theorem 8.1.5,

O∗
∞Y is a DGA which inherits the operations of the exterior differential

d and exterior product ∧ of exterior algebras O∗
r . If there is no danger

of confusion, we denote O∗
∞ = O∗

∞Y .

Theorem 2.4.3: The cohomology H∗(O∗
∞) of the de Rham complex

0 −→ R −→ O0
∞

d−→O1
∞

d−→· · · (2.4.7)

of the DGA O∗
∞ equals the de Rham cohomology H∗

DR(Y ) of Y . �

Corollary 2.4.4: Any closed form φ ∈ O∗
∞ is decomposed into the sum

φ = σ + dξ, where σ is a closed form on Y . �

One can think of elements of O∗
∞ as being differential forms on the

infinite order jet manifold J∞Y as follows. Let O∗
r be a sheaf of germs of

exterior forms on JrY and O
∗
r the canonical presheaf of local sections of

O∗
r. Since πr

r−1 are open maps, there is the direct sequence of presheaves

O
∗
0

π1
0
∗

−→O
∗
1 · · ·

πr
r−1

∗

−→O
∗
r −→ · · · .
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Its direct limit O
∗
∞ is a presheaf of DGAs on J∞Y . Let Q∗

∞ be the sheaf

of DGAs of germs of O
∗
∞ on J∞Y . The structure module

Q∗
∞ = Γ(Q∗

∞) (2.4.8)

of global sections of Q∗
∞ is a DGA such that, given an element φ ∈ Q∗

∞

and a point z ∈ J∞Y , there exist an open neighbourhood U of z and an

exterior form φ(k) on some finite order jet manifold JkY so that

φ|U = π∞∗
k φ(k)|U .

Therefore, one can regard Q∗
∞ as an algebra of locally exterior forms on

finite order jet manifolds. There is a monomorphism O∗
∞ → Q∗

∞.

Theorem 2.4.5: The paracompact space J∞Y admits a partition of

unity by elements of the ring Q0
∞. �

Since elements of the DGA Q∗
∞ are locally exterior forms on finite

order jet manifolds, the following Poincaré lemma holds.

Lemma 2.4.6: Given a closed element φ ∈ Q∗
∞, there exists a neigh-

bourhood U of each point z ∈ J∞Y such that φ|U is exact. �

Theorem 2.4.7: The cohomology H∗(Q∗
∞) of the de Rham complex

0 −→ R −→ Q0
∞

d−→Q1
∞

d−→· · · . (2.4.9)

of the DGA Q∗
∞ equals the de Rham cohomology of a fibre bundle Y . �

Due to a monomorphism O∗
∞ → Q∗

∞, one can restrict O∗
∞ to the

coordinate chart (2.4.3) where horizontal forms dxλ and contact one-

forms

θi
Λ = dyi

Λ − yi
λ+Λdxλ

make up a local basis for the O0
∞-algebra O∗

∞. Though J∞Y is not a

smooth manifold, elements of O∗
∞ are exterior forms on finite order jet

manifolds and, therefore, their coordinate transformations are smooth.

Moreover, there is the canonical decomposition

O∗
∞ = ⊕Ok,m

∞
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of O∗
∞ into O0

∞-modules Ok,m
∞ of k-contact and m-horizontal forms to-

gether with the corresponding projectors

hk : O∗
∞ → Ok,∗

∞ , hm : O∗
∞ → O∗,m

∞ .

Accordingly, the exterior differential on O∗
∞ is decomposed into the sum

d = dV + dH

of the vertical differential

dV ◦ hm = hm ◦ d ◦ hm, dV (φ) = θi
Λ ∧ ∂Λ

i φ, φ ∈ O∗
∞,

and the total differential

dH ◦ hk = hk ◦ d ◦ hk, dH ◦ h0 = h0 ◦ d, dH(φ) = dxλ ∧ dλ(φ),

where

dλ = ∂λ + yi
λ∂i +

∑
0<|Λ|

yi
λ+Λ∂Λ

i (2.4.10)

are the infinite order total derivatives. They obey the nilpotent condi-

tions

dH ◦ dH = 0, dV ◦ dV = 0, dH ◦ dV + dV ◦ dH = 0, (2.4.11)

and make O∗,∗
∞ into a bicomplex.

Let us consider the O0
∞-module dO0

∞ of derivations of the real ring

O0
∞.

Theorem 2.4.8: The derivation module dO0
∞ is isomorphic to the O0

∞-

dual (O1
∞)∗ of the module of one-forms O1

∞. �

One can say something more. The DGA O∗
∞ is a minimal Chevalley–

Eilenberg differential calculus O∗A over the real ring A = O0
∞ of smooth

real functions on finite order jet manifolds of Y → X. Let ϑ�φ, ϑ ∈ dO0
∞,

φ ∈ O1
∞, denote the interior product. Extended to the DGA O∗

∞, the

interior product � obeys the rule

ϑ�(φ ∧ σ) = (ϑ�φ) ∧ σ + (−1)|φ|φ ∧ (ϑ�σ).
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Restricted to a coordinate chart (2.4.3), O1
∞ is a free O0

∞-module

generated by one-forms dxλ, θi
Λ. Since dO0

∞ = (O1
∞)∗, any derivation of

the real ring O0
∞ takes the coordinate form

ϑ = ϑλ∂λ + ϑi∂i +
∑

0<|Λ|

ϑi
Λ∂Λ

i , (2.4.12)

∂Λ
i (yj

Σ) = ∂Λ
i �dyj

Σ = δj
i δ

Λ
Σ,

ϑ′λ =
∂x′λ

∂xμ
ϑμ, ϑ′i =

∂y′i

∂yj
ϑj +

∂y′i

∂xμ
ϑμ,

ϑ′i
Λ =

∑
|Σ|≤|Λ|

∂y′iΛ
∂yj

Σ

ϑj
Σ +

∂y′iΛ
∂xμ

ϑμ. (2.4.13)

Any derivation ϑ (2.4.12) of the ring O0
∞ yields a derivation (called

the Lie derivative) Lϑ of the DGA O∗
∞ given by the relations

Lϑφ = ϑ�dφ + d(ϑ�φ),

Lϑ(φ ∧ φ′) = Lϑ(φ) ∧ φ′ + φ ∧ Lϑ(φ
′).

Remark 2.4.1: In particular, the total derivatives (2.4.10) are defined

as the local derivations of O0
∞ and the corresponding Lie derivatives

dλφ = Ldλ
φ

of O∗
∞. Moreover, the C∞(X)-ring O0

∞ possesses the canonical connec-

tion

∇ = dxλ ⊗ dλ (2.4.14)

in the sense of Definition 8.2.4. �
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Chapter 3

Connections on fibre bundles

There are several equivalent definitions of a connection on a fibre bundle.

We start with the traditional notion of a connection as a splitting of the

exact sequences (1.2.10) – (1.2.11), but then follow its definition as a

global section of an affine jet bundle. In the case of vector bundles,

there is an equivalent definition (8.6.3) of a linear connection on their

structure modules.

3.1 Connections as tangent-valued forms

A connection on a fibre bundle Y → X is defined traditionally as a linear

bundle monomorphism

Γ : Y ×
X

TX → TY, (3.1.1)

Γ : ẋλ∂λ → ẋλ(∂λ + Γi
λ∂i),

over Y which splits the exact sequence (1.2.10), i.e.,

πT ◦ Γ = Id (Y ×
X

TX).

This is a definition of connections on fibred manifolds (see Remark 3.1.2).

By virtue of Theorem 1.2.2, a connection always exists. The local

functions Γi
λ(y) in (3.1.1) are said to be components of the connection Γ

with respect to the bundle coordinates (xλ, yi) on Y → X.

51
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The image of Y × TX by the connection Γ defines the horizontal

distribution HY ⊂ TY which splits the tangent bundle TY as follows:

TY = HY ⊕
Y

V Y, (3.1.2)

ẋλ∂λ + ẏi∂i = ẋλ(∂λ + Γi
λ∂i) + (ẏi − ẋλΓi

λ)∂i.

Its annihilator is locally generated by the one-forms dyi − Γi
λdxλ.

Given the horizontal splitting (3.1.2), the surjection

Γ : TY →
Y

V Y, ẏi ◦ Γ = ẏi − Γi
λẋ

λ, (3.1.3)

defines a connection on Y → X in an equivalent way.

The linear morphism Γ over Y (3.1.1) yields uniquely the horizontal

tangent-valued one-form

Γ = dxλ ⊗ (∂λ + Γi
λ∂i) (3.1.4)

on Y which projects onto the canonical tangent-valued form θX (1.4.5)

on X. With this form called the connection form, the morphism (3.1.1)

reads

Γ : ∂λ → ∂λ�Γ = ∂λ + Γi
λ∂i.

Given a connection Γ and the corresponding horizontal distribution

(3.1.2), a vector field u on a fibre bundle Y → X is called horizontal if

it lives in HY . A horizontal vector field takes the form

u = uλ(y)(∂λ + Γi
λ∂i). (3.1.5)

In particular, let τ be a vector field on the base X. By means of the

connection form Γ (3.1.4), we obtain the projectable horizontal vector

field

Γτ = τ�Γ = τλ(∂λ + Γi
λ∂i) (3.1.6)

on Y , called the horizontal lift of τ by means of a connection Γ. Con-

versely, any projectable horizontal vector field u on Y is the horizontal
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lift Γτ of its projection τ on X. Moreover, the horizontal distribution

HY is generated by the horizontal lifts Γτ (3.1.6) of vector fields τ on

X. The horizontal lift

T (X) � τ → Γτ ∈ T (Y ) (3.1.7)

is a C∞(X)-linear module morphism.

Given the splitting (3.1.1), the dual splitting of the exact sequence

(1.2.11) is

Γ : V ∗Y → T ∗Y, Γ : dyi → dyi − Γi
λdxλ. (3.1.8)

Hence, a connection Γ on Y → X is represented by the vertical-valued

form

Γ = (dyi − Γi
λdxλ) ⊗ ∂i (3.1.9)

such that the morphism (3.1.8) reads

Γ : dyi → Γ�dyi = dyi − Γi
λdxλ.

We call Γ (3.1.9) the vertical connection form. The corresponding hori-

zontal splitting of the cotangent bundle T ∗Y takes the form

T ∗Y = T ∗X ⊕
Y

Γ(V ∗Y ), (3.1.10)

ẋλdxλ + ẏidyi = (ẋλ + ẏiΓ
i
λ)dxλ + ẏi(dyi − Γi

λdxλ).

Then we have the surjection

Γ = pr1 : T ∗Y → T ∗X, ẋλ ◦ Γ = ẋλ + ẏiΓ
i
λ, (3.1.11)

which also defines a connection on a fibre bundle Y → X.

Remark 3.1.1: Treating a connection as the vertical-valued form

(3.1.9), we come to the following important construction. Given a fibre

bundle Y → X, let f : X ′ → X be a morphism and f ∗Y → X ′ the

pull-back of Y by f . Any connection Γ (3.1.9) on Y → X induces the

pull-back connection

f ∗Γ =

⎛⎝dyi − (Γ ◦ fY )i
λ

∂fλ

∂x′μ
dx′μ

⎞⎠ ⊗ ∂i (3.1.12)
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on f ∗Y → X ′ (see Remark 1.4.4). �

Remark 3.1.2: Let π : Y → X be a fibred manifold. Any connection

Γ on Y → X yields a horizontal lift of a vector field on X onto Y , but

need not defines the similar lift of a path in X into Y . Let

R ⊃ [, ] � t → x(t) ∈ X, R � t → y(t) ∈ Y,

be smooth paths in X and Y , respectively. Then t → y(t) is called a

horizontal lift of x(t) if

π(y(t)) = x(t), ẏ(t) ∈ Hy(t)Y, t ∈ R,

where HY ⊂ TY is the horizontal subbundle associated to the connec-

tion Γ. If, for each path x(t) (t0 ≤ t ≤ t1) and for any y0 ∈ π−1(x(t0)),

there exists a horizontal lift y(t) (t0 ≤ t ≤ t1) such that y(t0) = y0,

then Γ is called the Ehresmann connection. A fibred manifold is a fibre

bundle iff it admits an Ehresmann connection. �

3.2 Connections as jet bundle sections

Throughout the book, we follow the equivalent definition of connections

on a fibre bundle Y → X as sections of the affine jet bundle J1Y → Y .

Let Y → X be a fibre bundle, and J1Y its first order jet manifold.

Given the canonical morphisms (2.1.5) and (2.1.6), we have the corre-

sponding morphisms

λ̂(1) : J1Y ×
X

TX � ∂λ → dλ = ∂λ�λ(1) ∈ J1Y ×
Y

TY, (3.2.1)

θ̂(1) : J1Y ×
Y

V ∗Y � dyi → θi = θ(1)�dyi ∈ J1Y ×
Y

T ∗Y (3.2.2)

(see Remark 1.2.2). These morphisms yield the canonical horizontal

splittings of the pull-back bundles

J1Y ×
Y

TY = λ̂(1)(TX) ⊕
J1Y

V Y, (3.2.3)

ẋλ∂λ + ẏi∂i = ẋλ(∂λ + yi
λ∂i) + (ẏi − ẋλyi

λ)∂i,
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J1Y ×
Y

T ∗Y = T ∗X ⊕
J1Y

θ̂(1)(V
∗Y ), (3.2.4)

ẋλdxλ + ẏidyi = (ẋλ + ẏiy
i
λ)dxλ + ẏi(dyi − yi

λdxλ).

Let Γ be a global section of J1Y → Y . Substituting the tangent-valued

form

λ(1) ◦ Γ = dxλ ⊗ (∂λ + Γi
λ∂i)

in the canonical splitting (3.2.3), we obtain the familiar horizontal split-

ting (3.1.2) of TY by means of a connection Γ on Y → X. Accordingly,

substitution of the tangent-valued form

θ(1) ◦ Γ = (dyi − Γi
λdxλ) ⊗ ∂i

in the canonical splitting (3.2.4) leads to the dual splitting (3.1.10) of

T ∗Y by means of a connection Γ.

Theorem 3.2.1: There is one-to-one correspondence between the con-

nections Γ on a fibre bundle Y → X and the global sections

Γ : Y → J1Y, (xλ, yi, yi
λ) ◦ Γ = (xλ, yi, Γi

λ), (3.2.5)

of the affine jet bundle J1Y → Y . �

There are the following corollaries of this theorem.

• Since J1Y → Y is affine, a connection on a fibre bundle Y → X

exists in accordance with Theorem 1.1.4.

• Connections on a fibre bundle Y → X make up an affine space mod-

elled over the vector space of soldering forms on Y → X, i.e., sections

of the vector bundle (2.1.4).

• Connection components possess the coordinate transformation law

Γ′i
λ =

∂xμ

∂x′λ
(∂μ + Γj

μ∂j)y
′i.

• Every connection Γ (3.2.5) on a fibre bundle Y → X yields the first

order differential operator

DΓ : J1Y →
Y

T ∗X ⊗
Y

V Y, (3.2.6)

DΓ = λ(1) − Γ ◦ π1
0 = (yi

λ − Γi
λ)dxλ ⊗ ∂i,
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on Y called the covariant differential relative to the connection Γ. If

s : X → Y is a section, from (3.2.6) we obtain its covariant differential

∇Γs = DΓ ◦ J1s : X → T ∗X ⊗ V Y, (3.2.7)

∇Γs = (∂λs
i − Γi

λ ◦ s)dxλ ⊗ ∂i,

and the covariant derivative

∇Γ
τ = τ�∇Γ

along a vector field τ on X. A section s is said to be an integral section

of a connection Γ if it belongs to the kernel of the covariant differential

DΓ (3.2.6), i.e.,

∇Γs = 0 or J1s = Γ ◦ s. (3.2.8)

Theorem 3.2.2: For any global section s : X → Y , there always exists

a connection Γ such that s is an integral section of Γ. �

Treating connections as jet bundle sections, one comes to the following

two constructions.

(i) Let Y and Y ′ be fibre bundles over the same base X. Given a

connection Γ on Y → X and a connection Γ′ on Y ′ → X, the bundle

product Y × Y ′ is provided with the product connection

Γ × Γ′ : Y ×
X

Y ′ → J1(Y ×
X

Y ′) = J1Y ×
X

J1Y ′,

Γ × Γ′ = dxλ ⊗
(
∂λ + Γi

λ

∂

∂yi
+ Γ′j

λ

∂

∂y′j

)
. (3.2.9)

(ii) Let iY : Y → Y ′ be a subbundle of a fibre bundle Y ′ → X and Γ′

a connection on Y ′ → X. If there exists a connection Γ on Y → X such

that the diagram

Y ′ Γ′

−→ J1Y

iY � � J1iY

Y
Γ−→J1Y ′
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is commutative, we say that Γ′ is reducible to a connection Γ. The

following conditions are equivalent:

• Γ′ is reducible to Γ;

• T iY (HY ) = HY ′|iY (Y ), where HY ⊂ TY and HY ′ ⊂ TY ′ are the

horizontal subbundles determined by Γ and Γ′, respectively;

• for every vector field τ on X, the vector fields Γτ and Γ′τ are related

as follows:

T iY ◦ Γτ = Γ′τ ◦ iY . (3.2.10)

3.3 Curvature and torsion

Let Γ be a connection on a fibre bundle Y → X. Its curvature is defined

as the Nijenhuis differential

R =
1

2
dΓΓ =

1

2
[Γ, Γ]FN : Y →

2
∧T ∗X ⊗ V Y, (3.3.1)

R =
1

2
Ri

λμdxλ ∧ dxμ ⊗ ∂i, (3.3.2)

Ri
λμ = ∂λΓ

i
μ − ∂μΓ

i
λ + Γj

λ∂jΓ
i
μ − Γj

μ∂jΓ
i
λ.

This is a V Y -valued horizontal two-form on Y . Given vector fields τ ,

τ ′ on X and their horizontal lifts Γτ and Γτ ′ (3.1.6) on Y , we have the

relation

R(τ, τ ′) = −Γ[τ, τ ′] + [Γτ, Γτ ′] = τλτ ′μRi
λμ∂i. (3.3.3)

The curvature (3.3.1) obeys the identities

[R,R]FN = 0, (3.3.4)

dΓR = [Γ, R]FN = 0. (3.3.5)

They result from the identity (1.4.9) and the graded Jacobi identity

(1.4.10), respectively. The identity (3.3.5) is called the second Bianchi

identity. It takes the coordinate form

∑
(λμν)

(∂λR
i
μν + Γj

λ∂jR
i
μν − ∂jΓ

i
λR

j
μν) = 0, (3.3.6)
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where the sum is cyclic over the indices λ, μ and ν.

Given a soldering form σ, one defines the soldered curvature

ρ =
1

2
dσσ =

1

2
[σ, σ]FN : Y →

2
∧T ∗X ⊗ V Y, (3.3.7)

ρ =
1

2
ρi

λμdxλ ∧ dxμ ⊗ ∂i, ρi
λμ = σj

λ∂jσ
i
μ − σj

μ∂jσ
i
λ.

It fulfills the identities

[ρ, ρ]FN = 0, dσρ = [σ, ρ]FN = 0,

similar to (3.3.4) – (3.3.5).

Given a connection Γ and a soldering form σ, the torsion form of Γ

with respect to σ is defined as

T = dΓσ = dσΓ : Y →
2
∧T ∗X ⊗ V Y,

T = (∂λσ
i
μ + Γj

λ∂jσ
i
μ − ∂jΓ

i
λσ

j
μ)dxλ ∧ dxμ ⊗ ∂i. (3.3.8)

It obeys the first Bianchi identity

dΓT = d2
Γσ = [R, σ]FN = −dσR. (3.3.9)

If Γ′ = Γ + σ, we have the relations

T ′ = T + 2ρ, (3.3.10)

R′ = R + ρ + T. (3.3.11)

3.4 Linear and affine connections

A connection Γ on a vector bundle Y → X is called the linear connection

if the section

Γ : Y → J1Y, Γ = dxλ ⊗ (∂λ + Γλ
i
j(x)yj∂i), (3.4.1)

is a linear bundle morphism over X. Note that linear connections are

principal connections, and they always exist (see Theorem 4.4.1).
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The curvature R (3.3.2) of a linear connection Γ (3.4.1) reads

R =
1

2
Rλμ

i
j(x)yjdxλ ∧ dxμ ⊗ ∂i,

Rλμ
i
j = ∂λΓμ

i
j − ∂μΓλ

i
j + Γλ

h
jΓμ

i
h − Γμ

h
jΓλ

i
h. (3.4.2)

Due to the vertical splitting (1.2.8), we have the linear morphism

R : Y � yiei →
1

2
Rλμ

i
jy

jdxλ ∧ dxμ ⊗ ei ∈ O2(X) ⊗ Y. (3.4.3)

There are the following standard constructions of new linear connec-

tions from the old ones.

• Let Y → X be a vector bundle, coordinated by (xλ, yi), and Y ∗ → X

its dual, coordinated by (xλ, yi). Any linear connection Γ (3.4.1) on a

vector bundle Y → X defines the dual linear connection

Γ∗ = dxλ ⊗ (∂λ − Γλ
j
i(x)yj∂

i) (3.4.4)

on Y ∗ → X.

• Let Γ and Γ′ be linear connections on vector bundles Y → X and

Y ′ → X, respectively. The direct sum connection Γ⊕Γ′ on their Whitney

sum Y ⊕ Y ′ is defined as the product connection (3.2.9).

• Let Y coordinated by (xλ, yi) and Y ′ coordinated by (xλ, ya) be

vector bundles over the same base X. Their tensor product Y ⊗ Y ′ is

endowed with the bundle coordinates (xλ, yia). Linear connections Γ and

Γ′ on Y → X and Y ′ → X define the linear tensor product connection

Γ ⊗ Γ′ = dxλ ⊗
[
∂λ + (Γλ

i
jy

ja + Γ′
λ
a
by

ib)
∂

∂yia

]
(3.4.5)

on Y ⊗ Y ′.

An important example of linear connections is a linear connection

Γ = dxλ ⊗ (∂λ + Γλ
μ
νẋ

ν ∂̇μ) (3.4.6)

on the tangent bundle TX of a manifold X. We agree to call it a world

connection on a manifold X. The dual world connection (3.4.4) on the

cotangent bundle T ∗X is

Γ∗ = dxλ ⊗ (∂λ − Γλ
μ
νẋμ∂̇

ν). (3.4.7)
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Then, using the construction of the tensor product connection (3.4.5),

one can introduce the corresponding linear world connection on an ar-

bitrary tensor bundle T (1.2.5).

Remark 3.4.1: It should be emphasized that the expressions (3.4.6)

and (3.4.7) for a world connection differ in a minus sign from those

usually used in the physical literature. �

The curvature of a world connection is defined as the curvature R

(3.4.2) of the connection Γ (3.4.6) on the tangent bundle TX. It reads

R =
1

2
Rλμ

α
βẋ

βdxλ ∧ dxμ ⊗ ∂̇α, (3.4.8)

Rλμ
α

β = ∂λΓμ
α

β − ∂μΓλ
α

β + Γλ
γ
βΓμ

α
γ − Γμ

γ
βΓλ

α
γ.

By the torsion of a world connection is meant the torsion (3.3.8) of

the connection Γ (3.4.6) on the tangent bundle TX with respect to the

canonical soldering form θJ (1.4.7):

T =
1

2
Tμ

ν
λdxλ ∧ dxμ ⊗ ∂̇ν, Tμ

ν
λ = Γμ

ν
λ − Γλ

ν
μ. (3.4.9)

A world connection is said to be symmetric if its torsion (3.4.9) vanishes,

i.e., Γμ
ν
λ = Γλ

ν
μ.

Remark 3.4.2: For any vector field τ on a manifold X, there exists a

connection Γ on the tangent bundle TX → X such that τ is an integral

section of Γ, but this connection is not necessarily linear. If a vector field

τ is non-vanishing at a point x ∈ X, then there exists a local symmetric

world connection Γ (3.4.6) around x for which τ is an integral section

∂ντ
α = Γν

α
βτ

β. (3.4.10)

Then the canonical lift τ̃ (1.3.4) of τ onto TX can be seen locally as the

horizontal lift Γτ (3.1.6) of τ by means of this connection. �

Remark 3.4.3: Every manifold X can be provided with a non-

degenerate fibre metric

g ∈
2
∨O1(X), g = gλμdxλ ⊗ dxμ,
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in the tangent bundle TX, and with the corresponding metric

g ∈
2
∨T 1(X), g = gλμ∂λ ⊗ ∂μ,

in the cotangent bundle T ∗X. We call it a world metric on X. For

any world metric g, there exists a unique symmetric world connection Γ

(3.4.6) with the components

Γλ
ν
μ = {λ

ν
μ} = −

1

2
gνρ(∂λgρμ + ∂μgρλ − ∂ρgλμ), (3.4.11)

called the Christoffel symbols, such that g is an integral section of Γ, i.e.

∂λ gαβ = gαγ{λ
β

γ} + gβγ{λ
α

γ}.

It is called the Levi–Civita connection associated to g. �

Let Y → X be an affine bundle modelled over a vector bundle Y → X.

A connection Γ on Y → X is called an affine connection if the section

Γ : Y → J1Y (3.2.5) is an affine bundle morphism over X. Associated

to principal connections, affine connections always exist (see Theorem

4.4.1).

For any affine connection Γ : Y → J1Y , the corresponding linear

derivative Γ : Y → J1Y (1.2.14) defines a unique linear connection on

the vector bundle Y → X. Since every vector bundle is an affine bundle,

any linear connection on a vector bundle also is an affine connection.

With respect to affine bundle coordinates (xλ, yi) on Y , an affine

connection Γ on Y → X reads

Γi
λ = Γλ

i
j(x)yj + σi

λ(x). (3.4.12)

The coordinate expression of the associated linear connection is

Γ
i
λ = Γλ

i
j(x)yj, (3.4.13)

where (xλ, yi) are the associated linear bundle coordinates on Y .

Affine connections on an affine bundle Y → X constitute an affine

space modelled over the soldering forms on Y → X. In view of the
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vertical splitting (1.2.15), these soldering forms can be seen as global

sections of the vector bundle

T ∗X ⊗
X

Y → X.

If Y → X is a vector bundle, both the affine connection Γ (3.4.12) and

the associated linear connection Γ are connections on the same vector

bundle Y → X, and their difference is a basic soldering form on Y .

Thus, every affine connection on a vector bundle Y → X is the sum of

a linear connection and a basic soldering form on Y → X.

Given an affine connection Γ on a vector bundle Y → X, let R and R

be the curvatures of a connection Γ and the associated linear connection

Γ, respectively. It is readily observed that R = R + T , where the V Y -

valued two-form

T = dΓσ = dσΓ : X →
2
∧T ∗X ⊗

X
V Y, (3.4.14)

T =
1

2
T i

λμdxλ ∧ dxμ ⊗ ∂i,

T i
λμ = ∂λσ

i
μ − ∂μσ

i
λ + σh

λΓμ
i
h − σh

μΓλ
i
h,

is the torsion (3.3.8) of Γ with respect to the basic soldering form σ.

In particular, let us consider the tangent bundle TX of a manifold

X. We have the canonical soldering form σ = θJ = θX (1.4.7) on TX.

Given an arbitrary world connection Γ (3.4.6) on TX, the corresponding

affine connection

A = Γ + θX , Aμ
λ = Γλ

μ
νẋ

ν + δμ
λ , (3.4.15)

on TX is called the Cartan connection. Since the soldered curvature ρ

(3.3.7) of θJ equals zero, the torsion (3.3.10) of the Cartan connection

coincides with the torsion T (3.4.9) of the world connection Γ, while its

curvature (3.3.11) is the sum R + T of the curvature and the torsion of

Γ.
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3.5 Flat connections

By a flat or curvature-free connection is meant a connection which

satisfies the following equivalent conditions.

Theorem 3.5.1: Let Γ be a connection on a fibre bundle Y → X. The

following assertions are equivalent.

(i) The curvature R of a connection Γ vanishes identically, i.e., R ≡ 0.

(ii) The horizontal lift (3.1.7) of vector fields on X onto Y is an R-

linear Lie algebra morphism (in accordance with the formula (3.3.3)).

(iii) The horizontal distribution is involutive.

(iv) There exists a local integral section for Γ through any point y ∈

Y . �

By virtue of Theorem 1.3.3 and item (iii) of Theorem 3.5.1, a flat

connection Γ on a fibre bundle Y → X yields a horizontal foliation

on Y , transversal to the fibration Y → X. The leaf of this foliation

through a point y ∈ Y is defined locally by an integral section sy for the

connection Γ through y. Conversely, let a fibre bundle Y → X admit

a transversal foliation such that, for each point y ∈ Y , the leaf of this

foliation through y is locally defined by a section sy of Y → X through

y. Then the map

Γ : Y → J1Y, Γ(y) = j1
xsy, π(y) = x,

introduces a flat connection on Y → X. Thus, there is one-to-one cor-

respondence between the flat connections and the transversal foliations

of a fibre bundle Y → X.

Given a transversal foliation on a fibre bundle Y → X, there exists

the associated atlas of bundle coordinates (xλ, yi) of Y such that every

leaf of this foliation is locally generated by the equations yi =const.,

and the transition functions yi → y′i(yj) are independent of the base

coordinates xλ. This is called the atlas of constant local trivializations.

Two such atlases are said to be equivalent if their union also is an atlas of
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constant local trivializations. They are associated to the same horizontal

foliation. Thus, we come to the following assertion.

Theorem 3.5.2: There is one-to-one correspondence between the flat

connections Γ on a fibre bundle Y → X and the equivalence classes of

atlases of constant local trivializations of Y such that

Γ = dxλ ⊗ ∂λ

relative to these atlases. �

In particular, if Y → X is a trivial bundle, one associates to each

its trivialization a flat connection represented by the global zero section

0̂(Y ) of J1Y → Y with respect to this trivialization (see Remark 2.1.2).

3.6 Connections on composite bundles

Let Y → Σ → X be a composite bundle (1.1.10). Let us consider the

jet manifolds J1Σ, J1
ΣY , and J1Y of the fibre bundles

Σ → X, Y → Σ, Y → X,

respectively. They are provided with the adapted coordinates

(xλ, σm, σm
λ ), (xλ, σm, yi, ỹi

λ, y
i
m), (xλ, σm, yi, σm

λ , yi
λ).

One can show the following.

