
Scheduling Interfering Job Sets on Parallel Machines

Hari Balasubramanian1, John Fowler2, Ahmet Keha2, and Michele Pfund3

1: Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA
2: Department of Industrial Engineering, Arizona State University, Tempe, AZ

3: Department of Supply Chain Management, Arizona State University, Tempe, AZ
hbalasubraman@ecs.umass.edu, john.fowler@asu.edu, ahmet.keha@asu.edu, michele.pfund@asu.edu

Abstract

We consider bicriteria scheduling on identical parallel machines in a nontraditional context:
jobs belong to two disjoint sets, and each set has a different criterion to be minimized. The
jobs are all available at time zero and have to be scheduled (non-preemptively) on m parallel
machines. The goal is to generate the set of all non-dominated solutions, so the decision maker
can evaluate the tradeoffs and choose the schedule to be implemented. We consider the case
where, for one of the two sets, the criterion to be minimized is makespan while for the other the
total completion time needs to be minimized. Given that the problem is NP-hard, we propose
an iterative SPT-LPT-SPT heuristic and a bicriteria genetic algorithm for the problem. Both
approaches are designed to exploit the problem structure and generate a set of non-dominated
solutions. In the genetic algorithm we use a special encoding scheme and also a unique strategy
- based on the properties of a non-dominated solution - to ensure that all parts of the non-
dominated front are explored. The heuristic and the genetic algorithm are compared with a
time-indexed integer programming formulation for small and large instances. Results indicate
that the both the heuristic and the genetic algorithm provide high solution quality and are
computationally efficient. The heuristics proposed also have the potential to be generalized for
the problem of interfering job sets involving other bicriteria pairs.

Keywords: interfering job sets, parallel machines, bicriteria scheduling.

1 Introduction

Traditionally, multicriteria scheduling problems have been considered with the objective of mini-
mizing criteria that apply to each of the jobs being scheduled. While motivation for such problems
can frequently be found in practice, it is also possible to have situations in which jobs belong to
disjoint classes or sets, with a criterion associated with each set. The job sets in such a situation
are said to compete or interfere with each other for the same resources. Research in the area of
interfering job sets is limited. In Hoogeveen [2005]’s review of multicriteria scheduling problems,
he mentions the scheduling of interfering job sets as one of the new developments in the area. The
work of Peha [1995] is the earliest reference on the topic. He considers the lexicographic opti-
mization of the weighted number of tardy jobs for one set and the total weighted completion time
for the other under the assumption of unit processing times, integer release dates and identical
parallel machines. Peha [1995]’s research is motivated by real time systems and integrated-services

1

networks. He provides polynomial time algorithms for the problem which exploit the assumption
of unit processing times.

Agnetis et al. [2003] consider the problem of two users competing for common job shop resources.
Their motivation comes from the decision by two major companies to propose a joint venture to
construct a flexible manufacturing system for their products. Agnetis et al. [2003] further state that
discussion with these companies indicated that a decision support system that enables negotiation
between the two competing users of the manufacturing system would be useful. Agnetis et al.
[2003] also mention other applications where users with different goals compete with each other for
the same resources: 1) scheduling multiple flights of different airlines on a common set of runways,
2) scheduling berths and material/people movers (cranes, walkways, etc.) at a port for multiple
ships, 3) scheduling clerical workers among different “bosses” in an office, and 4) scheduling a
mechanical/electrical workshop for different users. Baker and Smith [2003] present an example
in which a prototype shop is shared by both the Research and Development department and
the Manufacturing Engineering department. The Research and Development department might
have concerns on meeting due-dates while the Manufacturing Engineering department might have
concerns about quick response times.

In a different paper Agnetis et al. [2004] present complexity results for generating non-dominated
solutions for single machine and shop scheduling problems given that jobs belong to one of two sets.
The objectives they consider include

∑
Cj and

∑
Uj . Cheng et al. [2006a] show the NP-hardness

of the high multiplicity encoding version of the problem of minimizing
∑

Cj on a single machine
with a constraint on

∑
Uj , while Cheng et al. [2006b] show the strong NP-hardness of problem

where jobs belong to one of many sets and
∑

wjUj is to be minimized for each set. Agnetis et al.
[2007] tackle the computational complexity of the single machine problem involving interfering job
sets and with more generally defined cost functions. Baker and Smith [2003] also consider the
single machine version of the problem and show the polynomial solvability of bicriteria problems
involving 1) Cmax 2)

∑
Cj 3)

∑
wjCj 4) Lmax, except for the

∑
wjCj , Lmax pair, which they

show to be NP-hard. Their bicriteria optimization function is a linear combination of the criteria
with weights on each criterion. We note that the Baker and Smith [2003] approach of minimizing
a linear combination is an a priori approach: information is available beforehand on the weights of
the two criteria.

The problem of scheduling interfering job sets has some unique structural properties in the
single machine environment. We consider the case where jobs belong to one of two disjoint sets C1
and C2. Key results from Baker and Smith [2003] that can be proved easily for regular scheduling
measures by contradiction arguments are:

Property 1 : If makespan is the criteria for one of the sets, then there is an optimal schedule in
which all jobs belonging to the makespan set are processed consecutively.

Property 2 : If total completion time is the criteria for one of the sets, then there exists an
optimal schedule in which jobs in the total completion time set are processed in shortest processing
time (SPT) order.

Intuitively, Property 1 tells us that since only the latest finish time of the set of makespan jobs
matters, processing the jobs non-consecutively can never increase the objective value of the jobs in
the other set (true for regular criteria). Property 1 has an interesting implication on the optimal
schedule of jobs. Since all the jobs for which makespan is to be minimized are to be processed
consecutively, they can all be accumulated into a single “makespan job”. The processing time of
the makespan job is the sum of the processing times of the jobs in the makespan set. Minimizing a

2

weighted linear combination of the the two objectives then reduces to the total weighted completion
time problem (there could be a different weight on the makespan job and equal weights on all the∑

Cj jobs), solvable using the well-known weighted shortest processing time (WSPT) rule.
If the set of all non-dominated solutions were to be generated (not considered by

Baker and Smith [2003]), the makespan job would be placed at each position in the schedule
(position 1, position 2,...,position n2+1) preceded and/or followed by the

∑
Cj jobs ordered by the

SPT rule (due to property 2).
This research extends the single machine research of Baker and Smith [2003] by considering the

problem of two interfering jobs sets in the identical parallel machine environment. We limit our
study to two well-known classical scheduling criteria: makespan and total completion time. Jobs
are divided into two disjoint sets: one for which makespan needs to be minimized, and the other for
which total completion time needs to be minimized. The problem is NP-hard as the single criterion
problem of minimizing makespan on parallel machines is NP-hard. We propose computationally
efficient heuristic techniques that can be extended with modifications to other bicriteria pairs. Our
goal is to generate the set of non-dominated solutions, so the decision maker can evaluate the
tradeoffs in the criteria. This is the a posteriori approach in which the decision maker makes his
choice only after a set of points is presented. Since makespan is equivalent to the decision problem
involving a common deadline (i.e. whether a feasible schedule can be obtained such that all jobs
finish before a common deadline) the set of non-dominated solutions can give the decision-maker
important information on whether jobs for one set can be finished by a given time and the resulting
compromise or effect on the sum of completion times of the other customer’s jobs.

We propose two different heuristic techniques in the paper: an iterative SPT-LPT-SPT (S-
L-S) heuristic and a bicriteria genetic algorithm. Both approaches are designed specifically to
exploit the problem structure and the properties of a non-dominated solution. Over the last two
decades, a number of different approaches have been proposed for using evolutionary algorithms
for multicriteria problems. We point to the tutorial by Landa Silva and Burke [2004b] for a concise
description of the main developments in the area. We note that the genetic algorithm proposed
in this research, due to its problem specific nature, is quite different from the GA approaches
proposed in the literature for traditional multicriteria parallel machine scheduling problems. We
propose a special encoding scheme in this research and also a strategy to explore all portions of
the non-dominated front; our ideas are built to capture the structural implications of interference
between jobs sets, especially when one of the criteria is makespan.

The remainder of the paper is organized as follows. We define our problem in Section 2. In
Section 3 we discuss key aspects of the problem structure and propose the S-L-S heuristic. In
Section 4, we describe the bicriteria genetic algorithm. We then compare, in Sections 5 and 6,
the performance of the S-L-S heuristic and the genetic algorithm to the true set of non-dominated
solutions generated by an integer program. Finally, the paper is summarized, overall conclusions
are given and future research directions are discussed in Section 7.

2 Problem definition

We consider the problem of scheduling n jobs on m identical parallel machines. The jobs belong to
one of two disjoint sets C1 and C2 with n1 and n2 jobs in them respectively, such that n1 +n2 = n.
For the jobs in the set C1, we are interested in minimizing criterion Cmax and for the jobs in the
set C2, we are interested in minimizing criterion

∑
Cj . Each job has a processing time pj and we

3

assume that all jobs are available for processing at time zero.
In the α|β|γ scheduling notation of Graham et al. [1979], we refer to this problem as

P |inter|ND(Cmax,
∑

Cj), where inter is our notation to indicate that jobs of the different sets
interfere with one another, and ND(Cmax,

∑
Cj) is our notation to indicate we are interested in

generating the set of non-dominated points.
The goal is to generate a set of non-dominated or Pareto optimal solutions, so the decision

maker can determine the tradeoffs involved in scheduling the two sets of jobs. Let S be the set
of feasible solutions for a bicriteria optimization problem with interfering job sets. Let z1(x) and
z2(x) be the objective values for criteria z1 (corresponding to set C1) and z2 (corresponding to set
C2) for a feasible solution x ∈ S (both z1 and z2 need to be minimized).

