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The spectra of the Batchelor vortex are obtained by discretizing its linearised evolution
operator using a modified Chebyshev polynomial approximation at a Reynolds number
of 1000 and zero azimuthal wave number. Three types of eigenmodes are identified from
the spectra: discrete modes, potential modes and free-stream modes. The discrete modes
have been extensively documented but the last two modes have received little attention.
A convergence study of the spectra and pseudospectra supports the observation that dis-
crete modes correspond to discrete spectra while the other two correspond to continuous
spectra. The free-stream modes are a limiting form of the potential modes when the radial
decay rate of velocity components reduces to zero. The radial form of the free-stream
modes with axial and radial wave numbers is investigated and the penetration of the
free-stream mode into the vortex core highlights the possibility for interaction between
the potential region and the vortex core. A wave-packet pseudomode study confirms the
existence of continuous spectra and predicts the locations and radial wave numbers of
the eigenmodes. The pseudomodes corresponding to the potential modes are observed to
be in the form of one or two wave-packets while the free-stream modes are not observed
to be in the form of wave-packets.

1. Introduction

The Batchelor vortex is an approximate solution to the Navier-Stokes equations under
a boundary-layer-type approximation obtained by Batchelor (1964) and it has been used
extensively as a typical mathematical model of vortices. In this paper, the Batchelor
vortex is adopted to investigate the whole spectrum of the vortex because it is widely
used in the vortex stability studies and it also models trailing or jet-like vortices.

The Batchelor vortex can be represented in the cylindrical coordinates (x, r, θ) as

U(r) = a+ e−r2 , V (r) = 0, W (r) = q/r(1− e−r2), (1.1)

where q is the swirl strength and q = 3 is used throughout this paper if not otherwise
stated. In the above the parameter a designates the free stream velocity. It has been
noted by Lessen et al. (1974) that the translation and inversion of the axial velocity
U(r) do not affect the instability of the Batchelor vortex – they only affect the frequency
but the growth rates remain unchanged, so a = 0 is adopted in this paper. Re denotes
the Reynolds number, defined as Re = ∆UR0/ν, where ∆U is the dimensional velocity
excess in the core of the vortex, R0 is related to the core size of the vortex and ν is the
kinematic viscosity. In this paper, Re is taken to be 1000 if not otherwise stated.
Most of the studies of the Batchelor vortex have focused on the evolution of per-

turbations inside the vortex core/shear layer, and little attention has been paid to the
out-of-core region, where the flow is dominated by the algebraic decaying terms in the
base flow. Taking into account the corresponding spectra, the modes of the Batchelor
vortex can be classified into three broad categories:

1) Discrete modes, which correspond to a discrete spectrum. Discrete modes have
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been intensively studied in both inviscid and viscous conditions since Rayleigh (1916)
proposed his famous stability criterion. To date, all the reported unstable modes of the
Batchelor vortex are discrete modes. There are two typical unstable discrete modes:
inviscidly unstable modes (Lessen, Singh & Paillet 1974; Lessen & Paillet 1974; Heaton
2007) and viscously unstable modes (Khorrami 1991; Fabre & Jacquin 2004). Those
discrete unstable modes are concentrated around the vortex core. More recently, an
unstable viscous ring mode, which is spatially concentrated near a particular radius
corresponding to a double critical point of the inviscid equation, has been reported by
LeDizés & Fabre (2010).The discrete mode of the Batchelor vortex decays exponentially
or super-exponentially in the radial direction. The radial distribution of a typical discrete
mode is shown in figure 1a.

2) Potential modes, which are part of a continuous spectrum, have an non-trivial am-
plitude outside of the vortex core but decay to zero at large radial values. Indeed potential
modes are observed to decay much slower than the exponential/super-exponential decay
rate of the discrete modes. Potential modes are asymptotically stable, but they are highly
non-orthogonal and a linear combination of them could lead to strong transient growth
(Obrist & Schmid 2003b; Mao 2010). The radial distribution of typical potential modes
are shown in figures 1b and 1c. Potential modes have also been investigated in the po-
tential flow region around swept bluff bodies (Obrist & Schmid 2010), where a spanwise
velocity component exists due to the sweep angle and this spanwise velocity has a similar
effect to the azimuthal velocity in the vortex flow. Obrist & Schmid (2003a) have demon-
strated analytically that potential modes decay algebraically in the radial direction in
the leading-edge boundary layer flow.
3) Free-stream modes around the Batchelor vortex, which are also part of a continuous

