Tame complex analysis and o-minimality

Y. Peterzil
University of Haifa

S. Starchenko
University of Notre Dame

ICM 2010, Hyderabad

Goal

Describe the development of complex analysis within the o-minimal framework. In the setting of a real closed field and its algebraic closure one obtains analogues of classical results, as well as strong variants, due to the o-minimality assumption.

- In the first part we give an overview of some definitions and results from the general theory.
- In the second part we outline in details a particular classical complex analytic construction, and point out how it can be viewed within the o-minimal setting.

O-minimal structures

An **o-minimal structure** is an expansion $\widetilde{R} = \langle R, <, +, \cdot, \cdots \rangle$ of a real closed field R such that every first-order definable (with parameters) subset of R is a finite union of intervals with endpoints in $R \cup \{\pm \infty\}$.

O-minimal structures

An **o-minimal structure** is an expansion $R = \langle R, <, +, \cdot, \cdots \rangle$ of a real closed field R such that every first-order definable (with parameters) subset of R is a finite union of intervals with endpoints in $R \cup \{\pm \infty\}$.

Figure: O-minimal structures over $R = \mathbb{R}$

O-minimal structures offer a tame setting for various areas of mathematics.

Some features

- ► Topology: Order topology on *R* and product topology on *R*ⁿ. It might be totally disconnected, but **definably** connected.
- ▶ Dimension: For definable $A \subset R^m$, dim(A) is the maximal $n \leq m$ s. t. the projection of A onto n coordinates contains an open set.

Finiteness

Definable subsets of \mathbb{R}^n have finitely many definably connected components, uniformly in parameters.

O-minimal structures offer a tame setting for various areas of mathematics.

Some features:

- ► Topology: Order topology on *R* and product topology on *R*ⁿ. It might be totally disconnected, but **definably** connected.
- ▶ Dimension: For definable $A \subset R^m$, dim(A) is the maximal $n \leq m$ s. t. the projection of A onto n coordinates contains an open set.

Finiteness

Definable subsets of \mathbb{R}^n have finitely many definably connected components, uniformly in parameters.

O-minimal structures offer a tame setting for various areas of mathematics.

Some features:

- ► Topology: Order topology on *R* and product topology on *R*ⁿ. It might be totally disconnected, but **definably** connected.
- ▶ Dimension: For definable $A \subset R^m$, dim(A) is the maximal $n \le m$ s. t. the projection of A onto n coordinates contains an open set.

Finiteness

Definable subsets of \mathbb{R}^n have finitely many definably connected components, uniformly in parameters.

O-minimal structures offer a tame setting for various areas of mathematics.

Some features:

- ► Topology: Order topology on *R* and product topology on *R*ⁿ. It might be totally disconnected, but **definably** connected.
- ▶ Dimension: For definable $A \subset R^m$, dim(A) is the maximal $n \le m$ s. t. the projection of A onto n coordinates contains an open set.

Finiteness

Definable subsets of \mathbb{R}^n have finitely many definably connected components, uniformly in parameters.

Complex analysis and o-minimality

Setting

Let $\widetilde{R} = \langle R, <, +, \cdot, \cdots \rangle$ be an o-minimal expansion of a real closed field. From now on, "definable" means "definable in \widetilde{R} ".

Let $K = R(\sqrt{-1})$ be the algebraic closure of H. Since [K : R] = 2, after fixing $i = \sqrt{-1}$, the field K can be identified with R^2 . It makes K a topological field (e.g $\mathbb C$ and $\mathbb R$)).

By a definable subset of K^n , we mean a definable subset of R^{2n} (under the above identification). A definable function from K^n to K is a function whose graph is a definable subset of $R^{2n} \times R^2$.

Complex analysis and o-minimality

Setting

Let $\widetilde{R} = \langle R, <, +, \cdot, \cdots \rangle$ be an o-minimal expansion of a real closed field. From now on, "definable" means "definable in \widetilde{R} ".

Let $K = R(\sqrt{-1})$ be the algebraic closure of R.

Since [K : R] = 2, after fixing $i = \sqrt{-1}$, the field K can be identified with R^2 . It makes K a topological field (e.g \mathbb{C} and \mathbb{R})).

By a definable subset of K^n , we mean a definable subset of R^{2n} (under the above identification). A definable function from K^n to K is a function whose graph is a definable subset of $R^{2n} \times R^2$.

Complex analysis and o-minimality

Setting

Let $\widetilde{R} = \langle R, <, +, \cdot, \cdots \rangle$ be an o-minimal expansion of a real closed field. From now on, "definable" means "definable in \widetilde{R} ".

Let $K = R(\sqrt{-1})$ be the algebraic closure of R.

Since [K : R] = 2, after fixing $i = \sqrt{-1}$, the field K can be identified with R^2 . It makes K a topological field (e.g \mathbb{C} and \mathbb{R})).

By a definable subset of K^n , we mean a definable subset of R^{2n} (under the above identification). A definable function from K^n to K is a function whose graph is a definable subset of $R^{2n} \times R^2$.

Goal: Develop analytic theory for functions from K^n to K which are definable in the o-minimal structure \tilde{R} .

Definition

Let $U \subseteq K$ be open, $z_0 \in U$. A function $f: U \to K$ is called K-holomorphic at z_0 if $\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$ exists in K.

We only consider K-holomorphic functions which are definable in R

- ▶ Over any real closed R: Every K-polynomial is definable in $\langle R, <, +, \cdot \rangle$ and K-holomorphic.
- ▶ Over \mathbb{R} and \mathbb{C} : Locally, every holomorphic function is definable in \mathbb{R}_{an} .

Goal: Develop analytic theory for functions from K^n to K which are definable in the o-minimal structure \tilde{R} .

Definition

Let $U \subseteq K$ be open, $z_0 \in U$. A function $f: U \to K$ is called

K-holomorphic at z_0 if $\lim_{z\to z_0} \frac{f(z)-f(z_0)}{z-z_0}$ exists in *K*.

We only consider K-holomorphic functions which are definable in R

- ▶ Over any real closed R: Every K-polynomial is definable in $\langle R, <, +, \cdot \rangle$ and K-holomorphic.
- ▶ Over $\mathbb R$ and $\mathbb C$: Locally, every holomorphic function is definable in $\mathbb R_{an}$.

