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Abstract. The task of inverting logical entailment is of central impor-
tance to the disciplines of Abductive and Inductive Logic Programming
(ALP & ILP). Bottom Generalisation (BG) is a widely applied approach
for Inverse Entailment (IE), but is limited to deriving single clauses from
a hypothesis space restricted by Plotkin’s notion of C-derivation. More-
over, known practical applications of BG are confined to Horn clause
logic. Recently, a hybrid ALP-ILP proof procedure, called HAIL, was
shown to generalise existing BG techniques by deriving multiple clauses
in response to a single example, and constructing hypotheses outside the
semantics of BG. The HAIL proof procedure is based on a new semantics,
called Kernel Set Subsumption (KSS), which was shown to be a sound
generalisation of BG. But so far KSS is defined only for Horn clauses.
This paper extends the semantics of KSS from Horn clause logic to gen-
eral clausal logic, where it is shown to remain a sound extension of BG. A
generalisation of the C-derivation, called a K*-derivation, is introduced
and shown to provide a sound and complete characterisation of KSS.
Finally, the K*-derivation is used to provide a systematic comparison of
existing proof procedures based on IE.

1 Introduction

Abduction and induction are of great interest to those areas of Artificial In-
telligence (AI) concerned with the tasks of explanation and generalisation, and
efforts to analyse and mechanise these forms of reasoning are gaining in impor-
tance. In particular, the disciplines of Abductive Logic Programming (ALP) [4]
and Inductive Logic Programming (ILP) [8] have developed semantics and proof
procedures of theoretical and practical value. Fundamentally, both ALP and ILP
are concerned with the task, called Inverse Entailment (IE), of constructing a
hypothesis that logically entails a given example relative to a given background
theory. In practice, the main difference between ALP and ILP is that whereas
abductive hypotheses are normally restricted to sets of ground atoms, inductive
hypotheses can be general clausal theories.

To date, the inference method of Bottom Generalisation (BG) [6, 15] is one of
the most general approaches for IE to have resulted in the development of high-
performance tools of wide practical application. Central to this success has been
the use of Muggleton’s notion of Bottom Set (BS) [6] to bound a search space
that would otherwise be intractable. However, methods based directly on BG
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are subject to several key limitations. By definition they can only hypothesise a
single clause in response to a given example, and Yamamoto [14] has shown they
are further limited to deriving a class of hypotheses characterised by Plotkin’s
notion of C-derivation [10]. In practice, known proof procedures for BG are
limited to Horn clause logic; as evidenced, for example, by the state-of-the-art
ILP system Progol [6].

Recently, Ray et al. [12] proposed a hybrid ALP-ILP proof procedure, called
HAIL, that extends the Progol approach by hypothesising multiple clauses in
response to a single example, and by constructing hypotheses outside the se-
mantics of BG. Also in [12], a semantics for HAIL called Kernel Set Subsump-
tion (KSS) was presented and shown to subsume that of BG. So far, this new
semantics is defined only for Horn clause logic and, as yet, no corresponding
characterisation of KSS has been found to generalise the relationship between
BG and C-derivations. It was conjectured in [12], however, that a natural exten-
sion of the C-derivation, called a K-derivation, could be used to obtain such a
characterisation of KSS.

In this paper, the semantics of KSS is extended from Horn clauses to gen-
eral clauses, where it is shown to remain a sound generalisation of BG. A new
derivation is defined, called a K*-derivation, that both refines the K-derivation
and generalises the C-derivation. The K*-derivation is shown to give a sound
and complete characterisation of KSS, thereby resolving the conjecture above.
The paper is structured as follows. Section 2 reviews the relevant background
material. Section 3 lifts the semantics of KSS to general clausal logic. Section 4
introduces the K*-derivation and shows how it characterises the generalised KSS.
Section 5 uses the K*-derivation as a means of comparing related approaches.
The paper concludes with a summary and directions for future work.

2 Background

This section reviews the necessary background material. After a summary of
notation and terminology, the notions of ALP and ILP are briefly described in
order to motivate the underlying task of IE. Relevant definitions and results are
recalled concerning the semantics of BG and KSS.