Theorem 3.6.1: There is the canonical map

� : J1Σ×
Σ

J1
ΣY −→

Y
J1Y, yi

λ ◦ � = yi
mσm

λ + ỹi
λ. (3.6.1)

�

Using the canonical map (3.6.1), we can get the relations between

connections on the fibre bundles Y → X, Y → Σ and Σ → X. These

connections are given by the corresponding connection forms

γ = dxλ ⊗ (∂λ + γm
λ ∂m + γi

λ∂i), (3.6.2)

AΣ = dxλ ⊗ (∂λ + Ai
λ∂i) + dσm ⊗ (∂m + Ai

m∂i), (3.6.3)

Γ = dxλ ⊗ (∂λ + Γm
λ ∂m). (3.6.4)
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A connection γ (3.6.2) on the fibre bundle Y → X is called projectable

onto a connection Γ (3.6.4) on the fibre bundle Σ → X if, for any vector

field τ on X, its horizontal lift γτ on Y by means of the connection γ is a

projectable vector field over the horizontal lift Γτ of τ on Σ by means of

the connection Γ. This property holds iff γm
λ = Γm

λ , i.e., components γm
λ

of the connection γ (3.6.2) must be independent of the fibre coordinates

yi.

A connection AΣ (3.6.3) on the fibre bundle Y → Σ and a connection

Γ (3.6.4) on the fibre bundle Σ → X define a connection on the composite

bundle Y → X as the composition of bundle morphisms

γ : Y ×
X

TX
(Id ,Γ)
−→ Y ×

Σ
TΣ

AΣ−→TY.

It is called the composite connection. This composite connection reads

γ = dxλ ⊗ (∂λ + Γm
λ ∂m + (Ai

λ + Ai
mΓm

λ )∂i). (3.6.5)

It is projectable onto Γ. Moreover, this is a unique connection such that

the horizontal lift γτ on Y of a vector field τ on X by means of the

composite connection γ (3.6.5) coincides with the composition AΣ(Γτ)

of horizontal lifts of τ on Σ by means of the connection Γ and then on

Y by means of the connection AΣ. For the sake of brevity, let us write

γ = AΣ ◦ Γ.

Given a composite bundle Y (1.1.10), there are the exact sequences

of vector bundles over Y :

0 → VΣY −→V Y → Y ×
Σ

V Σ → 0, (3.6.6)

0 → Y ×
Σ

V ∗Σ −→V ∗Y → V ∗
ΣY → 0, (3.6.7)

where VΣY and V ∗
ΣY are the vertical tangent and the vertical cotan-

gent bundles of Y → Σ which are coordinated by (xλ, σm, yi, ẏi) and

(xλ, σm, yi, ẏi), respectively. Let us consider a splitting of these exact

sequences

B : V Y � ẏi∂i + σ̇m∂m → (ẏi∂i + σ̇m∂m)�B = (3.6.8)
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(ẏi − σ̇mBi
m)∂i ∈ VΣY,

B : V ∗
ΣY � dyi → B�dyi = dyi − Bi

mdσm ∈ V ∗Y, (3.6.9)

given by the form

B = (dyi − Bi
mdσm) ⊗ ∂i. (3.6.10)

Then the connection γ (3.6.2) on Y → X and the splitting B (3.6.8)

define the connection

AΣ = B ◦ γ : TY → V Y → VΣY, (3.6.11)

AΣ = dxλ ⊗ (∂λ + (γi
λ − Bi

mγm
λ )∂i) + dσm ⊗ (∂m + Bi

m∂i),

on the fibre bundle Y → Σ.

Conversely, every connection AΣ (3.6.3) on the fibre bundle Y → Σ

yields the splitting

AΣ : TY ⊃ V Y � ẏi∂i + σ̇m∂m → (ẏi − Ai
mσ̇m)∂i (3.6.12)

of the exact sequence (3.6.6). Using this splitting, one can construct a

first order differential operator

D̃ : J1Y → T ∗X ⊗
Y

VΣY, (3.6.13)

D̃ = dxλ ⊗ (yi
λ − Ai

λ − Ai
mσm

λ )∂i,

on the composite bundle Y → X. It is called the vertical covariant

differential. This operator also can be defined as the composition

D̃ = pr1 ◦ Dγ : J1Y → T ∗X ⊗
Y

V Y → T ∗X ⊗
Y

V YΣ,

where Dγ is the covariant differential (3.2.6) relative to some composite

connection AΣ ◦ Γ (3.6.5), but D̃ does not depend on the choice of a

connection Γ on the fibre bundle Σ → X.

The vertical covariant differential (3.6.13) possesses the following im-

portant property. Let h be a section of the fibre bundle Σ → X, and

let Y h → X be the restriction (1.1.13) of the fibre bundle Y → Σ to

h(X) ⊂ Σ. This is a subbundle

ih : Y h → Y
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of the fibre bundle Y → X. Every connection AΣ (3.6.3) induces the

pull-back connection

Ah = i∗hAΣ = dxλ ⊗ [∂λ + ((Ai
m ◦ h)∂λh

m + (A ◦ h)i
λ)∂i] (3.6.14)

on Y h → X. Then the restriction of D̃ (3.6.13) to

J1ih(J
1Y h) ⊂ J1Y

coincides with the familiar covariant differential DAh (3.2.6) on Y h rela-

tive to the pull-back connection Ah (3.6.14).

Remark 3.6.1: Let Γ : Y → J1Y be a connection on a fibre bundle

Y → X. In accordance with the canonical isomorphism V J1Y = J1V Y

(2.1.9), the vertical tangent map

V Γ : V Y → V J1Y

to Γ defines the connection

V Γ : V Y → J1V Y,

V Γ = dxλ ⊗ (∂λ + Γi
λ∂i + ∂jΓ

i
λẏ

j∂̇i), (3.6.15)

on the composite vertical tangent bundle

V Y → Y → X.

This is called the vertical connection to Γ. Of course, the connection

V Γ projects onto Γ. Moreover, V Γ is linear over Γ. Then the dual

connection of V Γ on the composite vertical cotangent bundle

V ∗Y → Y → X

reads

V ∗Γ : V ∗Y → J1V ∗Y,

V ∗Γ = dxλ ⊗ (∂λ + Γi
λ∂i − ∂jΓ

i
λẏi∂̇

j). (3.6.16)
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It is called the covertical connection to Γ. If Y → X is an affine bundle,

the connection V Γ (3.6.15) can be seen as the composite connection

generated by the connection Γ on Y → X and the linear connection

Γ̃ = dxλ ⊗ (∂λ + ∂jΓ
i
λẏ

j∂̇i) + dyi ⊗ ∂i (3.6.17)

on the vertical tangent bundle V Y → Y . �



Chapter 4

Geometry of principal bundles

Classical gauge theory is adequately formulated as Lagrangian field the-

ory on principal and associated bundles where gauge potentials are iden-

tified with principal connections. The main ingredient in this formula-

tion is the bundle of principal connections C = J1P/G whose sections

are principal connections on a principal bundle P with a structure group

G.

4.1 Geometry of Lie groups

Let G be a topological group which is not reduced to the unit 1. Let V

be a topological space. By a continuous action of G on V on the left is

meant a continuous map

ζ : G × V → V, ζ(g′g, v) = ζ(g′, ζ(g, v)), (4.1.1)

If there is no danger of confusion, we denote ζ(g, v) = gv. One says that

a group G acts on V on the right if the map (4.1.1) obeys the relations

ζ(g′g, v) = ζ(g, ζ(g′, v)).

In this case, we agree to write ζ(g, v) = vg.

Remark 4.1.1: Strictly speaking, by an action of a group G on V

is meant a class of morphisms ζ (4.1.1) which differ from each other in

69
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inner automorphisms of G, that is,

ζ ′(g, v) = ζ(g′−1gg′, v)

for some element g′ ∈ G. �

An action of G on V is called:

• effective if there is no g �= 1 such that ζ(g, v) = v for all v ∈ V ,

• free if, for any two elements v, v ∈ V , there exists an element g ∈ G

such that ζ(g, v) = v′.

• transitive if there is no element v ∈ V such that ζ(g, v) = v for all

g ∈ G.

Unless otherwise stated, an action of a group is assumed to be effective.

If an action ζ (4.1.1) of G on V is transitive, then V is called the homoge-

neous space, homeomorphic to the quotient V = G/H of G with respect

to some subgroup H ⊂ G. If an action ζ is both free and transitive,

then V is homeomorphic to the group space of G. For instance, this is

the case of action of G on itself by left (ζ = LG) and right (ζ = RG)

multiplications.

Let G be a connected real Lie group of finite dimension dimG > 0.

A vector field ξ on G is called left-invariant if

ξ(g) = TLg(ξ(1)), g ∈ G,

where TLg denotes the tangent morphism to the map

Lg : G → gG.

Accordingly, right-invariant vector fields ξ on G obey the condition

ξ(g) = TRg(ξ(1)),

where TRg is the tangent morphism to the map

Tg : G → gG.

Let gl (resp. gr) denote the Lie algebra of left-invariant (resp. right-

invariant) vector fields on G. They are called the left and right Lie
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algebras of G, respectively. Every left-invariant vector field ξl(g) (resp.

a right-invariant vector field ξr(g)) can be associated to the element

v = ξl(1) (resp. v = ξr(1)) of the tangent space T1G at the unit 1

of G. Accordingly, this tangent space is provided both with left and

right Lie algebra structures. Given v ∈ T1G, let vl(g) and vr(g) be

the corresponding left-invariant and right-invariant vector fields on G,

respectively. There is the relation

vl(g) = (TLg ◦ TR−1
g )(vr(g)).

Let {εm = εm(1)} (resp. {εm = εm(1)}) denote the basis for the left

(resp. right) Lie algebra, and let ck
mn be the right structure constants:

[εm, εn] = ck
mnεk.

The map g → g−1 yields an isomorphism

gl � εm → εm = −εm ∈ gr

of left and right Lie algebras.

The tangent bundle

πG : TG → G (4.1.2)

of a Lie group G is trivial because of the isomorphisms

�l : TG � q → (g = πG(q), TL−1
g (q)) ∈ G × gl,

�r : TG � q → (g = πG(q), TR−1
g (q)) ∈ G × gr.

Let ζ (4.1.1) be a smooth action of a Lie group G on a smooth manifold

V . Let us consider the tangent morphism

Tζ : TG × TV → TV (4.1.3)

to this action. Given an element g ∈ G, the restriction of Tζ (4.1.3) to

(g, 0) × TV is the tangent morphism Tζg to the map

ζg : g × V → V.
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Therefore, the restriction

TζG : 0̂(G) × TV → TV (4.1.4)

of the tangent morphism Tζ (4.1.3) to 0̂(G)×TV (where 0̂ is the canon-

ical zero section of TG → G) is called the tangent prolongation of a

smooth action of G on V .

In particular, the above mentioned morphisms

TLg = TLG|(g,0)×TG, TRg = TRG|(g,0)×TG

are of this type. For instance, the morphism TLG (resp. TRG) (4.1.4)

defines the adjoint representation g → Adg (resp. g → Adg−1) of a group

G in its right Lie algebra gr (resp. left Lie algebra gl) and the identity

representation in its left (resp. right) one.

Restricting Tζ (4.1.3) to T1G× 0̂(V ), one obtains a homomorphism of

the right (resp. left) Lie algebra of G to the Lie algebra T (V ) of vector

field on V if ζ is a left (resp. right) action. We call this homomorphism

a representation of the Lie algebra of G in V . For instance, a vector

field on a manifold V associated to a local one-parameter group G of

diffeomorphisms of V (see Section 1.3) is exactly an image of such a

homomorphism of the one-dimensional Lie algebra of G to T (V ).

In particular, the adjoint representation Adg of a Lie group G in its

right Lie algebra gr yields the corresponding adjoint representation

ε′ : ε → adε′(ε) = [ε′, ε], adεm
(εn) = ck

mnεk, (4.1.5)

of the right Lie algebra gr in itself. Accordingly, the adjoint representa-

tion of the left Lie algebra gl in itself reads

adεm
(εn) = −ck

mnεk,

where ck
mn are the right structure constants (4.1.5).

Remark 4.1.2: Let G be a matrix group, i.e., a subgroup of the

algebra M(V ) of endomorphisms of some finite-dimensional vector space
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V . Then its Lie algebras are Lie subalgebras of M(V ). In this case, the

adjoint representation Adg of G reads

Adg(e) = geg−1, e ∈ g. (4.1.6)

�

An exterior form φ on a Lie group G is said to be left-invariant (resp.

right-invariant) if φ(1) = L∗
g(φ(g)) (resp. φ(1) = R∗

g(φ(g))). The ex-

terior differential of a left-invariant (resp right-invariant) form is left-

invariant (resp. right-invariant). In particular, the left-invariant one-

forms satisfy the Maurer–Cartan equation

dφ(ε, ε′) = −
1

2
φ([ε, ε′]), ε, ε′ ∈ gl. (4.1.7)

There is the canonical gl-valued left-invariant one-form

θl : T1G � ε → ε ∈ gl (4.1.8)

on a Lie group G. The components θm
l of its decomposition θl = θm

l εm

with respect to the basis for the left Lie algebra gl make up the basis for

the space of left-invariant exterior one-forms on G:

εm�θ
n
l = δn

m.

The Maurer–Cartan equation (4.1.7), written with respect to this basis,

reads

dθm
l =

1

2
cm
nkθ

n
l ∧ θk

l .

4.2 Bundles with structure groups

Principal bundles are particular bundles with a structure group. Since

equivalence classes of these bundles are topological invariants (see Theo-

rem 4.2.5), we consider continuous bundles with a structure topological

group.
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Let G be a topological group. Let π : Y → X be a locally trivial

continuous bundle (see Remark 1.1.1) whose typical fibre V is provided

with a certain left action (4.1.1) of a topological group G (see Remark

4.1.1). Moreover, let Y admit an atlas

Ψ = {(Uα, ψα), �αβ}, ψα = �αβψβ, (4.2.1)

whose transition functions �αβ (1.1.3) factorize as

�αβ : Uα ∩ Uβ × V −→Uα ∩ Uβ × (G × V )
Id×ζ
−→Uα ∩ Uβ × V (4.2.2)

through local continuous G-valued functions

�G
αβ : Uα ∩ Uβ → G (4.2.3)

on X. This means that transition morphisms �αβ(x) (1.1.6) are elements

of G acting on V . Transition functions (4.2.2) are called G-valued.

Provided with an atlas (4.2.1) with G-valued transition functions, a

locally trivial continuous bundle Y is called the bundle with a structure

group G or, in brief, a G-bundle. Two G-bundles (Y, Ψ) and (Y, Ψ′) are

called equivalent if their atlases Ψ and Ψ′ are equivalent. Atlases Ψ and

Ψ′ with G-valued transition functions are said to be equivalent iff, given

a common cover {Ui} of X for the union of these atlases, there exists a

continuous G-valued function gi on each Ui such that

ψ′
i(x) = gi(x)ψi(x), x ∈ Ui. (4.2.4)

Let h(X, G, V ) denote the set of equivalence classes of continuous

bundles over X with a structure group G and a typical fibre V . In order

to characterize this set, let us consider the presheaf G0
{U} of continuous

G-valued functions on a topological space X. Let G0
X be the sheaf of

germs of these functions generated by the canonical presheaf G0
{U}, and

let H1(X; G0
X) be the first cohomology of X with coefficients in G0

X

(see Remark 8.5.3). The group functions �G
αβ (4.2.3) obey the cocycle

condition

�G
αβ�

G
βγ = �G

αγ
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on overlaps Uα ∩ Uβ ∩ Uγ (cf. (8.5.12)) and, consequently, they form a

one-cocycle {�G
αβ} of the presheaf G0

{U}. This cocycle is a representative

of some element of the first cohomology H1(X; G0
X) of X with coefficients

in the sheaf G0
X .

Thus, any atlas of a G-bundle over X defines an element of the coho-

mology set H1(X; G0
X). Moreover, it follows at once from the condition

(4.2.4) that equivalent atlases define the same element of H1(X; G0
X).

Thus, there is an injection

h(X, G, V ) → H1(X; G0
X) (4.2.5)

of the set of equivalence classes of G-bundles over X with a typical fibre

V to the first cohomology H1(X; G0
X) of X with coefficients in the sheaf

G0
X . Moreover, the injection (4.2.5) is a bijection as follows.

Theorem 4.2.1: There is one-to-one correspondence between the equiv-

alence classes of G-bundles over X with a typical fibre V and the ele-

ments of the cohomology set H1(X; G0
X). �

The bijection (4.2.5) holds for G-bundles with any typical fibre V .

Two G-bundles (Y, Ψ) and (Y ′, Ψ′) over X with different typical fibres

are called associated if the cocycles of transition functions of their atlases

Ψ and Ψ′ are representatives of the same element of the cohomology set

H1(X; G0
X). Then Theorem 4.2.1 can be reformulated as follows.

Theorem 4.2.2: There is one-to-one correspondence between the classes

of associated G-bundles over X and the elements of the cohomology set

H1(X; G0
X). �

Let f : X ′ → X be a continuous map. Every continuous G-bundle

Y → X yields the pull-back bundle f ∗Y → X ′ (1.1.8) with the same

structure group G. Therefore, f induces the map

[f ] : H1(X; G0
X) → H1(X ′; G0

X ′).

Theorem 4.2.3: Given a continuous G-bundle Y over a paracompact

base X, let f1 and f2 be two continuous maps of X ′ to X. If these
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maps are homotopic, the pull-back G-bundles f ∗
1 Y and f ∗

2 Y over X ′ are

equivalent. �

Let us return to smooth fibre bundles. Let G, dim G > 0, be a real

Lie group which acts on a smooth manifold V on the left. A smooth

fibre bundle π : Y → X is called a bundle with a structure group G if

it is a continuous G-bundle possessing a smooth atlas Ψ (4.2.1) whose

transition functions factorize as those (4.2.1) through smooth G-valued

functions (4.2.3).

Example 4.2.1: Any vector (resp. affine) bundle of fibre dimension

dim V = m is a bundle with a structure group which is the general linear

group GL(m, R) (resp. the general affine group GA(m, R)). �

Let G∞
X be the sheaf of germs of smooth G-valued functions on X

and H1(X; G∞
X ) the first cohomology of a manifold X with coefficients

in the sheaf G∞
X . The following theorem is analogous to Theorem 4.2.2.

Theorem 4.2.4: There is one-to-one correspondence between the classes

of associated smooth G-bundles over X and the elements of the coho-

mology set H1(X; G∞
X ). �

Since a smooth manifold is paracompact, one can show the following.

Theorem 4.2.5: There is a bijection

H1(X; G∞
X ) = H1(X; G0

X), (4.2.6)

where a Lie group G is treated as a topological group. �

The bijection (4.2.6) enables one to classify smooth G-bundles as the

continuous ones by means of topological invariants.

4.3 Principal bundles

We restrict our consideration to smooth bundles with a structure Lie

group of non-zero dimension.
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Given a real Lie group G, let

πP : P → X (4.3.1)

be a G-bundle whose typical fibre is the group space of G, which a group

G acts on by left multiplications. It is called a principal bundle with a

structure group G. Equivalently, a principal G-bundle is defined as a

fibre bundle P (4.3.1) which admits an action of G on P on the right by

a fibrewise morphism

RGP : G×
X

P −→
X

P, (4.3.2)

RgP : p → pg, πP (p) = πP (pg), p ∈ P,

which is free and transitive on each fibre of P . As a consequence, the

quotient of P with respect to the action (4.3.2) of G is diffeomorphic to

a base X, i.e., P/G = X.

Remark 4.3.1: The definition of a continuous principal bundle is a

repetition of that of a smooth one, but all morphisms are continuous. �

A principal G-bundle P is equipped with a bundle atlas

ΨP = {(Uα, ψP
α ), �αβ} (4.3.3)

whose trivialization morphisms

ψP
α : π−1

P (Uα) → Uα × G

obey the condition

ψP
α (pg) = gψP

α (p), g ∈ G.

Due to this property, every trivialization morphism ψP
α determines a

unique local section zα : Uα → P such that

(ψP
α ◦ zα)(x) = 1, x ∈ Uα.

The transformation law for zα reads

zβ(x) = zα(x)�αβ(x), x ∈ Uα ∩ Uβ. (4.3.4)
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Conversely, the family

{(Uα, zα), �αβ} (4.3.5)

of local sections of P which obey the transformation law (4.3.4) uniquely

determines a bundle atlas ΨP of a principal bundle P .

Theorem 4.3.1: A principal bundle admits a global section iff it is

trivial. �

Example 4.3.2: Let H be a closed subgroup of a real Lie group G.

Then H is a Lie group. Let G/H be the quotient of G with respect to

an action of H on G by right multiplications. Then

πGH : G → G/H (4.3.6)

is a principal H-bundle. If H is a maximal compact subgroup of G, then

G/H is diffeomorphic to R
m and, by virtue of Theorem 1.1.7, G → G/H

is a trivial bundle, i.e., G is diffeomorphic to the product R
m × H. �

Remark 4.3.3: The pull-back f ∗P (1.1.8) of a principal bundle also

is a principal bundle with the same structure group. �

Remark 4.3.4: Let P → X and P ′ → X ′ be principal G- and G′-

bundles, respectively. A bundle morphism Φ : P → P ′ is a morphism of

principal bundles if there exists a Lie group homomorphism γ : G → G′

such that

Φ(pg) = Φ(p)γ(g).

In particular, equivalent principal bundles are isomorphic. �

Any class of associated smooth bundles on X with a structure Lie

group G contains a principal bundle. In other words, any smooth bundle

with a structure Lie group G is associated with some principal bundle.

Let us consider the tangent morphism

TRGP : (G × gl)×
X

TP −→
X

TP (4.3.7)
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to the right action RGP (4.3.2) of G on P . Its restriction to T1G×
X

TP

provides a homomorphism

gl � ε → ξε ∈ T (P ) (4.3.8)

of the left Lie algebra gl of G to the Lie algebra T (P ) of vector fields

on P . Vector fields ξε (4.3.8) are obviously vertical. They are called

fundamental vector fields. Given a basis {εr} for gl, the corresponding

fundamental vector fields ξr = ξεr
form a family of m = dim gl nowhere

vanishing and linearly independent sections of the vertical tangent bun-

dle V P of P → X. Consequently, this bundle is trivial

V P = P × gl (4.3.9)

by virtue of Theorem 1.2.1.

Restricting the tangent morphism TRGP (4.3.7) to

TRGP : 0̂(G)×
X

TP −→
X

TP, (4.3.10)

we obtain the tangent prolongation of the structure group action RGP

(4.3.2). If there is no danger of confusion, it is simply called the action

of G on TP . Since the action of G (4.3.2) on P is fibrewise, its action

(4.3.10) is restricted to the vertical tangent bundle V P of P .

Taking the quotient of the tangent bundle TP → P and the vertical

tangent bundle V P of P by G (4.3.10), we obtain the vector bundles

TGP = TP/G, VGP = V P/G (4.3.11)

over X. Sections of TGP → X are G-invariant vector fields on P . Ac-

cordingly, sections of VGP → X are G-invariant vertical vector fields on

P . Hence, a typical fibre of VGP → X is the right Lie algebra gr of G

subject to the adjoint representation of a structure group G. Therefore,

VGP (4.3.11) is called the Lie algebra bundle.

Given a bundle atlas ΨP (4.3.3) of P , there is the corresponding atlas

Ψ = {(Uα, ψα), Ad�αβ
} (4.3.12)
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of a Lie algebra fibre bundle VGP , which is provided with bundle coor-

dinates (Uα; xμ, χm) with respect to the fibre frames

{em = ψ−1
α (x)(εm)},

where {εm} is a basis for the Lie algebra gr. These coordinates obey the

transformation rule

�(χm)εm = χmAd�−1(εm). (4.3.13)

A glance at this transformation rule shows that VGP is a bundle with a

structure group G. Moreover, it is associated with a principal G-bundle

P (see Example 4.7.2).

Accordingly, the vector bundle TGP (4.3.11) is endowed with bundle

coordinates (xμ, ẋμ, χm) with respect to the fibre frames {∂μ, em}. Their

transformation rule is

�(χm)εm = χmAd�−1(εm) + ẋμRm
μ εm. (4.3.14)

If G is a matrix group (see Remark 4.1.2), this transformation rule reads

�(χm)εm = χm�−1εm� − ẋμ∂μ(�
−1)�. (4.3.15)

Since the second term in the right-hand sides of expressions (4.3.14) –

(4.3.15) depend on derivatives of a G-valued function � on X, the vector

bundle TGP (4.3.11) fails to be a G-bundle.

The Lie bracket of G-invariant vector fields on P goes to the quotient

by G and defines the Lie bracket of sections of the vector bundle TGP →

X. This bracket reads

ξ = ξλ∂λ + ξpep, η = ημ∂μ + ηqeq, (4.3.16)

[ξ, η] = (ξμ∂μη
λ − ημ∂μξ

λ)∂λ + (4.3.17)

(ξλ∂λη
r − ηλ∂λξ

r + cr
pqξ

pηq)er.

Putting ξλ = 0 and ημ = 0 in the formulas (4.3.16) – (4.3.17), we obtain

the Lie bracket

[ξ, η] = cr
pqξ

pηqer (4.3.18)
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of sections of the Lie algebra bundle VGP . A glance at the expression

(4.3.18) shows that sections of VGP form a finite-dimensional Lie C∞(X)-

algebra, called the gauge algebra. Therefore, VGP also is called the gauge

algebra bundle.

4.4 Principal connections

Principal connections on a principal bundle P (4.3.1) are connections

on P which are equivariant with respect to the right action (4.3.2) of

a structure group G on P . In order to describe them, we follow the

definition of connections on a fibre bundle Y → X as global sections of

the affine jet bundle J1Y → X (Theorem 3.2.1).

Let J1P be the first order jet manifold of a principal G-bundle P → X

(4.3.1). Then connections on a principal bundle P → X are global

sections

A : P → J1P (4.4.1)

of the affine jet bundle J1P → P modelled over the vector bundle

T ∗X ⊗
P

V P = (T ∗X ⊗
P

gl).

In order to define principal connections on P → X, let us consider the

jet prolongation

J1RG : J1(X × G)×
X

J1P → J1P

of the morphism RGP (4.3.2). Restricting this morphism to

J1RG : 0̂(G)×
X

J1P → J1P,

we obtain the jet prolongation of the structure group action RGP (4.3.2)

called, simply, the action of G on J1P . It reads

G � g : j1
xp → (j1

xp)g = j1
x(pg). (4.4.2)
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Taking the quotient of the affine jet bundle J1P by G (4.4.2), we obtain

the affine bundle

C = J1P/G → X (4.4.3)

modelled over the vector bundle

C = T ∗X ⊗
X

VGP → X.

Hence, there is the vertical splitting

V C = C ⊗
X

C

of the vertical tangent bundle V C of C → X.

Remark 4.4.1: A glance at the expression (4.4.2) shows that the

fibre bundle J1P → C is a principal bundle with the structure group G.

It is canonically isomorphic to the pull-back

J1P = PC = C ×
X

P → C. (4.4.4)

�

Taking the quotient with respect to the action of a structure group

G, one can reduce the canonical imbedding (2.1.5) (where Y = P ) to

the bundle monomorphism

λC : C −→
X

T ∗X ⊗
X

TGP,

λC : dxμ ⊗ (∂μ + χm
μ em). (4.4.5)

It follows that, given atlases ΨP (4.3.3) of P and Ψ (4.3.12) of TGP , the

bundle of principal connections C is provided with bundle coordinates

(xλ, am
μ ) possessing the transformation rule

�(am
μ )εm = (am

ν Ad�−1(εm) + Rm
ν εm)

∂xν

∂x′μ
. (4.4.6)

If G is a matrix group, this transformation rule reads

�(am
μ )εm = (am

ν �−1(εm)� − ∂μ(�
−1)�)

∂xν

∂x′μ
. (4.4.7)
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A glance at this expression shows that the bundle of principal connec-

tions C as like as the vector bundle TGP (4.3.11) fails to be a bundle

with a structure group G.

As was mentioned above, a connection A (4.4.1) on a principal bundle

P → X is called a principal connection if it is equivariant under the

action (4.4.2) of a structure group G, i.e.,

A(pg) = A(p)g g ∈ G. (4.4.8)

There is obvious one-to-one correspondence between the principal con-

nections on a principal G-bundle P and global sections

A : X → C (4.4.9)

of the bundle C → X (4.4.3), called the bundle of principal connections.

Theorem 4.4.1: Since the bundle of principal connections C → X is

affine, principal connections on a principal bundle always exist. �

Due to the bundle monomorphism (4.4.5), any principal connection

A (4.4.9) is represented by a TGP -valued form

A = dxλ ⊗ (∂λ + Aq
λeq). (4.4.10)

Taking the quotient with respect to the action of a structure group G,

one can reduce the exact sequence (1.2.10) (where Y = P ) to the exact

sequence

0 → VGP −→
X

TGP −→TX → 0. (4.4.11)

A principal connection A (4.4.10) defines a splitting of this exact se-

quence.

Remark 4.4.2: A principal connection A (4.4.1) on a principal bundle

P → X can be represented by the vertical-valued form A (3.1.9) on

P which is a gl-valued form due to the trivialization (4.3.9). It is the
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familiar gl-valued connection form on a principal bundle P . Given a

local bundle splitting (Uα, zα) of P , this form reads

A = ψ∗
α(θl − A

q
λdxλ ⊗ εq), (4.4.12)

where θl is the canonical gl-valued one-form (4.1.8) on G and Ap
λ are

local functions on P such that

A
q
λ(pg)εq = A

q
λ(p)Adg−1(εq).

The pull-back z∗αA of the connection form A (4.4.12) onto Uα is the

well-known local connection one-form

Aα = −Aq
λdxλ ⊗ εq = Aq

λdxλ ⊗ εq, (4.4.13)

where Aq
λ = A

q
λ ◦ zα are local functions on X. It is readily observed that

the coefficients Aq
λ of this form are exactly the coefficients of the form

(4.4.10). �

There are both pull-back and push-forward operations of principal

connections.

Theorem 4.4.2: Let P be a principal bundle and f ∗P (1.1.8) the pull-

back principal bundle with the same structure group. Let fP be the

canonical morphism (1.1.9) of f ∗P to P . If A is a principal connection

on P , then the pull-back connection f ∗A (3.1.12) on f ∗P is a principal

connection. �

Theorem 4.4.3: Let P ′ → X and P → X be principle bundles with

structure groups G′ and G, respectively. Let Φ : P ′ → P be a principal

bundle morphism over X with the corresponding homomorphism G′ →

G (see Remark 4.3.4). For every principal connection A′ on P ′, there

exists a unique principal connection A on P such that TΦ sends the

horizontal subspaces of TP ′ A′ onto the horizontal subspaces of TP

with respect to A. �

Let P → X be a principal G-bundle. The Frölicher–Nijenhuis bracket

(1.4.8) on the space O∗(P ) ⊗ T (P ) of tangent-valued forms on P is
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compatible with the right action RGP (4.3.2). Therefore, it induces the

Frölicher–Nijenhuis bracket on the space O∗(X)⊗TGP (X) of TGP -valued

forms on X, where TGP (X) is the vector space of sections of the vector

bundle TGP → X. Note that, as it follows from the exact sequence

(4.4.11), there is an epimorphism

TGP (X) → T (X).

