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Abstract

Oxygenic photosynthesis, the chemical process whereby light energy powers the
conversion of carbon dioxide into organic compounds and oxygen is released as
a waste product, evolved in the anoxygenic ancestors of Cyanobacteria. Although there
is still uncertainty about when precisely and how this came about, the gradual
oxygenation of the Proterozoic oceans and atmosphere opened the path for aerobic
organisms and ultimately eukaryotic cells to evolve. There is a general consensus that
photosynthesis was acquired by eukaryotes through endosymbiosis, resulting in the
enslavement of a cyanobacterium to become a plastid. Here, we give an update of
the current understanding of the primary endosymbiotic event that gave rise to the
Archaeplastida. In addition, we provide an overview of the diversity in the Rhodophyta,
Glaucophyta and the Viridiplantae (excluding the Embryophyta) and highlight how
genomic data are enabling us to understand the relationships and characteristics of
algae emerging from this primary endosymbiotic event.
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1. INTRODUCTION

1.1. Early Evolution of Oxygenic Photosynthesis
The origin of oxygenic photosynthesis has changed the face of our planet in
all aspects. The first organisms that developed oxygenic photosynthesis are
thought to have been the anoxygenic ancestors of Cyanobacteria (Allen &
Martin, 2007), but when and how this came about remains a matter of
debate (Farquhar, Zerkle, & Bekker, 2011; Hohmann-Marriott & Blan-
kenship, 2011). Estimates based on geological and geochemical evidence
and molecular phylogenetic analyses calibrated with the fossil record agree
on a minimum age of 2.3 billion years ago (Tomitani, Knoll, Cavanaugh, &
Ohno, 2006), but the origin of oxygenic photosynthesis may date back to
3.4 or even 3.8 billion years ago (Buick, 2008; Russell & Hall, 2006)
(Fig. 2.1E). Because oxygenic photosynthesis involves the photolysis of
water into electrons, protons and free oxygen, Cyanobacteria are singularly
responsible for oxygenating the atmosphere and transforming a once
reducing environment into an oxidising one (Holland, 2006).

With oxygen becoming gradually available as a very potent electron
acceptor, the path lay open for aerobic organisms to evolve. Aerobes soon
managed to maintain much more productive ecosystems as more energy per
electron transfer could be harvested. Consequently, oceanic primary
production increased an order of magnitude (Canfield, Rosing, & Bjerrum,
2006), permitting the evolution of more complex life forms (Catling, Glein,
Zahnle, & McKay, 2005) and adapted or novel biochemical pathways
(Falkowski, 2006; Raymond & Segré, 2006). The rising atmospheric
oxygen is thought to have directly triggered cellular compartmentalization
and eukaryogenesis (Fig. 2.1E). Atmospheric oxygen is thought to have
constrained the topology of ancient transmembrane proteins by limiting the
size and number of the external domains of transmembrane proteins
(Acquisti, Kleffe, & Collins, 2007). When oxygen levels rose, the constraint
likely decreased, permitting larger and more communication-related trans-
membrane proteins opening the door for subsequent compartmentalization.
Alternatively, rising oxygen levels is speculated to have promoted cellular
compartmentalization in order to protect the metabolic activities of the
plasma membrane from rising levels of reactive oxygen species in the cellular
environment (Gross & Bhattacharya, 2010). The fossil record (Javaux, 2011;
Knoll, Javaux, Hewitt, & Cohen, 2006) and time-calibrated phylogenies
(Hedges, Blair, Venturi, & Shoe, 2004; Parfrey, Lahr, Knoll, & Katz, 2011)
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Figure 2.1 Relationships of Archaeplastida with main eukaryotic lineages and correlation between the rise in atmospheric oxygen and the evolution of organismal
complexity. (A) Time-calibrated tree of extant eukaryotes (after Parfrey et al., 2011). The tree topology is adjusted for the current uncertainty with respect to the branching
order within the Archaeplastida. The dotted green line denotes the sister relationship between Viridiplantae and Cryptophyta in the analysis of Parfrey et al. (2011). Nodes
are at mean divergence times and gray bars represent 95% highest probability density of node age. (B–D) Alternative topologies suggested by, respectively, Nozaki et al.
(2009), Hampl et al. (2009) and Baurain et al. (2010). (E) Atmospheric partial oxygen pressure (blue lines) and cellular complexity (black line) (after Holland, 2006, and
Hedges et al., 2004). Blue lines denote maximum andminimum estimates of atmospheric O2 partial pressure, respectively. Cellular complexity is defined as number of cell
types. The black dashed line shows amore conservative interpretation of cellular complexity in the Proterozoic. The alternation of gray and white periods denotes the five
different stages in oxygenation of the atmosphere according to Holland (2006). LECA: last eukaryotic common ancestor. See the colour plate.
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suggest that the major eukaryotic lineages diverged already in the Paleo-
proterozoic era (2500–1600 Ma), but that diversity within major extant
clades expanded later, beginning about 800 Ma, coinciding with the spread
of oxygen through the Neoproterozoic oceans (Fig. 2.1A, E).

1.2. Origin of Plastids: Primary Endosymbiosis
Even though there is still considerable debate regarding the precise
mechanisms and sequence of events that resulted in the first eukaryotic cell
(de Duve, 2007; Embley & Martin, 2006; Martin & Muller, 1998; Poole
& Neumann, 2011; Roger, 1999), there is a general consensus that
photosynthetic eukaryotes emerged from a heterotrophic eukaryote which
engulfed a cyanobacterium. The cyanobacterium was gradually enslaved
and integrated into the cellular machinery as a new organelle: the plastid.
This event has been termed primary endosymbiosis. The cyanobacterial
origin of plastids is supported by overwhelming genetic evidence and
ultrastructural similarities between plastids and their cyanobacterial relatives
(Box 2.1). The original cyanobacterial genome underwent a drastic
reduction with most genes either lost or transferred to the host nucleus,

BOX 2.1 Ultrastructural and Molecular Similarities Between
Plastids and Cyanobacteria
Homology between

