
Universal grammar 

by 

R I C H A R D  M O N T A G U E  
(University of California, Los Angeles) 

There is in my opinion no important theoretical difference be- 
tween natural languages and the artificial languages of logicians; 
indeed, I consider it possible to  comprehend the syntax and se- 
mantics of both kinds of languages within a single natural and 
mathematically precise theory. On this point I differ from a 
number of philosophers, but agree, I believe, with Chomsky and 
his associates. It is clear, however, that no adequate and compre- 
hensive semantical theory has yet been constructed,l and arguable 
that no comprehensive and semantically significant syntactical 
theory yet exists.' 

Or  even a reasonable semantics for a reasonably comprehensive fragment of 
any natural language, with the single exception of the treatment in Montague 
[4] of a fragment of English. There is, however, a significant difference between 
that treatment and the treatment below of an overlapping fragment. The 
novelty lies in the interpretation of singular terms and verbs, and is introduced 
in order to  provide (for the first time, I believe, in the literature; the proposals 
in question were first made in my talks before the Southern California Logic 
Colloquium and the Association for Symbolic Logic in April and May of 1969) 
a reasonable semantics for discourse involving intensional verbs. (Another 
approach is also possible, more along the lines of Montague [4]; it remains to 
be seen which of the two is preferable.) 

It should be pointed out that the treatment of English in Montague [4] is 
fully compatible with the present general theory, and indeed, like the con- 
flicting treatment below, can be represented as a special case of it. I should like, 
however, to withdraw my emphasis in Montague [4] on the possibility of doing 
without a distinction between sense and denotation. While such a distinction 
can be avoided in special cases, it remains necessary for the general theory, and 
probably provides the clearest approach even to the special cases in question. 
* The basic aim of semantics is t o  characterize the notions of a true sentence 
(under a given interpretation) and of entailment, while that of syntax is t o  
characterize the various syntactical categories, especially the set of declarative 
sentences. It is to be expected, then, that the aim of syntax could be realized 
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The aim of the present work is to fill this gap, that is, to develop 
a universal syntax and semantics. I shall also consider the resulting 
notions in connection with two examples-the first a rather 
important artificial language and the second a fragment of ordinary 
English. This merely illustrative fragment is intentionally circum- 
scribed in the interests of simplicity but is perhaps sufficiently 
rich to  indicate the manner in which various more extensive 
portions of natural language may be subsumed within the general 
framework. The intensional logic which constitutes the first 
example below has some derivative importance apart from what- 
ever intrinsic interest it may possess. Very extensive portions of 
natural languages can, like the illustrative fragment considered in 
this paper, be adequately interpreted by way of translation (in 
the precise general sense analyzed here) into that system of inten- 
sional logic. 

For the sake of brevity I shall content myself with the mere 
statement of definitions, omitting all theorems apart from a few 
(called Remarks) directly related to comprehension, and avoiding 
almost all discussion and intuitive amplification. The resulting 
exposition will, I realize, be cryptic and unsatisfactory, but a more 
extended development must be deferred to a book, Montague 
[51 .a 

in many different ways, only some of which would provide a suitable basis for 
semantics. It appears t o  me that the syntactical analyses of particular fragmenta- 
ry languages that have been suggested by transformational grammarians, 
even if successful in correctly characterizing the declarative sentences of those 
languages, will prove t o  lack semantic relevance; and I fail to see any great 
interest in syntax except as a preliminary to  semantics. (One could also object 
to existing syntactical efforts by Chomsky and his associates on grounds of 
adequacy, mathematical precision, and elegance; but such criticism should 
perhaps await more definitive and intelligible expositions than are yet available. 
In particular, I believe the transformational grammarians should be expected 
t o  produce a rigorous definition, complete in all details, of the set of declarative 
sentences of some reasonably rich fragment of English-at least as rich as the 
fragments treated below or in Montague [4]-before their work can be seriously 
evaluated.) 
* The present paper was delivered at a joint symposium of the Association for 
Symbolic Logic and the American Philosophical Association in December, 1969, 
and before the U.C.L.A. Philosophy Colloquium in February, 1970; its prepara- 
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1. Background notions 

In sections 1-5 I use ‘a’, I/?’, ‘t’, ’$ to  refer to ordinal numbers. 
A /?-place relation (among members of a set A) is a set of /?-place 
sequences (of members of A). A /?-place operation (on A) is a ( p  + 1)- 
place relation F (among members of A) such that whenever 
(ac) < (r is a /?-place sequence (of members of A) there is exactly 
one object x (in A) such that the concatenation of (ac) < 6 with 
the 1-place sequence ( x )  is in F; we let F ( ( u ~ ) ~  < #) = x .  F is an 
operation (on A) if and only if F is a /?-place operation (on A), for 
some ordinal number p. A function is a 1-place operation; iff is 
a function, we let f ( x )  =f((x)). 

An algebra is a system (A, F,) , r, where A is a nonempty set, 
r is a set of any sort, and each F, (for y E r) is an operation on A. 
If A is any set, x is any object, and a</?, then I,, P , ~  (or the ath 
p-place identity operation on A)  and C,#,  A (or the /?-place constant 
operation on A with value x )  are those /?-place operations on A 
such that I,, #, ~ ( a )  = a. and C ,  R, A(.) = x for every /?-place sequence 
a of members of A. If G is an a-place operation on a nonempty 
set A and ( H e )  c < , is an a-place sequence of /?-place operations on 
A, then GA(Hc) c< , (or the composition, relative to  A, of the opera- 
tion G with the sequence of operations) is that B-place 
operation on A such that GA(HE) c< , (a) = G((Hc(a)) E< ,)for every 
/?-place sequence a of members of A. If (A, F y ) y c r  is an algebra, 
then the class of polynomial operations over (A,  F y ) , p  is the 
smallest class K such that (1) F, E K for all y E r, (2) I,, (r, A E K for 
all ordinals a, /? such that a < /?, (3) C ,  8, A E K whenever x E A and 
fl is an ordinal, and (4) for all ordinals a and p, all a-place operations 
G on A, and all a-place sequences of /?-place operations 
on A, if G E K and, for all 5 <a, H E  E K, then GA(Hc)  c< , E K.4 

tion was supported in part by U.S. National Science Foundation Grant GS-2785. 
The ideas presented here were developed in lectures at U.C.L.A., beginning 
in the Spring of 1967. I am indebted to Mr. Dan Gallin, Prof. David Lewis, and 
Dr. Perry Smith for valuable criticisms and suggestions. In particular, Mr. 
Gallin and Prof. Lewis are responsible for important improvements in certain 
notions. 
4 For those interested in set-theoretic technicalities I might point out that in 
this characterization the word ‘class’ is used deliberately rather than ‘set’. In 
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If (A, F , )  ,€ r and ( B ,  Gy),.€ A are algebras, then h is a homo- 
morphism from (A,  F,),.€ r into ( B ,  G Y ) Y € A  if and only if (1) 
(A, F,),E r and ( B ,  GY),€ are similar (in the sense thatI '=d and, 
for each Y E T ,  F, and G, are operations of the same number of 
places), (2) h is a function with domain A and range included in B, 
and (3) whenever y E r and ( a c )  c<  0 is a sequence in the domain 
of F,, h(F,((ac) << 0 ) )  = G,((h(aC))  C <  B) .  We say that h is a homo- 
morphism from (A,  F,)  ,E r to ( B ,  G,) ,€ A if, in addition, B coincides 
with the range of h. 