Definition 2.1. A solution x∗ is Pareto optimal or non-dominated if there exists no other solution
x ∈ S for which z1(x) ≤ z1(x∗) and z2(x) ≤ z2(x∗) where at least one of the inequalities is strict.

The problem of generating the set of non-dominated solutions for Cmax and
∑

Cj , given that
the jobs sets corresponding to the two criteria interfere with each other, is strongly NP-hard. In-
deed solving any bicriteria problem with interfering job sets involving classical scheduling criteria
in the parallel machine environment is strongly NP-hard. This is because only P ||∑Cj is poly-
nomially solvable (for an extensive compilation of complexity results for single criteria scheduling
problems see Brucker and Knust [2006]) while all other criteria are NP-hard. Our goal in this
research is to develop computationally efficient heuristics that are able to generate solutions that
are non-dominated or near non-dominated.

3 Some features of the P |inter|ND(Cmax,
∑

Cj) problem

Some of the properties of the single machine problem can be extended to the parallel machine
case. It can easily be shown that in a non-dominated solution, jobs in C1, for which makespan
is to be minimized and that are assigned to the same machine, are always contiguous (i.e. they
are processed consecutively). This is because non-contiguous processing of the jobs in C1 can only
increase the

∑
Cj of jobs in C2. Once the makespan jobs have been assigned to the machines, the

n1 jobs of set C1 are now reduced to a maximum of m “makespan” jobs (there could be fewer)
to be scheduled, where each makespan job is an aggregation of jobs from C1 assigned to a given
machine. It can also be shown that on a given machine jobs in the set C2 for which

∑
Cj is to be

minimized are processed in SPT order. (However, it is not possible to make a stronger statement
that the jobs in C2 will appear in SPT order on the m machines; a counterexample that disproves
this is given at the end of this Section).

A non-dominated solution, from the above discussion, can be visualized as follows: a “block”
or subschedule S1 consisting of k jobs belonging to C2 followed by a subschedule S2 consisting of
up to m makespan jobs (C1), followed by a subschedule S3 consisting of jobs belonging to C2 that
were not scheduled in S1. The situation is shown in Figure 1, where the jobs in gray represent the
jobs in C2 while the unshaded jobs represent the jobs in C1. Naturally, if the decision maker is
inclined towards a schedule with lower makespan, the subschedule S2 of makespan jobs will occur
early in the schedule (S1 may be a null set), while if the preference is towards a lower

∑
Cj , it will

occur later in the schedule.

4

mc 1
mc 2
mc 3
mc 4

Makespan jobs aggregated
on each machine

s1 s2 s3C*
max

mc 1
mc 2
mc 3
mc 4

Makespan jobs aggregated
on each machine

s1 s2 s3C*
max

Figure 1: Structure of a non-dominated solution when one of the criteria is makespan

We devise a heuristic to generate a set of near non-dominated points based on the idea that
the jobs of the two sets occur in these three alternating blocks. It is well known that the P ||∑Cj

problem is optimally solved by scheduling jobs in Shortest Processing Time order (Conway et al.
[1967]) and that the Longest Processing Time (LPT) heuristic is an effective heuristic for the
P ||Cmax problem Graham [1966]. We use the SPT and LPT heuristics iteratively to generate a set
of points using the following algorithm:
Iterative SPT-LPT-SPT (S-L-S)
For every k = 0 to k = n2, do:

Step 1. Construct a partial SPT schedule for the k shortest processing time jobs in C2. Let
(A1, A2, ..., Am) be the finish times on the machines once the k jobs have been scheduled.

Step 2. Given (A1, A2, ..., Am) from step 1, use the modified longest processing time (MLPT) of
Lee [1991] to schedule the jobs in C1. Update the finish times of the machines to (A

′
1, A

′
2, ..., A

′
m).

Step 3. Given (A
′
1, A

′
2, ..., A

′
m) from step 2, schedule the remaining n2 − k jobs in C2 in SPT

order.
Step 4. Let C∗

max be the makespan value of jobs in C1 obtained at the end of step 2. For each
machine i on which jobs in C1 finish before C∗

max, determine if there exist jobs in S3 assigned to
machine i (based on the SPT ordering of step 3) that can be scheduled earlier than the makespan
jobs on machine i while still not exceeding the determining C∗

max value. If such a job or jobs do
exist, schedule them before the makespan jobs on machine i.

Remarks

1. Note that when k = 0 the algorithm goes directly to step 2 and schedules all the jobs in
C1 using an LPT-based heuristic and in step 3 it schedules all the jobs in C2 in SPT order. The
resulting schedule will be close to optimal for Cmax while

∑
Cj becomes a secondary criterion. On

the other hand, when k = n2 only steps 1 and 2 are executed: in step 1, the optimal schedule (SPT
schedule) for the jobs in C2 is obtained followed by an LPT-based ordering of jobs in C1. Here,∑

Cj can be viewed as a primary criterion while Cmax is the secondary criterion.
2. When 1 ≤ k ≤ n2 − 1, the algorithm progressively shifts the jobs in C1 from the beginning

of the schedule to the end. This process seeks to generate the set of non-dominated points.

5

3. When 1 ≤ k ≤ n2, the k jobs from C1 scheduled prior to the makespan jobs may have
caused the machines to finish at different times. Thus the makespan for jobs in C1 now needs to be
minimized when machines are not all available at the same time. This problem is a generalization
of the classic makespan scheduling problem on parallel machines. We use the Modified Longest
Processing Time (MLPT) algorithm of Lee [1991] to obtain a schedule of jobs in C1. The heuristic
assumes that in addition to the jobs in C1 m additional jobs, each of length equal to the finish
times of the machines, (A1, A2, ..., Am), also need to be scheduled (if any of these finish times are
0, it is assumed to be job with a processing time of 0). The LPT rule is used to assign jobs in such
a way that each machine has exactly one of the m additional jobs. After the scheduling is finished,
the m additional jobs are moved to the beginning of the sequence on their respective machines. For
more details, we refer the reader to Lee [1991].

4. Let C∗
max be the makespan value of jobs in C1 obtained at the end of Step 2. C∗

max is
the determining makespan value (see Figure 1) realized on one or more machines. Step 4 in the
algorithm is essentially a post-processing procedure. It is used to check if any of the m makespan
jobs that finish before C∗

max can be delayed to accommodate jobs from S3. If so, after this post-
processing step, the makespan value remains unaffected but the jobs from C2 can be scheduled
earlier and the

∑
Cj improved.

5. Given the set of finish times (A
′
1, A

′
2, ..., A

′
m) on the machines at the end of step 2, the

remaining unscheduled jobs are scheduled in SPT order in step 3. It is known that for any given
set of finish times SPT order is optimal for the

∑
Cj of the remaining unscheduled jobs in C2

(Sanlaville and Schmidt [1998]). Note that at this stage the problem reduces to minimizing the
total completion time when machine availability times are different.

6. A total of n2 + 1 schedules are generated by this procedure. We discard schedules that are
dominated.

Finally, we present a counterexample (see Figure 2) that shows that the jobs in S1 need not
follow SPT ordering in a non-dominated solution, thus illustrating a situation where the heuristic
can fail. Consider the following 2-machine instance: there are two 2 jobs in C1, each with a
processing time of 10; and there are 3 jobs in C2 with processing times of 2, 2, and 4. Suppose we
are at stage k = 3 in the algorithm. Thus all jobs from C2 are scheduled first followed by jobs in
C1. Going by the SPT ordering of step 1 and followed then by the LPT ordering of step 2, the
schedule on machine 1 (given by the processing times of the jobs) is: 2 4 10 while the schedule on
machine 2 will be: 2 10. The

∑
Cj of the schedule is 2+2+ 6 = 10 while the Cmax of the schedule

is 16. Consider now the schedule Machine 1: 2 2 10 and Machine 2: 4 10, which has the same∑
Cj value of 2 + 4 + 4 = 10 and a Cmax value of 14. Clearly the latter schedule which does not

follow an SPT schedule dominates the former. However, the latter schedule still achieves the same∑
Cj as the former. We note that the genetic algorithm described in the next Section would likely

generate this latter solution.
For a discussion on the characterization of the class of optimal schedules for P ||∑Cj (which

includes schedules that do not follow SPT ordering) we point the reader to Conway et al. [1967].
Indeed, such a study could lead to interesting theoretical considerations regarding the structure of
a non-dominated solution.