(envelope) membranes
Presence of galactolipids, b-barrel proteins and occurrence of

a peptidoglycan layer in Glaucophyta
Chloroplast DNA Similarities in structure and gene content of the circular

genome, organized into discrete nucleoids
Molecular phylogeny Phylogenetic studies indicate that chloroplast gene

sequences are nested within eubacterial homologs
Nuclear genes of

cyanobacterial origin
Ample presence of genes of presumed cyanobacterial origin

in the nuclear genome as a consequence of EGT
Ribosomes Chloroplasts contain ribosomes that are 70S in size similar to

prokaryotic ribosomes, as opposed to typical eukaryotic,
cytosolic and endoplasmic-reticulum-associated, which
are 80S in size; Inhibition by antibiotics (e.g. streptomycin,
kanamycin) that affect ribosome function in free-living
Eubacteria

Photosynthetic apparatus The presence of two photosystems (PS I and PS II) in which
a central chlorophyll amolecule is oxidized; electrolysis of
H2O as electron donor and release of O2; similarities in the
electron transport chains; shared phycobilisomes
between Cyanobacteria and Glaucophyta and
Rhodophyta
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termed endosymbiotic gene transfer (EGT). A fraction of the genome is
retained within the primary plastid, minimally encoding its own protein
synthesizing machinery and a number of genes involved in photosynthesis
(Gould, Waller, & McFadden, 2008). Genes that have been transferred to
the host nucleus are transcribed and translated in the host cytosol or
endoplasmic reticulum and are targeted back to the chloroplast using
a protein import system (Bhattacharya, Archibald, Weber, & Reyes-
Prieto, 2007). In contrast to what might be intuitively expected, also gene
products of host origin can be plastid-targeted and only a subset of cya-
nobacterial genes takes up a function in the organelle (Deusch et al., 2008;
Martin et al., 2002). The overall emerging picture is one of large genomic
impact of the symbiont on its host after primary endosymbiosis (Elias &
Archibald, 2009), although the exact impact on the genomic content of
Archaeplastida remains uncertain. Some phylogenomic analyses estimate
the contributed genes to range around 20% of the total gene number
when including a correction for the high rate of divergence (Deusch et al.,
2008; Martin et al., 2002). Others calculate more modest percentages of
chloroplast-derived genes, ranging around 5% while acknowledging these
proportions are most likely underestimations due to high sequence
divergence (Moustafa & Bhattacharya, 2008; Reyes-Prieto, Hackett,
Soares, Bonaldo, & Bhattacharya, 2006). Next to sequence divergence,
amelioration and modularity of transferred genes are thought to be
additional complicating factors to detect horizontal gene transfer (Chan
et al., 2011). Remarkably, some phylogenomic analyses, with the excep-
tion of the glaucophyte study of Reyes-Prieto et al. (2006), indicate that
more than 50% of the transferred genes have other functions, from
metabolism to cell division, instead of being plastid targeted (Deusch et al.,
2008; Martin et al., 2002).

Three extant groups of photosynthetic eukaryotes have primary plas-
tids: the green plants, red algae and the glaucophytes. Together they make
up the Archaeplastida. Even though the cyanobacterial origin of the
plastids in these groups is beyond dispute, the number of endosymbiotic
events and the relationships among the three lineages is more contentious
(Delwiche, 1999, 2007). For a long time, variation in plastid structure and
light-harvesting pigments has given credit to a polyphyletic origin of
primary plastids, that is, the hypothesis that primary plastids resulted from
multiple independent primary endosymbiotic events. Recent evidence
points towards a single origin of primary plastids, which implies a single
ancestor of the plastid as well as the monophyly of the three lineages that
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make up the Archaeplastida (Keeling, 2010; Rodriguez-Ezpeleta et al.,
2005). As pointed out by Larkum, Lockhart, and Howe (2007), however,
support for a single origin of plastids should be treated with caution and
several lines of evidence, which are predominantly based on phylogenetic
tree methods, may not disprove all alternative scenarios of plastid acqui-
sition. There is at least one exception to this rule: Paulinella chromatophora,
a cercozoan amoeba with photosynthetic inclusion of cyanobacterial
origin (Marin, Nowack, & Melkonian, 2005; Nowack et al., 2011;
Nowack & Grossman, 2012).

Even though several analyses provide moderate to strong support for
a monophyletic Archaeplastida (Burki et al., 2007, 2009; Hackett, Yoon,
Li, Reyes-Prieto, Rummele, & Bhattacharya, 2007; Patron, Inagaki, &
Keeling, 2007; Rodriguez-Ezpeleta et al., 2005), other studies suggest that
the Archaeplastida might be paraphyletic with respect to the Hacrobia
(Burki, Okamoto, Pombert, & Keeling, 2012; Hampl et al., 2009) or the
entire Chromalveolata (Baurain et al., 2010; Nozaki et al., 2009)
(Fig. 2.1A–D). The incongruence between analyses is likely caused by
systematic biases including EGT as suggested by the high instability of
resultant topologies of photosynthetic clades with varying levels of taxon
sampling and missing data (Parfrey et al., 2010). Indeed, gene sampling has
been shown to account for at least some of the incongruence among
the relationships of primary plastid lineages (Inagaki, Nakajima, Sato,
Sakaguchi, & Hashimoto, 2009). The persistent incongruence of large
concatenated data sets shows that a solution may not be found by increasing
sequence length (Baurain et al., 2010; Burki et al., 2009; Hampl et al.,
2009). Instead when relaxing the assumption of vertical gene transfer by
abandoning concatenation and choosing for a gene-by-gene approach,
Chan et al. (2011) and Price et al. (2012) provide additional evidence for
monophyly of red and green algae.

In the light of the persistent uncertainty on the monophyly of Arch-
aeplastida, it may not come as a surprise that the relationships between green
plants, red algae and glaucophytes are still unclear. Traditionally, glaucophytes
are thought to have diverged before the red algae and green plants based on
similarities of the plastid with cyanobacteria, such as the presence of a pepti-
doglycan layer surrounding the plastids (originally named ‘cyanelles’). Phylo-
genetic gene analyses are unfortunately not conclusive on the relationships
between the major clades of the Archaeplastida (Rodriguez-Ezpeleta et al.,
2005; Rodriguez-Ezpeleta, Philippe, Brinkmann, Becker, & Melkonian,
2007). Furthermore, several studies point towards an early diverging red algal
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lineage (Burki et al., 2009; Hackett et al., 2007; Patron et al., 2007), although
this result might be biased by the inclusion of clades with secondary plastids
(Deschamps & Moreira, 2009). Therefore, analyses concentrating on EGT
genes of cyanobacterial origin only might be more trustworthy. Even so,
phylogenetic analyses are ambiguous either suggesting the glaucophytes
(Reyes-Prieto &Bhattacharya, 2007) or green lineage (Deschamps&Moreira,
2009) as earliest diverging lineage within the Archaeplastida.