REMARK. If (A, F y ) , e  r is an algebra, h is a homomorphism from 
(A, F,) y c r  to some algebra, and, for each y E A, G, is a polynomial 
operation over (A, F , ) , t r ,  then there is exactly one algebra 
(B, H,),Q such that h is a homomorphism from (A, Gy),cA to  
( B ,  HY) Y € A -  

2. Syntax 

Adisambiguated language is a system (A, F,, X6, S, 6 0 ) y ~ r , 6 ~ A  such 
that (1) (A, F Y ) , c r  is an algebra, (2) for all 6 E A ,  Xs is a subset of 
A, (3) A is the smallest set including as subsets all the sets Xs (for 
6 E d) and closed under all the operations F, (for y E r), (4) Xs 
and the range of F, are disjoint whenever 6 E A and y E I', (5) for 
all y, y' E r, all sequences a in the domain of F,, and all sequences 
a' in the domain of F,,, if F,(a) = F,,(a'), then y = y' and a = a', 
(6) S is a set of sequences of the form (F,,(d<) << B, E ) ,  where y E I', 
,!l is the number of places of the operation F,, dc E d for all [ < p, 
and E E A, and (7) 6, E A. (Here the sets Xs are regarded as the 
categories of basic expressions of the disambiguated language, the 
operations F, as its structural operations, the set A as the set of 
all its proper expressions (that is, expressions obtainable from 
basic expressions by repeated application of structural operations), 
6, as the index of its category of declarative sentences, and S as 

any of the usual axiomatic formulations of set theory one can prove that there 
is no set K satisfying (1)-(4), but in those formulations that recognize proper 
classes in addition to sets one can prove that there is a proper class satisfying 
those conditions. 

- 
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the set of its syntactic rules; these play a role that will be clarified 
by the next definition. It is clear that if conditions (1)-(5) are 
satisfied, then (A, F , ) , c r  is what is known as a free algebra 
generated by U,cA X ,  (that is, the union of the sets X, for 6 E A ) . )  

If M= (A, F,, Xs, S, G o ) y c r ,  6 ~ d ,  then M generates the family C 
of syntactic categories if and only if (1) C is a family, indexed by A ,  
of subsets of A, (2) Xs G Cs for all 6 E A, (3) whenever ( F ,  (6,) ,< u, 
E )  E S and a ,  E Cs, for all t < @, F((ac) c< 8 )  E C,, and (4) whenever 
C’ satisfies (1)-(3), c6 c C’, for all 6 E A .  

REMARK. If M is any disambiguated language, then ‘u generates 
exactly one family of syntactic categories. 

A language is a pair <(A, F,, X,, S, 6o),cr,  6cd ,  R )  such that 
(A, F,, X,, S, bo)ycr,  G c A  is a disambiguated language and R is a 
binary relation with domain included in A. Suppose that 
% = ( A ,  F,, x 6 ,  S, Bo)ycr, S E A  and L= (M, R). Then PEL (or the 
set of proper expressions of L) is the range of R; OIL (or the set 
of operation indices of L) is r; CIL (or the set of category indices 
of L) is A; SRL (or the set of syntactical rules of L) is S; B S ~ , L  (or 
the &h basic set of L) is the set of objects 5‘ such that C‘RT for 
some 5’ E X,; Cat ,,L (or the 6th syntactic category of L) is the set of 
objects 5 such that (‘RT for some 5’ E C,, where C is the family of 
syntactic categories generated by ‘u; MEL (or the set of meaningful 
expressions of L)  is UGcA Cat,,&; DSL (or the set of declarative 
sentences of L) is  cats,^; and the class of derived syntactical rules 
of L is the smallest class K such that (1) S c K, (2) whenever a, @ are 
ordinals, a < @, and (6,) ,< is a @-place sequence of members of A, 
the triple (I., B, A, (6,) #, 6.) E K, (3) whenever fl is an ordinal, 
(6,) < is a @-place sequence of members of A, E E A, and x E X,, 
the triple (Cz,B, A, (6,)t< B, E )  E K, and (4) whenever a, @ are 
ordinals, (G, (6,) ,< (I, E )  E K, and (H, )  ,< (I is a sequence such that 
(H,, ( y J , , < S ,  6,) E K  for all t < a ,  then < G ’ ( H ~ C < ~ ,  ( Y ~ ) ~ < B , E )  

E K. If 5 E MEL, then 5 is syntactically ambiguous in L if and only 
if there are at least two objects C’E UscdCs such that [‘RC, where 
C is the family of syntactic categories generated by M. The 
language L is syntactically ambiguous if and only if there is a mean- 
ingful expression of L that is syntactically ambiguous in L. 

* 

25 - Theoria. 3: 1970 
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REMARK. If L is a language, L=((u,  R ) ,  (H,  ( & ) C < O ,  E )  is a 
derived syntactical rule of L, C is the family of syntactic categories 
generated by L, and ae E CS, for all 6 <,9, then H((ac)<< 8 )  E C,. 