Let A ∈ O1(X) ⊗ TGP (X) be a principal connection (4.4.10). The

associated Nijenhuis differential is

dA : Or(X) ⊗ TGP (X) → Or+1(X) ⊗ VGP (X),

dAφ = [A, φ]FN, φ ∈ Or(X) ⊗ TGP (X). (4.4.14)

The strength of a principal connection A (4.4.10) is defined as the VGP -

valued two-form

FA =
1

2
dAA =

1

2
[A, A]FN ∈ O2(X) ⊗ VGP (X). (4.4.15)

Its coordinated expression

FA =
1

2
F r

λμdxλ ∧ dxμ ⊗ er,

F r
λμ = [∂λ + Ap

λep, ∂μ + Aq
μeq]

r = (4.4.16)

∂λA
r
μ − ∂μA

r
λ + cr

pqA
p
λA

q
μ,

results from the bracket (4.3.17).

Remark 4.4.3: It should be emphasized that the strength FA (4.4.15)

is not the standard curvature (3.3.1) of a principal connection because A

(4.4.10) is not a tangent-valued form. The curvature of a principal con-

nection A (4.4.1) on P is the V P -valued two-form R (3.3.1) on P , which

is brought into the gl-valued form owing to the canonical isomorphism

(4.3.9). �

Remark 4.4.4: Given a principal connection A (4.4.9), let ΦC be a

vertical principal automorphism of the bundle of principal connections C.
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The connection A′ = ΦC ◦A is called conjugate to a principal connection

A. The strength forms (4.4.15) of conjugate principal connections A and

A′ coincide with each other, i.e., FA = FA′. �

4.5 Canonical principal connection

Given a principal G-bundle P → X and its jet manifold J1P , let us

consider the canonical morphism θ(1) (2.1.5) where Y = P . By virtue of

Remark 1.2.2, this morphism defines the morphism

θ : J1P ×
P

TP → V P.

Taking its quotient with respect to G, we obtain the morphism

C ×
X

TGP
θ−→VGP, (4.5.1)

θ(∂λ) = −ap
λep, θ(ep) = ep.

Consequently, the exact sequence (4.4.11) admits the canonical splitting

over C.

In view of this fact, let us consider the pull-back principal G-bundle

PC (4.4.4). Since

VG(C ×
X

P ) = C ×
X

VGP, TG(C ×
X

P ) = TC ×
X

TGP, (4.5.2)

the exact sequence (4.4.11) for the principal bundle PC reads

0 → C ×
X

VGP −→
C

TC ×
X

TGP −→TC → 0. (4.5.3)

The morphism (4.5.1) yields the horizontal splitting (3.1.3):

TC ×
X

TGP −→C ×
X

TGP −→C ×
X

VGP,

of the exact sequence (4.5.3). Thus, it defines the principal connection

A : TC → TC ×
X

TGP,

A = dxλ ⊗ (∂λ + ap
λep) + dar

λ ⊗ ∂λ
r , (4.5.4)

A ∈ O1(C) ⊗ TG(C ×
X

P )(X),
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on the principal bundle

PC = C ×
X

P → C. (4.5.5)

It follows that the principal bundle PC admits the canonical principal

connection (4.5.4).

Following the expression (4.4.15), let us define the strength

FA =
1

2
dAA =

1

2
[A,A] ∈ O2(C) ⊗ VGP (X),

FA = (dar
μ ∧ dxμ +

1

2
cr
pqa

p
λa

q
μdxλ ∧ dxμ) ⊗ er, (4.5.6)

of the canonical principal connection A (4.5.4). It is called the canonical

strength because, given a principal connection A (4.4.9) on a principal

bundle P → X, the pull-back

A∗FA = FA (4.5.7)

is the strength (4.4.16) of A.

With the VGP -valued two-form FA (4.5.6) on C, let us define the

VGP -valued horizontal two-form

F = h0(FA) =
1

2
F r

λμdxλ ∧ dxμ ⊗ εr,

F r
λμ = ar

λμ − ar
μλ + cr

pqa
p
λa

q
μ, (4.5.8)

on J1C. It is called the strength form. For each principal connection A

(4.4.9) on P , the pull-back

J1A∗F = FA (4.5.9)

is the strength (4.4.16) of A.

The strength form (4.5.8) yields an affine surjection

F/2 : J1C −→
C

C ×
X

(
2
∧T ∗X ⊗ VGP ) (4.5.10)

over C of the affine jet bundle J1C → C to the vector (and, consequently,

affine) bundle

C ×
X

(
2
∧T ∗X ⊗ VGP ) → C.
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By virtue of Theorem 1.1.10, its kernel C+ = Ker F/2 is an affine sub-

bundle of J1C → C. Thus, we have the canonical splitting of the affine

jet bundle

J1C = C+ ⊕
C

C− = C+ ⊕
C

(C ×
X

2
∧T ∗X ⊗ VGP ), (4.5.11)

ar
λμ =

1

2
(F r

λμ + Sr
λμ) =

1

2
(ar

λμ + ar
μλ − cr

pqa
p
λa

q
μ) + (4.5.12)

1

2
(ar

λμ − ar
μλ + cr

pqa
p
λa

q
μ).

The jet manifold J1C plays a role of the configuration space of clas-

sical gauge theory on principal bundles.

4.6 Gauge transformations

In classical gauge theory, gauge transformations are defined as principal

automorphisms of a principal bundle P . In accordance with Remark

4.3.4, an automorphism ΦP of a principal G-bundle P is called principal

if it is equivariant under the right action (4.3.2) of a structure group G

on P , i.e.,

ΦP (pg) = ΦP (p)g, g ∈ G, p ∈ P. (4.6.1)

In particular, every vertical principal automorphism of a principal

bundle P is represented as

ΦP (p) = pf(p), p ∈ P, (4.6.2)

where f is a G-valued equivariant function on P , i.e.,

f(pg) = g−1f(p)g, g ∈ G. (4.6.3)

There is one-to-one correspondence between the equivariant functions f

(4.6.3) and the global sections s of the associated group bundle

πPG : PG → X (4.6.4)
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whose fibres are groups isomorphic to G and whose typical fibre is the

group G which acts on itself by the adjoint representation. This one-to-

one correspondence is defined by the relation

s(πP (p))p = pf(p), p ∈ P, (4.6.5)

(see Example 4.7.3). The group of vertical principal automorphisms of

a principal G-bundle is called the gauge group. It is isomorphic to the

group PG(X) of global sections of the group bundle (4.6.4). Its unit

element is the canonical global section 1̂ of PG → X whose values are

unit elements of fibres of PG.

Remark 4.6.1: Note that transition functions of atlases of a principle

bundle P also are represented by local sections of the associated group

bundle PG (4.6.4). �

Let us consider (local) one-parameter groups of principal automor-

phisms of P . Their infinitesimal generators are G-invariant projectable

vector fields ξ on P , and vice versa. We call ξ the principal vector

fields or the infinitesimal gauge transformations. They are represented

by sections ξ (4.3.16) of the vector bundle TGP (4.3.11). Principal vec-

tor fields constitute a real Lie algebra TGP (X) with respect to the Lie

bracket (4.3.17). Vertical principal vector fields are the sections

ξ = ξpep (4.6.6)

of the gauge algebra bundle VGP → X (4.3.11). They form a finite-

dimensional Lie C∞(X)-algebra G(X) = VGP (X) (4.3.18) that has been

called the gauge algebra.

Any (local) one-parameter group of principal automorphism ΦP (4.6.1)

of a principal bundle P admits the jet prolongation J1ΦP (2.1.7) to a

one-parameter group of G-equivariant automorphism of the jet manifold

J1P which, in turn, yields a one-parameter group of principal automor-

phisms ΦC of the bundle of principal connections C (4.4.3). Its infinites-

imal generator is a vector field on C, called the principal vector field on
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C and regarded as an infinitesimal gauge transformation of C. Thus,

any principal vector field ξ (4.3.16) on P yields a principal vector field

uξ on C, which can be defined as follows.

Using the morphism (4.5.1), we obtain the morphism

ξ�θ : C −→
X

VGP,

which is a section of of the Lie algebra bundle

VG(C ×
X

P ) → C

in accordance with the first formula (4.5.2). Then the equation

uξ�FA = dA(ξ�θ)

uniquely determines a desired vector field uξ on C. A direct computation

leads to

uξ = ξμ∂μ + (∂μξ
r + cr

pqa
p
μξ

q − ar
ν∂μξ

ν)∂μ
r . (4.6.7)

In particular, if ξ is a vertical principal field (4.6.6), we obtain the vertical

vector field

uξ = (∂μξ
r + cr

pqa
p
μξ

q)∂μ
r . (4.6.8)

Remark 4.6.2: The jet prolongation (2.1.8) of the vector field uξ

(4.6.7) onto J1C reads

J1uξ = uξ + (∂λμξ
r + cr

pqa
p
μ∂λξ

q + cr
pqa

p
λμξ

q − (4.6.9)

ar
ν∂λμξ

ν − ar
λν∂μξ

ν − ar
νμ∂λξ

ν)∂λμ
r .

�

Example 4.6.3: Let A (4.4.10) be a principal connection on P . For

any vector field τ on X, this connection yields a section

τ�A = τλ∂λ + Ap
λτ

λep
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of the vector bundle TGP → X. It, in turn, defines a principal vector

field (4.6.7) on the bundle of principal connection C which reads

τA = τλ∂λ + (∂μ(A
r
ντ

ν) + cr
pqa

p
μA

q
ντ

ν − ar
ν∂μτ

ν)∂μ
r , (4.6.10)

ξλ = τλ, ξp = Ap
ντ

ν.

�

It is readily justified that the monomorphism

TGP (X) � ξ → uξ ∈ T (C) (4.6.11)

obeys the equality

u[ξ,η] = [uξ, uη], (4.6.12)

i.e., it is a monomorphism of the real Lie algebra TGP (X) to the real

Lie algebra T (C). In particular, the image of the gauge algebra G(X)

in T (C) also is a real Lie algebra, but not the C∞(X)-one because

ufξ �= fuξ, f ∈ C∞(X).

Remark 4.6.4: A glance at the expression (4.6.7) shows that the

monomorphism (4.6.11) is a linear first order differential operator which

sends sections of the pull-back bundle

C ×
X

TGP → C

onto sections of the tangent bundle TC → C. Refereing to Definition

7.2.10, we therefore can treat principal vector fields (4.6.7) as infinitesi-

mal gauge transformations depending on gauge parameters ξ ∈ TGP (X).

�

4.7 Geometry of associated bundles

Given a principal G-bundle P (4.3.1), any associated G-bundle over X

with a typical fibre V is equivalent to the following one.



92 CHAPTER 4. GEOMETRY OF PRINCIPAL BUNDLES

Let us consider the quotient

Y = (P × V )/G (4.7.1)

of the product P × V by identification of elements (p, v) and (pg, g−1v)

for all g ∈ G. Let [p] denote the restriction of the canonical surjection

P × V → (P × V )/G (4.7.2)

to the subset {p} × V so that

[p](v) = [pg](g−1v).

Then the map

Y � [p](V ) → πP (p) ∈ X

makes the quotient Y (4.7.1) into a fibre bundle over X. This is a smooth

G-bundle with the typical fibre V which is associated with the principal

G-bundle P . For short, we call it the P -associated bundle.

Remark 4.7.1: The tangent morphism to the morphism (4.7.2) and

the jet prolongation of the morphism (4.7.2) lead to the bundle isomor-

phisms

TY = (TP × TV )/G, (4.7.3)

J1Y = (J1P × V )/G. (4.7.4)

�

The peculiarity of the P -associated bundle Y (4.7.1) is the following.

(i) Every bundle atlas ΨP = {(Uα, zα)} (4.3.5) of P defines a unique

associated bundle atlas

Ψ = {(Uα, ψα(x) = [zα(x)]−1)} (4.7.5)

of the quotient Y (4.7.1).

Example 4.7.2: Because of the splitting (4.3.9), the Lie algebra bundle

VGP = (P × gl)/G,
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by definition, is of the form (4.7.1). Therefore, it is a P -associated

bundle. �

Example 4.7.3: The group bundle P (4.6.4) is defined as the quotient

PG = (P × G)/G, (4.7.6)

where the group G which acts on itself by the adjoint representation.

There is the following fibre-to-fibre action of the group bundle PG on

any P -associated bundle Y (4.7.1):

PG ×
X

Y −→
X

Y,

((p, g)/G, (p, v)/G) → (p, gv)/G, g ∈ G, v ∈ V.

For instance, the action of PG on P in the formula (4.6.5) is of this type.

�

(ii) Any principal automorphism ΦP (4.6.1) of P yields a unique prin-

cipal automorphism

ΦY : (p, v)/G → (ΦP (p), v)/G, p ∈ P, v ∈ V, (4.7.7)

of the P -associated bundle Y (4.7.1). For the sake of brevity, we agree

to write

ΦY : (P × V )/G → (ΦP (P ) × V )/G.

Accordingly, any (local) one-parameter group of principal automorphisms

of P induces a (local) one-parameter group of automorphisms of the P -

associated bundle Y (4.7.1). Passing to infinitesimal generators of these

groups, we obtain that any principal vector field ξ (4.3.16) yields a vec-

tor field υξ on Y regarded as an infinitesimal gauge transformation of Y .

Owing to the bundle isomorphism (4.7.3), we have

υξ : X → (ξ(P ) × TV )/G ⊂ TY,

υξ = ξλ∂λ + ξpI i
p∂i, (4.7.8)

where {Ip} is a representation of the Lie algebra gr of G in V .
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(iii) Any principal connection on P → X defines a unique connection

on the P -associated fibre bundle Y (4.7.1) as follows. Given a principal

connection A (4.4.8) on P and the corresponding horizontal distribution

HP ⊂ TP , the tangent map to the canonical morphism (4.7.2) defines

the horizontal splitting of the tangent bundle TY of Y (4.7.1) and the

corresponding connection on Y → X. Owing to the bundle isomorphism

(4.7.4), we have

A : (P × V )/G → (A(P ) × V )/G ⊂ J1Y,

A = dxλ ⊗ (∂λ + Ap
λI

i
p∂i), (4.7.9)

where {Ip} is a representation of the Lie algebra gr of G in V . The

connection A (4.7.9) on Y is called the associated principal connection

or, simply, a principal connection on Y → X. The curvature (3.3.2) of

this connection takes the form

R =
1

2
F p

λμI
i
pdxλ ∧ dxμ ⊗ ∂i. (4.7.10)

Example 4.7.4: A principal connection A on P yields the associated

connection (4.7.9) on the associated Lie algebra bundle VGP which reads

A = dxλ ⊗ (∂λ − cm
pqA

p
λξ

qem). (4.7.11)

�

Remark 4.7.5: If an associated principal connection A is linear, one

can define its strength

FA =
1

2
F p

λμIpdxλ ∧ dxμ, (4.7.12)

where Ip are matrices of a representation of the Lie algebra gr in fibres

of Y with respect to the fibre bases {ei(x)}. They coincide with the

matrices of a representation of gr in the typical fibre V of Y with respect

to its fixed basis {ei} (see the relation (1.2.1)). It follows that G-valued

transition functions act on Ip by the adjoint representation. Note that,

because of the canonical splitting (1.2.8), one can identify ei(x) = ∂i. �
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In view of the above mentioned properties, the P -associated bundle

Y (4.7.1) is called canonically associated to a principal bundle P . Unless

otherwise stated, only canonically associated bundles are considered, and

we simply call Y (4.7.1) an associated bundle.

4.8 Reduced structure

Let H and G be Lie groups and φ : H → G a Lie group homomorphism.

If PH → X is a principal H-bundle, there always exists a principal G-

bundle PG → X together with the principal bundle morphism

Φ : PH −→
X

PG (4.8.1)

over X (see Remark 4.3.4). It is the PH-associated bundle

PG = (PH × G)/H

with the typical fibre G on which H acts on the left by the rule h(g) =

φ(h)g, while G acts on PG as

G � g′ : (p, g)/H → (p, gg′)/H.

Conversely, if PG → X is a principal G-bundle, a problem is to find a

principal H-bundle PH → X together with a principal bundle morphism

(4.8.1). If H → G is a closed subgroup, we have the structure group

reduction. If H → G is a group epimorphism, one says that PG lifts to

PH .

Here, we restrict our consideration to the reduction problem. In this

case, the bundle monomorphism (4.8.1) is called a reduced H-structure.

Let P (4.3.1) be a principal G-bundle, and let H, dimH > 0, be

a closed (and, consequently, Lie) subgroup of G. Then we have the

composite bundle

P → P/H → X, (4.8.2)



96 CHAPTER 4. GEOMETRY OF PRINCIPAL BUNDLES

where

PΣ = P
πPΣ−→P/H (4.8.3)

is a principal bundle with a structure group H and

Σ = P/H
πΣX−→X (4.8.4)

is a P -associated bundle with the typical fibre G/H on which the struc-

ture group G acts on the left (see Example 4.3.2).

One says that a structure Lie group G of a principal bundle P is

reduced to its closed subgroup H if the following equivalent conditions

hold.

• A principal bundle P admits a bundle atlas ΨP (4.3.3) with H-

valued transition functions �αβ.

• There exists a principal reduced subbundle PH of P with a structure

group H.

Theorem 4.8.1: There is one-to-one correspondence

P h = π−1
PΣ(h(X)) (4.8.5)

between the reduced principal H-subbundles ih : P h → P of P and the

global sections h of the quotient bundle P/H → X (4.8.4). �

Corollary 4.8.2: A glance at the formula (4.8.5) shows that the re-

duced principal H-bundle P h is the restriction h∗PΣ (1.1.13) of the prin-

cipal H-bundle PΣ (4.8.3) to h(X) ⊂ Σ. �

In general, there is topological obstruction to reduction of a structure

group of a principal bundle to its subgroup.

Theorem 4.8.3: In accordance with Theorem 1.1.4, the structure group

G of a principal bundle P is always reducible to its closed subgroup H,

if the quotient G/H is diffeomorphic to a Euclidean space R
m. �

In particular, this is the case of a maximal compact subgroup H of a

Lie group G. Then the following is a corollary of Theorem 4.8.3.
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Theorem 4.8.4: A structure group G of a principal bundle is always

reducible to its maximal compact subgroup H. �

Example 4.8.1: For instance, this is the case of G = GL(n, C), H =

U(n) and G = GL(n, R), H = O(n). �

Example 4.8.2: Any affine bundle admits an atlas with linear tran-

sition functions. In accordance with Theorem 4.8.3, its structure group

GA(m, R) is always reducible to the linear subgroup GL(m, R) because

GA(m, R)/GL(m, R) = R
m.

�

Different principal H-subbundles P h and P h′

of a principal G-bundle

P are not isomorphic to each other in general.

Theorem 4.8.5: Let a structure Lie group G of a principal bundle be

reducible to its closed subgroup H.

(i) Every vertical principal automorphism Φ of P sends a reduced

principal H-subbundle P h of P onto an isomorphic principal H-subbundle

P h′

.

(ii) Conversely, let two reduced subbundles P h and P h′

of a principal

bundle P → X be isomorphic to each other, and let Φ : P h → P h′

be

their isomorphism over X. Then Φ is extended to a vertical principal

automorphism of P . �

Theorem 4.8.6: If the quotient G/H is homeomorphic to a Euclidean

space R
m, all principal H-subbundles of a principal G-bundle P are iso-

morphic to each other. �

There are the following properties of principal connections compatible

with a reduced structure.

Theorem 4.8.7: Since principal connections are equivariant, every prin-

cipal connection Ah on a reduced principal H-subbundle P h of a principal

G-bundle P gives rise to a principal connection on P . �



98 CHAPTER 4. GEOMETRY OF PRINCIPAL BUNDLES

Theorem 4.8.8: A principal connection A on a principal G-bundle P is

reducible to a principal connection on a reduced principal H-subbundle

P h of P iff the corresponding global section h of the P -associated fi-

bre bundle P/H → X is an integral section of the associated principal

connection A on P/H → X. �

Theorem 4.8.9: Let the Lie algebra gl of G be the direct sum

gl = hl ⊕ m (4.8.6)

of the Lie algebra hl of H and a subspace m such that Adg(m) ⊂ m, g ∈ H

(e.g., H is a Cartan subgroup of G). Let A be a gl-valued connection

form (4.4.12) on P . Then, the pull-back of the hl-valued component of A

onto a reduced principal H-subbundle P h is a hl-valued connection form

of a principal connection Ah on P h. �

The following is a corollary of Theorem 4.4.2.

Theorem 4.8.10: Given the composite bundle (4.8.2), let AΣ be a

principal connection on the principal H-bundle P → Σ (4.8.3). Then, for

any reduced principal H-bundle ih : P h → P , the pull-back connection

i∗hAΣ (3.6.14) is a principal connection on P h. �



Chapter 5

Geometry of natural bundles

Classical gravitation theory is formulated as field theory on natural bun-

dles, exemplified by tensor bundles. Therefore, we agree to call connec-

tions on these bundles the world connections.

5.1 Natural bundles

Let π : Y → X be a smooth fibre bundle coordinated by (xλ, yi). Any

automorphism (Φ, f) of Y , by definition, is projected as

π ◦ Φ = f ◦ π

onto a diffeomorphism f of its base X. The converse is not true. A

diffeomorphism of X need not give rise to an automorphism of Y , unless

Y → X is a trivial bundle.

Given a one-parameter group (Φt, ft) of automorphisms of Y , its in-

finitesimal generator is a projectable vector field

u = uλ(xμ)∂λ + ui(xμ, yj)∂i

on Y . This vector field is projected as

τ ◦ π = Tπ ◦ u

onto a vector field τ = uλ∂λ on X. Its flow is the one-parameter group

(ft) of diffeomorphisms of X which are projections of autmorphisms

99
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(Φt, ft) of Y . Conversely, let τ = τλ∂λ be a vector field on X. There is

a problem of constructing its lift to a projectable vector field

u = τλ∂λ + ui∂i

on Y projected onto τ . Such a lift always exists, but it need not be

canonical. Given a connection Γ on Y , any vector field τ on X gives rise

to the horizontal vector field Γτ (3.1.6) on Y . This horizontal lift τ → Γτ

yields a monomorphism of the C∞(X)-module T (X) of vector fields on

X to the C∞(Y )-module of vector fields on Y , but this monomorphisms

is not a Lie algebra morphism, unless Γ is a flat connection.

Let us address the category of natural bundles T → X which admit

the functorial lift τ̃ onto T of any vector field τ on X such that τ → τ

is a monomorphism

T (X) → T (T ), [τ̃ , τ̃ ′] = ˜[τ, τ ′],

of the real Lie algebra T (X) of vector fields on X to the real Lie algebra

T (Y ) of vector fields on T . One treats the functorial lift τ̃ as an infinites-

imal general covariant transformation, i.e., an infinitesimal generator of

a local one-parameter group of general covariant transformations of T .

Remark 5.1.1: It should be emphasized that, in general, there exist

diffeomorphisms of X which do not belong to any one-parameter group

of diffeomorphisms of X. In a general setting, one therefore considers a

monomorphism f → f̃ of the group of diffeomorphisms of X to the group

of bundle automorphisms of a natural bundle T → X. Automorphisms

f̃ are called general covariant transformations of T . No vertical auto-

morphism of T , unless it is the identity morphism, is a general covariant

transformation. �

Natural bundles are exemplified by tensor bundles (1.2.5). For in-

stance, the tangent and cotangent bundles TX and T ∗X of X are nat-

ural bundles. Given a vector field τ on X, its functorial (or canonical)

lift onto the tensor bundle T (1.2.5) is given by the formula (1.3.2). In
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particular, let us recall the functorial lift (1.3.4) and (1.3.5) of τ onto

the tangent bundle TX and the cotangent bundle T ∗X, respectively.

Remark 5.1.2: Any diffeomorphism f of X gives rise to the tangent

automorphisms f̃ = Tf of TX which is a general covariant transfor-

mation of TX as a natural bundle. Accordingly, the general covariant

transformation of the cotangent bundle T ∗X over a diffeomorphism f of

its base X reads

ẋ′
μ =

∂xν

∂x′μ
ẋν.

�

Tensor bundles over a manifold X have the structure group

GLn = GL+(n, R). (5.1.1)

The associated principal bundle is the fibre bundle

πLX : LX → X

of oriented linear frames in the tangent spaces to a manifold X. It is

called the linear frame bundle. Its (local) sections are termed frame

fields.

Given holonomic frames {∂μ} in the tangent bundle TX associated

with the holonomic atlas ΨT (1.2.4), every element {Ha} of the linear

frame bundle LX takes the form Ha = Hμ
a ∂μ, where Hμ

a is a matrix

of the natural representation of the group GLn in R
n. These matrices

constitute the bundle coordinates

(xλ, Hμ
a ), H ′μ

a =
∂x′μ

∂xλ
Hλ

a ,

on LX associated to its holonomic atlas

ΨT = {(Uι, zι = {∂μ})} (5.1.2)

given by the local frame fields zι = {∂μ}. With respect to these coordi-

nates, the right action (4.3.2) of GLn on LX reads

RgP : Hμ
a → Hμ

b gb
a, g ∈ GLn.
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The frame bundle LX admits the canonical R
n-valued one-form

θLX = Ha
μdxμ ⊗ ta, (5.1.3)

where {ta} is a fixed basis for R
n and Ha

μ is the inverse matrix of Hμ
a .

The frame bundle LX → X belongs to the category of natural bun-

dles. Any diffeomorphism f of X gives rise to the principal automor-

phism

f̃ : (xλ, Hλ
a ) → (fλ(x), ∂μf

λHμ
a ) (5.1.4)

of LX which is its general covariant transformation (or a holonomic

automorphism). For instance, the associated automorphism of TX is

the tangent morphism Tf to f .

Given a (local) one-parameter group of diffeomorphisms of X and its

infinitesimal generator τ , their lift (5.1.4) results in the functorial lift

τ̃ = τμ∂μ + ∂ντ
αHν

a

∂

∂Hα
a

(5.1.5)

of a vector field τ on X onto LX defined by the condition

Lτ̃θLX = 0.

Every LX-associated bundle Y → X admits a lift of any diffeomor-

phism f of its base to the principal automorphism f̃Y (4.7.7) of Y as-

sociated with the principal automorphism f̃ (5.1.4) of the liner frame

bundle LX. Thus, all bundles associated with the linear frame bundle

LX are natural bundles. However, there are natural bundles which are

not associated with LX.

Remark 5.1.3: In a more general setting, higher order natural bundles

and gauge natural bundles are considered. Note that the linear frame

bundle LX over a manifold X is the set of first order jets of local diffeo-

morphisms of the vector space R
n to X, n = dim X, at the origin of R

n.

Accordingly, one considers r-order frame bundles LrX of r-order jets of

local diffeomorphisms of R
n to X. Furthermore, given a principal bundle
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P → X with a structure group G, the r-order jet bundle J1P → X of

its sections fails to be a principal bundle. However, the product

W rP = LrX × JrP

is a principal bundle with the structure group W r
nG which is a semidirect

product of the group Gr
n of invertible r-order jets of maps R

n to itself

at its origin (e.g., G1
n = GL(n, R)) and the group T r

nG of r-order jets

of morphisms R
n → G at the origin of R

n. Moreover, if Y → X is

a P -associated bundle, the jet bundle JrY → X is a vector bundle

associated with the principal bundle W rP . It exemplifies gauge natural

bundles which can be described as fibre bundles associated with principal

bundles W rP . Natural bundles are gauge natural bundles for a trivial

group G = 1. The bundle of principal connections C (4.4.3) is a first

order gauge natural bundle. �

5.2 Linear world connections

Since the tangent bundle TX is associated with the linear frame bundle

LX, every world connection (3.4.6):

Γ = dxλ ⊗ (∂λ + Γλ
μ
νẋ

ν ∂̇μ), (5.2.1)

on a manifold X is associated with a principal connection on LX. We

agree to call Γ (5.2.1) the linear world connection in order to distinct it

from an affine world connection in Section 5.3.

Being principal connections on the linear frame bundle LX, linear

world connections are represented by sections of the quotient bundle

CW = J1LX/GLn, (5.2.2)

called the bundle of world connections. With respect to the holonomic

atlas ΨT (5.1.2), this bundle is provided with the coordinates

(xλ, kλ
ν
α), k′

λ
ν
α =

⎡⎣∂x′ν

∂xγ

∂xβ

∂x′α
kμ

γ
β +

∂xβ

∂x′α

∂2x′ν

∂xμ∂xβ

⎤⎦ ∂xμ

∂x′λ
,
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so that, for any section Γ of CW → X,

kλ
ν
α ◦ Γ = Γλ

ν
α

are components of the linear world connection Γ (5.2.1).

Though the bundle of world connections CW → X (5.2.2) is not LX-

associated, it is a natural bundle. It admits the lift

f̃C : J1LX/GLn → J1f̃(J1LX)/GLn

of any diffeomorphism f of its base X and, consequently, the functorial

lift

τ̃C = τμ∂μ + [∂ντ
αkμ

ν
β − ∂βτ

νkμ
α

ν − ∂μτ
νkν

α
β + ∂μβτ

α]
∂

∂kμ
α

β

(5.2.3)

of any vector field τ on X.

The first order jet manifold J1CW of the bundle of world connections

admits the canonical splitting (4.5.11). In order to obtain its coordi-

nate expression, let us consider the strength (4.7.12) of the linear world

connection Γ (5.2.1). It reads

FΓ =
1

2
Fλμ

b
aIb

adxλ ∧ dxμ =
1

2
Rμν

α
βdxλ ∧ dxμ,

where

(Ib
a)α

β = Hα
b Ha

β

are generators of the group GLn (5.1.1) in fibres of TX with respect to

the holonomic frames, and

Rλμ
α

β = ∂λΓμ
α

β − ∂μΓλ
α

β + Γλ
γ
βΓμ

α
γ − Γμ

γ
βΓλ

α
γ (5.2.4)

are components if the curvature (3.4.8) of a linear world connection Γ.

Accordingly, the above mentioned canonical splitting (4.5.11) of J1CW

can be written in the form

kλμ
α

β =
1

2
(Rλμ

α
β + Sλμ

α
β) = (5.2.5)

1

2
(kλμ

α
β − kμλ

α
β + kλ

γ
βkμ

α
γ − kμ

γ
βkλ

α
γ) +

1

2
(kλμ

α
β + kμλ

α
β − kλ

γ
βkμ

α
γ + kμ

γ
βkλ

α
γ).
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It is readily observed that, if Γ is a section of CW → X, then

Rλμ
α

β ◦ J1Γ = Rλμ
α

β.