Finally, the following theorem (proof in appendix) illustrates an important property of the
P |inter|ND(Cmax,

∑
Cj) problem. This proof pertains to every non-dominated point in the criteria

space, where a point corresponds to a specific Cmax (for jobs in C1) and
∑

Cj (for jobs in C2)
value in the criteria space. The theorem implies that for every such non-dominated point, there

6

2mc 1

mc 2

(a) S-L-S schedule when k=3

2

4

10

10

2

mc 1

mc 2

(b) Non-dominated schedule when k=3

2

4

10

10

2mc 1

mc 2

(a) S-L-S schedule when k=3

2

4

10

10

2

mc 1

mc 2

(b) Non-dominated schedule when k=3

2

4

10

10

Figure 2: Counterexample disproving optimality of SPT ordering of subschedule S1

exists a schedule such that the jobs in S1 are the k shortest jobs, even though they may not be
scheduled in SPT order.

Theorem 1. For every non-dominated point in the criteria space, there exists a schedule that can
be divided into three sets: S1 consisting of the k shortest jobs in C2 (i.e. the

∑
Cj jobs); S2

consisting of jobs in C1 (i.e. the Cmax jobs); and S3 consisting of remaining n2 − k jobs in C2.

Note that there can exist multiple non-dominated schedules that do not follow this decompo-
sition; our claim is that there exists at least one schedule that follows the properties described in
the theorem. We now use the theorem to propose an encoding for the genetic algorithm, described
in the next Section.

4 A genetic algorithm for the P |inter|ND(Cmax,
∑

Cj) problem

We now propose a genetic algorithm (GA) to generate the set of non-dominated solutions (for an
introduction to genetic algorithms see Goldberg [1989]). The discussion in Section 3 on the key
characteristics of the problem of generating the set of non-dominated points forms the basis of the
genetic algorithm. Indeed, the design of the GA is very similar to the iterative S-L-S heuristic but
allows for a search of schedules other than those provided by the heuristic.

Every solution in the GA consists of 3 subschedules S1, S2 and S3 (see Figure 1, and the
discussion in Section 3). The first subschedule S1 consists of k shortest processing time jobs from
from C2. The second subschedule S2 follows S1 and consists of all n1 jobs from C1. The third
subschedule S3 follows S1 and S2, and consists of n2 − k jobs from C2. The value of k can be said
to control tradeoff between the Cmax and

∑
Cj values: a high (low) value of k generally leads to

solutions with a high (low) value of Cmax and a low (high) value of
∑

Cj . In the GA, we force
the condition that there are a fixed number of solutions Q with k jobs in S1 for every value of k,
from 0 to n2. This strategy attempts to ensure that solutions are searched for in all parts of the
non-dominated front and no biases get inadvertently introduced towards particular sections.

The proposed GA uses the same fitness ranking as the non-dominated sorting genetic algorithm
(NSGA-II) of Deb et al. [2000]. We also refer to an implementation by Pasupathy et al. [2006] of

7

the NSGA-II algorithm for a bicriteria flow shop scheduling problem involving makespan and total
completion time. The idea is to classify individuals in the population into successive non-dominated
fronts, and using the non-domination rank value as an indicator of fitness. The tournament selection
method (individuals are compared based on their non-domination ranks; see Brindle [1981] and
Goldberg et al. [1990] for details of tournament selection) is used to create parents for the crossover
operation.

In NSGA-II, if there is a tie, a secondary measure that selects solutions in sparser regions is
used. Selection to the next generation also uses non-domination rank and the secondary criterion.
Such a preference for solutions in sparse regions allows for coverage of all parts of the non-dominated
front. For a review of measures proposed to achieve diversity along the non-dominated front see
Landa Silva and Burke [2004a]. In our approach, we do not use a secondary criterion to break ties.
Instead, we exploit the problem structure and control population sizes for certain sets of solutions
to explore different parts of the front. Next, we describe the main steps of the GA.

4.1 Encoding and evaluation

Each chromosome consists of 1 + n1 + k elements. Thus the length of the chromosome can vary
depending on the number of jobs k in S1. The first element of the chromosome indicates the k
value, i.e. the number of jobs in S1. It can therefore have any integer value from 0 to n2. The
next n1 elements represent the makespan jobs and are assigned a value between 1 and m (including
1 and m). The assignments indicate the machines on which these n1 jobs are to be processed; a
partition of the set of jobs in C1 into at most m makespan jobs is obtained. The next k elements
of the encoding represent machine assignments for the k shortest processing jobs of set C2 (these k
jobs will make up subschedule S1). We note here based on Theorem 1 that for every non-dominated
point in the criteria space there exists a schedule that can be represented in this manner.

Figure 3 shows the encoding for a 10-job, 3-machine example (4 jobs in C1 with processing
times 2, 3, 5 and 9; and 6 jobs in C2 with processing times 1, 2, 3, 7, 7 and 8). The encoding
has 8 elements. The first element indicates that k = 3, which implies that S1 consists of 3 of the
shortest processing time jobs from C2 (in the example these are the jobs with processing times 1, 2
and 3). Elements 6-8 of the encoding indicate the machine assignments for these 3 jobs. Elements
2-5 (with values 3, 2, 1 and 3 respectively) indicate that jobs 1 and 4 of C1 are to be processed on
machine 3, while jobs 2 and 3 are to be processed on machines 2 and 1, respectively.

Note that the encoding does not consider the n2−k jobs in C2 that are in subschedule S3. This
is because it is known that it is optimal for the n2− k jobs in C2 to follow SPT ordering on the m
machines. We demonstrate next how a chromosome is translated into a complete schedule of jobs
in the two sets so it can be evaluated based on its Cmax and

∑
Cj values. We use the example

given above to illustrate the construction of the subschedules.

4.1.1 Creating S1

From the last k elements of the encoding we obtain the machine assignments for the k shortest
processing time jobs in C2. On each machine jobs are then scheduled in SPT order (as we noted
earlier in Section 3, jobs in C2 in a non-dominated solution are processed in SPT order on any given
machine; this result is an extension of the property of single machine sequences given in Baker and
Smith [2003]). Figure 4 (a) shows how subschedule S1 is created from the last 3 elements of the
encoding given in Figure 3.

8

3 3 2 1 3 1 1 2

Number of jobs in S1

Assignments for partitioning of jobs in C1

Assignments for jobs in S1

3 3 2 1 3 1 1 2

Number of jobs in S1

Assignments for partitioning of jobs in C1

Assignments for jobs in S1

Figure 3: Encoding scheme for each chromosome in the genetic algorithm

In the counterexample at the end of Section 3, we showed that SPT ordering on the m machines
for the jobs in S1 may not be optimal. The GA’s method of assigning jobs in S1 to machines ensures
that different machine assignments are attempted and solutions better in the non-dominated sense
(if such solutions exist) than the one produced by the iterative S-L-S heuristic are explored.

4.1.2 Creating S2

Let (A1, A2, ..., Am) be the vector of finish times on the machines once subschedule S1 has been
created. The subschedule S2, which “follows” S1, consists of all the jobs in the set C1, i.e. the
jobs for which makespan is to be minimized. The n1 elements of the encoding starting from the
2nd element assigns jobs in C1 to machines, thus partitioning the jobs into a set of at most m
makespan jobs. Each makespan job is nothing but an aggregation of the processing times of jobs
that have been assigned the same machine number.

Figure 4 (b) shows an example of how S2 is constructed given that the finish times from S1

are (3,3,0); the 4 jobs in C1 are partitioned into 3 makespan jobs with aggregate sizes of 5, 3 and
11. Here again, the GA differs from the S-L-S heuristic which schedules the jobs in a fixed MLPT
sequence. The GA explores many more partition possibilities than the S-L-S heuristic. Indeed,
as we shall see in the experimental results Section, the GA is able, with its random assignments
of jobs, in C1 to tradeoff the makespan value for improvements in the total completion time and
generate schedules not considered by the S-L-S heuristic.

4.1.3 Creating S3

As stated before, the encoding does not explicitly consider the remaining unscheduled n2 − k jobs
in C2. If (A

′
1, A

′
2, ..., A

′
m) represents the finish times on the machines after subschedules S1 and

S2 have been created, then the n2 − k jobs are scheduled in SPT order (i.e. shortest processing
time job is scheduled on the earliest available machine until all jobs are scheduled). The problem
of creating an optimal S3 is equivalent to the problem of minimizing

∑
Cj given that all machines

are not available simultaneously. By expressing the
∑

Cj in terms of the positions of the jobs, as
illustrated in Conway et al. [1967], it can be shown that the SPT ordering minimizes the

∑
Cj of

the n2 − k jobs in C2.
Figure 4 (c) shows an example where the 3 remaining jobs in C2 (with processing times 7, 7

and 8) are scheduled on the earliest available machines. The complete schedule is now available

9

for an evaluation of its makespan and completion time. In the iterative S-L-S heuristic, too, the
remaining n2 − k jobs are scheduled using SPT ordering. However, the quality of the schedule is
determined heavily by the finish times (A

′
1, A

′
2, ..., A

′
m) obtained after the construction of S1 and

S2.

