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Introduction

In contrast with quantum field theory, classical field theory can be formu-
lated in a strict mathematical way by treating classical fields as sections
of smooth fibre bundles [9, 17, 21, 24]. This also is the case of time-
dependent non-relativistic mechanics on fibre bundles over R [10, 16, 19].

This book aim to compile the relevant material on fibre bundles, jet
manifolds, connections, graded manifolds and Lagrangian theory [9, 17,
22].

The book is based on the graduate and post graduate courses of lec-
tures given at the Department of Theoretical Physics of Moscow State
University (Russia). It addresses to a wide audience of mathematicians,
mathematical physicists and theoreticians. It is tacitly assumed that
the reader has some familiarity with the basics of differential geometry
[11, 13, 26].

Throughout the book, all morphisms are smooth (i.e. of class C>)
and manifolds are smooth real and finite-dimensional. A smooth real
manifold is customarily assumed to be Hausdorff and second-countable
(i.e., it has a countable base for topology). Consequently, it is a lo-
cally compact space which is a union of a countable number of compact
subsets, a separable space (i.e., it has a countable dense subset), a para-
compact and completely regular space. Being paracompact, a smooth
manifold admits a partition of unity by smooth real functions. Unless
otherwise stated, manifolds are assumed to be connected (and, conse-
quently, arcwise connected). We follow the notion of a manifold without

boundary.






Chapter 1

Geometry of fibre bundles

Throughout the book, fibre bundles are smooth finite-dimensional and

locally-trivial.

1.1 Fibre bundles

Let Z be a manifold. By
g TZ — Z, wy T2 —Z

are denoted its tangent and cotangent bundles, respectively.  Given

coordinates (2%) on Z, they are equipped with the holonomic coordinates

IA
A2 o 0z iy
(Z 72 )7 - 82’”2 9

/[l‘

A ./ aZ .
(27, 2\)s = ﬁzuv

with respect to the holonomic frames {0y} and coframes {dz*} in the
tangent and cotangent spaces to Z, respectively. Any manifold mor-
phism f : Z — Z' yields the tangent morphism

A
01 s,
OxH

Let us consider manifold morphisms of maximal rank. They are im-

Tf:TZ - TZ PoTf=

mersions (in particular, imbeddings) and submersions. An injective im-
mersion is a submanifold, and a surjective submersion is a fibred manifold

(in particular, a fibre bundle).
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Given manifolds M and N, by the rank of a morphism f : M — N

at a point p € M is meant the rank of the linear morphism
T,f - TyM — Ty N.

For instance, if f is of maximal rank at p € M, then T}, f is injective when
dim M < dim N and surjective when dim N < dim M. In this case, f is
called an immersion and a submersion at a point p € M, respectively.

Since p — rank,f is a lower semicontinuous function, then the mor-
phism 7, f is of maximal rank on an open neighbourhood of p, too. It
follows from the inverse function theorem that:

e if f is an immersion at p, then it is locally injective around p.

e if f is a submersion at p, it is locally surjective around p.

If f is both an immersion and a submersion, it is called a local diffeo-
morphism at p. In this case, there exists an open neighbourhood U of p
such that f : U — f(U) is a diffeomorphism onto an open set f(U) C N.

A manifold morphism f is called the immersion (resp. submersion) if
it is an immersion (resp. submersion) at all points of M. A submersion
is necessarily an open map, i.e., it sends open subsets of M onto open
subsets of N. If an immersion f is open (i.e., f is a homeomorphism
onto f(M) equipped with the relative topology from N), it is called the
imbedding.

A pair (M, f) is called a submanifold of N if f is an injective im-
mersion. A submanifold (M, f) is an imbedded submanifold if f is an
imbedding. For the sake of simplicity, we usually identify (M, f) with
f(M). If M C N, its natural injection is denoted by iy : M — N.

There are the following criteria for a submanifold to be imbedded.

Theorem 1.1.1: Let (M, f) be a submanifold of N.
(i) The map f is an imbedding iff, for each point p € M, there exists
a (cubic) coordinate chart (V, 1) of N centered at f(p) so that f(M)NV

consists of all points of V with coordinates (z!,..., 2™ 0,...,0).
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(i) Suppose that f: M — N is a proper map, i.e., the pre-images of
compact sets are compact. Then (M, f) is a closed imbedded submani-
fold of N. In particular, this occurs if M is a compact manifold.

(iii) If dim M = dim N, then (M, f) is an open imbedded submanifold
of N. O

A triple
m:Y — X, dim X =n >0, (1.1.1)

is called a fibred manifold if a manifold morphism 7 is a surjective sub-
mersion, i.e., the tangent morphism 7w : TY — T X is a surjection. One
says that Y is a total space of a fibred manifold (1.1.1), X is its base, ®
is a fibration, and Y, = 7~ !(x) is a fibre over z € X.

Any fibre is an imbedded submanifold of Y of dimension dimY —
dim X.

Theorem 1.1.2: A surjection (1.1.1) is a fired manifold iff a manifold
Y admits an atlas of coordinate charts (Uy;a?,y’) such that (2) are

coordinates on 7(Uy) C X and coordinate transition functions read
= A, Y= iy

These coordinates are called fibred coordinates compatible with a fibra-

tion 7. O

By a local section of a surjection (1.1.1) is meant an injection s : U —
Y of an open subset U C X such that mos =1dU, i.e., a section sends
any point z € X into the fibre Y, over this point. A local section also is
defined over any subset IV € X as the restriction to IV of a local section
over an open set containing N. If U = X, one calls s the global section.
Hereafter, by a section is meant both a global section and a local section

(over an open subset).

Theorem 1.1.3: A surjection 7 (1.1.1) is a fibred manifold iff, for each
point y € Y, there exists a local section s of 7 : Y — X passing through

y. O
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The range s(U) of a local section s : U — Y of a fibred manifold
Y — X is an imbedded submanifold of Y. It also is a closed map, which
sends closed subsets of U onto closed subsets of Y. If s is a global section,
then s(X) is a closed imbedded submanifold of Y. Global sections of a

fibred manifold need not exist.

Theorem 1.1.4: Let Y — X be a fibred manifold whose fibres are
diffeomorphic to R™. Any its section over a closed imbedded submanifold
(e.g., a point) of X is extended to a global section. In particular, such a

fibred manifold always has a global section. O

Given fibred coordinates (Uy;2?, ), a section s of a fibred manifold
Y — X is represented by collections of local functions {s’ = 3 o s} on
w(Uy).

A fibred manifold Y — X is called a fibre bundle if admits a fibred
coordinate atlas {(7~1(Ug);2*,9")} over a cover {m~1(U,)} of Y which
is the inverse image of a cover & = {U¢} is a cover of X. In this case,
there exists a manifold V', called a typical fibre, such that Y is locally
diffeomorphic to the splittings

Ve :m H(Ue) — Ue x V, (1.1.2)
glued together by means of transition functions

occ =theop U NU XV = UeNU X V (1.1.3)
on overlaps Ug N U¢. Transition functions g¢¢ fulfil the cocycle condition

0¢¢ © 0 = Q& (1.1.4)

on all overlaps Us N U; N U,. Restricted to a point x € X, trivialization
morphisms )¢ (1.1.2) and transition functions g (1.1.3) define diffeo-

morphisms of fibres

Ye(z) Yy =V, x e U, (1.1.5)
Q£<(:z:) V=V, xeUsNU. (1.1.6)
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Trivialization charts (Ug, 1)¢) together with transition functions gg¢¢ (1.1.3)

constitute a bundle atlas

U = {(Ug, 1), 0ec} (1.1.7)

of a fibre bundle Y — X. Two bundle atlases are said to be equivalent
if their union also is a bundle atlas, i.e., there exist transition functions
between trivialization charts of different atlases.

A fibre bundle Y — X is uniquely defined by a bundle atlas. Given
an atlas ¥ (1.1.7), there is a unique manifold structure on Y for which
m:Y — X is a fibre bundle with the typical fibre V' and the bundle

atlas U. All atlases of a fibre bundle are equivalent.

Remark 1.1.1: The notion of a fibre bundle introduced above is the
notion of a smooth locally trivial fibre bundle. In a general setting, a
continuous fibre bundle is defined as a continuous surjective submersion
of topological spaces Y — X. A continuous map 7 : Y — X is called a
submersion if, for any point y € Y, there exists an open neighborhood
U of the point m(y) and a right inverse o : U — Y of m such that
oom(y) =y, i.e., there exists a local section of w. The notion of a locally
trivial continuous fibre bundle is a repetition of that of a smooth fibre
bundle, where trivialization morphisms ¢ and transition functions gg

are continuous. O

We have the following useful criteria for a fibred manifold to be a
fibre bundle.

Theorem 1.1.5: If a fibration 7 : Y — X is a proper map, then Y — X
is a fibre bundle. In particular, a fibred manifold with a compact total

space is a fibre bundle. O

Theorem 1.1.6: A fibred manifold whose fibres are diffeomorphic either

to a compact manifold or R” is a fibre bundle. O

A comprehensive relation between fibred manifolds and fibre bundles
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is given in Remark 3.1.2. It involves the notion of an Ehresmann con-
nection.

Unless otherwise stated, we restrict our consideration to fibre bundles.
Without a loss of generality, we further assume that a cover i for a bundle
atlas of Y — X also is a cover for a manifold atlas of the base X. Then,
given a bundle atlas ¥ (1.1.7), a fibre bundle Y is provided with the

associated bundle coordinates

My) =@ om)y), Y =Wov)y), yer (U,

A are coordinates on Us C X and y', called fibre coordinates, are

where z
coordinates on a typical fibre V.

The forthcoming Theorems 1.1.7 — 1.1.9 describe the particular covers
which one can choose for a bundle atlas. Throughout the book, only
proper covers of manifolds are considered, i.e., Ue # U¢ if ¢ # £. Recall
that a cover ¢’ is a refinement of a cover 4 if, for each U’ € ¢/, there
exists U € 4 such that U’ C U. If a fibre bundle Y — X has a bundle
atlas over a cover y of X, it admits a bundle atlas over any refinement
of 1.

A fibred manifold Y — X is called trivial if Y is diffeomorphic to
the product X x V. Different trivializations of ¥ — X differ from each

other in surjections ¥ — V.
Theorem 1.1.7: Any fibre bundle over a contractible base is trivial. O

However, a fibred manifold over a contractible base need not be trivial,
even its fibres are mutually diffeomorphic.
It follows from Theorem 1.1.7 that any cover of a base X consisting

of domains (i.e., contractible open subsets) is a bundle cover.

Theorem 1.1.8: Every fibre bundle Y — X admits a bundle atlas over
a countable cover & of X where each member U of & is a domain whose

closure UE is compact. O
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If a base X is compact, there is a bundle atlas of Y over a finite cover
of X which obeys the condition of Theorem 1.1.8.

Theorem 1.1.9: Every fibre bundle Y — X admits a bundle atlas over
a finite cover 4 of X, but its members need not be contractible and

connected. O

Morphisms of fibre bundles, by definition, are fibrewise morphisms,
sending a fibre to a fibre. Namely, a bundle morphism of a fibre bundle
m:Y — X to a fibre bundle 7’ : Y/ — X' is defined as a pair (®, f) of

manifold morphisms which form a commutative diagram

Yy 2.y
ﬂl lﬂ/, 7od=fom.
x Lox

Bundle injections and surjections are called bundle monomorphisms
and epimorphisms, respectively. A bundle diffeomorphism is called a
bundle isomorphism, or a bundle automorphism if it is an isomorphism
to itself. For the sake of brevity, a bundle morphism over f = Id X is
often said to be a bundle morphism over X, and is denoted by Y - Y’
In particular, a bundle automorphism over X is called a vertical auto-
morphism.

A bundle monomorphism ® : Y — Y’ over X is called a subbundle
of a fibre bundle Y' — X if ®(Y) is a submanifold of Y’. There is the
following useful criterion for an image and an inverse image of a bundle

morphism to be subbundles.

Theorem 1.1.10: Let ® : Y — Y be a bundle morphism over X. Given
a global section s of the fibre bundle Y' — X such that s(X) C ®(Y"), by
the kernel of a bundle morphism ® with respect to a section s is meant

the inverse image

Ker ;@ = &~ !(s5(X))
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of (X) by ®. If & : Y — Y’ is a bundle morphism of constant rank over
X, then ®(Y) and Ker ;@ are subbundles of Y/ and Y, respectively. O

Let us describe the following standard constructions of new fibre bun-
dles from the old ones.

e Given a fibre bundle 7 : ¥ — X and a manifold morphism f : X’ —
X, the pull-back of Y by f is called the manifold

Y ={@"y) e X'xY : n(y) = f(a)} (1.1.8)
together with the natural projection (z/,y) — 2’. Tt is a fibre bundle
over X' such that the fibre of f*Y over a point 2’ € X’ is that of Y over
the point f(z') € X. There is the canonical bundle morphism

i fY> (x/ay)|7r(y):f(m’) 73/ ey (1'1‘9)

Any section s of a fibre bundle Y — X yields the pull-back section

frs(@) = (¢, s(f())
of f*Y — X'
e If X’ C X is a submanifold of X and iy is the corresponding natural

injection, then the pull-back bundle
Y =Yy
is called the restriction of a fibre bundle Y to the submanifold X’ C X.
If X’ is an imbedded submanifold, any section of the pull-back bundle
Y|x — X'
is the restriction to X’ of some section of ¥ — X.

eletm:Y — X and 7’ : Y/ — X be fibre bundles over the same base
X. Their bundle product Y xx Y' over X is defined as the pull-back

YxY' =7Y" or YxY =7"Y
X X
together with its natural surjection onto X. Fibres of the bundle product

Y x Y are the Cartesian products Y, x Y] of fibres of fibre bundles YV’
and Y.
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Let us consider the composition
Y 5 Y5 X (1.1.10)
of fibre bundles

Tys Y = X% (1.1.11)
Ty D — X. (1.1.12)

One can show that it is a fibre bundle, called the composite bundle.
It is provided with bundle coordinates (2%, 0™, %), where (z*,0™) are
bundle coordinates on the fibre bundle (1.1.12), i.e., transition functions

of coordinates ¢ are independent of coordinates y".

Theorem 1.1.11: Given a composite bundle (1.1.10), let h be a global
section of the fibre bundle ¥ — X. Then the restriction

of the fibre bundle ¥ — ¥ to A(X) C X is a subbundle of the fibre
bundle Y — X. O

Theorem 1.1.12: Given a section h of the fibre bundle ¥ — X and a
section sy of the fibre bundle Y — 3, their composition s = sy, 0 h is
a section of the composite bundle Y — X (1.1.10). Conversely, every
section s of the fibre bundle Y — X is a composition of the section

h = mysx, o s of the fibre bundle ¥ — X and some section sy of the fibre
bundle Y — ¥ over the closed imbedded submanifold h(X) C X. O

1.2 Vector and affine bundles

A vector bundle is a fibre bundle Y — X such that:
e its typical fibre V and all the fibres Y, = 7 1(z), x € X, are real

finite-dimensional vector spaces;
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e there is a bundle atlas ¥ (1.1.7) of Y — X whose trivialization
morphisms ¢ (1.1.5) and transition functions g¢¢ (1.1.6) are linear iso-
morphisms.

Accordingly, a vector bundle is provided with linear bundle coordinates

(y') possessing linear transition functions y" = A; (z)y’. We have

y=y'e(n(y) =y ve(r(y) (e:),  7(y) € U, (1.2.1)

where {e;} is a fixed basis for the typical fibre V of Y, and {e;(z)} are
the fibre bases (or the frames) for the fibres Y, of Y associated to the
bundle atlas W.

By virtue of Theorem 1.1.4, any vector bundle has a global section,
e.g., the canonical global zero-valued section 0(z) = 0. Global sections
of a vector bundle Y — X constitute a projective C*(X)-module Y (X)

of finite rank. It is called the structure module of a vector bundle.

Theorem 1.2.1: Let a vector bundle Y — X admit m = dim V nowhere
vanishing global sections s; which are linearly independent, i.e., A s; # 0.
Then Y is trivial. O

Remark 1.2.1: Theorem 8.6.3 state the categorial equivalence between
the vector bundles over a smooth manifold X and projective C*°(X)-
modules of finite rank. Therefore, the differential calculus (including
linear differential operators, linear connections) on vector bundles can
be algebraically formulated as the differential calculus on these modules.
0O

By a morphism of vector bundles is meant a linear bundle morphism,
which is a fibrewise map whose restriction to each fibre is a linear map.
Given a linear bundle morphism ® : Y/ — Y of vector bundles over
X, its kernel Ker ® is defined as the inverse image ®~'(0(X)) of the
canonical zero-valued section 0(X) of Y. By virtue of Theorem 1.1.10,

if @ is of constant rank, its kernel and its range are vector subbundles of
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the vector bundles Y’ and Y, respectively. For instance, monomorphisms
and epimorphisms of vector bundles fulfil this condition.

There are the following particular constructions of new vector bundles
from the old ones.

e Let Y — X be a vector bundle with a typical fibre V. By Y* — X
is denoted the dual vector bundle with the typical fibre V* dual of V.
The interior product of Y and Y™ is defined as a fibred morphism

|: YY" TXXR.

e Let Y — X and Y’ — X be vector bundles with typical fibres V
and V', respectively. Their Whitney sum Y G)J? Y” is a vector bundle over
X with the typical fibre V & V.

e Let Y — X and Y’ — X be vector bundles with typical fibres V
and V', respectively. Their tensor product Y%Y’ is a vector bundle
over X with the typical fibre V' ® V’. Similarly, the exterior product of
vector bundles Y )/} Y is defined. The exterior product

AY = X xR@Y%/Q\Y@m/k\K k=dimY — dimX, (1.2.2)

is called the exterior bundle.

Remark 1.2.2: Given vector bundles Y and Y’ over the same base X,

every linear bundle morphism
DY, 5 {eila)} — {2k ()eh(a)} € V7
over X defines a global section
Dz — O )l (z) ® el ()
of the tensor product Y ® Y"*, and vice versa. O
A sequence

Y Sy Lay”
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of vector bundles over the same base X is called exact at Y if Kerj =

Imi. A sequence of vector bundles
0-Y 5y Ly" S0 (1.2.3)

over X is said to be a short exact sequence if it is exact at all terms Y,
Y, and Y”. This means that 4 is a bundle monomorphism, j is a bundle
epimorphism, and Kerj = Imié. Then Y” is the factor bundle Y/Y’
whose structure module is the quotient Y (X)/Y'(X) of the structure
modules of Y and Y’. Given an exact sequence of vector bundles (1.2.3),
there is the exact sequence of their duals
0—y"™ Loy Loy .
One says that an exact sequence (1.2.3) is split if there exists a bundle

monomorphism s : Y” — Y such that j o s = IdY" or, equivalently,
Y —i(Y) @ s(Y") =Y @Y".

Theorem 1.2.2: Every exact sequence of vector bundles (1.2.3) is split.
O

The tangent bundle T'Z and the cotangent bundle 7*Z of a manifold

Z exemplify vector bundles.

Remark 1.2.3: Given an atlas Uy = {(U,,¢,)} of a manifold Z, the

tangent bundle is provided with the holonomic bundle atlas

Ur = {(UL, w/, = T(bl)}? (124)

where T'¢, is the tangent morphism to ¢,. The associated linear bundle
coordinates are holonomic (or induced) coordinates () with respect to

the holonomic frames {0)} in tangent spaces T.Z. O

The tensor product of tangent and cotangent bundles

m

k
T=(®TZ)®(®TZ), m,k € N, (1.2.5)
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is called a tensor bundle, provided with holonomic bundle coordinates
&5 possessing transition functions

IOy o' . Oa'n O™ - Oz e fim

PP Ot Oxtm Q!B Q!B V1V

Let my : TY — Y be the tangent bundle of a fibre bundle 7 : ¥ —

X. Given bundle coordinates (ac’\,yi) on Y, it is equipped with the
holonomic coordinates (2,3, #*,9%). The tangent bundle 7Y — Y has
the subbundle VY = Ker (T'r), which consists of the vectors tangent to
fibres of Y. It is called the vertical tangent bundle of Y and is provided
with the holonomic coordinates (2*,%,%) with respect to the vertical
frames {0;}. Every bundle morphism ® : Y — Y’ yields the linear
bundle morphism over ® of the vertical tangent bundles
0P’ .
= oy v

It is called the vertical tangent morphism.

Vo:VY - VY, o VD

(1.2.6)

In many important cases, the vertical tangent bundle VY — Y of a

fibre bundle Y — X is trivial, and is isomorphic to the bundle product
VY =Y)>§7 (1.2.7)

where Y — X is some vector bundle. It follows that VY can be pro-
vided with bundle coordinates (z*,%’,7') such that transition functions
of coordinates 7' are independent of coordinates y'. One calls (1.2.7) the
vertical splitting. For instance, every vector bundle Y — X admits the

canonical vertical splitting
VY:Y%Y. (1.2.8)

The vertical cotangent bundle V*Y — Y of a fibre bundle Y — X
is defined as the dual of the vertical tangent bundle VY — Y. It is
not a subbundle of the cotangent bundle T*Y, but there is the canonical

surjection

C:TY 3 inda? + gdy' — yidy’ € VY, (1.2.9)
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where {dy'}, possessing transition functions

oy
d !t == =
Y 8y7
are the duals of the holonomic frames {0;} of VY.

For any fibre bundle Y, there exist the exact sequences of vector

bundles

dy’,

0—-VY —TY W—T>Y)>§TX—>O, (1.2.10)
0— Y;<( "X —-TY - VY — 0. (1.2.11)

Their splitting, by definition, is a connection on ¥ — X.

For the sake of simplicity, we agree to denote the pull-backs
Y xTX, Y xT*X
b'¢ X

by TX and T* X, respectively.

Let 7 : Y — X be a vector bundle with a typical fibre V. An
affine bundle modelled over the vector bundle Y — X is a fibre bundle
7 :Y — X whose typical fibre V is an affine space modelled over V such
that the following conditions hold.

e All the fibres Y, of Y are affine spaces modelled over the corre-
sponding fibres Y, of the vector bundle Y.

e There is an affine bundle atlas

U= {(UOH w)()’ QXC}

of Y — X whose local trivializations morphisms 1, (1.1.5) and transition
functions g, (1.1.6) are affine isomorphisms.
Dealing with affine bundles, we use only affine bundle coordinates (y)
associated to an affine bundle atlas ¥. There are the bundle morphisms
A i i i
YxY =V, )=y -y,

where () are linear coordinates on the vector bundle Y.
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By virtue of Theorem 1.1.4, affine bundles have global sections, but
in contrast with vector bundles, there is no canonical global section of an
affine bundle. Let 7 : Y — X be an affine bundle. Every global section
s of an affine bundle ¥ — X modelled over a vector bundle ¥ — X

yields the bundle morphisms

Yoy—y—s(r(y) ey, (1.2.12)
Yoy—s(n(y)+yey. (1.2.13)

In particular, every vector bundle Y has a natural structure of an affine
bundle due to the morphisms (1.2.13) where s = 0 is the canonical zero-
valued section of Y. For instance, the tangent bundle T X of a manifold

X is naturally an affine bundle AT X called the affine tangent bundle.
Theorem 1.2.3: Any affine bundle ¥ — X admits bundle coordi-

nates (2%, ') with linear transition functions §" = A%(z)j’ (see Example
4.8.2). O

By a morphism of affine bundles is meant a bundle morphism & :
Y — Y’ whose restriction to each fibre of Y is an affine map. It is
called an affine bundle morphism. Every affine bundle morphism & :
Y — Y’ of an affine bundle ¥ modelled over a vector bundle Y to an
affine bundle Y’ modelled over a vector bundle Y’ yields an unique linear
bundle morphism

3.V -Y, ywézggm (1.2.14)
called the linear derivative of ®.

Similarly to vector bundles, if ® : Y — Y is an affine morphism of
affine bundles of constant rank, then ®(Y) and Ker ® are affine subbun-
dles of Y and Y, respectively.

Every affine bundle Y — X modelled over a vector bundle Y — X

admits the canonical vertical splitting

VY =Y xY. (1.2.15)
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Note that Theorems 1.1.8 and 1.1.9 on a particular cover for bundle

atlases remain true in the case of linear and affine atlases of vector and
affine bundles.

1.3 Vector fields

Vector fields on a manifold Z are global sections of the tangent bundle
TZ — Z.

The set 7(Z) of vector fields on Z is both a C*°(Z)-module and a
real Lie algebra with respect to the Lie bracket

u = uy, v =00,

[v,u] = (V'O — urI\v*)d),.
Given a vector field u on X, a curve

c:RD(,)—2Z

in Z is said to be an integral curve of u if Te = u(c). Every vector field
u on a manifold Z can be seen as an infinitesimal generator of a local
one-parameter group of diffeomorphisms (a flow), and wvice versa. One-
dimensional orbits of this group are integral curves of u. A vector field is
called complete if its flow is a one-parameter group of diffeomorphisms
of Z. For instance, every vector field on a compact manifold is complete.

A vector field u on a fibre bundle Y — X is called projectable if it
projects onto a vector field on X, i.e.; there exists a vector field 7 on X
such that

Tom =Tmou.
A projectable vector field takes the coordinate form
u = uMx")Oy + u' (2", 7)), 7 = u 0. (1.3.1)

Its flow is a local one-parameter group of automorphisms of Y — X over

a local one-parameter group of diffeomorphisms of X whose generator
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is 7. A projectable vector field is called vertical if its projection onto X
vanishes, i.e., if it lives in the vertical tangent bundle VY.

A vector field 7 = 729, on a base X of a fibre bundle Y — X gives rise
to a vector field on Y by means of a connection on this fibre bundle (see
the formula (3.1.6)). Nevertheless, every tensor bundle (1.2.5) admits

the canonical lift of vector fields

F =110, + (DT L = O TV ENE S — O (1.3.2)

Qp Q)

where we employ the compact notation
0

EIY

This lift is functorial, i.e., it is an R-linear monomorphism of the Lie

algebra 7 (X) of vector fields on X to the Lie algebra 7 (Y) of vector

fields on Y (see Section 5.1). In particular, we have the functorial lift

O\ = (1.3.3)

7~— — T/Laﬂ + ((%Taiy (134)

ok
of vector fields on X onto the tangent bundle T X and their functorial
lift

T=7"0, — 8[37":&,% (1.3.5)

onto the cotangent bundle T*X.

A fibre bundle admitting functorial lift of vector fields on its base is
called the natural bundle (see Chapter 5).

A subbundle T of the tangent bundle T'Z of a manifold Z is called a
regular distribution (or, simply, a distribution). A vector field v on Z is
said to be subordinate to a distribution T if it lives in T. A distribution
T is called involutive if the Lie bracket of T-subordinate vector fields
also is subordinate to T.

A subbundle of the cotangent bundle T*Z of Z is called a codistri-
bution T* on a manifold Z. For instance, the annihilator AnnT of a
distribution T is a codistribution whose fibre over z € Z consists of

covectors w € T such that v|w =0 for all v € T,.
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Theorem 1.3.1: Let T be a distribution and Ann T its annihilator. Let
AAnn T(Z) be the ideal of the exterior algebra O*(Z) which is generated
by sections of AnnT — Z. A distribution T is involutive iff the ideal
AAnn T(Z) is a differential ideal, i.e.,

d(ANAnnT(Z)) C NAnnT(Z).

The following local coordinates can be associated to an involutive

distribution.

Theorem 1.3.2: Let T be an involutive r-dimensional distribution on
a manifold Z, dim Z = k. Every point z € Z has an open neighborhood
U which is a domain of an adapted coordinate chart (2!,...,z¥) such
that, restricted to U, the distribution T and its annihilator AnnT are
spanned by the local vector fields 9/9z,---,0/0z" and the one-forms

dz" 1, ..., d2*, respectively. O

A connected submanifold N of a manifold Z is called an integral
manifold of a distribution T on Z if TN C T. Unless otherwise stated,
by an integral manifold is meant an integral manifold of dimension of
T. An integral manifold is called maximal if no other integral manifold

contains it. The following is the classical theorem of Frobenius.

Theorem 1.3.3: Let T be an involutive distribution on a manifold Z.
For any z € Z, there exists a unique maximal integral manifold of T

through z, and any integral manifold through z is its open subset. O

Maximal integral manifolds of an involutive distribution on a manifold
Z are assembled into a regular foliation F of Z. A regular r-dimensional
foliation (or, simply, a foliation) F of a k-dimensional manifold Z is de-
fined as a partition of Z into connected r-dimensional submanifolds (the
leaves of a foliation) F,, ¢ € I, which possesses the following properties.
A foliated manifold (Z, F) admits an adapted coordinate atlas

{(Us; 220, A=1,...,n—7r,  i=1,...,m (1.3.6)
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such that transition functions of coordinates z* are independent of the
remaining coordinates z’ and, for each leaf F' of a foliation F, the con-

A —const.

nected components of F' N Us are given by the equations z
These connected components and coordinates (z') on them make up a
coordinate atlas of a leaf F'.

It should be emphasized that leaves of a foliation need not be closed or
imbedded submanifolds. Every leaf has an open tubular neighborhood
U,i.e., if z € U, then a leaf through z also belongs to U.

A pair (Z, F) where F is a foliation of Z is called a foliated manifold.

For instance, any submersion f : Z — M yields a foliation

F=A{F= ' (0)}herz

of Z indexed by elements of f(Z), which is an open submanifold of M,
ie., Z — f(Z) is a fibred manifold. Leaves of this foliation are closed
imbedded submanifolds. Such a foliation is called simple. It is a fibred

manifold over f(Z). Any (regular) foliation is locally simple.

1.4 Exterior and tangent-valued forms
An exterior r-form on a manifold Z is a section
1 A Ar
¢ = j¢,\].,.x7.d2 PAANdeY
7!
of the exterior product ANT*Z — Z , where

1
dZM A ANd2 = SN de @ @ dat,
7!

I VI VI _ I .
€ T lpe ke T € cellpe e T € el ey

A
e, = L

Let O"(Z) denote the vector space of exterior r-forms on a manifold
Z. By definition, O°(Z) = C*°(Z) is the ring of smooth real functions on

Z. All exterior forms on Z constitute the N-graded commutative algebra
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O*(Z) of global sections of the exterior bundle AT*Z (1.2.2) endowed
with the exterior product

1 1
¢ = ﬁd%\l...x,dz/\l VANEIIVAN dzAr, o= —ammusdzﬂl A A dzﬂs’

s!
1

¢ No = @(blll...I/TO—VT+1...VT+SdZV1 JARERWA dZVT+S =
1

Vy...Vrts d a . Qs
€ o 2T A ANdz
’I”!S!(’I“ + 8)' a1...a,.+5¢y]...ur Vpgl.Vpis )

such that
Ao = (1) g,

where the symbol |¢| stands for the form degree. An algebra O*(Z) also

is provided with the exterior differential

de = dz" N 0,6 = %auth__,,\, dzP AdzM A A de
which obeys the relations

dod=0, dpNo)=d(@) Ao+ (=1 Ado).

The exterior differential d makes O*(Z) into a differential graded algebra
(henceforth DGA) which is the minimal Chevalley—Eilenberg differential
calculus O*A over the real ring A = C*(Z). Its de Rham complex is
(8.6.5).

Given a manifold morphism f : Z — Z’, any exterior k-form ¢ on Z’

yields the pull-back exterior form f*¢ on Z given by the condition

frow', .. oM () = o(Tf(W'),... . Tf(")(f(2)

for an arbitrary collection of tangent vectors v',---,v* € T.Z. We have

the relations
[f(oNna)=foA fio, df*¢ = f*(dg).

In particular, given a fibre bundle 7 : Y — X, the pull-back onto

Y of exterior forms on X by m provides the monomorphism of graded
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commutative algebras O*(X) — O*(Y). Elements of its range 7*O*(X)
are called basic forms. Exterior forms
1
6:Y - AT'X, = —dr.ade A Ada,
r!

on Y such that u|¢ = 0 for an arbitrary vertical vector field v on Y are
said to be horizontal forms. Horizontal forms of degree n = dim X are

called densities. We use for them the compact notation

1
L= ELM...H"dl'M A Ndat = ﬁwv L= Ly. .,
1
w=dz' N Ndz" = €, AT A A dt (1.4.1)
n!
Wy = 8,\Jw, L«.)u)\ = aﬂj@,\Jw,

where € is the skew-symmetric Levi-Civita symbol with the component

6.“1--4‘41 =1
The interior product (or contraction) of a vector field u and an exterior

r-form ¢ on a manifold Z is given by the coordinate expression
r _1 k—1
uo= Y
k=1

T
1 14 fe? Q-
UG g Ao A

(r—1)
where the caret ~ denotes omission. It obeys the relations
¢(U1, oy u7,) = u,,J .. .ule)’
ul(¢ Ao) =ulp Ao+ (=1) Aulo.

Ak

U’\%,\l...xk...,\TdZAl A ANdZ A ANdZY =

The Lie derivative of an exterior form ¢ along a vector field u is

Lo = uldg + d(u]¢),
L.pNno)=L,pANo+ ¢ AL,o.