Notation and Terminology. A literal L is an atom A or the (classical) nega-
tion of an atom ¬A. A clause C is a set of literals {L1, ..., Ln} that for convenience
will be represented as a disjunction L1∨ ...∨Ln. Any atom that appears negated
in C is called a negative or body atom, and any atom that appears unnegated in
C is called a positive or head atom. A Horn clause is a clause with at most one
head atom. The empty clause is denoted �. An expression is a term, a literal, or a
clause. A theory T is a set of clauses {C1, ..., Cm} that for convenience will be rep-
resented as a conjunction {C1 ∧ ...∧Cm}. This paper assumes a given first-order
language L that includes Skolem constants. An expression or theory is said to be
Skolem-free whenever it contains no Skolem constant. The symbols � and ⊥ will
denote the logical constants for truth and falsity. The symbol |= will denote clas-
sical first-order logical entailment. The equivalence X ∧ Y |= Z iff X |= ¬Y ∨Z
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will be called the Entailment Theorem. Whenever a clause is used in a logi-
cal formula, it is read as the universal closure of the disjunction of its literals.
Whenever a theory is used in a logical formula, it is read as the conjunction of its
clauses. In general, the symbols L, M will denote literals; λ, µ will denote ground
literals; P, N will denote atoms; α, δ will denote ground atoms; S, T will denote
theories; and C, D, E will denote clauses. Symbols B, H will denote Skolem-free
theories representing background knowledge and hypotheses, respectively. Sym-
bols e, h will denote Skolem-free clauses representing examples and hypotheses,
respectively. A substitution σ is called a Skolemising substitution for a clause C
whenever σ binds each variable in C to a fresh Skolem constant. A clause C is
called a factor of a clause D whenever C = Dφ and φ is a most general unifier
(mgu) of one or more literals in D. A clause C is said to θ-subsume a clause D,
written C � D, whenever Cθ ⊆ D for some substitution θ. A theory S is said to
θ-subsume a theory T , written S � T , whenever each clause in T is θ-subsumed
by at least one clause in S. If L is a literal, then the complement of L, written L,
denotes the literal obtained by negating L if it is positive, and unnegating L if
it is negative. If C = L1 ∨ ...∨Ln is a clause and σ is a Skolemising substitution
for C, then the complement of C (using σ), written C, is defined as the theory
C = {L1σ ∧ ... ∧ Lnσ}. The standard definition of resolvent is assumed, as de-
fined for example in [2]. A resolution derivation of clause C from theory T is a
finite non-empty sequence of clauses R = (R1, . . . , Rn=C) such that each clause
Ri ∈ (R1, . . . , Rn) is either a fresh variant of some clause D ∈ T , or a resolvent
of two preceding clauses P, Q ∈ (R1, . . . , Ri−1). In the first case, Ri is called
an input clause, and D is called the generator of Ri. In the second case, Ri is
called a resolvent, and P and Q are called the parents of Ri. A tree derivation
of C from T is a resolution derivation of C from T in which each clause except
the last is the parent of exactly one child. A derivation of � from T will also be
called a refutation from T . The composition of two tree derivations R1 and R2,
written R1 + R2, is the tree derivation obtained by concatenating the sequence
R2 on to the sequence R1, taking care to rename any variables that may clash.
The Subsumption Theorem states if a theory T logically entails a clause C then
either C is a tautology or else there exists a tree derivation from T of a clause
D that θ-subsumes C, as shown for example in [9].

Abductive and Inductive Logic Programming (ALP & ILP) [4, 8] for-
malise in a logic programming context the notions of explanation and general-
isation. With respect to a given theory, ALP constructs explanations for given
observations, while ILP computes generalisations of given examples. Many ALP
and ILP techniques are incremental in that they focus on one observation or
example at a time and try to construct a partial hypothesis, H , that entails this
one example, e, relative to the background theory, B. This fundamental problem,
which is known as the task of Inverse Entailment (IE), is formally defined as
follows. Given a theory B and a clause e, find a theory H such that B ∪H |= e.
For reasons of efficiency, some form of search bias is normally imposed on the
process used to find H , and one such method is discussed next.
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Bottom Generalisation (BG) [6, 15] is an important approach for IE that
is based on the construction and generalisation of a particular clause called a
Bottom Set. Formally, as shown in Definition 1 below, the Bottom Set of B and
e, denoted Bot(B, e), contains the set of ground literals µ whose complements
are entailed by B and the complement of e. As shown in Definition 2, the hy-
potheses derivable by BG are those clauses h that θ-subsume Bot(B, e). It is
worth emphasising that B, h and e are all assumed to be Skolem-free.

Definition 1 (Bottom Set). Let B be a theory, let e be a clause, let σ be
a Skolemising substitution for e, and let e be the complement of e using σ.
Then the Bottom Set of B and e (using σ), denoted Bot(B, e), is the clause
Bot(B, e) = {µ | B ∪ e |= µ} where the µ are ground literals.

Definition 2 (BG). Let B be a theory, and let e and h be clauses. Then h is
said to be derivable by BG from B and e iff h � Bot(B, e).

The key point is that instead of exploring the entire IE hypothesis space,
which is intractable, BG only considers a sub-space that is both smaller and bet-
ter structured than the original. Formally, this sub-space is the θ-subsumption
lattice bounded by the Bottom Set and the empty set. But, as described be-
low, the advantage of a more tractable search space comes at the price of in-
completeness. This incompleteness can be characterised by Plotkin’s notion of
C-derivation [10], which is formalised in Definition 3.

Definition 3 (C-derivation). Let T be a theory, and C and D be clauses.
Then a C-derivation of D from T with respect to C is a tree derivation of D
from T ∪{C} such that C is the generator of at most one input clause. A clause
D is said to be C-derivable from T with respect to C, denoted (T, C) 	c D, iff
there exists a C-derivation of D from T with respect to C.

Informally, a C-derivation is a tree derivation in which some given clause
C may be used at most once. The important result, as shown in [15], is that
a hypothesis h is derivable by BG from B and e if and only if there is a C-
refutation from B∪ e with respect to h. Therefore C-derivations characterise the
restrictions on the hypotheses derivable by BG. In order to (partially) overcome
these restrictions, the semantics of KSS was introduced, as described next.