(c) Subschedules S1, S2and S3: complete schedule

1 2

3

mc 1

mc 2

mc 3

1 2

3

mc 1

mc 2

mc 3 9 2

2

5

3

1 2

3

mc 1

mc 2

mc 3 9 2

2

5

3

(a) Subschedule S1

(b) Subschedules S1and S2

7

7

8

(c) Subschedules S1, S2and S3: complete schedule

1 2

3

mc 1

mc 2

mc 3

1 2

3

mc 1

mc 2

mc 3 9 2

2

5

3

1 2

3

mc 1

mc 2

mc 3 9 2

2

5

3

(a) Subschedule S1

(b) Subschedules S1and S2

7

7

8

(c) Subschedules S1, S2and S3: complete schedule

1 2

3

mc 1

mc 2

mc 3

1 2

3

1 2

3

mc 1

mc 2

mc 3

1 2

3

mc 1

mc 2

mc 3 9 2

2

5

3

1 2

3

mc 1

mc 2

mc 3 9 2

2

5

3

1 2

3

mc 1

mc 2

mc 3 9 2

2

5

3

(a) Subschedule S1

(b) Subschedules S1and S2

7

7

8

Figure 4: Translation of an encoding into a schedule (values represent processing times)

4.2 Population specifics

We maintain a fixed number of solutions Q for each value of k. Since k can take on values from 0
to n2, there are Q(n2 +1) chromosomes in the population in any given generation. A disadvantage
of this approach is that the size of the population grows as n2 increases, but it is also likely, given
the structure of the problem, that the number of non-dominated solutions increases with n2.

The initial population is randomly generated. To speed up the convergence of the algorithm,
we also introduce into the initial population the n2 + 1 solutions generated by the iterative S-L-S
heuristic (one solution for each value of k).

4.3 Ranking of chromosomes

Once all the chromosomes are evaluated as described in Section 4.1, they are ranked by the following
procedure. All solutions that are non-dominated in a given generation of the genetic algorithm are
assigned a rank of 1; the next set of non-dominated solutions (i.e. those dominated by solutions
whose rank is 1, but non-dominated amongst the rest) are assigned a rank of 2; the procedure is
continued until all chromosomes are ranked. Thus, successive non-dominated fronts are maintained
in a population in any given generation. The rank of a chromosome is a measure of its fitness; the

10

lower its rank the better chance it has of getting selected in the next generation and also to pass
on its characteristics through offspring to future generations.

4.4 Crossover

The well-known single point crossover is used to create offspring. However, since chromosomes can
vary in the length of their encoding, two types of crossover operations are used. The crossovers are
shown in Figure 5. In both types of crossover, each parent is chosen using tournament selection
in which a pair of solutions are picked randomly from the population and their ranks compared;
the solution with the lower rank wins the tournament. If the ranks are equal then one of the two
solutions is randomly chosen with equal probability. In the first type, the crossover point (randomly
chosen) occurs only in the first 1+n1 elements of the encoding of two parent chromosomes. Such a
crossover is allowed even when the parents have different number of jobs in S1 (i.e. different values
in the first element of their encoding). This type of crossover exchanges different partitions of jobs
in C1 between two parents to create two offspring. In the second type of crossover, the crossover
point (randomly chosen) is always within the last k elements of the encoding. Moreover, the
crossover is carried out only between parents that have the same k values (i.e. schedules that have
the same number of jobs in S1). This type of crossover exchanges different machine assignments of
the k shortest processing time jobs in C2 between two parents to create two offspring. We perform
crossovers until there are Q offspring for each value of k. Thus the set of candidate solutions is
doubled after crossover.

3 3 2 1 3 1 1 2

2 2 1 2 3 3 1

3 3 1 2 3 1 1 2

2 2 2 1 3 3 1

Crossover Point

(a).

3 3 2 1 3 1 1 2

3 2 1 2 3 3 1 3

3 3 2 1 3 1 1 3

3 2 1 2 3 3 1 2

Crossover Point

(b).

Parents Offspring

Parents Offspring

3 3 2 1 3 1 1 2

2 2 1 2 3 3 1

3 3 1 2 3 1 1 2

2 2 2 1 3 3 1

Crossover Point

(a).

3 3 2 1 3 1 1 2

3 2 1 2 3 3 1 3

3 3 2 1 3 1 1 3

3 2 1 2 3 3 1 2

Crossover Point

(b).

Parents Offspring

Parents Offspring

Figure 5: Visual illustration of the two types of crossover

11

4.5 Mutation

We randomly change the value of an element of a chromosome’s encoding in the mutation operation.
A random number r is generated for every chromosome in the offspring generated from the crossover
step. If r is less than a prefixed probability pm, then a randomly chosen element of the chromosome’s
encoding is changed to a different value. However, we exclude the first element of the chromosome
from undergoing mutation in order to maintain a fixed number of chromosomes for every value of
k.

4.6 Selection of chromosomes into the next generation

After crossover, there are 2Q(n2 +1) chromosomes in the population, or 2Q chromosomes for every
value of k. These chromosomes form the candidate set from which Q(n2 + 1) chromosomes need
to be chosen. The candidate set is evaluated for its makespan and total completion time values
and each chromosome is assigned a rank equal to the non-dominated front it belongs to. For every
k, Q/2 of the best ranked solutions are chosen for the next generation (if the number of rank 1
solutions is higher than Q/2, then all of them are picked). The remaining Q/2 solutions (or how
many ever remain after the picking of the best) are chosen randomly from the rest of the candidate
set of solutions (each solution has an same probability of being picked) with the condition that
they have the same value of k. In addition an archive of non-dominated solutions is maintained
and updated at the end of every generation.

Thus the overall procedure of the GA involves maintaining fixed quantities of local populations
that are geared to cover all areas of the front of non-dominated solutions, while simultaneously
ensuring that the local populations are evaluated, ranked and compared “globally”.

4.7 Summary of the GA

We now provide a summary of the main steps of the GA:
1) Insert n2 + 1 schedules (one for each k) from the iterative S-L-S heuristic into the initial

population of the genetic algorithm. Create the rest of the initial population randomly: that is, for
each of the assignments that need to be done for the encoding, each job has is randomly assigned
to one of the machines. This random assignment is based on a discrete uniform distribution: each
machine has an equal likelihood of being chosen. At the end of this step there are Q chromosomes
for every k, k = 0, ..., n2 + 1. Set the number of generations i = 0.

2) Evaluate the population to determine makespan and total completion time values. Divide
the population into successive non-dominated fronts.

3) Determine parent pairs using the tournament selection method and perform crossover op-
erations to produce Q offspring for every k. Each of the two types of crossover contribute Q/2
offspring.

4) Based on the probability of mutation pm, perform mutations on the offspring produced from
the crossover.

5) The offspring and the population of parents form the candidate set for the next generation.
They are evaluated and ranked based on the non-dominated front they belong to (similar to step
2).

6) For the next generation, choose Q/2 of the best ranked chromosomes for each k and the rest
as described in Section 4.6. Maintain an archive of non-dominated solutions generated so far. Set

12

i = i + 1. If i = Ngen, the pre-specified number of generations, then stop, else go to step 2.

4.8 Setting GA parameters

To set the parameters of the GA, we conducted separate designed experiments for small and large
instances. For small instances we determined the following settings: Q = 3 (high and low values
used were 2 and 7, 3 was chosen after a search was performed over this range), and pm = 0.2 (high
and low values were 0.05 and 0.5), and Ngen = 40. For large instances we determined the following
settings: Q = 4 (high and low values used were 2 and 10), and pm = 0.2 (high and low values were
0.05 and 0.5), and Ngen = 200. The probability of crossover was set to 1 for both small and large
instances.

4.9 A note on other GA approaches

In addition to the special encoding proposed in this research, we also attempted a genetic algorithm
using the traditional, widely used parallel machine encoding found in Loukil et al. [2005]. The
encoding partitions the set of jobs and determines also the position of the jobs on the machines.
The encoding thus gives a complete schedule of jobs unlike the special encoding proposed in this
research in which much of the schedule is not explicitly modeled and is constructed based on aspects
of the problem structure. It was determined, based on preliminary computational experiments,
that the genetic algorithm that uses this traditional, generic encoding performs quite poorly when
compared with the GA proposed. This is because 1) the traditional encoding bypasses some of the
key properties of a non-dominated solution and 2) the crossover operation does not retain some of
the desirable characteristics of parents that enable good new solutions to be produced. This suggests
that the problem of interfering job sets may not always lend itself to generic solution techniques that
have used in the literature for traditional parallel machine bicriteria problems. Problem specific
methods that exploit structural aspects - such as the GA proposed in this research - are likely to
be more effective.

5 Experimental results for small-sized instances

We test the S-L-S heuristic and the bicriteria genetic algorithm proposed in the previous section
on small-sized instances. For comparison, we use an integer program (IP) to generate the entire
set of non-dominated solutions. The set of solutions provided by the IP serves as a reference set.

If L is a prefixed value of makespan that cannot be exceeded, then the following is a time-
indexed formulation for the parallel machine problem with interfering job sets involving Cmax and∑

Cj (the time-indexed formulation for scheduling problems was originally proposed by Sousa and
Wolsey [1992]). In the formulation the decision variable xit is 1 if job i starts at time point t, and 0
otherwise. L denotes the parameter that decides the makespan value. T is the maximum possible
start time given by

∑n
i=1 pi.