It is a derivation of the graded algebra O*(Z) such that
L,oLy—LyoL, = L[u,u’]~
In particular, if f is a function, then

L.f = u(f) = u)df.
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An exterior form ¢ is invariant under a local one-parameter group of
diffeomorphisms G(t) of Z (i.e., G(t)*¢ = ¢) iff its Lie derivative along
the infinitesimal generator u of this group vanishes, i.e., L,¢ = 0.

A tangent-valued r-form on a manifold Z is a section
_ Ll d2M Az 0 4
qbiﬁQs/\lm)\r z /\/\ z ® " (1 2)
of the tensor bundle

ANT*Z@TZ — 7.

Remark 1.4.1: There is one-to-one correspondence between the tangent-

valued one-forms ¢ on a manifold Z and the linear bundle endomor-

phisms
0:TZ —-TZ, ¢ T.Z>v—v|d(2)€T.Z, (1.4.3)
0T Z —TZ, ¢ :T'Z350 = ¢(2)|v €T 2, (1.4.4)

over Z (see Remark 1.2.2). For instance, the canonical tangent-valued

one-form
07 = d2* @ 0y (1.4.5)
on Z corresponds to the identity morphisms (1.4.3) and (1.4.4). O

Remark 1.4.2: Let Z =TX, and let TTX be the tangent bundle of
TX. There is the bundle endomorphism

J@) =09y  J(O)=0 (1.4.6)
of TTX over X. It corresponds to the canonical tangent-valued form
0= da? &® 0} (147)

on the tangent bundle T'X. It is readily observed that Jo J=0. O



1.4. EXTERIOR AND TANGENT-VALUED FORMS 29

The space O*(Z) @ T(Z) of tangent-valued forms is provided with
the Frolicher—Nijenhuis bracket
[l O(2) @ T(2) x O(2) 0 T(Z) — O7H(2) 0 T(2),
[a®@u, BRulpn = (@A F)® [u,v] + (e AL,SB) ®v — (1.4.8)
(Lya AB) @ u+ (1) (da Aulf)@v+ (—1) (v]aAdB) @ u
ae0'(2), BeO(2), u,v € T(Z).

Its coordinate cxprcssion is

[(]5,0’] (¢A1 Oy )\7‘+1 )\7‘+9_OJ><7‘+1 /\r+sa”¢§1m/\r

14
rqﬁ)\l Aro1v /\ )\7+1 )‘+€+SO—VAT+2 Args YA r+l¢>\1--~)w)
d2M A N AN ® O,

pe0(2)T(Z), ceO(2)RT(Z).
There are the relations

6, 0px = (—1)IVF o, ¢lpw, (1.4.9)
[¢7 [07 G]FN]FN = [[d)a }FN, ]FN + (*1)@”0'[0, [QS, 0]FN]FN> (1.4.10)
0,0,0 € O(Z)RT(Z).

Given a tangent-valued form 6, the Nijenhuis differential on O*(Z) ®
T(Z) is defined as the morphism

do : b — dgtp = [0,¢]px, Y eO(Z)RT(2).
By virtue of (1.4.10), it has the property
dy[t, Olex = [dot, Olex + (=1) V1), dyblen

In particular, if # = w is a vector field, the Nijenhuis differential is the

Lie derivative of tangent-valued forms

1
L,o =d,o = [u,0lpn = g(u”ﬁyoﬁlm)\s — oy, 20" +

soly, O’ )dz A Ada @ 0, ceO(2)RT(Z).
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Let Y — X be a fibre bundle. We consider the following subspaces
of the space O*(Y) ® T(Y) of tangent-valued forms on Y

e horizontal tangent-valued forms
Y — KT*X@TY,
b= Ao A @ I ()0 6, ()],
e projectable horizontal tangent-valued forms
¢ =dz" Ao Ndh @ %[ Ao (@)0u + 04,y (9)0);
e vertical-valued form
Y = AT*X QVY,
6= hn WA A A A @0,
e vertical-valued one-forms, called soldering forms,
o= ol (y)da* @ 0y,
e basic soldering forms
o = ol (z)dx* ® 0.
Remark 1.4.3: The tangent bundle T'X is provided with the canonical
soldering form 6; (1.4.7). Due to the canonical vertical splitting
VIX=TX X TX, (1.4.11)

the canonical soldering form (1.4.7) on T'X defines the canonical tangent-
valued form fx (1.4.5) on X. By this reason, tangent-valued one-forms

on a manifold X also are called soldering forms. O

Remark 1.4.4: Let Y — X be a fibre bundle, f : X’ — X a manifold
morphism, f*Y — X’ the pull-back of Y by f, and

fr: 'Y =Y
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the corresponding bundle morphism (1.1.9). Since
VY = VY = VY, VY =V Y,

one can define the pull-back f*¢ onto f*Y of any vertical-valued form ¢

on Y in accordance with the relation

Frol . ) = o(Tfy(v'),... . T (") (fr(y)).

We also mention the 7' X-valued forms
¢ Y - AT*X 9TX, (1.4.12)
b= %@‘lwdﬁl A ANde™ @ 0,
and V*Y-valued forms
Y — /r\T*X@V*Y, (1.4.13)
6= On. e A Adr @y

It should be emphasized that (1.4.12) are not tangent-valued forms, while
(1.4.13) are not exterior forms. They exemplify vector-valued forms.
Given a vector bundle £ — X, by a E-valued k-form on X, is meant a

section of the fibre bundle

(AT X) QE = X.
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Chapter 2

Jet manifolds

There are different notions of jets. Here we are concerned with jets of
sections of fibre bundles. They are the particular jets of maps and the
jets of submanifolds. Let us also mention the jets of modules over a
commutative ring. In particular, given a smooth manifold X, the jets
of a projective C*°(X)-module P of finite rank are exactly the jets of
sections of the vector bundle over X whose module of sections is P in
accordance with the Serre-Swan Theorem 8.6.3. The notion of jets is
extended to modules over graded commutative rings. However, the jets

of modules over a noncommutative ring can not be defined.

2.1 First order jet manifolds

Given a fibre bundle Y — X with bundle coordinates (2%,%), let us
consider the equivalence classes jls of its sections s, which are identified
by their values s'(z) and the values of their partial derivatives d,s'(x) at
a point x € X. They are called the first order jets of sections at . One
can justify that the definition of jets is coordinate-independent. The key
point is that the set J'Y of first order jets jls, # € X, is a smooth

manifold with respect to the adapted coordinates (z*,y, y4) such that

i ({)fu
S

33

A(jrs) = Ors' (), (0 + yi0))y". (2.1.1)
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It is called the first order jet manifold of a fibre bundle Y — X. We call
(y}) the jet coordinates.
The jet manifold J'Y admits the natural fibrations

i JY 3jls wre X, (2.1.2)
7y JY 3 jls — s(x) €Y. (2.1.3)

A glance at the transformation law (2.1.1) shows that 7} is an affine

bundle modelled over the vector bundle
T X (? VY =Y. (2.1.4)

It is convenient to call 7! (2.1.2) the jet bundle, while m} (2.1.3) is said
to be the affine jet bundle.

Let us note that, if Y — X is a vector or an affine bundle, the jet
bundle m; (2.1.2) is so.

Jets can be expressed in terms of familiar tangent-valued forms as

follows. There are the canonical imbeddings

Ay JY ST X QTY,
Y Y

Ay = de* @ (0 + 930 = do’ @ d, (2.1.5)
0a): J'Y =>TY VY,

Y Y
0y = (dy' —yrda") ® 0, = 0" ® 0, (2.1.6)

where dy are called total derivatives, and €' are local contact forms.

Remark 2.1.1: We further identify the jet manifold J'Y with its
images under the canonical morphisms (2.1.5) and (2.1.6), and represent
the jets jls = (xA,yi,yfl) by the tangent-valued forms A(;y (2.1.5) and
0 (2.1.6). O

Any section s of Y — X has the jet prolongation to the section
(J's)(@) = jas,  yhoJ's =0xs'(2),

of the jet bundle J'Y — X. A section of the jet bundle J'Y — X is

called integrable if it is the jet prolongation of some section of ¥ — X.
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Remark 2.1.2: By virtue of Theorem 1.1.4, the affine jet bundle
J'Y — Y admits global sections. If Y is trivial, there is the canonical
zero section 0(Y) of J'Y — Y taking its values into centers of its affine
fibres. O

Any bundle morphism @ : Y — Y’ over a diffeomorphism f admits a

jet prolongation to a bundle morphism of affine jet bundles
af
Ox

Any projectable vector field u (1.3.1) on a fibre bundle Y — X has a
jet prolongation to the projectable vector field

Jo: JY e JY’, Y\ o J'd = d,®". (2.1.7)

Ju=roJw: JY — JITY — TJY,
Jhu = utoy +u'0; + (dy — yL@Au“’)Q-’\, (2.1.8)

on the jet manifold J'Y. To obtain (2.1.8), the canonical bundle mor-
phism
o gl 1 i i i
r:JTY = TJY, ghor = (§')r — a4
is used. In particular, there is the canonical isomorphism

VY =JWY, g = @) (2.1.9)

2.2 Higher order jet manifolds

The notion of first jets of sections of a fibre bundle is naturally extended
to higher order jets.

Let Y — X be a fibre bundle. Given its bundle coordinates (1, '),
a multi-index A of the length |A| = k throughout denotes a collection of
indices (A1...\;) modulo permutations. By A + X is meant a multi-index
(AM1...Agoy1...0.). For instance A + A = (A);...A). By AX is denoted

the union of collections (A;... ;01 ...0,) where the indices \; and o;
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are not permitted. Summation over a multi-index A means separate

summation over each its index \;. We use the compact notation
8/\:8)%0"'08)\” A= (Al)\k)

The r-order jet manifold J"Y of sections of a bundle Y — X is defined
as the disjoint union of equivalence classes jIs of sections s of Y — X

such that sections s and s’ belong to the same equivalence class js iff
sia) =5"(x), Oas'(x)=0ys"(x), O<]|A|<r.

In brief, one can say that sections of Y — X are identified by the r + 1
terms of their Taylor series at points of X. The particular choice of
coordinates does not matter for this definition. The equivalence classes
Jjrs are called the r-order jets of sections. Their set J"Y is endowed with

an atlas of the adapted coordinates

(@hyh),  yhos=dus'(w),  O<|Al<7 (2.2.1)
1t datt 1
Yora = —a,ﬁd,f,ym (2.2.2)
where the symbol d) stands for the higher order total derivative
i Ox#
=0+ X yhnol, d) = PR (22.3)

0<|A]<r—1

These derivatives act on exterior forms on J"Y and obey the relations
[dy,d,] =0, dyod=dody,
d\(pNo)=dr(@) No+dNdi(o),  di(dp) =d(dr(9)),
dA(d2") =0, d(dyy) = dyja-

We use the compact notation
dy =dy, o---0dy,, A= (A A).

The coordinates (2.2.1) bring the set J"Y into a finite-dimensional
manifold. The coordinates (2.2.1) are compatible with the natural sur-

jections

o JY = JY, >k,
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which form the composite bundle

Ay L ly T Ry Ly
with the properties

7T§O7T£:7T§, mon =x".
A glance at the transition functions (2.2.2) shows that the fibration

a2 JY = JY
is an affine bundle modelled over the vector bundle

VT X B VY - Jly. (2.2.4)
Remark 2.2.1: Let us recall that a base of any affine bundle is a
strong deformation retract of its total space. Consequently, Y is a strong
deformation retract of J'Y, which in turn is a strong deformation retract
of J?Y', and so on. It follows that a fibre bundle Y is a strong deformation

retract of any finite order jet manifold J"Y. Therefore, by virtue of the

Vietoris—Begle theorem, there is an isomorphism
H*(J'Y;R) = H*(Y;R) (2.2.5)

of cohomology of J"Y and Y with coefficients in the constant sheaf R.
O

Remark 2.2.2: To introduce higher order jet manifolds, one can use
the construction of repeated jet manifolds. Let us consider the r-order
jet manifold J"J*Y of a jet bundle J*Y — X. It is coordinated by

(2", y&), |A| <k, |2 < 7. There is a canonical monomorphism

o s JTEY — JTRY, yhy 00 = vk

In the calculus in higher order jets, we have the r-order jet prolon-

gation functor such that, given fibre bundles Y and Y’ over X, every



38 CHAPTER 2. JET MANIFOLDS

bundle morphism ® : Y — Y over a diffeomorphism f of X admits the

r-order jet prolongation to a morphism of r-order jet manifolds
JO:TY 3 jis — jin(®oso f e Y. (2.2.6)

The jet prolongation functor is exact. If ® is an injection or a surjection,
so is J"®. It also preserves an algebraic structure. In particular, if
Y — X is a vector bundle, J'Y — X is well. If Y — X is an affine
bundle modelled over the vector bundle Y — X, then J'Y — X is an
affine bundle modelled over the vector bundle JY — X.

Every section s of a fibre bundle Y — X admits the r-order jet
prolongation to the integrable section (J"s)(xz) = jis of the jet bundle
JY — X.

Let Of = O*(J*Y) be the DGA of exterior forms on a jet manifold
J*Y . Every exterior form ¢ on a jet manifold J*Y gives rise to the pull-
back form 78"*¢ on a jet manifold J**Y. We have the direct sequence
of C*(X)-algebras

% rlx 2% 71-:71* "

O (X) =S O0(Y) 0] —--- =0
Remark 2.2.3: By virtue of de Rham Theorem 8.6.4, the cohomology
of the de Rham complex of O; equals the cohomology H*(J*Y; R) of J*Y
with coefficients in the constant sheaf R. The latter in turn coincides

with the sheaf cohomology H*(Y;R) of Y (see Remark 2.2.1) and, thus,
it equals the de Rham cohomology Hpjr(Y) of Y. O

Given a k-order jet manifold J*Y of Y — X there exists the canonical

bundle morphism
.7k k
Ty JSTY = TJY
over a surjection

JY x JFTX — J*Y xTX
X X
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whose coordinate expression is

Uhorw = (@A — 2@ )s(@)z,  0<|A <k,

where the sum is taken over all partitions ¥ += = A and 0 < |Z|. In

particular, we have the canonical isomorphism over J*Y
Tay VY S VIRY, (s =g o, (2.2.7)

As a consequence, every projectable vector field u (1.3.1) on a fibre
bundle Y — X has the following k-order jet prolongation to a vector
field on J*Y:

JEu = T(k) © JEu s JFY — TJbY,

Jou = oy +u'0; + Y (da(u — yzu”) + yL+Au’L)3{\, (2.2.8)
0<|A|<k

(cf. (2.1.8) for k = 1). In particular, the k-order jet prolongation (2.2.8)
of a vertical vector field u = v'0; on Y — X is a vertical vector field

Jhu = d'0; + Y dyulod (2.2.9)
0<|A|<k

on J*Y — X due to the isomorphism (2.2.7).
A vector field u, on an r-order jet manifold J"Y is called projectable

if, for any k < r, there exists a projectable vector field u; on J*Y such
that

ug o Ty, = Ty, o uy.
A projectable vector field u;, on J*Y has the coordinate expression

0<iAl<k
such that uy depends only on coordinates 2/ and every component u is
independent of coordinates yL, |Z| > |A|. In particular, the k-order jet
prolongation J*u (2.2.8) of a projectable vector field on Y is a projectable

vector field on J*Y. It is called an integrable vector field.
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Let P* denote a vector space of projectable vector fields on a jet
manifold J*Y. It is easily seen that P" is a real Lie algebra and that the

morphisms T'mj,, k < r, constitute the inverse system

T7TT 2 1T7T, 1

po I op1 It T pra T por (2.2.10)
of these Lie algebras. One can show the following.

Theorem 2.2.1: The k-order jet prolongation (2.2.8) is a Lie algebra
monomorphism of the Lie algebra P of projectable vector fields on Y —

X to the Lie algebra P* of projectable vector fields on J*Y such that
Tryp(J'u) = JEu o . (2.2.11)

Every projectable vector field u;, on J*Y is decomposed into the sum
u, = JH(Trk (ug)) + vp (2.2.12)

of the integrable vector field J*(T'wk(u;.)) and a projectable vector field
vj, which is vertical with respect to a fibration J*Y — Y.
Similarly to the canonical monomorphisms (2.1.5) — (2.1.6), there are

the canonical bundle monomorphisms over J*Y:

Ay + MY —T'X @ TJFY,

JkY
)\(k) = da? ® dy, (2.2.13)
Op : Y — T IFY ® VJkyY,
JEY
Oy = X (dyy — Y adr") @ 9} (2.2.14)
A<k

The one-forms

0 = dyi — i, pdo (2.2.15)
are called the local contact forms. Monomorphisms (2.2.13) — (2.2.14)
yield the bundle monomorphisms over J**1Y":

A TX % THY —TJY x JHY,
JFY

Oy : V™ JkY x —TJY x JHY
JkY JkY
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(cf. (3.2.1) — (3.2.2) for kK = 1). These monomorphisms in turn define
the canonical horizontal splittings of the pull-back bundles

AT IY = X(TX x 1Y) @ VY, (2.2.16)
X Jk+1y
o+ X a0 =i+ X (Gh — #Yh)0)
A<k A<k
T IY = T°X @ Oy (VFIY x JMY), (2.2.17)
JkH1y JkY
inde + 30 gldyy = (i + X G a)det + X0
A<k [AI<k

For instance, it follows from the canonical horizontal splitting (2.2.16)

that any vector field u;, on J*Y admits the canonical decomposition

up = ug +uy = W+ X v a0 + (2.2.18)
[AI<k
> (uy — u'yhi)0)
[A|<k

over J**1Y into the horizontal and vertical parts.
By virtue of the canonical horizontal splitting (2.2.17), every exterior
one-form ¢ on J*Y admits the canonical splitting of its pull-back onto

J*1Y into the horizontal and vertical parts:

TG = b+ dv = hood + (¢ — ho(9)), (2.2.19)

where hg is the horizontal projection
ho(dz?) = da*, ho(dl/ir--,\k) = nyJ...AkdiU”‘

The vertical part of the splitting is called a contact one-form on J*+1Y".

Let us consider an ideal of the algebra Oj of exterior forms on J*Y
which is generated by the contact one-forms on J*Y". This ideal, called
the ideal of contact forms, is locally generated by the contact forms 6
(2.2.15). One can show that an exterior form ¢ on the a manifold J*Y
is a contact form iff its pull-back 3¢ onto a base X by means of any

integrable section 5 of J¥Y — X vanishes.
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2.3 Differential operators and equations

Jet manifolds provides the conventional language of theory of differential

equations and differential operators if they need not be linear.

Definition 2.3.1: A system of k-order partial differential equations on
a fibre bundle Y — X is defined as a closed subbundle ¢ of a jet bundle
J¥Y — X. For the sake of brevity, we agree to call ¢ a differential

equation. O

By a classical solution of a differential equation € on Y — X is meant
a section s of Y — X such that its k-order jet prolongation J*s lives in
¢.

Let J*Y be provided with the adapted coordinates (z*,y}). There
exists a local coordinate system (ZA), A=1,...,codime, on J*Y such
that ¢ is locally given (in the sense of item (i) of Theorem 1.1.1) by

equations
EMNaMyh) =0, A=1,... codime. (2.3.1)
Differential equations are often associated to differential operators.
There are several equivalent definitions of differential operators.

Definition 2.3.2: Let Y — X and F — X be fibre bundles, which are
assumed to have global sections. A k-order E-valued differential operator

on a fibre bundle Y — X is defined as a section £ of the pull-back bundle

pry : Bp = J°Y X E— Jry. (2.3.2)

Given bundle coordinates (2*,y") on Y and (2, x%) on E, the pull-
back (2.3.2) is provided with coordinates (z*, 1%, x*), 0 < |2| < k. With
respect to these coordinates, a differential operator £ seen as a closed

imbedded submanifold £ C E¥ is given by the equalities

X' = £t ). (2.3.3)
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There is obvious one-to-one correspondence between the sections £
(2.3.3) of the fibre bundle (2.3.2) and the bundle morphisms

®: JbY — E. (2.3.4)
P =pryof = £=(1dJ"Y, D).

Therefore, we come to the following equivalent definition of differential

operators on ¥ — X.

Definition 2.3.3: Let Y — X and ' — X be fibre bundles. A bundle
morphism J*Y — E over X is called a E-valued k-order differential

operatoron Y — X. O
It is readily observed that the differential operator ® (2.3.4) sends
each section s of Y — X onto the section ® o J*s of E — X. The
mapping
Ag:S(Y) = S(E),
Ag:s— ®oJrs, X (x) = E%(x*, Ons (x)),
is called the standard form of a differential operator.

Let e be a global section of a fibre bundle £ — X, the kernel of a

E-valued differential operator ® is defined as the kernel
Ker @ = & !(e(X)) (2.3.5)

of the bundle morphism ® (2.3.4). If it is a closed subbundle of the jet
bundle J*Y — X, one says that Ker .® (2.3.5) is a differential equation
associated to the differential operator ®. By virtue of Theorem 1.1.10,
this condition holds if ® is a bundle morphism of constant rank.

If E — X is a vector bundle, by the kernel of a E-valued differential
operator is usually meant its kernel with respect to the canonical zero-
valued section 0 of £ — X.

In the framework of Lagrangian formalism, we deal with differential

operators of the following type. Let

F—-Y—>X, F—-Y—->X
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be composite bundles where £ — Y is a vector bundle. By a k-order
differential operator on F' — X taking its values into £ — X is meant

a bundle morphism
d:JF —E. (2.3.6)

which certainly is a bundle morphism over X in accordance with Def-
inition 2.3.3. Its kernel Ker ® is defined as the inverse image of the
canonical zero-valued section of £ — Y. In an equivalent way, the dif-
ferential operator (2.3.6) is represented by a section £ of the vector
bundle

JF X E — J'F.

Given bundle coordinates (z*,y’,w") on F and (2,°,¢4) on E with

respect to the fibre basis {e4} for E — Y, this section reads
Eo = EAN Y, wh)es,  O<|A| <k (2.3.7)
Then the differential operator (2.3.6) also is represented by a function
Ep = EA, yh, wh)ea € C°(F X E¥) (2.3.8)

on the product F'xy E*, where F* — Y is the dual of £ — Y coordinated
by (2%, y', ca).

If F — Y is a vector bundle, a differential operator ® (2.3.6) on the
composite bundle F' — Y — X is called linear if it is linear on the fibres
of the vector bundle J*F — J*Y. In this case, its representations (2.3.7)
and (2.3.8) take the form

o= Y EME@ y))wkeq, 0<I|Al <E, (2.3.9)
0<[E|<k
o= Y EME@N y)wiey, 0<|A|l <k (2.3.10)

0<[E|<k
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2.4 Infinite order jet formalism

The finite order jet manifolds J*Y of a fibre bundle Y — X form the

inverse sequence
Y S JY e Y TR Y e (2.4.1)

where 7/_; are affine bundles modelled over the vector bundles (2.2.4).
Its inductive limit J*Y is defined as a minimal set such that there exist

surjections
0 JPY - X, 7? JFY =Y, T JJTY — JEY, (2.4.2)

obeying the relations 7> = 7% o 77° for all admissible k and r < k. A
projective limit of the inverse system (2.4.1) always exists. It consists of

those elements
(o) 2y ey 2y e e, zr € JY 2, € JYY,

of the Cartesian product I;IJ"'Y which satisfy the relations z, = 7¥(z;,)
for all & > r. One can think of elements of J*Y as being infinite order
jets of sections of Y — X identified by their Taylor series at points of
X.

The set J*Y is provided with the projective limit topology. This is
the coarsest topology such that the surjections 72° (2.4.2) are continuous.
Its base consists of inverse images of open subsets of J'Y, r = 0,.. .,
under the maps 7°. With this topology, J*Y is a paracompact Fréchet
(complete metrizable) manifold modelled over a locally convex vector
space of number series {a*,a’,aj,---}. It is called the infinite order
jet manifold. One can show that the surjections 7;° are open maps
admitting local sections, i.e., J®Y — J"Y are continuous bundles. A
bundle coordinate atlas {Uy, (z*,y")} of Y — X provides J*Y with the
manifold coordinate atlas

Ox#

{@) 7 Uy), (N v bosiaps Yga = Wdﬂyﬁ. (2.4.3)
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Theorem 2.4.1: A fibre bundle Y is a strong deformation retract of
the infinite order jet manifold J*Y. O

Corollary 2.4.2: There is an isomorphism
H*(J*Y;R) = H(Y;R) (2.4.4)
between cohomology of J*Y and Y with coefficients in the sheaf R. O

The inverse sequence (2.4.1) of jet manifolds yields the direct sequence

of DGAs O; of exterior forms on finite order jet manifolds

Of(X) TLONY) L 0F 0 RO (2.4.5)
where 7_,* are the pull-back monomorphisms. Its direct limit
OLY = lim O’ (2.4.6)

exists and consists of all exterior forms on finite order jet manifolds
modulo the pull-back identification. In accordance with Theorem 8.1.5,
O:Y is a DGA which inherits the operations of the exterior differential
d and exterior product A of exterior algebras O;. If there is no danger

of confusion, we denote O} = O%LY.

Theorem 2.4.3: The cohomology H*(O%,) of the de Rham complex

0—r— 0, L0 4. (2.4.7)

o]

of the DGA O}, equals the de Rham cohomology Hfji(Y) of Y. O

Corollary 2.4.4: Any closed form ¢ € O is decomposed into the sum
¢ = o+ d€, where o is a closed form on Y. O

One can think of elements of O as being differential forms on the
infinite order jet manifold J*Y as follows. Let O be a sheaf of germs of
exterior forms on J"Y and 9 the canonical presheaf of local sections of

©OF. Since 7]_, are open maps, there is the direct sequence of presheaves

1% r *
o w_q
D(’; O_,D’{T_>D:_,
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Its direct limit O is a presheaf of DGAs on J>Y. Let 9} be the sheaf
of DGAs of germs of 97 on J*Y. The structure module

Q' =T(Q%) (2.4.8)
of global sections of Qf  is a DGA such that, given an element ¢ € QF
and a point z € J®Y | there exist an open neighbourhood U of z and an

exterior form ¢ on some finite order jet manifold J*Y so that

(k>|

Sy =m" U-

Therefore, one can regard Q7  as an algebra of locally exterior forms on

finite order jet manifolds. There is a monomorphism O}, — Q.

Theorem 2.4.5: The paracompact space J*Y admits a partition of

unity by elements of the ring Q% . O

Since elements of the DGA Q7 are locally exterior forms on finite

order jet manifolds, the following Poincaré lemma holds.

Lemma 2.4.6: Given a closed element ¢ € QF , there exists a neigh-
bourhood U of each point z € J*®Y such that ¢|y is exact. O

Theorem 2.4.7: The cohomology H*(Q},) of the de Rham complex

0—RrR-—Q" 4.0 4, ..., (2.4.9)

of the DGA Q7 equals the de Rham cohomology of a fibre bundle Y. O

Due to a monomorphism O} — QF , one can restrict O to the
coordinate chart (2.4.3) where horizontal forms da* and contact one-

forms

Oy = dyj — v\, ada’
make up a local basis for the 0% -algebra O% . Though J*Y is not a
smooth manifold, elements of O} are exterior forms on finite order jet

manifolds and, therefore, their coordinate transformations are smooth.

Moreover, there is the canonical decomposition

O;o _ @Olofém
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of O into O -modules O%™ of k-contact and m-horizontal forms to-

gether with the corresponding projectors
hi: O — O, W™ 04 — O™
Accordingly, the exterior differential on O} is decomposed into the sum
d=dy +dy
of the vertical differential
dyoh™=h"odoh™,  dy(¢)=04\A,  ¢ecOF,
and the total differential
dgohy=hgodohy, dyohy=hood, dy(¢)=dz*Ndr(e),
where

dy =0\ +yh0i + X yhi a0t (2.4.10)
0<|A|
are the infinite order total derivatives. They obey the nilpotent condi-

tions
dgodyg =0, dy ody =0, dgody +dyodg =0, (2411)

and make 0% into a bicomplex.

Let us consider the O%-module 00, of derivations of the real ring
0Y..
Theorem 2.4.8: The derivation module 00Y, is isomorphic to the 0% -

dual (OL)* of the module of one-forms O . O

One can say something more. The DGA O} is a minimal Chevalley—
Eilenberg differential calculus O* A over the real ring A = O of smooth
real functions on finite order jet manifolds of Y — X. Let 9]¢, ¥ € 00,
¢ € O, denote the interior product. Extended to the DGA O%,, the

interior product | obeys the rule

D(pAo)=0]¢) Ao+ (1) A (0]0).
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Restricted to a coordinate chart (2.4.3), OL is a free OY-module
generated by one-forms da?, 6. Since 202, = (OL)*, any derivation of
the real ring O takes the coordinate form

¥ =00+ 90 + 3 vioN, (2.4.12)
0<|A|
O} yk) = 0 dy = 313,

ax/)\ ) ayli ) ay/i
19/)\ _ 9P 19/7, — 27 97 27
Azt~ Oy o
) ay/i . ay/i
17 A q7 A qu
= s =gk, 2.4.13
A |E\§A\ ol + o ( )

Any derivation ¢ (2.4.12) of the ring OY yields a derivation (called
the Lie derivative) Ly of the DGA OF given by the relations

Ly¢ =9 |do + d(V]9),
Lo(p A ¢') = Ly(o) A ¢ + ¢ A Ly().

Remark 2.4.1: In particular, the total derivatives (2.4.10) are defined

as the local derivations of O, and the corresponding Lie derivatives

dx¢ = Lg, ¢

of O%,. Moreover, the C*°(X)-ring OY, possesses the canonical connec-

tion
V = da* @ d) (2.4.14)

in the sense of Definition 8.2.4. O
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Chapter 3

Connections on fibre bundles

There are several equivalent definitions of a connection on a fibre bundle.
We start with the traditional notion of a connection as a splitting of the
exact sequences (1.2.10) — (1.2.11), but then follow its definition as a
global section of an affine jet bundle. In the case of vector bundles,
there is an equivalent definition (8.6.3) of a linear connection on their

structure modules.

3.1 Connections as tangent-valued forms

A connection on a fibre bundle Y — X is defined traditionally as a linear
bundle monomorphism
r :Y;TX—>TY, (3.1.1)
[0y — (0 + 1%0),

over Y which splits the exact sequence (1.2.10), i.e.,
WTOled(Y;éTX).

This is a definition of connections on fibred manifolds (see Remark 3.1.2).
By virtue of Theorem 1.2.2, a connection always exists. The local
functions T (y) in (3.1.1) are said to be components of the connection T

with respect to the bundle coordinates (2}, %') on Y — X.

51
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The image of Y x TX by the connection I' defines the horizontal
distribution HY C TY which splits the tangent bundle TY as follows:

TY = HY 9V, (3.1.2)
PO\ + 4'0; = i + T50;) + (3 — 1),

Its annihilator is locally generated by the one-forms dy’ — I'idz*.

Given the horizontal splitting (3.1.2), the surjection
L:TY VY, gol =g — T4, (3.1.3)

defines a connection on Y — X in an equivalent way.
The linear morphism I" over Y (3.1.1) yields uniquely the horizontal

tangent-valued one-form
I =da* ® (0) +1%0) (3.1.4)

on Y which projects onto the canonical tangent-valued form 6y (1.4.5)
on X. With this form called the connection form, the morphism (3.1.1)

reads
F:0y—oT'=0\+ Fg\ai.

Given a connection I" and the corresponding horizontal distribution
(3.1.2), a vector field u on a fibre bundle Y — X is called horizontal if
it lives in HY. A horizontal vector field takes the form

u = u(y) (0 +T%0;). (3.1.5)

In particular, let 7 be a vector field on the base X. By means of the
connection form I' (3.1.4), we obtain the projectable horizontal vector
field

It = 7T =70\ + T'\9;) (3.1.6)

on Y, called the horizontal lift of T by means of a connection I'. Con-

versely, any projectable horizontal vector field v on Y is the horizontal
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lift I'r of its projection 7 on X. Moreover, the horizontal distribution
HY is generated by the horizontal lifts I't (3.1.6) of vector fields 7 on
X. The horizontal lift

TX)s1->TreT(Y) (3.1.7)

is a C*°(X)-linear module morphism.
Given the splitting (3.1.1), the dual splitting of the exact sequence
(1.2.11) is

T:VY =T, T:dy —dy —Tida. (3.1.8)
Hence, a connection I' on Y — X is represented by the vertical-valued
form

I = (dy' — I'da?) ® 0, (3.1.9)

such that the morphism (3.1.8) reads
I:dy —T|dy' = dy' —Tida’.
We call T (3.1.9) the vertical connection form. The corresponding hori-
zontal splitting of the cotangent bundle T*Y takes the form
Y =T"X %9 D(Vy), (3.1.10)
inda® + gidy’ = (i + 5:i0%)da + gi(dy’ — Tida?).
Then we have the surjection
I =pr,: TY — T*X, iyol =y + gl (3.1.11)
which also defines a connection on a fibre bundle Y — X.