Because of the canonical vertical splitting (1.4.11) of the vertical tan-

gent bundle V TX of TX, the curvature form (3.4.8) of a linear world

connection Γ can be represented by the tangent-valued two-form

R =
1

2
Rλμ

α
βẋ

βdxλ ∧ dxμ ⊗ ∂α (5.2.6)

on TX. Due to this representation, the Ricci tensor

Rc =
1

2
Rλμ

λ
βdxμ ⊗ dxβ (5.2.7)

of a linear world connection Γ is defined.

Owing to the above mentioned vertical splitting (1.4.11) of V TX, the

torsion form T (3.4.9) of Γ can be written as the tangent-valued two-form

T =
1

2
Tμ

ν
λdxλ ∧ dxμ ⊗ ∂ν, (5.2.8)

Tμ
ν
λ = Γμ

ν
λ − Γλ

ν
μ,

on X. The soldering torsion form

T = Tμ
ν
λẋ

λdxμ ⊗ ∂̇ν (5.2.9)

on TX is also defined. Then one can show the following.

• Given a linear world connection Γ (5.2.1) and its soldering torsion

form T (5.2.9), the sum Γ + cT , c ∈ R, is a linear world connection.

• Every linear world connection Γ defines a unique symmetric world

connection

Γ′ = Γ −
1

2
T. (5.2.10)

• If Γ and Γ′ are linear world connections, then

cΓ + (1 − c)Γ′

is so for any c ∈ R.
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A manifold X is said to be flat if it admits a flat linear world con-

nection Γ. By virtue of Theorem 3.5.2, there exists an atlas of local

constant trivializations of TX such that

Γ = dxλ ⊗ ∂λ

relative to this atlas. As a consequence, the curvature form R (5.2.6) of

this connection equals zero. However, such an atlas is not holonomic in

general. Relative to this atlas, the canonical soldering form (1.4.7) on

TX reads

θJ = Ha
μdxμ∂̇a,

and the torsion form T (3.4.9) of Γ defined as the Nijenhuis differential

dΓθJ (3.3.8) need not vanish.

A manifold X is called parallelizable if the tangent bundle TX → X

is trivial. By virtue of Theorem 3.5.2, a parallelizable manifold is flat.

Conversely, a flat manifold is parallelizable if it is simply connected.

Every linear world connection Γ (5.2.1) yields the horizontal lift

Γτ = τλ(∂λ + Γλ
β

αẋα∂̇β) (5.2.11)

of a vector field τ on X onto the tangent bundle TX. A vector field τ

on X is said to be parallel relative to a connection Γ if it is an integral

section of Γ. Its integral curve is called the autoparallel of a world

connection Γ.

Remark 5.2.1: By virtue of Theorem 3.2.2, any vector field on X is an

integral section of some linear world connection. If τ(x) �= 0 at a point

x ∈ X, there exists a coordinate system (qi) on some neighbourhood U

of x such that τ i(x) =const. on U . Then τ on U is an integral section

of the local symmetric linear world connection

Γτ(x) = dqi ⊗ ∂i, x ∈ U, (5.2.12)

on U . The functorial lift τ̃ (1.3.4) can be obtained at each point x ∈ X

as the horizontal lift of τ by means of the local symmetric connection

(5.2.12). �
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The horizontal lift of a vector field τ on X onto the linear frame

bundle LX by means of a world connection K reads

Γτ = τλ

⎛⎝∂λ + Γλ
ν
αHα

a

∂

∂Hν
a

⎞⎠ . (5.2.13)

It is called standard if the morphism

u�θLX : LX → R
n

is constant on LX. It is readily observed that every standard horizontal

vector field on LX takes the form

uv = Hλ
b vb

⎛⎝∂λ + Γλ
ν
αHα

a

∂

∂Hν
a

⎞⎠ (5.2.14)

where v = vbtb ∈ R
n. A glance at this expression shows that a standard

horizontal vector field is not projectable.

Since TX is an LX-associated fibre bundle, we have the canonical

morphism

LX × R
n → TX, (Hμ

a , va) → ẋμ = Hμ
a va.

The tangent map to this morphism sends every standard horizontal vec-

tor field (5.2.14) on LX to the horizontal vector field

u = ẋλ(∂λ + Γλ
ν
αẋα∂̇ν) (5.2.15)

on TX. Such a vector field on TX is called holonomic. Given holonomic

coordinates (xμ, ẋμ, ẋμ, ẍμ) on the double tangent bundle TTX, the holo-

nomic vector field (5.2.15) defines the second order dynamic equation

ẍν = Γλ
ν
αẋλẋα (5.2.16)

on X which is called the geodesic equation with respect to a linear world

connection Γ. Solutions of the geodesic equation (5.2.16), called the

geodesics of Γ, are the projection of integral curves of the vector field

(5.2.15) in TX onto X. Moreover, one can show the following.
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Theorem 5.2.1: The projection of an integral curve of any standard

horizontal vector field (5.2.14) on LX onto X is a geodesic in X. Con-

versely, any geodesic in X is of this type. �

It is readily observed that, if linear world connections Γ and Γ′ differ

from each other only in the torsion, they define the same holonomic

vector field (5.2.15) and the same geodesic equation (5.2.16).

Let τ be an integral vector field of a linear world connection Γ, i.e.,

∇Γ
μτ = 0. Consequently, it obeys the equation τμ∇Γ

μτ = 0. Any au-

toparallel of a linear world connection Γ is its geodesic and, conversely,

a geodesic of Γ is an autoparallel of its symmetric part (5.2.10).

5.3 Affine world connections

The tangent bundle TX of a manifold X as like as any vector bun-

dle possesses a natural structure of an affine bundle (see Section 1.2).

Therefore, one can consider affine connections on TX, called affine world

connections. Here we study them as principal connections.

Let Y → X be an affine bundle with an k-dimensional typical fibre V .

It is associated with a principal bundle AY of affine frames in Y , whose

structure group is the general affine group GA(k, R). Then any affine

connection on Y → X can be seen as an associated with a principal

connection on AY → X. These connections are represented by global

sections of the affine bundle

J1P/GA(k, R) → X.

They always exist.

As was mentioned in Section 1.3.5, every affine connection Γ (3.4.12)

on Y → X defines a unique associated linear connection Γ (3.4.13) on

the underlying vector bundle Y → X. This connection Γ is associated

with a linear principal connection on the principal bundle LY of linear
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frames in Y whose structure group is the general linear group GL(k, R).

We have the exact sequence of groups

0 → Tk → GA(k, R) → GL(k, R) → 1, (5.3.1)

where Tk is the group of translations in R
k. It is readily observed that

there is the corresponding principal bundle morphism AY → LY over

X, and the principal connection Γ on LY is the image of the principal

connection Γ on AY → X under this morphism in accordance with

Theorem 4.4.3.

The exact sequence (5.3.1) admits a splitting

GL(k, R) → GA(k, R),

but this splitting is not canonical. It depends on the morphism

V � v → v − v0 ∈ V ,

i.e., on the choice of an origin v0 of the affine space V . Given v0, the

image of the corresponding monomorphism

GL(k, R) → GA(k, R)

is a stabilizer

G(v0) ⊂ GA(k, R)

of v0. Different subgroups G(v0) and G(v′0) are related to each other as

follows:

G(v′0) = T (v′0 − v0)G(v0)T
−1(v′0 − v0),

where T (v′0 − v0) is the translation along the vector (v′0 − v0) ∈ V .

Remark 5.3.1: The well-known morphism of a k-dimensional affine

space V onto a hypersurface yk+1 = 1 in R
k+1 and the corresponding

representation of elements of GA(k, R) by particular (k + 1) × (k + 1)-

matrices also fail to be canonical. They depend on a point v0 ∈ V sent

to vector (0, . . . , 0, 1) ∈ R
k+1. �
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One can say something more if Y → X is a vector bundle provided

with the natural structure of an affine bundle whose origin is the canon-

ical zero section 0̂. In this case, we have the canonical splitting of the

exact sequence (5.3.1) such that GL(k, R) is a subgroup of GA(k, R) and

GA(k, R) is the semidirect product of GL(k, R) and the group T (k, R)

of translations in R
k. Given a GA(k, R)-principal bundle AY → X,

its affine structure group GA(k, R) is always reducible to the linear sub-

group since the quotient GA(k, R)/GL(k, R) is a vector space R
k provided

with the natural affine structure (see Example 4.8.2). The corresponding

quotient bundle is isomorphic to the vector bundle Y → X. There is

the canonical injection of the linear frame bundle LY → AY onto the

reduced GL(k, R)-principal subbundle of AY which corresponds to the

zero section 0̂ of Y → X. In this case, every principal connection on the

linear frame bundle LY gives rise to a principal connection on the affine

frame bundle in accordance with Theorem 4.8.7. This is equivalent to

the fact that any affine connection Γ on a vector bundle Y → X defines

a linear connection Γ on Y → X and that every linear connection on

Y → X can be seen as an affine one. Then any affine connection Γ on

the vector bundle Y → X is represented by the sum of the associated

linear connection Γ and a basic soldering form σ on Y → X. Due to the

vertical splitting (1.2.8), this soldering form is represented by a global

section of the tensor product T ∗X ⊗ Y .

Let now Y → X be the tangent bundle TX → X considered as an

affine bundle. Then the relationship between affine and linear world

connections on TX is the repetition of that we have said in the case

of an arbitrary vector bundle Y → X. In particular, any affine world

connection

Γ = dxλ ⊗ (∂λ + Γλ
α

μ(x)ẋμ + σα
λ(x))∂α (5.3.2)

on TX → X is represented by the sum of the associated linear world
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connection

Γ = Γλ
α

μ(x)ẋμdxλ ⊗ ∂α (5.3.3)

on TX → X and a basic soldering form

σ = σα
λ(x)dxλ ⊗ ∂α (5.3.4)

on Y → X, which is the (1, 1)-tensor field on X. For instance, if σ = θX

(1.4.5), we have the Cartan connection (3.4.15).

It is readily observed that the soldered curvature (3.3.7) of any sol-

dering form (5.3.4) equals zero. Then we obtain from (3.3.10) that the

torsion (3.4.14) of the affine connection Γ (5.3.2) with respect to σ (5.3.4)

coincides with that of the associated linear connection Γ (5.3.3) and reads

T =
1

2
T i

λμdxμ ∧ dxλ ⊗ ∂i,

Tλ
λ
μ = Γλ

α
νσ

ν
μ − Γμ

α
νσ

ν
λ. (5.3.5)

The relation between the curvatures of an affine world connection Γ

(5.3.2) and the associated linear connection Γ (5.3.3) is given by the

general expression (3.3.11) where ρ = 0 and T is (5.3.5).
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Chapter 6

Geometry of graded manifolds

In classical field theory, there are different descriptions of odd fields on

graded manifolds and supermanifolds. Both graded manifolds and su-

permanifolds are phrased in terms of sheaves of graded commutative

algebras. However, graded manifolds are characterized by sheaves on

smooth manifolds, while supermanifolds are constructed by gluing of

sheaves on supervector spaces. Treating odd fields on a manifold X, we

follow the Serre–Swan theorem generalized to graded manifolds (Theo-

rem 6.3.2). It states that, if a Grassmann algebra is an exterior algebra

of some projective C∞(X)-module of finite rank, it is isomorphic to the

algebra of graded functions on a graded manifold whose body is X.

By virtue of this theorem, odd fields on an arbitrary manifold X are de-

scribed as generating elements of the structure ring of a graded manifold

whose body is X [9, 24].

6.1 Grassmann-graded algebraic calculus

Throughout the book, by the Grassmann gradation is meant Z2-gradation.

Hereafter, the symbol [.] stands for the Grassmann parity. In the litera-

ture, a Z2-graded structure is simply called the graded structure if there

is no danger of confusion. Let us summarize the relevant notions of the

Grassmann-graded algebraic calculus.

113
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An algebra A is called graded if it is endowed with a grading auto-

morphism γ such that γ2 = Id . A graded algebra falls into the direct

sum A = A0 ⊕ A1 of Z-modules A0 and A1 of even and odd elements

such that

γ(a) = (−1)ia, a ∈ Ai, i = 0, 1,

[aa′] = ([a] + [a′])mod 2, a ∈ A[a], a′ ∈ A[a′].

One calls A0 and A1 the even and odd parts of A, respectively. The

even part A0 is a subalgebra of A and the odd one A1 is an A0-module.

If A is a graded ring, then [1] = 0.

A graded algebra A is called graded commutative if

aa′ = (−1)[a][a′]a′a,

where a and a′ are graded-homogeneous elements of A.

Given a graded algebra A, a left graded A-module Q is defined as a

left A-module provided with the grading automorphism γ such that

γ(aq) = γ(a)γ(q), a ∈ A, q ∈ Q,

[aq] = ([a] + [q])mod 2.

A graded module Q is split into the direct sum Q = Q0 ⊕ Q1 of two

A0-modules Q0 and Q1 of even and odd elements.

If K is a graded commutative ring, a graded K-module can be provided

with a graded K-bimodule structure by letting

qa = (−1)[a][q]aq, a ∈ K, q ∈ Q.

A graded module is called free if it has a basis generated by graded-

homogeneous elements. This basis is said to be of type (n, m) if it

contains n even and m odd elements.

In particular, by a real graded vector space B = B0 ⊕ B1 is meant

a graded R-module. A real graded vector space is said to be (n, m)-

dimensional if B0 = R
n and B1 = R

m.
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Given a graded commutative ring K, the following are standard con-

structions of new graded modules from old ones.

• The direct sum of graded modules and a graded factor module are

defined just as those of modules over a commutative ring.

• The tensor product P ⊗ Q of graded K-modules P and Q is an

additive group generated by elements p ⊗ q, p ∈ P , q ∈ Q, obeying the

relations

(p + p′) ⊗ q = p ⊗ q + p′ ⊗ q,

p ⊗ (q + q′) = p ⊗ q + p ⊗ q′,

ap ⊗ q = (−1)[p][a]pa ⊗ q = (−1)[p][a]p ⊗ aq, a ∈ K.

In particular, the tensor algebra ⊗P of a graded K-module P is defined

as that (8.1.5) of a module over a commutative ring. Its quotient ∧P

with respect to the ideal generated by elements

p ⊗ p′ + (−1)[p][p′]p′ ⊗ p, p, p′ ∈ P,

is the bigraded exterior algebra of a graded module P with respect to

the graded exterior product

p ∧ p′ = −(−1)[p][p′]p′ ∧ p.

• A morphism Φ : P → Q of graded K-modules seen as additive

groups is said to be even graded morphism (resp. odd graded mor-

phism) if Φ preserves (resp. change) the Grassmann parity of all graded-

homogeneous elements of P and obeys the relations

Φ(ap) = (−1)[Φ][a]aΦ(p), p ∈ P, a ∈ K.

A morphism Φ : P → Q of graded K-modules as additive groups is

called a graded K-module morphism if it is represented by a sum of even

and odd graded morphisms. The set Hom K(P, Q) of graded morphisms

of a graded K-module P to a graded K-module Q is naturally a graded

K-module. The graded K-module P ∗ = Hom K(P,K) is called the dual

of a graded K-module P .
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A graded commutative K-ring A is a graded commutative ring which

also is a graded K-module. A real graded commutative ring is said

to be of rank N if it is a free algebra generated by the unit 1 and N

odd elements. A graded commutative Banach ring A is a real graded

commutative ring which is a real Banach algebra whose norm obeys the

condition

‖a0 + a1‖ = ‖a0‖ + ‖a1‖, a0 ∈ A0, a1 ∈ A1.

Let V be a real vector space, and let Λ = ∧V be its exterior algebra

endowed with the Grassmann gradation

Λ = Λ0 ⊕ Λ1, Λ0 = R
⊕
k=1

2k
∧ V, Λ1 =

⊕
k=1

2k−1
∧ V. (6.1.1)

It is a real graded commutative ring, called the Grassmann algebra. A

Grassmann algebra, seen as an additive group, admits the decomposition

Λ = R ⊕ R = R ⊕ R0 ⊕ R1 = R ⊕ (Λ1)
2 ⊕ Λ1, (6.1.2)

where R is the ideal of nilpotents of Λ. The corresponding projections

σ : Λ → R and s : Λ → R are called the body and soul maps, respectively.

Hereafter, we restrict our consideration to Grassmann algebras of

finite rank. Given a basis {ci} for the vector space V , the elements of

the Grassmann algebra Λ (6.1.1) take the form

a =
∑

k=0,1,...

∑
(i1···ik)

ai1···ikc
i1 · · · cik, (6.1.3)

where the second sum runs through all the tuples (i1 · · · ik) such that no

two of them are permutations of each other. The Grassmann algebra Λ

becomes a graded commutative Banach ring with respect to the norm

‖a‖ =
∑
k=0

∑
(i1···ik)

|ai1···ik|.

Let B be a graded vector space. Given a Grassmann algebra Λ, it

can be brought into a graded Λ-module

ΛB = ΛB0 ⊕ ΛB1 = (Λ0 ⊗ B0 ⊕ Λ1 ⊗ B1) ⊕ (Λ1 ⊗ B0 ⊕ Λ0 ⊗ B1),
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called a superspace. The superspace

Bn|m = [(
n
⊕Λ0) ⊕ (

m
⊕Λ1)] ⊕ [(

n
⊕Λ1) ⊕ (

m
⊕Λ0)] (6.1.4)

is said to be (n,m)-dimensional. The graded Λ0-module

Bn,m = (
n
⊕Λ0) ⊕ (

m
⊕Λ1)

is called an (n,m)-dimensional supervector space. Whenever referring

to a topology on a supervector space Bn,m, we will mean the Euclidean

topology on a 2N−1[n + m]-dimensional real vector space.

Let K be a graded commutative ring. A graded commutative (non-

associative) K-algebra g is called a Lie K-superalgebra if its product [., .],

called the Lie superbracket, obeys the relations

[ε, ε′] = −(−1)[ε][ε′][ε′, ε],

(−1)[ε][ε′′][ε, [ε′, ε′′]] + (−1)[ε′][ε][ε′, [ε′′, ε]] + (−1)[ε′′][ε′][ε′′, [ε, ε′]] = 0.

The even part g0 of a Lie K-superalgebra g is a Lie K0-algebra. A graded

K-module P is called a g-module if it is provided with a K-bilinear map

g × P � (ε, p) → εp ∈ P, [εp] = ([ε] + [p])mod 2,

[ε, ε′]p = (ε ◦ ε′ − (−1)[ε][ε′]ε′ ◦ ε)p.

6.2 Grassmann-graded differential calculus

Linear differential operators on graded modules over a graded commuta-

tive ring are defined similarly to those in commutative geometry (Section

8.2).

Let K be a graded commutative ring and A a graded commutative

K-ring. Let P and Q be graded A-modules. The graded K-module

Hom K(P, Q) of graded K-module homomorphisms Φ : P → Q can be

endowed with the two graded A-module structures

(aΦ)(p) = aΦ(p), (Φ • a)(p) = Φ(ap), a ∈ A, p ∈ P, (6.2.1)
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called A- and A•-module structures, respectively. Let us put

δaΦ = aΦ − (−1)[a][Φ]Φ • a, a ∈ A. (6.2.2)

An element Δ ∈ Hom K(P, Q) is said to be a Q-valued graded differential

operator of order s on P if

δa0
◦ · · · ◦ δas

Δ = 0

for any tuple of s + 1 elements a0, . . . , as of A. The set Diff s(P, Q) of

these operators inherits the graded module structures (6.2.1).

In particular, zero order graded differential operators obey the condi-

tion

δaΔ(p) = aΔ(p) − (−1)[a][Δ]Δ(ap) = 0, a ∈ A, p ∈ P,

i.e., they coincide with graded A-module morphisms P → Q. A first

order graded differential operator Δ satisfies the relation

δa ◦ δb Δ(p) = abΔ(p) − (−1)([b]+[Δ])[a]bΔ(ap) − (−1)[b][Δ]aΔ(bp) +

(−1)[b][Δ]+([Δ]+[b])[a] = 0, a, b ∈ A, p ∈ P.

For instance, let P = A. Any zero order Q-valued graded differential

operator Δ on A is defined by its value Δ(1). Then there is a graded

A-module isomorphism

Diff 0(A, Q) = Q, Q � q → Δq ∈ Diff 0(A, Q),

where Δq is given by the equality Δq(1) = q. A first order Q-valued

graded differential operator Δ on A fulfils the condition

Δ(ab) = Δ(a)b + (−1)[a][Δ]aΔ(b) − (−1)([b]+[a])[Δ]abΔ(1), a, b ∈ A.

It is called a Q-valued graded derivation of A if Δ(1) = 0, i.e., the

Grassmann-graded Leibniz rule

Δ(ab) = Δ(a)b + (−1)[a][Δ]aΔ(b), a, b ∈ A, (6.2.3)
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holds. One obtains at once that any first order graded differential oper-

ator on A falls into the sum

Δ(a) = Δ(1)a + [Δ(a) − Δ(1)a]

of a zero order graded differential operator Δ(1)a and a graded derivation

Δ(a) − Δ(1)a. If ∂ is a graded derivation of A, then a∂ is so for any

a ∈ A. Hence, graded derivations of A constitute a graded A-module

d(A, Q), called the graded derivation module.

If Q = A, the graded derivation module dA also is a Lie superalgebra

over the graded commutative ring K with respect to the superbracket

[u, u′] = u ◦ u′ − (−1)[u][u′]u′ ◦ u, u, u′ ∈ A. (6.2.4)

We have the graded A-module decomposition

Diff 1(A) = A⊕ dA. (6.2.5)

Since dA is a Lie K-superalgebra, let us consider the Chevalley–

Eilenberg complex C∗[dA;A] where the graded commutative ring A is a

regarded as a dA-module. It is the complex

0 → A d−→C1[dA;A]
d−→· · ·Ck[dA;A]

d−→· · · (6.2.6)

where

Ck[dA;A] = Hom K(
k
∧ dA,A)

are dA-modules of K-linear graded morphisms of the graded exterior

products
k
∧ dA of the K-module dA to A. Let us bring homogeneous

elements of
k
∧ dA into the form

ε1 ∧ · · · εr ∧ εr+1 ∧ · · · ∧ εk, εi ∈ dA0, εj ∈ dA1.

Then the even coboundary operator d of the complex (6.2.6) is given by

the expression

dc(ε1 ∧ · · · ∧ εr ∧ ε1 ∧ · · · ∧ εs) = (6.2.7)
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r∑
i=1

(−1)i−1εic(ε1 ∧ · · · ε̂i · · · ∧ εr ∧ ε1 ∧ · · · εs) +

s∑
j=1

(−1)rεic(ε1 ∧ · · · ∧ εr ∧ ε1 ∧ · · · ε̂j · · · ∧ εs) +

∑
1≤i<j≤r

(−1)i+jc([εi, εj] ∧ ε1 ∧ · · · ε̂i · · · ε̂j · · · ∧ εr ∧ ε1 ∧ · · · ∧ εs) +

∑
1≤i<j≤s

c([εi, εj] ∧ ε1 ∧ · · · ∧ εr ∧ ε1 ∧ · · · ε̂i · · · ε̂j · · · ∧ εs) +

∑
1≤i<r,1≤j≤s

(−1)i+r+1c([εi, εj] ∧ ε1 · · · ε̂i · · · ∧ εr ∧ ε1 · · · ε̂j · · · ∧ εs),

where the caret ̂ denotes omission. This operator is called the graded

Chevalley–Eilenberg coboundary operator.

Let us consider the extended Chevalley–Eilenberg complex

0 → K in−→C∗[dA;A].

This complex contains a subcomplex O∗[dA] of A-linear graded mor-

phisms. The N-graded module O∗[dA] is provided with the structure of

a bigraded A-algebra with respect to the graded exterior product

φ ∧ φ′(u1, ..., ur+s) = (6.2.8)∑
i1<···<ir;j1<···<js

Sgni1···irj1···js

1···r+s φ(ui1, . . . , uir)φ
′(uj1, . . . , ujs

),

φ ∈ Or[dA], φ′ ∈ Os[dA], uk ∈ dA,

where u1, . . . , ur+s are graded-homogeneous elements of dA and

u1 ∧ · · · ∧ ur+s = Sgni1···irj1···js

1···r+s ui1 ∧ · · · ∧ uir ∧ uj1 ∧ · · · ∧ ujs
.

The graded Chevalley–Eilenberg coboundary operator d (6.2.7) and the

graded exterior product ∧ (6.2.8) bring O∗[dA] into a differential bi-

graded algebra (henceforth DBGA) whose elements obey the relations

φ ∧ φ′ = (−1)|φ||φ
′|+[φ][φ′]φ′ ∧ φ, (6.2.9)

d(φ ∧ φ′) = dφ ∧ φ′ + (−1)|φ|φ ∧ dφ′. (6.2.10)

It is called the graded Chevalley–Eilenberg differential calculus over a

graded commutative K-ring A. In particular, we have

O1[dA] = HomA(dA,A) = dA∗. (6.2.11)
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One can extend this duality relation to the graded interior product of

u ∈ dA with any element φ ∈ O∗[dA] by the rules

u�(bda) = (−1)[u][b]u(a), a, b ∈ A,

u�(φ ∧ φ′) = (u�φ) ∧ φ′ + (−1)|φ|+[φ][u]φ ∧ (u�φ′). (6.2.12)

As a consequence, any graded derivation u ∈ dA of A yields a derivation

Luφ = u�dφ + d(u�φ), φ ∈ O∗, u ∈ dA, (6.2.13)

Lu(φ ∧ φ′) = Lu(φ) ∧ φ′ + (−1)[u][φ]φ ∧ Lu(φ
′),

called the graded Lie derivative of the DBGA O∗[dA].

The minimal graded Chevalley–Eilenberg differential calculus O∗A ⊂

O∗[dA] over a graded commutative ring A consists of the monomials

a0da1 ∧ · · · ∧ dak, ai ∈ A.

The corresponding complex

0 → K −→A d−→O1A d−→· · ·OkA d−→· · · (6.2.14)

is called the bigraded de Rham complex of A.

Following the construction of a connection in commutative geometry

(see Section 8.2), one comes to the notion of a connection on modules

over a real graded commutative ring A. The following are the straight-

forward counterparts of Definitions 8.2.3 and 8.2.4.

Definition 6.2.1: A connection on a graded A-module P is a graded

A-module morphism

dA � u → ∇u ∈ Diff 1(P, P ) (6.2.15)

such that the first order differential operators ∇u obey the Grassmann-

graded Leibniz rule

∇u(ap) = u(a)p + (−1)[a][u]a∇u(p), a ∈ A, p ∈ P. (6.2.16)

�
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Definition 6.2.2: Let P in Definition 6.2.1 be a graded commutative

A-ring and dP the derivation module of P as a graded commutative

K-ring. A connection on a graded commutative A-ring P is a graded

A-module morphism

dA � u → ∇u ∈ dP, (6.2.17)

which is a connection on P as an A-module, i.e., it obeys the graded

Leibniz rule (6.2.16). �

6.3 Graded manifolds

A graded manifold of dimension (n, m) is defined as a local-ringed space

(Z, A) where Z is an n-dimensional smooth manifold Z and A = A0 ⊕A1

is a sheaf of graded commutative algebras of rank m such that:

• there is the exact sequence of sheaves

0 → R → A
σ→C∞

Z → 0, R = A1 + (A1)
2, (6.3.1)

where C∞
Z is the sheaf of smooth real functions on Z;

• R/R2 is a locally free sheaf of C∞
Z -modules of finite rank (with

respect to pointwise operations), and the sheaf A is locally isomorphic

to the exterior product ∧C∞

Z
(R/R2).

The sheaf A is called a structure sheaf of a graded manifold (Z, A),

and a manifold Z is said to be the body of (Z, A). Sections of the sheaf

A are called graded functions on a graded manifold (Z, A). They make

up a graded commutative C∞(Z)-ring A(Z) called the structure ring of

(Z, A).

A graded manifold (Z, A) possesses the following local structure. Given

a point z ∈ Z, there exists its open neighborhood U , called a splitting

domain, such that

A(U) = C∞(U) ⊗ ∧R
m. (6.3.2)
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This means that the restriction A|U of the structure sheaf A to U is

isomorphic to the sheaf C∞
U ⊗ ∧R

m of sections of some exterior bundle

∧E∗
U = U × ∧R

m → U.

The well-known Batchelor theorem states that such a structure of a

graded manifold is global as follows.

Theorem 6.3.1: Let (Z, A) be a graded manifold. There exists a vector

bundle E → Z with an m-dimensional typical fibre V such that the

structure sheaf A of (Z, A) is isomorphic to the structure sheaf AE = S∧E∗

of germs of sections of the exterior bundle ∧E∗ (1.2.2), whose typical

fibre is the Grassmann algebra ∧V ∗. �

Note that Batchelor’s isomorphism in Theorem 6.3.1 fails to be canon-

ical. In field models, it however is fixed from the beginning. Therefore,

we restrict our consideration to graded manifolds (Z, AE) whose struc-

ture sheaf is the sheaf of germs of sections of some exterior bundle ∧E∗.

We agree to call (Z, AE) a simple graded manifold modelled over a vector

bundle E → Z, called its characteristic vector bundle. Accordingly, the

structure ring AE of a simple graded manifold (Z, AE) is the structure

module

AE = AE(Z) = ∧E∗(Z) (6.3.3)

of sections of the exterior bundle ∧E∗. Automorphisms of a simple

graded manifold (Z, AE) are restricted to those induced by automor-

phisms of its characteristic vector bundles E → Z (see Remark 6.3.2).

Combining Batchelor Theorem 6.3.1 and classical Serre–Swan The-

orem 8.6.3, we come to the following Serre–Swan theorem for graded

manifolds.

Theorem 6.3.2: Let Z be a smooth manifold. A graded commutative

C∞(Z)-algebra A is isomorphic to the structure ring of a graded manifold

with a body Z iff it is the exterior algebra of some projective C∞(Z)-

module of finite rank. �
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Given a graded manifold (Z, AE), every trivialization chart (U ; zA, ya)

of the vector bundle E → Z yields a splitting domain (U ; zA, ca) of

(Z, AE). Graded functions on such a chart are Λ-valued functions

f =
m∑

k=0

1

k!
fa1...ak

(z)ca1 · · · cak, (6.3.4)

where fa1···ak
(z) are smooth functions on U and {ca} is the fibre basis for

E∗. In particular, the sheaf epimorphism σ in (6.3.1) is induced by the

body map of Λ. One calls {zA, ca} the local basis for the graded manifold

(Z, AE). Transition functions y′a = ρa
b(z

A)yb of bundle coordinates on

E → Z induce the corresponding transformation

c′a = ρa
b(z

A)cb (6.3.5)

of the associated local basis for the graded manifold (Z, AE) and the

according coordinate transformation law of graded functions (6.3.4).