Kernel Set Subsumption (KSS) [12] can be seen as extending BG to derive
multiple clause hypotheses drawn from a larger hypothesis space. Like BG, KSS
considers only a bounded lattice based sub-space of the full IE hypothesis space.
But, whereas BG uses a single clause Bottom Set to bound its search space, KSS
uses instead a set of clauses called a Kernel Set. The relevant notions are now
recalled for the Horn clause case in Definitions 4, 5 and 6 below.

As shown in Definition 4, before a Kernel Set is formed, the inputs B and e are
first normalised by Skolemising e and transferring the body atoms as facts to B.
Formally, the normalised example ε is the clause containing the Skolemised head
atom of e, while the normalised background knowledge B is the original theory
B augmented with the Skolemised body atoms of e. In all of these definitions
negative clauses are formally treated as if they had the head atom ‘⊥’.
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Definition 4 (Horn Normalisation). Let B be a Horn theory, let e = P ∨
¬N1 ∨ ... ∨ ¬Nm be a Horn clause, and let σ be a Skolemising substitution for
e. Then the normalisation of B and e (using σ), consists of the theory B =
B ∪ {N1σ ∧ ... ∧ Nmσ}, and the clause ε = Pσ.

Definition 5 (Horn Kernel Set). Let B and ε be the result of normalising
a Horn theory B and a Horn clause e, and let K = {k1 ∧ . . . ∧ kn} be a set of
ground Horn clauses ki = αi ∨¬δ1

i ∨ . . .∨¬δmi

i . Then K is called a Kernel Set of
B and e iff B∪{α1∧ . . .∧αn} |= ε, and B |= δj

i for all 1 ≤ i ≤ n and 1 ≤ j ≤ mi.

Definition 6 (Horn KSS). Let B and H be Horn theories, and let e be a
Horn clause. Then H is said to be derivable by KSS from B and e iff H � K
for some Kernel Set K of B and e.

As shown in Definition 5 above, a Horn Kernel Set of a Horn theory B
and Horn clause e is a Horn theory K whose head atoms α1, . . . , αn collectively
entail the normalised example ε with respect to B, and whose body atoms δj

i

are individually entailed by the normalised background B. Here, n ≥ 1 denotes
the (non-zero) number of clauses in K, and mi ≥ 0 denotes the (possibly-zero)
number of body atoms in the ith clause ki. As shown in Definition 6, a theory
H is derivable by KSS whenever it θ-subsumes a Kernel Set K of B and e.

So far KSS is defined only for the Horn clause subset of clausal logic. In
this context it has been shown in [12] that KSS is sound with respect to IE
and complete with respect to BG. However, as yet, no exact characterisation
of the class of hypotheses derivable by KSS has been established. Such a task
clearly requires a more general notion than the C-derivation. For this purpose,
the concept of K-derivation, formalised in Definition 7 below, was introduced in
[12] and conjectured to provide such a characterisation.

Definition 7 (K-derivation). Let T and K be theories, and let D be a clause.
Then a K-derivation of D from T with respect to K is a tree derivation of D
from T ∪ K such that each clause k ∈ K (but not in T ) is the generator of at
most one input clause, which is called a k-input clause. Clause D is said to be
K-derivable from T with respect to K, denoted (T, K) 	k D, iff there exists a
K-derivation of D from T with respect to K.

The notion of K-derivation generalises that of C-derivation in the following
way. Whereas the C-derivation refers to a clause C that may be used at most
once, in a K-derivation there are a set of clauses K each of which may be used at
most once. A C-derivation is therefore a special case of a K-derivation, in which
this set K = {C} is a singleton.

In the next two sections, the semantics of KSS is extended to general clausal
logic and a refinement of the K-derivation, called a K*-derivation, is introduced
in order to provide a precise characterisation of KSS in the general case. The
soundness and completeness results mentioned above are also lifted to the general
case and the conjecture is proved.
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3 Kernel Set Semantics for General Clausal Logic

In this section the semantics of KSS is generalised from Horn clauses to arbitrary
clauses. It is shown in this general case that KSS remains sound with respect to
IE and continues to subsume the semantics of BG. First the notion of normalisa-
tion is generalised in Definition 8, and two key properties are shown in Lemma 1.
Then the generalised notion of Kernel Set is formalised in Definition 9.

Definition 8 (Normalisation). Let B be a theory, let e = P1∨ ...∨Pn∨¬N1∨
... ∨ ¬Nm be a clause, and let σ be a Skolemising substitution for e. Then the
normalisation of B and e (using σ), consists of the theory B = B ∪ {N1σ ∧ ... ∧
Nmσ}, and the clause ε = P1σ ∨ ... ∨ Pnσ.

Lemma 1. Let B and ε be the result of normalising a theory B and a clause
e = P1 ∨ ... ∨ Pn ∨ ¬N1 ∨ ... ∨ ¬Nm using σ. Let e denote the complement of e,
also using σ. Then (1) B ∪ T |= ε iff B ∪ e ∪ T |= � for all theories T , and (2)
B ∪ H |= ε iff B ∪ H |= e for all (Skolem-free) theories H.