Remark 3.1.1: Treating a connection as the vertical-valued form
(3.1.9), we come to the following important construction. Given a fibre
bundle Y — X, let f : X’ — X be a morphism and f*Y — X' the
pull-back of Y by f. Any connection I' (3.1.9) on Y — X induces the

pull-back connection

fT= (dzf’ ~ (o fﬂ&aﬁdw’“) ® 0, (31.12)

o'+
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on f*Y — X' (see Remark 1.4.4). O

Remark 3.1.2: Let 7 : Y — X be a fibred manifold. Any connection
' on Y — X yields a horizontal lift of a vector field on X onto Y, but
need not defines the similar lift of a path in X into Y. Let

RD[]2t—z(t) € X, Rt —y(t) €Y,

be smooth paths in X and Y, respectively. Then t — y(¢) is called a
horizontal lift of x(t) if

m(y®) ==(t),  yt) € HyY,  tER,

where HY C TY is the horizontal subbundle associated to the connec-
tion I'. If, for each path () (ty <t < t;) and for any yo € 7 (x(tg)),
there exists a horizontal lift y(t) (ty < ¢ < t;) such that y(ty) = o,
then I' is called the Ehresmann connection. A fibred manifold is a fibre

bundle iff it admits an Ehresmann connection. O

3.2 Connections as jet bundle sections

Throughout the book, we follow the equivalent definition of connections

on a fibre bundle Y — X as sections of the affine jet bundle J'Y — Y.

Let Y — X be a fibre bundle, and J'Y its first order jet manifold.

Given the canonical morphisms (2.1.5) and (2.1.6), we have the corre-
sponding morphisms

Ay o JY XTX 50y —dy =0\ € J'Y xTY, (3.2.1)

0oy J'Y XV 5dy' — 0" =0y’ € J'Y X TV (32.2)

(see Remark 1.2.2). These morphisms yield the canonical horizontal

splittings of the pull-back bundles
JY xTY = \y(TX) @ VY, 3.2.3
X w(TX) & VY, (3.2.3)

PO\ + §'0; = i (On + yi0i) + (¥ — iyh) s,
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JYXTY =TX & y(V*Y), (3.2.4)
Y JY
indz + gidy’ = (x4 iy )da + g (dy’ — yida?).
Let T be a global section of J'Y — Y. Substituting the tangent-valued
form
/\(1) ol =da’® ((% + Fi\&)

in the canonical splitting (3.2.3), we obtain the familiar horizontal split-
ting (3.1.2) of TY by means of a connection T" on Y — X. Accordingly,

substitution of the tangent-valued form
‘9(1) ol'= (dy7 — Fg\dl’)\) & GZ-

in the canonical splitting (3.2.4) leads to the dual splitting (3.1.10) of

T*Y by means of a connection I'.

Theorem 3.2.1: There is one-to-one correspondence between the con-

nections I' on a fibre bundle Y — X and the global sections
LY —=JY, @y, y))el =y, TY), (3.2.5)
of the affine jet bundle J'Y — Y. O

There are the following corollaries of this theorem.

e Since J'Y — Y is affine, a connection on a fibre bundle Y — X
exists in accordance with Theorem 1.1.4.

e Connections on a fibre bundle Y — X make up an affine space mod-
elled over the vector space of soldering forms on ¥ — X i.e., sections
of the vector bundle (2.1.4).

e Connection components possess the coordinate transformation law

. oxt p .
Iy = W@“ +1,0,)y".
e Every connection I' (3.2.5) on a fibre bundle Y — X yields the first

order differential operator
Dr:JY 7T*X§VY, (3.2.6)
Dp = )\(1) —To ’ﬂ'é = (yj\ — Ff\)dx/\ ® ai,
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on Y called the covariant differential relative to the connection I'. If

s: X — Y is a section, from (3.2.6) we obtain its covariant differential
Vis=DroJ's: X - T"X @ VY, (3.2.7)
Vs = (0ys' — T 0 s)dz’ @ 0y,

and the covariant derivative
Vi =r1|V"

along a vector field 7 on X. A section s is said to be an integral section
of a connection I' if it belongs to the kernel of the covariant differential
Dr (3.2.6), i.e.,

Vis=0 or J's=Tos. (3.2.8)

Theorem 3.2.2: For any global section s : X — Y, there always exists

a connection I' such that s is an integral section of I'. O

Treating connections as jet bundle sections, one comes to the following
two constructions.

(i) Let Y and Y’ be fibre bundles over the same base X. Given a
connection I' on Y — X and a connection IV on Y’ — X, the bundle

product Y x Y is provided with the product connection
IxT Y xY' — J(Y xY)=JY x JY,
X X X

IxI"=di'® (8,\+Ff\i+
oy’

rYy ajfi> . (3.2.9)

(ii) Let iy : Y — Y’ be a subbundle of a fibre bundle Y' — X and I”
a connection on Y’ — X. If there exists a connection I' on Y — X such
that the diagram
vy 5oy

iy T T Tliy

y Loy
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is commutative, we say that I is reducible to a connection I". The
following conditions are equivalent:

e IV is reducible to I';

o Tiy(HY) = HY'|;,(v), where HY C TY and HY' C TY" are the
horizontal subbundles determined by I" and I, respectively;

e for every vector field 7 on X, the vector fields 't and I'7 are related

as follows:

Tiy o'r =17 0iy. (3.2.10)

3.3 Curvature and torsion

Let I" be a connection on a fibre bundle Y — X. Its curvature is defined

as the Nijenhuis differential

1 1
R=2dil = S,y : Y — AT*X @ VY, (3.3.1)
Lo
R= ERdeA A dat @ 0, (3.3.2)
R, = 0T, — 0,1, + T{0;T, — TU.9;T'}.
This is a VY-valued horizontal two-form on Y. Given vector fields 7,
7/ on X and their horizontal lifts I'7 and I'7" (3.1.6) on Y, we have the
relation
R(r,7") = =I'[r, 7] + [[7, 7] = 7" R} ,0;. (3.3.3)
The curvature (3.3.1) obeys the identities

[R, Rlpx = 0, (3.3.4)
drR = [I', Rlpx = 0. (3.3.5)
They result from the identity (1.4.9) and the graded Jacobi identity
(1.4.10), respectively. The identity (3.3.5) is called the second Bianchi

identity. It takes the coordinate form

> (R, + T{O;R., — 9T\ R.,) =0, (3.3.6)

v 0%
(Apw)
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where the sum is cyclic over the indices A, p and v.

Given a soldering form o, one defines the soldered curvature

1 1
id(,a = 5[0, olpn 1Y — /Z\T*X VY, (3.3.7)

p= Q'Di\ud‘r/\ A dat ® 0, P\, = 03050, — 09,0;07.

p:

It fulfills the identities

[pa p]FN = Oa ddp = [07 P]FN = 07

similar to (3.3.4) — (3.3.5).
Given a connection I' and a soldering form o, the torsion form of T’

with respect to o is defined as

T—dio=d,l:Y = AT*X @ VY,
T = (0r0), + 40,07, — O;T\03)da™ A da* ® 0. (3.3.8)

It obeys the first Bianchi identity
dFT = d%a = [R, U]FN = —dUR. (339)
If I =T + o, we have the relations

T =T +2p, (3.3.10)
R =R+p+T. (3.3.11)

3.4 Linear and affine connections

A connection I' on a vector bundle Y — X is called the linear connection

if the section
T:Y —JY, T =de*®0\+T)(2)yd), (3.4.1)

is a linear bundle morphism over X. Note that linear connections are

principal connections, and they always exist (see Theorem 4.4.1).
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The curvature R (3.3.2) of a linear connection I' (3.4.1) reads
1. .
R= §Rwlj(x)yﬂdﬁ Adzt @ 0y,
Ry'j =0\, — 9,0\ + T\, 7, — T, T (3.4.2)
Due to the vertical splitting (1.2.8), we have the linear morphism
. 1.
R:Y > y'e; — EIL?ML]-y%ifL’A Ndr' ®e € OFX)®Y. (3.4.3)

There are the following standard constructions of new linear connec-
tions from the old ones.

e Let Y — X be a vector bundle, coordinated by (2*,%%), and Y* — X
its dual, coordinated by (z*,y;). Any linear connection I' (3.4.1) on a

vector bundle Y — X defines the dual linear connection
T = da* @ (0 — TyJ;(x)y;0") (3.4.4)
onY*— X.

e Let I' and I be linear connections on vector bundles Y — X and
Y’ — X, respectively. The direct sum connection I'@T” on their Whitney
sum Y @Y is defined as the product connection (3.2.9).

e Let Y coordinated by (2,%°) and Y’ coordinated by (z*,y*) be
vector bundles over the same base X. Their tensor product Y ® Y’ is
endowed with the bundle coordinates (z*,4). Linear connections I' and
I"onY — X and Y’ — X define the linear tensor product connection

.y b O
P @I =da* ® |0)+ (Ta /" + T\ 5o

3y (3.4.5)

onY ®Y'
An important example of linear connections is a linear connection
[ = da* ® (9 + Ty",i"0),) (3.4.6)

on the tangent bundle TX of a manifold X. We agree to call it a world
connection on a manifold X. The dual world connection (3.4.4) on the

cotangent bundle T*X is
I = da* @ () — Ty, 2,0"). (3.4.7)
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Then, using the construction of the tensor product connection (3.4.5),
one can introduce the corresponding linear world connection on an ar-

bitrary tensor bundle T (1.2.5).
Remark 3.4.1: It should be emphasized that the expressions (3.4.6)

and (3.4.7) for a world connection differ in a minus sign from those

usually used in the physical literature. O

The curvature of a world connection is defined as the curvature R
(3.4.2) of the connection I' (3.4.6) on the tangent bundle TX. It reads

1 e .
R= §RA,ﬂgjy"dx’\ A dat @ 0, (3.4.8)
R,\llag = OAFH% - O#F)\ag + F,\PY/;FHQPY - Flﬂﬁl“ﬁv.
By the torsion of a world connection is meant the torsion (3.3.8) of

the connection I' (3.4.6) on the tangent bundle T'X with respect to the

canonical soldering form 6; (1.4.7):

T= %T, AN AT @0, T,y =T, — Ty, (3.4.9)
A world connection is said to be symmetric if its torsion (3.4.9) vanishes,
ie, Iy =T\,
Remark 3.4.2: For any vector field 7 on a manifold X, there exists a
connection I' on the tangent bundle TX — X such that 7 is an integral
section of I', but this connection is not necessarily linear. If a vector field

7 is non-vanishing at a point x € X, then there exists a local symmetric

world connection I" (3.4.6) around x for which 7 is an integral section
9,7 =T,%7". (3.4.10)

Then the canonical lift 7 (1.3.4) of 7 onto TX can be seen locally as the

horizontal lift 't (3.1.6) of 7 by means of this connection. O

Remark 3.4.3: Every manifold X can be provided with a non-

degenerate fibre metric

g€ \Q/OI(X), g = guda’ @ dat,
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in the tangent bundle T X, and with the corresponding metric
VT (X = M0, ® 0
gev ( )a g=49 @ 4

in the cotangent bundle 7*X. We call it a world metric on X. For
any world metric g, there exists a unique symmetric world connection I"

(3.4.6) with the components

14 14 1 v,
Ly ="} = —59 P(OrGpp + 0ugorn — 0pGrn), (3.4.11)

called the Christoffel symbols, such that g is an integral section of T', i.e.

g™ =g} + 970 )
It is called the Levi—Civita connection associated to g. O

Let Y — X be an affine bundle modelled over a vector bundle Y — X.
A connection I" on Y — X is called an affine connection if the section
[:Y — J'Y (3.2.5) is an affine bundle morphism over X. Associated
to principal connections, affine connections always exist (see Theorem
4.4.1).

For any affine connection I' : Y — J'Y, the corresponding linear
derivative ' : Y — J'Y (1.2.14) defines a unique linear connection on
the vector bundle Y — X. Since every vector bundle is an affine bundle,
any linear connection on a vector bundle also is an affine connection.

With respect to affine bundle coordinates (2,3%) on Y, an affine

connection I" on Y — X reads

I =0)V5(2)y + ol (o). (3.4.12)
The coordinate expression of the associated linear connection is

T, = T\5(2)7, (3.4.13)

where (27, 7') are the associated linear bundle coordinates on Y.
Affine connections on an affine bundle Y — X constitute an affine

space modelled over the soldering forms on ¥ — X. In view of the
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vertical splitting (1.2.15), these soldering forms can be seen as global

sections of the vector bundle
T*XY — X.
X

If Y — X is a vector bundle, both the affine connection I' (3.4.12) and
the associated linear connection I' are connections on the same vector
bundle Y — X, and their difference is a basic soldering form on Y.
Thus, every affine connection on a vector bundle Y — X is the sum of
a linear connection and a basic soldering form on Y — X.

Given an affine connection I" on a vector bundle Y — X, let R and R
be the curvatures of a connection I" and the associated linear connection
T, respectively. It is readily observed that R = R + T, where the VY-

valued two-form

T—dro=d,l': X — AT*X QVY, (3.4.14)
1 .
T = JTda* Ndat @ 0,

. . . b i e i
T)t\ﬂ = Bw; — 8,;73 + ajl“,/h — OMLF)\L}L,

is the torsion (3.3.8) of I with respect to the basic soldering form o.

In particular, let us consider the tangent bundle T'X of a manifold
X. We have the canonical soldering form o = 0; = 0x (1.4.7) on T'X.
Given an arbitrary world connection I' (3.4.6) on TX, the corresponding

affine connection
A=T+0x, Al = F,\”Vi‘”+5f\‘, (3415)

on T'X is called the Cartan connection. Since the soldered curvature p
(3.3.7) of 8; equals zero, the torsion (3.3.10) of the Cartan connection
coincides with the torsion 7" (3.4.9) of the world connection I', while its

curvature (3.3.11) is the sum R 4 T of the curvature and the torsion of
I
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3.5 Flat connections

By a flat or curvature-free connection is meant a connection which

satisfies the following equivalent conditions.

Theorem 3.5.1: Let I" be a connection on a fibre bundle Y — X. The
following assertions are equivalent.
(i) The curvature R of a connection I" vanishes identically, i.e., R = 0.
(ii) The horizontal lift (3.1.7) of vector fields on X onto Y is an R-
linear Lie algebra morphism (in accordance with the formula (3.3.3)).
(iii) The horizontal distribution is involutive.

(iv) There exists a local integral section for I' through any point y €
Y. O

By virtue of Theorem 1.3.3 and item (iii) of Theorem 3.5.1, a flat
connection I' on a fibre bundle Y — X yields a horizontal foliation
on Y, transversal to the fibration Y — X. The leaf of this foliation
through a point y € Y is defined locally by an integral section s, for the
connection I' through y. Conversely, let a fibre bundle Y — X admit
a transversal foliation such that, for each point y € Y, the leaf of this
foliation through y is locally defined by a section s, of ¥ — X through
y. Then the map

r:y—JY, Dy =jis, =y =uz

introduces a flat connection on Y — X. Thus, there is one-to-one cor-
respondence between the flat connections and the transversal foliations
of a fibre bundle Y — X.

Given a transversal foliation on a fibre bundle Y — X, there exists
the associated atlas of bundle coordinates (2%, y’) of Y such that every
leaf of this foliation is locally generated by the equations 3' =const.,
and the transition functions y' — y"'(y7) are independent of the base
coordinates *. This is called the atlas of constant local trivializations.

Two such atlases are said to be equivalent if their union also is an atlas of
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constant local trivializations. They are associated to the same horizontal
foliation. Thus, we come to the following assertion.

Theorem 3.5.2: There is one-to-one correspondence between the flat
connections I' on a fibre bundle Y — X and the equivalence classes of

atlases of constant local trivializations of Y such that
I = da? ® Oy
relative to these atlases. O

In particular, if Y — X is a trivial bundle, one associates to each
its trivialization a flat connection represented by the global zero section
0(Y) of J'Y — Y with respect to this trivialization (see Remark 2.1.2).

3.6 Connections on composite bundles

Let Y — ¥ — X be a composite bundle (1.1.10). Let us consider the
jet manifolds J'¥, JLY, and J'Y of the fibre bundles

¥ — X, Y — X, Y — X,
respectively. They are provided with the adapted coordinates
(@ o™ 08), (@ o™y Py, (@Y 0™y ok ).
One can show the following.
Theorem 3.6.1: There is the canonical map

0 J'NXIY =T, yhoe=y,0l + (3.6.1)

Using the canonical map (3.6.1), we can get the relations between
connections on the fibre bundles Y — X, Y — ¥ and ¥ — X. These
connections are given by the corresponding connection forms

¥ = dz’ @ (Ox + 'O + 1301), (3.6.2)
As = do* @ (0y + AL0;) + do™ @ (9, + ALD)), (3.6.3)
I'=da*® (0) +T50). (3.6.4)
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A connection 7 (3.6.2) on the fibre bundle Y — X is called projectable
onto a connection I' (3.6.4) on the fibre bundle ¥ — X if, for any vector
field 7 on X, its horizontal lift 77 on Y by means of the connection + is a
projectable vector field over the horizontal lift I'r of 7 on 3 by means of
the connection I'. This property holds iff 4i* = I'}", i.e., components v}
of the connection «y (3.6.2) must be independent of the fibre coordinates
y'.

A connection Ay, (3.6.3) on the fibre bundle Y — ¥ and a connection
I" (3.6.4) on the fibre bundle ¥ — X define a connection on the composite
bundle Y — X as the composition of bundle morphisms

7;Y§TX<“_’FQY>Z<TE As, Ty,

It is called the composite connection. This composite connection reads
v =da* @ (O\ + T30, + (AL + AL TT)9;). (3.6.5)

It is projectable onto I'. Moreover, this is a unique connection such that
the horizontal lift v7 on Y of a vector field 7 on X by means of the
composite connection 7y (3.6.5) coincides with the composition Ax(I')
of horizontal lifts of 7 on ¥ by means of the connection I" and then on
Y by means of the connection Ay. For the sake of brevity, let us write
v=Axol.

Given a composite bundle Y (1.1.10), there are the exact sequences

of vector bundles over Y:
0—-WY —VY =Y X VY — 0, (3.6.6)
0—-Y X V'E — VY - 15Y — 0, (3.6.7)
where VgY and Vi'Y are the vertical tangent and the vertical cotan-
gent bundles of Y — ¥ which are coordinated by (z*,0™, %, 7') and

(:v’\,J"thf,yi)7 respectively. Let us consider a splitting of these exact

sequences

B:VY 34'0;+ ™0, — (4'0; + ¢™9,,)| B = (3.6.8)
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(y' — 6™B!)0; € VxY,

B: VY >dy' — Bldy' = dy' — B! do™ € V*Y, (3.6.9)
given by the form
B = (dy' — B! do™) ® 0;. (3.6.10)

Then the connection 7 (3.6.2) on ¥ — X and the splitting B (3.6.8)

define the connection
Ay =Bo~y:TY - VY — kY, (3.6.11)
Ap = dr* @ (On + (7 — Bpad)0i) + do™ @ (9 + B;,0y),
on the fibre bundle Y — X.
Conversely, every connection Ay (3.6.3) on the fibre bundle Y — %
yields the splitting
As :TY DVY 340, + 6" 0 — (§' — AL 6™)0; (3.6.12)

m

of the exact sequence (3.6.6). Using this splitting, one can construct a
first order differential operator
D:JY - T'X 215y, (3.6.13)
D = di* @ (yj — A} — A,,05),
on the composite bundle Y — X. It is called the vertical covariant

differential. This operator also can be defined as the composition
D=pr,oD": JY —>T*X(§VY — T*X@VYE,

where D7 is the covariant differential (3.2.6) relative to some composite
connection Ay o I' (3.6.5), but D does not depend on the choice of a
connection I' on the fibre bundle ¥ — X.

The vertical covariant differential (3.6.13) possesses the following im-
portant property. Let h be a section of the fibre bundle ¥ — X, and
let Y* — X be the restriction (1.1.13) of the fibre bundle Y — X to
h(X) C X. This is a subbundle

i Yh Sy
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of the fibre bundle Y — X. Every connection Ay (3.6.3) induces the

pull-back connection

Ay =i Ay = di* @ [0y + (AL o h)Oh™ + (Ao h)))d]  (3.6.14)
on Y" — X. Then the restriction of D (3.6.13) to

Jlin(J'Yh ¢ Jty

coincides with the familiar covariant differential D4 (3.2.6) on Y rela-

tive to the pull-back connection A (3.6.14).

Remark 3.6.1: Let I' : Y — J'Y be a connection on a fibre bundle
Y — X. In accordance with the canonical isomorphism VJ'Y = J'VY
(2.1.9), the vertical tangent map

VI VY - VJY
to I' defines the connection

VI VY — JWVY,

VT = da? @ (0y + T30 + 0,447 9)), (3.6.15)
on the composite vertical tangent bundle

Vy - Y — X.

This is called the vertical connection to I".  Of course, the connection
VT projects onto I'. Moreover, VI is linear over I'. Then the dual

connection of VI' on the composite vertical cotangent bundle
VY - Y —- X
reads

VT VY — JWVYY,
VT = da’ @ (9y + 140, — O,T5:0). (3.6.16)
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It is called the covertical connection to I'. If Y — X is an affine bundle,
the connection VI' (3.6.15) can be seen as the composite connection

generated by the connection I' on Y — X and the linear connection
[ =de* @ 0y + 0,143 + dy' ® 0 (3.6.17)

on the vertical tangent bundle VY — Y. O



Chapter 4

Geometry of principal bundles

Classical gauge theory is adequately formulated as Lagrangian field the-
ory on principal and associated bundles where gauge potentials are iden-
tified with principal connections. The main ingredient in this formula-
tion is the bundle of principal connections C' = J'P/G whose sections

are principal connections on a principal bundle P with a structure group

G.

4.1 Geometry of Lie groups

Let G be a topological group which is not reduced to the unit 1. Let V'
be a topological space. By a continuous action of G on V' on the left is

meant a continuous map

C:GxV =V,  ((gg,0)=<¢d,¢(g,v)), (4.1.1)

If there is no danger of confusion, we denote ((g,v) = gv. One says that

a group G acts on V' on the right if the map (4.1.1) obeys the relations

(g'9,v) = (9. ¢(d,v)).
In this case, we agree to write ((g,v) = vg.

Remark 4.1.1:  Strictly speaking, by an action of a group G on V

is meant a class of morphisms ¢ (4.1.1) which differ from each other in

69
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inner automorphisms of Gz, that is,

¢('(9:v) =9 "9g'0)
for some element ¢’ € G. O

An action of G on V is called:

e effective if there is no g # 1 such that ((g,v) = v for all v € V,

e free if, for any two elements v, v € V, there exists an element g € G
such that ((g,v) ="

e transitive if there is no element v € V' such that ((g,v) = v for all
g€qG.
Unless otherwise stated, an action of a group is assumed to be effective.
If an action ¢ (4.1.1) of G on V is transitive, then V' is called the homoge-
neous space, homeomorphic to the quotient V' = G/H of G with respect
to some subgroup H C G. If an action ( is both free and transitive,
then V' is homeomorphic to the group space of G. For instance, this is
the case of action of G on itself by left (( = L¢g) and right (( = Rg)
multiplications.

Let G be a connected real Lie group of finite dimension dim G > 0.
A vector field € on G is called left-invariant if

€9) = TL(E(),  geG,
where T'L, denotes the tangent morphism to the map
L,:G— gG.
Accordingly, right-invariant vector fields £ on G obey the condition
§(g) = TR,(£(1)),
where T'R, is the tangent morphism to the map
Ty : G — ¢G.

Let g; (resp. g,) denote the Lie algebra of left-invariant (resp. right-
invariant) vector fields on G. They are called the left and right Lie
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algebras of G, respectively. Every left-invariant vector field &(g) (resp.
a right-invariant vector field &.(g)) can be associated to the element
v = &(1) (resp. v = &(1)) of the tangent space T1G at the unit 1
of G. Accordingly, this tangent space is provided both with left and
right Lie algebra structures. Given v € TiG, let v(g) and v,.(g) be
the corresponding left-invariant and right-invariant vector fields on G,

respectively. There is the relation

u(g) = (TLg o TRy (v,(g))-

Let {en, = €n(1)} (resp. {en = &n(1)}) denote the basis for the left
k

mn

(resp. right) Lie algebra, and let ¢, be the right structure constants:

k
[Em, 571] = Cpnkk-
The map g — ¢! yields an isomorphism
9D €m — Em = —€n € g

of left and right Lie algebras.
The tangent bundle

mq:TG— G (4.1.2)
of a Lie group G is trivial because of the isomorphisms

o:TG>q— (9=mc(q), TL,"(q)) € G x g,
o :TG>q— (g= Wg(q)7TR;1(q)) € G X g,.

Let ¢ (4.1.1) be a smooth action of a Lie group G on a smooth manifold

V. Let us consider the tangent morphism
TC:TGxTV - TV (4.1.3)

to this action. Given an element g € G, the restriction of T'C (4.1.3) to
(9,0) x TV is the tangent morphism 7'(; to the map

CigxV =V.
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Therefore, the restriction
Tlq:0(G)Yx TV — TV (4.1.4)

of the tangent morphism 7'¢ (4.1.3) to 0(G) x TV (where 0 is the canon-
ical zero section of TG — @) is called the tangent prolongation of a
smooth action of G on V.

In particular, the above mentioned morphisms
TLy = TLg|g0xra TR, = TRe¢|go0xra

are of this type. For instance, the morphism T'Lg (resp. TRg) (4.1.4)
defines the adjoint representation g — Ad, (resp. g — Ady-1) of a group
G in its right Lie algebra g, (resp. left Lie algebra g;) and the identity
representation in its left (resp. right) one.

Restricting T¢ (4.1.3) to TyG x 0(V), one obtains a homomorphism of
the right (resp. left) Lie algebra of G to the Lie algebra 7 (V') of vector
field on V if ¢ is a left (resp. right) action. We call this homomorphism
a representation of the Lie algebra of G in V. For instance, a vector
field on a manifold V associated to a local one-parameter group G of
diffeomorphisms of V' (see Section 1.3) is exactly an image of such a
homomorphism of the one-dimensional Lie algebra of G to T (V).

In particular, the adjoint representation Ad, of a Lie group G in its

right Lie algebra g, yields the corresponding adjoint representation
e'ie—ads(e) =[¢, €], ad., (e,) = & en, (4.1.5)
of the right Lie algebra g, in itself. Accordingly, the adjoint representa-

tion of the left Lie algebra g; in itself reads

k

a’dfm (677) = —Crntks

where ¢ are the right structure constants (4.1.5).

Remark 4.1.2: Let G be a matrix group, i.e., a subgroup of the

algebra M (V') of endomorphisms of some finite-dimensional vector space
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V. Then its Lie algebras are Lie subalgebras of M (V). In this case, the

adjoint representation Ad, of G reads

Ad,(e) = geg™, ee€g. (4.1.6)

An exterior form ¢ on a Lie group G is said to be left-invariant (resp.
right-invariant) if ¢(1) = Lj(¢(g)) (vesp. ¢(1) = R;(4(g))). The ex-
terior differential of a left-invariant (resp right-invariant) form is left-
invariant (resp. right-invariant). In particular, the left-invariant one-

forms satisfy the Maurer—Cartan equation

1
do(e, e') = —§¢([e,e’]), €,€ € g. (4.1.7)
There is the canonical g;-valued left-invariant one-form

0, T1G3e—ecyg (418)

on a Lie group G. The components 6] of its decomposition 6, = 0]"¢,,

with respect to the basis for the left Lie algebra g; make up the basis for

the space of left-invariant exterior one-forms on G:

n __ sn
6mJel - Ym-

The Maurer—Cartan equation (4.1.7), written with respect to this basis,

reads

1 m

do;" = Sy A or.

4.2 Bundles with structure groups

Principal bundles are particular bundles with a structure group. Since
equivalence classes of these bundles are topological invariants (see Theo-

rem 4.2.5), we consider continuous bundles with a structure topological

group.
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Let G be a topological group. Let w : ¥ — X be a locally trivial
continuous bundle (see Remark 1.1.1) whose typical fibre V' is provided
with a certain left action (4.1.1) of a topological group G (see Remark
4.1.1). Moreover, let Y admit an atlas

U ={(Ua,¥a), 008}, Yo = 0ap¥s, (4.2.1)
whose transition functions g,s3 (1.1.3) factorize as

005 : Ua NUs x V. —Us MUy x (G x V) " ES U, NUs x V (4.2.2)
through local continuous G-valued functions

QaGﬁ UaNUs — G (4.2.3)

on X. This means that transition morphisms gn3(z) (1.1.6) are elements
of G acting on V. Transition functions (4.2.2) are called G-valued.

Provided with an atlas (4.2.1) with G-valued transition functions, a
locally trivial continuous bundle Y is called the bundle with a structure
group G or, in brief, a G-bundle. Two G-bundles (Y, ¥) and (Y, ') are
called equivalent if their atlases ¥ and ¥’ are equivalent. Atlases ¥ and
U’ with G-valued transition functions are said to be equivalent iff, given
a common cover {U;} of X for the union of these atlases, there exists a
continuous G-valued function g; on each U; such that

Pi(z) = gi(x)i(z), reU. (4.2.4)

Let h(X,G,V) denote the set of equivalence classes of continuous
bundles over X with a structure group G and a typical fibre V. In order
to characterize this set, let us consider the presheaf G?U} of continuous
G-valued functions on a topological space X. Let G% be the sheaf of
germs of these functions generated by the canonical presheaf G?U}7 and
let H'(X;GY%) be the first cohomology of X with coefficients in GY%
(see Remark 8.5.3). The group functions ggﬁ (4.2.3) obey the cocycle
condition

¢ G e
Cap@sy = Lan
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on overlaps U, N Uz N U, (cf. (8.5.12)) and, consequently, they form a
one-cocycle {Q(Cjﬂ} of the presheaf G({)U}. This cocycle is a representative
of some element of the first cohomology H*(X; G%) of X with coefficients
in the sheaf G%.

Thus, any atlas of a G-bundle over X defines an element of the coho-
mology set H'(X; G%). Moreover, it follows at once from the condition
(4.2.4) that equivalent atlases define the same element of H'(X;GY%).

Thus, there is an injection
MX,G,V)— H'(X;G%) (4.2.5)
of the set of equivalence classes of G-bundles over X with a typical fibre

V to the first cohomology H'(X; G%) of X with coefficients in the sheaf

G%. Moreover, the injection (4.2.5) is a bijection as follows.

Theorem 4.2.1: There is one-to-one correspondence between the equiv-
alence classes of G-bundles over X with a typical fibre V' and the ele-
ments of the cohomology set H!(X;GY%). O

The bijection (4.2.5) holds for G-bundles with any typical fibre V.
Two G-bundles (Y, ) and (Y, ') over X with different typical fibres
are called associated if the cocycles of transition functions of their atlases

¥ and U’ are representatives of the same element of the cohomology set
HY(X;G%). Then Theorem 4.2.1 can be reformulated as follows.

Theorem 4.2.2: There is one-to-one correspondence between the classes
of associated G-bundles over X and the elements of the cohomology set
HY(X;GY%). O

Let f : X’ — X be a continuous map. Every continuous G-bundle
Y — X yields the pull-back bundle f*Y — X’ (1.1.8) with the same

structure group G. Therefore, f induces the map
[f]: H(X;G%) — H' (X', G%).

Theorem 4.2.3: Given a continuous G-bundle Y over a paracompact

base X, let f; and f; be two continuous maps of X’ to X. If these
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maps are homotopic, the pull-back G-bundles f{Y and f5Y over X' are

equivalent. O

Let us return to smooth fibre bundles. Let GG, dimG > 0, be a real
Lie group which acts on a smooth manifold V on the left. A smooth
fibre bundle 7 : Y — X is called a bundle with a structure group G if
it is a continuous G-bundle possessing a smooth atlas ¥ (4.2.1) whose
transition functions factorize as those (4.2.1) through smooth G-valued
functions (4.2.3).

Example 4.2.1: Any vector (resp. affine) bundle of fibre dimension
dim V' = m is a bundle with a structure group which is the general linear

group GL(m,R) (resp. the general affine group GA(m,R)). O

Let G be the sheaf of germs of smooth G-valued functions on X
and H*(X;G%) the first cohomology of a manifold X with coefficients

in the sheaf G¥. The following theorem is analogous to Theorem 4.2.2.

Theorem 4.2.4: There is one-to-one correspondence between the classes
of associated smooth G-bundles over X and the elements of the coho-
mology set H'(X;G%). O

Since a smooth manifold is paracompact, one can show the following.
Theorem 4.2.5: There is a bijection
HY(X;G¥) = H'(X;GY), (4.2.6)
where a Lie group G is treated as a topological group. O

The bijection (4.2.6) enables one to classify smooth G-bundles as the

continuous ones by means of topological invariants.

4.3 Principal bundles

We restrict our consideration to smooth bundles with a structure Lie

group of non-zero dimension.
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Given a real Lie group G, let
mp: P — X (4.3.1)

be a G-bundle whose typical fibre is the group space of GG, which a group
G acts on by left multiplications. It is called a principal bundle with a
structure group . Equivalently, a principal G-bundle is defined as a
fibre bundle P (4.3.1) which admits an action of G on P on the right by

a fibrewise morphism
Rep: G X P = P, (4.3.2)
Rep:p—pg,  wp(p) =mp(pg), PpEP

which is free and transitive on each fibre of P. As a consequence, the
quotient of P with respect to the action (4.3.2) of G is diffeomorphic to
a base X, ie., P/G=X.