Under the assumption of a single origin of primary plastids, the question
remains what kind of cyanobacterium participated in the origin of plastids.
Unfortunately, due to the large divergence times and the considerable extent
of horizontal gene transfer between cyanobacteria (Deusch et al. 2008), the
phylogenetic signal of these relationships is seriously eroded. Some studies
suggest a rather deep origin of plastids, predating diversification of most extant
cyanobacterial lineages (Criscuolo & Gribaldo, 2011; Reyes-Prieto et al.,
2010; Rodriguez-Ezpeleta et al., 2005; Sato, Wise, & Hoober, 2006), other
studies suggest that plastids are more closely related to one of the contem-
porary clades such as N-fixing subsection I (Deschamps et al., 2008; Falcon,
Magallon, & Castillo, 2010) or filamentous heterocyst-forming subsection IV
(Deusch et al., 2008). In addition, it is difficult to determine when this primary
endosymbiosis occurred. Estimates based on fossil evidence and biomarkers
are widely divergent (Knoll, 1992). A recent calibrated phylogeny of Parfrey
et al. (2011) corroborates earlier studies with an estimated ages of the
clade containing Viridiplantae, red algae and glaucophytes around 1.5–1.6
billion years ago (Hedges et al., 2004; Yoon, Hackett, Ciniglia, Pinto, &
Bhattacharya, 2004) (Fig. 2.1E). Following the origin of Archaeplastida,
photosynthesis spread widely among diverse eukaryotic groups via secondary
and tertiary endosymbiotic events (Archibald, 2009; Gould et al., 2008;
Keeling, 2010). Overviews of the intricate histories of plastid acquisition are
provided in the next chapter of this volume (Archibald, 2012).

2. RED ALGAE

2.1. Red Algae Defined
The red algae or Rhodophyta are a distinct lineage of eukaryotic algae,
containing about 5000–6000 species of mostly multicellular marine algae.
The red algae are distinguishable among eukaryotic lineages by a combina-
tion of biochemical and ultrastructural features, some of which they share
with Glaucophyta and Cyanobacteria. First, red algal plastids lack
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chlorophyll accessory pigments. Instead light energy is directed to the
reaction centre by phycobiliproteins (phycocyanin, allophycocyanin and
phycoerythrin). Light-harvesting antennae pigments are grouped in hemi-
spherical protein complexes, phycobilisomes, anchored to the thylakoids.
These are not stacked in grana like in the Viridiplantae but lie singly and
more or less equidistant in the plastid stroma. One of the most distinctive
characters of the red algae is the complete absence of flagella and centrioles in
all life stages, which affects mitosis and, at least in some groups, their life
cycles (Graham, Graham, & Wilcox, 2009; Maggs, Verbruggen, & De
Clerck, 2007; Saunders & Hommersand, 2004; van den Hoek, Mann, &
Jahns, 1995; Yoon, M€uller, Sheath, Ott, & Bhattacharya, 2006b; Yoon,
Zuccarello, & Bhattacharya, 2010).

From the early twentieth century until very recently, red algae were
classified in two distinct groups, most commonly treated as classes, Bangio-
phyceae and Florideophyceae, within a single phylum, Rhodophyta. This
dichotomy in the classification is reflected in the morphological complexity
that characterizes the red algae, with the Bangiophyceae uniting the
morphologically simple forms (unicells or undifferentiated filaments and
blades) and the Florideophyceae containing the more complex growth forms.
Growth in the Florideophyceae is essentially filamentous, but individual
filaments may aggregate to form a pseudoparenchymatous tissue. Growth
forms include filaments, blades, elaborately branched thalli as well as calcified
crusts (coralline algae). A wealth of molecular and ultrastructural data,
however, made clear that this traditional classification did not reflect the
antiquity and diversity of the rhodophytes (M€uller, Lynch, & Sheath, 2010;
M€uller et al., 2001; Oliveira & Bhattacharya, 2000). The structurally simple
Bangiophyceae is composed of a series of radiations that define the ancestral
lineages of the red algae, and part of the traditionally circumscribed Bangio-
phyceae is more closely related to the Florideophyceae. Hence, a new classi-
fication was originally proposed by Saunders and Hommersand (2004) and
subsequently refined by Yoon et al. (2006b). The phylumRhodophyta is now
subdivided into two subphyla, Cyanidiophytina and Rhodophytina, and
seven classes, Cyanidiophyceae, Bangiophyceae, Compsopogonophyceae,
Florideophyceae, Porphyridiophyceae, Rhodellophyceae and Stylonemato-
phyceae (Fig. 2.2). The diversity contained in the Compsopogonophyceae,
Porphyridiophyceae, Rhodellophyceae and Stylonematophyceae is still ill-
defined as can bewitnessed by themany unnamed lineages that typically adorn
phylogenetic trees (Scott et al., 2008;West, Zuccarello, Scott,West, &Karsten,
2007; Yang et al., 2010; Yokoyama et al., 2009; Zuccarello, Kikuchi, &West,
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2010; Zuccarello,Oellermann,West, &DeClerck, 2009; Zuccarello,West, &
Kikuchi, 2008; Zuccarello et al., 2011).