Time indexed formulation for P |inter|ε(∑Cj |Cmax)

min
∑

i∈C2

T∑

t=0

xit(t + pi)

Such that:

13

L−pi∑

t=0

xit = 1, i ∈ C1

T∑

t=0

xit = 1, i ∈ C2

∑

i ∈ C1 ∪ C2

t∑

s=max(t−pi+1,0)

xis ≤ m ∀t ∈ T

xit ∈ {0, 1} ∀i ∈ C1 ∪ C2, ∀t ∈ T

In the above formulation, the objective function calculates the completion time of only the jobs
in C2. The first two sets of constraints ensures that each job is scheduled exactly once; the first
set also ensures that no job in C1 completes after L. The third set of constraints ensures that no
more than m jobs are scheduled in any processing time window. The last set of constraints are
integrality constraints on the decision variables.

The optimal solution to the formulation minimizes the
∑

Cj for jobs in C2 but simultaneously
ensures that the jobs in C1 do not exceed the pre-fixed makespan value of Cmax (L). In the
terminology of T’Kindt and Billaut [2002] this is the ε constraint approach in bicriteria optimization
written as ε(

∑
Cj |Cmax) in the γ part of the α|β|γ notation. To generate the set of non-dominated

points, we first set L = T and minimize
∑

Cj . Suppose the resulting makespan value is L1. We
next set L = L1− 1 and reoptimize. We continue in this fashion until all the non-dominated points
have been generated. This is, however, a computationally intensive procedure and is feasible only
for small-sized problem instances.

We consider 20-job, 2-machine problem instances (with 10 jobs in each set), and 30-job, 5-
machine problems (with 15 jobs in each set). The processing times for each instance are generated
using a discrete uniform distribution from 1 to 10. Ten instances are created per category. In
addition to finding all non-dominated solutions, we also determine the set of extreme points. The
extreme points of an efficient frontier are a subset of the set of non-dominated solutions and form
the lower hull of the non-dominated solutions plotted in the objective space. In multicriteria
optimization, it is often a goal to generate the set of extreme points, as generating the entire set
of non-dominated solutions is often an intractable problem. It is also worthwhile to note that
the optimal solution to a composite linear objective function αz1 + (1 − α)z2 (where z1 and z2

are two criteria to be minimized and 0 ≤ α ≤ 1) is an extreme point. In our experimental
results, we demonstrate that while the set of extreme points guarantees Pareto optimality, it is
not necessarily a “good” approximation of the set of non-dominated points, and is bettered by
our heuristic approaches. Carlyle et al. [2003] state that a “good approximation typically consists
of a set of diverse solutions that are uniformly distributed along the efficient frontier, and which
are also close to the efficient frontier.” Our judgements of the solution sets under study in this
section, whether subjective or quantitative, are based on how close the sets are to realizing these
three properties. Our analysis is helped by the availability of a reference set: the set of all non-
dominated solutions given by the ε-constraint IP.

14

5.1 Results for two instances

We first report complete results (see Tables 1 and 2) for two instances: one a 20-job 2-machine
instance, and the other a 30-job 5-machine instance. We also analyze the results graphically in the
objective space (see Figures 6 and 7).

IP S-L-S GA
No Makespan TCT Makespan TCT Makespan TCT k
1 20 334 20 334 20 334 0
2 21 333 21 333 0
3 22 314 22 314 22 314 2
4 24 295 24 295 24 295 3
5 25 294 25 294 3
6 26 293 26 293 3
7 27 275 27 275 27 275 4
8 31 256 31 256 31 256 4
9 32 255 32 255 5
10 33 254 33 254 5
11 34 236 34 236 34 236 6
12 38 217 38 217 38 217 7
13 39 216 39 216 7
14 40 215 40 215 7
15 41 214 41 214 7
16 42 197 42 197 42 197 8
17 47 179 47 179 47 179 9
18 48 178 48 178 9
19 49 177 49 177 9
20 50 176 50 176 9
21 51 175 51 175 9
22 52 158 52 158 52 158 10

Table 1: Comparison of criteria values generated for a 20-job, 2-machine instance. The values in
bold indicate the extreme points. For every pair of criteria values, the corresponding k value for
the GA solution (i.e. the number of jobs in S1) is also listed

Table 1 shows that the GA generates the set of all non-dominated solutions exactly. The S-L-S
heuristic does generate one schedule per each k. However, during the post-processing step (4), a
schedule with k=1, 2, or 3 may eventually end up as a k = 4 schedule. This can be observed with
the k = 4 S-L-S solutions in Table 1. After the three initial steps of the algorithm it is found that
more jobs from C2 can be added to S1 without increasing the makespan value. Thus, in the final
set of solutions produced by S-L-S, multiple solutions appear for the same k. But it still is true
that for each k, the S-L-S schedule produces only one schedule.

Overall, the iterative S-L-S heuristic generates non-dominated solutions but delivers only a
subset of the solutions, while the GA is able to generate a greater number of non-dominated
solutions for certain k values. Thus the GA can especially useful if the decision-maker chooses to

15

IP S-L-S GA
No Makespan TCT Makespan TCT Makespan TCT k
1 15 343 15 343 15 343 0
2 16 284 16 298 16 284 4
3 17 268 17 268 17 268 5
4 18 241 18 254 18 241 7
5 19 226 19 240 19 226 8
6 20 223 20 225 20 223 8
7 21 207 21 210 21 207 8
8 22 193 22 193 22 193 10
9 23 181 23 181 23 181 11
10 24 180 24 180 11
11 25 168 25 168 25 168 12
12 26 166 26 166 12
13 27 152 27 152 27 152 13
14 28 149 28 149 13
15 29 134 29 136 29 134 14
16 30 130 30 131 14
17 31 118 31 118 31 118 15

Table 2: Comparison of criteria values generated for a 30-job, 5-machine instance. The values in
bold indicate the extreme points. For every pair of criteria values, the corresponding k value for
the GA solution (the number of jobs in S1) is also listed

16

150

170

190

210

230

250

270

290

310

330

18 23 28 33 38 43 48 53
Makespan

T
C

T

IP - All ND Solutions S-L-S

S

Figure 6: Solutions in objective space: 20-job, 2-machine instance

look for more options in a given region of the objective space. The pairs of numbers in bold represent
the extreme points. Clearly the extreme points miss a significant number of non-dominated points;
the points generated by the S-L-S heuristic have improved coverage.

Figure 6 plots the ε-constraint IP set along with the S-L-S set in the objective space (the GA
set is not plotted to allow for clarity; moreover, the GA set is identical to the ε-constraint IP
set). The extreme points are shaded black. The triangles in the figure between any two adjacent
extreme points indicate regions where non-supported solutions can be found. Non-supported points
are non-dominated points that do not lie on the efficient frontier. From the figure, it is clear that
the number of non-supported solutions progressively increases as we move from the top left of the
efficient frontier to the bottom right. In these bottom right solutions there are more jobs in S1, i.e.
the k values are high. With a higher number of jobs, there are a greater number of assignments
of jobs in S1 to machines, which leads to schedules with small tradeoffs in

∑
Cj and Cmax for the

same k. These small tradeoffs result in a higher number of non-supported schedules. The ability
to capture these small tradeoffs, and hence the non-supported solutions, is one key aspect that
differentiates the GA from the S-L-S heuristic. This aspect also indicates that Q, the number of
solutions per value of k, need not be fixed as it currently is but could be variable.

Table 2 shows that for the 30-job 5-machine instance, the S-L-S heuristic covers the non-
dominated solutions better, but falls short a bit in solution quality: some of the the solutions
it generates are weakly non-dominated (i.e. there exists no other solution that is better in both
criteria, but there may exist a solution that is equal in one and better in the other). However, the
S-L-S still outdoes the set of extreme points (in bold under the IP column) in terms of coverage.
The GA once again performs very well: except for solution 16 (30,131), it matches the ε-constraint
IP set exactly. As in the 20-job, 2-machine instance, it provides multiple solutions for certain values

17

100

150

200

250

300

350

14 19 24 29 34
Makespan

T
C

T

IP - All ND Solutions S-L-S

Figure 7: Solutions in objective space: 30-job, 5-machine instance

of k (unlike the S-L-S heuristic), which is useful if the decision were to look for possible options in
a particular region of interest.

Figure 7 shows the ε-constraint IP set, the set of extreme points (shaded black), and the S-L-
S set in the objective space. As before the the number of non-supported solutions progressively
increases as we move from the top left of the efficient frontier to the bottom right. The extreme
points are fewer in the bottom right of the frontier.

5.2 A quantitative comparison of the solution sets

While the two instances analyzed are fairly representative of the other instances in their respective
categories, we now provide an objective quantification of the solution sets. A number of measures
exist in literature for comparing solution sets. Carlyle et al. [2003] provide a classification of 20
such measures.

For our comparison purposes, we use the measures of Cyzak and Jaszkiewicz [1998]. These
measures are appropriate for our situation as they require a reference set R (which in our case
is the IP set) and allow for comparisons in terms of diversity, uniformity and closeness to the
reference set. Czyzak and Jaszkiewicz propose two distance measures, Dist1 and Dist2. If M is the
solution set whose quality is to be quantified, then the measures are based on calculating c(x, y),
the “distance” between a point x ∈ M and a point y ∈ R:

c(x, y) = maxj=1...T

{
0, (1/wj)× (fj(y)− fj(x))

}
,

where T is the total number of criteria, and fj(y) and fj(x) are the objective function values of
the jth criterion. Thus, if x and y have identical criteria values, c(x, y) = 0, else c(x, y) is equal to
the criterion that has the maximum weighted deviation. Here the weight wj for a given criterion

18

j is the range of the criterion in the reference set (i.e. the difference between the maximum and
minimum value of the criterion).