Remark 4.3.1:  The definition of a continuous principal bundle is a

repetition of that of a smooth one, but all morphisms are continuous. O

A principal G-bundle P is equipped with a bundle atlas

Up = {<U(xaw5)vgaﬂ} (4'3'3)

whose trivialization morphisms

VP UL) — Uy x G

«

obey the condition

O (pg) =gl (p),  g€G.

Due to this property, every trivialization morphism 1! determines a

unique local section z, : U, — P such that
(1/)5 0z4)(z) =1, x € U,.
The transformation law for z, reads

23(%) = za(2)00p(z), € UaNUps (4.3.4)
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Conversely, the family

{(Uwza)a Q(x@} (435)

of local sections of P which obey the transformation law (4.3.4) uniquely

determines a bundle atlas Wp of a principal bundle P.

Theorem 4.3.1: A principal bundle admits a global section iff it is

trivial. O

Example 4.3.2: Let H be a closed subgroup of a real Lie group G.
Then H is a Lie group. Let G/H be the quotient of G with respect to
an action of H on G by right multiplications. Then

wen : G — G/H (4.3.6)

is a principal H-bundle. If H is a maximal compact subgroup of GG, then
G/ H is diffeomorphic to R™ and, by virtue of Theorem 1.1.7, G — G/H
is a trivial bundle, i.e., G is diffeomorphic to the product R x H. O

Remark 4.3.3:  The pull-back f*P (1.1.8) of a principal bundle also

is a principal bundle with the same structure group. O

Remark 4.3.4: Let P — X and P’ — X’ be principal G- and G'-
bundles, respectively. A bundle morphism ® : P — P’ is a morphism of
principal bundles if there exists a Lie group homomorphism v : G — G’

such that

®(pg) = ®(p)v(9)-

In particular, equivalent principal bundles are isomorphic. O

Any class of associated smooth bundles on X with a structure Lie
group G contains a principal bundle. In other words, any smooth bundle
with a structure Lie group G is associated with some principal bundle.

Let us consider the tangent morphism

TRep: (G x @) x TP —~TP (4.3.7)
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to the right action Rgp (4.3.2) of G on P. Its restriction to T3 G X TP

provides a homomorphism
gde— & €T(P) (4.3.8)

of the left Lie algebra g; of G to the Lie algebra 7 (P) of vector fields
on P. Vector fields & (4.3.8) are obviously vertical. They are called
fundamental vector fields. Given a basis {¢,} for g;, the corresponding
fundamental vector fields &, = &, form a family of m = dim g; nowhere
vanishing and linearly independent sections of the vertical tangent bun-
dle VP of P — X. Consequently, this bundle is trivial

VP=Pxg (4.3.9)

by virtue of Theorem 1.2.1.
Restricting the tangent morphism T Rgp (4.3.7) to

TRegp : 0(G) xTP —TP, (4.3.10)

we obtain the tangent prolongation of the structure group action Rgp
(4.3.2). If there is no danger of confusion, it is simply called the action
of G on T'P. Since the action of G (4.3.2) on P is fibrewise, its action
(4.3.10) is restricted to the vertical tangent bundle V' P of P.

Taking the quotient of the tangent bundle TP — P and the vertical
tangent bundle VP of P by G (4.3.10), we obtain the vector bundles

TeP =TP/G, VgP=VP/G (4.3.11)

over X. Sections of TP — X are G-invariant vector fields on P. Ac-
cordingly, sections of Vo P — X are G-invariant vertical vector fields on
P. Hence, a typical fibre of VgP — X is the right Lie algebra g, of G
subject to the adjoint representation of a structure group G. Therefore,
VP (4.3.11) is called the Lie algebra bundle.

Given a bundle atlas Wp (4.3.3) of P, there is the corresponding atlas

U = {(Uy, ¥0), Ad,,,} (4.3.12)
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of a Lie algebra fibre bundle Vi P, which is provided with bundle coor-

dinates (U,; 2", x™) with respect to the fibre frames

{em = ¢;1($) (5m>}’

where {e,,} is a basis for the Lie algebra g,. These coordinates obey the

transformation rule
o(X™)em = X" Ady-1(em). (4.3.13)

A glance at this transformation rule shows that Vg P is a bundle with a
structure group GG. Moreover, it is associated with a principal G-bundle
P (see Example 4.7.2).

Accordingly, the vector bundle TP (4.3.11) is endowed with bundle
coordinates (z*, #, x™) with respect to the fibre frames {0, en,}. Their

transformation rule is
o(x™)em = X" Ady-1(em) + T Repn. (4.3.14)
If G is a matrix group (see Remark 4.1.2), this transformation rule reads

o(X")em = X" 0 emo — i*0u(0 7)o (4.3.15)

Since the second term in the right-hand sides of expressions (4.3.14) —
(4.3.15) depend on derivatives of a G-valued function ¢ on X, the vector
bundle TP (4.3.11) fails to be a G-bundle.

The Lie bracket of G-invariant vector fields on P goes to the quotient
by G and defines the Lie bracket of sections of the vector bundle TP —
X. This bracket reads

=80+ e  n=0"0,+nle, (4.3.16)
[€,n) = (€' 0um™ — 10,60 + (4.3.17)
(0" = 0N + ) "),
Putting £} = 0 and n* = 0 in the formulas (4.3.16) — (4.3.17), we obtain
the Lie bracket

(€, n] = cp&Pne, (4.3.18)
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of sections of the Lie algebra bundle VzP. A glance at the expression
(4.3.18) shows that sections of Vi P form a finite-dimensional Lie C*°(X)-
algebra, called the gauge algebra. Therefore, Vi P also is called the gauge
algebra bundle.

4.4 Principal connections

Principal connections on a principal bundle P (4.3.1) are connections
on P which are equivariant with respect to the right action (4.3.2) of
a structure group G on P. In order to describe them, we follow the
definition of connections on a fibre bundle Y — X as global sections of
the affine jet bundle J'Y — X (Theorem 3.2.1).

Let J'P be the first order jet manifold of a principal G-bundle P — X
(4.3.1). Then connections on a principal bundle P — X are global

sections
A:P— J'P (4.4.1)
of the affine jet bundle J'P — P modelled over the vector bundle
X % VP=(T'X (%gl).

In order to define principal connections on P — X, let us consider the

jet prolongation
J'Rg : JHX x Q) % J'P— J'p

of the morphism Rgp (4.3.2). Restricting this morphism to
J'Rq : 0(G) x J'P— J'P,

we obtain the jet prolongation of the structure group action Rgp (4.3.2)

called, simply, the action of G on J'P. It reads

G294 — (jip)g = ja(pg). (4.4.2)
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Taking the quotient of the affine jet bundle J'P by G (4.4.2), we obtain
the affine bundle

C=J'PIG—X (4.4.3)
modelled over the vector bundle
6:T*X()2?V3P — X.
Hence, there is the vertical splitting
VC=C0®C
X
of the vertical tangent bundle VC' of C — X.

Remark 4.4.1: A glance at the expression (4.4.2) shows that the
fibre bundle J!P — C is a principal bundle with the structure group G.

It is canonically isomorphic to the pull-back

J'P=P:=C xP—C (4.4.4)

Taking the quotient with respect to the action of a structure group
G, one can reduce the canonical imbedding (2.1.5) (where Y = P) to

the bundle monomorphism

A :C —T*'XQTgP,
X X

Ac s dr? @ (0, + X' em)- (4.4.5)

It follows that, given atlases Wp (4.3.3) of P and U (4.3.12) of T¢ P, the
bundle of principal connections C' is provided with bundle coordinates

(z*,al?) possessing the transformation rule

ox”
ola;)em = (a) Ady-1 (e) %*fﬂ?gm)éaiﬁ. (4.4.6)
If G is a matrix group, this transformation rule reads
™ = (a0 O o) 2 4.4.7
o(ai)em = (a0 (em)e = Oule™ o) 5 oo (4.4.7)
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A glance at this expression shows that the bundle of principal connec-
tions C' as like as the vector bundle TP (4.3.11) fails to be a bundle
with a structure group G.

As was mentioned above, a connection A (4.4.1) on a principal bundle
P — X is called a principal connection if it is equivariant under the

action (4.4.2) of a structure group G, i.e.,
Alpg) = Alp)g  g€G. (4.4.8)

There is obvious one-to-one correspondence between the principal con-

nections on a principal G-bundle P and global sections
A: X —-C (4.4.9)

of the bundle C' — X (4.4.3), called the bundle of principal connections.

Theorem 4.4.1: Since the bundle of principal connections C' — X is

affine, principal connections on a principal bundle always exist. O

Due to the bundle monomorphism (4.4.5), any principal connection
A (4.4.9) is represented by a T P-valued form

A=de*® (0)+ Ale,). (4.4.10)

Taking the quotient with respect to the action of a structure group G,
one can reduce the exact sequence (1.2.10) (where Y = P) to the exact

sequence

0— VgP TTGP —TX — 0. (4.4.11)
A principal connection A (4.4.10) defines a splitting of this exact se-
quence.

Remark 4.4.2: A principal connection A (4.4.1) on a principal bundle
P — X can be represented by the vertical-valued form A (3.1.9) on
P which is a g-valued form due to the trivialization (4.3.9). It is the
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familiar g;-valued connection form on a principal bundle P. Given a

local bundle splitting (U, 2,) of P, this form reads
A=y —Aldr @ ¢,), (4.4.12)

where 6; is the canonical g-valued one-form (4.1.8) on G and A are

local functions on P such that

Z(i\(pg)eq = Z?\(p)Adgfl(Eq)
The pull-back z%A of the connection form A (4.4.12) onto U, is the

well-known local connection one-form
A, = —Alda* @ ¢, = Aldr* ® ¢, (4.4.13)

where A = Af o z, are local functions on X. It is readily observed that
the coefficients A} of this form are exactly the coefficients of the form
(4.4.10). O

There are both pull-back and push-forward operations of principal

connections.

Theorem 4.4.2: Let P be a principal bundle and f*P (1.1.8) the pull-
back principal bundle with the same structure group. Let fp be the
canonical morphism (1.1.9) of f*P to P. If A is a principal connection
on P, then the pull-back connection f*A (3.1.12) on f*P is a principal

connection. O

Theorem 4.4.3: Let P’ — X and P — X be principle bundles with
structure groups G’ and G, respectively. Let ® : P’ — P be a principal
bundle morphism over X with the corresponding homomorphism G’ —
G (see Remark 4.3.4). For every principal connection A" on P’, there
exists a unique principal connection A on P such that T'® sends the
horizontal subspaces of TP A’ onto the horizontal subspaces of TP
with respect to A. O

Let P — X be a principal G-bundle. The Frolicher—Nijenhuis bracket
(1.4.8) on the space O*(P) ® T(P) of tangent-valued forms on P is
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compatible with the right action Rgp (4.3.2). Therefore, it induces the
Frolicher—Nijenhuis bracket on the space O*(X)®T¢P(X) of T P-valued
forms on X, where T P(X) is the vector space of sections of the vector
bundle T¢P — X. Note that, as it follows from the exact sequence

(4.4.11), there is an epimorphism
TeP(X) — T(X).

Let A € OY(X) ® TgP(X) be a principal connection (4.4.10). The

associated Nijenhuis differential is

dy: O"(X)RTeP(X) — O (X)) @ Ve P(X),
dap = [A, ¢]FN7 o€ O’(X) & TGp(X). (4.4.14)

The strength of a principal connection A (4.4.10) is defined as the Vg P-

valued two-form
1 1
IQ:§@A:§M¢mNGO%XWN@ﬂX) (4.4.15)
Its coordinated expression

1.

Fy= EFA’#dx’\ ANdzt @ ey,

FY, = [0x + ARey, 0, + Alleg]" = (4.4.16)
O\AL — 0, A% + ¢ AR AL,

results from the bracket (4.3.17).

Remark 4.4.3: It should be emphasized that the strength Fy (4.4.15)
is not the standard curvature (3.3.1) of a principal connection because A
(4.4.10) is not a tangent-valued form. The curvature of a principal con-
nection A (4.4.1) on P is the V P-valued two-form R (3.3.1) on P, which
is brought into the gi-valued form owing to the canonical isomorphism
(4.3.9). O

Remark 4.4.4: Given a principal connection A (4.4.9), let ®¢ be a

vertical principal automorphism of the bundle of principal connections C'.
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The connection A’ = ®co A is called conjugate to a principal connection
A. The strength forms (4.4.15) of conjugate principal connections A and
A’ coincide with each other, i.e., Fy = Fy. O

4.5 Canonical principal connection

Given a principal G-bundle P — X and its jet manifold J'P, let us
consider the canonical morphism (1) (2.1.5) where Y = P. By virtue of

Remark 1.2.2; this morphism defines the morphism
Q:JIPETPHVP.

Taking its quotient with respect to GG, we obtain the morphism
CxTeP L VgP, (45.1)
0(0) = —akep, 0(ep) = €p.

Consequently, the exact sequence (4.4.11) admits the canonical splitting
over C.

In view of this fact, let us consider the pull-back principal G-bundle
Pc (4.4.4). Since

Vg(CXP) :CYXVva7 TG(CXP) :TCXTGp, (452)
X X X X

the exact sequence (4.4.11) for the principal bundle P¢ reads

0—C ;<{ VaP ?TC )>§ TcP —TC — 0. (4.5.3)
The morphism (4.5.1) yields the horizontal splitting (3.1.3):

TCXTGp —>C><TGp —(C' x VGp,

X X X

of the exact sequence (4.5.3). Thus, it defines the principal connection

A:TC’—>TC}>§TGP,

A = da* @ (0 + die,) + day @ 02, (4.5.4)
AeO0Y0) @ T(C x P)(X),
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on the principal bundle
Pe=C % P —C. (4.5.5)

It follows that the principal bundle Pr admits the canonical principal
connection (4.5.4).

Following the expression (4.4.15), let us define the strength
1 1
Fyu=5daA = 5[,47 Al € O*(C) ® VgP(X),
1
Fy = (daj, A da" + ic;qazj\a;idx’\ A dz") @ ey, (4.5.6)

of the canonical principal connection A (4.5.4). It is called the canonical
strength because, given a principal connection A (4.4.9) on a principal
bundle P — X, the pull-back

A*Fy=Fy (4.5.7)

is the strength (4.4.16) of A.
With the Vg P-valued two-form Fy (4.5.6) on C, let us define the

Vo P-valued horizontal two-form
1
F =ho(Fa) = E]:}Md:ﬁ Ada! @ e,
f/’\‘,u = a;\p - G,L)\ + C;qal/{a;iy (458)

on J'C. It is called the strength form. For each principal connection A
(4.4.9) on P, the pull-back

JYAF =Fy (4.5.9)

is the strength (4.4.16) of A.
The strength form (4.5.8) yields an affine surjection

F[2:J'C —C §(i T*X ® VgP) (4.5.10)

over C of the affine jet bundle J'C' — C' to the vector (and, consequently,
affine) bundle

C §(% T*X © VgP) — C.
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By virtue of Theorem 1.1.10, its kernel C; = Ker F/2 is an affine sub-
bundle of J'C — C. Thus, we have the canonical splitting of the affine
jet bundle

JIC=CrgC = O+ECB(C;<(/2\T*X®V0P), (4.5.11)
r 1 r 1 r r r
Ay, = 5(“# + S/\/J,) = i(a/\u + Aux — Cpqaga;]x) + (4512)

roo_ T TP g
i(a)\u au/\ + Cpquau)'

The jet manifold J'C plays a role of the configuration space of clas-

sical gauge theory on principal bundles.

4.6 Gauge transformations

In classical gauge theory, gauge transformations are defined as principal
automorphisms of a principal bundle P. In accordance with Remark
4.3.4, an automorphism ®p of a principal G-bundle P is called principal
if it is equivariant under the right action (4.3.2) of a structure group G

on P, ie.,

®p(pg) = ep(p)g. g€G,  peP (4.6.1)

In particular, every vertical principal automorphism of a principal

bundle P is represented as

®p(p) =pflp), pEP (4.6.2)

where f is a G-valued equivariant function on P, i.e.,

flog) =g ' flp)g, g€G. (4.6.3)

There is one-to-one correspondence between the equivariant functions f

(4.6.3) and the global sections s of the associated group bundle

npe : PY — X (4.6.4)
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whose fibres are groups isomorphic to G and whose typical fibre is the
group G which acts on itself by the adjoint representation. This one-to-

one correspondence is defined by the relation

s(mp(p))p=pf(p), PEP (4.6.5)

(see Example 4.7.3). The group of vertical principal automorphisms of
a principal G-bundle is called the gauge group. It is isomorphic to the
group PY(X) of global sections of the group bundle (4.6.4). Its unit
element is the canonical global section 1 of P® — X whose values are

unit elements of fibres of PS.

Remark 4.6.1: Note that transition functions of atlases of a principle
bundle P also are represented by local sections of the associated group
bundle P¢ (4.6.4). O

Let us consider (local) one-parameter groups of principal automor-
phisms of P. Their infinitesimal generators are G-invariant projectable
vector fields € on P, and wice versa. We call £ the principal vector
fields or the infinitesimal gauge transformations. They are represented
by sections £ (4.3.16) of the vector bundle T P (4.3.11). Principal vec-
tor fields constitute a real Lie algebra T P(X) with respect to the Lie
bracket (4.3.17). Vertical principal vector fields are the sections

E=¢&le, (4.6.6)

of the gauge algebra bundle VgP — X (4.3.11). They form a finite-
dimensional Lie C*(X)-algebra G(X) = Ve P(X) (4.3.18) that has been
called the gauge algebra.

Any (local) one-parameter group of principal automorphism ®p (4.6.1)
of a principal bundle P admits the jet prolongation J'®p (2.1.7) to a
one-parameter group of G-equivariant automorphism of the jet manifold
J'P which, in turn, yields a one-parameter group of principal automor-
phisms ®¢ of the bundle of principal connections C' (4.4.3). Its infinites-

imal generator is a vector field on C', called the principal vector field on



90 CHAPTER 4. GEOMETRY OF PRINCIPAL BUNDLES

C and regarded as an infinitesimal gauge transformation of C'. Thus,
any principal vector field £ (4.3.16) on P yields a principal vector field
ug on C, which can be defined as follows.

Using the morphism (4.5.1), we obtain the morphism
¢le:C = Vo P,
which is a section of of the Lie algebra bundle
Va(C X P)—C
in accordance with the first formula (4.5.2). Then the equation

ue|Fy = da(€]0)

uniquely determines a desired vector field ug on C. A direct computation

leads to

g = £, + (0,67 + chyal€? — a9, ). (4.6.7)

Pq

In particular, if £ is a vertical principal field (4.6.6), we obtain the vertical

vector field

ug = (08" + ) aleN L. (4.6.8)

Remark 4.6.2: The jet prolongation (2.1.8) of the vector field u,
(4.6.7) onto J'C reads

Jhug = ug + (00" + & ab0NE" + ¢ ah £ — (4.6.9)

ayOhE” — a, 048" — al, OnE")OM.

v

O

Example 4.6.3: Let A (4.4.10) be a principal connection on P. For

any vector field 7 on X, this connection yields a section

7]A =720\ + A1,
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of the vector bundle TP — X. It, in turn, defines a principal vector

field (4.6.7) on the bundle of principal connection C' which reads

4= PO+ (DuALT) + ah ALY — a0, )0 (46.10)

Pq TR v
& =1 &= Abrv.

It is readily justified that the monomorphism
TeP(X)3 & —ue e T(O) (4.6.11)
obeys the equality
Ule ) = [, ), (4.6.12)

i.e., it is a monomorphism of the real Lie algebra Tz P(X) to the real
Lie algebra 7 (C). In particular, the image of the gauge algebra G(X)
in 7(C) also is a real Lie algebra, but not the C*(X)-one because

ufg#fu@ fECOO(X)

Remark 4.6.4: A glance at the expression (4.6.7) shows that the
monomorphism (4.6.11) is a linear first order differential operator which

sends sections of the pull-back bundle
C x TGp — C
X

onto sections of the tangent bundle TC' — C. Refereing to Definition
7.2.10, we therefore can treat principal vector fields (4.6.7) as infinitesi-
mal gauge transformations depending on gauge parameters § € TP (X).
O

4.7 Geometry of associated bundles

Given a principal G-bundle P (4.3.1), any associated G-bundle over X

with a typical fibre V is equivalent to the following one.
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Let us consider the quotient
Y=(PxV)/G (4.7.1)

of the product P x V by identification of elements (p,v) and (pg, g~'v)

for all g € G. Let [p] denote the restriction of the canonical surjection
PxV —=(PxV)/G (4.7.2)
to the subset {p} x V so that
[P)(v) = [pgl(g™"0).
Then the map
Y3 [pl(V) — 7p(p) € X

makes the quotient Y (4.7.1) into a fibre bundle over X. This is a smooth
G-bundle with the typical fibre V' which is associated with the principal
G-bundle P. For short, we call it the P-associated bundle.

Remark 4.7.1: The tangent morphism to the morphism (4.7.2) and
the jet prolongation of the morphism (4.7.2) lead to the bundle isomor-

phisms
TY = (TP xTV)/G, (4.7.3)
JY = (J'Px V)/G. (4.7.4)
O

The peculiarity of the P-associated bundle Y (4.7.1) is the following.
(i) Every bundle atlas Up = {(Uq, 24)} (4.3.5) of P defines a unique

associated bundle atlas

U = {(Ua, Ya(2) = [za(2)] )} (4.7.5)
of the quotient Y (4.7.1).
Example 4.7.2: Because of the splitting (4.3.9), the Lie algebra bundle

VGp = (P X gl)/G,
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by definition, is of the form (4.7.1). Therefore, it is a P-associated
bundle. O

Example 4.7.3: The group bundle P (4.6.4) is defined as the quotient
PY=(Px@)/G, (4.7.6)

where the group G which acts on itself by the adjoint representation.
There is the following fibre-to-fibre action of the group bundle P¢ on
any P-associated bundle Y (4.7.1):

PG;?Y -
((p,9)/G,(p,v)/G) = (p,gv)/G,  geG,  wveV.

For instance, the action of P% on P in the formula (4.6.5) is of this type.
O
(ii) Any principal automorphism ®p (4.6.1) of P yields a unique prin-

cipal automorphism
Oy : (p,v)/G — (Pp(p),v)/G,  peP,  wveV, (4.7.7)

of the P-associated bundle Y (4.7.1). For the sake of brevity, we agree

to write
Oy (P xV)/G — (Pp(P) x V)/G.

Accordingly, any (local) one-parameter group of principal automorphisms
of P induces a (local) one-parameter group of automorphisms of the P-
associated bundle Y (4.7.1). Passing to infinitesimal generators of these
groups, we obtain that any principal vector field ¢ (4.3.16) yields a vec-
tor field ve on Y regarded as an infinitesimal gauge transformation of Y.

Owing to the bundle isomorphism (4.7.3), we have

ve: X — (§(P)xTV)/G C TY,
ve = 0\ + £ 110, (4.7.8)

where {I,} is a representation of the Lie algebra g, of G in V.
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(iii) Any principal connection on P — X defines a unique connection
on the P-associated fibre bundle Y (4.7.1) as follows. Given a principal
connection A (4.4.8) on P and the corresponding horizontal distribution
HP C TP, the tangent map to the canonical morphism (4.7.2) defines
the horizontal splitting of the tangent bundle TY of Y (4.7.1) and the
corresponding connection on Y — X. Owing to the bundle isomorphism
(4.7.4), we have

A:(PxV)/G— (A(P)xV)/G c JY,
A =da* @ (0\ + AR1}0,), (4.7.9)

where {I,} is a representation of the Lie algebra g, of G in V. The
connection A (4.7.9) on Y is called the associated principal connection
or, simply, a principal connection on Y — X. The curvature (3.3.2) of

this connection takes the form

1 i
R= §F§H 1da? A dat @ 0. (4.7.10)

Example 4.7.4: A principal connection A on P yields the associated
connection (4.7.9) on the associated Lie algebra bundle Vg P which reads

A =da’ ® (0r — s ALEey). (4.7.11)
O

Remark 4.7.5: If an associated principal connection A is linear, one
can define its strength
1

Fy= §F§’u[pda:’\ A da*, (4.7.12)
where [,, are matrices of a representation of the Lie algebra g, in fibres
of Y with respect to the fibre bases {e;(xz)}. They coincide with the
matrices of a representation of g, in the typical fibre V' of Y with respect
to its fixed basis {e;} (see the relation (1.2.1)). It follows that G-valued
transition functions act on I, by the adjoint representation. Note that,

because of the canonical splitting (1.2.8), one can identify e;(z) = 9;. O
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In view of the above mentioned properties, the P-associated bundle
Y (4.7.1) is called canonically associated to a principal bundle P. Unless
otherwise stated, only canonically associated bundles are considered, and

we simply call Y (4.7.1) an associated bundle.

4.8 Reduced structure

Let H and G be Lie groups and ¢ : H — G a Lie group homomorphism.
If Py — X is a principal H-bundle, there always exists a principal G-
bundle P; — X together with the principal bundle morphism

o Py TPG (4.8.1)
over X (see Remark 4.3.4). It is the Py-associated bundle
Pe= (P xG)/H

with the typical fibre G on which H acts on the left by the rule h(g) =
o(h)g, while G acts on Py as

G>g:(p.g)/H— (p,gg)/H.

Conversely, if P — X is a principal G-bundle, a problem is to find a
principal H-bundle Py — X together with a principal bundle morphism
(4.8.1). If H — G is a closed subgroup, we have the structure group
reduction. If H — G is a group epimorphism, one says that Py lifts to
Py.

Here, we restrict our consideration to the reduction problem. In this

case, the bundle monomorphism (4.8.1) is called a reduced H-structure.

Let P (4.3.1) be a principal G-bundle, and let H, dimH > 0, be
a closed (and, consequently, Lie) subgroup of G. Then we have the

composite bundle

P— P/H — X, (4.8.2)
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where

Py=P ™% p/H (4.8.3)
is a principal bundle with a structure group H and

Y =P/HZSX (4.8.4)

is a P-associated bundle with the typical fibre G/H on which the struc-
ture group G acts on the left (see Example 4.3.2).

One says that a structure Lie group G of a principal bundle P is
reduced to its closed subgroup H if the following equivalent conditions
hold.

e A principal bundle P admits a bundle atlas Up (4.3.3) with H-
valued transition functions g,g.

e There exists a principal reduced subbundle Py of P with a structure

group H.

Theorem 4.8.1: There is one-to-one correspondence
P" = 15 (h(X)) (4.8.5)

between the reduced principal H-subbundles i;, : P* — P of P and the
global sections h of the quotient bundle P/H — X (4.8.4). O

Corollary 4.8.2: A glance at the formula (4.8.5) shows that the re-
duced principal H-bundle P" is the restriction h* Py, (1.1.13) of the prin-
cipal H-bundle Py (4.8.3) to h(X) C X. O

In general, there is topological obstruction to reduction of a structure

group of a principal bundle to its subgroup.

Theorem 4.8.3: In accordance with Theorem 1.1.4, the structure group
G of a principal bundle P is always reducible to its closed subgroup H,
if the quotient G/H is diffeomorphic to a Euclidean space R™. O

In particular, this is the case of a maximal compact subgroup H of a

Lie group G. Then the following is a corollary of Theorem 4.8.3.
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Theorem 4.8.4: A structure group G of a principal bundle is always

reducible to its maximal compact subgroup H. O

Example 4.8.1: For instance, this is the case of G = GL(n,C), H =
U(n) and G = GL(n,R), H=0(n). O

Example 4.8.2: Any affine bundle admits an atlas with linear tran-
sition functions. In accordance with Theorem 4.8.3, its structure group

GA(m,R) is always reducible to the linear subgroup GL(m,R) because

GA(m,R)/GL(m,R) = R™.

Different principal H-subbundles P" and P" of a principal G-bundle

P are not isomorphic to each other in general.

Theorem 4.8.5: Let a structure Lie group G of a principal bundle be
reducible to its closed subgroup H.

(i) Every vertical principal automorphism ® of P sends a reduced
principal H-subbundle P" of P onto an isomorphic principal H-subbundle
P,

(ii) Conversely, let two reduced subbundles P* and P" of a principal
bundle P — X be isomorphic to each other, and let ® : P" — P" be
their isomorphism over X. Then ¢ is extended to a vertical principal

automorphism of P. O

Theorem 4.8.6: If the quotient G/H is homeomorphic to a Euclidean
space R™, all principal H-subbundles of a principal G-bundle P are iso-

morphic to each other. O

There are the following properties of principal connections compatible

with a reduced structure.

Theorem 4.8.7: Since principal connections are equivariant, every prin-
cipal connection A;, on a reduced principal H-subbundle P” of a principal

G-bundle P gives rise to a principal connection on P. O



98 CHAPTER 4. GEOMETRY OF PRINCIPAL BUNDLES

Theorem 4.8.8: A principal connection A on a principal G-bundle P is
reducible to a principal connection on a reduced principal H-subbundle
P" of P iff the corresponding global section h of the P-associated fi-
bre bundle P/H — X is an integral section of the associated principal

connection A on P/H — X. O
Theorem 4.8.9: Let the Lie algebra g; of G be the direct sum
g ="hSm (4.8.6)

of the Lie algebra b; of H and a subspace m such that Ad,(m) Cm, g € H
(e.g., H is a Cartan subgroup of G). Let A be a gi-valued connection
form (4.4.12) on P. Then, the pull-back of the h-valued component of A
onto a reduced principal H-subbundle P" is a b;-valued connection form

of a principal connection A, on P". O
The following is a corollary of Theorem 4.4.2.

Theorem 4.8.10: Given the composite bundle (4.8.2), let Ay be a
principal connection on the principal H-bundle P — ¥ (4.8.3). Then, for
any reduced principal H-bundle 4 : P" — P, the pull-back connection

it Ay (3.6.14) is a principal connection on P". O



Chapter 5

Geometry of natural bundles

Classical gravitation theory is formulated as field theory on natural bun-
dles, exemplified by tensor bundles. Therefore, we agree to call connec-

tions on these bundles the world connections.

5.1 Natural bundles

Let 7 : Y — X be a smooth fibre bundle coordinated by (z*,y"). Any
automorphism (P, f) of Y, by definition, is projected as

mTod=for

onto a diffeomorphism f of its base X. The converse is not true. A
diffeomorphism of X need not give rise to an automorphism of Y, unless
Y — X is a trivial bundle.

Given a one-parameter group (®;, f;) of automorphisms of Y, its in-

finitesimal generator is a projectable vector field
u = uM(x")Oy + u' (", y”)0;

on Y. This vector field is projected as
Tom=Trmou

onto a vector field 7 = v*d, on X. Its flow is the one-parameter group

(f:) of diffeomorphisms of X which are projections of autmorphisms

99
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(®y, f;) of Y. Conversely, let 7 = 729, be a vector field on X. There is

a problem of constructing its lift to a projectable vector field
u =10\ + u'0;

on Y projected onto 7. Such a lift always exists, but it need not be
canonical. Given a connection I" on Y, any vector field 7 on X gives rise
to the horizontal vector field I'r (3.1.6) on Y. This horizontal lift 7 — I'r
yields a monomorphism of the C*°(X)-module 7 (X) of vector fields on
X to the C*(Y)-module of vector fields on Y, but this monomorphisms
is not a Lie algebra morphism, unless I is a flat connection.

Let us address the category of natural bundles T' — X which admit
the functorial lift 7 onto T of any vector field 7 on X such that 7 — 7

is & monomorphism

T(X) - T(T)> [7:’%/] = [7—7 TIL

of the real Lie algebra 7 (X)) of vector fields on X to the real Lie algebra
T(Y) of vector fields on T'. One treats the functorial lift 7 as an infinites-
imal general covariant transformation, i.e., an infinitesimal generator of

a local one-parameter group of general covariant transformations of T'.

Remark 5.1.1: It should be emphasized that, in general, there exist
diffeomorphisms of X which do not belong to any one-parameter group
of diffeomorphisms of X. In a general setting, one therefore considers a
monomorphism f — f of the group of diffeomorphisms of X to the group
of bundle automorphisms of a natural bundle 7 — X. Automorphisms
f are called general covariant transformations of T. No vertical auto-
morphism of T, unless it is the identity morphism, is a general covariant

transformation. O

Natural bundles are exemplified by tensor bundles (1.2.5). For in-
stance, the tangent and cotangent bundles T X and T*X of X are nat-
ural bundles. Given a vector field 7 on X, its functorial (or canonical)

lift onto the tensor bundle 7" (1.2.5) is given by the formula (1.3.2). In



5.1. NATURAL BUNDLES 101

particular, let us recall the functorial lift (1.3.4) and (1.3.5) of 7 onto
the tangent bundle T X and the cotangent bundle T*X, respectively.

Remark 5.1.2: Any diffeomorphism f of X gives rise to the tangent
automorphisms f = Tf of TX which is a general covariant transfor-
mation of TX as a natural bundle. Accordingly, the general covariant
transformation of the cotangent bundle 7% X over a diffeomorphism f of

its base X reads
. 0TV,
'TN = M.T,/.

Tensor bundles over a manifold X have the structure group
GL, = GL"(n,R). (5.1.1)
The associated principal bundle is the fibre bundle
mrx  LX — X

of oriented linear frames in the tangent spaces to a manifold X. It is
called the linear frame bundle. Its (local) sections are termed frame
fields.