Proof. Taking each case in turn:

1. B ∪ T |= ε iff B ∪ {N1σ ∧ ... ∧Nmσ} ∪ T |= P1σ ∨ ... ∨ Pnσ (by Definition 8),
iff B ∪ {N1σ ∧ ... ∧ Nmσ ∧ ¬P1σ ∧ ... ∧ ¬Pnσ} ∪ T |= � (by the Entailment
Theorem), iff B ∪ e ∪ T |= � (by properties of complementation).

2. B∪H |= ε iff B∪{N1σ∧ ...∧Nmσ}∪H |= P1σ∨ ...∨Pnσ (by Definition 8), iff
B ∪H |= P1σ ∨ ...∨Pnσ∨¬N1σ∨ ...∨¬Nmσ (by the Entailment Theorem),
iff B ∪ H |= eσ (by properties of substitution), iff B ∪ H |= e (the forward
direction uses the fact σ binds each variable in e to a constant not in B, H
or e, the reverse direction uses the fact eσ is an instance of e).

Definition 9 (Kernel Set). Let B and ε be the result of normalising a theory
B and a clause e. A Kernel Set of B and e is a ground theory K that can be
written in the form:

K =






λ0
1 ∨ λ1

1 ∨ · · · . . · · · ∨ λm1
1...

λ0
i ∨ λ1

i ∨ · · ·λj
i · · · ∨ λmi

i...
λ0

n ∨ λ1
n ∨ · · · . . · · · ∨ λmn

n






where B∪{λ0
1∧...∧λ0

n} |= ε, and B∪{λj
i } |= ε for all 1 ≤ i ≤ n and 1 ≤ j ≤ mi.

In this case, the literals λ0
1, . . . , λ

0
n are called the key literals of K.

In moving from the Horn case to the general case, the role previously played
by the head atoms αi is now played by the so-called key literals λ0

i . Although any
literal in a clause can be chosen as the key literal, for notational convenience it
will be assumed that the key literal of a kernel clause ki will always be denoted
λ0

i . As shown in Definition 9 above, for K to be a Kernel Set of B and e the key
literals λ0

1, . . . , λ
0
n must collectively entail ε with respect to B, and the non-key

literals λj
i must individually entail ε with respect to B.
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It is straightforward to show any Horn theory K that is a Kernel Set by
Definition 5 is also a Kernel Set by Definition 9. From Definition 5 it holds
B∪{α1∧. . .∧αn} |= ε and B |= δj

i . From the latter it follows B∪{¬δj
i } |= ⊥ |= ε.

Upon identifying each key literal λ0
i with the head atom αi and each non-key

literal λj
i with the negated body atom ¬δj

i it follows that B ∪ {λ0
1 ∧ ... ∧ λ0

n} |= ε

and B ∪ {λj
i} |= ε. Hence K is also a Kernel Set by Definition 9.

As formalised in Definition 10 below, the notion of KSS is the same in the
general case as in Horn case. As before, a hypotheses H is derivable by KSS from
B and e whenever it θ-subsumes a Kernel Set of B and e. The only difference
is that general clauses are now used in place of Horn clauses, and the general
Kernel Set replaces the Horn Kernel Set. As shown in Theorems 1 and 2, the
key results from the Horn clause case apply also in the general case.

Definition 10 (KSS). Let B and H be theories, and e be a clause. Then H
is derivable by KSS from B and e iff H � K for some Kernel Set K of B and e.

Theorem 1 (Soundness of KSS wrt IE). Let B and H be theories, let e
be a clause, and let K = {k1 ∧ . . . ∧ kn} be a Kernel Set of B and e. Then
H � K implies B ∪ H |= e.

Proof. By Definition 9 it holds that B ∪ {λ0
1 ∧ ... ∧ λ0

n} |= ε. Therefore B ∪
e ∪ {λ0

1 ∧ ... ∧ λ0
n} |= � by Lemma 1. Hence B ∪ e |= ¬λ0

1 ∨ ... ∨ ¬λ0
n by the

Entailment Theorem. If M is any model of B ∪ e then for some 1 ≤ i ≤ n it
follows M falsifies the key literal λ0

i . But, by an analogous argument, it also
follows from Definition 9 and Lemma 1 that B ∪ e |= ¬λj

1 for all 1 ≤ i ≤ n
and 1 ≤ j ≤ mi. Hence M also falsifies all of the non-key literals λ1

i , . . . , λ
mi

i .
Therefore M falsifies the Kernel clause ki = λ0

i ∨λ1
i ∨ ...∨λmi

i and also, therefore,
the Kernel theory K = {k1∧. . .∧kn}. Consequently, B∪e∪K |= �. Since H � K,
it follows H |= K and so B ∪ e ∪H |= �. Therefore B∪H |= ε by Lemma 1 part
(1) and hence B ∪ H |= e by Lemma 1 part (2).

Theorem 2 (KSS Extends BG). Let B be a theory, let e = P1 ∨ ... ∨ Pn ∨
¬N1 ∨ ... ∨ ¬Nm be a clause, let Bot(B, e) be the Bottom Set of B and e using
σ, and let h = L0 ∨ ...∨Lp be a clause. Then a clause h is derivable by BG from
B and e only if the theory H = {h} is derivable by KSS from B and e.

