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Goal

Describe the development of complex analysis within the o-minimal
framework. In the setting of a real closed field and its algebraic closure
one obtains analogues of classical results, as well as strong variants,
due to the o-minimality assumption.

I In the first part we give an overview of some definitions and
results from the general theory.

I In the second part we outline in details a particular classical
complex analytic construction, and point out how it can be viewed
within the o-minimal setting.
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O-minimal structures

An o-minimal structure is an expansion R̃ = 〈R, <,+, ·, · · ·〉 of a real
closed field R such that every first-order definable (with parameters)
subset of R is a finite union of intervals with endpoints in R ∪ {±∞}.

R = 〈R,<,+, ·〉

Ran = 〈R,<,+, ·, {f |[a, b]n}〉Rexp = 〈R,<,+, ·, ex〉

Ran,exp

f real analytic on U ⊇ [a, b]n

Figure: O-minimal structures over R = R
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Some o-minimality

O-minimal structures offer a tame setting for various areas of
mathematics.
Some features:
I Topology: Order topology on R and product topology on Rn. It

might be totally disconnected, but definably connected.
I Dimension: For definable A ⊂ Rm, dim(A) is the maximal n 6 m

s. t. the projection of A onto n coordinates contains an open set.

Finiteness
Definable subsets of Rn have finitely many definably connected
components, uniformly in parameters.

There are no definable infinite discrete sets !
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Complex analysis and o-minimality

Setting

Let R̃ = 〈R, <,+, ·, · · ·〉 be an o-minimal expansion of a real closed
field. From now on, “definable” means “definable in R̃ ”.

Let K = R(
√
−1) be the algebraic closure of R.

Since [K : R] = 2, after fixing i =
√
−1, the field K can be identified

with R2. It makes K a topological field (e.g C and R)).

By a definable subset of K n, we mean a definable subset of R2n (under
the above identification). A definable function from K n to K is a
function whose graph is a definable subset of R2n × R2.
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K -holomorphic functions

Goal: Develop analytic theory for functions from K n to K which are
definable in the o-minimal structure R̃.

Definition
Let U ⊆ K be open, z0 ∈ U. A function f : U → K is called

K -holomorphic at z0 if limz→z0
f (z)−f (z0)

z−z0
exists in K .

We only consider K -holomorphic functions which are definable in R̃

Examples
I Over any real closed R: Every K -polynomial is definable in
〈R, <,+, ·〉 and K -holomorphic.

I Over R and C: Locally, every holomorphic function is definable in
Ran.
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Some analogues of classical results
I The derivative of a definable K -holomoprhic function is

K -holomorphic.

I The Maximum Principle: A definable continuous f on a closed
disc, which is K -holomorphic on the interior, attains max |f (z)| on
the boundary.

I The Identity Theorem: If f and all its derivatives at 0 vanish then f
vanishes in a a neighborhood of 0.

Main idea: Instead of power series and integration (not available!), we
use “Topological Analysis”.
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Tameness

Key feature
Definable K -holomorphic functions have no essential singularities.

Namely, if f is a definable K -holomorphic function on the punctured
unit disc then there is an n ∈ N so that znf (z) is K -holomorphic at 0.

Corollaries
1. Every definable K -holomorphic f : K → K is a K -polynomial.
2. (Uniformity) If {ft : t ∈ T} is a definable family of K -holomorphic

functions on the punctured unit disc, then there is a fixed n ∈ N
such that for all t ∈ T , the function znft (z) is K -holomorphic at 0.
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Functions of several variables
Advanced theory
I Define K -holomoprhic functions of several variables.
I A definable K -manifold: A definable set M which is endowed with

a finite and definable K -atlas.
I A definable K -analytic subset of a K -manifold M: A (definable)

subset of M which around every point of M is given as the zero set
of finitely many definable K -holomorphic functions.

Examples
I Both K n and Pn(K ) are K -manifolds. Every affine (or projective)

algebraic variety over K is a K -analytic set. All are definable in
〈R, <,+, ·〉.

I Every compact complex manifold is isomorphic to a definable
C-manifold in the o-minimal Ran.

Y. Peterzil (Haifa) and S. Starchenko (Notre Dame) Tame complex analysis 9



Functions of several variables
Advanced theory
I Define K -holomoprhic functions of several variables.
I A definable K -manifold: A definable set M which is endowed with

a finite and definable K -atlas.
I A definable K -analytic subset of a K -manifold M: A (definable)

subset of M which around every point of M is given as the zero set
of finitely many definable K -holomorphic functions.

Examples
I Both K n and Pn(K ) are K -manifolds. Every affine (or projective)

algebraic variety over K is a K -analytic set. All are definable in
〈R, <,+, ·〉.

