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Chapter 16 Gyroscopes and Angular Momentum 
 
16.1 Gyroscopes  
 
So far, most of the examples and applications we have considered concerned the rotation 
of rigid bodies about a fixed axis, or a moving axis the direction of which does not 
change. However, there are many examples of rigid bodies that rotate about an axis that 
is changing its direction. A gyroscope, a turning bicycle wheel, the earth’s precession 
about its axis (not a part of Example 15.6.1), a spinning top, and a coin rolling on a table 
are all examples of this type of motion. These motions can be very complex and difficult 
to analyze. We shall make a simplifying assumption called the gyroscopic approximation 
that will enable us to study a few simple cases. 
 
A toy gyroscope consists of a spinning flywheel mounted in a suspension frame that 
allows the flywheel’s axle to point in any direction. One end of the axle is supported on a 
pylon (Figure 16.1) a distance b  from the center of mass of the gyroscope. 
 
The flywheel is spinning about its axis with a radial component of angular velocity, 
( )spin

sr
ω=r

ω . The center of mass rotates about a vertical axis that passes through the 

contact point S  of the axle with the pylon with a precessional angular velocity ˆΩ= k
r
Ω  

where, as indicated in Figures 16.1 and 16.2, the z -direction, which is the direction of k̂ , 
is vertically upwards.The spin angular velocity is then 
 
 spin

s sˆ ˆω ω= r = rr
ω  (16.1.1) 

 
 
The total angular velocity with respect to the contact point S  is the vector sum 
 
 total spin

s ˆω= + = + r
r rr r

ω Ω ω Ω . (16.1.2) 
 
 

 
 

Figure 16.1 A toy gyroscope. 
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We shall study the special case when the precessional component Ω  of the angular 
velocity is much less than the spin component spinω  of the spin angular velocity, 

spinωΩ << , so that s spinω ω≅ , and that Ω  and spinω  are nearly constant. These 
assumptions are collectively called the gyroscopic approximation. 
 
The precessional motion of the gyroscope seems almost magical. Our expectation is that 
the gyroscope flywheel should fall downward due to the torque that the gravitational 
force exerts about the contact point S . 
 
The force diagram for the gyroscope is shown in Figure 16.2.   
 

 
 

Figure 16.2 Force diagram for the gyroscope. 
 
The gravitational force acts at the center of the mass and is directed downward, 

gravity
ˆmg−F = k

r
. There is also a contact force between the end of the axle and the pylon. 

It may seem that the contact force has only an upward component, vertical vertical
ˆFF = k

r
, but 

there is necessarily also a radially inward component to the contact force, rad rad ˆF−F = r
r

. 
As the gyroscope flywheel spins and its axis of rotation precesses, we can decompose the 
vectors in Newton’s Second Law, mF = a

r r , into vertical and radial directions: 
 
 verticalVertical direction:    0, (no vertical acceleration)F m g− =  (16.1.3) 
 
 2

radInward direction: , (circular motion)F mb= Ω . (16.1.4) 
 
What about the torque about the contact point S ? The contact forces are acting at the 
point S  so they do not contribute to the torque about S ; only the gravitational force 
contributes to the torque about S . As in Figures 16.1 and 16.2, choose coordinates so that 
the axle of the gyroscope flywheel is initially aligned along the r -axis and the vertical 
axis is the z -axis. The direction of the torque about S  is in the positive θ -direction, 
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 ( ) ( ),cm gravity

ˆˆˆS S b mg bmg× × − = += r F = r k
rrr

τ θ . (16.1.5) 

 
Because the torque is clearly non-zero, angular momentum is changing in time. The 
angular momentum is a vector, and has magnitude and direction. How does this vector 
change in time? 
 
In general, the magnitude or direction of a vector quantity, or both, could change.  In the 
gyroscopic approximation, as described above, the magnitude of the angular momentum 
is taken to be a constant.  For the purposes of the current discussion, then, we will only 
consider the change in the direction of the vector angular momentum. 
 