Remark 6.3.1: Strictly speaking, elements ca of the local basis

for a graded manifold are locally constant sections ca of E∗ → X such

that yb ◦ ca = δa
b . Therefore, graded functions are locally represented

by Λ-valued functions (6.3.4), but they are not Λ-valued functions on a

manifold Z because of the transformation law (6.3.5). �

Remark 6.3.2: In general, automorphisms of a graded manifold read

c′a = ρa(zA, cb). (6.3.6)

Considering a simple graded manifold (Z, AE), we restrict the class of

graded manifold transformations (6.3.6) to the linear ones (6.3.5), com-

patible with given Batchelor’s isomorphism. �

Let E → Z and E ′ → Z be vector bundles and Φ : E → E ′ their

bundle morphism over a morphism ϕ : Z → Z ′. Then every section s∗ of

the dual bundle E ′∗ → Z ′ defines the pull-back section Φ∗s∗ of the dual

bundle E∗ → Z by the law

vz�Φ
∗s∗(z) = Φ(vz)�s

∗(ϕ(z)), vz ∈ Ez.
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It follows that the bundle morphism (Φ, ϕ) yields a morphism of simple

graded manifolds

Φ̂ : (Z, AE) → (Z ′, AE′) (6.3.7)

as local-ringed spaces. This is a pair (ϕ, ϕ∗ ◦ Φ∗) of a morphism ϕ of

body manifolds and the composition ϕ∗ ◦ Φ∗ of the pull-back

AE′ � f → Φ∗f ∈ AE

of graded functions and the direct image ϕ∗ of the sheaf AE onto Z ′.

Relative to local bases (zA, ca) and (z′A, c′a) for (Z, AE) and (Z ′, AE′),

the morphism (6.3.7) of graded manifolds reads

Φ̂(z) = ϕ(z), Φ̂(c′a) = Φa
b(z)cb.

Given a graded manifold (Z, A), by the sheaf dA of graded derivations

of A is meant a subsheaf of endomorphisms of the structure sheaf A

such that any section u ∈ dA(U) of dA over an open subset U ⊂ Z is

a graded derivation of the real graded commutative algebra A(U), i.e.,

u ∈ d(A(U)). Conversely, one can show that, given open sets U ′ ⊂ U ,

there is a surjection of the graded derivation modules

d(A(U)) → d(A(U ′)).

It follows that any graded derivation of the local graded algebra A(U)

also is a local section over U of the sheaf dA. Global sections of dA are

called graded vector fields on the graded manifold (Z, A). They make

up the graded derivation module dA(Z) of the real graded commutative

ring A(Z). This module is a real Lie superalgebra with the superbracket

(6.2.4).

A key point is that graded vector fields u ∈ dAE on a simple graded

manifold (Z, AE) can be represented by sections of some vector bundle

as follows. Due to the canonical splitting V E = E × E, the vertical

tangent bundle V E of E → Z can be provided with the fibre bases
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{∂/∂ca}, which are the duals of the bases {ca}. Then graded vector

fields on a splitting domain (U ; zA, ca) of (Z, AE) read

u = uA∂A + ua ∂

∂ca
, (6.3.8)

where uλ, ua are local graded functions on U . In particular,

∂

∂ca
◦

∂

∂cb
= −

∂

∂cb
◦

∂

∂ca
, ∂A ◦

∂

∂ca
=

∂

∂ca
◦ ∂A.

Graded derivations (6.3.8) act on graded functions f (6.3.4) by the rule

u(fa...bc
a · · · cb) = uA∂A(fa...b)c

a · · · cb + ukfa...b

∂

∂ck
�(ca · · · cb). (6.3.9)

This rule implies the corresponding coordinate transformation law

u′A = uA, u′a = ρa
ju

j + uA∂A(ρa
j )c

j

of graded vector fields. It follows that graded vector fields (6.3.8) can

be represented by sections of the following vector bundle VE → Z. This

vector bundle is locally isomorphic to the vector bundle

VE|U ≈ ∧E∗ ⊗
Z

(E ⊕
Z

TZ)|U , (6.3.10)

and is characterized by an atlas of bundle coordinates

(zA, zA
a1...ak

, vi
b1...bk

), k = 0, . . . , m,

possessing the transition functions

z′Ai1...ik = ρ−1a1

i1
· · · ρ−1ak

ik
zA
a1...ak

,

v′ij1...jk
= ρ−1b1

j1
· · · ρ−1bk

jk

⎡⎣ρi
jv

j
b1...bk

+
k!

(k − 1)!
zA
b1...bk−1

∂Aρi
bk

⎤⎦ ,

which fulfil the cocycle condition (1.1.4). Thus, the graded derivation

module dAE is isomorphic to the structure module VE(Z) of global sec-

tions of the vector bundle VE → Z.

There is the exact sequence

0 → ∧E∗ ⊗
Z

E → VE → ∧E∗ ⊗
Z

TZ → 0 (6.3.11)
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of vector bundles over Z. Its splitting

γ̃ : żA∂A → żA

(
∂A + γ̃a

A

∂

∂ca

)
(6.3.12)

transforms every vector field τ on Z into the graded vector field

τ = τA∂A → ∇τ = τA

(
∂A + γ̃a

A

∂

∂ca

)
, (6.3.13)

which is a graded derivation of the real graded commutative ring AE

(6.3.3) satisfying the Leibniz rule

∇τ(sf) = (τ�ds)f + s∇τ(f), f ∈ AE, s ∈ C∞(Z).

It follows that the splitting (6.3.12) of the exact sequence (6.3.11) yields

a connection on the graded commutative C∞(Z)-ring AE in accordance

with Definition 6.2.2. It is called a graded connection on the simple

graded manifold (Z, AE). In particular, this connection provides the

corresponding horizontal splitting

u = uA∂A + ua ∂

∂ca
= uA

(
∂A + γ̃a

A

∂

∂ca

)
+ (ua − uAγ̃a

A)
∂

∂ca

of graded vector fields. In accordance with Theorem 1.2.2, a graded

connection (6.3.12) always exists.

Remark 6.3.3: By virtue of the isomorphism (6.3.2), any connection

γ̃ on a graded manifold (Z, A), restricted to a splitting domain U , takes

the form (6.3.12). Given two splitting domains U and U ′ of (Z, A) with

the transition functions (6.3.6), the connection components γ̃a
A obey the

transformation law

γ̃′a
A = γ̃b

A

∂

∂cb
ρa + ∂Aρa. (6.3.14)

If U and U ′ are the trivialization charts of the same vector bundle E in

Theorem 6.3.1 together with the transition functions (6.3.5), the trans-

formation law (6.3.14) takes the form

γ̃′a
A = ρa

b(z)γ̃b
A + ∂Aρa

b(z)cb. (6.3.15)

�
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Remark 6.3.4: Every linear connection

γ = dzA ⊗ (∂A + γA
a
by

b∂a)

on a vector bundle E → Z yields the graded connection

γS = dzA ⊗
(
∂A + γA

a
bc

b ∂

∂ca

)
(6.3.16)

on the simple graded manifold (Z, AE) modelled over E. In view of

Remark 6.3.3, γS also is a graded connection on the graded manifold

(Z, A) ∼= (Z, AE), but its linear form (6.3.16) is not maintained under

the transformation law (6.3.14). �

6.4 Graded differential forms

Given the structure ring AE of graded functions on a simple graded mani-

fold (Z, AE) and the real Lie superalgebra dAE of its graded derivations,

let us consider the graded Chevalley–Eilenberg differential calculus

S∗[E; Z] = O∗[dAE] (6.4.1)

over AE. Since the graded derivation module dAE is isomorphic to the

structure module of sections of the vector bundle VE → Z, elements of

S∗[E; Z] are sections of the exterior bundle ∧VE of the AE-dual VE → Z

of VE. The bundle VE is locally isomorphic to the vector bundle

VE|U ≈ (E∗ ⊕
Z

T ∗Z)|U . (6.4.2)

With respect to the dual fibre bases {dzA} for T ∗Z and {dcb} for E∗,

sections of VE take the coordinate form

φ = φAdzA + φadca,

together with transition functions

φ′
a = ρ−1b

aφb, φ′
A = φA + ρ−1b

a∂A(ρa
j )φbc

j.
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The duality isomorphism S1[E; Z] = dA∗
E (6.2.11) is given by the graded

interior product

u�φ = uAφA + (−1)[φa]uaφa. (6.4.3)

Elements of S∗[E; Z] are called graded exterior forms on the graded

manifold (Z, AE).

Seen as an AE-algebra, the DBGA S∗[E; Z] (6.4.1) on a splitting

domain (U ; zA, ca) is locally generated by the graded one-forms dzA, dci

such that

dzA ∧ dci = −dci ∧ dzA, dci ∧ dcj = dcj ∧ dci. (6.4.4)

Accordingly a graded Chevalley–Eilenberg coboundary operator d (6.2.7),

called the graded exterior differential, reads

dφ = dzA ∧ ∂Aφ + dca ∧
∂

∂ca
φ,

where the derivatives ∂λ, ∂/∂ca act on coefficients of graded exterior

forms by the formula (6.3.9), and they are graded commutative with the

graded forms dzA and dca. The formulas (6.2.9) – (6.2.13) hold.

Theorem 6.4.1: The DBGA S∗[E; Z] (6.4.1) is a minimal differential

calculus over AE, i.e., it is generated by elements df , f ∈ AE. �

The bigraded de Rham complex (6.2.14) of the minimal Chevalley–

Eilenberg differential calculus S∗[E; Z] reads

0 → R → AE
d−→S1[E; Z]

d−→· · · Sk[E; Z]
d−→· · · . (6.4.5)

Its cohomology H∗(AE) is called the de Rham cohomology of a simple

graded manifold (Z, AE).

In particular, given the DGA O∗(Z) of exterior forms on Z, there

exist the canonical monomorphism

O∗(Z) → S∗[E; Z] (6.4.6)

and the body epimorphism S∗[E; Z] → O∗(Z) which are cochain mor-

phisms of the de Rham complexes (6.4.5) and (8.6.5).
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Theorem 6.4.2: The de Rham cohomology of a simple graded manifold

(Z, AE) equals the de Rham cohomology of its body Z. �

Corollary 6.4.3: Any closed graded exterior form is decomposed into

a sum φ = σ + dξ where σ is a closed exterior form on Z. �



Chapter 7

Lagrangian theory

Lagrangian theory on fibre bundles is algebraically formulated in terms of

the variational bicomplex without appealing to the calculus of variations.

This formulation is extended to Lagrangian theory on graded manifolds

[9, 24].

7.1 Variational bicomplex

Let Y → X be a fibre bundle. The DGA O∗
∞ (2.4.6), decomposed into

the variational bicomplex, describes finite order Lagrangian theories on

Y → X. One also considers the variational bicomplex of the DGA

Q∗
∞ (2.4.8) and different variants of the variational sequence of finite jet

order.

In order to transform the bicomplex O∗,∗
∞ into the variational one, let

us consider the following two operators acting on O∗,n
∞ .

(i) There exists an R-module endomorphism

� =
∑
k>0

1

k
� ◦ hk ◦ hn : O∗>0,n

∞ → O∗>0,n
∞ , (7.1.1)

�(φ) =
∑

0≤|Λ|

(−1)|Λ|θi ∧ [dΛ(∂Λ
i �φ)], φ ∈ O>0,n

∞ ,

possessing the following properties.

Lemma 7.1.1: For any φ ∈ O>0,n
∞ , the form φ−�(φ) is locally dH-exact

on each coordinate chart (2.4.3). �

131
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Lemma 7.1.2: The operator � obeys the relation

(� ◦ dH)(ψ) = 0, ψ ∈ O>0,n−1
∞ . (7.1.2)

�

It follows from Lemmas 7.1.1 and 7.1.2 that � (7.1.1) is a projector.

(ii) One defines the variational operator

δ = � ◦ d : O∗,n
∞ → O∗+1,n

∞ , (7.1.3)

which is nilpotent, i.e., δ ◦ δ = 0, and obeys the relation δ ◦ � = δ.

Let us denote Ek = �(Ok,n
∞ ). Provided with the operators dH , dV , �

and δ, the DGA O∗
∞ is decomposed into the variational bicomplex

...
...

...
...

dV � dV � dV � −δ �

0→ O1,0
∞

dH→ O1,1
∞

dH→· · · O1,n
∞

�
→ E1 → 0

dV � dV � dV � −δ �

0→R→ O0
∞

dH→ O0,1
∞

dH→· · · O0,n
∞ ≡ O0,n

∞

� � �

0→R→ O0(X)
d→ O1(X)

d→· · · On(X)
d→ 0

� � �

0 0 0

(7.1.4)

It possesses the following cohomology [20, 24].

Theorem 7.1.3: The second row from the bottom and the last column

of the variational bicomplex (7.1.4) make up the variational complex

0 → R → O0
∞

dH−→O0,1
∞ · · ·

dH−→O0,n
∞

δ−→E1
δ−→E2 −→· · · .(7.1.5)

Its cohomology is isomorphic to the de Rham cohomology of a fibre

bundle Y , namely,

Hk<n(dH ;O∗
∞) = Hk<n

DR (Y ), Hk≥n(δ;O∗
∞) = Hk≥n

DR (Y ). (7.1.6)

�
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Theorem 7.1.4: The rows of contact forms of the variational bicomplex

(7.1.4) are exact sequences. �

The cohomology isomorphism (7.1.6) gives something more. Due to

the relations dH ◦h0 = h0◦d and δ◦� = δ, we have the cochain morphism

of the de Rham complex (2.4.7) of the DGA O∗
∞ to its variational com-

plex (7.1.5). By virtue of Theorems 2.4.3 and 7.1.3, the corresponding

homomorphism of their cohomology groups is an isomorphism. Then

the splitting of a closed form φ ∈ O∗
∞ in Corollary 2.4.4 leads to the

following decompositions.

Theorem 7.1.5: Any dH-closed form φ ∈ O0,m, m < n, is represented

by a sum

φ = h0σ + dHξ, ξ ∈ Om−1
∞ , (7.1.7)

where σ is a closed m-form on Y . Any δ-closed form φ ∈ Ok,n is split

into

φ = h0σ + dHξ, k = 0, ξ ∈ O0,n−1
∞ , (7.1.8)

φ = �(σ) + δ(ξ), k = 1, ξ ∈ O0,n
∞ , (7.1.9)

φ = �(σ) + δ(ξ), k > 1, ξ ∈ Ek−1, (7.1.10)

where σ is a closed (n + k)-form on Y . �

7.2 Lagrangian theory on fibre bundles

In Lagrangian formalism on fibre bundles, a finite order Lagrangian and

its Euler–Lagrange operator are defined as elements

L = Lω ∈ O0,n
∞ , (7.2.1)

δL = EL = Eiθ
i ∧ ω ∈ E1, (7.2.2)

Ei =
∑

0≤|Λ|

(−1)|Λ|dΛ(∂Λ
i L), (7.2.3)
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of the variational complex (7.1.5) (see the notation (1.4.1)). Compo-

nents Ei (7.2.3) of the Euler–Lagrange operator (7.2.2) are called the

variational derivatives. Elements of E1 are called the Euler–Lagrange-

type operators.

Hereafter, we call a pair (O∗
∞, L) the Lagrangian system. The follow-

ing are corollaries of Theorem 7.1.5.

Corollary 7.2.1: A finite order Lagrangian L (7.2.1) is variationally

trivial, i.e., δ(L) = 0 iff

L = h0σ + dHξ, ξ ∈ O0,n−1
∞ , (7.2.4)

where σ is a closed n-form on Y . �

Corollary 7.2.2: A finite order Euler–Lagrange-type operator E ∈ E1

satisfies the Helmholtz condition δ(E) = 0 iff

E = δL + �(σ), L ∈ O0,n
∞ ,

where σ is a closed (n + 1)-form on Y . �

A glance at the expression (7.2.2) shows that, if a Lagrangian L (7.2.1)

is of r-order, its Euler–Lagrange operator EL is of 2r-order. Its kernel

is called the Euler–Lagrange equation. Euler–Lagrange equations tradi-

tionally came from the variational formula

dL = δL − dHΞL (7.2.5)

of the calculus of variations. In formalism of the variational bicomplex,

this formula is a corollary of Theorem 7.1.4.

Corollary 7.2.3: The exactness of the row of one-contact forms of the

variational bicomplex (7.1.4) at the term O1,n
∞ relative to the projector

� provides the R-module decomposition

O1,n
∞ = E1 ⊕ dH(O1,n−1

∞ ).

In particular, any Lagrangian L admits the decomposition (7.2.5). �
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Defined up to a dH-closed term, a form ΞL ∈ On
∞ in the variational

formula (7.2.5) reads

ΞL = L + [(∂λ
i L − dμF

μλ
i )θi +

∑
s=1

F λνs...ν1

i θi
νs...ν1

] ∧ ωλ, (7.2.6)

F νk...ν1

i = ∂νk...ν1

i L − dμF
μνk...ν1

i + σνk...ν1

i , k = 2, 3, . . . ,

where σνk...ν1

i are local functions such that

σ
(νkνk−1)...ν1

i = 0.

The form ΞL (7.2.6) possesses the following properties:

• h0(ΞL) = L,

• h0(ϑ�dΞL) = ϑiEiω for any derivation ϑ (2.4.12).

Consequently, ΞL is a Lepage equivalent of a Lagrangian L.

A special interest is concerned with Lagrangian theories on an affine

bundle Y → X. Since X is a strong deformation retract of an affine

bundle Y , the de Rham cohomology of Y equals that of X. In this case,

the cohomology (7.1.6) of the variational complex (7.1.5) equals the de

Rham cohomology of X, namely,

H<n(dH ;O∗
∞) = H<n

DR(X),

Hn(δ;O∗
∞) = Hn

DR(X), (7.2.7)

H>n(δ;O∗
∞) = 0.

It follows that every dH-closed form φ ∈ O0,m<n
∞ is represented by the

sum

φ = σ + dHξ, ξ ∈ O0,m−1
∞ , (7.2.8)

where σ is a closed m-form on X. Similarly, any variationally trivial

Lagrangian takes the form

L = σ + dHξ, ξ ∈ O0,n−1
∞ , (7.2.9)

where σ is an n-form on X.
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In view of the cohomology isomorphism (7.2.7), if Y → X is an affine

bundle, let us restrict our consideration to the short variational complex

0 → R → O0
∞

dH−→O0,1
∞ · · ·

dH−→O0,n
∞

δ−→E1, (7.2.10)

whose non-trivial cohomology equals that of the variational complex

(7.1.5). Let us consider a DGA P∗
∞ ⊂ O∗

∞ of exterior forms whose coef-

ficients are polynomials in jet coordinates yi
Λ, 0 ≤ |Λ|, of the continuous

bundle J∞Y → X.

Theorem 7.2.4: The cohomology of the short variational complex

0 → R → P0
∞

dH−→P0,1
∞ · · ·

dH−→P0,n
∞

δ−→ 0 (7.2.11)

of the polynomial algebra P∗
∞ equals that of the complex (7.2.10), i.e.,

the de Rham cohomology of X. �

Given a Lagrangian system (O∗
∞, L), its infinitesimal transformations

are defined to be contact derivations of the ring O0
∞.

A derivation ϑ ∈ dO0
∞ (2.4.12) is called contact if the Lie derivative

Lυ preserves the ideal of contact forms of the DGA O∗
∞, i.e., the Lie

derivative Lυ of a contact form is a contact form.

Lemma 7.2.5: A derivation ϑ (2.4.12) is contact iff it takes the form

ϑ = υλ∂λ + υi∂i +
∑

0<|Λ|

[dΛ(υi − yi
μυ

μ) + yi
μ+Λυμ]∂Λ

i . (7.2.12)

�

The expression (2.2.8) enables one to regard a contact derivation ϑ

(7.2.12) as an infinite order jet prolongation ϑ = J∞υ of its restriction

υ = υλ∂λ + υi∂i (7.2.13)

to the ring C∞(Y ). Since coefficients υλ and υi of υ (7.2.13) depend

generally on jet coordinates yi
Λ, 0 < |Λ|, one calls υ (7.2.13) a generalized

vector field. It can be represented as a section of some pull-back bundle

JrY ×
Y

TY → JrY.
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A contact derivation ϑ (7.2.12) is called projectable, if the generalized

vector field υ (7.2.13) projects onto a vector field υλ∂λ on X.

Any contact derivation ϑ (7.2.12) admits the horizontal splitting

ϑ = ϑH + ϑV = υλdλ + [υi
V ∂i +

∑
0<|Λ|

dΛυi
V ∂Λ

i ], (7.2.14)

υ = υH + υV = υλdλ + (υi − yi
μυ

μ)∂i, (7.2.15)

relative to the canonical connection ∇ (2.4.14) on the C∞(X)-ring O0
∞.

Lemma 7.2.6: Any vertical contact derivation

ϑ = υi∂i +
∑

0<|Λ|

dΛυi∂Λ
i (7.2.16)

obeys the relations

ϑ�dHφ = −dH(ϑ�φ), (7.2.17)

Lϑ(dHφ) = dH(Lϑφ), φ ∈ O∗
∞. (7.2.18)

�

The global decomposition (7.2.5) leads to the following first varia-

tional formula (Theorem 7.2.7) and the first Noether theorem (Theorem

7.2.9).

Theorem 7.2.7: Given a Lagrangian L ∈ O0,n
∞ , its Lie derivative LυL

along a contact derivation υ (7.2.14) fulfils the first variational formula

LϑL = υV �δL + dH(h0(ϑ�ΞL)) + LdV (υH�ω), (7.2.19)

where ΞL is the Lepage equivalent (7.2.6) of L. �

A contact derivation ϑ (7.2.12) is called a variational symmetry of a

Lagrangian L if the Lie derivative LϑL is dH-exact, i.e.,

LϑL = dHσ. (7.2.20)

Lemma 7.2.8: A glance at the expression (7.2.19) shows the following.

(i) A contact derivation ϑ is a variational symmetry only if it is pro-

jectable.
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(ii) Any projectable contact derivation is a variational symmetry of

a variationally trivial Lagrangian. It follows that, if ϑ is a variational

symmetry of a Lagrangian L, it also is a variational symmetry of a

Lagrangian L + L0, where L0 is a variationally trivial Lagrangian.

(iii) A projectable contact derivations ϑ is a variational symmetry iff

its vertical part υV (7.2.14) is well.

(iv) A projectable contact derivations ϑ is a variational symmetry iff

the density υV �δL is dH-exact. �

It is readily observed that variational symmetries of a Lagrangian L

constitute a real vector subspace GL of the derivation module dO0
∞. By

virtue of item (ii) of Lemma 7.2.8, the Lie bracket

L[ϑ,ϑ′] = [Lϑ,Lϑ′]

of variational symmetries is a variational symmetry and, therefore, their

vector space GL is a real Lie algebra. The following is the first Noether

theorem.

Theorem 7.2.9: If a contact derivation ϑ (7.2.12) is a variational sym-

metry (7.2.20) of a Lagrangian L, the first variational formula (7.2.19)

restricted to the kernel of the Euler–Lagrange operator KerEL leads to

the weak conservation law

0 ≈ dH(h0(ϑ�ΞL) − σ) (7.2.21)

on the shell δL = 0. �

A variational symmetry ϑ of a Lagrangian L is called its exact sym-

metry or, simply, a symmetry if

LϑL = 0. (7.2.22)

Symmetries of a Lagrangian L constitute a real vector space, which is a

real Lie algebra. Its vertical symmetries υ (7.2.16) obey the relation

LυL = υ�dL
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and, therefore, make up a O0
∞-module which is a Lie C∞(X)-algebra.

If ϑ is an exact symmetry of a Lagrangian L, the weak conservation

law (7.2.21) takes the form

0 ≈ dH(h0(ϑ�ΞL)) = −dHJυ, (7.2.23)

where

Jυ = J μ
υ ωμ = −h0(ϑ�ΞL) (7.2.24)

is called the symmetry current. Of course, the symmetry current (7.2.24)

is defined with the accuracy of a dH-closed term.

Let ϑ be an exact symmetry of a Lagrangian L. Whenever L0 is

a variationally trivial Lagrangian, ϑ is a variational symmetry of the

Lagrangian L + L0 such that the weak conservation law (7.2.21) for

this Lagrangian is reduced to the weak conservation law (7.2.23) for a

Lagrangian L as follows:

Lϑ(L + L0) = dHσ ≈ dHσ − dHJυ.

Remark 7.2.1: In accordance with standard terminology, variational

and exact symmetries generated by generalized vector fields (7.2.13) are

called generalized symmetries because they depend on derivatives of vari-

ables. Accordingly, by variational symmetries and symmetries one means

only those generated by vector fields u on Y . We agree to call them clas-

sical symmetries. �

Let ϑ be a classical variational symmetry of a Lagrangian L, i.e., ϑ

(7.2.12) is the jet prolongation of a vector field u on Y . Then the relation

LϑEL = δ(LϑL) (7.2.25)

holds. It follows that ϑ also is a symmetry of the Euler–Lagrange oper-

ator EL of L, i.e., LϑEL = 0. However, the equality (7.2.25) fails to be

true in the case of generalized symmetries.



140 CHAPTER 7. LAGRANGIAN THEORY

Definition 7.2.10: Let E → X be a vector bundle and E(X) the

C∞(X) module E(X) of sections of E → X. Let ζ be a linear differential

operator on E(X) taking values into the vector space GL of variational

symmetries of a Lagrangian L (see Definition 8.2.1). Elements

uξ = ζ(ξ) (7.2.26)

of Im ζ are called the gauge symmetry of a Lagrangian L parameterized

by sections ξ of E → X. They are called the gauge parameters. �

Remark 7.2.2: The differential operator ζ in Definition 7.2.10 takes

its values into the vector space GL as a subspace of the C∞(X)-module

dO0
∞, but it sends the C∞(X)-module E(X) into the real vector space

GL ⊂ dO0
∞. The differential operator ζ is assumed to be at least of first

order. �

Equivalently, the gauge symmetry (7.2.26) is given by a section ζ̃ of

the fibre bundle

(JrY ×
Y

JmE)×
Y

TY → JrY ×
Y

JmE

(see Definition 2.3.2) such that

uξ = ζ(ξ) = ζ̃ ◦ ξ

for any section ξ of E → X. Hence, it is a generalized vector field uζ on

the product Y × E represented by a section of the pull-back bundle

Jk(Y ×
X

E)×
Y

T (Y ×
X

E) → Jk(Y ×
X

E), k = max(r, m),

which lives in TY ⊂ T (Y × E). This generalized vector field yields a

contact derivation J∞uζ (7.2.12) of the real ring O0
∞[Y ×E] which obeys

the following condition.

Condition 7.2.11: Given a Lagrangian

L ∈ O0,n
∞ E ⊂ O0,n

∞ [Y × E],
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let us consider its Lie derivative

LJ∞uζ
L = J∞uζ�dL + d(J∞uζ�L) (7.2.27)

where d is the exterior differential of O0
∞[Y × E]. Then, for any section

ξ of E → X, the pull-back ξ∗Lϑ is dH-exact. �

It follows from the first variational formula (7.2.19) for the Lie deriva-

tive (7.2.27) that Condition 7.2.11 holds only if uζ projects onto a gen-

eralized vector field on E and, in this case, iff the density (uζ)V �E is

dH-exact. Thus, we come to the following equivalent definition of gauge

symmetries.

Definition 7.2.12: Let E → X be a vector bundle. A gauge symmetry

of a Lagrangian L parameterized by sections ξ of E → X is defined as a

contact derivation ϑ = J∞u of the real ring O0
∞[Y × E] such that:

(i) it vanishes on the subring O0
∞E,

(ii) the generalized vector field u is linear in coordinates χa
Λ on J∞E,

and it projects onto a generalized vector field on E, i.e., it takes the form

u =

⎛⎜⎝ ∑
0≤|Λ|≤m

uλΛ
a (xμ)χa

Λ

⎞⎟⎠ ∂λ +

⎛⎜⎝ ∑
0≤|Λ|≤m

uiΛ
a (xμ, yj

Σ)χa
Λ

⎞⎟⎠ ∂i, (7.2.28)

(iii) the vertical part of u (7.2.28) obeys the equality

uV �E = dHσ. (7.2.29)

�

For the sake of convenience, we also call a generalized vector field

(7.2.28) the gauge symmetry. By virtue of item (iii) of Definition 7.2.12,

u (7.2.28) is a gauge symmetry iff its vertical part is so.

Gauge symmetries possess the following particular properties.

(i) Let E ′ → X be a vector bundle and ζ ′ a linear E(X)-valued

differential operator on the C∞(X)-module E ′(X) of sections of E ′ → X.

Then

uζ ′(ξ′) = (ζ ◦ ζ ′)(ξ′)
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also is a gauge symmetry of L parameterized by sections ξ′ of E ′ → X.

It factorizes through the gauge symmetries uφ (7.2.26).

(ii) If a gauge symmetry is an exact Lagrangian symmetry, the cor-

responding conserved symmetry current Ju (7.2.24) is reduced to a su-

perpotential (see Theorem 7.5.4).

(iii) The direct second Noether theorem associates to a gauge sym-

metry of a Lagrangian L the Noether identities of its Euler–Lagrange

operator δL.

Theorem 7.2.13: Let u (7.2.28) be a gauge symmetry of a Lagrangian

L, then its Euler–Lagrange operator δL obeys the Noether identities

Ea =
∑

0≤|Λ|

(−1)|Λ|dΛ[(uiΛ
a − yi

λu
λΛ
a )Ei] = (7.2.30)

∑
0≤|Λ|

η(ui
a − yi

λu
λ
a)

ΛdΛEi = 0

(see Notation 7.5.2). �

It follows from direct second Noether Theorem 7.2.13 that gauge sym-

metries of Lagrangian field theory characterize its degeneracy. A prob-

lem is that any Lagrangian possesses gauge symmetries and, therefore,

one must separate them into the trivial and non-trivial ones. More-

over, gauge symmetries can be reducible, i.e., Ker ζ �= 0. To solve these

problems, we follow a different definition of gauge symmetries as those

associated to non-trivial Noether identities by means of inverse second

Noether Theorem 7.5.3.