Red algae are an ancient lineage (Xiao, Zhang, & Knoll, 1998; Yoon
et al., 2004). A 1.2-billion-year-old fossil, Bangiomorpha pubescens (Butter-
field, 2000), which bears a lot of resemblance to extant Bangia species, is
regarded as the oldest taxonomically resolved eukaryotic fossil. The taxo-
nomic affinity of Bangiomorpha was long contested, with some authors
(e.g. Cavalier-Smith, 2006) advocating that Bangiomorpha is a blue-green
alga or a mixture of at least two species of blue-green algae, possibly related
to the Stigonematales. Bangiomorpha being a eukaryotic fossil would indicate
a Mesoproterozoic origin of red algae and by extension all major lineages of
the eukaryotes, which contradicts the hypothesis of Cavalier-Smith that
places eukaryogenesis at 850 Ma (Cavalier-Smith, 2010). A red algal nature
of Bangiomorpha, however, is not in conflict with the most recent timing of
eukaryotic diversification using calibrated phylogenies (Parfrey et al., 2011)
or the interpretation of several microfossils that place the origin of the
eukaryotes at around 1800 Ma (Knoll et al., 2006). In addition to the fossils
indicative of a Mesoproterozoic origin of red algae, the remarkably well-
preserved multicellular red algae from the Doushantuo Formation in
southern China (ca. 600 Ma) are clear proof that red algae had already
radiated prior to the Precambrian radiation.

2.2. Cyanidiophytes
The updated classification of the red algae also better reflects the ultra-
structural and ecological diversity of the group. Of special interest are the
Cyanidiophyceae, a group of unicellular and presumably asexual algae,
which live in thermoacidophilic conditions that are detrimental to most
eukaryotic live on earth (Barbier et al., 2005; Ciniglia, Yoon, Pollio, Pinto,
& Bhattacharya, 2004; Matsuzaki et al., 2004; Yoon et al., 2006a). Yoon et al.
(2004) suggested that the Cyanidiophyceae diverged from the remaining red
algae prior to the secondary endosymbiotic event that gave rise to the
Chromalveolata. Even though a reinterpretation of this event is necessary
now that the chromalveolate hypothesis is being increasingly challenged
(Archibald, 2012; Baurain et al., 2010), it does vouch for the antiquity of the
divergences that separate the deep red algal lineages. Because the Cyani-
diophyceae are one of few eukaryotic groups that thrive in environments
that are otherwise dominated by Archaea and Bacteria, their enzymes are of
special interest to the biotechnology and pharmaceutical industry. It is,
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therefore, not surprising that Cyanidioschyzon merolae was the first eukaryotic
alga for which a full genome sequence was available (Matsuzaki et al., 2004;
Misumi et al., 2005) and the genome of the related Galdieria sulphuraria is
currently being sequenced (Barbier et al., 2005). The small and compact
genome of C. merolae, combined with an extremely reduced cell architec-
ture (one nucleus, mitochondrion and chloroplast and the absence of a cell
wall), makes it an ideal organisms to address the synchronization and
mechanisms of the organellar division during cytokinesis (Kuroiwa, 1998).
Only seven Cyanidiophyceae species are currently described, but this
number severely underestimates the diversity. Applying environmental
sequencing from a single locality in Italy, Ciniglia et al. (2004) unveiled
considerable cryptic diversity and within-lineage (often ‘intraspecific’)
sequence divergence that is comparable, for example, to between-order
divergences in the non-Cyanidiales red algae.

2.3. Of Nori and Red Seaweed
The great majority of red algae are multicellular, marine seaweeds, with an
enormous range of morphologies and complex haplodiploid life histories,
which involve additional zygote amplification stages resulting in large
numbers of spores from a single fertilization (Verbruggen et al., 2010). Red
seaweeds belong nearly exclusively to two classes, Bangiophyceae (in the
narrow sense of the new classification) and Florideophyceae (Fig. 2.2).
Traditionally, two genera belonging to a single family, Bangiaceae, have been
recognized in the Bangiophyceae. Unbranched uniseriate to multiseriate
filaments have been placed in the genus Bangia and blades in the genus Por-
phyra (Sutherland et al., 2011). The latter genus is commonly known as ‘nori’,
which is cultivated as one of the most profitable mariculture crops in the
north-western Pacific (Niwa et al., 2009). Molecular phylogenetic analyses
resulted in the recognition of 15 genera, 7filamentous and 8 foliose,which are
only separable onmolecular rather thanmorphological grounds.Regrettably,
this taxonomic vigour also resulted in the fact that the Porphyra, which has
wrapped sushi for decades, has now become a Pyropia (Zuccarello, 2011).

The near-morphological stasis that characterizes the Bangiophyceae,
contrasts sharply with the wealth of growth forms that is encountered in its
sister taxon, the Florideophyceae. DNA sequence data have progressively
refined an ordinal classification (e.g. Choi, Kraft, Lee, & Saunders, 2002;
Harper & Saunders, 2001; Le Gall & Saunders, 2007; Saunders, Chiovitti,
& Kraft, 2004), which was originally entirely based on morphological
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and reproductive features (Maggs et al., 2007). The Florideophyceae
now includes some 25 orders grouped into five subclasses, Hilden-
brandiophycidae, Nemaliophycidae, Ahnfeltiophycidae, Rhodymenio-
phycidae and Corallinophycidae (Le Gall & Saunders, 2007; Maggs et al.,
2007; Saunders & Hommersand, 2004), which are reasonably well sup-
ported by ultrastructural characters. Ordinal relationships, however, remain
at least partly unresolved (Verbruggen et al., 2010) and form the motivation
of a Red Tree of Life project (http://dblab.rutgers.edu/redtol/).

Genomic data of red seaweeds are currently limited to a number of
organelle genomes and expressed sequence tag (EST) libraries of commercially
important species such asChondrus,Gracilaria andPorphyra (Asamizu et al., 2003;
Collen et al., 2006; Hagopian, Reis, Kitajima, Bhattacharya, & De Oliveira,
2004; Nikaido et al., 2000) and the coralline red alga Calliarthron tuberculosum
(Chan et al., 2011), but thismay change soonwithwhole genomeproject of the
carragenophyte Chondrus crispus and Porphyra umbilicalis in progress.

3. GREEN PLANTS (VIRIDIPLANTAE)

3.1. Green Plants Defined
The green plant clade (Viridiplantae) includes green algae and embryophytic
land plants and is one of the main groups of photosynthetic eukaryotes.
Green plants are diverse in terms of species number, morphology,
biochemistry and ecology. Monophyly of the group is well established based
on ultrastructural, biochemical and molecular data (Leliaert et al., 2012;
Lewis & McCourt, 2004).