3. Semantics: theory of meaning 

Suppose that 2l= ( A ,  F,, XS, S, & ) , ~ r ,  S E A ,  L =  (a, R ) ,  and L is a 
language. An interpretation for L is a system ( B ,  G,, f ) ,Cr such 
that ( B ,  G,),E r is an algebra similar to  ( A ,  Fy) ,C r and f is a 
function from U*cA X s  into B. (Here B is regarded as the set of 
meanings prescribed by the interpretation, G, is the semantic 
operation corresponding to  the structural operation F,, and f 
assigns meanings to  the basic expressions of the language.) 
Suppose in addition that B = ( B ,  G,, f),Cr. Then the meaning 
assignment for L determined by B is the unique homomorphism g 
from (A ,  Fy) ,Cr  into ( B ,  Gy),Cr such that fcg. Further, if 
[ E MEL, then [ means b in L according to  B if and only if there 
exists ['EU6cACS such that ['R[ and g([')=b, where C is the 
family of syntactic categories generated by M and g is the meaning 
assignment for L determined by '8. Also, 5 is semantically ambi- 
guous in L according to  B if and only if [ means at least two differ- 
ent things in L according to €3; [ is strongly synonymous with 8 
in L according to  B if and only if [, 8 E MEL and, for every 6 E A ,  
{g([ ' )  : [' E CS and ['R[} = {g(8') : 8' E C6 and O'RO}, where C and 
g are as above; and 5 is weakly synonymous with 8 in L according to  
73 if and only if [, 8 E MEL and {b  : [ means b in L according to  93) = 

{ b  : 8 means b in L according to  B}. Suppose, in addition to  the 
assumptions above, that L' is also a language and '8' is an inter- 
pretation for L'. Then [ is interlinguistically synonymous with [' 
(with respect to  L, 8, L', B') if and only if [ E MEL, [' E MEL; and 
{ b  : [ means b in L according to  '8) = { b  : 5' means b in L' accord- 
ing to B'}. 

4. Semantics: theory of reference 

Let e, t ,  s be the respective numbers 0, 1,2. (The precise choice of 
these objects is unimportant; the only requirements are that they 
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be distinct and that none of them be an ordered pair.) By T,  or the 
set of types, is understood the smallest set such that (1) e and t 
(which are regarded as the type of entities and the type of truth 
values respectively) are in T, (2) whenever a, t E  T, the ordered 
pair (cr, t) (which is regarded as the type of functions from objects 
of type a to objects of type t) is in T, and (3) whenever t E T, the 
pair (s, t) (which is regarded as the type of senses corresponding 
to  objects of type t) is in T. In connection with any sets E and I 
and any t E T, we characterize D, ,E,  I ,  or the set of possible denota- 
tions of type T based on the set E of entities (or possible individuals) 
and the set I of possible worlds, as follows: D ,  E , I = E  ; D ,  E , I =  

{A ,  { A } }  (where A is as usual the empty set, and A,  { A }  are 
identified with falsehood and truth respectively); if a, t E T, then 
D(.,, ,), E,I=D?,  E , r  D'jE,Z(where ingeneralABistheset offunctions 
with domain B and range included in A); if t E T, then D( 8, .), E, I = 
D,, E, 1'. If J is also a set, then M ,  E,I ,  J, or the set of possible mean- 
ings of type t based on the set E of entities, the set I of possible 
worlds, and the set J of contexts of use, is D,, E , I  I x J .  (By I X J  is 
understood as usual the set of ordered pairs ( i ,  j )  such that i E I 
and j E J .  Thus meanings are functions of two arguments-a 
possible world and a context of use. The second argument is 
introduced in order to  permit a treatment, in the manner of 
Montague [2], of such indexical locutions as demonstratives, 
first- and second-person singular pronouns, and free variables 
(which are treated in 6 below as a kind of demonstrative). Senses 
on the other hand-that is, members of D ( ,  ,), E, I for some t-are 
functions of only one argument, regarded as a possible world. 
The intuitive distinction is this: meanings are those entities that 
serve as interpretations of expressions (and hence, if the inter- 
pretation of a compound is always to  be a function of the inter- 
pretations of its components, cannot be identified with functions 
of possible worlds alone), while senses are those intensional 
entities that are sometimes denoted by expressions. No such 
distinction was necessary in Frege [ 13, because there consideration 
of indexical locutions was deliberately avoided. It is a slight over- 
simplification to  call the members of I possible worlds. In connec- 
tion with tensed languages, for instance, it is convenient to take 1 
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as the set of all ordered pairs consisting of a possible world and 
a moment of time, and J as the set of all complexes of remaining 
relevant features of possible contexts of use. 

Suppose that L is a language and L = ((A, F,, XS, S, So) ,Cr, 6@, 
R). A type assignment for L is a function u from d into T such that 
u(&)=t. A Fregean interpretation for L is an interpretation 
(B, G,, f ) ? ~ r  for L such that, for some nonempty sets E, I ,  J, and 
some type assignment u for L, (1) B c U,pM, E,I ,  J, (2) whenever 
6 E d and C E x6, f(c) E Mu( 61, E , I ,  J ,  and (3) whenever (F?, (6,) << @, 
E ) E S  and b c E M u , , , ) , E , I , J  for all then G,((b t ) t ,~)E 
M,,(,,, E, I ,  J .  Here I x J is uniquely determined and is called the set 
of points of reference of the Fregean interpretation. By a Fregean 
interpretation for L connected with E ,  I, J and c is understood an 
interpretation (B, G,, f ) u c r  for L such that conditions (1)-(3) 
above are satisfied. A model for L is a pair (8, ( i ,  j)) such that 8 
is a Fregean interpretation for L and ( i ,  j )  is a point of reference 
of B. (Here i and j are respectively regarded as the actual world 
and the actual context of use specified by the model.) Suppose 
that (8,  ( i ,  j ) )  is a model for L. Then the denotation assignment 
for L determined by (B, ( i ,  j ) )  is that function h with domain A 
such that, for all 5 E A, h(5) = g(5)  (i, j ) ,  where g is the meaning 
assignment for L determined by 8. Further, T,I has x as a denotation 
according to  L and ( B ,  ( i ,  j ) )  if and only if there exists b such that 
T,I means b in L according to  8, and b(i, j )  = x.  Also, rp is a true 
sentence of L with respect to (73, ( i ,  j ) )  and the analysis rp' if and 
only if y ' e  Cso, rp'Rrp, and h(rp')= {A}, where C is the family of 
syntactic categories generated by (A, F,, Xs ,  S,  S 0 ) , ~ r ,  and h is 
the denotation assignment for L determined by (B, ( i ,  j ) ) .  