I Every compact complex manifold is isomorphic to a definable
C-manifold in the o-minimal Ran.

Y. Peterzil (Haifa) and S. Starchenko (Notre Dame) Tame complex analysis 9



Functions of several variables
Advanced theory
I Define K -holomoprhic functions of several variables.
I A definable K -manifold: A definable set M which is endowed with

a finite and definable K -atlas.
I A definable K -analytic subset of a K -manifold M: A (definable)

subset of M which around every point of M is given as the zero set
of finitely many definable K -holomorphic functions.

Examples
I Both K n and Pn(K ) are K -manifolds. Every affine (or projective)

algebraic variety over K is a K -analytic set. All are definable in
〈R, <,+, ·〉.

I Every compact complex manifold is isomorphic to a definable
C-manifold in the o-minimal Ran.

Y. Peterzil (Haifa) and S. Starchenko (Notre Dame) Tame complex analysis 9



Functions of several variables
Advanced theory
I Define K -holomoprhic functions of several variables.
I A definable K -manifold: A definable set M which is endowed with

a finite and definable K -atlas.
I A definable K -analytic subset of a K -manifold M: A (definable)

subset of M which around every point of M is given as the zero set
of finitely many definable K -holomorphic functions.

Examples
I Both K n and Pn(K ) are K -manifolds. Every affine (or projective)

algebraic variety over K is a K -analytic set. All are definable in
〈R, <,+, ·〉.

I Every compact complex manifold is isomorphic to a definable
C-manifold in the o-minimal Ran.

Y. Peterzil (Haifa) and S. Starchenko (Notre Dame) Tame complex analysis 9



Tameness

Removal of singularities
Let M be a definable K -manifold, F ⊆ M a definable closed set, A is a
definable K -analytic subset of M r F .

1. If, locally, dimR̃(F ) 6 dimR̃(A)− 2, then Cl(A) is K -analytic in M.

2. If F is K -analytic in M then Cl(A) is K -analytic in M.

These are strong variants of similar classical results. They fail without
the definability assumption.
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Algebraicity

Variations of Chow’s Theorem

1. If A is a definable K -analytic subset of K n (or Pn(K )) then it is a
K -algebraic variety.

2. (Uniform Algebraicity) If {At : t ∈ T} is a definable family of
K -analytic subsets of K n (or Pn(K )) then it is contained in an
algebraic family of algebraic varieties.
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In the second part of this talk we shall consider a particular family of
K -manifolds, the family of complex tori, and see how some of the
above machinery can be applied.

Y. Peterzil (Haifa) and S. Starchenko (Notre Dame) Tame complex analysis 12



In the second part of this talk I will discuss definability of
biholomorphisms between abelian varieties and tori.
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Tori and abelian varieties

Let g ∈ N>0. For Ω = (ω1, . . . , ω2g) a tuple of 2g vectors in Cg , linearly
independent over R, let ΛΩ ⊂ Cg be the lattice Zω1 + · · ·+ Zω2g .

The quotient group EΩ = (Cg ,+)/(ΛΩ,+) is a g-dimensional complex
torus. The matrix Ω ∈ Mg×2g(C) is called a period matrix for EΩ.

Every EΩ is a compact complex-analytic group, and has a
semialgebraic atlas.

Fact
Every projective abelian variety over C is biholomorphic with a torus.

If R is any real closed field and K = R(
√
−1) then for a tuple Ω of 2g

vectors in K g , linearly independent over R, we have a definable
K -torus EΩ.
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Theorem (2010)

Let R̃ = (R, . . . ) < Ran,exp and K = R(
√
−1). Every abelian variety over

K is definably K -biholomorphic with a K -torus.

Observation

Every R̃-definable K -manifold M comes from a definable family of
C-manifolds: there is a formula ϕ(x̄ , ȳ)such that ϕ(x̄ , ā) defines M for
some ā ∈ Rm, and ϕ(x̄ , b̄) defines a C-manifold for every b̄ ∈ Rm.

Similarly, every definable K -holomorphic map F : M → N comes from
a definable family of C-holomorphic maps.
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Thus the theorem follows from the following

Theorem (Uniform version)
In the structure Ran,exp:
Let At , t ∈ T , be a definable family of g-dimensional abelian varieties
over C. Then there is a definable map α : T → Mg×2g(C) and a
definable family of biholomorphisms Φt : At → Eα(t), t ∈ T .

In the rest of the talk we will outline the proof of the theorem.

For simplicity we consider only one dimensional abelian varieties, i.e.
elliptic curves:
smooth projective varieties isomorphic to projective cubics.