Green plants share a number of unique characteristics. The chloroplasts are
surrounded by a double membrane, have thylakoids grouped in lamellae and
contain chlorophyll a and b along with some accessory pigments including
carotenoids and xanthophylls. Pyrenoids (when present) are embedded
within the chloroplast and are surrounded by starch, which is the main reserve
polysaccharide. Cell walls (when present) are generally composed of cellulose.
Many green algae are flagellates or have flagellate cells in some stage of the life
cycle. The flagella (generally two or four on a cell) are isokont, which means
that they are similar in structure, although they may differ in length. The
region between the flagellar axoneme and the basal body is characterized by
a stellate structure (Graham et al., 2009; van den Hoek et al., 1995).

Apart from these unifying ultrastructural and biochemical features, green
plants are extremely diverse morphologically. They range from unicells with

66 Olivier De Clerck et al.

http://dblab.rutgers.edu/redtol/


sizes comparable to bacteria to large and complexmulticellular or siphonal life
forms. Although the described species diversity of land plants (including over
250,000 species) exceeds that of green algae (about 15,000 named species),
green algae encompass a greater cytomorphological, biochemical and repro-
ductive diversity,which reflect their old evolutionary age (Leliaert et al., 2012).
The progenitor of green plants was likely a unicellular flagellate or at least had
flagellate stages in its life cycle. Colonial and multicellular forms have evolved
multiple times in several lineages, including the Streptophyta, Ulvophyceae,
Chlorophyceae, Trebouxiophyceae and Palmophyllales (Fig. 2.2).

Green plants are also ecologically very diverse. They are especially
abundant in freshwater (most charophytes, Chlorophyceae and Treboux-
iophyceae) and marine environments (Ulvophyceae and prasinophytes; Not
et al., 2012), but some have adapted to specific habitats, such as dry land
(Lewis & Lewis, 2005; L�opez-Bautista, Rindi, & Guiry, 2006), arctic
(De Wever et al., 2009) and marine deep water environments (Zechman
et al., 2010). Several members of the core chlorophytes live in symbiosis with
a diverse array of eukaryotes (Friedl & Bhattacharya, 2002; Kerney et al.,
2011; Lewis & Muller-Parker, 2004) or have adopted a heterotrophic life
style as parasites ( Joubert & Rijkenberg, 1971; Sudman, 1974). Embryo-
phytes have dominated terrestrial habitats for millions of years; some land
plants have adapted secondarily to freshwater or marine environments.

3.2. Evolutionary History of Green Plants
Green plants have played a significant ecological role for millions of years
(Leliaert, Verbruggen, & Zechman, 2011; O’Kelly, 2007). The ecological
importance of green algae has been mainly in marine and freshwater envi-
ronments. The origin of land plants from a green algal ancestor was a key
event in the evolution of life on earth. This event initiated the development
of the entire terrestrial ecosystem and has led to environmental changes on
a global scale (Kenrick & Crane, 1997). Time-calibrated phylogenies,
calibrated with the scarce fossil record, have estimated the origin of the green
plant lineage somewhere between 700 and 1500 Ma (Berney & Pawlowski,
2006; Hedges et al., 2004; Herron, Hackett, Aylward, &Michod, 2009; Yoon
et al., 2004). An early split in the evolution of green plants gave rise to two
main clades: the Chlorophyta and Streptophyta (Leliaert et al., 2012;
Lemieux, Otis, & Turmel, 2007; Rodriguez-Ezpeleta et al., 2007) (Fig. 2.2).

The Chlorophyta probably diversified as unicellular algae in the Meso-
and Neoproterozoic. These green algae were dominant in the oceanic
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phytoplankton of the Paleozoic as evidenced by fossil deposits of resistant
outer walls of prasinophytic cysts, known as phycomata (Colbath, 1983;
Knoll, 1992; O’Kelly, 2007; Tappan, 1980). This early radiation of
Chlorophyta was important to the eukaryotic greening that shaped the
geochemistry of our planet (Worden et al., 2009). During the Mesozoic, the
dominance of marine green algae in the phytoplankton gradually decreased
as they were largely displaced by the red-plastid-containing dinoflagellates,
coccolithophores and diatoms (Falkowski et al., 2004; Leliaert et al., 2011;
O’Kelly, 2007; Simon, Cras, Foulon, & Lemee, 2009). These ancestral green
unicells gave rise to modern prasinophytes and the core Chlorophyta that
diversified as unicellular and multicellular organism in marine, freshwater
and terrestrial habitats.

The Streptophyta probably originated in the Neoproterozoic and diversi-
fied as unicellular algae in freshwater environments (Becker & Marin, 2009).
Two important groups of multicellular charophytes diversified during the
Paleozoic: the conjugating green algae (Zygnematophyceae) and stoneworts
(Charophyceae) (Becker & Marin, 2009). Similar to the situation in marine
environments, red-plastid-containing dinoflagellates, diatoms and chryso-
phytes gradually took over the green dominance in Early Cretaceous and
Cenozoic freshwater ecosystems (Becker&Marin, 2009).Ancestral charophytes
invaded the land during the mid-Ordovician and early Silurian (480–430
million years ago), giving rise to the land plants (Delaux, Nanda, Mathé,
Sejalon-Delmas, & Dunand, 2012; McCourt, Delwiche, & Karol, 2004).

Molecular phylogenetic studies have drastically reshaped our views of
green plant evolution and continue to do so (Leliaert et al., 2012; Marin,
2012; Timme, Bachvaroff, & Delwiche, 2012). However, many uncertainties
remain, especially about the deepest branches of the green plants. One of the
main goals of the Green Algal Tree of Life Project (http://alleyn.eeb.uconn.
edu/gratol/) is to resolve relationships among the main green algal lineages.
Phylogenetic hypotheses are critical in providing an evolutionary framework
for comparative genomic studies. In the following section, we give a brief
overview of the major green plant lineages and their relationships.