spectrum, are similar to the well-documented “continuous spectrum” in the boundary
layer flow. Free-stream mode is a limiting form of the potential modes as the radially
decay rate tends to zero. These are the only modes surviving in the far free stream. Most
of the published work on free-stream modes/spectra is related to the continuous spectrum
of the one-variable Orr-Somerfeld equation in boundary layer flow. The existence of free-
stream boundary layer modes of the Orr-Somerfeld equation for a Blasius boundary
layer was conjectured by Jordinson (1970) and affirmed both by a numerical approach
(Mack 1976) and an analytical expression (Gustavsson 1979; Grosch & Salwen 1978). It
was found that the free-stream modes are small in the boundary layer and oscillatory
in the free stream. Zaki & Saha (2009) have demonstrated that the free-stream modes
with small axial wave numbers penetrate the boundary layer and therefore provide a
mechanism to introduce free stream turbulence into the boundary layer. The free-stream
spectrum however has not been very actively investigated in the vortex flows which are
dependent on three velocity components and where the governing equations cannot be
reduced to a one-variable equation. Fabre et al. (2006) noted that there would be a
free-stream spectrum in the vortex flow, although they did not provide a mathematical
investigation of this observation. The radial distribution of a typical free-stream mode is
shown in figure 1d.

The remainder of this paper is organised as follows: in §2, we introduce the governing
equations; in §3, we describe the modified Chebyshev discretization used to discretize
the governing equations; in §4 we validate the discretization by comparing the results
against published values; in §5, we present the map of spectra and pseudospectra of the
Batchelor vortex and identify the three typical modes; in §6, we apply the wave-packet
pseudomode method to further investigate the spectrum of the vortex corresponding to
eigenmodes with wave packet forms; finally in §7 we summarise the results. The existence
and continuity of the free-stream spectrum are verified in appendix B.
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(b) Potential mode

Re(w),|w|

r

-1 -0.5 0 0.5 10

1

2

3

4

(c) Potential mode
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(d) Free-stream mode

Figure 1. Swirl velocity components for typical (a) discrete mode, (b,c) potential modes and
(d) free-stream mode at azimuthal wave number m = 0, axial wave number k = 10, swirl
strength q = 3 and Reynolds number Re = 1000. All these parameters will be used in the
following investigations is not otherwise stated. The real part Re(w) is denoted by solid lines
while the absolute value |w| is illustrated by dotted lines. The dashed line r = 1.122 denotes
the position of core radius of the Batchelor vortex, corresponding to the maximum azimuthal
velocity W = 0.639q (see equation (1.1)).

2. Governing equations

Assuming the fluid to be Newtonian and the flow incompressible, the relevant equations
of motion for the primitive variables (velocities, pressure) are the incompressible Navier-
Stokes equations:

∂tû = −(û · ∇)û−∇p̂+Re−1∇2û, with ∇ · û = 0,

where û(x, r, θ; t) is the velocity field and p̂(x, r, θ; t) is the modified pressure incorporat-
ing the constant density.

Decomposing the flow field as a summation of a base flow field, whose velocity vector
and modified pressure are denoted by (U , P ), and a perturbation field, whose velocity
vector and modified pressure are denoted by (u′, p′), by substituting û = U + u′ and
p̂ = P + p′ into the incompressible Navier-Stokes equations and then linearising the
advection term, we obtain

∂tu
′ = −(U · ∇)u′ − (u′ · ∇)U −∇p′ +Re−1∇2u′, with ∇ · u′ = 0, (2.1)

where the base flow velocity vector U = (U, V,W ) is defined in equations (1.1).
Decompose the perturbations in the axial and azimuthal directions and consider the
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perturbations in the local form:

(u′, p′) = (u′, v′, w′, p′) = [u(r), v(r), w(r), p(r)]exp(ikx+ imθ + σt), (2.2)

where k is the axial wave number, m is the azimuthal wave number and σ is the growth
rate.