Next, Dist1 and Dist2 are defined as follows:
Dist1 = (1/|R|) ∑

y∈R

{
minx∈M{c(x, y)}

}
Dist2 = maxy∈R

{
minx∈M{c(x, y)}

}

The Dist1 calculation works as follows. For every point in y ∈ R, the point in M with the lowest
value of c(x, y) (lowest “distance” in a sense) is determined. These distances are then summed up,
and give a measure of the average proximity of the closest points in X from R. The calculation
for Dist2 gives the worst case value: it first determines the points in M closest to points in R and
then determines the farthest one among them.

GA S-L-S
Inst. Y Dist1 Dist2 No. of pts Dist1 Dist2 No. of pts

1 22 0 0 22 0.006 0.023 10
2 18 0 0 18 0.011 0.043 11
3 16 0 0 16 0.008 0.048 9
4 16 0 0 16 0.010 0.048 9
5 24 0 0 24 0.006 0.022 11
6 20 0 0 20 0.007 0.037 11
7 25 0 0 25 0.007 0.029 11
8 20 0 0 20 0.004 0.015 9
9 20 0 0 20 0.005 0.021 10
10 17 0 0 17 0.003 0.012 10

Avg 0 0 0.007 0.030
Std. Dev 0 0 0.002 0.013

Extreme Points Only (from IP) IP: LinComb
Inst. Y Dist1 Dist2 No. of pts Dist1 Dist2 No. of pts

1 22 0.041 0.108 7 0.062 0.222 5
2 18 0.040 0.096 7 0.091 0.261 3
3 16 0.011 0.048 6 0.080 0.238 3
4 16 0.024 0.136 6 0.081 0.153 3
5 24 0.037 0.089 8 0.065 0.200 5
6 20 0.039 0.148 7 0.087 0.200 3
7 25 0.025 0.111 8 0.124 0.304 3
8 20 0.043 0.105 7 0.083 0.222 3
9 20 0.052 0.108 6 0.076 0.222 4
10 17 0.037 0.101 7 0.088 0.222 3

Avg 0.035 0.105 0.084 0.224
Std. Dev 0.012 0.027 0.017 0.040

Table 3: Dist1 and Dist2 values for the various approaches for the 20-job, 2-machine instances, and
also the number of solutions generated by each approach. Note that Y denotes the total number
of non-dominated points generated by the IP (ε-constraint approach) for each instance.

Tables 3 and 4 give the Dist1 and Dist2 values for the comparison of the IP (ε-constraint)

19

GA S-L-S
Inst. Y Dist1 Dist2 No. of pts Dist1 Dist2 No. of pts

1 17 0.0003 0.0044 17 0.0157 0.0622 13
2 19 0.0020 0.0127 19 0.0282 0.0844 11
3 15 0.0010 0.0052 15 0.0449 0.1094 11
4 16 0.0014 0.0147 16 0.0074 0.0368 12
5 16 0.0008 0.0043 15 0.0165 0.0667 12
6 16 0.0003 0.0053 15 0.0249 0.0667 12
7 19 0.0003 0.0052 19 0.0139 0.0942 14
8 18 0.0012 0.0105 18 0.0219 0.0588 13
9 15 0.0000 0.0000 15 0.0068 0.0290 13
10 19 0.0005 0.0087 19 0.0059 0.0261 13

Avg 0.001 0.007 0.019 0.063
Std. Dev 0.001 0.004 0.012 0.028

Extreme Points Only (from IP) IP: LinComb
Inst. Y Dist1 Dist2 No. of pts Dist1 Dist2 No. of pts

1 17 0.0477 0.1422 6 1.2967 0.0763 3
2 19 0.0429 0.1561 7 5.5084 0.2899 2
3 15 0.0655 0.1979 4 3.7500 0.2500 2
4 16 0.0687 0.2000 5 1.8152 0.1135 3
5 16 0.0460 0.1333 7 2.4026 0.1502 2
6 16 0.0622 0.2000 6 1.5958 0.0997 3
7 19 0.0360 0.1414 8 5.0288 0.2647 2
8 18 0.0653 0.1765 5 2.0835 0.1157 3
9 15 0.0801 0.2143 5 1.4244 0.0950 3
10 19 0.0558 0.1667 6 3.9275 0.2067 2

Avg 0.057 0.173 2.883 0.166
Std. Dev 0.014 0.029 1.551 0.079

Table 4: Dist1 and Dist2 values for the various approaches for 30-job, 5-machine instances, and
also the number of solutions generated by each approach. Note that Y denotes the total number
of non-dominated points generated by the IP (ε-constraint approach) for each instance.

20

method, the GA, the S-L-S heuristic, the set of extreme points, and IP:LinComb, which is an
approach that models the criteria as a linear combination αCmax + (1 − α) ∗ ∑

Cj , and reports
the optimal solution for every α between 0 and 1 in increments of 0.05. The IP:LinComb thus will
generate a set of extreme points but may not generate all of them as it may skip certain α ranges
over which an extreme point is optimal. Nevertheless, IP:LinComb is included for comparison
purposes; it is meant to simulate the situation where a solution set is generated by attempting
different convex combinations of the criteria.

In both types of instances (20-job 2-machine and 30-job, 5-machine), the GA solution set
outperforms all the other solution sets. Indeed, in each case, it generates just as many solutions as
the ε-constraint IP does (compare columns Y and the No. of pts column for the GA). The distance
measures attest to the fact that the points generated by the GA are very close to ε-constraint IP
set, and, for 20-job, 2-machine instances, match exactly with the IP set.

The S-L-S approach, while not as good as the GA, still provides better solution sets in terms
of both the number of points generated and the values of Dist1 and Dist2 than the set of extreme
points and the IP:LinComb approach. The reasons for this can be traced back to the discussion
on Figures 6 and 7; it is clear that the extreme points do not provide enough representation in
certain regions of the efficient frontier. It can also be concluded that the IP:LinComb set, in spite of
providing non-dominated solutions, performs poorly since it is able only to generate a few solutions.
Indeed, in some of the instances, it is able to generate only 2 points (these are the lexicographic
points), despite the extensive search over the range of α values.

5.3 A note on computation times

The IP approach for generating the extreme points or for generating the entire set of non-dominated
solutions is computationally prohibitive and is feasible only for small sized instances. For 20-job
2-machine cases, the IP consumed, on an average, around 30,000 seconds of CPU time (nearly 9
hours) to generate a set of non-dominated solutions (see Table 5 for average computation times).
We used the CPLEX 9.1 solver (the model was coded in AMPL) with default settings on a Linux
machine with 2.4 Ghz and 1 GB RAM. The S-L-S heuristic was the quickest approach in terms
of computation time; each set of solutions was generated in just a fraction of a second of CPU
time. In comparison, the GA is computationally more intensive, but for the small instances tested
in this section, each solution set was generated in approximately half a second of CPU time. Thus
both the S-L-S heuristic and the GA not only provide very good solution qualities but are also
computationally feasible.

IP S-L-S GA
Avg Std.Dev Avg Std.Dev Avg Std. Dev

20-job, 2-mc 30,560.9 54399.5 0.006 0.010 0.4646 0.036
30-job, 5-mc 14,442.3 10,023.3 0.012 0.012 0.5477 0.044

Table 5: Computation time in seconds for the various approaches

21

6 Experimental results for large-sized Instances

We now test the GA and the heuristic on large-sized problem instances. We use 2 different settings:
100-job 5 machine instances and 100-job 10-machine instances. In each case, the number of jobs
in the two sets are equal. Processing times, as before, are generated using a discrete uniform
distribution from 1 to 10. For comparison purposes, we use an integer program, but since for
these large instances, the ε-constraint IP approach is computationally infeasible, we stop each run
of the IP after 30 minutes (1800 seconds) of CPU time, and use the best integer solution. Thus
the solutions generated by this approach are not guaranteed to be optimal. We used the same
experimental platform as above. For the S-L-S heuristic and the GA we used Microsoft Visual
C++ programs on a 256-mb CPU with 256 mb RAM.

Since it is difficult graphically to tell the difference between the approaches for a large instance,
we provide a quantitative comparison in Tables 6, 7, 8 and 9. The distance measures are calculated
as explained in the previous section. Since we do not have an exact reference set for our instances,
we create a reference set by combining the solutions from the GA and the IP and choosing the
non-dominated solutions among them.