7.3 Grassmann-graded Lagrangian theory

We start with the following definition of jets of odd variables. Let us con-

sider a vector bundle F → X and the simple graded manifolds (X,AJrF )

modelled over the vector bundles JrF → X. There is the direct system

of the corresponding DBGA

S∗[F ; X] −→S∗[J1F ; X] −→· · · S∗[JrF ; X] −→· · ·
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of graded exterior forms on graded manifolds (X,AJrF ). Its direct limit

S∗
∞[F ; X] is the Grassmann-graded counterpart of the DGA P∗

∞.

In order to describe Lagrangian theories both of even and odd vari-

ables, let us consider a composite bundle

F → Y → X (7.3.1)

where F → Y is a vector bundle provided with bundle coordinates

(xλ, yi, qa). We call the simple graded manifold (Y, AF ) modelled over

F → Y the composite graded manifold. Let us associate to this graded

manifold the following DBGA S∗
∞[F ; Y ].

It is readily observed that the jet manifold JrF of F → X is a vec-

tor bundle JrF → JrY coordinated by (xλ, yi
Λ, qa

Λ), 0 ≤ |Λ| ≤ r. Let

(JrY, Ar) be a simple graded manifold modelled over this vector bundle.

Its local basis is (xλ, yi
Λ, ca

Λ), 0 ≤ |Λ| ≤ r. Let

S∗
r [F ; Y ] = S∗

r [J
rF ; JrY ] (7.3.2)

denote the DBGA of graded exterior forms on the simple graded manifold

(JrY, Ar). In particular, there is a cochain monomorphism

O∗
r = O∗(JrY ) → S∗

r [F ; Y ]. (7.3.3)

The surjection

πr+1
r : Jr+1Y → JrY

yields an epimorphism of graded manifolds

(πr+1
r , π̂r+1

r ) : (Jr+1Y, Ar+1) → (JrY, Ar),

including the sheaf monomorphism

π̂r+1
r : πr+1∗

r Ar → Ar+1,

where πr+1∗
r Ar is the pull-back onto Jr+1Y of the continuous fibre bundle

Ar → JrY . This sheaf monomorphism induces the monomorphism of the

canonical presheaves Ar → Ar+1, which associates to each open subset
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U ⊂ Jr+1Y the ring of sections of Ar over πr+1
r (U). Accordingly, there

is a monomorphism of the structure rings

πr+1∗
r : S0

r [F ; Y ] → S0
r+1[F ; Y ] (7.3.4)

of graded functions on graded manifolds (JrY, Ar) and (Jr+1Y, Ar+1). By

virtue of Lemma 6.4.1, the differential calculus S∗
r [F ; Y ] and S∗

r+1[F ; Y ]

are minimal. Therefore, the monomorphism (7.3.4) yields that of the

DBGA

πr+1∗
r : S∗

r [F ; Y ] → S∗
r+1[F ; Y ]. (7.3.5)

As a consequence, we have the direct system of DBGAs

S∗[F ; Y ]
π∗

−→S∗
1 [F ; Y ] −→· · · S∗

r−1[F ; Y ]
πr∗

r−1−→ (7.3.6)

S∗
r [F ; Y ] −→· · · .

The DBGA S∗
∞[F ; Y ] that we associate to the composite graded manifold

(Y, AF ) is defined as the direct limit

S∗
∞[F ; Y ] =

→
limS∗

r [F ; Y ] (7.3.7)

of the direct system (7.3.6). It consists of all graded exterior forms φ ∈

S∗[Fr; J
rY ] on graded manifolds (JrY, Ar) modulo the monomorphisms

(7.3.5). Its elements obey the relations (6.2.9) – (6.2.10).

Cochain monomorphisms O∗
r → S∗

r [F ; Y ] (7.3.3) provide a monomor-

phism of the direct system (2.4.5) to the direct system (7.3.6) and, con-

sequently, the monomorphism

O∗
∞ → S∗

∞[F ; Y ] (7.3.8)

of their direct limits. In particular, S∗
∞[F ; Y ] is an O0

∞-algebra. Accord-

ingly, the body epimorphisms S∗
r [F ; Y ] → O∗

r yield the epimorphism of

O0
∞-algebras

S∗
∞[F ; Y ] → O∗

∞. (7.3.9)
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It is readily observed that the morphisms (7.3.8) and (7.3.9) are cochain

morphisms between the de Rham complex (2.4.7) of the DGA O∗
∞ (2.4.6)

and the de Rham complex

0 → R → S0
∞[F ; Y ]

d−→S1
∞[F ; Y ] · · · d−→Sk

∞[F ; Y ] −→· · · (7.3.10)

of the DBGA S0
∞[F ; Y ]. Moreover, the corresponding homomorphisms

of cohomology groups of these complexes are isomorphisms as follows.

Theorem 7.3.1: There is an isomorphism

H∗(S∗
∞[F ; Y ]) = H∗

DR(Y ) (7.3.11)

of the cohomology H∗(S∗
∞[F ; Y ]) of the de Rham complex (7.3.10) to

the de Rham cohomology H∗
DR(Y ) of Y . �

Corollary 7.3.2: Any closed graded form φ ∈ S∗
∞[F ; Y ] is decomposed

into the sum φ = σ + dξ where σ is a closed exterior form on Y . �

Similarly to the DGA O∗
∞ (2.4.6), one thinks of elements of S∗

∞[F ; Y ]

as being graded differential forms on the infinite order jet manifold J∞Y .

We can restrict S∗
∞[F ; Y ] to the coordinate chart (2.4.3) of J∞Y and say

that S∗
∞[F ; Y ] as an O0

∞-algebra is locally generated by the elements

(ca
Λ, dxλ, θa

Λ = dca
Λ − ca

λ+Λdxλ, θi
Λ = dyi

Λ − yi
λ+Λdxλ), 0 ≤ |Λ|,

where ca
Λ, θa

Λ are odd and dxλ, θi
Λ are even. We agree to call (yi, ca) the

local generating basis for S∗
∞[F ; Y ]. Let the collective symbol sA stand

for its elements. Accordingly, the notation sA
Λ and

θA
Λ = dsA

Λ − sA
λ+Λdxλ

is introduced. For the sake of simplicity, we further denote [A] = [sA].

The DBGA S∗
∞[F ; Y ] is split into S0

∞[F ; Y ]-modules Sk,r
∞ [F ; Y ] of k-

contact and r-horizontal graded forms together with the corresponding

projections

hk : S∗
∞[F ; Y ] → Sk,∗

∞ [F ; Y ], hm : S∗
∞[F ; Y ] → S∗,m

∞ [F ; Y ].
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Accordingly, the graded exterior differential d on S∗
∞[F ; Y ] falls into the

sum d = dV + dH of the vertical graded differential

dV ◦ hm = hm ◦ d ◦ hm, dV (φ) = θA
Λ ∧ ∂Λ

Aφ, φ ∈ S∗
∞[F ; Y ],

and the total graded differential

dH ◦ hk = hk ◦ d ◦ hk, dH ◦ h0 = h0 ◦ d, dH(φ) = dxλ ∧ dλ(φ),

where

dλ = ∂λ +
∑

0≤|Λ|

sA
λ+Λ∂Λ

A

are the graded total derivatives. These differentials obey the nilpotent

relations (2.4.11).

Similarly to the DGA O∗
∞, the DBGA S∗

∞[F ; Y ] is provided with the

graded projection endomorphism

� =
∑
k>0

1

k
� ◦ hk ◦ hn : S∗>0,n

∞ [F ; Y ] → S∗>0,n
∞ [F ; Y ],

�(φ) =
∑

0≤|Λ|

(−1)|Λ|θA ∧ [dΛ(∂Λ
A�φ)], φ ∈ S>0,n

∞ [F ; Y ],

such that � ◦dH = 0, and with the nilpotent graded variational operator

δ = � ◦ dS∗,n
∞ [F ; Y ] → S∗+1,n

∞ [F ; Y ]. (7.3.12)

With these operators the DBGA S∗,
∞[F ; Y ] is split into the Grassmann-

graded variational bicomplex. We restrict our consideration to its short

variational subcomplex

0 → R → S0
∞[F ; Y ]

dH−→S0,1
∞ [F ; Y ] · · ·

dH−→ (7.3.13)

S0,n
∞ [F ; Y ]

δ−→E1, E1 = �(S1,n
∞ [F ; Y ]),

and the subcomplex of one-contact graded forms

0 → S1,0
∞ [F ; Y ]

dH−→S1,1
∞ [F ; Y ] · · ·

dH−→S1,n
∞ [F ; Y ] (7.3.14)

�
−→E1 → 0.
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Theorem 7.3.3: Cohomology of the complex (7.3.13) equals the de

Rham cohomology H∗
DR(Y ) of Y . �

Theorem 7.3.4: The complex (7.3.14) is exact. �

Decomposed into the variational bicomplex, the DBGA S∗
∞[F ; Y ] de-

scribes Grassmann-graded Lagrangian theory on the composite graded

manifold (Y, AF ). Its graded Lagrangian is defined as an element

L = Lω ∈ S0,n
∞ [F ; Y ] (7.3.15)

of the graded variational complex (7.3.13), while the graded exterior

form

δL = θA ∧ EAω =
∑

0≤|Λ|

(−1)|Λ|θA ∧ dΛ(∂Λ
AL)ω ∈ E1 (7.3.16)

is said to be its graded Euler–Lagrange operator. We agree to call a pair

(S0,n
∞ [F ; Y ], L) the Grassmann-graded Lagrangian system.

The following is a corollary of Theorem 7.3.3.

Theorem 7.3.5: Every dH-closed graded form φ ∈ S0,m<n
∞ [F ; Y ] falls

into the sum

φ = h0σ + dHξ, ξ ∈ S0,m−1
∞ [F ; Y ], (7.3.17)

where σ is a closed m-form on Y . Any δ-closed (i.e., variationally trivial)

Grassmann-graded Lagrangian L ∈ S0,n
∞ [F ; Y ] is the sum

L = h0σ + dHξ, ξ ∈ S0,n−1
∞ [F ; Y ], (7.3.18)

where σ is a closed n-form on Y . �

Corollary 7.3.6: Any variationally trivial odd Lagrangian is dH-exact.

�

The exactness of the complex (7.3.14) at the term S1,n
∞ [F ; Y ] results

in the following.
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Theorem 7.3.7: Given a graded Lagrangian L, there is the decompo-

sition

dL = δL − dHΞL, Ξ ∈ Sn−1
∞ [F ; Y ], (7.3.19)

ΞL = L +
∑
s=0

θA
νs...ν1

∧ F λνs...ν1

A ωλ, (7.3.20)

F νk...ν1

A = ∂νk...ν1

A L − dλF
λνk...ν1

A + σνk...ν1

A , k = 1, 2, . . . ,

where local graded functions σ obey the relations

σν
A = 0, σ

(νkνk−1)...ν1

A = 0.

�

The form ΞL (7.3.20) provides a global Lepage equivalent of a graded

Lagrangian L.

Given a Grassmann-graded Lagrangian system (S∗
∞[F ; Y ], L), by its

infinitesimal transformations are meant contact graded derivations of the

real graded commutative ring S0
∞[F ; Y ]. They constitute a S0

∞[F ; Y ]-

module dS0
∞[F ; Y ] which is a real Lie superalgebra with the Lie super-

bracket (6.2.4).

Theorem 7.3.8: The derivation module dS0
∞[F ; Y ] is isomorphic to the

S0
∞[F ; Y ]-dual (S1

∞[F ; Y ])∗ of the module of graded one-forms S1
∞[F ; Y ].

It follows that the DBGA S∗
∞[F ; Y ] is minimal differential calculus over

the real graded commutative ring S0
∞[F ; Y ]. �

Let ϑ�φ, ϑ ∈ dS0
∞[F ; Y ], φ ∈ S1

∞[F ; Y ], denote the corresponding

interior product. Extended to the DBGA S∗
∞[F ; Y ], it obeys the rule

ϑ�(φ ∧ σ) = (ϑ�φ) ∧ σ + (−1)|φ|+[φ][ϑ]φ ∧ (ϑ�σ), φ, σ ∈ S∗
∞[F ; Y ].

Restricted to a coordinate chart (2.4.3) of J∞Y , the algebra S∗
∞[F ; Y ]

is a free S0
∞[F ; Y ]-module generated by one-forms dxλ, θA

Λ . Due to

the isomorphism stated in Theorem 7.3.8, any graded derivation ϑ ∈

dS0
∞[F ; Y ] takes the local form

ϑ = ϑλ∂λ + ϑA∂A +
∑

0<|Λ|

ϑA
Λ∂Λ

A, (7.3.21)

∂Λ
A�dyB

Σ = δB
AδΛ

Σ. (7.3.22)
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Every graded derivation ϑ (7.3.21) yields the graded Lie derivative

Lϑφ = ϑ�dφ + d(ϑ�φ), φ ∈ S∗
∞[F ; Y ],

Lϑ(φ ∧ σ) = Lϑ(φ) ∧ σ + (−1)[ϑ][φ]φ ∧ Lϑ(σ),

of the DBGA S∗
∞[F ; Y ]. A graded derivation ϑ (7.3.21) is called contact

if the Lie derivative Lϑ preserves the ideal of contact graded forms.

Lemma 7.3.9: With respect to the local generating basis (sA) for the

DBGA S∗
∞[F ; Y ], any its contact graded derivation takes the form

ϑ = υH + υV = υλdλ + [υA∂A +
∑

|Λ|>0

dΛ(υA − sA
μυμ)∂Λ

A], (7.3.23)

where υH and υV denotes the horizontal and vertical parts of ϑ. �

A glance at the expression (7.3.23) shows that a contact graded deriva-

tion ϑ is an infinite order jet prolongation of its restriction

υ = υλ∂λ + υA∂A (7.3.24)

to the graded commutative ring S0[F ; Y ]. We call υ (7.3.24) the general-

ized graded vector field. It is readily justified the following (see Lemma

7.2.16).

Lemma 7.3.10: Any vertical contact graded derivation

ϑ = υA∂A +
∑

|Λ|>0

dΛυA∂Λ
A (7.3.25)

satisfies the relations

ϑ�dHφ = −dH(ϑ�φ), (7.3.26)

Lϑ(dHφ) = dH(Lϑφ) (7.3.27)

for all φ ∈ S∗
∞[F ; Y ]. �

Then the forthcoming assertions are the straightforward generaliza-

tions of Theorem 7.2.7, Lemma 7.2.8 and Theorem 7.2.9.

A corollary of the decomposition (7.3.19) is the first variational for-

mula for a graded Lagrangian.
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Theorem 7.3.11: The Lie derivative of a graded Lagrangian along any

contact graded derivation (7.3.23) obeys the first variational formula

LϑL = υV �δL + dH(h0(ϑ�ΞL)) + dV (υH�ω)L, (7.3.28)

where ΞL is the Lepage equivalent (7.3.20) of L. �

A contact graded derivation ϑ (7.3.23) is called a variational symme-

try (strictly speaking, a variational supersymmetry) of a graded Lagran-

gian L if the Lie derivative LϑL is dH-exact, i.e.,

LϑL = dHσ. (7.3.29)

Lemma 7.3.12: A glance at the expression (7.3.28) shows the follow-

ing.

(i) A contact graded derivation ϑ is a variational symmetry only if it

is projected onto X.

(ii) Any projectable contact graded derivation is a variational sym-

metry of a variationally trivial graded Lagrangian. It follows that, if ϑ is

a variational symmetry of a graded Lagrangian L, it also is a variational

symmetry of a Lagrangian L + L0, where L0 is a variationally trivial

graded Lagrangian.

(iii) A contact graded derivations ϑ is a variational symmetry iff its

vertical part υV (7.3.23) is well.

(iv) It is a variational symmetry iff the graded density υV �δL is dH-

exact. �

Variational symmetries of a graded Lagrangian L constitute a real

vector subspace GL of the graded derivation module dS0
∞[F ; Y ]. By virtue

of item (ii) of Lemma 7.3.12, the Lie superbracket

L[ϑ,ϑ′] = [Lϑ,Lϑ′]

of variational symmetries is a variational symmetry and, therefore, their

vector space GL is a real Lie superalgebra.
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A corollary of the first variational formula (7.3.28) is the first Noether

theorem for graded Lagrangians.

Theorem 7.3.13: If a contact graded derivation ϑ (7.3.23) is a varia-

tional symmetry (7.3.29) of a graded Lagrangian L, the first variational

formula (7.3.28) restricted to Ker δL leads to the weak conservation law

0 ≈ dH(h0(ϑ�ΞL) − σ). (7.3.30)

�

A vertical contact graded derivation ϑ (7.3.25) is said to be nilpotent

if

Lϑ(Lϑφ) =
∑

0≤|Σ|,0≤|Λ|

(υB
Σ∂Σ

B(υA
Λ)∂Λ

A + (7.3.31)

(−1)[sB ][υA]υB
ΣυA

Λ∂Σ
B∂Λ

A)φ = 0

for any horizontal graded form φ ∈ S0,∗
∞ .

Lemma 7.3.14: A vertical contact graded derivation (7.3.25) is nilpo-

tent only if it is odd and iff the equality

Lϑ(υ
A) =

∑
0≤|Σ|

υB
Σ∂Σ

B(υA) = 0

holds for all υA. �

For the sake of brevity, the common symbol υ further stands for a

generalized graded vector field υ, the contact graded derivation ϑ de-

termined by υ, and the Lie derivative Lϑ. We agree to call all these

operators, simply, a graded derivation of a field system algebra.

Remark 7.3.1: For the sake of convenience, right derivations

←
υ =

←
∂ AυA (7.3.32)

also are considered. They act on graded functions and differential forms

φ on the right by the rules

←
υ(φ) = dφ�

←
υ +d(φ�

←
υ),

←
υ(φ ∧ φ′) = (−1)[φ′] ←υ(φ) ∧ φ′ + φ ∧

←
υ(φ′),

θΛA�
←
∂

ΣB = δA
BδΣ

Λ .
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One associates to any graded right derivation
←
υ (7.3.32) the left one

υl = (−1)[υ][A]υA∂A, (7.3.33)

υl(f) = (−1)[υ][f ]υ(f), f ∈ S0
∞[F ; Y ].

�

7.4 Noether identities

The degeneracy of Lagrangian theory is characterized by a set of non-

trivial reducible Noether identities. Any Euler–Lagrange operator satis-

fies Noether identities (henceforth NI) which therefore must be separated

into the trivial and non-trivial ones. These NI can obey first-stage NI,

which in turn are subject to the second-stage ones, and so on. Thus,

there is a hierarchy of higher-stage NI which also are separated into the

trivial and non-trivial ones. If certain conditions hold, one can associate

to a Grassmann-graded Lagrangian system the exact Koszul–Tate com-

plex possessing the boundary operator whose nilpotentness is equivalent

to all non-trivial NI and higher-stage NI. The inverse second Noether

theorem formulated in homology terms associates to this Koszul–Tate

complex the cochain sequence of ghosts with the ascent operator, called

the gauge operator, whose components are non-trivial gauge and higher-

stage gauge symmetries of Lagrangian theory.

Let (S∗
∞[F ; Y ], L) be a Grassmann-graded Lagrangian system. With-

out a lose of generality, let a Lagrangian L be even. Its Euler–Lagrange

operator δL (7.3.16) is assumed to be at least of order 1 in order to

guarantee that transition functions of Y do not vanish on-shell. This

Euler–Lagrange operator δL ∈ E1 takes its values into the graded vector

bundle

V F = V ∗F ⊗
F

n
∧T ∗X → F, (7.4.1)
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where V ∗F is the vertical cotangent bundle of F → X. It however is

not a vector bundle over Y . Therefore, we restrict our consideration to

the case of a pull-back composite bundle F (7.3.1), that is,

F = Y ×
X

F 1 → Y → X, (7.4.2)

where F 1 → X is a vector bundle. Let us introduce the following nota-

tion.

Notation 7.4.1: Given the vertical tangent bundle V E of a fibre

bundle E → X, by its density-dual bundle is meant the fibre bundle

V E = V ∗E ⊗
E

n
∧T ∗X. (7.4.3)

If E → X is a vector bundle, we have

V E = E ×
X

E, E = E∗ ⊗
X

n
∧T ∗X, (7.4.4)

where E is called the density-dual of E. Let

E = E0 ⊕
X

E1

be a graded vector bundle over X. Its graded density-dual is defined to

be

E = E
1
⊕
X

E
0
.

In these terms, we treat the composite bundle F (7.3.1) as a graded

vector bundle over Y possessing only odd part. The density-dual V F

(7.4.3) of the vertical tangent bundle V F of F → X is V F (7.4.1). If F

(7.3.1) is the pull-back bundle (7.4.2), then

V F = ((F
1
⊕
Y

V ∗Y )⊗
Y

n
∧T ∗X)⊕

Y
F 1 (7.4.5)

is a graded vector bundle over Y . Given a graded vector bundle

E = E0 ⊕
Y

E1 → Y,

we consider the composite bundle E → E0 → X and the DBGA (7.3.7):

P∗
∞[E; Y ] = S∗

∞[E; E0]. (7.4.6)
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�

Let us consider the density-dual V F (7.4.5) of the vertical tangent

bundle V F → F , and let us enlarge the DBGA S∗
∞[F ; Y ] to the DBGA

P∗
∞[V F ; Y ] (7.4.6) with the local generating basis (sA, sA), [sA] =

([A] + 1)mod 2. Following the physical terminology, we agree to call

its elements sA the antifields of antifield number Ant[sA] = 1. The

DBGA P∗
∞[V F ; Y ] is endowed with the nilpotent right graded derivation

δ =
←
∂ AEA, where EA are the variational derivatives (7.3.16). Then we

have the chain complex

0←Im δ
δ←−P0,n

∞ [V F ; Y ]1
δ←−P0,n

∞ [V F ; Y ]2 (7.4.7)

of graded densities of antifield number ≤ 2. Its one-boundaries δΦ,

Φ ∈ P0,n
∞ [V F ; Y ]2, by very definition, vanish on-shell.

Lemma 7.4.2: One can associate to any Grassmann-graded Lagrangian

system (S∗
∞[F ; Y ], L) the chain complex (7.4.7). �

Any one-cycle

Φ =
∑

0≤|Λ|

ΦA,ΛsΛAω ∈ P0,n
∞ [V F ; Y ]1 (7.4.8)

of the complex (7.4.7) is a differential operator on the bundle V F such

that it is linear on fibres of V F → F and its kernel contains the graded

Euler–Lagrange operator δL (7.3.16), i.e.,

δΦ = 0,
∑

0≤|Λ|

ΦA,ΛdΛEAω = 0. (7.4.9)

Thus, the one-cycles (7.4.8) define the NI (7.4.9) of the Euler–Lagrange

operator δL, which we call Noether identities (NI) of the Grassmann-

graded Lagrangian system (S∗
∞[F ; Y ], L).

In particular, one-chains Φ (7.4.8) are necessarily NI if they are bound-

aries. Accordingly, non-trivial NI modulo the trivial ones are associated

to elements of the first homology H1(δ) of the complex (7.4.7). A La-

grangian L is called degenerate if there are non-trivial NI.
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Non-trivial NI obey first-stage NI. To describe them, let us assume

that the module H1(δ) is finitely generated. Namely, there exists a

graded projective C∞(X)-module C(0) ⊂ H1(δ) of finite rank with a

local basis {Δrω}:

Δrω =
∑

0≤|Λ|

ΔA,Λ
r sΛAω, ΔA,Λ

r ∈ S0
∞[F ; Y ], (7.4.10)

such that any element Φ ∈ H1(δ) factorizes as

Φ =
∑

0≤|Ξ|

Φr,ΞdΞΔrω, Φr,Ξ ∈ S0
∞[F ; Y ], (7.4.11)

through elements (7.4.10) of C(0). Thus, all non-trivial NI (7.4.9) result

from the NI

δΔr =
∑

0≤|Λ|

ΔA,Λ
r dΛEA = 0, (7.4.12)

called the complete NI. Clearly, the factorization (7.4.11) is independent

of specification of a local basis {Δrω}.

A Lagrangian system whose non-trivial NI are finitely generated is

called finitely degenerate. Hereafter, degenerate Lagrangian systems

only of this type are considered.

By virtue of Serre–Swan Theorem 6.3.2, the graded module C(0) is

isomorphic to a module of sections of the density-dual E0 of some graded

vector bundle E0 → X. Let us enlarge P∗
∞[V F ; Y ] to the DBGA

P
∗
∞{0} = P∗

∞[V F ⊕
Y

E0; Y ] (7.4.13)

possessing the local generating basis (sA, sA, cr) where cr are Noether an-

tifields of Grassmann parity [cr] = ([Δr] + 1)mod 2 and antifield number

Ant[cr] = 2. The DBGA (7.4.13) is provided with the odd right graded

derivation δ0 = δ+
←
∂ rΔr which is nilpotent iff the complete NI (7.4.12)

hold. Then δ0 is a boundary operator of the chain complex

0←Im δ
δ←P0,n

∞ [V F ; Y ]1
δ0←P

0,n
∞ {0}2

δ0←P
0,n
∞ {0}3 (7.4.14)
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of graded densities of antifield number ≤ 3. Let H∗(δ0) denote its ho-

mology. We have

H0(δ0) = H0(δ) = 0.

Furthermore, any one-cycle Φ up to a boundary takes the form (7.4.11)

and, therefore, it is a δ0-boundary. Hence, H1(δ0) = 0, i.e., the complex

(7.4.14) is one-exact.

Lemma 7.4.3: If the homology H1(δ) of the complex (7.4.7) is finitely

generated in the above mentioned sense, this complex can be extended

to the one-exact chain complex (7.4.14) with a boundary operator whose

nilpotency conditions are equivalent to the complete NI (7.4.12). �

Let us consider the second homology H2(δ0) of the complex (7.4.14).

Its two-chains read

Φ = G + H =
∑

0≤|Λ|

Gr,ΛcΛrω +
∑

0≤|Λ|,|Σ|

H(A,Λ)(B,Σ)sΛAsΣBω. (7.4.15)

Its two-cycles define the first-stage NI

δ0Φ = 0,
∑

0≤|Λ|

Gr,ΛdΛΔrω = −δH. (7.4.16)

The first-stage NI (7.4.16) are trivial either if a two-cycle Φ (7.4.15)

is a δ0-boundary or its summand G vanishes on-shell. Therefore, non-

trivial first-stage NI fails to exhaust the second homology H2(δ0) the

complex (7.4.14) in general.

Lemma 7.4.4: Non-trivial first-stage NI modulo the trivial ones are

identified with elements of the homology H2(δ0) iff any δ-cycle φ ∈

P
0,n
∞ {0}2 is a δ0-boundary. �

A degenerate Lagrangian system is called reducible (resp. irreducible)

if it admits (resp. does not admit) non-trivial first stage NI.

If the condition of Lemma 7.4.4 is satisfied, let us assume that non-

trivial first-stage NI are finitely generated as follows. There exists a
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graded projective C∞(X)-module C(1) ⊂ H2(δ0) of finite rank with a

local basis {Δr1
ω}:

Δr1
ω =

∑
0≤|Λ|

Δr,Λ
r1

cΛrω + hr1
ω, (7.4.17)

such that any element Φ ∈ H2(δ0) factorizes as

Φ =
∑

0≤|Ξ|

Φr1,ΞdΞΔr1
ω, Φr1,Ξ ∈ S0

∞[F ; Y ], (7.4.18)

through elements (7.4.17) of C(1). Thus, all non-trivial first-stage NI

(7.4.16) result from the equalities

∑
0≤|Λ|

Δr,Λ
r1

dΛΔr + δhr1
= 0, (7.4.19)

called the complete first-stage NI.

The complete first-stage NI obey second-stage NI, and so on. Iterating

the arguments, one comes to the following.

A degenerate Grassmann-graded Lagrangian system (S∗
∞[F ; Y ], L) is

called N -stage reducible if it admits finitely generated non-trivial N -

stage NI, but no non-trivial (N + 1)-stage ones. It is characterized as

follows.

• There are graded vector bundles E0, . . . , EN over X and a DBGA

P∗
∞[V F ; Y ] is enlarged to the DBGA

P
∗
∞{N} = P∗

∞[V F ⊕
Y

E0 ⊕
Y
· · · ⊕

Y
EN ; Y ] (7.4.20)

with the local generating basis

(sA, sA, cr, cr1
, . . . , crN

)

where crk
are Noether k-stage antifields of antifield number Ant[crk

] =

k + 2.

• The DBGA (7.4.20) admits with the nilpotent right graded deriva-

tion

δKT = δN = δ +
∑

0≤|Λ|

←
∂

rΔA,Λ
r sΛA +

∑
1≤k≤N

←
∂

rkΔrk
, (7.4.21)
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Δrk
ω =

∑
0≤|Λ|

Δrk−1,Λ
rk

cΛrk−1
ω + (7.4.22)

∑
0≤|Σ|,|Ξ|

(h(rk−2,Σ)(A,Ξ)
rk

cΣrk−2
sΞA + ...)ω ∈ P

0,n
∞ {k − 1}k+1,

of antifield number -1. The index k = −1 here stands for sA. The

nilpotent derivation δKT (7.4.21) is called the Koszul–Tate operator.

• With this graded derivation, the module P
0,n
∞ {N}≤N+3 of densities

of antifield number ≤ (N +3) is decomposed into the exact Koszul–Tate

chain complex

0←Im δ
δ←−P0,n

∞ [V F ; Y ]1
δ0←−P

0,n
∞ {0}2

δ1←−P
0,n
∞ {1}3 · · · (7.4.23)

δN−1←−P
0,n
∞ {N − 1}N+1

δKT←−P
0,n
∞ {N}N+2

δKT←−P
0,n
∞ {N}N+3

which satisfies the following homology regularity condition.

Condition 7.4.5: Any δk<N -cycle

φ ∈ P
0,n
∞ {k}k+3 ⊂ P

0,n
∞ {k + 1}k+3

is a δk+1-boundary. �

• The nilpotentness δ2
KT = 0 of the Koszul–Tate operator (7.4.21)

is equivalent to the complete non-trivial NI (7.4.12) and the complete

non-trivial (k ≤ N)-stage NI

∑
0≤|Λ|

Δrk−1,Λ
rk

dΛ

⎛⎜⎝ ∑
0≤|Σ|

Δrk−2,Σ
rk−1

cΣrk−2

⎞⎟⎠ = (7.4.24)

−δ

⎛⎜⎝ ∑
0≤|Σ|,|Ξ|

h(rk−2,Σ)(A,Ξ)
rk

cΣrk−2
sΞA

⎞⎟⎠ .

This item means the following.

Theorem 7.4.6: Any δk-cocycle Φ ∈ P0,n
∞ {k}k+2 is a k-stage NI, and

vice versa. �

Theorem 7.4.7: Any trivial k-stage NI is a δk-boundary Φ ∈ P0,n
∞ {k}k+2.