Goal: Develop analytic theory for functions from K^n to K which are definable in the o-minimal structure \tilde{R} .

Definition

Let $U \subseteq K$ be open, $z_0 \in U$. A function $f: U \to K$ is called

K-holomorphic at z_0 if $\lim_{z\to z_0} \frac{f(z)-f(z_0)}{z-z_0}$ exists in *K*.

We only consider K-holomorphic functions which are definable in R

- ▶ Over any real closed R: Every K-polynomial is definable in $\langle R, <, +, \cdot \rangle$ and K-holomorphic.
- ▶ Over $\mathbb R$ and $\mathbb C$: Locally, every holomorphic function is definable in $\mathbb R_{an}$.

Goal: Develop analytic theory for functions from K^n to K which are definable in the o-minimal structure \tilde{R} .

Definition

Let $U \subseteq K$ be open, $z_0 \in U$. A function $f: U \to K$ is called

K-holomorphic at z_0 if $\lim_{z\to z_0} \frac{f(z)-f(z_0)}{z-z_0}$ exists in *K*.

We only consider K-holomorphic functions which are definable in R

- ▶ Over any real closed R: Every K-polynomial is definable in $\langle R, <, +, \cdot \rangle$ and K-holomorphic.
- ▶ Over $\mathbb R$ and $\mathbb C$: Locally, every holomorphic function is definable in $\mathbb R_{an}$.

Goal: Develop analytic theory for functions from K^n to K which are definable in the o-minimal structure \tilde{R} .

Definition

Let $U \subseteq K$ be open, $z_0 \in U$. A function $f: U \to K$ is called

K-holomorphic at z_0 if $\lim_{z\to z_0} \frac{f(z)-f(z_0)}{z-z_0}$ exists in *K*.

We only consider K-holomorphic functions which are definable in R

- ▶ Over any real closed R: Every K-polynomial is definable in $\langle R, <, +, \cdot \rangle$ and K-holomorphic.
- ▶ Over \mathbb{R} and \mathbb{C} : Locally, every holomorphic function is definable in \mathbb{R}_{an} .

Some analogues of classical results

- ► The derivative of a definable K-holomoprhic function is K-holomorphic.
- ▶ The Maximum Principle: A definable continuous f on a closed disc, which is K-holomorphic on the interior, attains $\max |f(z)|$ on the boundary.
- ► The Identity Theorem: If f and all its derivatives at 0 vanish then f vanishes in a a neighborhood of 0.

Main idea: Instead of power series and integration (not available!), we use "Topological Analysis".

Key feature

Definable K-holomorphic functions have no essential singularities.

Namely, if f is a definable K-holomorphic function on the punctured unit disc then there is an $n \in \mathbb{N}$ so that $z^n f(z)$ is K-holomorphic at 0.

Corollaries

- 1. Every definable K-holomorphic $f: K \to K$ is a K-polynomial.
- 2. (Uniformity) If $\{f_t: t \in T\}$ is a definable family of K-holomorphic functions on the punctured unit disc, then there is a fixed $n \in \mathbb{N}$ such that for all $t \in T$, the function $z^n f_t(z)$ is K-holomorphic at 0.

Key feature

Definable K-holomorphic functions have no essential singularities.

Namely, if f is a definable K-holomorphic function on the punctured unit disc then there is an $n \in \mathbb{N}$ so that $z^n f(z)$ is K-holomorphic at 0.

Corollaries

- 1. Every definable K-holomorphic $f: K \to K$ is a K-polynomial.
- 2. (Uniformity) If $\{f_t: t \in T\}$ is a definable family of K-holomorphic functions on the punctured unit disc, then there is a fixed $n \in \mathbb{N}$ such that for all $t \in T$, the function $z^n f_t(z)$ is K-holomorphic at 0.

Key feature

Definable K-holomorphic functions have no essential singularities.

Namely, if f is a definable K-holomorphic function on the punctured unit disc then there is an $n \in \mathbb{N}$ so that $z^n f(z)$ is K-holomorphic at 0.

Corollaries

- 1. Every definable K-holomorphic $f: K \to K$ is a K-polynomial.
- 2. (Uniformity) If $\{f_t : t \in T\}$ is a definable family of K-holomorphic functions on the punctured unit disc, then there is a fixed $n \in \mathbb{N}$ such that for all $t \in T$, the function $z^n f_t(z)$ is K-holomorphic at 0.

Advanced theory

- ▶ Define *K*-holomoprhic functions of several variables.
- ▶ A definable *K*-manifold: A definable set *M* which is endowed with a finite and definable *K*-atlas.
- ▶ A definable *K*-analytic subset of a *K*-manifold *M*: A (definable) subset of *M* which around every point of *M* is given as the zero set of finitely many definable *K*-holomorphic functions.

- ▶ Both K^n and $\mathbb{P}_n(K)$ are K-manifolds. Every affine (or projective) algebraic variety over K is a K-analytic set. All are definable in $\langle R, <, +, \cdot \rangle$.
- ► Every compact complex manifold is isomorphic to a definable \mathbb{C} -manifold in the o-minimal \mathbb{R}_{an} .

Advanced theory

- ▶ Define *K*-holomoprhic functions of several variables.
- ► A definable K-manifold: A definable set M which is endowed with a finite and definable K-atlas.
- ▶ A definable *K*-analytic subset of a *K*-manifold *M*: A (definable) subset of *M* which around every point of *M* is given as the zero set of finitely many definable *K*-holomorphic functions.

- ▶ Both K^n and $\mathbb{P}_n(K)$ are K-manifolds. Every affine (or projective) algebraic variety over K is a K-analytic set. All are definable in $\langle R, <, +, \cdot \rangle$.
- ► Every compact complex manifold is isomorphic to a definable \mathbb{C} -manifold in the o-minimal \mathbb{R}_{an} .

Advanced theory

- ▶ Define *K*-holomoprhic functions of several variables.
- ► A definable K-manifold: A definable set M which is endowed with a finite and definable K-atlas.
- ▶ A definable *K*-analytic subset of a *K*-manifold *M*: A (definable) subset of *M* which around every point of *M* is given as the zero set of finitely many definable *K*-holomorphic functions.