Given holonomic frames {0,} in the tangent bundle T'X associated
with the holonomic atlas Ur (1.2.4), every element {H,} of the linear
frame bundle LX takes the form H, = H!0,, where H/ is a matrix
of the natural representation of the group GL, in R". These matrices

constitute the bundle coordinates

(x)\7H5)7 H(/LH =

on LX associated to its holonomic atlas

U ={(U, 2 =1{0})} (5.1.2)

given by the local frame fields z, = {9,,}. With respect to these coordi-
nates, the right action (4.3.2) of GL,, on LX reads

Ryp: H — Hj/ b g € GL,.
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The frame bundle LX admits the canonical R™valued one-form
Orx = Hﬁdm“ R tq, (5.1.3)

where {t,} is a fixed basis for R" and H is the inverse matrix of Hj.
The frame bundle LX — X belongs to the category of natural bun-
dles. Any diffeomorphism f of X gives rise to the principal automor-

phism
fo@ HY) = (f(x), 0, HY) (5.1.4)

of LX which is its general covariant transformation (or a holonomic
automorphism). For instance, the associated automorphism of T'X is
the tangent morphism 7'f to f.

Given a (local) one-parameter group of diffeomorphisms of X and its

infinitesimal generator 7, their lift (5.1.4) results in the functorial lift

T=1"0,+0,7H; JHe

of a vector field 7 on X onto LX defined by the condition

(5.1.5)

LT—GLX =0.

Every LX-associated bundle Y — X admits a lift of any diffeomor-
phism f of its base to the principal automorphism fy(4.7.7) of Y as-
sociated with the principal automorphism f (5.1.4) of the liner frame
bundle LX. Thus, all bundles associated with the linear frame bundle
LX are natural bundles. However, there are natural bundles which are

not associated with LX.

Remark 5.1.3: In a more general setting, higher order natural bundles
and gauge natural bundles are considered. Note that the linear frame
bundle LX over a manifold X is the set of first order jets of local diffeo-
morphisms of the vector space R" to X, n = dim X, at the origin of R".
Accordingly, one considers r-order frame bundles L"X of r-order jets of

local diffeomorphisms of R” to X. Furthermore, given a principal bundle
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P — X with a structure group G, the r-order jet bundle J!P — X of

its sections fails to be a principal bundle. However, the product
W'P=LXxJP

is a principal bundle with the structure group W, G which is a semidirect
product of the group G, of invertible r-order jets of maps R" to itself
at its origin (e.g., G} = GL(n,R)) and the group T'G of r-order jets
of morphisms R" — G at the origin of R”. Moreover, if Y — X is
a P-associated bundle, the jet bundle J'Y — X is a vector bundle
associated with the principal bundle W"P. It exemplifies gauge natural
bundles which can be described as fibre bundles associated with principal
bundles W"P. Natural bundles are gauge natural bundles for a trivial
group G = 1. The bundle of principal connections C' (4.4.3) is a first

order gauge natural bundle. O

5.2 Linear world connections

Since the tangent bundle T'X is associated with the linear frame bundle

LX, every world connection (3.4.6):
I = da* @ (9y + Ty,3"0,), (5.2.1)

on a manifold X is associated with a principal connection on LX. We
agree to call " (5.2.1) the linear world connection in order to distinct it
from an affine world connection in Section 5.3.

Being principal connections on the linear frame bundle LX), linear

world connections are represented by sections of the quotient bundle

Cw = J'LX/GL,, (5.2.2)
called the bundle of world connections. With respect to the holonomic
atlas U (5.1.2), this bundle is provided with the coordinates

v ) ¥} 2.V L
(2 ) o oz Ox” oz’ O°x ozt
A ek AT 9z 9 P gt gandaB | 0z
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so that, for any section I' of Cyy — X,
k/\ya ol'= F)\Va

are components of the linear world connection I' (5.2.1).
Though the bundle of world connections Cw — X (5.2.2) is not LX-

associated, it is a natural bundle. It admits the lift

fo: J'LX/GL, — J'f(J'LX)/GL,
of any diffeomorphism f of its base X and, consequently, the functorial
lift

0
7o =m0+ [0, k"5 — Op k" — OuT R 5 4 G| 5 ~(5.2.3)
w B

of any vector field 7 on X.

The first order jet manifold J'Cyy of the bundle of world connections
admits the canonical splitting (4.5.11). In order to obtain its coordi-
nate expression, let us consider the strength (4.7.12) of the linear world
connection I' (5.2.1). It reads

1 1
Fr = §waalb“dxA A dat = 5RwaﬁdgcA A dat,
where
(1) = Hy Hj
are generators of the group GL, (5.1.1) in fibres of TX with respect to
the holonomic frames, and

R,\Hag = (9,\Fﬂag — GNFA% + FA”/,SFM% — Fﬂgl}% (5.2.4)

are components if the curvature (3.4.8) of a linear world connection I'.
Accordingly, the above mentioned canonical splitting (4.5.11) of J'Cy

can be written in the form
« 1 « «
ks = §(RAN 5+ Svp) = (5.2.5)
1 o N
i(k)\y,”ﬂ - k/l,)\aﬂ + ki /ﬁkll N kuwﬂk)\ ,7) +

1
Q(k/\uaﬁ + ku/\aﬁ - kkvﬂkuaw + kﬂyﬁkkav)
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It is readily observed that, if I' is a section of Cywy — X, then
Rylp0 J'T = Ry, 5.

Because of the canonical vertical splitting (1.4.11) of the vertical tan-
gent bundle VT'X of TX, the curvature form (3.4.8) of a linear world

connection I' can be represented by the tangent-valued two-form

R= %RA,,,%rﬁdxA Ada" @ O, (5.2.6)
on T'X. Due to this representation, the Ricci tensor

R, = %RAH’\gdx“ ® dz” (5.2.7)

of a linear world connection I" is defined.
Owing to the above mentioned vertical splitting (1.4.11) of VT X, the

torsion form 7' (3.4.9) of T can be written as the tangent-valued two-form

1
T=3 Uadat A dat ® 0, (5.2.8)
Tpl//\ _ Fpp)\ _ F/\VIM
on X. The soldering torsion form
T =T, \i*dzr" @0, (5.2.9)

on T X is also defined. Then one can show the following.

e Given a linear world connection I' (5.2.1) and its soldering torsion
form T' (5.2.9), the sum I + ¢T', ¢ € R, is a linear world connection.

e Every linear world connection I' defines a unique symmetric world

connection
I'=r- %T. (5.2.10)
o If I and I" are linear world connections, then
L'+ (11—

is so for any ¢ € R.
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A manifold X is said to be flat if it admits a flat linear world con-
nection I'. By virtue of Theorem 3.5.2, there exists an atlas of local

constant trivializations of T'X such that
I = dz’ ® 0y

relative to this atlas. As a consequence, the curvature form R (5.2.6) of
this connection equals zero. However, such an atlas is not holonomic in
general. Relative to this atlas, the canonical soldering form (1.4.7) on
TX reads

0, = Hidx"0,,
and the torsion form T (3.4.9) of T defined as the Nijenhuis differential
drd; (3.3.8) need not vanish.
A manifold X is called parallelizable if the tangent bundle TX — X
is trivial. By virtue of Theorem 3.5.2, a parallelizable manifold is flat.
Conversely, a flat manifold is parallelizable if it is simply connected.

Every linear world connection I" (5.2.1) yields the horizontal lift
D7 = 7Ny + T)2,i%05) (5.2.11)

of a vector field 7 on X onto the tangent bundle TX. A vector field 7
on X is said to be parallel relative to a connection I if it is an integral
section of I'. Its integral curve is called the autoparallel of a world

connection I'.

Remark 5.2.1: By virtue of Theorem 3.2.2; any vector field on X is an
integral section of some linear world connection. If 7(z) # 0 at a point
x € X, there exists a coordinate system (¢') on some neighbourhood U
of z such that 7/(x) =const. on U. Then 7 on U is an integral section

of the local symmetric linear world connection
[, (r)=dd®09;, x€l, (5.2.12)
on U. The functorial lift 7 (1.3.4) can be obtained at each point z € X

as the horizontal lift of 7 by means of the local symmetric connection
(5.2.12). O
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The horizontal lift of a vector field 7 on X onto the linear frame

bundle LX by means of a world connection K reads

=7 (fh + FA”aHgazg) . (5.2.13)

It is called standard if the morphism
’LLJ Orx : LX — R"

is constant on LX. It is readily observed that every standard horizontal
vector field on LX takes the form

v d
u, = H (aA + T, QH‘?GH;;) (5.2.14)

where v = 1", € R". A glance at this expression shows that a standard
horizontal vector field is not projectable.

Since T'X is an LX-associated fibre bundle, we have the canonical

morphism
LX xR"—=TX, (HF v*) — # = HEv

The tangent map to this morphism sends every standard horizontal vec-
tor field (5.2.14) on LX to the horizontal vector field

u = iy 4 T2V 0i®d,) (5.2.15)

on T'X. Such a vector field on T'X is called holonomic. Given holonomic
coordinates (z#, &, %" #") on the double tangent bundle TT X, the holo-

nomic vector field (5.2.15) defines the second order dynamic equation

=T\t i® (5.2.16)

on X which is called the geodesic equation with respect to a linear world
connection T'. Solutions of the geodesic equation (5.2.16), called the
geodesics of T'; are the projection of integral curves of the vector field

(5.2.15) in TX onto X. Moreover, one can show the following.



108 CHAPTER 5. GEOMETRY OF NATURAL BUNDLES

Theorem 5.2.1: The projection of an integral curve of any standard
horizontal vector field (5.2.14) on LX onto X is a geodesic in X. Con-
versely, any geodesic in X is of this type. O

It is readily observed that, if linear world connections I' and I" differ
from each other only in the torsion, they define the same holonomic
vector field (5.2.15) and the same geodesic equation (5.2.16).

Let 7 be an integral vector field of a linear world connection T, i.e.,
VET = 0. Consequently, it obeys the equation T”VET = 0. Any au-
toparallel of a linear world connection I is its geodesic and, conversely,

a geodesic of T is an autoparallel of its symmetric part (5.2.10).

5.3 Affine world connections

The tangent bundle T X of a manifold X as like as any vector bun-
dle possesses a natural structure of an affine bundle (see Section 1.2).
Therefore, one can consider affine connections on T'X, called affine world
connections. Here we study them as principal connections.

Let Y — X be an affine bundle with an k-dimensional typical fibre V.
It is associated with a principal bundle AY of affine frames in Y, whose
structure group is the general affine group GA(k,R). Then any affine
connection on ¥ — X can be seen as an associated with a principal
connection on AY — X. These connections are represented by global

sections of the affine bundle
J'P/GA(k,R) — X.

They always exist.

As was mentioned in Section 1.3.5, every affine connection I' (3.4.12)
on Y — X defines a unique associated linear connection I' (3.4.13) on
the underlying vector bundle Y — X. This connection T is associated

with a linear principal connection on the principal bundle LY of linear
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frames in Y whose structure group is the general linear group GL(k,R).

We have the exact sequence of groups
0— T, — GA(k,R) — GL(k,R) — 1, (5.3.1)

where T} is the group of translations in R*. It is readily observed that
there is the corresponding principal bundle morphism AY — LY over
X, and the principal connection I' on LY is the image of the principal
connection I' on AY — X under this morphism in accordance with
Theorem 4.4.3.
The exact sequence (5.3.1) admits a splitting
GL(k,R) — GA(k,R),
but this splitting is not canonical. It depends on the morphism

Vov—uv—1€eV,

i.e., on the choice of an origin vy of the affine space V. Given vy, the

image of the corresponding monomorphism
GL(k,R) — GA(k,R)

is a stabilizer
G(vw) C GA(k,R)

of vy. Different subgroups G(uvy) and G(v}) are related to each other as

follows:
G(vy) = T(vy — UO)G(UO)T71(06 — ),
where T'(v), — vg) is the translation along the vector (v) —vg) € V.

Remark 5.3.1: The well-known morphism of a k-dimensional affine
space V onto a hypersurface 7! = 1 in R**! and the corresponding
representation of elements of GA(k,R) by particular (k + 1) x (k + 1)-
matrices also fail to be canonical. They depend on a point vy € V sent

to vector (0,...,0,1) € R*1. O
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One can say something more if Y — X is a vector bundle provided
with the natural structure of an affine bundle whose origin is the canon-
ical zero section 0. In this case, we have the canonical splitting of the
exact sequence (5.3.1) such that GL(k,R) is a subgroup of GA(k, R) and
GA(k,R) is the semidirect product of GL(k,R) and the group T'(k,R)
of translations in R*. Given a GA(k,R)-principal bundle AY — X,
its affine structure group GA(k, R) is always reducible to the linear sub-
group since the quotient GA(k,R)/GL(k, R) is a vector space R* provided
with the natural affine structure (see Example 4.8.2). The corresponding
quotient bundle is isomorphic to the vector bundle Y — X. There is
the canonical injection of the linear frame bundle LY — AY onto the
reduced GL(k,R)-principal subbundle of AY which corresponds to the
zero section 0 of Y — X. In this case, every principal connection on the
linear frame bundle LY gives rise to a principal connection on the affine
frame bundle in accordance with Theorem 4.8.7. This is equivalent to
the fact that any affine connection I' on a vector bundle Y — X defines
a linear connection I" on Y — X and that every linear connection on
Y — X can be seen as an affine one. Then any affine connection I" on
the vector bundle Y — X is represented by the sum of the associated
linear connection I' and a basic soldering form o on Y — X. Due to the
vertical splitting (1.2.8), this soldering form is represented by a global
section of the tensor product "X ® Y.

Let now Y — X be the tangent bundle TX — X considered as an
affine bundle. Then the relationship between affine and linear world
connections on T'X is the repetition of that we have said in the case
of an arbitrary vector bundle Y — X. In particular, any affine world

connection
[ = da* ® (0) + T\ (2)i" + 0% (2))0 (5.3.2)

on TX — X is represented by the sum of the associated linear world
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connection

[ =T, (v)i"d2* ® 9, (5.3.3)
on TX — X and a basic soldering form

o= of(z)dr ® 9, (5.3.4)

on Y — X, which is the (1, 1)-tensor field on X. For instance, if 0 = fx
(1.4.5), we have the Cartan connection (3.4.15).

It is readily observed that the soldered curvature (3.3.7) of any sol-
dering form (5.3.4) equals zero. Then we obtain from (3.3.10) that the
torsion (3.4.14) of the affine connection I" (5.3.2) with respect to o (5.3.4)
coincides with that of the associated linear connection I' (5.3.3) and reads

T = 3T§ da" A da* ® 0y,
9" A
T\, =T)0" —T,%0%. (5.3.5)

14

The relation between the curvatures of an affine world connection T’
(5.3.2) and the associated linear connection I' (5.3.3) is given by the
general expression (3.3.11) where p =0 and T is (5.3.5).
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Chapter 6

Geometry of graded manifolds

In classical field theory, there are different descriptions of odd fields on
graded manifolds and supermanifolds. Both graded manifolds and su-
permanifolds are phrased in terms of sheaves of graded commutative
algebras. However, graded manifolds are characterized by sheaves on
smooth manifolds, while supermanifolds are constructed by gluing of
sheaves on supervector spaces. Treating odd fields on a manifold X, we
follow the Serre-Swan theorem generalized to graded manifolds (Theo-
rem 6.3.2). Tt states that, if a Grassmann algebra is an exterior algebra
of some projective C°(X)-module of finite rank, it is isomorphic to the
algebra of graded functions on a graded manifold whose body is X.
By virtue of this theorem, odd fields on an arbitrary manifold X are de-
scribed as generating elements of the structure ring of a graded manifold
whose body is X [9, 24].

6.1 Grassmann-graded algebraic calculus

Throughout the book, by the Grassmann gradation is meant Zs-gradation.
Hereafter, the symbol [.] stands for the Grassmann parity. In the litera-
ture, a Zo-graded structure is simply called the graded structure if there
is no danger of confusion. Let us summarize the relevant notions of the

Grassmann-graded algebraic calculus.

113
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An algebra A is called graded if it is endowed with a grading auto-
morphism v such that v> = Id. A graded algebra falls into the direct
sum A = Ay ® A; of Z-modules Ay and A; of even and odd elements
such that

y(a) = (=D'a, acd, i=01,
[ad'] = ([a] + [a])mod 2, a€ Apg, a € A

One calls Ay and A; the even and odd parts of A, respectively. The
even part Ay is a subalgebra of A and the odd one A; is an Aj-module.
If A is a graded ring, then [1] = 0.

A graded algebra A is called graded commutative if

ad' = (=1)llg/q,

where a and o' are graded-homogeneous elements of A.
Given a graded algebra A, a left graded A-module @) is defined as a
left A-module provided with the grading automorphism ~ such that

v(aq) =v(a)y(q), acA  qeq,
lag] = ([a] + [g])mod 2.

A graded module @ is split into the direct sum @ = Qo & Q1 of two
Ap-modules @y and @)y of even and odd elements.
If K is a graded commutative ring, a graded K-module can be provided

with a graded K-bimodule structure by letting
ga=(-1)""ag, ack, qeq

A graded module is called free if it has a basis generated by graded-
homogeneous elements. This basis is said to be of type (n,m) if it
contains n even and m odd elements.

In particular, by a real graded vector space B = By & B; is meant
a graded R-module. A real graded vector space is said to be (n,m)-

dimensional if By = R™ and B; = R™.
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Given a graded commutative ring /C, the following are standard con-
structions of new graded modules from old ones.

e The direct sum of graded modules and a graded factor module are
defined just as those of modules over a commutative ring.

e The tensor product P ® @ of graded K-modules P and @ is an
additive group generated by elements p ® q, p € P, ¢ € @, obeying the

relations

p+p)®q=p@q+p ®q,
PR(q+d)=p®q+p®q,
ap@q: (_1)[P][a]pa®q: (_1)[1’][“]p®aq7 a€ek.

In particular, the tensor algebra @ P of a graded K-module P is defined
as that (8.1.5) of a module over a commutative ring. Its quotient AP

with respect to the ideal generated by elements
pop + (=0 9p,  ppeP

is the bigraded exterior algebra of a graded module P with respect to

the graded exterior product
p /\p/ — _(_1)[17”?/]29/ /\p
e A morphism ® : P — @ of graded K-modules seen as additive
groups is said to be even graded morphism (resp. odd graded mor-

phism) if ® preserves (resp. change) the Grassmann parity of all graded-

homogeneous elements of P and obeys the relations
®(ap) = (=) ad(p), pE P a € K.

A morphism ® : P — @ of graded K-modules as additive groups is
called a graded K-module morphism if it is represented by a sum of even
and odd graded morphisms. The set Hom (P, Q) of graded morphisms
of a graded K-module P to a graded K-module @ is naturally a graded
K-module. The graded K-module P* = Hom (P, K) is called the dual
of a graded KC-module P.



116 CHAPTER 6. GEOMETRY OF GRADED MANIFOLDS

A graded commutative K-ring A is a graded commutative ring which
also is a graded K-module. A real graded commutative ring is said
to be of rank N if it is a free algebra generated by the unit 1 and N
odd elements. A graded commutative Banach ring A is a real graded
commutative ring which is a real Banach algebra whose norm obeys the

condition
llag + a1]| = |laol| + ||ai|l, ap € Ay, a1 € Ay

Let V' be a real vector space, and let A = AV be its exterior algebra
endowed with the Grassmann gradation
2% 2%—1
A=Ay Ay, A=REPAYV, M= N V. (6.1.1)
k=1 k=1
It is a real graded commutative ring, called the Grassmann algebra. A

Grassmann algebra, seen as an additive group, admits the decomposition
A:R@R:R@Ro@Rl:R@(Al)z@/\l, (612)

where R is the ideal of nilpotents of A. The corresponding projections
c:AN—Rands: A — Rare called the body and soul maps, respectively.
Hereafter, we restrict our consideration to Grassmann algebras of
finite rank. Given a basis {c'} for the vector space V, the elements of
the Grassmann algebra A (6.1.1) take the form
a= Y Y ay.ctee-cn (6.1.3)
k=0,1,... (iy-ix)
where the second sum runs through all the tuples (i - - - i) such that no
two of them are permutations of each other. The Grassmann algebra A
becomes a graded commutative Banach ring with respect to the norm
lall = > > lai-il-
k=0 (iy-ix)
Let B be a graded vector space. Given a Grassmann algebra A, it

can be brought into a graded A-module

AB =ABy®AB; = (Ay® By ® Ay @ By) @ (A ® By ® Ay ® By),
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called a superspace. The superspace

B = [(& Ao) @ (B A1)] @ (6 A1) @ (& Ao)] (6.1.4)
is said to be (n, m)-dimensional. The graded Ag-module

B = (& Ag) & (B Ay)

is called an (n, m)-dimensional supervector space. Whenever referring
to a topology on a supervector space B™™ we will mean the Euclidean
topology on a 2Y~1[n + m]-dimensional real vector space.

Let K be a graded commutative ring. A graded commutative (non-
associative) KC-algebra g is called a Lie K-superalgebra if its product [., ],

called the Lie superbracket, obeys the relations

[67 5/] = _(_1)[5][5,] [Ela 5]7
(_1)[5][6”1 [57 [5/v 5”]] + (_1)[El][5] [8/7 [6”7 6]] + (_1)[5”][5,] [5”7 [Ev EIH =0.

The even part gg of a Lie KC-superalgebra g is a Lie Ky-algebra. A graded

KC-module P is called a g-module if it is provided with a /C-bilinear map

gxP>(ep) —epeP,  [ep| = ([e] + [p])mod2,
[e,€lp = (e o0& — (=)l o &)p.

6.2 Grassmann-graded differential calculus

Linear differential operators on graded modules over a graded commuta-
tive ring are defined similarly to those in commutative geometry (Section
8.2).

Let K be a graded commutative ring and A a graded commutative
K-ring. Let P and @ be graded A-modules. The graded K-module
Hom (P, Q) of graded K-module homomorphisms ® : P — @ can be

endowed with the two graded .A-module structures

(a®)(p) = a®(p), (Pea)(p)=®(ap), ac A peP, (62.1)
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called A- and A*-module structures, respectively. Let us put
5,0 =a® — (—1)®dea, ac A (6.2.2)

An element A € Hom (P, Q) is said to be a Q-valued graded differential

operator of order s on P if
0gy 0+ 00, A=0

for any tuple of s + 1 elements ay, . ..,as of A. The set Diff ((P, Q) of
these operators inherits the graded module structures (6.2.1).
In particular, zero order graded differential operators obey the condi-

tion
5aA(p) = aA(p) - (_1)[GJ[A]A(a’p) = 07 ac A7 pE P7

i.e., they coincide with graded A-module morphisms P — . A first

order graded differential operator A satisfies the relation

80 © 8 A(p) = abA(p) — (1) HANIpA (ap) — (=1)PI%a (bp) +
(—1)AAIBE — g o be A, pe P

)

For instance, let P = A. Any zero order Q-valued graded differential
operator A on A is defined by its value A(1). Then there is a graded

A-module isomorphism
DiHO(A>Q) =Q, Q Bq%AqGDiffo(A,Q),

where A, is given by the equality Ay(1) = ¢. A first order Q-valued
graded differential operator A on A fulfils the condition

A(ab) = A(a)b + (1) BgA D) — (—1) DR GpA(L),  a,b e A

It is called a Q-valued graded derivation of A if A(1) = 0, i.e., the

Grassmann-graded Leibniz rule

Aab) = Aa)b+ (=) aA®B), a,be A, (6.2.3)
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holds. One obtains at once that any first order graded differential oper-

ator on A falls into the sum
Aa) = A(1)a+ [A(a) — A(1)d]

of a zero order graded differential operator A(1)a and a graded derivation
A(a) — A(1)a. If 0 is a graded derivation of A, then ad is so for any
a € A. Hence, graded derivations of A constitute a graded .A-module
(A, Q), called the graded derivation module.

If Q = A, the graded derivation module 2.4 also is a Lie superalgebra

over the graded commutative ring IC with respect to the superbracket
[u, /] = wou — (=DM o, u,u’ € A. (6.2.4)
We have the graded A-module decomposition
Diff ;(A) = A®dA. (6.2.5)

Since ?A is a Lie K-superalgebra, let us consider the Chevalley—
Eilenberg complex C*[0.A; A] where the graded commutative ring A is a

regarded as a . A-module. It is the complex

0—A - C oA A e CP oA Al s (6.2.6)
where

C*oA; Al = Hom (A oA, A)

are o.A-modules of KC-linear graded morphisms of the graded exterior
k
products Ada.A of the K-module 2.4 to A. Let us bring homogeneous

k
elements of AdA into the form
EYN e NErpr N oo N €g, g €0 A,, 6j€0.A1.

Then the even coboundary operator d of the complex (6.2.6) is given by

the expression

de(er A=~ Nes Aer A Aeg) = (6.2.7)
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Z(—l)i71€ic(81 AREE Ffi e NERNELN 65) +

Y(=Deic(er A~ Nep ANt A& -+ Neg) +

j=1
(—1)”%([@,@]Aem---éj---éj~~~AsrAel/\~~~/\es)+
1<i<j<r
> clle el ner N Nep Ner A€ € - Nes) +
1<i<j<s ’

> (=) e([en e ] Aer i Aes A€ Aes),
1<i<r,1<5<s

where the caret ~ denotes omission. This operator is called the graded
Chevalley—FEilenberg coboundary operator.

Let us consider the extended Chevalley—Eilenberg complex
0— K 2 CA; Al
This complex contains a subcomplex O*[p.A] of A-linear graded mor-

phisms. The N-graded module O*[0A] is provided with the structure of
a bigraded A-algebra with respect to the graded exterior product

AN G (ur, .oy tprs) = (6.2.8)
X S ()0 (g, g,),
iy <o i1 <o <Jis
¢ e O A, ¢ € O oA, up € oA,
where uq, ..., u,,s are graded-homogeneous elements of 3.4 and
i1l fies

UL Ao AN Upgs = SO Pu, A N, Ay, A A,
The graded Chevalley—Eilenberg coboundary operator d (6.2.7) and the
graded exterior product A (6.2.8) bring O*[p.A] into a differential bi-
graded algebra (henceforth DBGA) whose elements obey the relations
dA G = (=)l A g, (6.2.9)
dpnd)=dpN¢ + (—1)?lp A dg. (6.2.10)
It is called the graded Chevalley-FEilenberg differential calculus over a

graded commutative IC-ring A. In particular, we have

O'pA] = Hom 4(0A, A) = 2A*. (6.2.11)
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One can extend this duality relation to the graded interior product of

u € 0.A with any element ¢ € O*[p.A] by the rules
ul(bda) = (~1)"0y(a),  abe A,
ul(dA ) = (ulg) A ¢ + (=1)11F1G A (u]g). (6.2.12)
As a consequence, any graded derivation u € 24 of A yields a derivation
L.¢ = uldg + d(u]e), ¢ € O, u €0A, (6.2.13)
Lu(¢ A ¢) = Lu(@) A ¢ + (=1 AL, (¢),

called the graded Lie derivative of the DBGA O*[p.Al.
The minimal graded Chevalley—Eilenberg differential calculus O* A C

O*[pA] over a graded commutative ring A consists of the monomials
apday A - - - A dag, a; € A.

The corresponding complex
0K —A-L0uL...0n L. (6.2.14)

is called the bigraded de Rham complex of A.

Following the construction of a connection in commutative geometry
(see Section 8.2), one comes to the notion of a connection on modules
over a real graded commutative ring A. The following are the straight-

forward counterparts of Definitions 8.2.3 and 8.2.4.

Definition 6.2.1: A connection on a graded A-module P is a graded

A-module morphism
aA 3 u— V, € Diff |(P, P) (6.2.15)

such that the first order differential operators V, obey the Grassmann-

graded Leibniz rule

Vau(ap) = u(a)p+ (-D)av,(p), ac A peP. (6.2.16)
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Definition 6.2.2: Let P in Definition 6.2.1 be a graded commutative
A-ring and oP the derivation module of P as a graded commutative
K-ring. A connection on a graded commutative A-ring P is a graded

A-module morphism
WAdu—V, €P, (6.2.17)

which is a connection on P as an A-module, i.e., it obeys the graded
Leibniz rule (6.2.16). O

6.3 Graded manifolds

A graded manifold of dimension (n,m) is defined as a local-ringed space
(Z,2) where Z is an n-dimensional smooth manifold Z and 2 = 2y & 24
is a sheaf of graded commutative algebras of rank m such that:

e there is the exact sequence of sheaves
0—->R—ASCY —0, R =2 + ()% (6.3.1)

where C'Y° is the sheaf of smooth real functions on Z;

e R/R? is a locally free sheaf of C°-modules of finite rank (with
respect to pointwise operations), and the sheaf 2 is locally isomorphic
to the exterior product Acs(R/R?).

The sheaf 2 is called a structure sheaf of a graded manifold (Z, ),
and a manifold Z is said to be the body of (Z,2). Sections of the sheaf
2 are called graded functions on a graded manifold (Z,2). They make
up a graded commutative C*(Z)-ring A(Z) called the structure ring of
(Z,2).

A graded manifold (Z, ) possesses the following local structure. Given
a point z € Z, there exists its open neighborhood U, called a splitting

domain, such that

A(U) = C=(U) @ AR™. (6.3.2)
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This means that the restriction 2|y of the structure sheaf & to U is

isomorphic to the sheaf CfF @ AR™ of sections of some exterior bundle
NEf; = U x AR™ — U.

The well-known Batchelor theorem states that such a structure of a

graded manifold is global as follows.

Theorem 6.3.1: Let (Z,2) be a graded manifold. There exists a vector
bundle ¥ — Z with an m-dimensional typical fibre V' such that the
structure sheaf 2 of (Z,21) is isomorphic to the structure sheaf Ay = Sy p-
of germs of sections of the exterior bundle AE* (1.2.2), whose typical
fibre is the Grassmann algebra AV*. O

Note that Batchelor’s isomorphism in Theorem 6.3.1 fails to be canon-
ical. In field models, it however is fixed from the beginning. Therefore,
we restrict our consideration to graded manifolds (Z,2g) whose struc-
ture sheaf is the sheaf of germs of sections of some exterior bundle AE*.
We agree to call (Z,2g) a simple graded manifold modelled over a vector
bundle F — Z, called its characteristic vector bundle. Accordingly, the
structure ring Ag of a simple graded manifold (Z,2g) is the structure

module
Ap =2Ap(2) = NE*(Z) (6.3.3)

of sections of the exterior bundle AE*. Automorphisms of a simple
graded manifold (Z,2g) are restricted to those induced by automor-
phisms of its characteristic vector bundles E — Z (see Remark 6.3.2).
Combining Batchelor Theorem 6.3.1 and classical Serre-Swan The-
orem 8.6.3, we come to the following Serre-Swan theorem for graded

manifolds.

Theorem 6.3.2: Let Z be a smooth manifold. A graded commutative
C>°(Z)-algebra A is isomorphic to the structure ring of a graded manifold
with a body Z iff it is the exterior algebra of some projective C*(Z)-

module of finite rank. O
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Given a graded manifold (Z,2p), every trivialization chart (U; 24, y®)
of the vector bundle £ — Z yields a splitting domain (U; 24, ¢*) of

(Z,9g). Graded functions on such a chart are A-valued functions
m_ 1
f=% Ffaalz)c™ ™, (6.3.4)

where fq,..q,(z) are smooth functions on U and {¢"} is the fibre basis for
E*. In particular, the sheaf epimorphism ¢ in (6.3.1) is induced by the
body map of A. One calls {24, ¢?} the local basis for the graded manifold
(Z,2g). Transition functions y® = p§(z4)y® of bundle coordinates on

E — Z induce the corresponding transformation
= pi(zh) e (6.3.5)

of the associated local basis for the graded manifold (Z,2g) and the

according coordinate transformation law of graded functions (6.3.4).

Remark 6.3.1: Strictly speaking, elements c¢* of the local basis
for a graded manifold are locally constant sections ¢* of E* — X such
that y, o ¢* = . Therefore, graded functions are locally represented
by A-valued functions (6.3.4), but they are not A-valued functions on a

manifold Z because of the transformation law (6.3.5). O

Remark 6.3.2: In general, automorphisms of a graded manifold read
A= pi(z4, ). (6.3.6)

Considering a simple graded manifold (Z,2g), we restrict the class of
graded manifold transformations (6.3.6) to the linear ones (6.3.5), com-

patible with given Batchelor’s isomorphism. O

Let £ — Z and E' — Z be vector bundles and ® : £ — E’ their
bundle morphism over a morphism ¢ : Z — Z’. Then every section s* of
the dual bundle E* — Z’ defines the pull-back section ®*s* of the dual
bundle £* — Z by the law

v, | D" s*(2) = P(v,)]s*(p(2)), v, € E,.
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It follows that the bundle morphism (P, ¢) yields a morphism of simple
graded manifolds

D (Z, Q(E) — (Z/,QlE/) (637)

as local-ringed spaces. This is a pair (g, p. o ®*) of a morphism ¢ of

body manifolds and the composition ¢, o ®* of the pull-back
Ap > f— @ f e Ap

of graded functions and the direct image @, of the sheaf A onto Z’.
Relative to local bases (24,¢%) and (2"4,?) for (Z,2p) and (Z/, %),
the morphism (6.3.7) of graded manifolds reads

B(2) = p(2), () = Bf(2)C"

Given a graded manifold (Z,2), by the sheaf 22 of graded derivations
of 2 is meant a subsheaf of endomorphisms of the structure sheaf 2
such that any section u € 22(U) of o2 over an open subset U C Z is
a graded derivation of the real graded commutative algebra 2(U), i.e.,
u € 2(A(U)). Conversely, one can show that, given open sets U’ C U,

there is a surjection of the graded derivation modules
o(2(U)) — a(A(U)).