For simplicity, let us now suppose, in addition to the assump- 
tions made in the last paragraph, that L is a syntactically unambi- 
guous language. Then the relativization to  an analysis may of 
course be removed from the characterization of truth: rp is a true 
sentence of L with respect to the model (8, (i, j ) )  if and only if 
rp E DSL and rp is a true sentence of L with respect to  ('8, ( i ,  j ) )  
and the analysis rp', where rp' is the unique member of Cso such 
that rp'Rrp, and C is as in the last paragraph. Let us add the assump- 
tion that K is a class of models for L. (The most important cases 
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are those in which K is regarded as the class of logically possible 
models for L; among the conditions characterizing K might then 
appear the requirement that the “logical operations” and “logical 
words” of L receive their usual interpretations.) Then pl is K-valid 
in L if and only if Q, is a true sentence of L with respect to every 
member of K. (In case K is understood in the way just indicated, 
the present notion amounts to  logical validity.) If 5, q E MEL, 
then 5 is K-equivalent to q in L if and only if (1) 5, q E Cats,L for 
some 6 E CZL, and (2) whenever (23, ( i ,  j ) )  E K ,  the denotation of 5 
according to L and (23, (i, j ) )  is the same as the denotation of T,I 

according to  L and (23, ( i ,  j ) ) .  By a token in L is understood a pair 
(c, p )  such that ~ E P E L  and p is any ordered pair. (Here we 
regard p as a possible point of reference. The useful idea of con- 
struing a token as a pair consisting of a type and a point of refer- 
ence originates with Bar-Hillel.) I t  is usual to  regard entailment 
(or logical consequence) as a relation between sentence types; 
but when indexical locutions may come into consideration, it is 
desirable to  consider two relations, one between sentence types 
and one between sentence tokens.6 (It is the latter notion that is 
involved when we say that ‘I am hungry’, when said by Jones to  
Smith, entails ‘thou art hungry’, when said on the same occasion 
by Smith to  Jones. More precisely, let us suppose that the 
language in question contains, as its only indexical features, the 
pronouns ‘I’ and ‘thou’. Then a context of use could reasonably be 
construed as an ordered pair of persons, regarded as the speaker 
and the person addressed respectively; and the situation under 
consideration can be described by saying that, for every i ,  the 
token (‘I am hungry’, (i, (Jones, Smith))) entails the token 
<‘thou art hungry’, ( i ,  (Smith, Jones))) .) The precise characteri- 
zations are the following. If (pl, p )  and ( y ,  q )  are tokens in L, 
then (p, p )  K-entails ( y ,  q )  in L if and only if y ,  I+J E DSL and, for 
every Fregean interpretation 23 for L, if (B, p )  is in K and pl is a 

For simplicity, I explicitly define entailment only between two sentences or 
sentence tokens. The more general and useful notion of entailment between a 
set of sentences or sentence tokens and a sentence or sentence token can be 
characterized in a completely analogous fashion. 
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true sentence of L with respect to (B, p), then (8,  q )  is in K and 
y is a true sentence of L with respect to  (€3, 4). If y ,  y ED%, 
then the sentence type y K-entails the sentence type y in L if and 
only if (cp, p) K-entails (y ,  p) for every ordered pair p. (It is clear 
then cp is K-equivalent to  y in L if and only if each of y and y 
K-entails the other in L.) 

Now synonymy with respect to  all logically possible inter- 
pretations implies logical equivalence, but not conversely. To be 
a little more exact, if (i) the assumptions of the last two paragraphs 
are satisfied, (ii) 5,q are meaningful expressions of L belonging to  
a common syntactic category of L, and (iii) 5 is weakly synony- 
mous with q in L according to  every interpretation B such that, 
for some i and j ,  ( B ,  (i, j ) )  E K, then (iv) 5 is K-equivalent to  q 
in L; but there are instances in which (i), (ii), and (iv) hold, but 
(iii) fails. The reason is roughly that the logical equivalence of two 
expressions depends on their extensions only at designated 
points of reference of logically possible models, while synonymy 
of those expressions depends on their extensions at all points of 
reference. (And it might for instance happen that “logical words” 
and “logical operations” receive their usual extensions a t  all 
designated points of reference but not at certain other, “unactua- 
lizable” points of reference.) Similarly, there will be cases in which 
two logically equivalent expressions will not be interchangeable 
in a sentence without changing its truth value, although synony- 
mous expressions always may be so interchanged. This is because 
the extension of a compound expression may depend on the full 
meanings of certain components, that is, their extensions a t  all 
points of reference, and not simply their extensions a t  designated 
points of reference. In particular, it is possible to  provide within 
the present framework a natural treatment of belief contexts that 
lacks the controversial property of always permitting interchange 
on the basis of logical equivalence. Previous model-theoretic 
treatments of belief contexts (for instance, the one in Montague 
[l]) had always possessed that property, and so does the treat- 
ment proposed in section 7 below. But even to  those who, like 
myself, believe that the best and most elegant approach is to  
permit unrestricted interchange on the basis of logical equivalence 
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it may be of some interest to learn that this approach has genuine 
alternatives and is not forced upon us. 

5. Theory of translation 

There appears to  be no natural theory of definitions which will 
apply to  arbitrary languages. But instead of generalizing the notion 
of a definition, we may rather consider the translation functions 
from one language into another that are induced by systems of 
definitions, and attempt to  develop suitable general notions on 
this basis. 

Assume throughout this section that L, L‘ are languages, 
L = ( M ,  R), L’=(%’, R‘), % = ( A ,  F,, x6,  S, do),cr, 6 c 4 ,  and 
M’= (A’, F’,, x 6 ,  S’, do’),cr/, S E A ’ .  By a translation base from L into 
L’ is understood a system ( g ,  H,, j )  ,Er such that (1) g is a function 
from d into A‘, (2) j is a function with domain U,c4X6, (3) when- 
ever d€d and (EXs, j(()E c’p.(6), where C’ is the family of syn- 
tactic categories generated by M’, (4) for all y E I‘, H ,  is a poly- 
nomial operation, of the same number of places as F,, over the 
algebra (A’, F’Y),Erf, (5) whenever (F,, (WC< 8 ,  E )  E S, (H,,  
(g(6,)) c <  8, g(E)) is a derived syntactical rule of L‘, and (6) g(do) = 

do’. If 3 ( = ( g ,  H,, j ) ,Cr)  is such a translation base, then the 
translation function from L into L’ determined by 3 is the unique 
homomorphism k from ( A ,  F,) y c r  into (A’, H,) ,er such that j G k; 
and (’ is a translation of i from L into L‘ on the basis of T if and 
only if there are q, 11’ such that qR(, q’R’[’, q E u S&S, q’ E u 6 c A p  

c’6, and k(q) =q’, where C, C’ are the families of syntactic cate- 
gories generated by M and M’ respectively, and k is the translation 
function from L into L’ determined by T. 

The principal use of translations is the semantical one of 
inducing interpretations. Indeed, if we are given a translation base 
from L into L’, together with an interpretation for the “already 
known’’ language L’, then an interpretation for L is determined in 
the natural manner prescribed below. 

Assume for the remainder of this section that T( = (g, H,, j )  y c r )  

is a translation base from L into L’, and that B’( = (B’ ,  GI,, f ’ )  y e r , )  

is an interpretation for L’. Then the interpretation for L induced by 
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L’, B’, and 3 is the interpretation (B, G,, f),cr for L such that 
(1) (B, Gy),cr is the unique algebra such that h’ is a homomor- 
phism from (A’, H , ) , c r  to  ( B ,  G,),cr, where h’ is the meaning 
assignment for L’ determined by B’, and (2) for all [ E u 6 c A x 6 ,  

f([) = h’(j([)), where h‘ is as in (1). 
It is in order to insure the existence of an algebra satisfying 

condition (1) that we require in the definition of a translation base 
that the operations H, be polynomial operations over (A’, 
F’,) ycr,; compare the Remark a t  the end of S 1. 