Proof. Suppose h is derivable by BG from B and e. Then h � Bot(B, e) by
Definition 2, and so hθ ⊆ Bot(B, e) for some θ. By Definition 1 it holds B ∪
e |= Liθ for all 0 ≤ i ≤ p. Since Liθ is a ground atom, Liθ = ¬Liθ and so
B ∪ e ∪ {Liθ} |= � by the Entailment Theorem. Consequently, B ∪ {Liθ} |= ε
by Lemma 1. By Definition 9 the theory K = {L0θ ∨ L1θ ∨ ... ∨ Lpθ} is a single
clause Kernel Set of B and e. By construction {h} � K and hence it follows by
Definition 10 that H = {h} is derivable by KSS from B and e.

To show KSS is stronger than BG, simply let B = {p ∨ ¬q(a) ∨ ¬q(b)} and
e = p. In this case the three hypotheses {q(x)} and {q(a) ∧ q(b)} and {p} are
all derivable by KSS, but only the last one is derivable by BG from B and e.
In order to illustrate the ideas presented above and to show how KSS can also
derive non-Horn theories, this section now concludes with Example 1 below.
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Example 1. Let the background theory B represent the knowledge that anyone
in a bar may be served a drink unless he is a child, and that anyone in a cafe
may be served a drink. Let the example e denote the fact that all adults may
be served a drink.

B =

{
drink ∨ child ∨ ¬bar
drink ∨ ¬cafe

}

e = drink ∨ ¬adult

Then the hypothesis H shown below, which states that an adult will go either
to the cafe or to the bar, and that no one is both an adult and a child, is correct
with respect to IE since it can be verified that B ∪ H |= e.

H =

{
bar ∨ cafe ∨ ¬adult
¬child ∨ ¬adult

}

Using the abbreviations a = adult, b = bar, c = child, d = drink, f = cafe it
can be verified that the result of normalising B and e consists of the theory B
and the clause ε shown below, and that the following sequents are true.

B =






d ∨ c ∨ ¬b
d ∨ ¬f
a





ε = d

B ∪ {b ∧ ¬c} |= ε
B ∪ {f} |= ε
B ∪ {¬a} |= ε

Therefore, by Definitions 9 and 10, theory H is a Kernel Set of B and e,
with key literals b and ¬c, and H is derivable by KSS from B and e. But note
Bot(B, e)=drink∨cafe∨¬adult and so neither clause in H is derivable by BG.

4 Characterisation in Terms of K*-Derivations

This section provides a sound and complete characterisation of Kernel Sets
in terms of a new derivation, called a K*-derivation. The K*-derivation is at
the same time a generalisation of the C-derivation and a refinement of the K-
derivation. Where a K-derivation requires that each clause in a set K is used at
most once, a K*-derivation imposes one additional restriction on the way such
clauses are used. The basis of this restriction is a new notion, called T-reduction,
formalised in Definition 11 below and illustrated in Fig 1.

Definition 11 (T-reduction). Let T be a theory, and let C and D be clauses.
Then a T-reduction of C to D is a C-derivation R of D from T with respect to
C such that R = R1 + ... + Rm + (C=C0, ..., Cm=D) where for all 1 ≤ i ≤ m
each Ri is a tree derivation of a clause Ei from T , and Ci is a resolvent of Ci−1

with a unit factor of Ei. The clause C is said to be reduced to D by T in R.
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Fig. 1. T-reduction Fig. 2. Abbreviation of Fig 1

Informally, T-reduction is the process of progressively resolving a clause C
with clauses derived from a theory T . Fig 1 illustrates the T-reduction of a
ground clause C = C0 = λ0 ∨ λ1 ∨ ... ∨ λm to the ground literal λ0 = Cm = D.
Each descendent Ci = λ0 ∨ λi+1 ∨ ... ∨ λm of C differs from predecessor Ci−1 in
the removal of a literal λi, which is ‘resolved away’ by a clause Ei derived from
T . Each wedge denotes the tree derivation Ri of the clause Ei shown at the base
of the wedge, from the theory T shown at the top.

To simplify the representation of the T-reduction of a ground clause to a
single literal, it is convenient to introduce the graphical abbreviation shown in
Fig 2. Just as in Fig 1, the wedges denote the tree derivations Ri of the clauses
Ei. But now, instead of the clause Ei, the complementary literal λi appears at
the base each wedge. The black tip of each wedge emphasises that it is not the
literal λi which is derived, but the clause Ei that resolves away λi. Intuitively,
this graphic shows the literals of C being resolved away until only λ0 remains.

The notion of T-reduction is now used to define the concept of K*-derivation.
As formalised in Definition 12, a K*-derivation consists of a principal derivation,
which is a tree derivation of some clause C0 from T , and zero or more reduction
trees, in each of which a k-input clause ki is reduced to a clause Di by T . Clause
C0 is then reduced to D in the ‘tail’ (C1, ..., Cn) of the derivation, by resolving
with each of the Di in turn. For an example, the reader is referred to Fig 5.