- ▶ Both K^n and $\mathbb{P}_n(K)$ are K-manifolds. Every affine (or projective) algebraic variety over K is a K-analytic set. All are definable in $\langle R, <, +, \cdot \rangle$.
- ► Every compact complex manifold is isomorphic to a definable \mathbb{C} -manifold in the o-minimal \mathbb{R}_{an} .

Advanced theory

- ▶ Define *K*-holomoprhic functions of several variables.
- ► A definable K-manifold: A definable set M which is endowed with a finite and definable K-atlas.
- ▶ A definable *K*-analytic subset of a *K*-manifold *M*: A (definable) subset of *M* which around every point of *M* is given as the zero set of finitely many definable *K*-holomorphic functions.

- ▶ Both K^n and $\mathbb{P}_n(K)$ are K-manifolds. Every affine (or projective) algebraic variety over K is a K-analytic set. All are definable in $\langle R, <, +, \cdot \rangle$.
- ► Every compact complex manifold is isomorphic to a definable \mathbb{C} -manifold in the o-minimal \mathbb{R}_{an} .

Removal of singularities

Let M be a definable K-manifold, $F \subseteq M$ a definable closed set, A is a definable K-analytic subset of $M \setminus F$.

- 1. If, locally, $\dim_{\widetilde{R}}(F) \leqslant \dim_{\widetilde{R}}(A) 2$, then Cl(A) is K-analytic in M.
- 2. If F is K-analytic in M then CI(A) is K-analytic in M.

Removal of singularities

Let M be a definable K-manifold, $F \subseteq M$ a definable closed set, A is a definable K-analytic subset of $M \setminus F$.

- 1. If, locally, $\dim_{\widetilde{R}}(F)\leqslant \dim_{\widetilde{R}}(A)-2$, then Cl(A) is K-analytic in M.
- 2. If F is K-analytic in M then CI(A) is K-analytic in M.

Removal of singularities

Let M be a definable K-manifold, $F \subseteq M$ a definable closed set, A is a definable K-analytic subset of $M \setminus F$.

- 1. If, locally, $\dim_{\widetilde{R}}(F) \leqslant \dim_{\widetilde{R}}(A) 2$, then Cl(A) is K-analytic in M.
- 2. If F is K-analytic in M then CI(A) is K-analytic in M.

Removal of singularities

Let M be a definable K-manifold, $F \subseteq M$ a definable closed set, A is a definable K-analytic subset of $M \setminus F$.

- 1. If, locally, $\dim_{\widetilde{R}}(F) \leqslant \dim_{\widetilde{R}}(A) 2$, then Cl(A) is K-analytic in M.
- 2. If F is K-analytic in M then CI(A) is K-analytic in M.

Removal of singularities

Let M be a definable K-manifold, $F \subseteq M$ a definable closed set, A is a definable K-analytic subset of $M \setminus F$.

- 1. If, locally, $\dim_{\widetilde{R}}(F) \leq \dim_{\widetilde{R}}(A) 2$, then Cl(A) is K-analytic in M.
- 2. If F is K-analytic in M then CI(A) is K-analytic in M.

Algebraicity

Variations of Chow's Theorem

- 1. If A is a definable K-analytic subset of K^n (or $\mathbb{P}_n(K)$) then it is a K-algebraic variety.
- 2. (Uniform Algebraicity) If $\{A_t : t \in T\}$ is a definable family of K-analytic subsets of K^n (or $\mathbb{P}_n(K)$) then it is contained in an algebraic family of algebraic varieties.

Algebraicity

Variations of Chow's Theorem

- 1. If A is a definable K-analytic subset of K^n (or $\mathbb{P}_n(K)$) then it is a K-algebraic variety.
- 2. (Uniform Algebraicity) If $\{A_t : t \in T\}$ is a definable family of K-analytic subsets of K^n (or $\mathbb{P}_n(K)$) then it is contained in an algebraic family of algebraic varieties.

In the second part of this talk we shall consider a particular family of K-manifolds, the family of complex tori, and see how some of the above machinery can be applied.

In the second part of this talk I will discuss definability of biholomorphisms between abelian varieties and tori.

Tori and abelian varieties

Let $g \in \mathbb{N}^{>0}$. For $\Omega = (\omega_1, \dots, \omega_{2g})$ a tuple of 2g vectors in \mathbb{C}^g , linearly independent over \mathbb{R} , let $\Lambda_\Omega \subset \mathbb{C}^g$ be the lattice $\mathbb{Z}\omega_1 + \dots + \mathbb{Z}\omega_{2g}$.

The quotient group $\mathcal{E}_{\Omega}=(\mathbb{C}^g,+)/(\Lambda_{\Omega},+)$ is a g-dimensional complex torus. The matrix $\Omega\in M_{g\times 2g}(\mathbb{C})$ is called a period matrix for \mathcal{E}_{Ω} .

Every \mathcal{E}_{Ω} is a compact complex-analytic group, and has a semialgebraic atlas.

Fact

Every projective abelian variety over $\mathbb C$ is biholomorphic with a torus.

If R is any real closed field and $K = R(\sqrt{-1})$ then for a tuple Ω of 2g vectors in K^g , linearly independent over R, we have a definable K-torus \mathcal{E}_{Ω} .

Tori and abelian varieties

Let $g \in \mathbb{N}^{>0}$. For $\Omega = (\omega_1, \dots, \omega_{2g})$ a tuple of 2g vectors in \mathbb{C}^g , linearly independent over \mathbb{R} , let $\Lambda_\Omega \subset \mathbb{C}^g$ be the lattice $\mathbb{Z}\omega_1 + \dots + \mathbb{Z}\omega_{2g}$.

The quotient group $\mathcal{E}_{\Omega}=(\mathbb{C}^g,+)/(\Lambda_{\Omega},+)$ is a g-dimensional complex torus. The matrix $\Omega\in M_{g\times 2g}(\mathbb{C})$ is called a period matrix for \mathcal{E}_{Ω} .

Every \mathcal{E}_{Ω} is a compact complex-analytic group, and has a semialgebraic atlas.

Fact

Every projective abelian variety over $\mathbb C$ is biholomorphic with a torus.

If R is any real closed field and $K = R(\sqrt{-1})$ then for a tuple Ω of 2g vectors in K^g , linearly independent over R, we have a definable K-torus \mathcal{E}_{Ω} .