Substituting equation (2.2) into (2.1) and eliminating u and p through standard alge-
braic and differential manipulations, the governing equations can be expressed as

σ

[

Lvv Lvw

Lwv Lww

] [

v
w

]

=

[

Rvv Rvw

Rwv Rww

] [

v
w

]

,

or σ

[

v
w

]

=

[

Lvv Lvw

Lwv Lww

]

−1 [
Rvv Rvw

Rwv Rww

] [

v
w

]

= D

[

v
w

]

. (2.3)

The details of the entries of the matrices are given in appendix A.
We see from equation (2.3) that the growth rate σ is an eigenvalue of the matrix D. In

the free stream where only the free-stream modes survive,Lvw = Lwv = Rvw = Rwv = 0,
and so v and w are decoupled. For axisymmetric modes (m = 0), in the potential region,
where the exponential terms of the base flow have decayed to zero and the continuous
spectrum dominates, Lvw = Lwv = Rwv = 0, and v and w are partially decoupled.

The boundary conditions of (v, w) depend on the value of m. At m = 0 the boundary
conditions of (u, v, w) can be expressed as (Lessen, Singh & Paillet 1974)

r = 0 : du/dr = v = w = dp/dr = 0,
r → ∞ : u = v = w = p = 0.

(2.4)

Differentiate the mass continuous or divergence free equation in the linearised govern-
ing equations twice to transfer the boundary conditions of (u, v, w) to the boundary
conditions of (v, w) for equation (2.3):

r = 0 : v = 0, d2v/dr2 = 0, w = 0,
r → ∞ : v = 0, w = 0, dv/dr = 0.

(2.5)

3. Discretization

Amodified Chebyshev polynomial method is used to discretize the governing equations.
The Chebyshev method has been previously applied to the stability analysis of vortex flow
by Khorrami (1991), who used a staggered grid approach for the pressure and momentum
components of the problem. In this discretization, the velocities are evaluated at the
collocation points yi, which are the extrema of the last retained Chebyshev polynomial
(ΓM (y)) in the truncated series, while the pressure and the continuity equations are
evaluated at the collocation points yi+1/2, which are the roots of ΓM (y). Since then the
Chebyshev polynomial method has been used in a number of the stability studies of
vortex flow (Khorrami 1991, 1992; Fabre & Jacquin 2004; Heaton 2007; Abid 2008).

There are two strategies for imposing boundary conditions in the Chebyshev discretiza-
tion, boundary bordering and basis modification, as described by Boyd (2001). The
boundary bordering method can lead to spurious eigenvalues induced by the extra alge-
braic constraints to the system (Schmid & Henningson 2001). Basis modification involves
the replacement of the original basis functions with modified functions that each satisfies
the homogeneous boundary conditions. This basis modification method has been applied
by Weideman & Reddy (2000), McKernan (2006), Boyd (2001), Joshi (1996), Heinrichs
(1989), and Heinrichs (1991) and is adopted in the current study.
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As is standard practise, the range of radial coordinate r is truncated from [0,+∞)
to [0, R]. The problem is then mapped from physical space {r|r ∈ [0, R]} to Chebyshev
interval {y|y ∈ [−1, 1]} via a linear mapping function y = 2r/R − 1. We note that
the collocation points are not concentrated in the vortex core since we are interested in
both the core region and potential/free-stream regions. A non-linear mapping function
r = expylgR was also considered to stretch the grid for large R, but it was observed that
the conditioning number of the matrix is significantly increased for larger values of R.
Therefore we apply a linear fixed range and check the independence of the results with
respect to R.

The Chebyshev polynomial functions can be written as

Γ1(y) = 1, Γ2(y) = y, Γi>2(y) = 2yΓi−1 − Γi−2.

This expansion is modified to satisfy the boundary conditions expressed in equations
(2.5). Here only the modification corresponding to m = 0 is presented while the modifi-
cation at other azimuthal wave numbers can be obtained analogously.
The modified polynomial basis for v is defined as

Ξ1 = Γ1, Ξ2 = Γ2, Ξ3 = Γ3 − Γ1,

Ξ4 = (Γ4 − Γ2)− 2(Γ3 − Γ1),

Ξi>4,odd = Γi − Γ1 −
1

4
(i− 1)2(Γ3 − Γ1)

+
1

96
[(i− 1)4 − 4(i− 1)2](Γ4 − 2Γ3 − Γ2 + 2Γ1),

Ξi>4,even = Γi − Γ2 −
1

4
(i2 − 2i)(Γ3 − Γ1)

+
1

96
[−(i− 1)4 − 2(i− 1)2 + 3](Γ4 − 2Γ3 − Γ2 + 2Γ1).