3.3. Chlorophyta
The Chlorophyta form a large and morphologically diverse clade of marine,
freshwater and terrestrial green algae. The flagellar apparatus in this clade is
characterized by a symmetrical cruciate root system wherein rootlets of
variable (X) numbers of microtubules alternate with rootlets composed of
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two microtubules to form a ‘X-2-X-2’ arrangement. The orientation of this
flagellar root system has been an important character for defining the main
groups of Chlorophyta. Molecular data have revealed several major chlor-
ophytan clades. Several early diverging clades of unicellular algae, collec-
tively termed the prasinophytes, form a paraphyletic assemblage at the base
of the chlorophytan tree. These clades are relatively species poor compared
to the three principal clades of the core Chlorophyta: Ulvophyceae, Tre-
bouxiophyceae and Chlorophyceae (Fig. 2.2).

Prasinophytes form a heterogeneous assemblage of mostly unicellular
algae with diverse cell shapes that are naked, covered by walls or organic
body scales; flagella are present or absent (Leliaert et al., 2011; Melkonian,
1990; Sym & Pienaar, 1993). Mitotic processes, biochemical features and
photosynthetic pigments are equally diverse, reflecting the paraphyletic
nature of the group (Fawley, Yun, & Qin, 2000; Guillou et al., 2004; Latasa,
Scharek, Le Gall, & Guillou, 2004; Nakayama et al., 1998; Zingone et al.,
2002). Prasinophytes are predominantly found in marine environments,
although several species also occur in freshwater. About 10 distinct prasi-
nophyte lineages have been identified, but their phylogenetic affinities
remain largely unresolved (Leliaert et al., 2011, 2012; Marin & Melkonian,
2010; Turmel, Gagnon, O’Kelly, Otis, & Lemieux, 2009) (Fig. 2.2).

The Nephroselmidophyceae includes flagellates with complex scale
covering and is possibly one of the earliest diverging chlorophytan
lineages (Turmel et al., 2009). Although Nephroselmis is one of the few
prasinophytes where sexual reproduction has been observed (Suda,
Watanabe, & Inouye, 2004), genomic evidence, such as the identifica-
tion of meiosis-related genes, indicates that sexual reproduction is
probably more widespread among prasinophytes (Derelle et al., 2006;
Worden et al., 2009). Future population genomic studies may enable us
to estimate the prevalence of sexual recombination in algae (Toulza,
Knoll, Cavanaugh, & Ohno, 2012).
The Mamiellophyceae includes the morphologically and ecologically
diverse Mamiellales and two smaller clades, the Monomastigales and
Dolichomastigales (Marin & Melkonian, 2010; Nakayama, Kawachi,
& Inouye, 2000; Sym & Pienaar, 1993; Turmel et al., 2009; Zingone et al.,
2002). The Mamiellales include marine and freshwater flagellates and
coccoid forms. Species of Ostreococcus and Micromonas are among the
smallest eukaryotes known,with cell sizes of 0.5–2 mm(Derelle et al., 2006;
Palenik et al., 2007;Worden et al., 2009) and are important components of
marine picoeukaryotic communities (Leliaert et al., 2012; Not et al., 2004;
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O’Kelly, Sieracki, Thier, & Hobson, 2003; Vaulot, Eikrem, Viprey, &
Moreau, 2008).We refer toChapter 10 (Toulza et al., 2012) for a reviewon
environmental genomics in the Mamiellales and other microalgae.
The Pyramimonadales includes large flagellates covered by complex
body scales found in marine and freshwater environments. Some species
are unique among green plants in possessing a food uptake apparatus
(Moestrup, Inouye, & Hori, 2003), which has been interpreted as
a character that might have been inherited from a phagotrophic ancestor
of the green plants (O’Kelly, 2007).
The Picocystis clade includes the coccoid Picocystis from saline lakes.
Together with some undescribed coccoids (‘CCMP1205 clade’), these
prasinophytes might form the closest sister lineages of the core chlor-
ophytes, although strong support is lacking (Marin & Melkonian, 2010).
Several other prasinophytic groups have uncertain phylogenetic affini-
ties. These include the Pycnococcaceae, a clade of marine flagellate and
coccoid species (Nakayama, Suda, Kawachi, & Inouye, 2007; Turmel
et al., 2009); the Prasinococcales, a clade of marine coccoids (Hasegawa
et al., 1996; Sieburth, Keller, Johnson, & Myklestad, 1999) and two
clades (‘clades VIII and IX’) that are known from environmental
sequencing only (Lep�ere, Vaulot, & Scanlan, 2009; Shi, Marie, Jardillier,
Scanlan, & Vaulot, 2009; Viprey, Guillou, Ferréol, & Vaulot, 2008).
The Palmophyllales includes green algae from dimly lit benthic marine
habitats. These algae feature a unique type of multicellularity, forming
well-defined macroscopic bodies composed of small spherical cells
embedded in a firm gelatinous matrix. Phylogenetic analysis either places
the Palmophyllales as the sister clade to all other Chlorophyta or allies it
with the Prasinococcales (Leliaert et al., 2011; Zechman et al., 2010).
The core Chlorophyta evolved from one of the ancestral prasinophytic

lineages probably somewhere in theNeoproterozoic (Herron et al., 2009). The
core Chlorophyta includes the species-poor and early-diverging Ped-
inophyceae (marine and freshwater uniflagellates) and Chlorodendrophyceae
(marine and freshwater quadriflagellates), and the large and diverse clades,
Trebouxiophyceae, Ulvophyceae and Chlorophyceae (TUC) (Leliaert et al.,
2012;Marin, 2012). The TUC clades include a wide variety of morphological
forms and eco-physiological features. Unlike the prasinophytes, where sexual
reproduction has rarely been observed, the core chlorophytes encompass
a large diversity of life cycle strategies, many of which involve sexual repro-
duction. Marine members of the Ulvophyceae generally have life cycles
involving an alternation between two free-living multicellular phases
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(a haploid gametophyte and diploid sporophyte). Many freshwater Chlor-
ophyceae andTrebouxiophyceae have a haploid vegetative phase and a single-
celled, often dormant zygote as the diploid phase. Conversely, terrestrial
members of the core chlorophytes are mainly asexual (Rindi, 2011). We refer
to Chapter 6 (Umen and Olson, 2012) for a review on the evolution of sex in
the chlorophycean green algae Chlamydomonas and Volvox.