Definition 12 (K*-derivation). Let T and K be theories, and let D be a
clause. Then a K*-derivation of D from T with respect to K is a K-derivation
R of D from T with respect to K such that R = R0+R1+...+Rn+(C1, ..., Cn=D)
where R0 is a tree derivation, called the principal derivation, of a clause C0 from
T , and for all 1 ≤ i ≤ n each Ri is a T-reduction, called a reduction tree, of a
k-input clause ki ∈ K to a clause Di, and each Ci is the resolvent of Ci−1 with
a unit factor of Di. The clause D is said to be K*-derivable from T with respect
to K, denoted (T, K) 	k∗ D, whenever such a derivation exists.

The rest of this section shows how the K*-derivation provides a sound and
complete characterisation of KSS. First, Lemma 2 demonstrates an important
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relationship between abduction and K*-derivations. Informally, this result states
that all of the ground facts used in a refutation, need be used just once, at the
very end. Such a refutation R is shown in Fig 3, where the principal derivation
R0 is denoted by the wedge, and λ′

1, . . . , λ
′
p are the ground facts used.

Lemma 2. Let T be a theory, and let ∆ = {λ1 ∧ ... ∧ λn} be a ground unit
theory. Then T ∪ ∆ |= � implies (T, ∆) 	k∗ � with a K*-derivation of the form
R = R0 + (λ′

1, ..., λ′
p) + (C1, ..., Cp=�) for some {λ′

1 ∧ ... ∧ λ′
p} ⊆ ∆.

Proof. Suppose that T ∪ ∆ |= �. Then by the Entailment Theorem T |= D
where D = λ1 ∨ ...∨λn. If D is a tautology, then ∆ contains two complementary
unit clauses, which means there is a trivial tree derivation of � from these two
unit clauses, and so (T, ∆) 	k∗ � by Definition 12. If D is not a tautology, then
by the Subsumption Theorem there is a tree derivation R0, from the theory T
of a clause C0 such that C0θ ⊆ D for some substitution θ. Now, define the set
∆′ = {λ′

1, ..., λ′
p} such that ∆′ = C0θ ∩ ∆. (i.e. ∆′ is the subset of ∆ whose

literals are complementary to those in C0 under θ). Next, let (C1, . . . , Cp=�)
be the (unique) sequence of clauses Ci = M0

i ∨ M1
i ∨ ... ∨ M qi

i such that each
clause Ci+1 ∈ (C1, . . . , Cp) is the resolvent of Ci and λ′

i+1 on the factor Ciφi of
Ci where φi is the mgu of the set Si = {M j

i ∈ Ci | M j
i θ = λ′

i+1}. (i.e. Si is
the subset of Ci whose literals are complementary to λ′

i+1 under θ). Then, by
Definition 12, it follows R = R0 +(λ′

1, ..., λ′
p)+ (C1, ..., Cp=�) is a K*-refutation

from T with respect to ∆, with principal derivation R0 and trivial reduction
trees where each Ri = (λ′

i) simply contains the unit clause λ′
i ∈ ∆ (see Fig 3).

Lemma 2 is now used in Theorem 3 to show that a theory K is a Kernel Set
of B and e if and only if there exists a K*-refutation from B ∪ e with respect to
K. Informally, as illustrated in Fig 4, a K*-derivation can always be constructed
in which (zero or more) Kernel clauses are reduced by the theory B ∪ e to their
key literals. The key literals are then used one by one in the tail of the derivation
to resolve away the clause C0 derived in the principal derivation.

Theorem 3 (K*-derivations characterise Kernel Sets). Let B and ε be
the result of normalising a theory B and clause e using σ. Let e be the comple-
ment of e, also using σ. Let K = {k1 ∧ ... ∧ kn} be a theory of ground clauses
written ki = λ0

i ∨ λ1
i ∨ ... ∨ λmi

i , and let ∆ = {λ0
1 ∧ ... ∧ λ0

n} . Then the theory
K is a Kernel Set of B and e iff (B ∪ e,K) 	k∗ �

Proof. Taking the “if” and “only if” cases individually:

1. Suppose (B ∪ e,K) 	k∗ �. Then by Definition 12 for some 0 ≤ p ≤ n there
is a K*-derivation R = R0 + R1 + ... + Rp + (C1, ..., Cp=�) with principal
derivation R0 and reduction trees R1, . . . ,Rp. By Definition 11 it follows
for all 1 ≤ i ≤ p that Ri = R1

i + ... + Rmi

i + (ki=C0
i , ..., Cmi

i =λ′
i) is a T-

reduction of a ground k-input clause ki ∈ K to single literal λ′
i ∈ ki by

the theory B ∪ e. Without loss of generality, assume K has been written so
K = {k1 ∧ ... ∧ kp ∧ ... ∧ kn} and ki = λ0

i ∨ λ1
i ∨ ... ∨ λmi

i with λ′
i = λ0

i for all
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Fig. 3. Abductive Derivation Fig. 4. K*-derivation

1 ≤ i ≤ p. Therefore R′ = R0+(λ0
1, ..., λ0

p)+(C1, ..., Cp=�) is a tree refutation
from B ∪ e ∪ ∆. Hence B ∪ e ∪ ∆ |= � by the soundness of resolution, and
so B ∪ ∆ |= ε by Lemma 1. Now, by Definition 11 each Rj

i with 1 ≤ i ≤ p

and 1 ≤ j ≤ mi is a tree derivation of a clause Dj
i from B ∪ e such that

Dj
i resolves away λj

i . Therefore Rj
i + (λj

i ) + (�) is a tree refutation from
B ∪ e ∪ {λj

i}. Hence B ∪ e ∪ {λj
i} |= � by soundness of resolution, and so

B ∪ {λj
i} |= ε by Lemma 1. Since B ∪ ∆ |= ε and B ∪ {λj

i} |= ε it follows by
Definition 9 that K is a Kernel Set of B and e with key literals ∆.