It follows that any graded derivation of the local graded algebra 2(U)
also is a local section over U of the sheaf 22(. Global sections of 22 are
called graded vector fields on the graded manifold (Z,2). They make
up the graded derivation module 22(Z) of the real graded commutative
ring A(Z). This module is a real Lie superalgebra with the superbracket
(6.2.4).

A key point is that graded vector fields u € 2.Ag on a simple graded
manifold (Z,2g) can be represented by sections of some vector bundle
as follows. Due to the canonical splitting VE = E x E, the vertical
tangent bundle VE of E — Z can be provided with the fibre bases
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{0/0c*}, which are the duals of the bases {c*}. Then graded vector
fields on a splitting domain (U; 24, ¢?) of (Z, ) read

0

A a

=u"d — 6.3.8
u=u"04+u De” ( )
where u*, 4 are local graded functions on U. In particular,

o0 0 0 0 0 0
—— O~ = —=50—, 'A © = o
Oct ~ Ocb Ocb ~ Oct Oct  Ocv

Graded derivations (6.3.8) act on graded functions f (6.3.4) by the rule

0a.

0
U(fapc™ ) = ut0a(fap)c -+ ukfambﬂj (c*---c). (6.3.9)
c
This rule implies the corresponding coordinate transformation law
' = u?, u" = phud +utoa(p})cd

of graded vector fields. It follows that graded vector fields (6.3.8) can
be represented by sections of the following vector bundle Vg — Z. This

vector bundle is locally isomorphic to the vector bundle
Velu =~ AE*@(E@;TZ)\U, (6.3.10)

and is characterized by an atlas of bundle coordinates

A _A i
(Z ) Zal.“a,@ vbl.“bk)v k= Oa cee, MMy

possessing the transition functions

1A _ —la; —lax A
Zil...ik =P P Z(Ll...ak7

i —1by by | i : A :
U;LIJk =7 ljl P 1]2 pljvil---bk T mzbl...bk—laAp;)k )
which fulfil the cocycle condition (1.1.4). Thus, the graded derivation
module 2. Ag is isomorphic to the structure module Vg (Z) of global sec-
tions of the vector bundle Vg — Z.

There is the exact sequence

O—>/\E*Q§>E—>VE—>/\E*§>TZ—>O (6.3.11)
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of vector bundles over Z. Its splitting

9
5540, — 34 <6A + W‘aaz) (6.3.12)

transforms every vector field 7 on Z into the graded vector field
0
T =0, = 0, = (047 ) (6.3.13)
ca

which is a graded derivation of the real graded commutative ring Ag
(6.3.3) satisfying the Leibniz rule

V.(sf)=(r]ds)f +sV.(f), fe€Agr, se€C®(2).

It follows that the splitting (6.3.12) of the exact sequence (6.3.11) yields
a connection on the graded commutative C*(Z)-ring Ap in accordance
with Definition 6.2.2. It is called a graded connection on the simple
graded manifold (Z,2g). In particular, this connection provides the

corresponding horizontal splitting

aa ~a 0 a ~a 9
U:UA6A+U %:UA <6A+’YA%> "‘V‘(UV_UA’VA)aCa

of graded vector fields. In accordance with Theorem 1.2.2, a graded

connection (6.3.12) always exists.

Remark 6.3.3: By virtue of the isomorphism (6.3.2), any connection
% on a graded manifold (Z,2), restricted to a splitting domain U, takes
the form (6.3.12). Given two splitting domains U and U’ of (Z,2) with
the transition functions (6.3.6), the connection components 7% obey the

transformation law
~la g a (e a
Vi = Vaggh' + Oar’. (6.3.14)

If U and U’ are the trivialization charts of the same vector bundle E in
Theorem 6.3.1 together with the transition functions (6.3.5), the trans-
formation law (6.3.14) takes the form

T4 = pi(2)Fh + Dapf(2)c" (6.:3.15)
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Remark 6.3.4: Every linear connection
=d A o a ba
v =dz" ® (9a+ 74"y 0a)

on a vector bundle £ — Z yields the graded connection

d
vs =dz* ® (8A + 4%’ 80”') (6.3.16)

on the simple graded manifold (Z,2g) modelled over E. In view of
Remark 6.3.3, g also is a graded connection on the graded manifold
(Z,2) = (Z,2E), but its linear form (6.3.16) is not maintained under
the transformation law (6.3.14). O

6.4 Graded differential forms

Given the structure ring Ag of graded functions on a simple graded mani-
fold (Z,9g) and the real Lie superalgebra a.Ag of its graded derivations,
let us consider the graded Chevalley—FEilenberg differential calculus

S'[E; 7] = O [0 Ay] (6.4.1)

over Ag. Since the graded derivation module 2 Ag is isomorphic to the
structure module of sections of the vector bundle Vg — Z, elements of
S*|E; Z] are sections of the exterior bundle AV of the Ag-dual Vi — Z
of Vg. The bundle Vg is locally isomorphic to the vector bundle

Vily ~ (E* ezaT*Z)|U. (6.4.2)

With respect to the dual fibre bases {dz} for T*Z and {dc’} for E*,

sections of Vj take the coordinate form
¢ = dadz" + gadc”,
together with transition functions

¢, = p b, Oy =da+p h0a(p)duc.
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The duality isomorphism S'[E; Z] = 2.4}, (6.2.11) is given by the graded
interior product
ul = utga+ (—1)ue,. (6.4.3)
Elements of S*[E; Z] are called graded exterior forms on the graded
manifold (Z, ).
Seen as an Ag-algebra, the DBGA S*[E;Z] (6.4.1) on a splitting

domain (U; 24, ¢?) is locally generated by the graded one-forms dz?, dc’
such that

dzA Ndd' = —dd Nd2?, dd Ndd = dd A dc (6.4.4)

Accordingly a graded Chevalley—Eilenberg coboundary operator d (6.2.7),

called the graded exterior differential, reads

0
aca ¢7

where the derivatives dy, 9/0c® act on coefficients of graded exterior

dp = dz N Oad + dc® A

forms by the formula (6.3.9), and they are graded commutative with the
graded forms dz# and dc®. The formulas (6.2.9) — (6.2.13) hold.

Theorem 6.4.1: The DBGA S*[E; Z] (6.4.1) is a minimal differential
calculus over Ag, i.e., it is generated by elements df, f € Ag. O
The bigraded de Rham complex (6.2.14) of the minimal Chevalley—
Eilenberg differential calculus S*[E; Z] reads
0—R— Ay L SE 7] . S EZ] Lt (6.4.5)

Its cohomology H*(Ag) is called the de Rham cohomology of a simple
graded manifold (Z, ).
In particular, given the DGA O*(Z) of exterior forms on Z, there

exist the canonical monomorphism
0" (Z) — S*[F; 7] (6.4.6)

and the body epimorphism S*[E; Z] — O*(Z) which are cochain mor-
phisms of the de Rham complexes (6.4.5) and (8.6.5).
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Theorem 6.4.2: The de Rham cohomology of a simple graded manifold
(Z,2g) equals the de Rham cohomology of its body Z. O

Corollary 6.4.3: Any closed graded exterior form is decomposed into

a sum ¢ = o + d€ where o is a closed exterior form on Z. O



Chapter 7

Lagrangian theory

Lagrangian theory on fibre bundles is algebraically formulated in terms of
the variational bicomplex without appealing to the calculus of variations.
This formulation is extended to Lagrangian theory on graded manifolds
[9, 24].

7.1 Variational bicomplex

Let Y — X be a fibre bundle. The DGA OF, (2.4.6), decomposed into
the variational bicomplex, describes finite order Lagrangian theories on
Y — X. One also considers the variational bicomplex of the DGA
Q?, (2.4.8) and different variants of the variational sequence of finite jet
order.

In order to transform the bicomplex OF* into the variational one, let
us consider the following two operators acting on O%.

(i) There exists an R-module endomorphism

0= > 1@O hioh": O;?O’” — (’);>0,n7 (7.11)
k>0 k
2(0) = 3 (=M@ A [da (0™ 9)], ¢ € OZ0n
0<|A]

possessing the following properties.

Lemma 7.1.1: For any ¢ € 0%, the form ¢ — o(¢) is locally dy-exact

on each coordinate chart (2.4.3). O

131
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Lemma 7.1.2: The operator g obeys the relation

(eodu)() =0, peO (7.1.2)

It follows from Lemmas 7.1.1 and 7.1.2 that ¢ (7.1.1) is a projector.

(i) One defines the variational operator
§=oo0d: Oy — O, (7.1.3)

which is nilpotent, i.e., d 0 § = 0, and obeys the relation § o p = 6.
Let us denote E, = o(OF"). Provided with the operators dy, dy, o

and ¢, the DGA O} is decomposed into the variational bicomplex

dVT dVT dVT ﬂsT

0— Oy o .. ooln L E 0
dyt dvt dvt ~ot
0—R— 00 % ol o oo = 0 (7.14)
! f !
0—-rR— O'X)L oYx)%L onx) L o
t f t
0 0 0

It possesses the following cohomology [20, 24].

Theorem 7.1.3: The second row from the bottom and the last column

of the variational bicomplex (7.1.4) make up the variational complex
0-R— 0% 2,00 . 2,00 SR SR, —... (7.15)

Its cohomology is isomorphic to the de Rham cohomology of a fibre

bundle Y, namely,
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Theorem 7.1.4: The rows of contact forms of the variational bicomplex

(7.1.4) are exact sequences. O

The cohomology isomorphism (7.1.6) gives something more. Due to
the relations dgohg = hgod and o = §, we have the cochain morphism
of the de Rham complex (2.4.7) of the DGA O} to its variational com-
plex (7.1.5). By virtue of Theorems 2.4.3 and 7.1.3, the corresponding
homomorphism of their cohomology groups is an isomorphism. Then
the splitting of a closed form ¢ € O} in Corollary 2.4.4 leads to the

following decompositions.

Theorem 7.1.5: Any dp-closed form ¢ € O%", m < n, is represented

by a sum
¢ = hoo +dyt, € Om (7.1.7)

where o is a closed m-form on Y. Any d-closed form ¢ € OF" is split

into
¢ = hoo + dyé, k=0, £l (7.1.8)
p=o0(0)+6¢), k=1, 0OV, (7.1.9)
p=o(0)+8(&), k>1, E€E, (7.1.10)

where ¢ is a closed (n + k)-form on Y. O

7.2 Lagrangian theory on fibre bundles

In Lagrangian formalism on fibre bundles, a finite order Lagrangian and

its Euler—Lagrange operator are defined as elements

L=LweOl" (7.2.1)
6L =& =& Nw € Ey, (7.2.2)
&= 3 (=1)Mdy(dre), (7.2.3)

0<[A|
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of the variational complex (7.1.5) (see the notation (1.4.1)). Compo-
nents & (7.2.3) of the Euler-Lagrange operator (7.2.2) are called the
variational derivatives. Elements of E; are called the Fuler—Lagrange-
type operators.

Hereafter, we call a pair (O, L) the Lagrangian system. The follow-

ing are corollaries of Theorem 7.1.5.
Corollary 7.2.1: A finite order Lagrangian L (7.2.1) is variationally
trivial, i.e., §(L) = 0 iff

L = hyo + dy¢, e ol (7.2.4)

where o is a closed n-form on Y. O

Corollary 7.2.2: A finite order Euler-Lagrange-type operator £ € Ey
satisfies the Helmholtz condition 6(€) = 0 iff

E=0L+ o(o), Le 0%

where o is a closed (n + 1)-form on Y. O

A glance at the expression (7.2.2) shows that, if a Lagrangian L (7.2.1)
is of r-order, its Euler-Lagrange operator &, is of 2r-order. Its kernel
is called the Fuler-Lagrange equation. Euler-Lagrange equations tradi-

tionally came from the variational formula
dL =46L —dy= (7.2.5)

of the calculus of variations. In formalism of the variational bicomplex,

this formula is a corollary of Theorem 7.1.4.

Corollary 7.2.3: The exactness of the row of one-contact forms of the
variational bicomplex (7.1.4) at the term OL" relative to the projector

o provides the R-module decomposition
O =B @ dy(OY ).

In particular, any Lagrangian L admits the decomposition (7.2.5). O
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Defined up to a dy-closed term, a form =; € O in the variational
formula (7.2.5) reads
Ep =L+ (00 — dF™N0 + S FM0) L] Awy, (7.2.6)

s=1
Vgl VgV V...V VgV
Fett = gpe-" L — d FI"YF " 4 g k=2,3,...,

Vkooul
i

where o are local functions such that

(VkVEk—=1)-..11 —0.

The form =, (7.2.6) possesses the following properties:

e hy(ZL) =1L,

o ho(9]d=p) = 9w for any derivation 9 (2.4.12).
Consequently, =;, is a Lepage equivalent of a Lagrangian L.

A special interest is concerned with Lagrangian theories on an affine
bundle Y — X. Since X is a strong deformation retract of an affine
bundle Y, the de Rham cohomology of Y equals that of X. In this case,
the cohomology (7.1.6) of the variational complex (7.1.5) equals the de

Rham cohomology of X, namely,

H™"(dy; O%) = Hpp(X),
H"(0;0%) = Hpg(X), (7.2.7)
H>"(85;0%) = 0.

It follows that every dy-closed form ¢ € O%"<" is represented by the

sum
¢ = o+ dyé, ¢ e ot (7.2.8)

where o is a closed m-form on X. Similarly, any variationally trivial

Lagrangian takes the form
L =0 +dyé, £ ol (7.2.9)

where o is an n-form on X.
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In view of the cohomology isomorphism (7.2.7), if Y — X is an affine

bundle, let us restrict our consideration to the short variational complex
0—R— 0% 2,00 2,00 4 g (7.2.10)

whose non-trivial cohomology equals that of the variational complex
(7.1.5). Let us consider a DGA P%, C OF of exterior forms whose coef-
ficients are polynomials in jet coordinates y4, 0 < |A[, of the continuous
bundle J*Y — X.

Theorem 7.2.4: The cohomology of the short variational complex

0—R— P H,pol... dn,pon 2, (7.2.11)
of the polynomial algebra P% equals that of the complex (7.2.10), i.e.,
the de Rham cohomology of X. O

Given a Lagrangian system (O3, L), its infinitesimal transformations
are defined to be contact derivations of the ring OY,.

A derivation ¥ € 2009, (2.4.12) is called contact if the Lie derivative
L, preserves the ideal of contact forms of the DGA O}, i.e., the Lie

derivative L, of a contact form is a contact form.

Lemma 7.2.5: A derivation ¢ (2.4.12) is contact iff it takes the form

¥ =00 + 00+ Y [da(v’ — yftv”’) + yLMU”’}@ZA. (7.2.12)
0<|A|

The expression (2.2.8) enables one to regard a contact derivation ¢

(7.2.12) as an infinite order jet prolongation ¢ = J>v of its restriction
v =0\ + v'0; (7.2.13)

to the ring C=(Y'). Since coefficients v* and v’ of v (7.2.13) depend
generally on jet coordinates y, 0 < |A|, one calls v (7.2.13) a generalized

vector field. It can be represented as a section of some pull-back bundle

JY X TY — J"Y.
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A contact derivation ¥ (7.2.12) is called projectable, if the generalized
vector field v (7.2.13) projects onto a vector field v*dy on X.
Any contact derivation ¢ (7.2.12) admits the horizontal splitting

¥ =0y + 0y =My + [0L0; + Y davi0l, (7.2.14)
0<|A]
v=uvy+vy =vdy+ (V' — yftv“’)&; (7.2.15)

relative to the canonical connection V (2.4.14) on the C*(X)-ring OY,.

Lemma 7.2.6: Any vertical contact derivation

9 =00+ Y dyv'od (7.2.16)
0<A|

obeys the relations
Vdp¢ = —du(9]9), (7.2.17)
Ly(dg¢) = du(Ly9), ¢ e OL. (7.2.18)

The global decomposition (7.2.5) leads to the following first varia-
tional formula (Theorem 7.2.7) and the first Noether theorem (Theorem
7.2.9).

Theorem 7.2.7: Given a Lagrangian L € O%", its Lie derivative L,L

o0

along a contact derivation v (7.2.14) fulfils the first variational formula
LyL = Uvj oL + dH(ho(ﬁ‘J EL)) + Edv(UHJw), (7.2.19)
where Zj, is the Lepage equivalent (7.2.6) of L. O

A contact derivation ¢ (7.2.12) is called a variational symmetry of a

Lagrangian L if the Lie derivative LyL is dy-exact, i.e.,
LyL = dyo. (7.2.20)
Lemma 7.2.8: A glance at the expression (7.2.19) shows the following.

(i) A contact derivation ¢ is a variational symmetry only if it is pro-

jectable.
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(ii) Any projectable contact derivation is a variational symmetry of
a variationally trivial Lagrangian. It follows that, if ¢ is a variational
symmetry of a Lagrangian L, it also is a variational symmetry of a
Lagrangian L + Ly, where L is a variationally trivial Lagrangian.

(iii) A projectable contact derivations ¥ is a variational symmetry iff
its vertical part vy (7.2.14) is well.

(iv) A projectable contact derivations 9 is a variational symmetry iff
the density vy |0L is dy-exact. O

It is readily observed that variational symmetries of a Lagrangian L
constitute a real vector subspace Gy, of the derivation module 0(920. By

virtue of item (ii) of Lemma 7.2.8, the Lie bracket
Liy.9) = [Ly, Ly

of variational symmetries is a variational symmetry and, therefore, their
vector space Gy is a real Lie algebra. The following is the first Noether

theorem.

Theorem 7.2.9: If a contact derivation ¥ (7.2.12) is a variational sym-
metry (7.2.20) of a Lagrangian L, the first variational formula (7.2.19)
restricted to the kernel of the Euler-Lagrange operator Ker £, leads to

the weak conservation law
0~ dH(ho(ng EL) — O') (7221)
on the shell L = 0. O

A variational symmetry ¢ of a Lagrangian L is called its exact sym-

metry or, simply, a symmetry if
LyL =0. (7.2.22)

Symmetries of a Lagrangian L constitute a real vector space, which is a

real Lie algebra. Its vertical symmetries v (7.2.16) obey the relation

L,L =v]|dL
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and, therefore, make up a 0% -module which is a Lie C*°(X)-algebra.
If 9 is an exact symmetry of a Lagrangian L, the weak conservation
law (7.2.21) takes the form

0~ du(ho(9]EL)) = —du Ty, (7.2.23)
where
Jo = Tfwuy = —ho(¥]EL) (7.2.24)

is called the symmetry current. Of course, the symmetry current (7.2.24)
is defined with the accuracy of a dy-closed term.

Let 9 be an exact symmetry of a Lagrangian L. Whenever Ly is
a variationally trivial Lagrangian, 1 is a variational symmetry of the
Lagrangian L + Ly such that the weak conservation law (7.2.21) for
this Lagrangian is reduced to the weak conservation law (7.2.23) for a

Lagrangian L as follows:

Ly(L + Lo) = dyo ~ dyo — dgJ,.

Remark 7.2.1: In accordance with standard terminology, variational
and exact symmetries generated by generalized vector fields (7.2.13) are
called generalized symmetries because they depend on derivatives of vari-
ables. Accordingly, by variational symmetries and symmetries one means
only those generated by vector fields w on Y. We agree to call them clas-

sical symmetries. O
Let ¥ be a classical variational symmetry of a Lagrangian L, i.e., 9
(7.2.12) is the jet prolongation of a vector field u on Y. Then the relation
Ly&r = 6(LyL) (7.2.25)

holds. It follows that ¥ also is a symmetry of the Euler-Lagrange oper-
ator &, of L, i.e., LyEr, = 0. However, the equality (7.2.25) fails to be

true in the case of generalized symmetries.
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Definition 7.2.10: Let F — X be a vector bundle and E(X) the
C*(X) module F(X) of sections of E — X. Let ¢ be a linear differential
operator on F(X) taking values into the vector space Gy, of variational

symmetries of a Lagrangian L (see Definition 8.2.1). Elements

ue = ¢(€) (7.2.26)

of Im ( are called the gauge symmetry of a Lagrangian L parameterized

by sections £ of £ — X. They are called the gauge parameters. O

Remark 7.2.2: The differential operator ¢ in Definition 7.2.10 takes
its values into the vector space G, as a subspace of the C*(X)-module
00Y , but it sends the C*°(X)-module E(X) into the real vector space
Gr C 00Y%. The differential operator ¢ is assumed to be at least of first

order. O

Equivalently, the gauge symmetry (7.2.26) is given by a section ¢ of
the fibre bundle

(J'Y X J"E)XTY — JY x J"E
% 1% Y
(see Definition 2.3.2) such that
ug = ((€) =o€

for any section ¢ of ¥ — X. Hence, it is a generalized vector field u; on

the product Y x F represented by a section of the pull-back bundle
k k
YXE)YXT(YXFE)— JY(YXE k=m
JH( X )’>§ ( % ) — J( X ), ax(r,m),

which lives in TY C T(Y x E). This generalized vector field yields a
contact derivation J>®u, (7.2.12) of the real ring O% [V x E] which obeys
the following condition.

Condition 7.2.11: Given a Lagrangian

LeOYE c 0%Y x E],
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let us consider its Lie derivative
Loy L = J®uc|dL 4 d(J®uc | L) (7.2.27)

where d is the exterior differential of O [V x E]. Then, for any section
£ of F — X, the pull-back £*Ly is dg-exact. O

It follows from the first variational formula (7.2.19) for the Lie deriva-
tive (7.2.27) that Condition 7.2.11 holds only if u¢ projects onto a gen-
eralized vector field on E and, in this case, iff the density (u¢)y]€ is
dg-exact. Thus, we come to the following equivalent definition of gauge

symmetries.

Definition 7.2.12: Let F — X be a vector bundle. A gauge symmetry
of a Lagrangian L parameterized by sections £ of E — X is defined as a
contact derivation ¥ = J®u of the real ring O [Y x E] such that:
(i) it vanishes on the subring O% F,
(ii) the generalized vector field w is linear in coordinates x§ on J*E,
and it projects onto a generalized vector field on F| i.e., it takes the form
u= ( > UQA(x”)X?\) o+ ( > UQA(x“,yJ:)X‘X) 0, (7.2.28)
0<[A|<m 0<[A|<m

(iii) the vertical part of u (7.2.28) obeys the equality

uVJS = dHJ. (7.2.29)

For the sake of convenience, we also call a generalized vector field
(7.2.28) the gauge symmetry. By virtue of item (iii) of Definition 7.2.12,
u (7.2.28) is a gauge symmetry iff its vertical part is so.

Gauge symmetries possess the following particular properties.

(i) Let E' — X be a vector bundle and ¢’ a linear E(X)-valued
differential operator on the C*°(X)-module E'(X) of sections of £/ — X.
Then

ug(en = (Co ¢')(E)
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also is a gauge symmetry of L parameterized by sections ¢’ of B/ — X.
It factorizes through the gauge symmetries uy (7.2.26).

(ii) If a gauge symmetry is an exact Lagrangian symmetry, the cor-
responding conserved symmetry current 7, (7.2.24) is reduced to a su-
perpotential (see Theorem 7.5.4).

(iii) The direct second Noether theorem associates to a gauge sym-
metry of a Lagrangian L the Noether identities of its Euler-Lagrange

operator L.

Theorem 7.2.13: Let u (7.2.28) be a gauge symmetry of a Lagrangian
L, then its Euler-Lagrange operator 6L obeys the Noether identities

.= Y (71)\/\\%[(“? o yf\u();A)&] _ (7.2.30)
0<|A|
> n(ul, — yhuy) da& =0
0<|A|

(see Notation 7.5.2). O

It follows from direct second Noether Theorem 7.2.13 that gauge sym-
metries of Lagrangian field theory characterize its degeneracy. A prob-
lem is that any Lagrangian possesses gauge symmetries and, therefore,
one must separate them into the trivial and non-trivial ones. More-
over, gauge symmetries can be reducible, i.e., Ker ¢ # 0. To solve these
problems, we follow a different definition of gauge symmetries as those
associated to non-trivial Noether identities by means of inverse second
Noether Theorem 7.5.3.

7.3 Grassmann-graded Lagrangian theory

We start with the following definition of jets of odd variables. Let us con-
sider a vector bundle F' — X and the simple graded manifolds (X, A )
modelled over the vector bundles J"F — X. There is the direct system
of the corresponding DBGA

SF;X] —SJ'F;X] — - STF; X] —---
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of graded exterior forms on graded manifolds (X, A ). Its direct limit
SLIF; X] is the Grassmann-graded counterpart of the DGA P .
In order to describe Lagrangian theories both of even and odd vari-

ables, let us consider a composite bundle
F—-Y —>X (7.3.1)

where F© — Y is a vector bundle provided with bundle coordinates
(2,9, ¢"). We call the simple graded manifold (Y,2r) modelled over
F — Y the composite graded manifold. Let us associate to this graded
manifold the following DBGA S% [F;Y].

It is readily observed that the jet manifold J"F of FF — X is a vec-
tor bundle J'F — J"Y coordinated by (z*,y},q%), 0 < |A| < r. Let
(J'Y,2,) be a simple graded manifold modelled over this vector bundle.
Its local basis is (2,9}, c%), 0 < |A| < 7. Let

SIF;Y]=SJF;JY] (7.3.2)

denote the DBGA of graded exterior forms on the simple graded manifold

(J'Y,2,). In particular, there is a cochain monomorphism
O:r=0"(JY)— SIF;Y]. (7.3.3)
The surjection
ot Y - JY
yields an epimorphism of graded manifolds

(LA L (Y, 20 — (Y, 2),

T » o
including the sheaf monomorphism

~r+1 . _r+l*
T A — Ay,

where 77 t1*2(, is the pull-back onto J" Y of the continuous fibre bundle
A, — J"Y. This sheaf monomorphism induces the monomorphism of the

canonical presheaves 2, — 2,1, which associates to each open subset
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U C J™Y the ring of sections of 2, over 7/ 1(U). Accordingly, there

is a monomorphism of the structure rings
A SUFS Y] — SO [F Y] (7.3.4)

of graded functions on graded manifolds (J"Y,2,) and (J"™Y,2,.1). By
virtue of Lemma 6.4.1, the differential calculus S;[F; Y] and S, | [F; Y]

are minimal. Therefore, the monomorphism (7.3.4) yields that of the
DBGA

ot SHF Y] — SEF Y. (7.3.5)

As a consequence, we have the direct system of DBGAs

SF;Y] L SHF Y] — S [F Y] L (7.3.6)
S/[FY] —

The DBGA S% [F; Y] that we associate to the composite graded manifold
(Y, 2p) is defined as the direct limit

SLIF;Y] = lmS'[F; Y] (7.3.7)

of the direct system (7.3.6). It consists of all graded exterior forms ¢ €
S*[F,; J"Y] on graded manifolds (J"Y,2,) modulo the monomorphisms
(7.3.5). Its elements obey the relations (6.2.9) — (6.2.10).

Cochain monomorphisms O} — S*[F;Y] (7.3.3) provide a monomor-
phism of the direct system (2.4.5) to the direct system (7.3.6) and, con-

sequently, the monomorphism
O, — SL[F;Y] (7.3.8)

of their direct limits. In particular, S [F;Y] is an OY -algebra. Accord-
ingly, the body epimorphisms S*[F;Y]| — Oz yield the epimorphism of
OV -algebras

SLIF; Y] — OL. (7.3.9)
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It is readily observed that the morphisms (7.3.8) and (7.3.9) are cochain
morphisms between the de Rham complex (2.4.7) of the DGA O}, (2.4.6)
and the de Rham complex

0-R—S8FY] LS FY] - LS FY] —- - (7.3.10)

of the DBGA SY [F;Y]. Moreover, the corresponding homomorphisms

of cohomology groups of these complexes are isomorphisms as follows.

Theorem 7.3.1: There is an isomorphism
H(SLIF:Y]) = Hpp(Y) (7.311)

of the cohomology H*(S%[F;Y]) of the de Rham complex (7.3.10) to
the de Rham cohomology Hj)r(Y) of Y. O

Corollary 7.3.2: Any closed graded form ¢ € S%[F; Y] is decomposed

into the sum ¢ = o + d§ where o is a closed exterior form on Y. O

Similarly to the DGA O}, (2.4.6), one thinks of elements of 7 [F;Y]
as being graded differential forms on the infinite order jet manifold J*Y .
We can restrict S [F; Y] to the coordinate chart (2.4.3) of J*Y and say
that S [F; Y] as an O -algebra is locally generated by the elements

(CX7 dl’)\, 97\ = de]\ - C(;;Jr[\dx/\? 9;& = dy;& - y§\+Adx)\)7 0< |A|7

where ¢}, 0% are odd and da?, 0% are even. We agree to call (y',c?) the
local generating basis for S%[F;Y]. Let the collective symbol s stand
for its elements. Accordingly, the notation s{ and
01 = dsy — sf+Adx’\
is introduced. For the sake of simplicity, we further denote [A] = [s4].
The DBGA 8% [F;Y] is split into 8% [F; Y]-modules S&"[F;Y] of k-
contact and r-horizontal graded forms together with the corresponding

projections

hi - SLIF;Y] — SE*F Y], h™:SLIF;Y] — SYM[F;Y).
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Accordingly, the graded exterior differential d on S%[F; Y] falls into the
sum d = dy + dy of the vertical graded differential

dy o™ =h"odoh™,  dy(¢) =04 ADYe, ¢ € SL[F;Y],
and the total graded differential

dgohy="hrodohy, dgohy=hood, dy(¢)=dz*Adx(p),
where

d/\ = (9)\ + Z Sf+Aaﬁ

0<|A]
are the graded total derivatives. These differentials obey the nilpotent
relations (2.4.11).
Similarly to the DGA O%,, the DBGA S* [F;Y] is provided with the

graded projection endomorphism

1
0= kzo g@o hk ° hn . S;O>OJL[F; Y] _ S;;O’"[F; Y}v
o>

() = X (=)Mo A[da(04]0)), ¢ € SMFY,

0<JA|

such that pody = 0, and with the nilpotent graded variational operator

§=00dSE"[F;Y] — S F; Y. (7.3.12)

With these operators the DBGA S [F'; Y] is split into the Grassmann-
graded variational bicomplex. We restrict our consideration to its short

variational subcomplex

dy

0-R—SL[FY] 2580 F Y] (7.3.13)
SYF;Y] “—Ei,  Ei=o(SY'[F:Y)),
and the subcomplex of one-contact graded forms
0— SYIFY] Y SLF; Y] M S Ry (7.3.14)

Q—>E1 — 0.
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Theorem 7.3.3: Cohomology of the complex (7.3.13) equals the de
Rham cohomology Hjp(Y) of Y. O

Theorem 7.3.4: The complex (7.3.14) is exact. O

Decomposed into the variational bicomplex, the DBGA S% [F;Y] de-
scribes Grassmann-graded Lagrangian theory on the composite graded

manifold (Y,2r). Its graded Lagrangian is defined as an element
L=LweSYF;Y] (7.3.15)

of the graded variational complex (7.3.13), while the graded exterior

form

SL=04NEqw =Y (—1)MoA A dy (0L L)w € By (7.3.16)
0<[A|

is said to be its graded FEuler—Lagrange operator. We agree to call a pair
(8%"[F;Y], L) the Grassmann-graded Lagrangian system.

The following is a corollary of Theorem 7.3.3.

Theorem 7.3.5: Every dy-closed graded form ¢ € S%"<"[F;Y] falls

into the sum
¢ =hoo +dgé, € SYFY), (7.3.17)

where o is a closed m-form on Y. Any d-closed (i.e., variationally trivial)

Grassmann-graded Lagrangian L € S%"[F;Y] is the sum
L =hoo+dg&, €€ SR Y], (7.3.18)
where ¢ is a closed n-form on Y. O

Corollary 7.3.6: Any variationally trivial odd Lagrangian is dy-exact.
O

The exactness of the complex (7.3.14) at the term SL"[F;Y] results

in the following.
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Theorem 7.3.7: Given a graded Lagrangian L, there is the decompo-

sition
dL = 0L —dyZ;, Ee€STF;Y], (7.3.19)
Sp=L+ X0}, ANFY My, (7.3.20)

5=0
F,kam — aZk...ylﬁ _ d)\Fjl\Vkmyl + O-kaul E=1.2.. ..
where local graded functions ¢ obey the relations

04 =0, e}

The form =, (7.3.20) provides a global Lepage equivalent of a graded
Lagrangian L.

Given a Grassmann-graded Lagrangian system (S [F;Y], L), by its
infinitesimal transformations are meant contact graded derivations of the
real graded commutative ring SO[F;Y]. They constitute a S [F;Y]-
module 2SY [F; Y] which is a real Lie superalgebra with the Lie super-
bracket (6.2.4).