Tori and abelian varieties

Let $g \in \mathbb{N}^{>0}$. For $\Omega = (\omega_1, \dots, \omega_{2g})$ a tuple of 2g vectors in \mathbb{C}^g , linearly independent over \mathbb{R} , let $\Lambda_{\Omega} \subset \mathbb{C}^g$ be the lattice $\mathbb{Z}\omega_1 + \dots + \mathbb{Z}\omega_{2g}$.

The quotient group $\mathcal{E}_{\Omega}=(\mathbb{C}^g,+)/(\Lambda_{\Omega},+)$ is a g-dimensional complex torus. The matrix $\Omega\in M_{g\times 2g}(\mathbb{C})$ is called a period matrix for \mathcal{E}_{Ω} .

Every \mathcal{E}_{Ω} is a compact complex-analytic group, and has a semialgebraic atlas.

Fact

Every projective abelian variety over C is biholomorphic with a torus.

If R is any real closed field and $K = R(\sqrt{-1})$ then for a tuple Ω of 2g vectors in K^g , linearly independent over R, we have a definable K-torus \mathcal{E}_{Ω} .

Tori and abelian varieties

Let $g \in \mathbb{N}^{>0}$. For $\Omega = (\omega_1, \dots, \omega_{2g})$ a tuple of 2g vectors in \mathbb{C}^g , linearly independent over \mathbb{R} , let $\Lambda_{\Omega} \subset \mathbb{C}^g$ be the lattice $\mathbb{Z}\omega_1 + \dots + \mathbb{Z}\omega_{2g}$.

The quotient group $\mathcal{E}_{\Omega}=(\mathbb{C}^g,+)/(\Lambda_{\Omega},+)$ is a g-dimensional complex torus. The matrix $\Omega\in M_{g\times 2g}(\mathbb{C})$ is called a period matrix for \mathcal{E}_{Ω} .

Every \mathcal{E}_{Ω} is a compact complex-analytic group, and has a semialgebraic atlas.

Fact

Every projective abelian variety over C is biholomorphic with a torus.

If R is any real closed field and $K = R(\sqrt{-1})$ then for a tuple Ω of 2g vectors in K^g , linearly independent over R, we have a definable K-torus \mathcal{E}_{Ω} .

Tori and abelian varieties

Let $g \in \mathbb{N}^{>0}$. For $\Omega = (\omega_1, \dots, \omega_{2g})$ a tuple of 2g vectors in \mathbb{C}^g , linearly independent over \mathbb{R} , let $\Lambda_{\Omega} \subset \mathbb{C}^g$ be the lattice $\mathbb{Z}\omega_1 + \dots + \mathbb{Z}\omega_{2g}$.

The quotient group $\mathcal{E}_{\Omega}=(\mathbb{C}^g,+)/(\Lambda_{\Omega},+)$ is a g-dimensional complex torus. The matrix $\Omega\in M_{g\times 2g}(\mathbb{C})$ is called a period matrix for \mathcal{E}_{Ω} .

Every \mathcal{E}_{Ω} is a compact complex-analytic group, and has a semialgebraic atlas.

Fact

Every projective abelian variety over \mathbb{C} is biholomorphic with a torus.

If R is any real closed field and $K = R(\sqrt{-1})$ then for a tuple Ω of 2g vectors in K^g , linearly independent over R, we have a definable K-torus \mathcal{E}_{Ω} .

Tori and abelian varieties

Let $g \in \mathbb{N}^{>0}$. For $\Omega = (\omega_1, \dots, \omega_{2g})$ a tuple of 2g vectors in \mathbb{C}^g , linearly independent over \mathbb{R} , let $\Lambda_{\Omega} \subset \mathbb{C}^g$ be the lattice $\mathbb{Z}\omega_1 + \dots + \mathbb{Z}\omega_{2g}$.

The quotient group $\mathcal{E}_{\Omega} = (\mathbb{C}^g, +)/(\Lambda_{\Omega}, +)$ is a g-dimensional complex torus. The matrix $\Omega \in M_{g \times 2g}(\mathbb{C})$ is called a period matrix for \mathcal{E}_{Ω} .

Every \mathcal{E}_{Ω} is a compact complex-analytic group, and has a semialgebraic atlas.

Fact

Every projective abelian variety over $\mathbb C$ is biholomorphic with a torus.

If R is any real closed field and $K = R(\sqrt{-1})$ then for a tuple Ω of 2g vectors in K^g , linearly independent over R, we have a definable K-torus \mathcal{E}_{Ω} .

Theorem (2010)

Let $\widetilde{R} = (R, ...) \succcurlyeq \mathbb{R}_{\text{an,exp}}$ and $K = R(\sqrt{-1})$. Every abelian variety over K is definably K-biholomorphic with a K-torus.

Observation

Every \overline{R} -definable K-manifold M comes from a definable family of \mathbb{C} -manifolds: there is a formula $\varphi(\bar{x}, \bar{y})$ such that $\varphi(\bar{x}, \bar{a})$ defines M for some $\bar{a} \in R^m$, and $\varphi(\bar{x}, \bar{b})$ defines a \mathbb{C} -manifold for every $\bar{b} \in \mathbb{R}^m$.

Similarly, every definable K-holomorphic map $F: M \to N$ comes from a definable family of \mathbb{C} -holomorphic maps.

Theorem (2010)

Let $\widetilde{R} = (R, ...) > \mathbb{R}_{\text{an,exp}}$ and $K = R(\sqrt{-1})$. Every abelian variety over K is definably K-biholomorphic with a K-torus.

Observation

Every \widetilde{R} -definable K-manifold M comes from a definable family of \mathbb{C} -manifolds: there is a formula $\varphi(\bar{x}, \bar{y})$ such that $\varphi(\bar{x}, \bar{a})$ defines M for some $\bar{a} \in R^m$, and $\varphi(\bar{x}, \bar{b})$ defines a \mathbb{C} -manifold for every $\bar{b} \in \mathbb{R}^m$.

Similarly, every definable K-holomorphic map $F: M \to N$ comes from a definable family of \mathbb{C} -holomorphic maps.