REMARK. Suppose that B is the interpretation for L induced by 
L’, B‘, and 3. Then (1) if B’ is a Fregean interpretation for L’, then 
73 is a Fregean interpretation for L; (2) if h is the meaning assign- 
ment for L determined by 73, h‘ is the meaning assignment for L’ 
determined by B’, and k is the translation function from L into L‘ 
determined by 3, then h is the relative product of k and h’. 

6. Intensional logic 

I wish now to illustrate the application of the general notions of 
this paper to artificial, “symbolic” languages. To this end I shall 
construct within the present framework the syntax and semantics 
of a rather rich system of intensional logic.6 

The letters of intensional logic are to  be [, 1, =, ”, A, together 
with symbols A,, vn, ,, and cn, , for each natural number n and each 
z E T. (We regard vn, as the nth variable of type z and Cn, as the 
nth constant of type z. Thus, for definiteness, we employ only 
denumerably many constants; but a relaxation of this restriction, 
according to  which the constants of any given type could be in- 
dexed by an arbitrary initial segment of the ordinals, would involve 
no important change in our considerations.) We assume that all 
letters are 1-place sequences; but apart from this requirement and 
normal distinctness conditions, the precise nature of the letters 

6 This system has not appeared previously in the literature, but has been 
presented in talks before the Southern California Logic Colloquium in April 
1969 and the Association for Symbolic Logic in May 1969. I t  comprehends as 
a part the intensional logic of Montague [l] and [3]. 



UNIVERSAL GRAMMAR 385 

need not concern us. An expression of intensional logic is a finite 
concatenation of letters of intensional logic. 

Let Jo, . . ., J3, J(4, ,) (for t E T) be those operations, of 2,2,1,1,2 
places respectively, on the set of expressions of intensional logic 
such that whenever 5, q are such expressions and t E T, 

J O C C ,  17) = [hl, 
JdC, q) = [C = 4, 
J d C )  = ' 5 ,  
Js(C) = ̂ C, 
J(4 ,  r)(C, 7) = [JLql. 

(We indicate concatenation by juxtaposition.) Let us understand 
by Var, the set of all expressions vn, , for n a natural number, and 
by Con, the set of all expressions c,,, , for n a natural number. 

By Lo, or the language of intensional logic, is understood the 
system ((A, F,, Xa, S, t),Er, a ~ A ,  R), where (1) A is the smallest 
set including all sets Con, and Var, (for t E T) and closed under 
J,, . . ., J,, J(&, ,) (for all t E T), (2) r is the set consisting of the 
numbers 0, 1, 2, 3, together with all pairs (4, t) for t E T, (3) for 
each y E r, F ,  is J, restricted to A, (4) A = T U ( {  T} X T), (5) for 
each t E  T, X, =Con,UVar, and X(, .) =Var,, (6) S is the set 
consisting of all sequences 

( F 0 ,  (0, t>, 0, T>, 

(PI, t, t, t), 
v 2 ,  t, (s, t>>, 
w 3 ,  (s, Z>, t.>, 

W ( 4 ,  u ) ,  (T ,  a), r, (0, Z>>, 

where a, t E T, and (7) R is the identity relation on A. 

REMARK. Assume that a, t E T. 
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(5) If t E Cat ( ,  + , L , ,  then ' 5  E Cat,L,. 
(6) If t E Varo and 7 E Cat+,, then [h,Cq] E Cat ( ,  .), L,. 

(7) Lo is a syntactically unambiguous language. 

If E, I are any sets, then a value assignment relative to  E and I 
is a function j having as its domain the set of ordered pairs (n, z) 
for which n is a natural number and t E T, and such that whenever 
(n, z) is such a pair, j(n, t) E D r , E , I .  If j is such a value assignment, 
then j2 '  is to be that function j '  with the same domain as j such 
that (1) j'(n, t) = x and (2) j'(m, a) = j(m, a) for every pair (m,  a) in 
the domain of j other than (n, t). 

Let 0 ,  be that type assignment for Lo such that, for all 5 E T, 
a,(t) = D,((T, t)) = t. By KO, or the class of logically possible models 
for Lo, is understood the class of models ((B, Gy, f )ycr ,  (i,, j , ) )  
for Lo such that, for some nonempty sets E, I, J, (1) (B, G,, f ) ? c r  
is a Fregean interpretation for Lo connected with E, I ,  J, and a,, 
(2) J is the set of value assignments relative to  E and I ,  (3) when- 
ever a € U.pCon., i E I, and j ,  j' E J, flu) (i, j )  =f(a) (i, j ' ) ,  (4) when- 
ever n is a natural number, t E T, i € I, and j € J, f ( v ,  (i, j )  = j(n, t), 
and (5) for all a, b E B ,  i €1, j €1, a, t E  T, and natural number n, 

Go(a, b) (i, j) =a(i, j )  (b(i, j)) if a E M(u, .), E , Z ,  J and 

G,(a, b) (i, j) = { A }  if and only if a(i, j) = b(i, j ) ,  
G,(a) (i, j )  is that function p on I such that, for all 

G,(a) (i, j )  = a(i, j )  (i) if a E &,, .), E, I ,  J ,  and 
if a = f ( v ,  .), then G(4, .) (a, b) (i, j )  is that function 
ponD.,E,~suchthat,forallxED~,~,z,p(x)=b(i,jZ.'). 

b E Mu, E , z ,  J ,  

k E I, PCk) = 4, i), 

REMARK. Assume that (8, ( io ,  j , ) )  E KO; E,  I ,  J are nonempty sets; 
B is a Fregean interpretation connected with E, I, J, and a,; g is the 
meaning assignment for Lo determined by '8; h is the denotation 
assignment for Lo determined by ( B ,  ( i o ,  j , ) ) ;  a, t E  T; and n is 
a natural number. Then: 

(1) If t E Con., then h(5) E D ,  E , I ,  and g(C) (i, j) = g(5)  ( i ,  j ' )  for 
all i E I and j ,  j '  E J. 
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(2) If C E Var,, then h(5) E D ,  E , I  and g(C) (i ,  j )  = g(C) (i’, j )  for 

(3) If 5 E Ca t ( ,  r ) , L o  and q E Cate,Lo, then h( [Cql) = h ( 0  (h(q)).  
(4) If 5, q E Cat,Lo, then h( [C  q]) = { A }  if and only if h(C) = 

(5) If 5 E Catr,LO, then h(^() is that function p on I such that, 

(6) If 5 E Cat( ,  r) ,Lo,  then h r 5 )  = h(5) (io). 
(7) If 5 E C a t ,  L o ,  then h(il,u, .i) is that function p on D ,  ? , I  such 

all i, i’ E I and j E J. 

h(rl). 

for all i E I, p( i )  = g(5) (i, j o ) .  

that, for all x E D ,  E , I ,  p (x )  = g(C) (io, jo2 “). 