2. Suppose K is a Kernel Set of B and e with key literals ∆. By Definition 9 it
follows B ∪ ∆ |= ε. Consequently, B ∪ e ∪ ∆ |= � by Lemma 1. By Lemma 2
there is a K*-refutation R = R0 +(λ′

1, ..., λ′
p)+ (C1, ..., Cp=�) from B ∪ e for

some {λ′
1 ∧ ... ∧ λ′

p} ⊆ ∆ (see Fig 3). Without loss of generality, assume K
has been written so K= {k1 ∧ ... ∧ kp ∧ ... ∧ kn} and ki = λ0

i ∨ λ1
i ∨ ... ∨ λmi

i

with λ′
i =λ0

i for all 1 ≤ i ≤ p. By Definition 9 for each 1 ≤ j ≤ mi it follows
B∪{λj

i} |= ε. Consequently B∪e∪{λj
i} |= � by Lemma 1. By Lemma 2 there

is a K*-refutation Rj
i +(λj

i )+ (�) in which λj
i may or may not be used. If λj

i

is not used, then by Definition 12 it trivially follows (B∪ e,K) 	k∗ � and the
theorem is proved. If λj

i is used, then by Definition 12 it follows Rj
i is a tree

derivation from B ∪ e of a clause Ej
i that resolves away λj

i . Now, for all 1 ≤
i ≤ p and 0 ≤ j ≤ mi define the clause Cj

i = λ0
i ∨ ... ∨ λj

i and the derivation
Ri = R1

i +...+Rmi

i +(ki=Cmi

i , ..., C1
i , C0

i =λj
i ). Then by Definition 11 it follows

Ri is a tree derivation in which ki is T-reduced to λj
i by B ∪ e. Hence by

Definition 11 the tree derivation R′ = R0 +R1 + ...+Rp +(C1, ..., Cp=�) is a
K*-refutation from B∪e with respect to K (see Fig 4). Thus (B∪e,K) 	k∗ �
by Definition 12.

To characterise the hypotheses derivable by KSS in terms of K*-derivations,
one complication must be addressed. Given that H � K, it is possible for one
clause h ∈ H to θ-subsume more than one clause in K, so that more than
one instance of h is needed to derive � from B ∪ e and H . For example, let
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B = {p ∨ ¬q(a) ∨ ¬q(b)} and e = p. Then hypothesis H = p(X) subsumes the
Kernel Set K = {q(a) ∧ q(b)}, and two instances of H are required.

One way of handling this complication is by treating the hypothesis H as a
multi-set, and treating the relation H � K as an injection that maps each clause
k in set K to a clause h in multi-set H such that h � k. Then it can be shown
that a theory H is derivable by KSS from a theory B and a clause e, if and only
if there is a K*-refutation from B ∪ e with respect to H . For completeness the
proof of this result is sketched in Corollary 1 below.

Corollary 1. Let B be a set of clauses, let e be a clause, and let H be a multi-set
of clauses. Then H is derivable by KSS from B and e iff (B ∪ e, H) 	k∗ �

Proof. (Sketch)

1. Suppose H is derivable by KSS from B and e. Then there is a theory K such
that H � K and K is a Kernel Set of B and e. By Theorem 3 there is a
K*-refutation from B∪ e with respect to K. Now replace each reduction tree
of a k-input clause k by the reduction tree of a fresh variant of the clause h
to which k is mapped by �. After appropriate syntactic changes, the result
is a K*-refutation from B ∪ e with respect to H .

2. Suppose such a K*-derivation exists. Replace each reduction tree of a k-
input clause h by the reduction tree of a ground instance of k of h consistent
with the substitutions in the derivation. After appropriate syntactic changes,
the result is a K*-refutation from B ∪ e with respect to the clauses k. By
Theorem 3 this set of clauses is a Kernel Set of B and e, and by construction
it is θ-subsumed by H . Therefore H is derivable by KSS from B and e.

In order to illustrate the concepts introduced above, this section concludes
by presenting a full K*-derivation for Example 1. As shown in Fig 5, the reduc-
tion trees of the two underlined hypothesis clauses to the literals b and ¬c are
indicated by the dashed triangles. The principal derivation of the clause c ∨ ¬b
containing the complements of these literals is marked by the dashed rectangle.
The tail of the derivation is shown by the dashed ellipse. Finally, Fig 6 shows how
this derivation is abbreviated using the compact notation introduced in Fig 2.