Thus the theorem follows from the following

Theorem (Uniform version)

In the structure $\mathbb{R}_{an,exp}$:

Let A_t , $t \in T$, be a definable family of g-dimensional abelian varieties over \mathbb{C} . Then there is a definable map $\alpha \colon T \to M_{g \times 2g}(\mathbb{C})$ and a definable family of biholomorphisms $\Phi_t \colon A_t \to \mathcal{E}_{\alpha(t)}$, $t \in T$.

In the rest of the talk we will outline the proof of the theorem

For simplicity we consider only one dimensional abelian varieties, i.e. elliptic curves:

smooth projective varieties isomorphic to projective cubics.

From now on

- ▶ We work in the structure $\mathbb{R}_{an,exp}$.
- ▶ A torus means a one-dimensional torus.

Thus the theorem follows from the following

Theorem (Uniform version)

In the structure $\mathbb{R}_{an,exp}$:

Let A_t , $t \in T$, be a definable family of g-dimensional abelian varieties over \mathbb{C} . Then there is a definable map $\alpha \colon T \to M_{g \times 2g}(\mathbb{C})$ and a definable family of biholomorphisms $\Phi_t \colon A_t \to \mathcal{E}_{\alpha(t)}$, $t \in T$.

In the rest of the talk we will outline the proof of the theorem.

For simplicity we consider only one dimensional abelian varieties, i.e. elliptic curves:

smooth projective varieties isomorphic to projective cubics.

From now on

- ▶ We work in the structure $\mathbb{R}_{an,exp}$.
- ▶ A torus means a one-dimensional torus.

Thus the theorem follows from the following

Theorem (Uniform version)

In the structure $\mathbb{R}_{an,exp}$:

Let A_t , $t \in T$, be a definable family of g-dimensional abelian varieties over \mathbb{C} . Then there is a definable map $\alpha \colon T \to M_{g \times 2g}(\mathbb{C})$ and a definable family of biholomorphisms $\Phi_t \colon A_t \to \mathcal{E}_{\alpha(t)}$, $t \in T$.

In the rest of the talk we will outline the proof of the theorem.

For simplicity we consider only one dimensional abelian varieties, i.e. elliptic curves:

smooth projective varieties isomorphic to projective cubics.

From now on:

- ▶ We work in the structure $\mathbb{R}_{an,exp}$.
- A torus means a one-dimensional torus.

Let $\mathcal{H} = \{ \tau \in \mathbb{C} : Im(\tau) > 0 \}$ be the upper half plane and $\tau \in \mathcal{H}$.

Let $\Lambda_{\tau}=\mathbb{Z}+\mathbb{Z}\tau$ and $\mathcal{E}_{\tau}=(\mathbb{C},+)/(\Lambda_{\tau},+)$ be the corresponding torus.

The parallelogram

$$F_{\tau} = \{t_1 + \tau t_2 \colon 0 \leqslant t_1, t_1 < 1\}$$
 contains exactly one representative from each Λ_{τ} -coset, and we will identify the underlying set of \mathcal{E}_{τ} with F_{τ} .

Let $\mathcal{H} = \{ \tau \in \mathbb{C} : Im(\tau) > 0 \}$ be the upper half plane and $\tau \in \mathcal{H}$. Let $\Lambda_{\tau} = \mathbb{Z} + \mathbb{Z}\tau$ and $\mathcal{E}_{\tau} = (\mathbb{C}, +)/(\Lambda_{\tau}, +)$ be the corresponding torus.

The parallelogram

$$F_{\tau} = \{t_1 + \tau t_2 \colon 0 \leqslant t_1, t_1 < 1\}$$
 contains exactly one representative from each Λ_{τ} -coset, and we will identify the underlying set of \mathcal{E}_{τ} with F_{τ} .

Let $\mathcal{H} = \{ \tau \in \mathbb{C} \colon \mathit{Im}(\tau) > 0 \}$ be the upper half plane and $\tau \in \mathcal{H}$. Let $\Lambda_{\tau} = \mathbb{Z} + \mathbb{Z}\tau$ and $\mathcal{E}_{\tau} = (\mathbb{C}, +)/(\Lambda_{\tau}, +)$ be the corresponding torus.

The parallelogram

$$F_{\tau} = \{t_1 + \tau t_2 \colon 0 \leq t_1, t_1 < 1\}$$
 contains exactly one representative from each Λ_{τ} -coset, and we will identify the underlying set of \mathcal{E}_{τ} with F_{τ} .

Let $\mathcal{H} = \{ \tau \in \mathbb{C} : \mathit{Im}(\tau) > 0 \}$ be the upper half plane and $\tau \in \mathcal{H}$. Let $\Lambda_{\tau} = \mathbb{Z} + \mathbb{Z}\tau$ and $\mathcal{E}_{\tau} = (\mathbb{C}, +)/(\Lambda_{\tau}, +)$ be the corresponding torus.

The parallelogram

 $F_{\tau} = \{t_1 + \tau t_2 \colon 0 \le t_1, t_1 < 1\}$ contains exactly one representative from each Λ_{τ} -coset, and we will identify the underlying set of \mathcal{E}_{τ} with F_{τ} .

Observation

- ▶ A map $\phi \colon F_{\tau} \to \mathbb{P}_n(\mathbb{C})$ is holomorphic on \mathcal{E}_{τ} , iff $\phi = \Phi \upharpoonright F_{\tau}$ for some holomorphic and Λ_{τ} -invariant $\Phi \colon \mathbb{C} \to \mathbb{P}_n(\mathbb{C})$ (i.e. $\Phi(z + \lambda) = \Phi(z)$ for any $\lambda \in \Lambda_{\tau}$).
- Since F_{τ} is a bounded subset of \mathbb{C} , the restriction $\Phi \upharpoonright F_{\tau}$ is definable (even in \mathbb{R}_{an}) for any holomorphic $\Phi \colon \mathbb{C} \to \mathbb{P}_n(\mathbb{C})$.

Observation

- ▶ A map $\phi \colon F_{\tau} \to \mathbb{P}_n(\mathbb{C})$ is holomorphic on \mathcal{E}_{τ} , iff $\phi = \Phi \upharpoonright F_{\tau}$ for some holomorphic and Λ_{τ} -invariant $\Phi \colon \mathbb{C} \to \mathbb{P}_n(\mathbb{C})$ (i.e. $\Phi(z + \lambda) = \Phi(z)$ for any $\lambda \in \Lambda_{\tau}$).
- ▶ Since F_{τ} is a bounded subset of \mathbb{C} , the restriction $\Phi \upharpoonright F_{\tau}$ is definable (even in \mathbb{R}_{an}) for any holomorphic $\Phi \colon \mathbb{C} \to \mathbb{P}_n(\mathbb{C})$.