A new mode of cell division likely evolved in the clade uniting the
Chlorodendrophyceae and the TUC clade and was subsequently lost in the
Ulvophyceae (Leliaert et al., 2012). This type of cell division is mediated by
a phycoplast, which is an array of microtubules oriented parallel to the plane
of cell division, determining the formation of a new cell wall (Graham et al.,
2009; van den Hoek et al., 1995). Morphological and eco-physiological
adaptations probably allowed successful radiation of the Trebouxiophyceae
and Chlorophyceae in freshwater and terrestrial habitats and diversification
of the Ulvophyceae along marine shorelines (Becker & Marin, 2009;
Cocquyt, Verbruggen, Leliaert, & De Clerck, 2010; Leliaert et al., 2012).

The relationships among the core chlorophytan lineages are difficult to
resolve, probably as a result of their antiquity and the short time span of
diversification (Cocquyt et al., 2010; O’Kelly, 2007). Furthermore, some
phylogenetic studies showed that at least the Trebouxiophyceae and
Ulvophyceae might not be monophyletic (e.g. L€u et al., 2011; Turmel, Otis,
& Lemieux, 2009; Zuccarello et al., 2009) (but see Marin, 2012; Cocquyt
et al., 2010).

The Trebouxiophyceae includes flagellates, coccoids, colonies and
multicellular filaments and blades. The group is predominantly fresh-
water or terrestrial; some members occur in brackish or marine habitats.
Many species are photosynthetic symbionts with lichen fungi, various
protists, invertebrates and plants; others have evolved a free-living or
parasitic heterotrophic life style (Friedl & Rybalka, 2011; Leliaert et al.,
2012). Analysis of the complete genome of Chlorella variabilisNC64A (an
endosymbiont of the ciliate Paramecium bursaria) has provided insights
into the genetic facilitation of an endosymbiotic lifestyle (Blanc et al.,
2010). In particular, expansion of protein families containing protein–
protein interaction domains and adhesion domains could have been
involved in adaptation to symbiosis. Although Chlorella (and many other
members of Trebouxiophyceae) has been assumed to be asexual and
non-motile, meiosis- and flagella-specific proteins have been found in its
genome, suggestive of cryptic sex and involvement of a flagella-derived
structure in sexual reproduction (Blanc et al., 2010).
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The Chlorophyceae includes flagellates, coccoids and various colonial
and multicellular forms. The group occurs mainly in freshwater and to
a lesser extent in terrestrial habitats; some are marine (Klochkova et al.,
2008). Five main lineages have been recognized: the speciose and diverse
Sphaeropleales and Chlamydomonadales including some of the most
common freshwater phytoplankters, and the smaller clades, Chaeto-
phorales, Oedogoniales and Chaetopeltidales (Leliaert et al., 2012). The
unicellular flagellate Chlamydomonas has been extensively studied as
a model for photosynthesis, chloroplast biogenesis, flagellar assembly and
function, cell–cell recognition, circadian rhythm and cell cycle control
(Grossman et al., 2003). The colonial Volvox has served as a model for the
evolution of multicellularity, cell differentiation and colony motility
(Herron & Michod, 2008; Kirk, 2003). Analysis of the complete
genomes of Chlamydomonas reinhardtii and Volvox carteri has provided
important genetic insights into the evolution of multicellularity and sex
(Merchant et al., 2007; Prochnik et al., 2010, Umen and Olson, 2012).
The Ulvophyceae includes unicells and multicellular algae as well as
giant-celled forms with unique cellular characteristics (Cocquyt et al.,
2010; Leliaert et al., 2012). Ulvophytes are generally known as macro-
algae growing along marine coasts (green seaweeds). Species in the
Ulvales, Bryopsidales and Cladophorales frequently dominate rocky
shores, tropical lagoons and reefs. Some species of Ulva can form
extensive, free-floating blooms, known as green tides (Ye et al., 2011).
Caulerpa and Codium species are notorious for their invasive nature
(Williams & Smith, 2007). Several ulvophytes (e.g. Ulva and Cladophora)
have secondarily adapted to freshwater environments. The Trente-
pohliales is atypical with respect to both morphology and ecology,
occurring exclusively in terrestrial habitats (L�opez-Bautista & Chapman,
2003). Some early diverging lineages (Oltmannsiellopsidales and Ignatius)
include microscopic organisms occurring in freshwater or terrestrial
habitats, indicating that the ancestral ulvophytes may have been fresh-
water or terrestrial unicells (Cocquyt et al., 2010).

3.4. Streptophyta and the Origin of Land Plants
The Streptophyta include a paraphyletic assemblage of green algae (char-
ophytes) and the land plants. Charophytes range in morphology from
unicellular to complex multicellular organisms and occur in freshwater or
moist terrestrial habitats. Streptophyta share a number of unique traits,
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including motile cells (when present) with two subapically inserted flagella
and an asymmetrical flagellar apparatus that contains a distinctive multilay-
ered structure and parallel basal bodies; open mitosis with a persistent mitotic
spindle and several unique enzymes (Leliaert et al., 2012). There are six main
lineages of charophytes: Mesostigmatophyceae, Chlorokybophyceae,
Klebsormidiophyceae, Zygnematophyceae, Charophyceae and Coleo-
chaetophyceae (McCourt et al., 2004) (Fig. 2.2). Many phylogenetic
studies have aimed to resolve the relationship among these lineages and in
particular to determine the origins of land plants (Karol, McCourt,
Cimino, & Delwiche, 2001; Lemieux et al., 2007; Rodriguez-Ezpeleta
et al., 2007; Timme et al., 2012; Wodniok et al., 2011).

Mesostigma (Mesostigmatophyceae) and Chlorokybus (Chlorokybophyceae)
form the earliest-diverging streptophytic lineages (Timme et al., 2012)
(Fig. 2.2). Mesostigma is a flagellate covered with diverse organic scales and is
found in freshwater habitats. Chlorokybus forms packets of a few non-motile
cells and grows in moist terrestrial environments (McCourt et al., 2004).
The freshwater or terrestrial filamentous Klebsormidiophyceae diverged after
the Mesostigmatophyceae and Chlorokybophyceae.