From now on:
I We work in the structure Ran,exp.
I A torus means a one-dimensional torus.

Y. Peterzil (Haifa) and S. Starchenko (Notre Dame) Tame complex analysis 15
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From now on:
I We work in the structure Ran,exp.
I A torus means a one-dimensional torus.
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Definability of tori

Let H = {τ ∈ C : Im(τ) > 0} be the upper half plane and τ ∈ H.

Let Λτ = Z + Zτ and Eτ = (C,+)/(Λτ ,+) be the corresponding torus.

The parallelogram
Fτ ={t1 + τ t2 : 0 6 t1, t1 < 1}

contains exactly one representative
from each Λτ -coset, and we will identify
the underlying set of Eτ with Fτ .

1

i

Re

Im

0

τ

The family Fτ , τ ∈ H, is definable, and we obtain a definable family of
complex tori Eτ , τ ∈ H.
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Observation

I A map φ : Fτ → Pn(C) is holomorphic on Eτ , iff φ = Φ�Fτ for some
holomorphic and Λτ -invariant Φ: C→ Pn(C) (i.e. Φ(z + λ) = Φ(z)
for any λ ∈ Λτ ).

I Since Fτ is a bounded subset of C, the restriction Φ�Fτ is
definable (even in Ran) for any holomorphic Φ: C→ Pn(C).
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Riemann’s theta functions

The collection of Riemann’s theta functions ϑa,b(z, τ) : C×H → C is a
family of holomorphic maps, parameterized by a,b ∈ R.

Important Properties
1. The map

Θ(z, τ) =
(
ϑ0,0(2z, τ) : ϑ0, 1

2
(2z, τ) : ϑ 1

2 ,0
(2z, τ) : ϑ 1

2 ,
1
2
(2z, τ)

)
is a holomorphic map from C×H into P3(C).

2. For every τ ∈ H the map Θτ (z) : z 7→ Θ(z, τ) is Λτ -invariant on C
and induces an embedding of Eτ into P3(C).

Remark
Each embedding Θτ : Eτ → P3(C) is definable (even in Ran), but the
whole family Θτ : Eτ → P3(C), τ ∈ H, is not definable (in any o-minimal
structure).
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Definability of theta functions

The group SL(2,Z) acts on H and two tori Eτ , Eτ ′ are bihilomorphic iff τ
and τ ′ are in the same SL(2,Z)-orbit. ( In other words, the quotient
H/SL(2,Z) is a moduli space of complex tori.)

Fact
F = {τ ∈ H : − 1

2 6 Re(τ) 6 1
2 , |τ | > 1}

contains a representative from every
SL(2,Z)-orbit.

(Notice: F is a semialgebraic subset of C.)

Theorem
For all a,b ∈ R the restriction of the function ϑa,b(2z, τ) to the set

{(z, τ) ∈ C×H : τ ∈ F, z ∈ Fτ}
is definable (in Ran,exp).
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Definability of theta embeddings

Corollary
The family of embeddings Θτ : Eτ → P3(C), τ ∈ F, is definable.

Proposition
There is a definable set F0 ⊂ H containing F, such that

1. The family Θτ : Eτ → P3(C), τ ∈ F0, is definable.

2. The embedded family Θτ (Eτ ), τ ∈ F0, is definable in (C,+, ·):
There is a family of elliptic curves Cx , x ∈ X , definable in (C,+, ·),
and a definable surjective map Ψ : F0 → X such that
Θτ (Eτ ) = CΨ(τ).

Remark. Every elliptic curve is isomorphic to one of Cx , x ∈ X .
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Proof of the Uniform Version

Let A = {At : t ∈ T}, be a definable family of elliptic curves.
We need: a definable map α : T → F0 and a definable family of
biholomorphisms Φt : At → Eα(t), t ∈ T .
I Using Uniform Algebraicity, we may replace A with a family

definable in (C,+, ·).
I For each t ∈ T there is some β(t) ∈ X , and an algebraic

isomorphism ht : At → Cβ(t).
I Using the saturation of (C,+, ·), we can choose both β and the

family ht to be definable in (C,+, ·).
I Since Cx , x ∈ X , is just a reparametrization of Θt (Eτ ), τ ∈ F0, we

obtain α and a definable family Φt as needed.
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Summary

We have:

I Over arbitrary R and K : Analogues of classical results for
definable “holomorphic” objects.

I Over R and C:
I Strong uniform variants of classical theorems for those

complex-analytic objects which are definable in o-minimal
structures.

I O-minimality of some families of classical complex-analytic objects.

Y. Peterzil (Haifa) and S. Starchenko (Notre Dame) Tame complex analysis 22