To put Dist1 and Dist2 values in the Tables in perspective consider the following example.
Suppose we want to have an idea of the quality of the total completion time of the GA solution
set (the quality of makespan can be determined in a similar way; however, it is observed that the
GA does not deviate from the reference set in makespan: see Tables 1 and 2 for an illustration of
this for small instances). The total completion time ranges from 669 to 1973 in the reference set
in instance 6 of the 100-job 10-machine instances. The Dist2 value of the GA for this instance is
0.02147; it is also the highest Dist2 value for the GA. The value can interpreted as follows. Among
all points in the GA set that are closest to the reference set, the farthest point is roughly 0.02147 ×
(1973 - 669) = 28 total completion time units away from its closest solution in the reference set. In
the worst case, therefore, this translates to a 4 percent higher total completion value if we assume
this deviation is from 669, and 1.3 percent if the deviation is assumed to be from 1973. Dist1, being
an average measure, is generally smaller but can be interpreted in a similar way.

In general, based on the discussion above and from the tables, it can be concluded that the
distances from the reference set are small for both the S-L-S and GA approaches. Indeed, in the
100-job 5-machine instances, the GA produces better distance values than the IP approach, and
the S-L-S heuristic performs comparably. But the S-L-S heuristic falls short when it comes to the
number of non-dominated points generated in these instances. However, it has an advantage over
both the GA (which takes roughly 90 seconds of CPU time per instance) and the IP in terms of
computation time. It must also be noted that the the convergence of the GA is faster since its
initial population consists of n2 + 1 solutions from the S-L-S heuristic.

To obtain further justification for these results, we tested the solution sets with an additional
diversity measure proposed by Landa Silva and Burke [2004a] that does not require a reference
set. For any given set of non-dominated solutions, the diversity is evaluated as follows. We first
determine the “centroid” or mean of each two criteria in the set, and calculate the squared deviation
of each individual point from the centroid. We used this measure to compare the non-dominated
sets obtained from the three approaches. In general, the diversity measures were close for the
100-job 10-machine instances, while IP and the GA were clearly superior for 100-job 5-machine
instances.

The superior performance of the IP-approach in the 10-machine instances as compared to the

22

5-machine instances can be explained by the nature of the formulation. In general the higher the
number of machines, the smaller the value of T in the IP formulation (T is the maximum possible
time point at which jobs can start). Hence, the number of variables is smaller in the 10-machine
case than in the 5-machine case, and the IP computes a better integer solution in the allotted 30
minutes of CPU time. The tractability of the time-indexed IP approach is also dependent heavily
on the processing times. This is because the number of variables in the IP is pseudopolynomially
many. If processing times were more widely distributed (from say 1 to 100), it becomes difficult to
generate the set of non-dominated solutions by solving an IP for each possible Cmax value. We note
here that our integer program is rather basic and that the exploration of alternative, polynomial-
sized, formulations and refinements to current formulation (such as eliminating symmetry in the
integer program, which has the potential to improve running times) are good directions for future
research.

In contrast, both the S-L-S and the GA run in polynomial time; their complexities are indepen-
dent of the processing time values. Table 10 gives the average CPU seconds required for both the
S-L-S heuristic and the GA. Clearly, the S-L-S heuristic is extremely efficient, but the GA is able
to generate a solution set within two minutes of CPU time as well, making it an attractive choice.

Finally a point also needs to be made about presenting a large number of non-dominated
solutions to the decision-maker since this approach of presenting too many points can be confusing.
One possible way of making this easier is to present information sequentially to the decision-maker
- present, perhaps only the extreme points at first and allow the decision maker to guide the search
for other points, if the need arises, in subsequent iterations.

GA S-L-S IP
Inst. Ref Dist 1 Dist 2 No. Dist 1 Dist 2 No. Dist 1 Dist 2 No.

1 54 0.000008 0.000424 54 0.000464 0.002971 40 0.000511 0.006367 54
2 54 0.000000 0.000000 54 0.000386 0.002275 40 0.000456 0.005309 55
3 54 0.000007 0.000373 54 0.000318 0.001867 42 0.001093 0.008962 55
4 53 0.000000 0.000000 53 0.000318 0.001719 40 0.000928 0.008597 55
5 60 0.000000 0.000000 60 0.000594 0.003196 43 0.000624 0.007306 61
6 46 0.000074 0.002971 46 0.002558 0.021277 36 0.000286 0.002547 46
7 64 0.000000 0.000000 64 0.000375 0.001818 45 0.000875 0.008364 64
8 51 0.000013 0.000421 51 0.000600 0.000392 40 0.000681 0.006210 52
9 53 0.000002 0.000120 53 0.000590 0.000512 40 0.000543 0.003300 53

10 50 0.000000 0.000000 50 0.000248 0.001404 39 0.000241 0.003158 50
Avg 0.00001 0.00043 0.00065 0.00374 0.00062 0.00601

Std. Dev 0.00002 0.00091 0.00068 0.00623 0.00028 0.00237

Table 6: Dist1 and Dist2 values for the approaches for 100-job, 5-machine instances with number
of solutions generated by each approach.

7 Conclusions and future research

The problem of interfering job sets has received surprisingly little attention in the literature despite
its ability to model several real-world situations. We consider the problem of interfering job sets

23

GA S-L-S IP
Inst. Ref Dist 1 Dist 2 No. Dist 1 Dist 2 No. Dist 1 Dist 2 No.

1 29 0.00029 0.00254 29 0.00237 0.03571 29 0.00003 0.006367 29
2 30 0.00012 0.00272 30 0.00027 0.00363 30 0.00003 0.005309 30
3 32 0.00544 0.02095 32 0.00741 0.03226 32 0.00007 0.008962 32
4 28 0.00031 0.00236 28 0.00169 0.01969 28 0.00003 0.008597 28
5 28 0.00595 0.02061 28 0.00899 0.02509 27 0.00000 0.007306 28
6 31 0.00270 0.02147 31 0.00618 0.02454 30 0.00002 0.002547 31
7 30 0.00012 0.00212 30 0.00094 0.01976 30 0.00002 0.008364 30
8 28 0.00025 0.00236 28 0.001210 0.0063 28 0.00003 0.006210 28
9 30 0.00014 0.00174 30 0.000580 0.00522 30 0.00003 0.003300 30

10 28 0.00076 0.00550 28 0.00767 0.03704 28 0.00000 0.003158 28
Avg 0.00161 0.00824 0.00373 0.02092 0.00003 0.00064

Std. Dev 0.00229 0.00888 0.00341 0.01247 0.00002 0.00034

Table 7: The number of solutions generated by each approach: 100-job, 10-machine instances.

S-L-S GA
Avg Std.Dev Avg Std. Dev

100-job, 5-mc 0.03 0.012 49.9 9.803
100-job, 10-mc 0.059 0.019 68.3 13.342

Table 8: Computation time in seconds for the various approaches

24

where the jobs belong to one of two disjoint sets; the makespan criterion needs to minimized for
one of the sets, while the total completion time needs to be minimized for the other. Our goal is
to generate the set of non-dominated solutions. We extend some of the single machine structural
insights of Baker and Smith [2003] to parallel machines, and develop an iterative SPT-LPT-SPT
heuristic approach for this NP-hard problem. We also propose a bicriteria genetic algorithm to
solve the problem. Both these heuristic approaches are compared with a time-indexed integer
programming formulation for small and large sized instances. Results indicate that the heuristic
approaches provide reasonable solution qualities while also being computationally efficient. This
research also shows that exploiting problem structure in the different aspects of the genetic algo-
rithm can produce good results. While the decomposition of jobs into different sets is possible
only for makespan criteria and because of certain properties of the P ||∑Cj problem, the broader
idea of alternating job sets with regard to their relative positions in their schedule to control the
generation of non-dominated points can be used for problems involving more criteria. The heuris-
tic approaches proposed in this paper can also be adapted to other bicriteria pairs - in particular
the P |inter|(Cmax,

∑
wjCj), P |inter|(Cmax, Lmax), and P |inter|(∑Cj , Lmax) problems. Future

research in the area would involve a further exploration of these extensions.
The GA proposed in this research can be also tested for various modifications and settings. For

instance, Q, the pre-determined number of solutions for each k need not be a fixed value since it
is clear from the results that the number varies with k. While we use a sufficiently high value of
Q so as not to affect solution quality (in our case computation time is negligible as well) for future
extensions and larger problem instances, more efficient implementations could be used.

The complexity of Pm|inter|ε(∑Cj , Cmax) (i.e. when we assume that the number of machines
is a fixed constant value and not a variable input) is also an interesting open question. Work is also
needed to determine how the introduction of release dates affects the properties of the problem.

8 Appendix: Proof of Theorem 1

Theorem: For every non-dominated point in the criteria space, there exists a schedule that can be
divided into three sets: S1 consisting of the k shortest jobs in C2 (i.e. the

∑
Cj jobs); S2 consisting

of jobs in C1 (i.e. the Cmax jobs); and S3 consisting of remaining n2 − k jobs in C2.

Proof. Consider any non-dominated schedule S. Let C∗
max be the makespan value of jobs in C1.

We next define a vector A
′
= (A

′
1, A

′
2, ..., A

′
m) of completion times on the machines; the purpose

of A
′
, as we shall see, is to help determine the decomposition described in the theorem into the

three different sets. For each machine j that has no makespan jobs scheduled on it, A
′
j is the latest

possible completion time such that A
′
j ≤ C∗

max. On machines that have at least one makespan job
scheduled on it, A

′
j is simply the latest finish time of the jobs in C1 assigned to that machine.