The collection of Riemann's theta functions $\vartheta_{a,b}(z,\tau) \colon \mathbb{C} \times \mathcal{H} \to \mathbb{C}$ is a family of holomorphic maps, parameterized by $a,b \in \mathbb{R}$.

Important Properties

- 1. The map
 - $\Theta(z,\tau) = \left(\vartheta_{0,0}(2z,\tau) : \vartheta_{0,\frac{1}{2}}(2z,\tau) : \vartheta_{\frac{1}{2},0}(2z,\tau) : \vartheta_{\frac{1}{2},\frac{1}{2}}(2z,\tau)\right)$ a holomorphic map from $\mathbb{C} \times \mathcal{H}$ into $\mathbb{P}_0(\mathbb{C})$
- 2. For every $\tau \in \mathcal{H}$ the map $\Theta_{\tau}(z) : z \mapsto \Theta(z, \tau)$ is Λ_{τ} -invariant on \mathbb{C} and induces an embedding of \mathcal{E}_{τ} into $\mathbb{P}_{3}(\mathbb{C})$.

Remark

The collection of Riemann's theta functions $\vartheta_{a,b}(z,\tau) \colon \mathbb{C} \times \mathcal{H} \to \mathbb{C}$ is a family of holomorphic maps, parameterized by $a,b \in \mathbb{R}$.

Important Properties

1. The map

$$\Theta(z,\tau) = \left(\vartheta_{0,0}(2z,\tau) : \vartheta_{0,\frac{1}{2}}(2z,\tau) : \vartheta_{\frac{1}{2},0}(2z,\tau) : \vartheta_{\frac{1}{2},\frac{1}{2}}(2z,\tau)\right)$$
 is a holomorphic map from $\mathbb{C} \times \mathcal{H}$ into $\mathbb{P}_3(\mathbb{C})$.

2. For every $\tau \in \mathcal{H}$ the map $\Theta_{\tau}(z) : z \mapsto \Theta(z, \tau)$ is Λ_{τ} -invariant on \mathbb{C} and induces an embedding of \mathcal{E}_{τ} into $\mathbb{P}_{3}(\mathbb{C})$.

Remark

The collection of Riemann's theta functions $\vartheta_{a,b}(z,\tau) \colon \mathbb{C} \times \mathcal{H} \to \mathbb{C}$ is a family of holomorphic maps, parameterized by $a,b \in \mathbb{R}$.

Important Properties

1. The map

$$\Theta(z,\tau) = \left(\vartheta_{0,0}(2z,\tau) : \vartheta_{0,\frac{1}{2}}(2z,\tau) : \vartheta_{\frac{1}{2},0}(2z,\tau) : \vartheta_{\frac{1}{2},\frac{1}{2}}(2z,\tau)\right)$$
 is a holomorphic map from $\mathbb{C} \times \mathcal{H}$ into $\mathbb{P}_3(\mathbb{C})$.

2. For every $\tau \in \mathcal{H}$ the map $\Theta_{\tau}(z) : z \mapsto \Theta(z, \tau)$ is Λ_{τ} -invariant on \mathbb{C} and induces an embedding of \mathcal{E}_{τ} into $\mathbb{P}_{3}(\mathbb{C})$.

Remark

The collection of Riemann's theta functions $\vartheta_{a,b}(z,\tau) \colon \mathbb{C} \times \mathcal{H} \to \mathbb{C}$ is a family of holomorphic maps, parameterized by $a,b \in \mathbb{R}$.

Important Properties

1. The map

$$\Theta(z,\tau) = \left(\vartheta_{0,0}(2z,\tau) : \vartheta_{0,\frac{1}{2}}(2z,\tau) : \vartheta_{\frac{1}{2},0}(2z,\tau) : \vartheta_{\frac{1}{2},\frac{1}{2}}(2z,\tau)\right)$$
 is a holomorphic map from $\mathbb{C} \times \mathcal{H}$ into $\mathbb{P}_3(\mathbb{C})$.

2. For every $\tau \in \mathcal{H}$ the map $\Theta_{\tau}(z) : z \mapsto \Theta(z, \tau)$ is Λ_{τ} -invariant on \mathbb{C} and induces an embedding of \mathcal{E}_{τ} into $\mathbb{P}_{3}(\mathbb{C})$.

Remark

Definability of theta functions

The group $SL(2,\mathbb{Z})$ acts on \mathcal{H} and two tori $\mathcal{E}_{\tau},\mathcal{E}_{\tau'}$ are bihilomorphic iff τ and τ' are in the same $SL(2,\mathbb{Z})$ -orbit. (In other words, the quotient $\mathcal{H}/SL(2,\mathbb{Z})$ is a moduli space of complex tori.)

Fact

 $\mathfrak{F} = \{ au \in \mathcal{H} : -\frac{1}{2} \leqslant Re(au) \leqslant \frac{1}{2}, | au| \geqslant 1 \}$ contains a representative from every $SL(2,\mathbb{Z})$ -orbit.

(Notice: 3 is a semialgebraic subset of C.)

Theorem

For all $a, b \in \mathbb{R}$ the restriction of the function $\vartheta_{a,b}(2z,\tau)$ to the set $\{(z,\tau) \in \mathbb{C} \times \mathcal{H} \colon \tau \in \mathfrak{F}, z \in \mathcal{F}_{\tau}\}$

Definability of theta functions

The group $SL(2,\mathbb{Z})$ acts on \mathcal{H} and two tori $\mathcal{E}_{\tau}, \mathcal{E}_{\tau'}$ are bihilomorphic iff τ and τ' are in the same $SL(2,\mathbb{Z})$ -orbit. (In other words, the quotient $\mathcal{H}/SL(2,\mathbb{Z})$ is a moduli space of complex tori.)

Fact

 $\mathfrak{F} = \{ au \in \mathcal{H} : -\frac{1}{2} \leqslant Re(au) \leqslant \frac{1}{2}, | au| \geqslant 1 \}$ contains a representative from every $SL(2,\mathbb{Z})$ -orbit.