�
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Theorem 7.4.8: All non-trivial k-stage NI, by assumption, factorize as

Φ =
∑

0≤|Ξ|

Φrk,ΞdΞΔrk
ω, Φr1,Ξ ∈ S0

∞[F ; Y ],

through the complete ones (7.4.24). �

It may happen that a Grassmann-graded Lagrangian field system pos-

sesses non-trivial NI of any stage. However, we restrict our consideration

to N -reducible Lagrangian systems for a finite integer N .

7.5 Gauge symmetries

Different variants of the second Noether theorem have been suggested

in order to relate reducible NI and gauge symmetries. The inverse sec-

ond Noether theorem (Theorem 7.5.3), that we formulate in homology

terms, associates to the Koszul–Tate complex (7.4.23) of non-trivial NI

the cochain sequence (7.5.7) with the ascent operator u (7.5.8) whose

components are non-trivial gauge and higher-stage gauge symmetries of

Lagrangian system. Let us start with the following notation.

Notation 7.5.1: Given the DBGA P
∗
∞{N} (7.4.20), we consider the

DBGA

P∗
∞{N} = P∗

∞[F ⊕
Y

E0 ⊕
Y
· · · ⊕

Y
EN ; Y ], (7.5.1)

possessing the local generating basis

(sA, cr, cr1, . . . , crN ), [crk] = ([crk
] + 1)mod 2,

and the DBGA

P ∗
∞{N} = P∗

∞[V F ⊕
Y

E0 ⊕ · · ·⊕
Y

EN ⊕
Y

E0 ⊕
Y
· · · ⊕

Y
EN ; Y ] (7.5.2)

with the local generating basis

(sA, sA, cr, cr1, . . . , crN , cr, cr1
, . . . , crN

).
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Their elements crk are called k-stage ghosts of ghost number gh[crk] =

k + 1 and antifield number

Ant[crk] = −(k + 1).

The C∞(X)-module C(k) of k-stage ghosts is the density-dual of the

module C(k+1) of (k + 1)-stage antifields. The DBGAs P
∗
∞{N} (7.4.20)

and P∗
∞{N} (7.5.1) are subalgebras of P ∗

∞{N} (7.5.2). The Koszul–Tate

operator δKT (7.4.21) is naturally extended to a graded derivation of the

DBGA P ∗
∞{N}. �

Notation 7.5.2: Any graded differential form φ ∈ S∗
∞[F ; Y ] and any

finite tuple (fΛ), 0 ≤ |Λ| ≤ k, of local graded functions fΛ ∈ S0
∞[F ; Y ]

obey the following relations:

∑
0≤|Λ|≤k

fΛdΛφ ∧ ω =
∑

0≤|Λ|

(−1)|Λ|dΛ(fΛ)φ ∧ ω + dHσ, (7.5.3)

∑
0≤|Λ|≤k

(−1)|Λ|dΛ(fΛφ) =
∑

0≤|Λ|≤k

η(f)ΛdΛφ, (7.5.4)

η(f)Λ =
∑

0≤|Σ|≤k−|Λ|

(−1)|Σ+Λ| (|Σ + Λ|)!

|Σ|!|Λ|!
dΣfΣ+Λ, (7.5.5)

η(η(f))Λ = fΛ. (7.5.6)

�

Theorem 7.5.3: Given the Koszul–Tate complex (7.4.23), the module

of graded densities P0,n
∞ {N} is decomposed into the cochain sequence

0 → S0,n
∞ [F ; Y ]

u−→P0,n
∞ {N}1 u−→P0,n

∞ {N}2 u−→· · · , (7.5.7)

u = u + u(1) + · · · + u(N) = (7.5.8)

uA ∂

∂sA
+ ur ∂

∂cr
+ · · · + urN−1

∂

∂crN−1
,

graded in ghost number. Its ascent operator u (7.5.8) is an odd graded

derivation of ghost number 1 where

u = uA ∂

∂sA
, uA =

∑
0≤|Λ|

cr
Λη(ΔA

r )Λ, (7.5.9)
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is a variational symmetry of a graded Lagrangian L and the graded

derivations

u(k) = urk−1
∂

∂crk−1
=

∑
0≤|Λ|

crk

Λ η(Δrk−1

rk
)Λ ∂

∂crk−1
, k = 1, . . . , N,(7.5.10)

obey the relations

∑
0≤|Σ|

dΣurk−1
∂

∂c
rk−1

Σ

urk−2 = δ(αrk−2), (7.5.11)

αrk−2 = −
∑

0≤|Σ|

η(h(rk−2)(A,Ξ)
rk

)ΣdΣ(crksΞA).

�

A glance at the expression (7.5.9) shows that the variational symme-

try u is a linear differential operator on the C∞(X)-module C(0) of ghosts

with values into the real space gL of variational symmetries. Following

Definition 7.2.10 extended to Lagrangian theories of odd variables, we

call u (7.5.9) the gauge symmetry of a graded Lagrangian L which is

associated to the complete NI (7.4.12).

Remark 7.5.1: In contrast with Definitions 7.2.10 and 7.2.12, gauge

symmetries u (7.5.9) are parameterized by ghosts, but not gauge param-

eters. Given a gauge symmetry u (7.2.28) defined as a derivation of the

real ring O0
∞[Y × E], one can associate to it the gauge symmetry

u =

⎛⎜⎝ ∑
0≤|Λ|≤m

uλΛ
a (xμ)ca

Λ

⎞⎟⎠ ∂λ +

⎛⎜⎝ ∑
0≤|Λ|≤m

uiΛ
a (xμ, yj

Σ)ca
Λ

⎞⎟⎠ ∂i, (7.5.12)

which is an odd graded derivation of the real ring S0
∞[E; Y ], and vice

versa. �

Turn now to the relation (7.5.11). For k = 1, it takes the form

∑
0≤|Σ|

dΣur ∂

∂cr
Σ

uA = δ(αA)

of a first-stage gauge symmetry condition on-shell which the non-trivial

gauge symmetry u (7.5.9) satisfies. Therefore, one can treat the odd
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graded derivation

u(1) = ur ∂

∂cr
, ur =

∑
0≤|Λ|

cr1

Λ η(Δr
r1

)Λ,

as a first-stage gauge symmetry associated to the complete first-stage NI

∑
0≤|Λ|

Δr,Λ
r1

dΛ

⎛⎜⎝ ∑
0≤|Σ|

ΔA,Σ
r sΣA

⎞⎟⎠ = −δ

⎛⎜⎝ ∑
0≤|Σ|,|Ξ|

h(B,Σ)(A,Ξ)
r1

sΣBsΞA

⎞⎟⎠ .

Iterating the arguments, one comes to the relation (7.5.11) which

provides a k-stage gauge symmetry condition which is associated to the

complete k-stage NI (7.4.24). The odd graded derivation u(k) (7.5.10) is

called the k-stage gauge symmetry.

In accordance with Theorem 7.5.3, components of the ascent operator

u (7.5.8) are complete non-trivial gauge and higher-stage gauge symme-

tries. Therefore, we agree to call this operator the gauge operator.

Being a variational symmetry, a gauge symmetry u (7.5.9) defines the

weak conservation law (7.3.30). Let u be an exact Lagrangian symmetry.

In this case, the associated symmetry current

Ju = −h0(u�ΞL) (7.5.13)

is conserved. The peculiarity of gauge conservation laws always is that

the symmetry current (7.5.13) is reduced to a superpotential as follows.

Theorem 7.5.4: If u (7.5.9) is an exact gauge symmetry of a graded La-

grangian L, the corresponding conserved symmetry current Ju (7.5.13)

takes the form

Ju = W + dHU = (W μ + dνU
νμ)ωμ, (7.5.14)

where the term W vanishes on-shell, and U is a horizontal (n− 2)-form.

�



Chapter 8

Topics on commutative geometry

Several relevant topics on commutative geometry and algebraic topology

are compiled in this Chapter [9, 17, 23].

8.1 Commutative algebra

An algebra A is an additive group which is additionally provided with

distributive multiplication. All algebras throughout the book are asso-

ciative, unless they are Lie algebras. A ring is defined to be a unital

algebra, i.e., it contains a unit element 1 �= 0.

A subset I of an algebra A is called a left (resp. right) ideal if it is

a subgroup of the additive group A and ab ∈ I (resp. ba ∈ I) for all

a ∈ A, b ∈ I. If I is both a left and right ideal, it is called a two-sided

ideal. An ideal is a subalgebra, but a proper ideal (i.e., I �= A) of a ring

is not a subring because it does not contain the unit element.

Let A be a commutative ring. Of course, its ideals are two-sided. Its

proper ideal is said to be maximal if it does not belong to another proper

ideal. A commutative ring A is called local if it has a unique maximal

ideal. This ideal consists of all non-invertible elements of A.

Given an ideal I ⊂ A, the additive factor group A/I is an algebra,

called the factor algebra. If A is a ring, then A/I is so. If I is a maximal

ideal, the factor ring A/I is a field.
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Given an algebra A, an additive group P is said to be a left (resp.

right) A-module if it is provided with distributive multiplication A×P →

P by elements of A such that (ab)p = a(bp) (resp. (ab)p = b(ap)) for

all a, b ∈ A and p ∈ P . If A is a ring, one additionally assumes that

1p = p = p1 for all p ∈ P . Left and right module structures are

usually written by means of left and right multiplications (a, p) → ap

and (a, p) → pa, respectively. If P is both a left module over an algebra

A and a right module over an algebra A′, it is called an (A − A′)-

bimodule (an A-bimodule if A = A′). If A is a commutative algebra,

an A-bimodule P is said to be commutative if ap = pa for all a ∈ A

and p ∈ P . Any left or right module over a commutative algebra A can

be brought into a commutative bimodule. Therefore, unless otherwise

stated, any module over a commutative algebra A is called an A-module.

A module over a field is called a vector space.

If an algebra A is a module over a commutative ring K, it is said to

be a K-algebra.

Hereafter, all associative algebras are assumed to be commutative.

The following are standard constructions of new modules from old

ones.

• The direct sum P1 ⊕ P2 of A-modules P1 and P2 is the additive

group P1 × P2 provided with the A-module structure

a(p1, p2) = (ap1, ap2), p1,2 ∈ P1,2, a ∈ A.

Let {Pi}i∈I be a set of modules. Their direct sum ⊕Pi consists of el-

ements (. . . , pi, . . .) of the Cartesian product
∏

Pi such that pi �= 0 at

most for a finite number of indices i ∈ I.

• Given a submodule Q of an A-module P , the quotient P/Q of the

additive group P with respect to its subgroup Q also is provided with

an A-module structure. It is called a factor module.

• The set Hom A(P, Q) of A-linear morphisms of an A-module P to
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an A-module Q is naturally an A-module. The A-module

P ∗ = HomA(P,A)

is called the dual of an A-module P . There is a monomorphism P →

P ∗∗.

• The tensor product P ⊗ Q of A-modules P and Q is an additive

group which is generated by elements p ⊗ q, p ∈ P , q ∈ Q, obeying the

relations

(p + p′) ⊗ q = p ⊗ q + p′ ⊗ q,

p ⊗ (q + q′) = p ⊗ q + p ⊗ q′,

pa ⊗ q = p ⊗ aq, p ∈ P, q ∈ Q, a ∈ A.

It is provided with the A-module structure

a(p ⊗ q) = (ap) ⊗ q = p ⊗ (qa) = (p ⊗ q)a.

In particular, we have the following.

(i) If a ring A is treated as an A-module, the tensor product A⊗A Q

is canonically isomorphic to Q via the assignment

A⊗A Q � a ⊗ q ↔ aq ∈ Q.

(ii) The tensor product of Abelian groups G and G′ is defined as their

tensor product G ⊗ G′ as Z-modules.

(iii) The tensor product of commutative algebras A and A′ is defined

as their tensor product A ⊗ A′ as modules provided with the multipli-

cation

(a ⊗ a′)(b ⊗ b′) = (aa′) ⊗ bb′.

An A-module P is called free if it has a basis, i.e., a linearly indepen-

dent subset I ⊂ P spanning P such that each element of P has a unique

expression as a linear combination of elements of I with a finite number

of non-zero coefficients from an algebra A. Any vector space is free. Any
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module is isomorphic to a quotient of a free module. A module is said to

be finitely generated (or of finite rank) if it is a quotient of a free module

with a finite basis.

One says that a module P is projective if it is a direct summand of

a free module, i.e., there exists a module Q such that P ⊕ Q is a free

module. A module P is projective iff P = pS where S is a free module

and p is a projector of S, i.e., p2 = p.

Theorem 8.1.1: Any projective module over a local ring is free. �

Now we focus on exact sequences, direct and inverse limits of modules.

A composition of module morphisms

P
i−→Q

j
−→T

is said to be exact at Q if Ker j = Im i. A composition of module

morphisms

0 → P
i−→Q

j
−→T → 0 (8.1.1)

is called a short exact sequence if it is exact at all the terms P , Q, and T .

This condition implies that: (i) i is a monomorphism, (ii) Ker j = Im i,

and (iii) j is an epimorphism onto the quotient T = Q/P .

Theorem 8.1.2: Given an exact sequence of modules (8.1.1) and an-

other A-module R, the sequence of modules

0 → HomA(T, R)
j∗

−→HomA(Q,R)
i∗−→Hom (P, R)

is exact at the first and second terms, i.e., j∗ is a monomorphism, but

i∗ need not be an epimorphism. �

One says that the exact sequence (8.1.1) is split if there exists a

monomorphism s : T → Q such that j ◦ s = Id T or, equivalently,

Q = i(P ) ⊕ s(T ) ∼= P ⊕ T.

Theorem 8.1.3: The exact sequence (8.1.1) is always split if T is a

projective module. �
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A directed set I is a set with an order relation < which satisfies the

following three conditions: (i) i < i, for all i ∈ I; (ii) if i < j and j < k,

then i < k; (iii) for any i, j ∈ I, there exists k ∈ I such that i < k and

j < k. It may happen that i �= j, but i < j and j < i simultaneously.

A family of modules {Pi}i∈I (over the same algebra), indexed by a

directed set I, is called a direct system if, for any pair i < j, there exists

a morphism ri
j : Pi → Pj such that

ri
i = Id Pi, ri

j ◦ rj
k = ri

k, i < j < k.

A direct system of modules admits a direct limit. This is a module P∞

together with morphisms ri
∞ : Pi → P∞ such that ri

∞ = rj
∞ ◦ ri

j for

all i < j. The module P∞ consists of elements of the direct sum ⊕IPi

modulo the identification of elements of Pi with their images in Pj for

all i < j. An example of a direct system is a direct sequence

P0 −→P1 −→· · ·Pi

ri
i+1−→· · · , I = N. (8.1.2)

Note that direct limits also exist in the categories of commutative and

graded commutative algebras and rings, but not in categories containing

non-Abelian groups.

Theorem 8.1.4: Direct limits commute with direct sums and tensor

products of modules. Namely, let {Pi} and {Qi} be two direct systems

of modules over the same algebra which are indexed by the same directed

set I, and let P∞ and Q∞ be their direct limits. Then the direct limits of

the direct systems {Pi ⊕Qi} and {Pi ⊗Qi} are P∞⊕Q∞ and P∞⊗Q∞,

respectively. �

Theorem 8.1.5: A morphism of a direct system {Pi, r
i
j}I to a direct

system {Qi′, ρ
i′

j′}I ′ consists of an order preserving map f : I → I ′ and

morphisms Fi : Pi → Qf(i) which obey the compatibility conditions

ρ
f(i)
f(j) ◦ Fi = Fj ◦ ri

j.
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If P∞ and Q∞ are limits of these direct systems, there exists a unique

morphism F∞ : P∞ → Q∞ such that

ρf(i)
∞ ◦ Fi = F∞ ◦ ri

∞.

�

Theorem 8.1.6: Direct limits preserve monomorphisms and epimor-

phisms, i.e., if all Fi : Pi → Qf(i) are monomorphisms or epimorphisms,

so is Φ∞ : P∞ → Q∞. Let short exact sequences

0 → Pi
Fi−→Qi

Φi−→Ti → 0 (8.1.3)

for all i ∈ I define a short exact sequence of direct systems of modules

{Pi}I , {Qi}I , and {Ti}I which are indexed by the same directed set I.

Then their direct limits form a short exact sequence

0 → P∞
F∞−→Q∞

Φ∞−→T∞ → 0. (8.1.4)

�

In particular, the direct limit of factor modules Qi/Pi is the factor

module Q∞/P∞. By virtue of Theorem 8.1.4, if all the exact sequences

(8.1.3) are split, the exact sequence (8.1.4) is well.

Remark 8.1.1: Let P be an A-module. We denote

P⊗k =
k
⊗P.

Let us consider the direct system of A-modules

A −→(A⊕ P ) −→· · · (A⊕ P ⊕ · · · ⊕ P⊗k) −→· · · .

Its direct limit

⊗P = A⊕ P ⊕ · · · ⊕ P⊗k ⊕ · · · (8.1.5)

is an N-graded A-algebra with respect to the tensor product ⊗. It is

called the tensor algebra of a module P . Its quotient with respect to the

ideal generated by elements

p ⊗ p′ + p′ ⊗ p, p, p′ ∈ P,
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is an N-graded commutative algebra, called the exterior algebra of P . �

Given an inverse sequences of modules

P 0 ←−P 1 ←−· · ·P i πi+1
i←−· · · , (8.1.6)

its inductive limit is a module P∞ together with morphisms π∞
i : P∞ →

P i such that π∞
i = πj

i ◦ π∞
j for all i < j. It consists of elements

(. . . , pi, . . .), pi ∈ P i, of the Cartesian product
∏

P i such that pi = πj
i (p

j)

for all i < j.

Theorem 8.1.7: Inductive limits preserve monomorphisms, but not

epimorphisms. Let exact sequences

0 → P i F i

−→Qi Φi

−→T i, i ∈ N,

for all i ∈ N define an exact sequence of inverse systems of modules {P i},

{Qi} and {T i}. Then their inductive limits form an exact sequence

0 → P∞ F∞

−→Q∞ Φ∞

−→T∞.

�

In contrast with direct limits, the inductive ones exist in the category

of groups which are not necessarily commutative.

8.2 Differential operators on modules

This Section addresses the notion of a linear differential operator on a

module over a commutative ring.

Let K be a commutative ring and A a commutative K-ring. Let P

and Q be A-modules. The K-module Hom K(P, Q) of K-module homo-

morphisms Φ : P → Q can be endowed with the two different A-module

structures

(aΦ)(p) = aΦ(p), (Φ • a)(p) = Φ(ap), a ∈ A, p ∈ P. (8.2.1)
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For the sake of convenience, we refer to the second one as the A•-module

structure. Let us put

δaΦ = aΦ − Φ • a, a ∈ A. (8.2.2)

Definition 8.2.1: An element Δ ∈ Hom K(P, Q) is called a Q-valued

differential operator of order s on P if

δa0
◦ · · · ◦ δas

Δ = 0

for any tuple of s + 1 elements a0, . . . , as of A. The set Diff s(P, Q) of

these operators inherits the A- and A•-module structures (8.2.1). �

In particular, zero order differential operators obey the condition

δaΔ(p) = aΔ(p) − Δ(ap) = 0, a ∈ A, p ∈ P,

and, consequently, they coincide with A-module morphisms P → Q. A

first order differential operator Δ satisfies the condition

δb ◦ δa Δ(p) = baΔ(p) − bΔ(ap) − aΔ(bp) + Δ(abp) = 0, a, b ∈ A.

The following fact reduces the study of Q-valued differential operators

on an A-module P to that of Q-valued differential operators on the ring

A.

Theorem 8.2.2: Let us consider the A-module morphism

hs : Diff s(A, Q) → Q, hs(Δ) = Δ(1). (8.2.3)

Any Q-valued s-order differential operator Δ ∈ Diff s(P, Q) on P uniquely

factorizes as

Δ : P
fΔ−→Diff s(A, Q)

hs−→Q (8.2.4)

through the morphism hs (8.2.3) and some homomorphism

fΔ : P → Diff s(A, Q), (fΔp)(a) = Δ(ap), a ∈ A, (8.2.5)
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of the A-module P to the A•-module Diff s(A, Q). The assignment Δ →

fΔ defines the isomorphism

Diff s(P, Q) = HomA−A•(P, Diff s(A, Q)). (8.2.6)

�

Let P = A. Any zero order Q-valued differential operator Δ on A is

defined by its value Δ(1). Then there is an isomorphism

Diff 0(A, Q) = Q

via the association

Q � q → Δq ∈ Diff 0(A, Q),

where Δq is given by the equality Δq(1) = q. A first order Q-valued

differential operator Δ on A fulfils the condition

Δ(ab) = bΔ(a) + aΔ(b) − baΔ(1), a, b ∈ A.

It is called a Q-valued derivation of A if Δ(1) = 0, i.e., the Leibniz rule

Δ(ab) = Δ(a)b + aΔ(b), a, b ∈ A, (8.2.7)

holds. One obtains at once that any first order differential operator on

A falls into the sum

Δ(a) = aΔ(1) + [Δ(a) − aΔ(1)]

of the zero order differential operator aΔ(1) and the derivation Δ(a) −

aΔ(1). If ∂ is a Q-valued derivation of A, then a∂ is well for any a ∈ A.

Hence, Q-valued derivations of A constitute an A-module d(A, Q), called

the derivation module. There is the A-module decomposition

Diff 1(A, Q) = Q ⊕ d(A, Q). (8.2.8)

If P = Q = A, the derivation module dA of A also is a Lie K-algebra

with respect to the Lie bracket

[u, u′] = u ◦ u′ − u′ ◦ u, u, u′ ∈ A. (8.2.9)
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Accordingly, the decomposition (8.2.8) takes the form

Diff 1(A) = A⊕ dA. (8.2.10)

Definition 8.2.3: A connection on an A-module P is an A-module

morphism

dA � u → ∇u ∈ Diff 1(P, P ) (8.2.11)

such that the first order differential operators ∇u obey the Leibniz rule

∇u(ap) = u(a)p + a∇u(p), a ∈ A, p ∈ P. (8.2.12)

�

Though ∇u (8.2.11) is called a connection, it in fact is a covariant

differential on a module P .

Let P be a commutative A-ring and dP the derivation module of P

as a K-ring. The dP is both a P - and A-module. Then Definition 8.2.3

is modified as follows.

Definition 8.2.4: A connection on an A-ring P is an A-module mor-

phism

dA � u → ∇u ∈ dP ⊂ Diff 1(P, P ), (8.2.13)

which is a connection on P as an A-module. �

8.3 Homology and cohomology of complexes

This Section summarizes the relevant basics on complexes of modules

over a commutative ring.

Let K be a commutative ring. A sequence

0←B0
∂1←−B1

∂2←−· · ·Bp
∂p+1

←−· · · (8.3.1)

of K-modules Bp and homomorphisms ∂p is said to be a chain complex

if

∂p ◦ ∂p+1 = 0, p ∈ N,
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i.e., Im ∂p+1 ⊂ Ker ∂p. Homomorphisms ∂p are called boundary op-

erators. Elements of a module Bp, its submodules Ker ∂p ⊂ Bp and

Im ∂p+1 ⊂ Ker ∂p are called p-chains, p-cycles and p-boundaries, respec-

tively. The p-th homology group of the chain complex B∗ (8.3.1) is the

factor module

Hp(B∗) = Ker ∂p/Im ∂p+1.

It is a K-module. In particular, we have H0(B∗) = B0/Im ∂1. The chain

complex (8.3.1) is exact at a term Bp iff Hp(B∗) = 0. This complex is

said to be k-exact if its homology groups Hp≤k(B∗) are trivial. It is called

exact if all its homology groups are trivial, i.e., it is an exact sequence.

A sequence

0 → B0 δ0

−→B1 δ1

−→· · ·Bp δp

−→· · · (8.3.2)

of modules Bp and their homomorphisms δp is said to be a cochain

complex (or, simply, a complex) if

δp+1 ◦ δp = 0, p ∈ N,

i.e., Im δp ⊂ Ker δp+1. The homomorphisms δp are called coboundary

operators. Elements of a module Bp, its submodules Ker δp ⊂ Bp and

Im δp−1 are called p-cochains, p-cocycles and p-coboundaries, respec-

tively. The p-th cohomology group of the complex B∗ (8.3.2) is the

factor module

Hp(B∗) = Ker δp/Im δp−1.

It is a K-module. In particular, H0(B∗) = Ker δ0. The complex (8.3.2)

is exact at a term Bp iff Hp(B∗) = 0. This complex is an exact sequence

if all its cohomology groups are trivial.

A complex (B∗, δ∗) is called acyclic if its cohomology groups H0<p(B∗)

are trivial. A complex (B∗, δ∗) is said to be a resolution of a module B

if it is acyclic and H0(B∗) = Ker δ0 = B.
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The following are the standard constructions of new complexes from

old ones.

• Given complexes (B∗
1 , δ

∗
1) and (B∗

2 , δ
∗
2), their direct sum B∗

1 ⊕ B∗
2 is

a complex of modules

(B∗
1 ⊕ B∗

2)
p = Bp

1 ⊕ Bp
2

with respect to the coboundary operators

δp
⊕(bp

1 + bp
2) = δp

1b
p
1 + δp

2b
p
2.

• Given a subcomplex (C∗, δ∗) of a complex (B∗, δ∗), the factor com-

plex B∗/C∗ is defined as a complex of factor modules Bp/Cp provided

with the coboundary operators δp[bp] = [δpbp], where [bp] ∈ Bp/Cp de-

notes the coset of an element bp.

• Given complexes (B∗
1 , δ

∗
1) and (B∗

2 , δ
∗
2), their tensor product B∗

1 ⊗B∗
2

is a complex of modules

(B∗
1 ⊗ B∗

2)
p = ⊕

k+r=p
Bk

1 ⊗ Br
2

with respect to the coboundary operators

δp
⊗(bk

1 ⊗ br
2) = (δk

1b
k
1) ⊗ br

2 + (−1)kbk
1 ⊗ (δr

2b
r
2).

A cochain morphism of complexes

γ : B∗
1 → B∗

2 (8.3.3)

is defined as a family of degree-preserving homomorphisms

γp : Bp
1 → Bp

2 , p ∈ N,

such that

δp
2 ◦ γp = γp+1 ◦ δp

1, p ∈ N.

It follows that if bp ∈ Bp
1 is a cocycle or a coboundary, then γp(bp) ∈ Bp

2

is so. Therefore, the cochain morphism of complexes (8.3.3) yields an

induced homomorphism of their cohomology groups

[γ]∗ : H∗(B∗
1) → H∗(B∗

2).
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Let short exact sequences

0 → Cp γp
−→Bp ζp

−→F p → 0

for all p ∈ N define a short exact sequence of complexes

0 → C∗ γ
−→B∗ ζ

−→F ∗ → 0, (8.3.4)

where γ is a cochain monomorphism and ζ is a cochain epimorphism

onto the quotient F ∗ = B∗/C∗.

Theorem 8.3.1: The short exact sequence of complexes (8.3.4) yields

the long exact sequence of their cohomology groups

0 → H0(C∗)
[γ]0

−→H0(B∗)
[ζ]0

−→H0(F ∗)
τ0

−→H1(C∗) −→· · · (8.3.5)

−→Hp(C∗)
[γ]p

−→Hp(B∗)
[ζ]p

−→Hp(F ∗)
τp

−→Hp+1(C∗) −→· · · .

�

Theorem 8.3.2: A direct sequence of complexes

B∗
0 −→B∗

1 −→· · ·B∗
k

γk
k+1−→B∗

k+1 −→· · · (8.3.6)

admits a direct limit B∗
∞ which is a complex whose cohomology H∗(B∗

∞)

is a direct limit of the direct sequence of cohomology groups

H∗(B∗
0) −→H∗(B∗

1) −→· · ·H∗(B∗
k)

[γk
k+1]−→H∗(B∗

k+1) −→· · · .

�

8.4 Differential calculus over a commutative ring

Let g be a Lie algebra over a commutative ring K. Let g act on a K-

module P on the left such that

[ε, ε′]p = (ε ◦ ε′ − ε′ ◦ ε)p, ε, ε′ ∈ g.

Then one calls P the Lie algebra g-module. Let us consider K-multilinear

skew-symmetric maps

ck :
k
× g → P.



176 CHAPTER 8. TOPICS ON COMMUTATIVE GEOMETRY

They form a g-module Ck[g; P ]. Let us put C0[g; P ] = P . We obtain the

cochain complex

0 → P
δ0

−→C1[g; P ]
δ1

−→· · ·Ck[g; P ]
δk

−→· · · (8.4.1)

with respect to the Chevalley–Eilenberg coboundary operators

δkck(ε0, . . . , εk) =
k∑

i=0

(−1)iεic
k(ε0, . . . , ε̂i, . . . , εk) + (8.4.2)

∑
1≤i<j≤k

(−1)i+jck([εi, εj], ε0, . . . , ε̂i, . . . , ε̂j, . . . , εk),

where the caret ̂ denotes omission. For instance, we have

δ0p(ε0) = ε0p, (8.4.3)

δ1c1(ε0, ε1) = ε0c
1(ε1) − ε1c

1(ε0) − c1([ε0, ε1]). (8.4.4)

The complex (8.4.1) is called the Chevalley–Eilenberg complex, and its

cohomology H∗(g, P ) is the Chevalley–Eilenberg cohomology of a Lie

algebra g with coefficients in P .

Let A be a commutative K-ring. Since the derivation module dA of

A is a Lie K-algebra, one can associate to A the Chevalley–Eilenberg

complex C∗[dA;A]. Its subcomplex of A-multilinear maps is a DGA,

also called the differential calculus over A. By a gradation throughout

this Section is meant the N-gradation.

A graded algebra Ω∗ over a commutative ring K is defined as a direct

sum Ω∗ = ⊕
k

Ωk of K-modules Ωk, provided with an associative multipli-

cation law α · β, α, β ∈ Ω∗, such that α · β ∈ Ω|α|+|β|, where |α| denotes

the degree of an element α ∈ Ω|α|. In particular, it follows that Ω0 is a

(non-commutative) K-algebra A, while Ωk>0 are A-bimodules and Ω∗ is

an (A−A)-algebra. A graded algebra is said to be graded commutative

if

α · β = (−1)|α||β|β · α, α, β ∈ Ω∗.

A graded algebra Ω∗ is called the differential graded algebra (DGA)

or the differential calculus over A if it is a cochain complex of K-modules

0 → K −→A δ−→Ω1 δ−→· · ·Ωk δ−→· · · (8.4.5)
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relative to a coboundary operator δ which obeys the graded Leibniz rule

δ(α · β) = δα · β + (−1)|α|α · δβ. (8.4.6)

In particular, δ : A → Ω1 is a Ω1-valued derivation of a K-algebra A.