We have already encountered a physical situation in which the direction of a constant 
length vector changes, in our study of circular motion.  In these cases, we considered a 
point object of mass m  moving in a circle of radius r . When we choose a coordinate 
system with an origin at the center of the circle, the position vector rr  is directed radially 
outward. As the mass moves in a circle, the position vector has a constant magnitude but 
changes in direction. The velocity vector  
 

 d
dt
rv =
r

r  (16.1.6) 

 
is in a direction tangent to the circle and the magnitude of the velocity is  
 

 tan
dv r
dt
θ

= ; (16.1.7) 

 
the component of the tangential velocity is equal to the product of the magnitude r  of the 
position vector the angular velocity (Figure 16.3(a)). 

 

 
 

Figure 16.3 (a) and (b): Rotating vector of constant magnitude directed tangent to the 
circle traced out by the tip of the vector  
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This result is true for any vector A
r

 that is constant in magnitude but changes direction. 
The tangential component of the time derivative of the vector A

r
 is given by 

 

 
tan

ˆd d
dt dt

θ⎛ ⎞
⎜ ⎟
⎝ ⎠

A = A
r

r
θ  (16.1.8) 

 
where θ̂  is the unit vector in a direction tangential to the circle that is swept out by the tip 
of the vector A

r
 (Figure 16.3 (b)). 

 
When the flywheel is spinning, the spin angular momentum about the center of mass of 
the flywheel points along the axle; the spin angular momentum is directed radially 
outward (Figure 16.4). With our choice of coordinates,  
 
 spin

cm cm s ˆI ωL = r
r

. (16.1.9) 
 

 
 

Figure 16.4 Spin and orbital angular momentum. 
 
In Equation (16.1.9), the moment of inertia cmI  is with respect to the flywheel axis. 
Recall that in the gyroscopic approximation, we assume that the spin angular velocity sω  
is constant. In this approximation, the magnitude of the spin angular momentum is 
constant, but as the flywheel precesses, the spin angular momentum changes its direction 
according to  
 

 spin spin
cm cm

ˆd d
dt dt

θL = L
r r

θ . (16.1.10) 

 
From our definition of the orbital angular velocity ˆΩ= k

r
Ω , the component Ω  of the 

orbital angular velocity of the flywheel about the vertical axis is  
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 d
dt
θ

Ω ≡ . (16.1.11) 

 
The rate of change of the spin angular momentum is then 
 

 spin spin
cm cm cm s

ˆ ˆd I
dt

ωΩ ΩL = L =
r r

θ θ . (16.1.12) 

 
The angular momentum about S  consists of two pieces, 
 
 total orbital spin

cmS S= +L L L
r r r

. (16.1.13) 
 
How does this angular momentum vector change in time? The first term in 
Equation (16.1.13),  
 
 orbital total

,cmS S ×L = r p
r r r , (16.1.14) 

 
is the orbital angular momentum about S . The total linear momentum vector totalpr  is in 
the tangential direction, 
 
 total

tan
ˆ ˆmv mbΩp = =r
θ θ , (16.1.15) 

 
where Equations (16.1.7) and (16.1.11) have been combined to give the magnitude tanv  of 
tangential velocity in terms of r b=  and Ω . 
 
The position vector from S  to the center of mass is ,cm ˆS br = rr  and so the orbital angular 
momentum about S  is  
 
 ( ) ( )orbital 2ˆ ˆˆS b mb mbΩ ΩL = r × = k

r
θ . (16.1.16) 

 
The angular momentum vector as given in Equation (16.1.16) is a constant since we have 
assumed in the gyroscopic approximation that Ω  is constant. Thus   
 

 orbital
S

d
dt

L = 0
rr

. (16.1.17) 

  
The spin angular momentum spin

cmL
r

 as given in Equation (16.1.9) is only valid in the 

gyroscopic approximation.  If this approximation is not made, spin
cmL
r

 would also have a 

component in the ˆ+ k  direction since the flywheel is rotating about its vertical axis as the 
center of mass rotates in a circle about the vertical axis. This component of the spin 



 11/25/2008 - 6 - 

angular momentum would be ( )spin
cm cmz

I ′= ΩL
r

, where cmI ′  is the moment of inertia of the 

flywheel with respect to an axis parallel to the z -axis passing through the center of mass 
of the flywheel.  In the gyroscopic approximation, the ratio of the magnitudes 
 

 
( )
( )

spin
cm

spin
scm

1z

r
ω
Ω

≈ <<
L

L

r

r  (16.1.18) 

 
and so ( )spin

cm z
L
r

 need not be considered.  In any event, ( )spin
cm cmz

I ′= ΩL
r

 is constant in time. 