In contrast to these three early-diverging lineages that undergo cell
division by furrowing, the remaining lineages (Charophyceae, Zygnemato-
phyceae, Coleochaetophyceae and the land plants) evolved a newmechanism
of cell division involving a phragmoplast, which consists of an array of
microtubules oriented perpendicularly to the plane of cell division, deter-
mining the formation of the cell plate and new cell wall. Most of these later-
diverging streptophytes also have cell walls with plasmodesmata, facilitating
cytoplasmic communication between cells and development of complex
tissues (Graham, Cook, & Busse, 2000). Species in the three early-diverging
lineages have never been observed to reproduce sexually in contrasts to the
remaining streptophytes where sex is widespread (McCourt et al., 2004).

The Zygnematophyceae (conjugating green algae) is a species-rich and
morphologically diverse clade, including non-motile unicells, filaments and
small colonial forms. Sexual reproduction occurs by a unique process of
conjugation, involving fusion of non-motile gametes. Flagellate stages are
completely absent. The Charophyceae (stoneworts) include freshwater algae
with complex macroscopic bodies composed of a main axis with whorled
branches. Growth is by an apical meristematic cell. Sexual reproduction is
oogamous with oogonia and antheridia surrounded by sterile cells. Char-
ophyceae are well represented in the fossil record, which is a large diversity
extending back to the Silurian (McCourt et al., 2004).
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The Coleochaetophyceae is a small clade of branched filaments that
sometimes form discoid parenchymatous thalli (Graham, 1984). Based on
morphological similarities with embryophytes, Coleochaete has traditionally
been put forward as the closest relative of land plants (Graham, 1984; Graham
et al., 2000). For example, some species of Coleochaete have corticated zygotes
that are retained on the mother plant from which they receive nourishment
via placental transfer cells with wall ingrowths. Also, cytokinesis and phrag-
moplast formation are similar to land plants (Graham et al., 2000).

Identifying the closest living relative of land plants has proven to be
a difficult task (Cocquyt et al., 2010; Karol et al., 2001; Lemieux et al., 2007;
Rodriguez-Ezpeleta et al., 2007; Turmel et al., 2009; Turmel, Otis, &
Lemieux, 2006, 2007). Recent studies based on broad phylogenomic
sampling have suggested the Zygnematophyceae, or a clade uniting the
Zygnematophyceae and Coleochaetophyceae, as sister lineage of the land
plants (Timme et al., 2012; Wodniok et al., 2011; Laurin-Lemay, Brinkmann,
& Philippe, 2012). The inferred relationship between Coleochaetophyceae
and land plants is in line with earlier morphology-based hypotheses (Graham,
1984; Graham et al., 2000), and the relationship between Zygnematophyceae
and land plants is supported by some cellular and molecular features, including
similarities in auxin signalling (De Smet et al., 2011) and chloroplast move-
ment (Wada, Kagawa, & Sato, 2003).

4. GLAUCOPHYTES

The Glaucophyta (also known as Glaucocystophyta) is a small and
inconspicuous group of unicellular algae found in freshwater and terrestrial
environments (Baldauf, 2008; Bhattacharya & Schmidt, 1997; Kies &
Kremer, 1990; Schenk, 2001). The importance of the group lies mainly in its
critical phylogenetic position, branching deeply within the Archaeplastida
(Fig. 2.1) (Bhattacharya, Helmchen, Bibeau, & Melkonian, 1995; Moreira,
Le Guyader, & Philippe, 2000; Nozaki et al., 2009; Price et al., 2012; Reyes-
Prieto & Bhattacharya, 2007; Rodriguez-Ezpeleta et al., 2005).

Glaucophytes are unique among photosynthetic eukaryotes in that they
contain unusual plastids (originally named ‘cyanelles’) with several character-
istics reminiscent of Cyanobacteria: plastids are surrounded by a prokaryote-
type peptidoglycan wall (except for Glaucosphaera vacuolata) and contain only
chlorophyll a and phycobilins (Steiner & L€offelhardt, 2002; Steiner, Yusa,
Pompe, & L€offelhardt, 2005). Similar to red algae, plastids have unstacked

74 Olivier De Clerck et al.



thylakoids and light-harvesting proteins organized into phycobilisomes. About
13 species have been described in five genera: Glaucocystis, including coccoid
cells with a cellulosic wall and two short rudimentary flagella; Cyanophora
andPeliaina arewall-less flagellateswith twoheterokontflagella andGloeochaete
and Cyanoptyche, including non-motile cells in a gelatinous matrix, repro-
ducing by motile or non-motile spores (Schenk, 2001).

To date, the genome of a single glaucophyte has been sequenced (Price
et al., 2012; Stirewalt, Michalowski, L€offelhardt, Bohnert, & Bryant, 1995).
Genomic data and a better understanding of the phylogenetic position of
glaucophytes will provide valuable insights into the endosymbiotic origin
and evolution of plastids in eukaryotes.

5. ARCHAEPLASTIDA GENOME STUDIES

Genomic data are rapidly accumulating. To date, about 10 complete
genomes have been sequenced, but several other genome projects are
ongoing (Tirichine & Bowler, 2011). Whole-genome data provide a great
resource for analysis of eukaryotic genome evolution and user friendly
online platforms for exploring this genome information is becoming
increasingly available (e.g. Pico-Plaza, http://bioinformatics.psb.ugent.be/
pico-plaza/; Van Bel et al., 2012).

BOX 2.2 Glossary
Archaeplastida A group of photosynthetic eukaryotes that are hypothesized to

have evolved from a common ancestor with a primary plastid
comprising the green plants (Viridiplantae), red algae
(Rhodophyta) and the glaucophytes (Glaucophyta)

Biomarker Organic molecules derived from distinctive cellular components in
geological deposits indicative for the existence of certain
organisms in specific time periods (e.g. 2-methyl hopanoids as
evidence for cyanobacteria or okenone for purple bacteria)

Calibrated phylogeny Phylogeny in which the branch lengths are proportional to time
using geo-paleontological date (e.g. fossils, biomarkers and
geological events) or substitution rates as scaling parameters

Chromalveolata Group consisting of chlorophyll c containing phototrophs and some
clades that secondarily lost their plastids, hypothesized to have
evolved from a common ancestor with a secondary red algal
derived plastid, including Alveolata, Stramenopila, Haptophyta
and Cryptophyta

Concatenation Data set in which sequence information of multiple genes is
combined and analyzed together assuming all genes share
a common history

Continued
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