(Notice: \mathfrak{F} is a semialgebraic subset of \mathbb{C} .)

Theorem

For all $a, b \in \mathbb{R}$ the restriction of the function $\vartheta_{a,b}(2z,\tau)$ to the set

$$\{(z,\tau)\in\mathbb{C}\times\mathcal{H}\colon \tau\in\mathfrak{F},\,z\in\mathcal{F}_{\tau}\}$$

is definable (in $\mathbb{R}_{an,exp}$).

Definability of theta functions

The group $SL(2,\mathbb{Z})$ acts on \mathcal{H} and two tori $\mathcal{E}_{\tau},\mathcal{E}_{\tau'}$ are bihilomorphic iff τ and τ' are in the same $SL(2,\mathbb{Z})$ -orbit. (In other words, the quotient $\mathcal{H}/SL(2,\mathbb{Z})$ is a moduli space of complex tori.)

Fact

 $\mathfrak{F} = \{ au \in \mathcal{H} \colon -\frac{1}{2} \leqslant Re(au) \leqslant \frac{1}{2}, | au| \geqslant 1 \}$ contains a representative from every $SL(2,\mathbb{Z})$ -orbit.

(Notice: \mathfrak{F} is a semialgebraic subset of \mathbb{C} .)

Theorem

For all $a, b \in \mathbb{R}$ the restriction of the function $\vartheta_{a,b}(2z,\tau)$ to the set

$$\{(\mathbf{z},\tau)\in\mathbb{C}\times\mathcal{H}\colon \tau\in\mathfrak{F},\,\mathbf{z}\in\mathcal{F}_{\tau}\}$$

is definable (in $\mathbb{R}_{an,exp}$).

Corollary

The family of embeddings $\Theta_{\tau} \colon \mathcal{E}_{\tau} \to \mathbb{P}_{3}(\mathbb{C}), \, \tau \in \mathfrak{F}$, is definable.

Proposition

There is a definable set $\mathfrak{F}_0 \subset \mathcal{H}$ containing \mathfrak{F} , such that

- 1. The family $\Theta_{\tau} \colon \mathcal{E}_{\tau} \to \mathbb{P}_{3}(\mathbb{C}), \, \tau \in \mathfrak{F}_{0}$, is definable.
- 2. The embedded family $\Theta_{\tau}(\mathcal{E}_{\tau})$, $\tau \in \mathfrak{F}_{0}$, is definable in $(\mathbb{C},+,\cdot)$: There is a family of elliptic curves \mathcal{C}_{χ} , $\chi \in \mathcal{X}$, definable in $(\mathbb{C},+,\cdot)$, and a definable surjective map $\Psi \colon \mathfrak{F}_{0} \to \mathcal{X}$ such that $\Theta_{\tau}(\mathcal{E}_{\tau}) = \mathcal{C}_{\Psi(\tau)}$.

Remark. Every elliptic curve is isomorphic to one of \mathcal{C}_x , $x \in \mathcal{X}$.

Corollary

The family of embeddings $\Theta_{\tau} \colon \mathcal{E}_{\tau} \to \mathbb{P}_{3}(\mathbb{C}), \tau \in \mathfrak{F}$, is definable.

Proposition

There is a definable set $\mathfrak{F}_0 \subset \mathcal{H}$ containing \mathfrak{F} , such that

- 1. The family $\Theta_{\tau} \colon \mathcal{E}_{\tau} \to \mathbb{P}_{3}(\mathbb{C}), \ \tau \in \mathfrak{F}_{0}$, is definable.
- 2. The embedded family $\Theta_{\tau}(\mathcal{E}_{\tau})$, $\tau \in \mathfrak{F}_{0}$, is definable in $(\mathbb{C},+,\cdot)$: There is a family of elliptic curves \mathcal{C}_{χ} , $\chi \in \mathcal{X}$, definable in $(\mathbb{C},+,\cdot)$, and a definable surjective map $\Psi \colon \mathfrak{F}_{0} \to \mathcal{X}$ such that $\Theta_{\tau}(\mathcal{E}_{\tau}) = \mathcal{C}_{\Psi(\tau)}$.

Remark. Every elliptic curve is isomorphic to one of C_x , $x \in \mathcal{X}$.

Corollary

The family of embeddings $\Theta_{\tau} \colon \mathcal{E}_{\tau} \to \mathbb{P}_{3}(\mathbb{C}), \, \tau \in \mathfrak{F}$, is definable.

Proposition

There is a definable set $\mathfrak{F}_0 \subset \mathcal{H}$ containing \mathfrak{F} , such that

- 1. The family $\Theta_{\tau} \colon \mathcal{E}_{\tau} \to \mathbb{P}_{3}(\mathbb{C}), \, \tau \in \mathfrak{F}_{0}$, is definable.
- 2. The embedded family $\Theta_{\tau}(\mathcal{E}_{\tau}), \tau \in \mathfrak{F}_{0}$, is definable in $(\mathbb{C}, +, \cdot)$:

There is a family of elliptic curves \mathcal{C}_{χ} , $\chi \in \mathcal{X}$, definable in $(\mathbb{C},+,\cdot)$, and a definable surjective map $\Psi \colon \mathfrak{F}_0 \to \mathcal{X}$ such that $\Theta_{\tau}(\mathcal{E}_{\tau}) = \mathcal{C}_{\Psi(\tau)}$.

Remark. Every elliptic curve is isomorphic to one of C_x , $x \in \mathcal{X}$.

Corollary

The family of embeddings $\Theta_{\tau} \colon \mathcal{E}_{\tau} \to \mathbb{P}_{3}(\mathbb{C}), \, \tau \in \mathfrak{F}$, is definable.