Theorem 7.3.8: The derivation module 282 [F'; Y] is isomorphic to the
S [F;Y]-dual (SL[F;Y])* of the module of graded one-forms SL [F; Y].
It follows that the DBGA S’ [F;Y] is minimal differential calculus over
the real graded commutative ring SO [F;Y]. O

Let 9]¢, ¥ € oSL[F;Y], ¢ € SL[F;Y], denote the corresponding
interior product. Extended to the DBGA S’ [F;Y], it obeys the rule
D)6 A 0) = (D]6) Ao+ (—)HVG A (9]0), 6,0 € SLIF;Y)
Restricted to a coordinate chart (2.4.3) of J*Y, the algebra i [F'; Y]
is a free SU[F;Y]-module generated by one-forms dz*, #4. Due to
the isomorphism stated in Theorem 7.3.8, any graded derivation ¥ €

2SY [F; Y] takes the local form

¥ =000\ + 9404+ Y 9404, (7.3.21)
0<|A|

4 |dyE = 6558, (7.3.22)



7.3. GRASSMANN-GRADED LAGRANGIAN THEORY 149
Every graded derivation ¢ (7.3.21) yields the graded Lie derivative
Ly¢ =9|do +d(9]¢), ¢ €SL[FY],
Ly(¢ A o) =Ly(9) Ao+ (=1)"p A Ly (o),
of the DBGA S%[F;Y]. A graded derivation ¥ (7.3.21) is called contact
if the Lie derivative Ly preserves the ideal of contact graded forms.
Lemma 7.3.9: With respect to the local generating basis (s) for the

DBGA S [F;Y], any its contact graded derivation takes the form

¥ =vg+uvy = ”U/\d)\ + [”UAaA + > dA(UA — Sﬁvﬂ)aﬁ], (7.3.23)
[A|>0

where vy and vy denotes the horizontal and vertical parts of ©J. O

A glance at the expression (7.3.23) shows that a contact graded deriva-

tion 1 is an infinite order jet prolongation of its restriction
v =00 + vidy (7.3.24)

to the graded commutative ring S°[F; Y]. We call v (7.3.24) the general-
ized graded vector field. 1t is readily justified the following (see Lemma
7.2.16).

Lemma 7.3.10: Any vertical contact graded derivation

9 =019, + > dAUAaﬁ (7.3.25)
[A]>0

satisfies the relations
V|dud = —du(9]9), (7.3.26)
Ly(du¢) = du(Lyo) (7.3.27)
for all ¢ € SL[F;Y]. O

Then the forthcoming assertions are the straightforward generaliza-
tions of Theorem 7.2.7, Lemma 7.2.8 and Theorem 7.2.9.
A corollary of the decomposition (7.3.19) is the first variational for-

mula for a graded Lagrangian.
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Theorem 7.3.11: The Lie derivative of a graded Lagrangian along any

contact graded derivation (7.3.23) obeys the first variational formula
LyL = Uvj oL + dH(h()(ﬁJ EL)) + dv(UHJw)E, (7328)

where Zj, is the Lepage equivalent (7.3.20) of L. O

A contact graded derivation ¢ (7.3.23) is called a variational symme-
try (strictly speaking, a variational supersymmetry) of a graded Lagran-

gian L if the Lie derivative LyL is dg-exact, i.e.,

LyL = dyo. (7.3.29)

Lemma 7.3.12: A glance at the expression (7.3.28) shows the follow-
ing.

(i) A contact graded derivation ¥ is a variational symmetry only if it
is projected onto X.

(ii) Any projectable contact graded derivation is a variational sym-
metry of a variationally trivial graded Lagrangian. It follows that, if J is
a variational symmetry of a graded Lagrangian L, it also is a variational
symmetry of a Lagrangian L + Lj, where L; is a variationally trivial
graded Lagrangian.

(iii) A contact graded derivations ¢ is a variational symmetry iff its
vertical part vy (7.3.23) is well.

(iv) It is a variational symmetry iff the graded density vy |dL is dp-

exact. 0O

Variational symmetries of a graded Lagrangian L constitute a real
vector subspace Gy, of the graded derivation module 2S8% [F'; Y]. By virtue
of item (ii) of Lemma 7.3.12, the Lie superbracket

Ly, = [Ly, L]

of variational symmetries is a variational symmetry and, therefore, their

vector space Gy, is a real Lie superalgebra.
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A corollary of the first variational formula (7.3.28) is the first Noether
theorem for graded Lagrangians.
Theorem 7.3.13: If a contact graded derivation ¢ (7.3.23) is a varia-
tional symmetry (7.3.29) of a graded Lagrangian L, the first variational

formula (7.3.28) restricted to Ker 0L leads to the weak conservation law

A vertical contact graded derivation ¥ (7.3.25) is said to be nilpotent
if

Ly(Loo) = > (vP05(v1)dh + (7.3.31)
0<|%],0<|A|

(-1 Putozo)e = 0
for any horizontal graded form ¢ € S%*.
Lemma 7.3.14: A vertical contact graded derivation (7.3.25) is nilpo-
tent only if it is odd and iff the equality

Ly(v") = 3 vRd5(v") =0
0<[x|

holds for all v4. O

For the sake of brevity, the common symbol v further stands for a
generalized graded vector field v, the contact graded derivation ¥ de-
termined by v, and the Lie derivative Ly. We agree to call all these
operators, simply, a graded derivation of a field system algebra.
Remark 7.3.1: For the sake of convenience, right derivations

v =0 4" (7.3.32)
also are considered. They act on graded functions and differential forms

¢ on the right by the rules
v(¢) = do|v +d(¢|v),
V(@) = (=1 0(0) A + oA V(S),

Opnl0 =8 = 6457,
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One associates to any graded right derivation v (7.3.32) the left one

ot = (—1)ely A9, (7.3.33)
() = (0MVo(p), f e SYIF YT

7.4 Noether identities

The degeneracy of Lagrangian theory is characterized by a set of non-
trivial reducible Noether identities. Any Euler—Lagrange operator satis-
fies Noether identities (henceforth NT) which therefore must be separated
into the trivial and non-trivial ones. These NI can obey first-stage NI,
which in turn are subject to the second-stage ones, and so on. Thus,
there is a hierarchy of higher-stage NI which also are separated into the
trivial and non-trivial ones. If certain conditions hold, one can associate
to a Grassmann-graded Lagrangian system the exact Koszul-Tate com-
plex possessing the boundary operator whose nilpotentness is equivalent
to all non-trivial NI and higher-stage NI. The inverse second Noether
theorem formulated in homology terms associates to this Koszul-Tate
complex the cochain sequence of ghosts with the ascent operator, called
the gauge operator, whose components are non-trivial gauge and higher-
stage gauge symmetries of Lagrangian theory.

Let (8% [F;Y], L) be a Grassmann-graded Lagrangian system. With-
out a lose of generality, let a Lagrangian L be even. Its Euler-Lagrange
operator JL (7.3.16) is assumed to be at least of order 1 in order to
guarantee that transition functions of Y do not vanish on-shell. This
Euler-Lagrange operator d L € E; takes its values into the graded vector
bundle

F=V'Fg AT*X — F, (7.4.1)
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where V*F' is the vertical cotangent bundle of FF — X. It however is
not a vector bundle over Y. Therefore, we restrict our consideration to

the case of a pull-back composite bundle F' (7.3.1), that is,
FzY;FheYHX, (7.4.2)

where F! — X is a vector bundle. Let us introduce the following nota-
tion.

Notation 7.4.1: Given the vertical tangent bundle VE of a fibre
bundle £ — X, by its density-dual bundle is meant the fibre bundle

VE:VT%KTX. (7.4.3)
If F — X is a vector bundle, we have

VE=ExE, EzE%KWX (7.4.4)
where E is called the density-dual of E. Let

E:W@E

be a graded vector bundle over X. Its graded density-dual is defined to
be
E=EgE"
X

In these terms, we treat the composite bundle F' (7.3.1) as a graded
vector bundle over Y possessing only odd part. The density-dual VF
(7.4.3) of the vertical tangent bundle VF of F — X is VF (7.4.1). If F
(7.3.1) is the pull-back bundle (7.4.2), then

VFz“ﬁ@WH@KTM@Fl (7.4.5)
is a graded vector bundle over Y. Given a graded vector bundle
E:W@EHK
we consider the composite bundle £ — E° — X and the DBGA (7.3.7):

PLIE Y] = Sy [B; EY). (7.4.6)
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Let us consider the density-dual V'F (7.4.5) of the vertical tangent
bundle VF — F, and let us enlarge the DBGA S%[F;Y] to the DBGA
PLIVF;Y] (7.4.6) with the local generating basis (s4,354), [54] =
([A] + 1)mod 2. Following the physical terminology, we agree to call
its elements 54 the antifields of antifield number Ant[ss] = 1. The
DBGA PL[VF;Y] is endowed with the nilpotent right graded derivation
B :5 A€, where €4 are the variational derivatives (7.3.16). Then we

have the chain complex
0Imd < PU[VE; Y], < PO [VE; Y], (7.4.7)

of graded densities of antifield number < 2. Its one-boundaries 69,
® € PY"[VF;Y]s, by very definition, vanish on-shell.

Lemma 7.4.2: One can associate to any Grassmann-graded Lagrangian
system (S [F;Y], L) the chain complex (7.4.7). O

Any one-cycle

b= Y M50 e PUVF; Y] (7.4.8)
0<[A|

of the complex (7.4.7) is a differential operator on the bundle V'F' such
that it is linear on fibres of VF — F and its kernel contains the graded
Euler—Lagrange operator 6L (7.3.16), i.e.,
0® =0, 3 Ay Eyw =0, (7.4.9)
0<[A]
Thus, the one-cycles (7.4.8) define the NI (7.4.9) of the Euler-Lagrange
operator 6L, which we call Noether identities (NI) of the Grassmann-
graded Lagrangian system (S [F;Y], L).
In particular, one-chains ® (7.4.8) are necessarily NI if they are bound-
aries. Accordingly, non-trivial NI modulo the trivial ones are associated
to elements of the first homology H;(d) of the complex (7.4.7). A La-

grangian L is called degenerate if there are non-trivial NI.
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Non-trivial NI obey first-stage NI. To describe them, let us assume
that the module H;(d) is finitely generated. Namely, there exists a
graded projective C*°(X)-module Cy C H() of finite rank with a
local basis {A,w}:

Aw= Y AM50, A e SR Y], (7.4.10)
0<[A|

such that any element ® € H;(d) factorizes as

b= Y d=d=Aw, O=eSL[F;Y], (7.4.11)

0<IE]
through elements (7.4.10) of C). Thus, all non-trivial NI (7.4.9) result
from the NI

60, = Y AMdNEL =0, (7.4.12)
0<TA|

called the complete NI. Clearly, the factorization (7.4.11) is independent
of specification of a local basis {A,w}.

A Lagrangian system whose non-trivial NI are finitely generated is
called finitely degenerate. Hereafter, degenerate Lagrangian systems
only of this type are considered.

By virtue of Serre-Swan Theorem 6.3.2, the graded module C() is
isomorphic to a module of sections of the density-dual Ey of some graded

vector bundle Ey — X. Let us enlarge P [V F;Y] to the DBGA
P{0} = P;[W@FO; Y] (7.4.13)

possessing the local generating basis (s4,34,¢,) where ¢, are Noether an-
tifields of Grassmann parity [¢,] = ([A,]+ 1)mod 2 and antifield number
Ant[c,] = 2. The DBGA (7.4.13) is provided with the odd right graded
derivation & = 3+ & "A, which is nilpotent iff the complete NI (7.4.12)

hold. Then ¢ is a boundary operator of the chain complex

0—Imd & POV E; V], & P2 (0}, £ P00}, (7.4.14)
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of graded densities of antifield number < 3. Let H.(dy) denote its ho-
mology. We have

Hy(do) = Ho(d) = 0.

Furthermore, any one-cycle ® up to a boundary takes the form (7.4.11)
and, therefore, it is a dp-boundary. Hence, Hi(dy) = 0, i.e., the complex

(7.4.14) is one-exact.

Lemma 7.4.3: If the homology H;() of the complex (7.4.7) is finitely
generated in the above mentioned sense, this complex can be extended
to the one-exact chain complex (7.4.14) with a boundary operator whose

nilpotency conditions are equivalent to the complete NI (7.4.12). O

Let us consider the second homology Hj(dy) of the complex (7.4.14).
Its two-chains read
dP=G+H= Y Glepw+ Y HANEDg sopw. (7.4.15)
0<[A| 0<[ALE
Its two-cycles define the first-stage NI

5® = 0, S G dp\Aw = —3H. (7.4.16)
0<|A|

The first-stage NI (7.4.16) are trivial either if a two-cycle ® (7.4.15)
is a dp-boundary or its summand G vanishes on-shell. Therefore, non-
trivial first-stage NI fails to exhaust the second homology Hs(dy) the
complex (7.4.14) in general.

Lemma 7.4.4: Non-trivial first-stage NI modulo the trivial ones are
identified with elements of the homology Hs(dy) iff any d-cycle ¢ €
fo’"{()}g is a dg-boundary. O

oo

A degenerate Lagrangian system is called reducible (resp. irreducible)
if it admits (resp. does not admit) non-trivial first stage NI.
If the condition of Lemma 7.4.4 is satisfied, let us assume that non-

trivial first-stage NI are finitely generated as follows. There exists a
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graded projective C*°(X)-module Cy C H3(dp) of finite rank with a
local basis {A, w}:

Ajw= > A:;AEArw + hyw, (7.4.17)

0<|A]

such that any element ® € Hy(dy) factorizes as

b= 3 O"=dzAw, P e SL[FY], (7.4.18)

0<|g]
through elements (7.4.17) of C(;). Thus, all non-trivial first-stage NI
(7.4.16) result from the equalities
> AAAWA, +5h,, =0, (7.4.19)

0<[A|
called the complete first-stage NI.

The complete first-stage NI obey second-stage NI, and so on. Iterating
the arguments, one comes to the following.

A degenerate Grassmann-graded Lagrangian system (S%[F;Y], L) is
called N-stage reducible if it admits finitely generated non-trivial N-
stage NI, but no non-trivial (N + 1)-stage ones. It is characterized as
follows.

e There are graded vector bundles Ey, ..., Ey over X and a DBGA

PLIVFE,;Y] is enlarged to the DBGA

P AN} = P;C[W§E, Q- @FN; Y] (7.4.20)
with the local generating basis

(54,84,Cr,Crrrv v Cry)

where ¢,, are Noether k-stage antifields of antifield number Ant[e,,] =
k+ 2.

e The DBGA (7.4.20) admits with the nilpotent right graded deriva-
tion

Skt =0y =0+ 3 9TAMsu+ Y 97A,,, (7.4.21)

0</A| 1<k<N
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W = % APATy L w (7.4.22)
0<
|EZ\| |(hizk_%z)(A7E)é27‘k—2§514 + )w € fOogL{k - 1}/f+17
0<|S] |2
of antifield number -1. The index & = —1 here stands for 54. The

nilpotent derivation dxr (7.4.21) is called the Koszul-Tate operator.
e With this graded derivation, the module ﬁ)oon{N }<n+3 of densities
of antifield number < (N +3) is decomposed into the exact Koszul-Tate

chain complex

0—Im§ < PYVE; Y], S-PU {0}, SPY{1}5--- (7.4.23)
PPN — vy B PN B P Ny

which satisfies the following homology regularity condition.

Condition 7.4.5: Any ;. n-cycle

—On

¢ € PY k}pss C PU{k + 1} pss

is a 0j41-boundary. O

e The nilpotentness d2r = 0 of the Koszul-Tate operator (7.4.21)
is equivalent to the complete non-trivial NI (7.4.12) and the complete
non-trivial (k < N)-stage NI

> AI’;“AdA( DAV cmz) = (7.4.24)

(USHY 0<x|

_5( Z h(’k 2,2 CZu , _A)

o<zl 1=|
This item means the following.

Theorem 7.4.6: Any dj-cocycle ® € PY"{k}i.o is a k-stage NI, and

vice versa. O

Theorem 7.4.7: Any trivial k-stage NI is a dy-boundary ® € P {k}jo.
O
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Theorem 7.4.8: All non-trivial k-stage NI, by assumption, factorize as

o= Y OdzA,w, 0= e SUF;Y,

0<IE]
through the complete ones (7.4.24). O
It may happen that a Grassmann-graded Lagrangian field system pos-

sesses non-trivial NI of any stage. However, we restrict our consideration

to N-reducible Lagrangian systems for a finite integer N.

7.5 Gauge symmetries

Different variants of the second Noether theorem have been suggested
in order to relate reducible NI and gauge symmetries. The inverse sec-
ond Noether theorem (Theorem 7.5.3), that we formulate in homology
terms, associates to the Koszul-Tate complex (7.4.23) of non-trivial NI
the cochain sequence (7.5.7) with the ascent operator u (7.5.8) whose
components are non-trivial gauge and higher-stage gauge symmetries of
Lagrangian system. Let us start with the following notation.

Notation 7.5.1: Given the DBGA P, {N} (7.4.20), we consider the
DBGA

PoAN} = PolF O ED - D En;Y], (7.5.1)
possessing the local generating basis

(4, e, [¢"*] = ([¢r,] + 1)mod 2,
and the DBGA

PAN}=PLVF@ By G En@Ec@ - §Exv;Y]  (75.2)
with the local generating basis

A — roor N = =
(S 7SA7CaC17'"7(/N7CT‘7(’7'17'~-7C’I'N)~
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Their elements ¢'* are called k-stage ghosts of ghost number gh[c™] =

k + 1 and antifield number
Ant[c"] = —(k + 1).

The C*(X)-module C*) of k-stage ghosts is the density-dual of the
module C(;1;) of (k + 1)-stage antifields. The DBGAs P {N} (7.4.20)
and P {N} (7.5.1) are subalgebras of PL{N} (7.5.2). The Koszul-Tate
operator 0kt (7.4.21) is naturally extended to a graded derivation of the
DBGA P:{N}. O

Notation 7.5.2: Any graded differential form ¢ € S [F;Y] and any
finite tuple (f*), 0 < |A| < k, of local graded functions fA € SO [F;Y]

obey the following relations:

S Adypprw= 3 (=DM (Mo A w + dyo, (7.5.3)
0<|A[<k 0<[A|
> (DMd(fre) = X n(f) dae, (7.5.4)
0<|A|I<k 0<|A|<k
A_ e (EHAD e
v TR (755)
n(n()* = 1. (7.5.6)

d

Theorem 7.5.3: Given the Koszul-Tate complex (7.4.23), the module

of graded densities P%"{N} is decomposed into the cochain sequence

0— SYF;Y] S PYYNY S PUYNY oo (7.5.7)
u=u—+uM ... @ = (7.5.8)
0 0
A T TN-1
u 8?4—11 acr—&----—&-uN S 1

graded in ghost number. Its ascent operator u (7.5.8) is an odd graded

derivation of ghost number 1 where

u=ut L= s A (75.9)
Os 0<TA|
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is a variational symmetry of a graded Lagrangian L and the graded

derivations
uk) = g 0 = 3 ip(Arn-nh 0 , k=1,...,N,(7.5.10)
Ocre-1 0<TA| Tk Ocrk—1
obey the relations
Tk— 9 Tk—2 S ~Tk—2
0<Z|E‘d2u G ~u = 0o ?), (7.5.11)
a2 = — 3 p(hi2 )y (2 ).

0<|3

A glance at the expression (7.5.9) shows that the variational symme-
try w is a linear differential operator on the C*°(X)-module C) of ghosts
with values into the real space g of variational symmetries. Following
Definition 7.2.10 extended to Lagrangian theories of odd variables, we
call u (7.5.9) the gauge symmetry of a graded Lagrangian L which is
associated to the complete NI (7.4.12).

Remark 7.5.1: In contrast with Definitions 7.2.10 and 7.2.12, gauge
symmetries u (7.5.9) are parameterized by ghosts, but not gauge param-
eters. Given a gauge symmetry u (7.2.28) defined as a derivation of the

real ring O [V x E], one can associate to it the gauge symmetry
u= ( 3 ugA(x“)cX) o\ + ( > ui%x”,y%)ci) 0, (7.5.12)
0<|A|<m 0<|A|I<m

which is an odd graded derivation of the real ring S.[E;Y], and wvice

versa. O

Turn now to the relation (7.5.11). For k = 1, it takes the form

0<|x| 302
of a first-stage gauge symmetry condition on-shell which the non-trivial

gauge symmetry u (7.5.9) satisfies. Therefore, one can treat the odd
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graded derivation

9 o
u' =3 en(Aar)h,

U(1> - uri,'n
80 0<|A]|

as a first-stage gauge symmetry associated to the complete first-stage NI

> AN, ( > Af’ESEA) = —5( > hg?’z)(A’E)SEBSEA) ~

0<[A| 0|z (IR

Iterating the arguments, one comes to the relation (7.5.11) which
provides a k-stage gauge symmetry condition which is associated to the
complete k-stage NI (7.4.24). The odd graded derivation uy (7.5.10) is
called the k-stage gauge symmetry.

In accordance with Theorem 7.5.3, components of the ascent operator
u (7.5.8) are complete non-trivial gauge and higher-stage gauge symme-
tries. Therefore, we agree to call this operator the gauge operator.

Being a variational symmetry, a gauge symmetry u (7.5.9) defines the
weak conservation law (7.3.30). Let u be an exact Lagrangian symmetry.

In this case, the associated symmetry current

Ju= —ho(u|ZL) (7.5.13)
is conserved. The peculiarity of gauge conservation laws always is that
the symmetry current (7.5.13) is reduced to a superpotential as follows.

Theorem 7.5.4: If u (7.5.9) is an exact gauge symmetry of a graded La-
grangian L, the corresponding conserved symmetry current 7, (7.5.13)

takes the form
Ju=W+dgU = (W' +d,U")w,, (7.5.14)

where the term W vanishes on-shell, and U is a horizontal (n — 2)-form.

O



Chapter 8

Topics on commutative geometry

Several relevant topics on commutative geometry and algebraic topology

are compiled in this Chapter [9, 17, 23].

8.1 Commutative algebra

An algebra A is an additive group which is additionally provided with
distributive multiplication. All algebras throughout the book are asso-
ciative, unless they are Lie algebras. A ring is defined to be a unital
algebra, i.e., it contains a unit element 1 # 0.

A subset 7 of an algebra A is called a left (resp. right) ideal if it is
a subgroup of the additive group A and ab € Z (resp. ba € Z) for all
a€ A, beZ. If Tis both a left and right ideal, it is called a two-sided
ideal. An ideal is a subalgebra, but a proper ideal (i.e., Z # A) of a ring
is not a subring because it does not contain the unit element.

Let A be a commutative ring. Of course, its ideals are two-sided. Its
proper ideal is said to be maximal if it does not belong to another proper
ideal. A commutative ring A is called local if it has a unique maximal
ideal. This ideal consists of all non-invertible elements of A.

Given an ideal Z C A, the additive factor group A/7Z is an algebra,
called the factor algebra. If A is a ring, then A/7 is so. If 7 is a maximal
ideal, the factor ring A/7 is a field.

163
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Given an algebra A, an additive group P is said to be a left (resp.
right) A-module if it is provided with distributive multiplication Ax P —
P by elements of A such that (ab)p = a(bp) (resp. (ab)p = b(ap)) for
all a,b € Aand p € P. If A is a ring, one additionally assumes that
1p = p = pl for all p € P. Left and right module structures are
usually written by means of left and right multiplications (a,p) — ap
and (a,p) — pa, respectively. If P is both a left module over an algebra
A and a right module over an algebra A’, it is called an (A — A')-
bimodule (an A-bimodule if A = A’). If A is a commutative algebra,
an A-bimodule P is said to be commutative if ap = pa for all « € A
and p € P. Any left or right module over a commutative algebra A can
be brought into a commutative bimodule. Therefore, unless otherwise
stated, any module over a commutative algebra A is called an A-module.
A module over a field is called a vector space.

If an algebra A is a module over a commutative ring I, it is said to
be a K-algebra.

Hereafter, all associative algebras are assumed to be commutative.

The following are standard constructions of new modules from old
ones.

e The direct sum P; @ P of A-modules P; and P is the additive
group P, x P, provided with the A-module structure

a(p1,p2) = (ap1, apz), P12 € P, ac A

Let {P;}icr be a set of modules. Their direct sum @P; consists of el-
ements (...,p;,...) of the Cartesian product [I P; such that p; # 0 at
most for a finite number of indices i € I.

e Given a submodule @ of an A-module P, the quotient P/Q of the
additive group P with respect to its subgroup @ also is provided with
an A-module structure. It is called a factor module.

e The set Hom 4(P, Q) of A-linear morphisms of an A-module P to
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an A-module @ is naturally an A-module. The .A-module
P* = Hom 4(P, A)

is called the dual of an A-module P. There is a monomorphism P —
P,

e The tensor product P ® Q of A-modules P and @ is an additive
group which is generated by elements p ® ¢, p € P, q € @, obeying the

relations

p+p)®q=p®q+1 ®q,
pPRg+d)=pR@q+p®d,
pa®q=pR aq, p € P, q € Q, ac A

It is provided with the A-module structure

a(p®q) = (ap) ® ¢ = p® (qa) = (p @ q)a.

In particular, we have the following.
(i) If a ring A is treated as an A-module, the tensor product A ®4 Q

is canonically isomorphic to @) via the assignment
AR40Q3a®q«— aq € Q.

(i) The tensor product of Abelian groups G and G’ is defined as their
tensor product G ® G’ as Z-modules.

(iii) The tensor product of commutative algebras A and A’ is defined
as their tensor product A ® A’ as modules provided with the multipli-

cation
(a®d)(bxb) = (ad") @ bb.

An A-module P is called free if it has a basis, i.e., a linearly indepen-
dent subset I C P spanning P such that each element of P has a unique
expression as a linear combination of elements of I with a finite number

of non-zero coeflicients from an algebra A. Any vector space is free. Any
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module is isomorphic to a quotient of a free module. A module is said to
be finitely generated (or of finite rank) if it is a quotient of a free module
with a finite basis.

One says that a module P is projective if it is a direct summand of
a free module, i.e., there exists a module @) such that P & @ is a free
module. A module P is projective iff P = pS where S is a free module

and p is a projector of S, i.e., p*> = p.
Theorem 8.1.1: Any projective module over a local ring is free. O

Now we focus on exact sequences, direct and inverse limits of modules.

A composition of module morphisms

P -5Q Ny
is said to be exact at @ if Kerj = Imi. A composition of module
morphisms

0P -5Q 5T —0 (8.1.1)

is called a short exact sequence if it is exact at all the terms P, ), and T
This condition implies that: (i) ¢ is a monomorphism, (ii) Ker j = Im,
and (iii) j is an epimorphism onto the quotient T'= Q/P.

Theorem 8.1.2: Given an exact sequence of modules (8.1.1) and an-

other A-module R, the sequence of modules

0 — Hom 4(T, R) < Hom 4(Q, R) - Hom (P, R)
is exact at the first and second terms, i.e., j* is a monomorphism, but
7* need not be an epimorphism. O

One says that the exact sequence (8.1.1) is split if there exists a

monomorphism s : T"— @ such that j o s = Id T or, equivalently,
Q=iP)es(T)=PaT.

Theorem 8.1.3: The exact sequence (8.1.1) is always split if T is a

projective module. O
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A directed set I is a set with an order relation < which satisfies the
following three conditions: (i) i < ¢, for all i € I; (ii) if i < j and j < k,
then ¢ < k; (iil) for any 4, j € I, there exists k € I such that i < k and
j < k. It may happen that i # j, but ¢ < j and j < ¢ simultaneously.

A family of modules {P,};c; (over the same algebra), indexed by a
directed set I, is called a direct system if, for any pair ¢ < j, there exists

a morphism T; : P — Pj such that
rf:IdPi, 1"4;"-07“%:1"};, 1<j<k.

A direct system of modules admits a direct limit. This is a module Py,
together with morphisms 7, : P; — Py such that i, = rl o} for
all i < j. The module Py, consists of elements of the direct sum ®;F,
modulo the identification of elements of P; with their images in P; for

all i < j. An example of a direct system is a direct sequence

Py —P —s---P, SR I=nN. (8.1.2)

)

Note that direct limits also exist in the categories of commutative and
graded commutative algebras and rings, but not in categories containing

non-Abelian groups.

Theorem 8.1.4: Direct limits commute with direct sums and tensor
products of modules. Namely, let {P;} and {Q;} be two direct systems
of modules over the same algebra which are indexed by the same directed
set I, and let P, and (D, be their direct limits. Then the direct limits of
the direct systems {P, @ Q;} and {P; ® Q;} are Psx @ Qo and Py ® Qo

respectively. O

Theorem 8.1.5: A morphism of a direct system {P;,r}}; to a direct
system {Qy, p;-//} 1 consists of an order preserving map f : I — I’ and
morphisms F; : P; — Q ;) which obey the compatibility conditions

piiy o Fi=Fyor,
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If P, and Q4 are limits of these direct systems, there exists a unique

morphism Fl, : Py, — Qs such that
plD o Fy = Foorl,.
O
Theorem 8.1.6: Direct limits preserve monomorphisms and epimor-

phisms, i.e., if all F;: P; — Qy(; are monomorphisms or epimorphisms,

80 is D, 1 Py — Q. Let short exact sequences
0P 150 2T -0 (8.1.3)

for all ¢ € I define a short exact sequence of direct systems of modules
{P:}1, {Qi}s, and {T;}; which are indexed by the same directed set I.

Then their direct limits form a short exact sequence

0— Py 5= Qp 2T, —0. (8.1.4)

In particular, the direct limit of factor modules @;/P; is the factor
module Q. /Ps. By virtue of Theorem 8.1.4, if all the exact sequences
(8.1.3) are split, the exact sequence (8.1.4) is well.

Remark 8.1.1: Let P be an A-module. We denote
P =& P,

Let us consider the direct system of A-modules
A—A®P) — - (AB PG & P") — ...

Its direct limit
QP=A@P®---@oP%q... (8.1.5)

is an N-graded .A-algebra with respect to the tensor product ®. It is
called the tensor algebra of a module P. Its quotient with respect to the

ideal generated by elements

pRp +p ®p,  ppeP,
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is an N-graded commutative algebra, called the exterior algebra of P. O

Given an inverse sequences of modules

il

PV plepi il (8.1.6)

its inductive limit is a module P> together with morphisms 7 : P> —
P’ such that 7* = 7 o m;° for all ¢ < j. It consists of elements
(...,p',...), p' € P', of the Cartesian product [T P’ such that p’ = 7/ (p/)

for all 7 < j.
Theorem 8.1.7: Inductive limits preserve monomorphisms, but not
epimorphisms. Let exact sequences
0P g 2L e,
for all i € N define an exact sequence of inverse systems of modules { P},

{Q"} and {T"}. Then their inductive limits form an exact sequence

0— P> E5Qx 51,

In contrast with direct limits, the inductive ones exist in the category

of groups which are not necessarily commutative.

8.2 Differential operators on modules

This Section addresses the notion of a linear differential operator on a
module over a commutative ring.

Let K be a commutative ring and A a commutative IC-ring. Let P
and @ be A-modules. The K-module Hom x(P, Q) of K-module homo-
morphisms ® : P — @ can be endowed with the two different A-module

structures

(a®)(p) = a®(p), (Pea)(p)=P(ap), ac A peP (821)
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For the sake of convenience, we refer to the second one as the A®*-module

structure. Let us put

3,0 =ad — Dea, ae A (8.2.2)

Definition 8.2.1: An element A € Hom (P, Q) is called a Q-valued

differential operator of order s on P if
0gy 0+ 00, A =0

for any tuple of s + 1 elements ay, . ..,as of A. The set Diff ((P, Q) of
these operators inherits the A- and A®-module structures (8.2.1). O

In particular, zero order differential operators obey the condition
0A(p) = aA(p) — Alap) =0, a€ A pePl

and, consequently, they coincide with A-module morphisms P — @. A

first order differential operator A satisfies the condition
0y 0 04 A(p) = baA(p) — bA(ap) — aA(bp) + A(abp) =0, a,b € A.

The following fact reduces the study of @-valued differential operators
on an A-module P to that of @)-valued differential operators on the ring

A.

Theorem 8.2.2: Let us consider the A-module morphism
hs : Diff 4(A, Q) — Q, hs(A) = A(1). (8.2.3)

Any Q-valued s-order differential operator A € Diff ((P, Q) on P uniquely

factorizes as
A: P 25 Diff (4,Q) L5 Q (8.2.4)
through the morphism h, (8.2.3) and some homomorphism

in: P — Diff (A, Q), (fap)(a) = A(ap), a€A, (8.2.5)
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of the A-module P to the A*-module Diff ;(A, Q). The assignment A —

fa defines the isomorphism

Diff ,(P, Q) = Hom 4_4(P, Diff (A, Q). (8.2.6)

Let P = A. Any zero order @-valued differential operator A on A is
defined by its value A(1). Then there is an isomorphism

via the association
Q>q— A, € Diffo(A,Q),

where A, is given by the equality Ay(1) = ¢. A first order Q-valued
differential operator A on A fulfils the condition

A(ab) = bA(a) + aA(b) — baA(1), a,be A
It is called a @Q-valued derivation of A if A(1) =0, i.e., the Leibniz rule
A(ab) = A(a)b+ aA(b), a,be A, (8.2.7)

holds. One obtains at once that any first order differential operator on

A falls into the sum
Aa) = aA1) + [A(a) — aA(1)]

of the zero order differential operator aA(1) and the derivation A(a) —
aA(1). If 9 is a Q-valued derivation of A, then ad is well for any a € A.
Hence, @Q-valued derivations of .4 constitute an A-module 2(A, @), called
the derivation module. There is the A-module decomposition
Diff 1(A4,Q) = Q (A, Q). (8.2.8)
If P=@Q = A, the derivation module 2.4 of A also is a Lie K-algebra
with respect to the Lie bracket

[u,v] =uou —u ou, u,u’ € A. (8.2.9)
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Accordingly, the decomposition (8.2.8) takes the form
Diff 1 (A) = A @ oA (8.2.10)

Definition 8.2.3: A connection on an A-module P is an A-module

morphism
WA > u—V, eDiff (P, P) (8.2.11)
such that the first order differential operators V,, obey the Leibniz rule

Vu(ap) = u(a)p+aVu(p), a€A, peP (8.2.12)

Though V, (8.2.11) is called a connection, it in fact is a covariant
differential on a module P.