 
Thus in the gyroscopic approximation the only change to the angular momentum about S  
is the change in direction of the spin angular momentum about the axis passing through 
the center of mass perpendicular to the wheel,  
 

 ( )total spin
cm ˆS r

d d
dt dt

L = L r
r r

. (16.1.19) 

 
We can now return to our idea that the net torque about the point S  causes the angular 
momentum about S  to change, Equation (15.1.3), 
  

 S
S

d
dt
L=
r

r
τ . (16.1.20) 

 
Because only the spin angular momentum changes, use of Equations (16.1.5) and 
(16.1.12) in Equation (16.1.20) yields 
 
 spin

cm r
b mg = ΩL

r
. (16.1.21) 

 
Solving Equation (16.1.21) for the precessional frequency of the gyroscope yields 
 

 
spin

cm scm r

b mg b mg
I ω

Ω = =
L
r . (16.1.22) 

 
Example 16.1.1 Tilted Toy Gyroscope 
 
A wheel is at one end of an axle of length l . The axle is pivoted at an angle φ  with 
respect to the horizontal. The wheel is set into motion so that it executes uniform 
precession; that is, the wheel’s center of mass moves with uniform circular motion. The 
wheel has mass m  and moment of inertia cmI  about its center of mass. Its spin angular 
velocity has magnitude spinω  and is directed as shown in the figure below. Neglect the 
mass of the axle. What is the angular frequency that the gyroscope precesses about the 



 11/25/2008 - 7 - 

vertical axis? Does the gyroscope rotate clockwise or counterclockwise about the vertical 
axis (as seen from above)? 
 

 
 

Solution: 
 
The gravitational force acts at the center of mass and is directed downward, 

gravity
ˆmg= −F k

r
. Let S  denote the contact point between the pylon and the axle. The 

contact forces between the pylon and the axle are acting at the point S  so they do not 
contribute to the torque. Only the gravitational force contributes to the torque. Let’s 
choose cylindrical coordinates. The torque about S  is 
 
 ,cm gravity

ˆˆ ˆˆ( cos sin ) ( ) cos ( )S S l l mg mglφ φ φ= × = + × − = +r F r k k
rrr

τ θ ,(16.1.23) 
 
which is into the page in the above figure.  
 
The spin angular momentum has a vertical and radial component, 
 
 spin spin spin

cm cm cm
ˆˆcos sinφ φ= +L L r L k

r r r
. (16.1.24) 

 
Assume that the spin angular velocity spinω  is constant. Then the magnitude of the spin 
angular momentum is constant, 
 
 spin

cm cm spinI ω=L
r

. (16.1.25) 
 
As the wheel precesses, the time derivative of the spin angular momentum arises from the 
change in the direction of the radial component of the spin angular momentum, 
 

 spin spin spin
cm cm cm

ˆ ˆcos
r

d d d
dt dt dt

θ θφ=L L L
r r r

θ = θ . (16.1.26) 
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The component of the angular velocity of the flywheel about the vertical axis is defined 
to be  
 

 d
dt
θ

Ω ≡ . (16.1.27) 

 
The rate of change of the spin angular momentum is then 
 

 spin spin
cm cm cm

ˆ ˆcos cosS
d I
dt

φ ω φ= Ω = ΩL L
r r

θ θ . (16.1.28) 

 
 
In the gyroscopic approximation, the torque about the point S  induces the spin angular 
momentum about  S  to change, 
  

 
spin
cm

S
d

dt
=

L
r

r
τ . (16.1.29) 

 
Now substitute Equation (16.1.23) for the torque about S , and Equation (16.1.12) for the 
rate of change of the spin angular momentum into Equation (16.1.20), 
 
 cm spincos cosl mg Iφ ω φ= Ω . (16.1.30) 
 
Solving Equation (16.1.21) for the precessional frequency of the gyroscope yields 
 

 
cm spin

l mg
I ω

Ω = , (16.1.31) 

 
the precessional frequency is independent of the angle φ . Both the torque and the time 
derivative of the spin angular momentum point in the θ̂ -direction, indicating that the 
gyroscope will precess counterclockwise when seen from above. 
 