This basis satisfies Ξi>2(±1) = 0, dΞi>4

dy (1) = 0 and d2Ξi>4

dy2 (−1) = 0, so that Ξi>4 satisfies
the boundary conditions of v.
The modified polynomial basis for w is defined as

Θ1 = Γ1,

Θ2 = Γ2,

Θi>2,odd = Γi − Γ1,

Θi>2,even = Γi − Γ2.

This basis satisfies Θi>2(±1) = 0.
In the Chebyshev space, the Gauss-Lobatto points are used

yi = cos ((i− 1)π/(M − 1)) , i = 1, 2, 3, ...,M,

where M is the span of the Chebyshev basis and yi correspond to the extrema of the last
retained Chebyshev polynomial before modification. The two outer boundary conforming
modified expansion modes are reordered to the second and the fourth places in the matrix.
Therefore the first four rows of the discretized equations represent the implementation
of boundary conditions and these four equations are decoupled from the rest of system.

Finally the partitioned Chebyshev expansions for v can be represented as






v(y3)
...

v(yM−2)






=







Ξ5(y3) · · · ΞM (y3)
...

. . .
...

Ξ5(yM−2) · · · ΞM (yM−2)













ṽ5
...

ṽM






,



6

or more compactly as

v = Ξṽ, (3.1)

and the partitioned expansion for w is







w(y3)
...

w(yM−2)






=







Θ3(y3) · · · ΘM−2(y3)
...

. . .
...

Θ3(yM−2) · · · ΘM−2(yM−2)













w̃3

...
w̃(yM−2)






,

or more compactly as

w = Θw̃, (3.2)

where ṽi and w̃i are unknown coefficients. Note that in the expansion of w, w(y2) and
w(yM−1) are not expanded and the two polynomials ΘM−1 and ΘM are discarded to
obtain a square expansion matrix.

It can be demonstrated from the properties of the modified basis that ṽ1 ∼ ṽ4 = 0 and
w̃1 ∼ w̃2 = 0, so the first four equations in the expansion of v and the first two equations
in the expansion of w, which represent the enforcement of boundary conditions, are
separated from the remaining parts of the expansion forms.

Substituting the expansions (3.1) and (3.2) into equation (2.3) results in

σ

[

ṽ
w̃

]

= D̃

[

ṽ
w̃

]

.

The matrix of operator D can be obtained from:

D =

[

Ξ 0
0 Θ

]

D̃

[

Ξ−1 0
0 Θ−1

]

. (3.3)

At other non-zero azimuthal wave numbers, the Chebyshev polynomial basis can be
modified similarly to satisfy the boundary conditions for velocity components and obtain
the discretized matrix D.

4. Validation

After applying the modified Chebyshev polynomial method to discretize the matrix
D, the eigenvalues of the discretized matrix are calculated using the QR algorithm. The
leading eigenvalues σ of matrix D obtained using the present method are compared
against published data (Fabre & Jacquin 2004) and theoretical results, as shown in table
1. The leading eigenvalues from different methods agree up to four significant figures. The
most unstable mode converges rapidly with respect to M owing to the large growth rate.
The convergence of the leading potential mode requires a far larger number of Chebyshev
modes than the most unstable mode and the growth rate of the leading potential mode
depends on the value of R. This dependence occurs because although the potential modes
decay in the far field, a larger radial domain is required for it to be sufficiently independent
of the far-field boundary conditions.

5. Spectra and pseudospectra

As suggested in section §1, the spectrum of operator D can be divided into three parts:
a discrete spectrum, a potential spectrum and a free-stream spectrum. It will be shown
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M R σ
current method 20 10 0.3138

30 10 0.3240
40 10 0.3245
50 10 0.3245
20 20 0.2769
30 20 0.3276
40 20 0.3254
50 20 0.3245

Fabre & Jacquin (2004) 0.3245

M R σ
current method 100 10 -0.1003

200 10 -0.1003
300 10 -0.1003
300 12 -0.1002
300 14 -0.1001
300 16 -0.1001
300 18 -0.1001
300 20 -0.1