It is convenient to  introduce a few metamathematical abbrevia- 
tions designating expressions of Lo.  Among them will be found 
combinations corresponding to all the usual notions of proposi- 
tional, quantificational, and modal logic; in these cases the expect- 
ed truth conditions will be satisfied in connection with all 
models in KO.’ In particular, suppose that a €  UrcTVarr, p, 
yECatt,L0, and e, (T, t E  T. Then we set 

Aac = [il.a[], where x is the unique member of T such 

Asp= [Aap=Aa[a-a]]; 
that a E Var .; 

1 p =  [p= A@], where B = vo, t;  

p A y = AB [Y = [ [Bpi = [BYlll ,  where B = vo, ( t ,  t ) ;  

9 + Y = - b A  7); 
V V Y  = -p -+ Y;  
vap = -ha-p; 
S{C}= [‘SZ;], if CECate,LO and dECat(,( ,r)) ,LO; 
d{t, q}=d{ql(C}, if CECat,Lo, qECate,Lo, and 

0 p= [*p,AAB[/?=B]], where B = U ~ , ~ ;  
C-q= 0 [ C ~ q l ,  if 5, qECat,LO; 
Gp = *(Aay). 

d E C a t ( , ( ,  ( s , ( P , r ) ) ) ) , ~ o ;  

’ The methods of expressing negation and conjunction are due to Tarski [l]. 
I am grateful to Dr. Mohammed Amer for suggesting their use in this connec- 
tion. 
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If 5, q E MELO and a E U,, T Var,, then let us understand by 5;  
the result of replacing all “free occurrences’’ of a by q in 5; we do 
not bother t o  construct an exact definition here. The following 
remark indicates the extent to which principles of substitutivity 
of identity and of universal instantiation-always questionable in 
the context of modal or intensional logic-hold within the present 
system. 

REMARK. If 0, t E T and rp E Catt,Lo, then the following expressions 
are KO-valid in Lo: 

harp + rpi, if a, ,tl E Var, and B is not “‘bound” in rp; 
harp -+ rp :, if a E  Var,, 5 E Catr,Lo, a does not “stand 
within the scope” of A in rp, and no variable “free in” 

5 is ubound in” rp; 
(harp A Va(a I c)) + rp ?, if a E Var ,, 5 E Cat ,, L ~ ,  no 

variable free in 5 is bound in rp, and a is not free in 5; 
Va (a I * ( ) ,  if t ~ C a t , , L ~ ,  aEVar(, ,) ,  and a i s  not free 

in 5; 
[ B - y ]  -+ [5 ;=( ; ] ,  if a, B, yEVar,, CEMELO, and 

neither ,!? nor y is bound in 5; 
( q ~ i i )  -+ [ c : = C S ] ,  if  EME EL^, q, 8ECat,,Lo, aEVar,, 

and no variable free in q or 0 is bound in 5; 
[q = 81 + [c:  = C;], if 5 E M E L ~ ,  7, 8 E C a t ,  L ~ ,  a E Var,, 

a does not stand within the scope of A in 5, and no 
variable free in 7 or 8 is bound in 5; 

( [q = 131 A Va(a E 7) A Va(a E 8))  + [C: = 5S], if 5 E M E L ~ ,  
q, eECatr,Lo, aEVar,, no variable free in q or 8 is 
bound in 5, and a is not free in q or 8. 

7. A fragment of English 

As our second example we may take a natural language-indeed, 
a deliberately restricted fragment of English. The letters of this 
fragment are a, . . ., z, the blank, *, (, ), f ,  ), 6 ,  ), f ,  3 ,  together 
with symbols u, for each natural number n. Again we assume nor- 
mal distinctness conditions, and that all letters are 1-place se- 
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quences; and an expression is again to be a finite concatenation of 
letters. We let 

BDS (or the set of basic declarative sentences) = A ,  
BPDE (or the set of basic proposition-denoting expressions) = A ,  
BIE (or the set of basic individual expressions) =the set con- 

sisting of the symbols u2n+l for n a natural number, 
BCNP (or the set of basic common noun phrases) =the set of 

common count nouns of English, 
BST (or the set of basic singular terms) =the set of proper nouns 

of English that are not in BCNP, 
BAP (or the set of basic adjective phrases) =the set of “ordinary” 

English adjectives that are not in BCNP or BST, 
BVPPO (or the set of basic verb phrases taking a propositional 

object) = {believe, assert, deny, know, prove}, 
BTVP (or the set of basic transitive verb phrases) =the set of 

transitive verbs of English, including be, that are not in 
BCNP, BST, BAP, or BVPPO, 

BIVP (or the set of basic intransitive verb phrases) =the set of 
intransitive verbs of English that are not in BCNP, BST, 
BAP, BVPPO, or BTVP. 

Let Y be the unique 11-place sequence such that (i) Yo,  . . ., Y8 
are sets of expressions, (ii) Y8, Yl0 are binary relations between 
expressions, (iii) for all [, a, v, 6, p, 8, 

(1) BDS c Yo, BPDE E Yl, BIE E Yz, BCNP E Y3, BST E 

(2) if 5‘ E Y,, then every [, no [, the i, a i E Y4, 
(3) if a E Yz, then he a E Y4, 
(4) if p E Yo,  then that q~ E Yl, 
(5) if 6 E Y7, and /? E Y4, then {S b ’ )  E Ye, where either 

(a) for some a E BIE, fi =he a and p‘ =him a, or 
(b) there is no a E BIE such that p = he a, and p’ = p, 

Y4, BAP C YS, BVPPO C Y6, BTVP E Y7, BIVP E Ye, 

(6) if 6 E Y6 and /? 6 Yl, then f 6  p )  E Ye, 
(7) if a E Yz and q~ E Yo, then such a that IJJ E Y6, 
(8) if 6 E Y6 and 5 E Y3, then 0 E Y3, where 