Proposition

There is a definable set $\mathfrak{F}_0 \subset \mathcal{H}$ containing \mathfrak{F} , such that

- 1. The family $\Theta_{\tau} \colon \mathcal{E}_{\tau} \to \mathbb{P}_{3}(\mathbb{C}), \, \tau \in \mathfrak{F}_{0}$, is definable.
- 2. The embedded family $\Theta_{\tau}(\mathcal{E}_{\tau})$, $\tau \in \mathfrak{F}_{0}$, is definable in $(\mathbb{C}, +, \cdot)$: There is a family of elliptic curves \mathcal{C}_{X} , $X \in \mathcal{X}$, definable in $(\mathbb{C}, +, \cdot)$, and a definable surjective map $\Psi : \mathfrak{F}_{0} \to \mathcal{X}$ such that

 $\Theta_{ au}(\mathcal{E}_{ au}) = \mathcal{C}_{\Psi(au)}.$

Remark. Every elliptic curve is isomorphic to one of C_x , $x \in \mathcal{X}$.

Corollary

The family of embeddings $\Theta_{\tau} \colon \mathcal{E}_{\tau} \to \mathbb{P}_{3}(\mathbb{C}), \, \tau \in \mathfrak{F}$, is definable.

Proposition

There is a definable set $\mathfrak{F}_0 \subset \mathcal{H}$ containing \mathfrak{F} , such that

- 1. The family $\Theta_{\tau} \colon \mathcal{E}_{\tau} \to \mathbb{P}_{3}(\mathbb{C}), \, \tau \in \mathfrak{F}_{0}$, is definable.
- 2. The embedded family $\Theta_{\tau}(\mathcal{E}_{\tau})$, $\tau \in \mathfrak{F}_{0}$, is definable in $(\mathbb{C}, +, \cdot)$: There is a family of elliptic curves \mathcal{C}_{x} , $x \in \mathcal{X}$, definable in $(\mathbb{C}, +, \cdot)$, and a definable surjective map $\Psi \colon \mathfrak{F}_{0} \to \mathcal{X}$ such that $\Theta_{\tau}(\mathcal{E}_{\tau}) = \mathcal{C}_{\Psi(\tau)}$.

Remark. Every elliptic curve is isomorphic to one of \mathcal{C}_x , $x \in \mathcal{X}$.

Let $A = \{A_t : t \in T\}$, be a definable family of elliptic curves.

- ▶ Using Uniform Algebraicity, we may replace \mathcal{A} with a family definable in $(\mathbb{C}, +, \cdot)$.
- ► For each $t \in T$ there is some $\beta(t) \in \mathcal{X}$, and an algebraic isomorphism $h_t \colon A_t \to \mathcal{C}_{\beta(t)}$.
- ▶ Using the saturation of $(\mathbb{C}, +, \cdot)$, we can choose both β and the family h_t to be definable in $(\mathbb{C}, +, \cdot)$.
- ▶ Since C_x , $x \in \mathcal{X}$, is just a reparametrization of $\Theta_t(\mathcal{E}_\tau)$, $\tau \in \mathfrak{F}_0$, we obtain α and a definable family Φ_t as needed.

Let $A = \{A_t : t \in T\}$, be a definable family of elliptic curves.

- ▶ Using Uniform Algebraicity, we may replace \mathcal{A} with a family definable in $(\mathbb{C}, +, \cdot)$.
- ► For each $t \in T$ there is some $\beta(t) \in \mathcal{X}$, and an algebraic isomorphism $h_t \colon A_t \to \mathcal{C}_{\beta(t)}$.
- ▶ Using the saturation of $(\mathbb{C}, +, \cdot)$, we can choose both β and the family h_t to be definable in $(\mathbb{C}, +, \cdot)$.
- ▶ Since C_X , $X \in \mathcal{X}$, is just a reparametrization of $\Theta_t(\mathcal{E}_\tau)$, $\tau \in \mathfrak{F}_0$, we obtain α and a definable family Φ_t as needed.

Let $A = \{A_t : t \in T\}$, be a definable family of elliptic curves.

- ▶ Using Uniform Algebraicity, we may replace \mathcal{A} with a family definable in $(\mathbb{C}, +, \cdot)$.
- ► For each $t \in T$ there is some $\beta(t) \in \mathcal{X}$, and an algebraic isomorphism $h_t \colon A_t \to \mathcal{C}_{\beta(t)}$.
- ▶ Using the saturation of $(\mathbb{C}, +, \cdot)$, we can choose both β and the family h_t to be definable in $(\mathbb{C}, +, \cdot)$.
- ▶ Since C_X , $X \in \mathcal{X}$, is just a reparametrization of $\Theta_t(\mathcal{E}_\tau)$, $\tau \in \mathfrak{F}_0$, we obtain α and a definable family Φ_t as needed.

Let $A = \{A_t : t \in T\}$, be a definable family of elliptic curves.

- ▶ Using Uniform Algebraicity, we may replace \mathcal{A} with a family definable in $(\mathbb{C}, +, \cdot)$.
- ► For each $t \in T$ there is some $\beta(t) \in \mathcal{X}$, and an algebraic isomorphism $h_t \colon A_t \to \mathcal{C}_{\beta(t)}$.
- ▶ Using the saturation of $(\mathbb{C}, +, \cdot)$, we can choose both β and the family h_t to be definable in $(\mathbb{C}, +, \cdot)$.
- ▶ Since C_X , $X \in \mathcal{X}$, is just a reparametrization of $\Theta_t(\mathcal{E}_\tau)$, $\tau \in \mathfrak{F}_0$, we obtain α and a definable family Φ_t as needed.

Let $A = \{A_t : t \in T\}$, be a definable family of elliptic curves.

- ▶ Using Uniform Algebraicity, we may replace \mathcal{A} with a family definable in $(\mathbb{C}, +, \cdot)$.
- ► For each $t \in T$ there is some $\beta(t) \in \mathcal{X}$, and an algebraic isomorphism $h_t \colon A_t \to \mathcal{C}_{\beta(t)}$.
- ▶ Using the saturation of $(\mathbb{C}, +, \cdot)$, we can choose both β and the family h_t to be definable in $(\mathbb{C}, +, \cdot)$.
- Since C_x , $x \in \mathcal{X}$, is just a reparametrization of $\Theta_t(\mathcal{E}_\tau)$, $\tau \in \mathfrak{F}_0$, we obtain α and a definable family Φ_t as needed.

Summary

We have:

- Over arbitrary R and K: Analogues of classical results for definable "holomorphic" objects.
- ▶ Over R and C:
 - Strong uniform variants of classical theorems for those complex-analytic objects which are definable in o-minimal structures.
 - O-minimality of some families of classical complex-analytic objects.