The cochain complex (8.4.5) is said to be the abstract de Rham complex

of the DGA (Ω∗, δ). Cohomology H∗(Ω∗) of the complex (8.4.5) is called

the abstract de Rham cohomology.

A morphism γ between two DGAs (Ω∗, δ) and (Ω′∗, δ′) is defined as

a cochain morphism, i.e., γ ◦ δ = γ ◦ δ′. It yields the corresponding

morphism of the abstract de Rham cohomology groups of these algebras.

One considers the minimal differential graded subalgebra Ω∗A of the

DGA Ω∗ which contains A. Seen as an (A−A)-algebra, it is generated

by the elements δa, a ∈ A, and consists of monomials

α = a0δa1 · · · δak, ai ∈ A,

whose product obeys the juxtaposition rule

(a0δa1) · (b0δb1) = a0δ(a1b0) · δb1 − a0a1δb0 · δb1

in accordance with the equality (8.4.6). The DGA (Ω∗A, δ) is called the

minimal differential calculus over A.

Let now A be a commutative K-ring possessing a non-trivial Lie al-

gebra dA of derivations. We consider the extended Chevalley–Eilenberg

complex

0 → K in−→C∗[dA;A]

of the Lie algebra dA with coefficients in the ring A, regarded as a dA-

module. It is easily justified that this complex contains a subcomplex

O∗[dA] of A-multilinear skew-symmetric maps

φk :
k
× dA → A (8.4.7)
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with respect to the Chevalley–Eilenberg coboundary operator

dφ(u0, . . . , uk) =
k∑

i=0

(−1)iui(φ(u0, . . . , ûi, . . . , uk)) + (8.4.8)

∑
i<j

(−1)i+jφ([ui, uj], u0, . . . , ûi, . . . , ûj, . . . , uk).

In particular, we have

(da)(u) = u(a), a ∈ A, u ∈ dA,

(dφ)(u0, u1) = u0(φ(u1)) − u1(φ(u0)) − φ([u0, u1]), φ ∈ O1[dA],

O0[dA] = A,

O1[dA] = HomA(dA,A) = dA∗.

It follows that d(1) = 0 and d is a O1[dA]-valued derivation of A.

The graded module O∗[dA] is provided with the structure of a graded

A-algebra with respect to the exterior product

φ ∧ φ′(u1, ..., ur+s) = (8.4.9)∑
i1<···<ir;j1<···<js

sgni1···irj1···js

1···r+s φ(ui1, . . . , uir)φ
′(uj1, . . . , ujs

),

φ ∈ Or[dA], φ′ ∈ Os[dA], uk ∈ dA,

where sgn...
... is the sign of a permutation. This product obeys the relations

d(φ ∧ φ′) = d(φ) ∧ φ′ + (−1)|φ|φ ∧ d(φ′), φ, φ′ ∈ O∗[dA],

φ ∧ φ′ = (−1)|φ||φ
′|φ′ ∧ φ. (8.4.10)

By virtue of the first one, O∗[dA] is a differential graded K-algebra,

called the Chevalley–Eilenberg differential calculus over a K-ring A. The

relation (8.4.10) shows that O∗[dA] is a graded commutative algebra.

The minimal Chevalley–Eilenberg differential calculus O∗A over a

ring A consists of the monomials

a0da1 ∧ · · · ∧ dak, ai ∈ A.

Its complex

0 → K −→A d−→O1A d−→· · ·OkA d−→· · · (8.4.11)

is said to be the de Rham complex of a K-ring A, and its cohomology

H∗(A) is called the de Rham cohomology of A.
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8.5 Sheaf cohomology

A sheaf on a topological space X is a continuous fibre bundle π : S → X

in modules over a commutative ring K, where the surjection π is a local

homeomorphism and fibres Sx, x ∈ X, called the stalks, are provided

with the discrete topology. Global sections of a sheaf S make up a K-

module S(X), called the structure module of S.

Any sheaf is generated by a presheaf. A presheaf S{U} on a topological

space X is defined if a module SU over a commutative ring K is assigned

to every open subset U ⊂ X (S∅ = 0) and if, for any pair of open subsets

V ⊂ U , there exists the restriction morphism rU
V : SU → SV such that

rU
U = Id SU , rU

W = rV
WrU

V , W ⊂ V ⊂ U.

Every presheaf S{U} on a topological space X yields a sheaf on X

whose stalk Sx at a point x ∈ X is the direct limit of the modules

SU , x ∈ U , with respect to the restriction morphisms rU
V . It means

that, for each open neighborhood U of a point x, every element s ∈ SU

determines an element sx ∈ Sx, called the germ of s at x. Two elements

s ∈ SU and s′ ∈ SV belong to the same germ at x iff there exists an open

neighborhood W ⊂ U ∩ V of x such that rU
Ws = rV

Ws′.

Example 8.5.1: Let C0
{U} be the presheaf of continuous real functions

on a topological space X. Two such functions s and s′ define the same

germ sx if they coincide on an open neighborhood of x. Hence, we

obtain the sheaf C0
X of continuous functions on X. Similarly, the sheaf

C∞
X of smooth functions on a smooth manifold X is defined. Let us also

mention the presheaf of real functions which are constant on connected

open subsets of X. It generates the constant sheaf on X denoted by R.

�

Different presheaves may generate the same sheaf. Conversely, every

sheaf S defines a presheaf S({U}) of modules S(U) of its local sections. It

is called the canonical presheaf of the sheaf S. If a sheaf S is constructed
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from a presheaf S{U}, there are natural module morphisms

SU � s → s(U) ∈ S(U), s(x) = sx, x ∈ U,

which are neither monomorphisms nor epimorphisms in general. For

instance, it may happen that a non-zero presheaf defines a zero sheaf.

The sheaf generated by the canonical presheaf of a sheaf S coincides

with S.

A direct sum and a tensor product of presheaves (as families of mod-

ules) and sheaves (as fibre bundles in modules) are naturally defined.

By virtue of Theorem 8.1.4, a direct sum (resp. a tensor product) of

presheaves generates a direct sum (resp. a tensor product) of the corre-

sponding sheaves.

Remark 8.5.2: In a different terminology, a sheaf is introduced as a

presheaf which satisfies the following additional axioms.

(S1) Suppose that U ⊂ X is an open subset and {Uα} is its open

cover. If s, s′ ∈ SU obey the condition

rU
Uα

(s) = rU
Uα

(s′)

for all Uα, then s = s′.

(S2) Let U and {Uα} be as in previous item. Suppose that we are

given a family of presheaf elements {sα ∈ SUα
} such that

rUα

Uα∩Uλ
(sα) = rUλ

Uα∩Uλ
(sλ)

for all Uα, Uλ. Then there exists a presheaf element s ∈ SU such that

sα = rU
Uα

(s).

Canonical presheaves are in one-to-one correspondence with presheaves

obeying these axioms. For instance, presheaves of continuous, smooth

and locally constant functions in Example 8.5.1 satisfy the axioms (S1)

– (S2). �

Remark 8.5.3: The notion of a sheaf can be extended to sets, but not

to non-commutative groups. One can consider a presheaf of such groups,
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but it generates a sheaf of sets because a direct limit of non-commutative

groups need not be a group. The first (but not higher) cohomology of

X with coefficients in this sheaf is defined. �

A morphism of a presheaf S{U} to a presheaf S ′
{U} on the same topo-

logical space X is defined as a set of module morphisms γU : SU → S ′
U

which commute with restriction morphisms. A morphism of presheaves

yields a morphism of sheaves generated by these presheaves. This is a

bundle morphism over X such that γx : Sx → S ′
x is the direct limit of

morphisms γU , x ∈ U . Conversely, any morphism of sheaves S → S ′

on a topological space X yields a morphism of canonical presheaves of

local sections of these sheaves. Let Hom (S|U , S ′|U) be the commutative

group of sheaf morphisms S|U → S ′|U for any open subset U ⊂ X. These

groups are assembled into a presheaf, and define the sheaf Hom (S, S ′)

on X. There is a monomorphism

Hom (S, S ′)(U) → Hom (S(U), S ′(U)), (8.5.1)

which need not be an isomorphism.

By virtue of Theorem 8.1.6, if a presheaf morphism is a monomor-

phism or an epimorphism, so is the corresponding sheaf morphism. Fur-

thermore, the following holds.

Theorem 8.5.1: A short exact sequence

0 → S ′
{U} → S{U} → S ′′

{U} → 0 (8.5.2)

of presheaves on the same topological space yields the short exact se-

quence of sheaves generated by these presheaves

0 → S ′ → S → S ′′ → 0, (8.5.3)

where the factor sheaf S ′′ = S/S ′ is isomorphic to that generated by the

factor presheaf S ′′
{U} = S{U}/S

′
{U}. If the exact sequence of presheaves

(8.5.2) is split, i.e.,

S{U}
∼= S ′

{U} ⊕ S ′′
{U},
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the corresponding splitting

S ∼= S ′ ⊕ S ′′

of the exact sequence of sheaves (8.5.3) holds. �

The converse is more intricate. A sheaf morphism induces a morphism

of the corresponding canonical presheaves. If S → S ′ is a monomor-

phism,

S({U}) → S ′({U})

also is a monomorphism. However, if S → S ′ is an epimorphism,

S({U}) → S ′({U})

need not be so. Therefore, the short exact sequence (8.5.3) of sheaves

yields the exact sequence of the canonical presheaves

0 → S ′({U}) → S({U}) → S ′′({U}), (8.5.4)

where S({U}) → S ′′({U}) is not necessarily an epimorphism. At the

same time, there is the short exact sequence of presheaves

0 → S ′({U}) → S({U}) → S ′′
{U} → 0, (8.5.5)

where the factor presheaf

S ′′
{U} = S({U})/S′({U})

generates the factor sheaf S ′′ = S/S ′, but need not be its canonical

presheaf.

Let us turn now to sheaf cohomology. Note that only proper covers

are considered.

Let S{U} be a presheaf of modules on a topological space X, and let

U = {Ui}i∈I be an open cover of X. One constructs a cochain complex

where a p-cochain is defined as a function sp which associates an element

sp(i0, . . . , ip) ∈ SUi0
∩···∩Uip

(8.5.6)
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to each (p + 1)-tuple (i0, . . . , ip) of indices in I. These p-cochains are

assembled into a module Cp(U, S{U}). Let us introduce the coboundary

operator

δp : Cp(U, S{U}) → Cp+1(U, S{U}),

δpsp(i0, . . . , ip+1) =
p+1∑
k=0

(−1)krWk

W sp(i0, . . . , îk, . . . , ip+1), (8.5.7)

W = Ui0 ∩ . . . ∩ Uip+1
, Wk = Ui0 ∩ · · · ∩ Ûik ∩ · · · ∩ Uip+1

.

One can easily check that δp+1 ◦ δp = 0. Thus, we obtain the cochain

complex of modules

0 → C0(U, S{U})
δ0

−→· · ·Cp(U, S{U})
δp

−→Cp+1(U, S{U}) · · · . (8.5.8)

Its cohomology groups

Hp(U; S{U}) = Ker δp/Im δp−1

are modules. Of course, they depend on an open cover U of X.

Let U′ be a refinement of the cover U. Then there is a morphism of

cohomology groups

H∗(U; S{U}) → H∗(U′; S{U}). (8.5.9)

Let us take the direct limit of cohomology groups H∗(U; S{U}) relative

to these morphisms, where U runs through all open covers of X. This

limit H∗(X; S{U}) is called the cohomology of X with coefficients in the

presheaf S{U}.

Let S be a sheaf on a topological space X. Cohomology of X with

coefficients in S or, simply, sheaf cohomology of X is defined as coho-

mology

H∗(X; S) = H∗(X; S({U}))

with coefficients in the canonical presheaf S({U}) of the sheaf S.

In this case, a p-cochain sp ∈ Cp(U, S({U})) is a collection

sp = {sp(i0, . . . , ip)}
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of local sections sp(i0, . . . , ip) of the sheaf S over Ui0 ∩ · · · ∩ Uip for each

(p + 1)-tuple (Ui0, . . . , Uip) of elements of the cover U. The coboundary

operator (8.5.7) reads

δpsp(i0, . . . , ip+1) =
p+1∑
k=0

(−1)ksp(i0, . . . , îk, . . . , ip+1)|Ui0
∩···∩Uip+1

.

For instance, we have

δ0s0(i, j) = [s0(j) − s0(i)]|Ui∩Uj
, (8.5.10)

δ1s1(i, j, k) = [s1(j, k) − s1(i, k) + s1(i, j)]|Ui∩Uj∩Uk
. (8.5.11)

A glance at the expression (8.5.10) shows that a zero-cocycle is a collec-

tion s = {s(i)}I of local sections of the sheaf S over Ui ∈ U such that

s(i) = s(j) on Ui ∩ Uj. It follows from the axiom (S2) in Remark 8.5.2

that s is a global section of the sheaf S, while each s(i) is its restric-

tion s|Ui
to Ui. Consequently, the cohomology group H0(U; S({U})) is

isomorphic to the structure module S(X) of global sections of the sheaf

S. A one-cocycle is a collection {s(i, j)} of local sections of the sheaf S

over overlaps Ui ∩ Uj which satisfy the cocycle condition

[s(j, k) − s(i, k) + s(i, j)]|Ui∩Uj∩Uk
= 0. (8.5.12)

If X is a paracompact space, the study of its sheaf cohomology is

essentially simplified due to the following fact.

Theorem 8.5.2: Cohomology of a paracompact space X with coeffi-

cients in a sheaf S coincides with cohomology of X with coefficients in

any presheaf generating the sheaf S. �

Remark 8.5.4: We follow the definition of a paracompact topolog-

ical space as a Hausdorff space such that any its open cover admits a

locally finite open refinement, i.e., any point has an open neighborhood

which intersects only a finite number of elements of this refinement. A

topological space X is paracompact iff any cover {Uξ} of X admits a

subordinate partition of unity {fξ}, i.e.:
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(i) fξ are real positive continuous functions on X;

(ii) supp fξ ⊂ Uξ;

(iii) each point x ∈ X has an open neighborhood which intersects

only a finite number of the sets supp fξ;

(iv)
∑
ξ

fξ(x) = 1 for all x ∈ X. �

The key point of the analysis of sheaf cohomology is that short ex-

act sequences of sheaves yield long exact sequences of their cohomology

groups.

Let S{U} and S ′
{U} be presheaves on the same topological space X.

It is readily observed that, given an open cover U of X, any morphism

S{U} → S ′
{U} yields a cochain morphism of complexes

C∗(U, S{U}) → C∗(U, S ′
{U})

and the corresponding morphism

H∗(U; S{U}) → H∗(U; S ′
{U})

of cohomology groups of these complexes. Passing to the direct limit

through all refinements of U, we come to a morphism of cohomology

groups

H∗(X; S{U}) → H∗(X; S ′
{U})

of X with coefficients in the presheaves S{U} and S ′
{U}. In particular,

any sheaf morphism S → S ′ yields a morphism of canonical presheaves

S({U}) → S ′({U})

and the corresponding cohomology morphism

H∗(X; S) → H∗(X; S ′).

By virtue of Theorems 8.3.1 and 8.3.2, every short exact sequence

0 → S ′
{U} −→S{U} −→S ′′

{U} → 0 (8.5.13)
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of presheaves on the same topological space X and the corresponding

exact sequence of complexes (8.5.8) yield the long exact sequence

0 → H0(X; S ′
{U}) −→H0(X; S{U}) −→H0(X; S ′′

{U}) −→ (8.5.14)

H1(X; S ′
{U}) −→· · ·Hp(X; S ′

{U}) −→Hp(X; S{U}) −→

Hp(X; S ′′
{U}) −→Hp+1(X; S ′

{U}) −→· · ·

of the cohomology groups of X with coefficients in these presheaves.

This result is extended to the exact sequence of sheaves. Let

0 → S ′ −→S −→S ′′ → 0 (8.5.15)

be a short exact sequence of sheaves on X. It yields the short exact

sequence of presheaves (8.5.5) where the presheaf S ′′
{U} generates the

sheaf S ′′. If X is paracompact,

H∗(X; S ′′
{U}) = H∗(X; S ′′)

in accordance with Theorem 8.5.2, and we have the exact sequence of

sheaf cohomology

0 → H0(X; S ′) −→H0(X; S) −→H0(X; S ′′) −→ (8.5.16)

H1(X; S ′) −→· · ·Hp(X; S ′) −→Hp(X; S) −→

Hp(X; S ′′) −→Hp+1(X; S ′) −→· · · .

Let us turn now to the abstract de Rham theorem which provides a

powerful tool of studying algebraic systems on paracompact spaces.

Let us consider an exact sequence of sheaves

0 → S
h−→S0

h0

−→S1
h1

−→· · ·Sp
hp

−→· · · . (8.5.17)

It is said to be a resolution of the sheaf S if each sheaf Sp≥0 is acyclic,

i.e., its cohomology groups Hk>0(X; Sp) vanish.

Any exact sequence of sheaves (8.5.17) yields the sequence of their

structure modules

0 → S(X)
h∗−→S0(X)

h0
∗−→S1(X)

h1
∗−→· · ·Sp(X)

h
p
∗−→· · · (8.5.18)
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which is always exact at terms S(X) and S0(X) (see the exact sequence

(8.5.4)). The sequence (8.5.18) is a cochain complex because

hp+1
∗ ◦ hp

∗ = 0.

If X is a paracompact space and the exact sequence (8.5.17) is a reso-

lution of S, the forthcoming abstract de Rham theorem establishes an

isomorphism of cohomology of the complex (8.5.18) to cohomology of X

with coefficients in the sheaf S.

Theorem 8.5.3: Given a resolution (8.5.17) of a sheaf S on a paracom-

pact topological space X and the induced complex (8.5.18), there are

isomorphisms

H0(X; S) = Ker h0
∗, Hq(X; S) = Ker hq

∗/Im hq−1
∗ , q > 0. (8.5.19)

�

A sheaf S on a paracompact space X is called fine if, for each lo-

cally finite open cover U = {Ui}i∈I of X, there exists a system {hi} of

endomorphisms hi : S → S such that:

(i) there is a closed subset Vi ⊂ Ui and hi(Sx) = 0 if x �∈ Vi,

(ii)
∑

i∈I
hi is the identity map of S.

Theorem 8.5.4: A fine sheaf on a paracompact space is acyclic. �

There is the following important example of fine sheaves.

Theorem 8.5.5: Let X be a paracompact topological space which ad-

mits a partition of unity performed by elements of the structure module

A(X) of some sheaf A of real functions on X. Then any sheaf S of

A-modules on X, including A itself, is fine. �

In particular, the sheaf C0
X of continuous functions on a paracompact

topological space is fine, and so is any sheaf of C0
X-modules.
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8.6 Local-ringed spaces

Local-ringed spaces are sheafs of local rings. For instance, smooth man-

ifolds, represented by sheaves of real smooth functions, make up a sub-

category of the category of local-ringed spaces.

A sheaf R on a topological space X is said to be a ringed space if its

stalk Rx at each point x ∈ X is a real commutative ring. A ringed space

is often denoted by a pair (X, R) of a topological space X and a sheaf

R of rings on X. They are called the body and the structure sheaf of a

ringed space, respectively.

A ringed space is said to be a local-ringed space (a geometric space)

if it is a sheaf of local rings.

For instance, the sheaf C0
X of continuous real functions on a topolog-

ical space X is a local-ringed space. Its stalk C0
x, x ∈ X, contains the

unique maximal ideal of germs of functions vanishing at x.

Morphisms of local-ringed spaces are defined as those of sheaves on

different topological spaces as follows.

Let ϕ : X → X ′ be a continuous map. Given a sheaf S on X, its

direct image ϕ∗S on X ′ is generated by the presheaf of assignments

X ′ ⊃ U ′ → S(ϕ−1(U ′))

for any open subset U ′ ⊂ X ′. Conversely, given a sheaf S ′ on X ′, its

inverse image ϕ∗S ′ on X is defined as the pull-back onto X of the contin-

uous fibre bundle S ′ over X ′, i.e., ϕ∗S ′
x = Sϕ(x). This sheaf is generated

by the presheaf which associates to any open V ⊂ X the direct limit of

modules S ′(U) over all open subsets U ⊂ X ′ such that V ⊂ f−1(U).

Remark 8.6.1: Let i : X → X ′ be a closed subspace of X ′. Then i∗S

is a unique sheaf on X ′ such that

i∗S|X = S, i∗S|X ′\X = 0.

Indeed, if x′ ∈ X ⊂ X ′, then

i∗S(U ′) = S(U ′ ∩ X)
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for any open neighborhood U of this point. If x′ �∈ X, there exists its

neighborhood U ′ such that U ′ ∩X is empty, i.e., i∗S(U ′) = 0. The sheaf

i∗S is called the trivial extension of the sheaf S. �

By a morphism of ringed spaces

(X, R) → (X ′, R
′)

is meant a pair (ϕ, ϕ̂) of a continuous map ϕ : X → X ′ and a sheaf

morphism ϕ̂ : R′ → ϕ∗R or, equivalently, a sheaf morphisms ϕ∗R′ → R.

Restricted to each stalk, a sheaf morphism Φ is assumed to be a ring

homomorphism. A morphism of ringed spaces is said to be:

• a monomorphism if ϕ is an injection and Φ is an epimorphism,

• an epimorphism if ϕ is a surjection, while Φ is a monomorphism.

Let (X, R) be a local-ringed space. By a sheaf dR of derivations of

the sheaf R is meant a subsheaf of endomorphisms of R such that any

section u of dR over an open subset U ⊂ X is a derivation of the real ring

R(U). It should be emphasized that, since the monomorphism (8.5.1) is

not necessarily an isomorphism, a derivation of the ring R(U) need not

be a section of the sheaf dR|U . Namely, it may happen that, given open

sets U ′ ⊂ U , there is no restriction morphism

d(R(U)) → d(R(U ′)).

Given a local-ringed space (X, R), a sheaf P on X is called a sheaf

of R-modules if every stalk Px, x ∈ X, is an Rx-module or, equivalently,

if P (U) is an R(U)-module for any open subset U ⊂ X. A sheaf of R-

modules P is said to be locally free if there exists an open neighborhood

U of every point x ∈ X such that P (U) is a free R(U)-module. If all

these free modules are of finite rank (resp. of the same finite rank), one

says that P is of finite type (resp. of constant rank). The structure

module of a locally free sheaf is called a locally free module.

The following is a generalization of Theorem 8.5.5.
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Theorem 8.6.1: Let X be a paracompact space which admits a parti-

tion of unity by elements of the structure module S(X) of some sheaf S

of real functions on X. Let P be a sheaf of S-modules. Then P is fine

and, consequently, acyclic. �

Assumed to be paracompact, a smooth manifold X admits a partition

of unity performed by smooth real functions. It follows that the sheaf

C∞
X of smooth real functions on X is fine, and so is any sheaf of C∞

X -

modules, e.g., the sheaves of sections of smooth vector bundles over X.

Similarly to the sheaf C0
X of continuous functions, the sheaf C∞

X of

smooth real functions on a smooth manifold X is a local-ringed spaces.

Its stalk C∞
x at a point x ∈ X has a unique maximal ideal μx of germs

of smooth functions vanishing at x. Though the sheaf C∞
X is defined on

a topological space X, it fixes a unique smooth manifold structure on X

as follows.

Theorem 8.6.2: Let X be a paracompact topological space and (X, R)

a local-ringed space. Let X admit an open cover {Ui} such that the sheaf

R restricted to each Ui is isomorphic to the local-ringed space (Rn, C∞
Rn).

Then X is an n-dimensional smooth manifold together with a natural

isomorphism of local-ringed spaces (X, R) and (X, C∞
X ). �

One can think of this result as being an alternative definition of

smooth real manifolds in terms of local-ringed spaces. In particular,

there is one-to-one correspondence between smooth manifold morphisms

X → X ′ and the R-ring morphisms C∞(X ′) → C∞(X).

For instance, let Y → X be a smooth vector bundle. The germs of

its sections make up a sheaf of C∞
X -modules, called the structure sheaf

SY of a vector bundle Y → X. The sheaf SY is fine. The structure

module of this sheaf coincides with the structure module Y (X) of global

sections of a vector bundle Y → X. The following Serre–Swan theorem

shows that these modules exhaust all projective modules of finite rank

over C∞(X). Originally proved for bundles over a compact base X, this



8.6. LOCAL-RINGED SPACES 191

theorem has been extended to an arbitrary X.

Theorem 8.6.3: Let X be a smooth manifold. A C∞(X)-module P is

isomorphic to the structure module of a smooth vector bundle over X

iff it is a projective module of finite rank. �

This theorem states the categorial equivalence between the vector

bundles over a smooth manifold X and projective modules of finite rank

over the ring C∞(X) of smooth real functions on X. The following are

corollaries of this equivalence

• The structure module Y ∗(X) of the dual Y ∗ → X of a vector

bundle Y → X is the C∞(X)-dual Y (X)∗ of the structure module Y (X)

of Y → X.

• Any exact sequence of vector bundles

0 → Y −→Y ′ −→Y ′′ → 0 (8.6.1)

over the same base X yields the exact sequence

0 → Y (X) −→Y ′(X) −→Y ′′(X) → 0 (8.6.2)

of their structure modules, and vice versa. In accordance with Theorem

1.2.2, the exact sequence (8.6.1) is always split. Every its splitting defines

that of the exact sequence (8.6.2), and vice versa.

• The derivation module of the real ring C∞(X) coincides with the

C∞(X)-module T (X) of vector fields on X, i.e., with the structure mod-

ule of the tangent bundle TX of X. Hence, it is a projective C∞(X)-

module of finite rank. It is the C∞(X)-dual T (X) = O1(X)∗ of the

structure module O1(X) of the cotangent bundle T ∗X of X which is the

module of differential one-forms on X and, conversely,

O1(X) = T (X)∗.

• Therefore, if P is a C∞(X)-module, one can reformulate Definition

8.2.3 of a connection on P as follows. A connection on a C∞(X)-module

P is a C∞(X)-module morphism

∇ : P → O1(X) ⊗ P, (8.6.3)



192 CHAPTER 8. TOPICS ON COMMUTATIVE GEOMETRY

which satisfies the Leibniz rule

∇(fp) = df ⊗ p + f∇(p), f ∈ C∞(X), p ∈ P.

It associates to any vector field τ ∈ T (X) on X a first order differential

operator ∇τ on P which obeys the Leibniz rule

∇τ(fp) = (τ�df)p + f∇τp. (8.6.4)

In particular, let Y → X be a vector bundle and Y (X) its structure

module. The notion of a connection on the structure module Y (X) is

equivalent to the standard geometric notion of a connection on a vector

bundle Y → X.

Since the derivation module of the real ring C∞(X) is the C∞(X)-

module T (X) of vector fields on X and

O1(X) = T (X)∗,

the Chevalley–Eilenberg differential calculus over the real ring C∞(X) is

exactly the DGA (O∗(X), d) of exterior forms on X, where the Chevalley–

Eilenberg coboundary operator d (8.4.8) coincides with the exterior dif-

ferential. Moreover, one can show that (O∗(X), d) is a minimal differ-

ential calculus, i.e., the C∞(X)-module O1(X) is generated by elements

df , f ∈ C∞(X). Therefore, the de Rham complex (8.4.11) of the real

ring C∞(X) is the de Rham complex

0 → R −→C∞(X)
d−→O1(X)

d−→· · ·Ok(X)
d−→· · · (8.6.5)

of exterior forms on a manifold X.

The de Rham cohomology of the complex (8.6.5) is called the de

Rham cohomology H∗
DR(X) of X. To describe them, let us consider the

de Rham complex

0 → R −→C∞
X

d−→O1
X

d−→· · ·Ok
X

d−→· · · (8.6.6)

of sheaves Ok
X , k ∈ N+, of germs of exterior forms on X. These sheaves

are fine. Due to the Poincaré lemma, the complex (8.6.6) is exact and,
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thereby, is a fine resolution of the constant sheaf R on a manifold X.

Then a corollary of Theorem 8.5.3 is the classical de Rham theorem.

Theorem 8.6.4: There is an isomorphism

Hk
DR(X) = Hk(X; R) (8.6.7)

of the de Rham cohomology H∗
DR(X) of a manifold X to cohomology of

X with coefficients in the constant sheaf R. �
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strength, 85

canonical, 87

form, 87

of a linear connection, 94

structure group, 74

action, 77

reduction, 95

structure module

of a sheaf, 179

of a vector bundle, 16

structure ring of a graded mani-

fold, 122

structure sheaf

of a graded manifold, 122

of a ringed space, 188

of a vector bundle, 190

subbundle, 13

submanifold, 8

submersion, 8

continuous, 11

superspace, 117

supersymmetry, 150

supervector space, 117

symmetry, 138

classical, 139

exact, 138

gauge, 140

generalized, 139

variational, 137

symmetry current, 139

tangent bundle, 7

affine, 21

vertical, 19

tangent morphism, 7

vertical, 19

tangent prolongation
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of a group action, 72

of a structure group action, 79

tangent-valued form, 28

canonical, 28

horizontal, 30

projectable, 30

tensor algebra, 168

tensor bundle, 19

tensor product

of Abelian groups, 165

of commutative algebras, 165

of complexes, 174

of graded modules, 115

of modules, 165

of vector bundles, 17

tensor product connection, 59

torsion form, 58

of a world connection, 60

soldering, 105

total derivative, 34

graded, 146

higher order, 36

infinite order, 48

total space, 9

transition functions, 10

G-valued, 74

trivial extension of a sheaf, 189

trivialization chart, 11

trivialization morphism, 10

tubular neighborhood, 25

typical fibre, 10

variational

bicomplex, 132

graded, 146

complex, 132

graded, 146

short, 136

derivative, 134

formula, 134

operator, 132

graded, 146

symmetry, 137

classical, 139

of a graded Lagrangian, 150

vector bundle, 15

characteristic, 123

dual, 17

graded, 153

vector field, 22

complete, 22

fundamental, 79

generalized, 136

graded, 125

holonomic, 107

horizontal, 52

standard, 107

integrable, 39

left-invariant, 70

parallel, 106

principal, 89
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projectable, 22

on a jet manifold, 39

right-invariant, 70

subordinate to a distribution,

23

vertical, 23

vector space, 164

graded, 114

vector-valued form, 31

vertical automorphism, 13

vertical splitting, 19

of a vector bundle, 19

of an affine bundle, 21

vertical-valued form, 30

weak conservation law, 138

Whitney sum

of vector bundles, 17

world connection, 59

affine, 108

linear, 103

on a tensor bundle, 60

on the cotangent bundle, 59

symmetric, 60

world metric, 61
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