Thus, the highest element of A
′
will have a value of C∗

max.
We now demonstrate how S can be divided into sets S1, S2 and S3. All jobs in C2 with

completion times less (greater) than or equal to the A
′
j value corresponding to the machine they

are scheduled on belong to S1 (S3). Note that in any schedule, either S1 or S3 can be a null set,
but not both. S2 is simply the set of all jobs in C1.

We next show that there exists a schedule such that S1 consists of the k shortest jobs in C2.
We show only for the cases where S1 and S3 are not null - because if either S1 or S3 are null, k = 0
or k = n, and the concept of k shortest jobs is not applicable.

25

Before we present our proof, the following observations are in order:
Observation 1 : The vector A

′
represents the finish times on the machines after jobs in S1 and S2

have been scheduled - it is a partial schedule S12 of jobs. Given the finish time vector A
′
, we know

that the jobs in S3 are scheduled in SPT order, with the next shortest job assigned to the machine
with the earliest finish time (Sanlaville and Schmidt [1998]). Note that at this stage the problem
is identical to minimizing total completion time when machines have different availability times.
Observation 2 : Let l be the machine in the partial schedule S12 with the lowest finish time. The
finish time on machine l is thus A

′
l. Let z be the shortest job in S3. We note that owing to the

SPT ordering of jobs in S3, z has a start time of A
′
l. We also note that by the definition of S1 and

S3 and because S is non-dominated, A
′
l + pz > C∗

max. Because of this property and because of the
SPT ordering, the number of jobs in S3 that are assigned to the machine l can never be 2 more
than the number of S3 jobs assigned any of the other machines. As an extension of this it is also
true that on any machine the number of S3 jobs assigned is at most one more than the number
assigned to other machines.

We proceed with our proof. Suppose that there exists a job b in S1 such that it is longer than
at least 1 job in S3. Let a be the largest job in S3 such that pa < pb. Exchange the two jobs a and
b. Since the sets are altered by the exchange, we now refer to them as S

′
1 and S

′
3. The following

statements are true after exchange:
1) In the vector of finish times exactly one element will reduce by an amount δp = pb−pa. In other
words the finish time of exactly one machine will reduce by δp in the partial schedule S12.
2) The number of S

′
3 jobs assigned to each machine is the same as the number of S3 jobs that were

assigned to each machine before the exchange. Indeed the job assignments and positions on the
machines remain identical except that job b has now replaced job a.

Let the new schedule after the exchange be called S
′
. Consider now the change in

∑
Cj and

Cmax after the exchange. It is easily seen that Ca + Cb before and after the exchange remain the
same, while the

∑
Cj of jobs in S

′
1 \ b remains the same or decreases. The Cmax of the S3 jobs will

decrease at most by δp or remain the same. Next, we analyze the change in the objective function
of the jobs in S

′
3, excluding job b. The two possible cases are:

1. Case I - The machine whose finish time in the partial schedule reduces by δp is also the same
machine on which job b is scheduled after the exchange (or the case where both job a and b in are
scheduled on the same machine in schedule S): Let us refer to this machine as h. Each job in S

′
3

that is in an earlier position than b on machine h will improve its completion time by δp. On the
other hand, the completion time of each job in S

′
3 that in is a later position than b on machine h

will remain unaltered. This is because the the decrease in δp of machine finish time is offset by the
increase in δp caused by the insertion of job b. Therefore in the worst case (which happens when b
is the first position on machine h), the

∑
Cj of jobs in S

′
3 \ b remains the same. In all other cases,

it improves.
1. Case II - The machine whose finish time in the partial schedule reduces by δp is different

from the machine on which job b is scheduled after the exchange (or the case where jobs a and b
are scheduled on different machines in S): Let us refer to the first machine as h and the second
machine as q. Let the number of S

′
3 jobs scheduled on q be x. Therefore at most x − 1 jobs will

have their completion times increased by δp. But from Observation 2, we also know that on h there
will be at least x−1 jobs from S

′
3 assigned to it. Moreover, since the finish time of h (in the partial

schedule) was reduced by δp, there will be at least x− 1 jobs whose completion times reduce by δp.
Thus in this case as well,the

∑
Cj of jobs in S

′
3 \ b remains the same or reduces.

26

From the above it is clear that after the exchange the
∑

Cj of the overall schedule either
decreases or remains the same, and the same holds true for Cmax. The schedule S

′
is still non-

dominated. Thus we can continue to do such exchanges until there is no job in S1 that is longer
than the jobs in S3, while still keeping the schedule non-dominated. This proves our claim.

(As an aside, we note here that the original schedule S can also be non-dominated. This
indicates that the there can exist a non-dominated schedule that does not follow the properties
described in the theorem. Our proof, however, shows that for every such schedule we can construct
a different schedule with the same

∑
Cmax and

∑
Cj values that does follow these properties.)

References

A Agnetis, P. Mirchandani, D. Pacciarelli, and A. Pacifici. Nondominated schedules for a job shop
with two competing users. Compt. Math. Organ. Theory, 6:191–217, 2003.

A Agnetis, P. Mirchandani, D. Pacciarelli, and A. Pacifici. Scheduling problems with two competing
agents. Operations Research, 52:229–242, 2004.

A. Agnetis, D. Pacciarelli, and A. Pacifici. Multi-agent single machine scheduling. Annals of
Operations Research, 150(1):3–15, 2007.

K. Baker and J.C. Smith. A multiple criterion model for machine scheduling. Journal of Scheduling,
6:7–16, 2003.

A. Brindle. Genetic algorithms for function optimization. PhD thesis, University of Alberta,
Edmonton, Department of Computer Science, 1981.

P. Brucker and S. Knust. Complexity results for scheduling problems, url
http://www.mathematik.uni-osnabrueck.de/research/or/class/, 2006.

M Carlyle, J. Fowler, E. Gel, and B. Kim. Quantitative comparison of approximate solution sets
for bicriteria optimization problems. Decision Sciences, 34(1), 2003.

T.C.E. Cheng, C.T. Ng, and J.J. Yuan. A note on the complexity of the two-agent scheduling
problem on a single machine. Journal of Combinatorial Optimization, 12:387–394, 2006a.

T.C.E. Cheng, C.T. Ng, and J.J. Yuan. Multi-agent scheduling on a single machine to minimize
total weighted number of tardy jobs. Theoretical Computer Science, 12:273–281, 2006b.

R. Conway, W. Maxwell, and L. Miller. Theory of Scheduling. Addison-Wesley, Reading, Mas-
sachussetts, 1967.

P. Cyzak and A. Jaszkiewicz. Pareto simulated annealing - a metaheuristic technique for multiple-
objective combinatorial optimization. Journal of Multicriteria Decision Analysis, 7:34–47, 1998.

K. Deb, S Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated sorting genetic
algorithm for multiobjective optimization: NSGA II. In Parallel Problem Solving from Nature –
PPSN VI, pages 849–858. Springer, 2000.

27

D Goldberg. Genetic algorithms in search, optimization and machine learning. Kluwer Academic
Publishers, Boston, MA, 1989.

D Goldberg, B. Korb, and K. Deb. Messy genetic algorithms: motivation, analysis and first results.
Complex Systems, 3:493–530, 1990.

R. Graham, E. Lawler, J. Lenstra, and A. Rinnooy Kan. Optimization and approximation of
deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics, 5:287–326,
1979.

R.L Graham. Bounds for certain multiprocessor anomalies. Bell System Technical Journal, 17:
1563–1581, 1966.

H. Hoogeveen. Multicriteria scheduling. European Journal of Operational Research, 167(3):592–623,
2005.

J. Landa Silva and E. Burke. A tutorial on multiobjective metaheuristics for scheduling and
timetabling. In X. Gandibleux, Sevaux. M., K. Sorenson, and V. T’Kindt, editors, Multiple
Objective Metaheuristics. Springer, 2004a.

J. Landa Silva and E. Burke. Using diversity to guide the search in multi-objective optimiza-
tion. In C. Coello Coello and G. Lamont, editors, Applications of Multi-Objective Evolutionary
Algorithms. World Scientific, 2004b.

C. Lee. Parallel machines scheduling with nonsimultaneous machine available time. Discrete Applied
Mathematics, 20:53–61, 1991.

T. Loukil, J. Teghem, and D. Tuyttens. Solving multi-objective production scheduling problems
using metaheurisitics. European Journal of Operational Research, 161:42–61, 2005.

T. Pasupathy, C. Rajendran, and R. Suresh. A multi-objective genetic algorithm for scheduling flow
shops to minimize the makespan and total flow time of jobs. International Journal of Advanced
Manufacturing Technology, 27:804–815, 2006.

J. Peha. Heterogeneous-criteria scheduling: minimizing weighted number of tardy jobs and weighted
completion time. Journal of Computers and Operations Research, 22(10):1089–1100, 1995.

E. Sanlaville and G. Schmidt. Machine scheduling with availability constraints. Acta Informatica,
35(9):795–811, 1998.

J. Sousa and L. Wolsey. A time-indexed integer programming formulation for non-preemptive single
machine scheduling problems. Mathematical Programming, 54A(3):353–367, 1992.

V. T’Kindt and J. Billaut. Multicriteria Scheduling. Springer, 1 edition, 2002.

28