(a) either 6 does not have the form such a that rp 
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for a E BIE and p an expression, or no member of 
BCNP properly occurs (that is, as a full word) in 
C, and 8 = +S < 3 ,  or (b) 6 =such a that p, the mem- 
ber of BCNP that properly occurs first in 5 is of 

masculine 
feminine gender, and 8 =  f C  such a that 9’3, 

{neuter } 
where p‘ is obtained from p by replacing each free 
occurrence of he a or him a (that is, occurrence 
that does not stand in a part of p of the form such a 
that x, where x is an expression in which all’ 
parentheses are matched), by 1 ;:; a }  or { F; a } respectively, 

he a him a 

(9) if 6 E BVPPO U BTVP U BIVP, then SUSS and * Ylo6, 
(10) if 6 E Y7, p E Y4, and aYQ6, then aYQf6 8’3, where 

(11) if 6 E Y7, /3 E Y4, and 6’Yl06, then f 6’ p ’ )  Y,, (6 /?’), 

(12) if 6 E Y,, p E Yl, and aYs6, then aYsf6 /?), 
(13) if 6 E Y,, p E Yl, and 6’Yl,6, then fd‘  1) Ylo (6 B ) ,  
(14) if a E Y4 and 6 E Y,, then f a  a”$ E Yo,  where either 

(a) there exist 6’, p, p’ such that 6’Yl06, /?YB6, /?’ is 
the third person singular of ,!I, and 6” is the result of 
substituting p’ for * in 6’, or (b) there do not exist 
6’, p, p’ such that 6’Ylo6, /?Ys6, and /?‘ is the third 
person singular of p, and 6”  = 6, 

(15) if a E Y4 and 6 E Y,, then f a  6”)  E Yo, where either 
(a) there exist 6’, /? such that 6‘Ylo6, p z be, 
and 6“  is the result of substituting does not p for 
* in 8, or (b) there exists 6‘ such that h’Ylo6, be 
YB6, and 6” is the result of substituting is not for 
* in 6‘, or (c) there do not exist 8, p such that 
6’Y1,6 and /?Ys6, and 6” = 6, 

is as in (5); 

where p’ is as in (53, 
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and (iv) for every 1 l-place sequence Z, if (i)-(iii) hold for Z, then 
Y,rZ,, . . ., Y,,cZ,,. (It is a consequence of a simple theorem on 
simultaneous recursion, due to  Dr. Perry Smith and me, that there 
is exactly one sequence satisfying these conditions. We regard 
‘aY$ and ’6’Ylo8 as meaning ‘a is the main verb of the verb 
phrase 6’ and ‘6’ is the main verb location in the verb phrase 6’ 
respectively.) 

Let KO, . . ., K,, be those operations on the set of expressions, of 
l,l,l,l,l,1,2,2,2,2,2 places respectively, such that, for all expres- 
sions a, B, 6, t, e j ,  

Ko(5) = every 5, 
Kd5) = no 5, 
Kd5)  =the 5, 
Kd5) = a 5, 
K4(5) = he 5, 
K,(ej) = that 97, 
K6(6, p) = f 6  p’ ) ,  where p’ is as in (51, 
&(a, e j )  = such a that e j ,  

K,(6, 5)  = 8, where 8 is as in (€9, 
&(a, 6) = $a S”$, where 6 “  is as in (14), 
Klo(a, 6)= $ a  d ” ) ,  where 6”  is as in (15). 

(In the definitions above some terms from traditional grammar- 
for instance, ‘common count noun’ and ‘the third person singular 
of the verb ’-have been employed without explicit 
analysis. These terms are admittedly vague but can cause no 
problem. Unlike certain other traditional grammatical terms, for 
example, ’declarative sentence’, they all have a finite range of 
application and could therefore be replaced by precise terms 
exactly characterized by simple enumeration (in case no shorter 
and more elegant procedure should come to hand).) 

By L1 let us understand the system ((A, F,, x6, S,  O),E r, 6 c 4 ,  

R), where (1) d = {0, . . ., 8}, (2) Xo=BDS, X,=BPDE, X,=BIE, 
X, = BCNP, X, = BST, X, = BAP, x6 = BVPPO, X7 = BTVP, X, = 

BIVP, (3) A is the smallest set including all the sets x6 (for 6 E A )  
and closed under the operations KO, ..., K,,, (4) r= (0, ..., lo}, 
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(5) for each y E TI F, is K, restricted to  A, (6) S is the set consisting 
of the sequences 

and (7) R is that function witn domain A such that, for all T E A ,  
R(T) is the result of deleting all parentheses and members of BIE 
from C. 

REMARK. (1) L1 is a syntactically ambiguous language. (2) If L1= 
(a, R) and C is the family of syntactic categories generated by M, 
then Ci = Yi for i = 0, . . ., 8. 

Suppose that L1 has, as above, the form ((A, F,, Xs, S, 
O),, r, 8 c A ,  R). By To, or the standard translation base from L1 
into Lo, is understood the system (g, H,, j ) , C r  such that (1) g is 
that function with domain {0, . . 8} such that 

do) = t ,  
gC1) = (s, t ) ,  
gC2) = <TI e>, 
,113) = (el t ) ,  
gC4)= GI US, g(3))1 t> i ,  
d5)  = ((s, d 3 D 1  g W 1  
gC6) = (g(l), (gl4), t>>,  
d7)  = (g(4), (g(4), t>>, 
g(8) = (gC4I1 t> ,  
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(2) Ho, . . ., H,, are those operations over PEL,, of 1,1,1,1,1,1,2,2,2,2,2 
places respectively, such that, for all 5, a, p, 6, /? E PEL,, 

where u, v are v2,6 respectively and P is u ~ , ( ~ , ( ~ , ~ ) ) ,  (3) j is a 
function with USE AXs as its domain, (4) for every natural 
number n, j ( v n ) = v ,  B ,  and (5) for every 6 E (3, . . ., 8}, every 
natural number n, and every C, if 5 is the nth member of Xs 
(in, let us say, the standard lexicographic ordering of expressions 
of L,), then j(C)=cn, u ( 6 b  

For the remainder of this section let us assume that 3, has, as 
above, the form ( g ,  H,, j ) Y ~ r .  