5 Related Work

The semantics of KSS is aimed ultimately at extending the principles of BG in
order to provide a more general context for developing practical proof procedures
for IE. However, it can also be used as a means of systematically comparing ex-
isting methods for BG and KSS. In particular, as shown in the previous section,
independently of how a hypothesis H is actually computed from B and e, there
will always be an associated K*-refutation from B ∪ e with respect to H . Con-
sequently, existing methods can be classified in terms of the restrictions needed
on the principal and reduction derivations in order to characterise the class of
derivable hypotheses. Several methods are now compared in this way.
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"reduction tree 1"

"reduction tree 2"

"principal derivation"

"tail"

Fig. 5. K*-derivation of Example 1 Fig. 6. Abbreviation of Fig 5

Progol4 [6] is one of the best known and widely applied systems in ILP. This
procedure uses a methodology called Mode Directed Inverse Entailment (MDIE)
that efficiently implements BG the use of user-specified language bias. A subset
of the Bottom Set is constructed by an SLD procedure and is then generalised
by a lattice based search routine. Like all BG approaches, Progol4 induces only a
single clause for each example, and like most existing procedures it is restricted
to Horn clause logic. The hypotheses derivable by Progol4 are associated with
K*-derivations of a simple form. The principal derivation always consists of a
single unit clause containing the (unique) negative literal from e; and this literal
is always resolved away by a single reduction tree in which the (only) hypothesis
clause is reduced to an instance of its head atom.

Progol5 [7] is the latest member of the Progol family. This proof procedure
realises a technique called Theory Completion by Inverse Entailment (TCIE)
that augments MDIE with a reasoning mechanism based on contrapositive lock-
ing [13]. Although the principal derivations associated with Progol5 hypotheses
also result in a negative unit clause, unlike Progol4 they may involve the non-
trivial derivation of a negative literal distinct from that in e. However, due to
an incompleteness of the contrapositive reasoning mechanism identified in [12],
no merging of literals may occur within the principal derivation. In the corre-
sponding reduction tree, the single hypothesis clause is reduced to an instance
of its head atom.

HAIL [11] is a recently proposed proof procedure that extends TCIE with the
ability to derive multiple clause hypotheses within the semantics of KSS. This
procedure is based on an approach called Hybrid Abductive-Inductive Learning
that integrates explicit abduction, deduction and induction, within a cycle of
learning that generalises the mode-directed approach of Progol5. Key literals
of the Kernel Set are computed using an ALP proof procedure [5], while non-
key literals are computed using the same SLD procedure used by Progol. Like
Progol5, HAIL is currently restricted to Horn clause logic, but unlike Progol,
the hypotheses derivable by HAIL can give rise to K*-derivations in which there
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is no restriction on merging, and where the principal derivation may result in
a negative clause with more than one literal. Each of these literals is resolved
away by a corresponding reduction tree, in which one of the hypothesis clauses
is reduced to an instance of its head atom.

The proof procedures discussed above use the notions of Bottom Set or Ker-
nel Set to deliberately restrict their respective search spaces. This is in contrast
to some other recent approaches that attempt to search the complete IE hy-
pothesis space. A technique based on Residue Hypotheses is proposed in [16] for
Hypothesis Finding in general clausal logic. In principle, this approach subsumes
all approaches for IE - including BG and KSS - because no restrictions are placed
on B, H or e. But, in practice, it is not clear how Residue Hypotheses may be
efficiently computed, or how language bias may be usefully incorporated into the
reasoning process. An alternative method, based on Consequence Finding in full
clausal logic, is proposed in [3] that supports a form of language bias called a
production field and admits pruning strategies such as clause ordering. However,
this procedure is still computationally expensive and has yet to achieve the same
degree of practical success as less complete systems such as Progol.

6 Conclusion

In this paper the semantics of KSS has been extended from Horn clauses to
general clausal logic. It was shown in the general case that KSS remains sound
with respect to the task of IE and that it continues to subsume the semantics of
BG. In addition, an extension of Plotkin’s C-derivation, called a K*-derivation,
was introduced and shown to provide a sound and complete characterisation of
the hypotheses derivable by KSS in the general case. These results can be seen
as extending the essential principles of BG in order to enable the derivation
multiple clause hypotheses in general clausal logic and thereby enlarging the
class of soluble problems.

The aim of this work is to provide a general context in which to develop
practical proof procedures for IE. It is believed such procedures can be developed
for KSS through the integration ALP and ILP methods and the efficient use of
language bias. A hybrid ALP-ILP proof procedure has been proposed in [12] for
computing multiple clause hypotheses, but currently this procedure is restricted
to Horn clauses and has not been implemented. To address these issues, efficient
abductive and inductive procedures are required for general clausal logic. One
promising approach would be to adapt the work already begun by [1] and [3] in
the context of semantic tableaux and to apply them in the context of KSS.
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alisation of Progol. In T. Horváth and A. Yamamoto, editors, 13th International
Conference on Inductive Logic Programming, volume 2835 of Lecture Notes in AI,
pages 311–328. Springer Verlag, 2003.

13. M.E. Stickel. A Prolog technology theorem prover: Implementation by an extended
Prolog compiler. In J. H. Siekmann, editor, Journal of Automated Reasoning, vol-
ume 4(4), pages 353–380, 1988.

14. A. Yamamoto. Which Hypotheses Can Be Found with Inverse Entailment? In
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