Let P be a commutative A-ring and 2P the derivation module of P
as a KC-ring. The P is both a P- and .A-module. Then Definition 8.2.3

is modified as follows.
Definition 8.2.4: A connection on an A-ring P is an A-module mor-
phism

WA > u—V, €oP CDiff (P, P), (8.2.13)

which is a connection on P as an A-module. O

8.3 Homology and cohomology of complexes

This Section summarizes the relevant basics on complexes of modules
over a commutative ring.

Let IC be a commutative ring. A sequence

0—By &y &...p, 2L (8.3.1)

of K-modules B, and homomorphisms J, is said to be a chain complex
if

8p00p+1:07 pEN,
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ie, Imdy; C Kerd,. Homomorphisms 0, are called boundary op-
erators. Elements of a module B,, its submodules Kerd, C B, and
Im 8,41 C Ker 9, are called p-chains, p-cycles and p-boundaries, respec-
tively. The p-th homology group of the chain complex B, (8.3.1) is the

factor module
H,(B,) = Ker d,/Im dp1.

It is a K-module. In particular, we have Hy(B.) = By/Im d;. The chain
complex (8.3.1) is exact at a term B, iff H,(B.) = 0. This complex is
said to be k-exact if its homology groups H,<j(B,) are trivial. It is called
exact if all its homology groups are trivial, i.e., it is an exact sequence.

A sequence
0p" Y.t o, g, (8.3.2)

of modules BP and their homomorphisms ¢ is said to be a cochain

complex (or, simply, a complex) if
P o 6P =0, p EN,

i.e., Imé? C Kerd”*'. The homomorphisms §” are called coboundary
operators. Elements of a module B?, its submodules Ker 6? C BP and
Im 6P~ are called p-cochains, p-cocycles and p-coboundaries, respec-
tively. The p-th cohomology group of the complex B* (8.3.2) is the

factor module
HP(B*) = Ker 6" /Tm 6"~ .

It is a K-module. In particular, H°(B*) = Ker¢”. The complex (8.3.2)
is exact at a term B? iff HP(B*) = 0. This complex is an exact sequence
if all its cohomology groups are trivial.

A complex (B*, §*) is called acyclic if its cohomology groups H'<P(B*)
are trivial. A complex (B*,§*) is said to be a resolution of a module B
if it is acyclic and H°(B*) = Ker §" = B.
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The following are the standard constructions of new complexes from
old ones.
e Given complexes (Bj,07) and (Bs, d5), their direct sum B} & B} is
a complex of modules
(B} @ B;)" = Bl & By
with respect to the coboundary operators

0%, (B + by) = by + 0505

e Given a subcomplex (C*, %) of a complex (B*, %), the factor com-
plex B*/C* is defined as a complex of factor modules B?/C? provided
with the coboundary operators 6?[b] = [6PbP], where [0P] € B?/CP de-
notes the coset of an element b”.

e Given complexes (Bj,d7) and (B3, d3), their tensor product B} @ B

is a complex of modules
(Bi@B)'= ® Bi®B;
with respect to the coboundary operators
0% (b @ by) = (81b)) @ by + (—1)"b; @ (3505).
A cochain morphism of complexes
v: B — B} (8.3.3)
is defined as a family of degree-preserving homomorphisms
VW:Bl — By, pEN,
such that
fhoy? =4"1odl, peN

It follows that if o € BY is a cocycle or a coboundary, then v*(0?) € B
is so. Therefore, the cochain morphism of complexes (8.3.3) yields an

induced homomorphism of their cohomology groups

" HY(Bi) — H'(By).



8.4. DIFFERENTIAL CALCULUS OVER A COMMUTATIVE RING 175

Let short exact sequences
0—cr 2 pr S
for all p € N define a short exact sequence of complexes
0—C" 1B S5 Fr 0, (8.3.4)
where « is a cochain monomorphism and ( is a cochain epimorphism
onto the quotient F* = B*/C*.

Theorem 8.3.1: The short exact sequence of complexes (8.3.4) yields

the long exact sequence of their cohomology groups

0

0— Bc) 1 gy U gopy 2L HYCY) — - (8.3.5)
— HP(CY) me(B*) mHP(F*) 2L PO —

O

Theorem 8.3.2: A direct sequence of complexes
.
By —Bf —---Bf 2L Bt — ... (8.3.6)

admits a direct limit B which is a complex whose cohomology H*(B%,)

is a direct limit of the direct sequence of cohomology groups

k
H(B) — H*(BY) — - H'(B)) ™8 H*(Bf,,) — -+

8.4 Differential calculus over a commutative ring

Let g be a Lie algebra over a commutative ring K. Let g act on a K-

module P on the left such that
[e,elp=(c0e —& oe)p, e, e €.

Then one calls P the Lie algebra g-module. Let us consider K-multilinear
skew-symmetric maps

vk
" xg— P
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They form a g-module C¥[g; P]. Let us put C°[g; P] = P. We obtain the

cochain complex
0—P 2 lg P 2 g P] 2 (8.4.1)

with respect to the Chevalley—Filenberg coboundary operators
k

Fc(eo, .. en) = S(=1)eic (g0, ... By ooy El) + (8.4.2)
i=0
Z (—1)i+jck([€i, 6]‘], EQy - - - ,é:i, e ,é:j, N ,é‘k),
1<i<j<k

where the caret ~ denotes omission. For instance, we have

8"p(g0) = eop, (8.4.3)

5t (e, 1) = eoct(e1) — e1c' (g0) — ! ([go, €1)). (8.4.4)
The complex (8.4.1) is called the Chevalley—Eilenberg complex, and its
cohomology H*(g, P) is the Chevalley—Eilenberg cohomology of a Lie
algebra g with coefficients in P.

Let A be a commutative KC-ring. Since the derivation module 24 of
A is a Lie K-algebra, one can associate to A the Chevalley-Eilenberg
complex C*[oA; A]. Tts subcomplex of A-multilinear maps is a DGA,
also called the differential calculus over A. By a gradation throughout
this Section is meant the N-gradation.

A graded algebra 0" over a commutative ring K is defined as a direct
sum Q* = % QOF of KC-modules QF, provided with an associative multipli-
cation law o - 3, a, § € Q*, such that a - 3 € QI*H18 where |a| denotes
the degree of an element o € Q% In particular, it follows that Q° is a
(non-commutative) K-algebra A, while Q%> are A-bimodules and Q* is
an (A — A)-algebra. A graded algebra is said to be graded commutative
if

a-f=(=1)llg. q, a,B e Q.
A graded algebra Q* is called the differential graded algebra (DGA)

or the differential calculus over A if it is a cochain complex of C-modules

0K —A 250 2. 0F 2., (8.4.5)
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relative to a coboundary operator 6 which obeys the graded Leibniz rule
§(a-B) =da- B+ (=1)la - 45 (8.4.6)

In particular, 6 : 4 — Q! is a Q'-valued derivation of a K-algebra A.
The cochain complex (8.4.5) is said to be the abstract de Rham complex
of the DGA (Q*,§). Cohomology H*(2*) of the complex (8.4.5) is called
the abstract de Rham cohomology.

A morphism v between two DGAs (Q*,9) and (©*,¢') is defined as
a cochain morphism, i.e., yod = v o d'. It yields the corresponding
morphism of the abstract de Rham cohomology groups of these algebras.

One considers the minimal differential graded subalgebra 2*A of the
DGA Q* which contains A. Seen as an (A — A)-algebra, it is generated

by the elements da, a € A, and consists of monomials
a = agday - - - day, a; € A,

whose product obeys the juxtaposition rule
(apdaq) - (bpdb1) = apd(aiby) - 0by — agaidby - by

in accordance with the equality (8.4.6). The DGA (Q*A, d) is called the
minimal differential calculus over A.

Let now A be a commutative K-ring possessing a non-trivial Lie al-
gebra 2.A of derivations. We consider the extended Chevalley—Eilenberg

complex
0— K 2 CoA; Al

of the Lie algebra 2.4 with coefficients in the ring A, regarded as a v2.A-
module. It is easily justified that this complex contains a subcomplex

O*[pA] of A-multilinear skew-symmetric maps

& XA — A (8.4.7)
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with respect to the Chevalley—Eilenberg coboundary operator

k )
dé(uo, . .., up) = __ZO(_l)ZUi(¢(UOa s Ty ug)) + (84.8)
Z(—l)i”qzb([ui, Uj], Ugy - - - 7ﬁi7 R ,ﬂj, e ,Uk).
1<)

In particular, we have

(da)(u) = u(a), a€ A, u €A,

() (uo, ur) = uo(d(u1)) — ur(¢(uo)) — ¢([uo, wa]), & € O'pAl,

O A] = A,

O'pA] = Hom 4(0A, A) = 2A".
It follows that d(1) = 0 and d is a O'[0.A]-valued derivation of A.

The graded module O*[p.A] is provided with the structure of a graded

A-algebra with respect to the exterior product

OGN Y (Ury oy Upys) = (8.4.9)

Y sen ) (),
i <ol f1 <o <Jis

o€ O A, ¢ € O°pA], ur € 0A,
where sgn ' is the sign of a permutation. This product obeys the relations

Ao N o) =d(d) N+ (=) N d(¢), 6,0 € OPpAl,

dA Y = (=) A g, (8.4.10)
By virtue of the first one, O*[p.A] is a differential graded K-algebra,
called the Chevalley—Filenberg differential calculus over a KC-ring A. The
relation (8.4.10) shows that O*[p.A] is a graded commutative algebra.

The minimal Chevalley—FEilenberg differential calculus O* A over a

ring A consists of the monomials

aopdai A -+ - A dayg, a; € A.
Its complex

0=k —A-L0ouUL...00n L. (8.4.11)
is said to be the de Rham complex of a K-ring A, and its cohomology
H*(A) is called the de Rham cohomology of A.
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8.5 Sheaf cohomology

A sheaf on a topological space X is a continuous fibre bundle 7 : § — X
in modules over a commutative ring K, where the surjection 7 is a local
homeomorphism and fibres S,, v € X, called the stalks, are provided
with the discrete topology. Global sections of a sheaf S make up a K-
module S(X), called the structure module of S.

Any sheaf is generated by a presheaf. A presheaf Sy;;; on a topological
space X is defined if a module Sy over a commutative ring K is assigned
to every open subset U C X (Sy = 0) and if, for any pair of open subsets

V C U, there exists the restriction morphism r{ : S;y — Sy such that
Y =1dSy, =Y, WcVcu

Every presheaf Sy, on a topological space X yields a sheaf on X
whose stalk S, at a point x € X is the direct limit of the modules
Sy, x € U, with respect to the restriction morphisms 7. It means
that, for each open neighborhood U of a point x, every element s € Sy
determines an element s, € S,, called the germ of s at z. Two elements
s € Sy and s’ € Sy belong to the same germ at x iff there exists an open

neighborhood W C U NV of x such that rf,s = rjjs’.

Example 8.5.1: Let C?U} be the presheaf of continuous real functions
on a topological space X. Two such functions s and s’ define the same
germ s, if they coincide on an open neighborhood of z. Hence, we
obtain the sheaf C% of continuous functions on X. Similarly, the sheaf
C¥ of smooth functions on a smooth manifold X is defined. Let us also
mention the presheaf of real functions which are constant on connected
open subsets of X. It generates the constant sheaf on X denoted by R.
O

Different presheaves may generate the same sheaf. Conversely, every
sheaf S defines a presheaf S({U}) of modules S(U) of its local sections. It

is called the canonical presheaf of the sheaf S. If a sheaf S is constructed
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from a presheaf Syyy, there are natural module morphisms
Sy 3s—s(U) e SU), s(x) =8, x€U,

which are neither monomorphisms nor epimorphisms in general. For
instance, it may happen that a non-zero presheaf defines a zero sheaf.
The sheaf generated by the canonical presheaf of a sheaf S coincides
with S.

A direct sum and a tensor product of presheaves (as families of mod-
ules) and sheaves (as fibre bundles in modules) are naturally defined.
By virtue of Theorem 8.1.4, a direct sum (resp. a tensor product) of
presheaves generates a direct sum (resp. a tensor product) of the corre-

sponding sheaves.

Remark 8.5.2: In a different terminology, a sheaf is introduced as a
presheaf which satisfies the following additional axioms.
(S1) Suppose that U C X is an open subset and {U,} is its open

cover. If s, ' € Sy obey the condition

ri, (s) =g, (s))
for all U,, then s = s’

(S2) Let U and {U,} be as in previous item. Suppose that we are

given a family of presheaf elements {s, € Sy, } such that

Ua _ .Ux
rutau (5a) = 100w, (53)
for all U,, U,. Then there exists a presheaf element s € Sy such that
_ U
So = rUa(s).
Canonical presheaves are in one-to-one correspondence with presheaves
obeying these axioms. For instance, presheaves of continuous, smooth

and locally constant functions in Example 8.5.1 satisfy the axioms (S1)
-(S2). O

Remark 8.5.3: The notion of a sheaf can be extended to sets, but not

to non-commutative groups. One can consider a presheaf of such groups,
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but it generates a sheaf of sets because a direct limit of non-commutative
groups need not be a group. The first (but not higher) cohomology of
X with coefficients in this sheaf is defined. O

A morphism of a presheaf Sy, to a presheaf SﬁLU} on the same topo-
logical space X is defined as a set of module morphisms vy : Sy — Sp;
which commute with restriction morphisms. A morphism of presheaves
yields a morphism of sheaves generated by these presheaves. This is a
bundle morphism over X such that v, : S, — S, is the direct limit of
morphisms vy, © € U. Conversely, any morphism of sheaves S — 5’
on a topological space X yields a morphism of canonical presheaves of
local sections of these sheaves. Let Hom (S|y, S'|y) be the commutative
group of sheaf morphisms S|y — 5’|y for any open subset U C X. These
groups are assembled into a presheaf, and define the sheaf Hom (S, 5")

on X. There is a monomorphism
Hom (S, 5")(U) — Hom (S(U), S"(U)), (8.5.1)

which need not be an isomorphism.
By virtue of Theorem 8.1.6, if a presheaf morphism is a monomor-
phism or an epimorphism, so is the corresponding sheaf morphism. Fur-

thermore, the following holds.
Theorem 8.5.1: A short exact sequence

0 — Siy — Sy — Sfry — 0 (8.5.2)
of presheaves on the same topological space yields the short exact se-
quence of sheaves generated by these presheaves

0—-85—5—-5 -0, (8.5.3)

where the factor sheaf S” = S/S’ is isomorphic to that generated by the
factor presheaf SQ’U} = Sun/ S%U}. If the exact sequence of presheaves
(8.5.2) is split, i.e.,

Sty = Siyy @ S{oy,



182 CHAPTER 8. TOPICS ON COMMUTATIVE GEOMETRY
the corresponding splitting
S g Sl @ Sl/
of the exact sequence of sheaves (8.5.3) holds. O
The converse is more intricate. A sheaf morphism induces a morphism
of the corresponding canonical presheaves. If S — S’ is a monomor-
phism,

S{U}) — S'({U})

also is a monomorphism. However, if S — S’ is an epimorphism,

S{U}) — S'{U})

need not be so. Therefore, the short exact sequence (8.5.3) of sheaves

yields the exact sequence of the canonical presheaves
0—S'({U}) — s{U}) — s"({U}), (8.5.4)

where S({U}) — S”({U}) is not necessarily an epimorphism. At the

same time, there is the short exact sequence of presheaves
0—S'{U}) - SHU}) — S{U} — 0, (8.5.5)
where the factor presheaf

Sty = S{UH/S'({UY)

generates the factor sheaf S” = S/S’, but need not be its canonical
presheaf.

Let us turn now to sheaf cohomology. Note that only proper covers
are considered.

Let S{ry be a presheaf of modules on a topological space X, and let
4 = {U;}ier be an open cover of X. One constructs a cochain complex

where a p-cochain is defined as a function s? which associates an element

SP(ig, N 77;[,) S SUiom.“mUlp (856)
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to each (p + 1)-tuple (dp,...,7,) of indices in I. These p-cochains are
assembled into a module C?(y, Syry). Let us introduce the coboundary

operator

&7 - OP(81, Sqry) — CPH(, Srry),

p+1 —_ - )
6p8p(io, - ,ip+1) = Z(—l)krws"(zo, N ,Zp+1), (857)
k=0

W=U,Nn...0U; Wi=U,N---NU;,N---NU;

p+17 p1°

One can easily check that §?*! o » = 0. Thus, we obtain the cochain
complex of modules
0 D
0 — CO, Srry) 2=+ CP(81, Syy) 2 CPF (8, Sypy) -+ (8.5.8)
Its cohomology groups
HP(s1; S{U}) = Ker ¢”/Im o1

are modules. Of course, they depend on an open cover 4 of X.
Let ¢ be a refinement of the cover ¢. Then there is a morphism of

cohomology groups
H* (1 Squy) — H* (45 Sqoy).- (8.5.9)

Let us take the direct limit of cohomology groups H*(i(; Syy) relative
to these morphisms, where i runs through all open covers of X. This
limit H*(X; Sgny) is called the cohomology of X with coefficients in the
presheaf S;.

Let S be a sheaf on a topological space X. Cohomology of X with
coefficients in S or, simply, sheaf cohomology of X is defined as coho-

mology
HY(X;S) = H'(X; S{U}))

with coefficients in the canonical presheaf S({U}) of the sheaf S.
In this case, a p-cochain s € C?(u, S({U})) is a collection

sp = {Sp(io, e ,ip)}
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of local sections s (i, ..., 1,) of the sheaf S over U;; N---N U;, for each
(p + 1)-tuple (Ui, ...,U;) of elements of the cover «. The coboundary
operator (8.5.7) reads

p+1 R
(SPSP(Z'(], ey ip+1) = Z(—l)ké‘p(io, ey Z‘]g7 c ,ip+1) Uiuﬂ'"mepH'
k=0
For instance, we have
8°5°(i, j) = [s°(4) — " Dllview (8.5.10)
6181(i7j7 k) = [81(j7 k) - Sl(ia k) + 81(i7j)”UiﬂU]ﬂUk~ (8511)

A glance at the expression (8.5.10) shows that a zero-cocycle is a collec-
tion s = {s(i)} of local sections of the sheaf S over U; € sl such that
s(i) = s(j) on U; N U;. It follows from the axiom (S2) in Remark 8.5.2
that s is a global section of the sheaf S, while each s(7) is its restric-
tion s|y, to U;. Consequently, the cohomology group H°(st; S({U})) is
isomorphic to the structure module S(X) of global sections of the sheaf
S. A one-cocycle is a collection {s(i,7)} of local sections of the sheaf S

over overlaps U; N U; which satisfy the cocycle condition
[s(j, k) — s(i, k) + s, §)]|v.nv,nv, = 0. (8.5.12)

If X is a paracompact space, the study of its sheaf cohomology is

essentially simplified due to the following fact.

Theorem 8.5.2: Cohomology of a paracompact space X with coeffi-
cients in a sheaf S coincides with cohomology of X with coefficients in

any presheaf generating the sheaf S. O

Remark 8.5.4: We follow the definition of a paracompact topolog-
ical space as a Hausdorff space such that any its open cover admits a
locally finite open refinement, i.e., any point has an open neighborhood
which intersects only a finite number of elements of this refinement. A
topological space X is paracompact iff any cover {U¢} of X admits a

subordinate partition of unity {f¢}, i.e.:
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(i) fe are real positive continuous functions on X;
(ii) supp fe C Ug;
(iii) each point z € X has an open neighborhood which intersects
only a finite number of the sets supp fe;
(iv) %jfg(x) =1lforallz e X. O

The key point of the analysis of sheaf cohomology is that short ex-
act sequences of sheaves yield long exact sequences of their cohomology
groups.

Let Syyy and SEU} be presheaves on the same topological space X.
It is readily observed that, given an open cover 4 of X, any morphism

Sy — SEU} yields a cochain morphism of complexes
C* (4, Siy) — C™ (44, Siyry)

and the corresponding morphism
H*(%; Spyy) — H™ (4 S{yry)

of cohomology groups of these complexes. Passing to the direct limit
through all refinements of 4, we come to a morphism of cohomology

groups

of X with coefficients in the presheaves Sy and SQU}. In particular,

any sheaf morphism S — S’ yields a morphism of canonical presheaves
s{u}) = s'{uh
and the corresponding cohomology morphism
H*(X;S) — H*(X; 5.
By virtue of Theorems 8.3.1 and 8.3.2, every short exact sequence

0— Sy — Swy — S{yy = 0 (8.5.13)
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of presheaves on the same topological space X and the corresponding

exact sequence of complexes (8.5.8) yield the long exact sequence
0— H(X; SQU}) — H(X; Swy) — HY(X; S?U}) — (8.5.14)
HY(X; S{yy) — - HP(X; Syy) — HP(X; Sy) —
HP(X3S~/{/U}) — H" (X S~/{U}) -

of the cohomology groups of X with coefficients in these presheaves.

This result is extended to the exact sequence of sheaves. Let
0—-5 —85 —5" -0 (8.5.15)

be a short exact sequence of sheaves on X. It yields the short exact
sequence of presheaves (8.5.5) where the presheaf Si’U} generates the

sheaf S”. If X is paracompact,
HY (X3 Spyy) = H(X;.8")

in accordance with Theorem 8.5.2, and we have the exact sequence of

sheaf cohomology
0— H'(X;S) — H'(X;S) — H'(X;5") — (8.5.16)
HI(X;8') — - HY(X; ') — HP(X;S) —
HP(X;S//) —>Hp+l(X; S/) .

Let us turn now to the abstract de Rham theorem which provides a
powerful tool of studying algebraic systems on paracompact spaces.

Let us consider an exact sequence of sheaves
08 g g Mg M (8.5.17)

It is said to be a resolution of the sheaf S if each sheaf Sy is acyclic,
i.e., its cohomology groups H*Y(X; S,) vanish.

Any exact sequence of sheaves (8.5.17) yields the sequence of their
structure modules

ho ht I

0— S(X) 25 Sp(X) =58 (X) 258 (X) 25t (8.5.18)
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which is always exact at terms S(X) and Sy(X) (see the exact sequence

(8.5.4)). The sequence (8.5.18) is a cochain complex because
Rt o h? = 0.

If X is a paracompact space and the exact sequence (8.5.17) is a reso-
lution of S, the forthcoming abstract de Rham theorem establishes an
isomorphism of cohomology of the complex (8.5.18) to cohomology of X

with coefficients in the sheaf S.

Theorem 8.5.3: Given a resolution (8.5.17) of a sheaf S on a paracom-
pact topological space X and the induced complex (8.5.18), there are

isomorphisms

HY(X;S)=Kerh?, HYX;S)=Kerh!/Imhi' ¢>0.(85.19)

A sheaf S on a paracompact space X is called fine if, for each lo-
cally finite open cover 4 = {U; };e; of X, there exists a system {h;} of
endomorphisms h; : S — S such that:

(i) there is a closed subset V; C U; and h;(S,) =0 if x & V},

(i) iEZI h; is the identity map of S.

Theorem 8.5.4: A fine sheaf on a paracompact space is acyclic. O
There is the following important example of fine sheaves.

Theorem 8.5.5: Let X be a paracompact topological space which ad-
mits a partition of unity performed by elements of the structure module
2A(X) of some sheaf 2 of real functions on X. Then any sheaf S of
2-modules on X, including 2 itself, is fine. O

In particular, the sheaf C'% of continuous functions on a paracompact

topological space is fine, and so is any sheaf of C%-modules.
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8.6 Local-ringed spaces

Local-ringed spaces are sheafs of local rings. For instance, smooth man-
ifolds, represented by sheaves of real smooth functions, make up a sub-
category of the category of local-ringed spaces.

A sheaf % on a topological space X is said to be a ringed space if its
stalk |, at each point € X is a real commutative ring. A ringed space
is often denoted by a pair (X, %) of a topological space X and a sheaf
R of rings on X. They are called the body and the structure sheaf of a
ringed space, respectively.

A ringed space is said to be a local-ringed space (a geometric space)
if it is a sheaf of local rings.

For instance, the sheaf C% of continuous real functions on a topolog-
ical space X is a local-ringed space. Its stalk C?, x € X, contains the
unique maximal ideal of germs of functions vanishing at x.

Morphisms of local-ringed spaces are defined as those of sheaves on
different topological spaces as follows.

Let ¢ : X — X’ be a continuous map. Given a sheaf S on X, its

direct image .S on X' is generated by the presheaf of assignments

X' DU — S(p™(U)
for any open subset U’ C X'. Conversely, given a sheaf S" on X', its
inverse image ©*S’ on X is defined as the pull-back onto X of the contin-
uous fibre bundle " over X', i.e., ¢*S] = S,,). This sheaf is generated

by the presheaf which associates to any open V' C X the direct limit of
modules S'(U) over all open subsets U C X’ such that V C f~1(U).

Remark 8.6.1: Let i : X — X' be a closed subspace of X’. Then 4,5

is a unique sheaf on X’ such that
wS|x =5, i xnx = 0.

Indeed, if 2’ € X C X', then
i,.S(U") = S(U' N X)
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for any open neighborhood U of this point. If 2/ ¢ X, there exists its
neighborhood U’ such that U' N X is empty, i.e., i,S(U’) = 0. The sheaf

1,5 1s called the trivial extension of the sheaf S. O

By a morphism of ringed spaces
(X, %) — (X', )

is meant a pair (¢, @) of a continuous map ¢ : X — X' and a sheaf
morphism @ : /' — .M or, equivalently, a sheaf morphisms ¢*® — R.
Restricted to each stalk, a sheaf morphism & is assumed to be a ring
homomorphism. A morphism of ringed spaces is said to be:

e a monomorphism if ¢ is an injection and ® is an epimorphism,

e an epimorphism if ¢ is a surjection, while ® is a monomorphism.

Let (X,,) be a local-ringed space. By a sheaf 9% of derivations of
the sheaf % is meant a subsheaf of endomorphisms of % such that any
section u of 9% over an open subset U C X is a derivation of the real ring
R(U). It should be emphasized that, since the monomorphism (8.5.1) is
not necessarily an isomorphism, a derivation of the ring ®/(U) need not
be a section of the sheaf 9%|yy. Namely, it may happen that, given open

sets U’ C U, there is no restriction morphism
o(R(V)) — o(R(U")).

Given a local-ringed space (X, %), a sheaf P on X is called a sheaf
of ®-modules if every stalk P,, z € X is an %;-module or, equivalently,
if P(U) is an ®R(U)-module for any open subset U C X. A sheaf of ®-
modules P is said to be locally free if there exists an open neighborhood
U of every point z € X such that P(U) is a free ®(U)-module. If all
these free modules are of finite rank (resp. of the same finite rank), one
says that P is of finite type (resp. of constant rank). The structure
module of a locally free sheaf is called a locally free module.

The following is a generalization of Theorem 8.5.5.
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Theorem 8.6.1: Let X be a paracompact space which admits a parti-
tion of unity by elements of the structure module S(X) of some sheaf S
of real functions on X. Let P be a sheaf of S-modules. Then P is fine

and, consequently, acyclic. O

Assumed to be paracompact, a smooth manifold X admits a partition
of unity performed by smooth real functions. It follows that the sheaf
C¥ of smooth real functions on X is fine, and so is any sheaf of C'§-
modules, e.g., the sheaves of sections of smooth vector bundles over X.

Similarly to the sheaf C% of continuous functions, the sheaf O of
smooth real functions on a smooth manifold X is a local-ringed spaces.
Its stalk C2° at a point « € X has a unique maximal ideal p, of germs
of smooth functions vanishing at . Though the sheaf C¥ is defined on
a topological space X, it fixes a unique smooth manifold structure on X

as follows.

Theorem 8.6.2: Let X be a paracompact topological space and (X, R)
a local-ringed space. Let X admit an open cover {U;} such that the sheaf
7 restricted to each Uj; is isomorphic to the local-ringed space (R”, Cf.).
Then X is an n-dimensional smooth manifold together with a natural

isomorphism of local-ringed spaces (X, %) and (X, C¥). O

One can think of this result as being an alternative definition of
smooth real manifolds in terms of local-ringed spaces. In particular,
there is one-to-one correspondence between smooth manifold morphisms
X — X’ and the R-ring morphisms C*°(X') — C*(X).

For instance, let Y — X be a smooth vector bundle. The germs of
its sections make up a sheaf of C'P-modules, called the structure sheaf
Sy of a vector bundle Y — X. The sheaf Sy is fine. The structure
module of this sheaf coincides with the structure module Y (X) of global
sections of a vector bundle Y — X. The following Serre-Swan theorem
shows that these modules exhaust all projective modules of finite rank

over C*(X). Originally proved for bundles over a compact base X, this
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theorem has been extended to an arbitrary X.

Theorem 8.6.3: Let X be a smooth manifold. A C*(X)-module P is
isomorphic to the structure module of a smooth vector bundle over X

iff it is a projective module of finite rank. O

This theorem states the categorial equivalence between the vector
bundles over a smooth manifold X and projective modules of finite rank
over the ring C*(X) of smooth real functions on X. The following are
corollaries of this equivalence

e The structure module Y*(X) of the dual Y* — X of a vector
bundle Y — X is the C*(X)-dual Y (X)* of the structure module Y (X)
of Y - X.

e Any exact sequence of vector bundles

0—-Y —Y —Y"—=0 (8.6.1)
over the same base X yields the exact sequence

0—-Y(X) —Y'(X) —Y"(X)—0 (8.6.2)
of their structure modules, and vice versa. In accordance with Theorem
1.2.2, the exact sequence (8.6.1) is always split. Every its splitting defines
that of the exact sequence (8.6.2), and vice versa.

e The derivation module of the real ring C*°(X) coincides with the
C*°(X)-module T (X) of vector fields on X, i.e., with the structure mod-
ule of the tangent bundle TX of X. Hence, it is a projective C*°(X)-
module of finite rank. It is the C*°(X)-dual 7(X) = O} X)* of the
structure module O'(X) of the cotangent bundle 7*X of X which is the

module of differential one-forms on X and, conversely,
ONX)=T(X)"
o Therefore, if P is a C*°(X)-module, one can reformulate Definition

8.2.3 of a connection on P as follows. A connection on a C*°(X)-module
P is a C*°(X)-module morphism

V:P—-0OYX)®P, (8.6.3)
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which satisfies the Leibniz rule
V(fp)=df@p+fV(p), [feC¥X), peP

It associates to any vector field 7 € 7(X) on X a first order differential
operator V., on P which obeys the Leibniz rule

Vo(fp) = (r]df)p + fV-p. (8.6.4)

In particular, let ¥ — X be a vector bundle and Y (X) its structure
module. The notion of a connection on the structure module Y (X) is
equivalent to the standard geometric notion of a connection on a vector
bundle Y — X.

Since the derivation module of the real ring C*°(X) is the C*(X)-
module 7 (X) of vector fields on X and

ON(X) =T(X)",

the Chevalley-Eilenberg differential calculus over the real ring C*(X) is
exactly the DGA (O*(X), d) of exterior forms on X, where the Chevalley—
Eilenberg coboundary operator d (8.4.8) coincides with the exterior dif-
ferential. Moreover, one can show that (O*(X),d) is a minimal differ-
ential calculus, i.e., the C*(X)-module O'(X) is generated by elements
df, f € C*(X). Therefore, the de Rham complex (8.4.11) of the real
ring C*(X) is the de Rham complex

0—-R —C%X) L0'(X) L. .0 (X) L. (8.6.5)

of exterior forms on a manifold X.
The de Rham cohomology of the complex (8.6.5) is called the de
Rham cohomology Hi)r(X) of X. To describe them, let us consider the

de Rham complex
0—-R —C¥ Lo 4.0 4. (8.6.6)

of sheaves O%, k € N, of germs of exterior forms on X. These sheaves

are fine. Due to the Poincaré lemma, the complex (8.6.6) is exact and,
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thereby, is a fine resolution of the constant sheaf R on a manifold X.

Then a corollary of Theorem 8.5.3 is the classical de Rham theorem.
Theorem 8.6.4: There is an isomorphism
Hpp(X) = HY(X;R) (8.6.7)

of the de Rham cohomology Hijyp(X) of a manifold X to cohomology of

X with coefficients in the constant sheaf R. O
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