We could, as in Montague [4], characterize directly the logically 
possible models for L,; but a somewhat more perspicuous method 
is to proceed by way of translation into Lo.  Indeed, we understand 
by K1, or the class of logically possible models for L,, the class of 
pairs (B, ( i o ,  j o ) >  such that, for some B', (1) (B', ( i o ,  j , ) )  €KO, 
(2) B is the interpretation for L1 induced by Lo, B', and To, and 
(3) for all a E BST, the expressions 

j (entity) E Au [u 
j (be) S A Q A D  p {z iQ{ i t  [u = v ]  }}, 
V u f i ( a ) E P ~ { u } )  

u] ,  

are true sentences of Lo with respect to  (B', ( i o ,  j , ) ) ,  where 
u, v, P, D, Q are vo, c, vl, c, vo, ( 8 ,  (c. t ) ) ,  vo, u ( 4 ) ,  vl, s(4) respectively. 
26 - Theoria, 3 1970 



394 RICHARD MONTAGUE 

EXAMPLES.~ (1) The expression every man is a man is K,-valid in L,. 
(2) The expression every man such that he loves a woman is 

a man is &-valid in L,. 
(3) The expression every alleged murderer is a murderer is in 

DSL, but is not &-valid in L,. 
(4) The expression every tall murderer is a murderer is also in 

DSL, but is not K,-valid in L,. 
(5) The expression every big midget is a big entity is in DSL, 

but is not Kl-valid in L,. 
(6) The expression every unmarried midget is a(.) unmarried 

entity is in DSL, but is not K,-valid in L,. 
(7) Jones seeks a horse such that it speaks and a horse such 

that it speaks is a(n) entity such that Jones seeks it are in D S L ~ ,  
but neither K,-entails the other in L,. 

(8) Jones finds a horse such that it speaks and a horse such 
that it speaks is a(n) entity such that Jones finds it are in DS1, 
but neither Kl-entails the other in L,. 

Parts (3) and (5) show that our treatment of adjectives-which 
is essentiaUyduetounpub1ishedworkofJ.A.W. KampandTerence 
Parsons-is capable of accommodating so-called nonintersective 
adjectives; and part (7) that the present treatment of verbs can ac- 
commodate intensional verbs. The analogues (4), (6), and (8) may, 
however, seem strange. The sentences mentioned in (4) and (6) are 
certainly true in the standard or intended model for Lrindeed,  
necessarily true in that model, in the sense of being true in every 
model like it except in the choice of a designated point of reference; 
and the two sentences mentioned in (8) are synonymous according 
to that model. One may wonder, however, whether natural notions 
of logical truth and logical equivalence could be found according to 
which the sentences in (4) and (6) would be logically true and those 

In these examples the notions of K1-validity and K,-entailment are applied 
to expressions of the ambiguous language L1, while they were defined above 
only in connection with unambiguous languages. The extension of the notions 
to the ambiguous case (involving relativization to analyses) is, however, 
routine. Further, the examples given here involve no important ambiguities, 
in the sense that each has only one natural analysis; and it is with respect to 
this analysis that the assertions are meant to hold. 
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in (8) logically equivalent. As far as the sentences in (8) are con- 
cerned-and more generally sentences whose logical properties 
depend on the extensionality of certain verbs-the solution is 
provided by the notion of &'-equivalence, where K1' is as charac- 
terized below. Adjectives can be dealt with in a related but simpler 
and more obvious way; indications may be found in Montague [4] 
and in unpublished work of Parsons. 

Suppose that M is a model for intensional logic (Lo). If C E  
Cat s(8), L ~ ,  then 5 is said to be Cfirst-order) reducible in 772 if and only 
if the expression 

is a true sentence of Lo with respect to  m, where R, P are the 
first variables of types (s, ( e ,  t ) )  and g(4) respectively which do 
not occur in 5. An expression 5' E Cat r ( , ) , ~ o  is said to be first-order 
reducible with respect to its subject, or simply subject-reducible, in 
M if and only if the expression 

is a true sentence of L o  with respect to  M, and fully Cfirst-order) 
reducible in M if and only if the expression 

is a true sentence of Lo with respect to  m, where R, S, P, Q are 
the first variables of types (s, <el t ) ) ,  (s, ( e ,  (s, <el t ) ) ) ) ,  g(43, 
and g(4) respectively which do not occur in 5. 

We now distinguish a certain subset EIV, or the set of extensio- 
nal intransitive verbs, of the set BIVP. (The other members of 
BIVP might be called intensional intransitive verbs.) In view of the 
finitude of BIVP, membership in EIV could be determined by 
simple enumeration of the positive or negative cases. (To be sure, 
one would be hard pressed to  find any intransitive verb of English 
that should clearly qualify as intensional.) In a similar way we 
distinguish sets SETV and FETV such that FETV c SETV C BTVP. 
The members of SETV should be those verbs that one wishes to  
regard as subject-extensional transitive verbs, and the members of 
FETV those that one wishes to regard as fully extensional transitive 
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verbs; for example, love and find are to be in FETV, and seek, 
worship, conceive and see (in the nonveridical sense, in which 
some men have seen dragons) in SETV- FETV. 

By K,’, or the class of strongly logically possible models for L,, is 
understood the class of pairs (B, ( io ,  j , ) )  such that, for some 
B’, conditions (1)-(3) of the definition above of Kl are satisfied, 
and in addition (4) for all a €  EIV, j(a) is first-order reducible in 
(B’, (io, j o ) ) ,  (5) for all aESETV, j (a)  is subject-reducible in 
(B’, (io, j o ) ) ,  and (6) for all aEFETV, j (a)  is fully reducible in 
(B’, G o ,  j o > > .  

REMARK. (1) Jones finds a horse such that it speaks and a horse 
such that it speaks is a(n) entity such that Jones finds it are 
K,’-equivalent in L,. 

(2) Neither of the expressions Jones seeks a horse such that it 
speaks and a horse such that it speaks is a(n) entity such that 
Jones seeks it K,’-entails the other in L,. 

Quantification on multiple occurrences of variables is expres- 
sible in L1 by such that locutions. Consider, for instance, the 
sentence every man loves a woman such that she loves him. 
Ordinary usage would endow this sentence with two readings. 
According to one, which is the only reading allowed in L1, multiple 
reference does not occur. The pronoun him “dangles”; it has no 
antecedent within the sentence itself but refers to  an object 
specified by the linguistic or extralinguistic context of utterance. 
According to a second and more natural reading, multiple refer- 
ence occurs and him has man “as its antecedent”. This assertion 
can be expressed in L,, not by the original sentence, but by every 
man is a(n) entity such that it loves a woman such that she 
loves it. 

Notice that the reduction of multiple reference to such that 
locutions has the consequence, in my opinion correct, that 
multiple reference often necessitates transparency. Thus, although 
Jones seeks a unicorn could be true even though there are no 
unicorns, the more natural reading of a man such that he seeks 
a unicorn loves a woman such that she seeks it (according to which 
it does not dangle but has unicorn as its antecedent) could not be; 
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this reading would have to be expressed not by the original 
sentence but by a unicorne is a(n) entity such that a man such 
that he seeks it loves a woman such that she seeks it. 

The qualification ‘often’ appears in the dictum above in order to 
allow for such a t  least apparent exceptions as Jones seeks a uni- 
corn such that Robinson seeks it, which has an interpretation in 
L, that involves neither a dangling pronoun nor the existence of 
unicorns. 
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