Theoretical value -0.1

Table 1. Validation against published results and theoretical values. M is the number of Cheby-
shev polynomials, R is the radial length of the domain and σ is the growth rate. Left: Leading
unstable discrete eigenvalue at azimuthal wave number m = −3, swirl strength q = 0.761, axial
wave number k = 1.659 and Reynolds number Re = 1000. Right: Leading eigenvalue in the
continuous spectrum at m = 0, q = 3, k = 10 and Re = 1000. The theoretical value of the
leading continuous eigenvalue −k2/Re = −0.1 is obtained in appendix B.

later that the last two spectra are continuous. In the following study, m = 0 and k = 10
are used if not otherwise stated. The three typical spectra can be also obtained at other
wave numbers.

From the leading discrete spectrum of D shown in figure 2a, we see that as M and R
increase, the eigenvalues in the discrete spectrum converge to fixed points in the complex
plane. The relative difference of these discrete eigenvalues is within 0.1% when M is
increased from 600 to 800 and R is varied from 14 to 40. Discrete eigenvalues may pass
the imaginary line to reach the unstable region at some combinations of parameters and
we note that all the unstable modes are discrete modes. The leading unstable eigenvalue
in the discrete spectrum has been used to validate the code in table 1. Inspecting the
radial distribution of discrete modes (see figure 1), we see that the discrete modes decay
exponentially or super-exponentially in the radial direction towards far field. A similar
exponential/super-exponential decay of discrete modes has also been reported by Obrist
& Schmid (2003a) in the leading-edge boundary layer flow.

Instead of converging to discrete points, the leading eigenvalues in the continuous
spectrum approach the real axis to form a continuous line, which is part of the free-
stream spectrum (see figure 2b). These free-stream eigenvalues have converged to three
significant figures with respect to M at R = 14. Using larger values of M only affect the
high frequency spectrum, which is far from the imaginary axis and is not shown in this
subfigure. At fixed values of M , the eigenvalues converge to the real axis for increasing
R, as predicted theoretically in appendix B. As previously mentioned, this R dependency
occurs because the free-stream eigenvectors oscillate in the free stream and the radial
extension of the computational domain diminishes the termination effects of the far-flow-
field boundary conditions. The convergence of the leading free-stream eigenvalue has been
used to validate the code in table 1, where we see that the leading continuous eigenvalue
converges much more slowly than the leading discrete eigenvalue.
From the full spectrum of our discretisation shown in figure 2e, we note that besides

the discrete spectrum and the continuous line, other eigenvalues (apparently randomly)
fill an approximately rectangular region to form another continuous spectrum, which we
refer to as the potential spectrum.

The values of M and R we have considered do not affect the shape of the spectra
significantly, although at larger M , more high frequency eigenvalues are resolved. Taking
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into consideration both the simulation speed and accuracy, R = 14 and M = 800 are
applied in the following investigation.

The pseudospectrum is considered as a complementary analysis technique to analyze
the operator D and is calculated via a singular value decomposition. Considering a point
ω = Re(ω) + iIm(ω) in the complex plane, from the singular value decomposition of the
matrix (ωI −D), one observes that

(ωI −D)us = ǫvs, (5.1)

where I is the unit matrix and us and vs are the right and left singular vectors corre-
sponding to the minimum singular value ǫ. Since the singular vectors are orthonormal,
we have

||(D − ωI)us|| = ||ǫvs|| = ǫ. (5.2)

|| · || represents the L-2 norm of vectors (Trefethen 2005). Clearly the value of ǫ indicates
the accuracy of the pair (ω, us) as an eigenvalue/vector pair of the matrix D. If (ω, us)
is an exact pair of eigenvalue/vector of D, then ǫ = 0.

Figure 2c illustrates the pseudospectra surrounding the leading discrete spectrum.
The pseudospectra converge to a consistent boundary with respect to M and R. The
pseudospectra are in the form of circles surrounding the eigenvalues especially when the
discrete spectra are independent from the free-stream continuous spectrum with Im(σ) =
0. The circular form of these pseudospectra further confirms that the corresponding
spectrum is discrete.

From figure 2d, we see that the pseudospectra around the potential spectrum converge
to a fixed bounding region with respect to both M and R. For the range of ǫ considered,
these pseudospectra are quite different to the pseudospectra around discrete spectra.
However instead of appearing in the form of circles surrounding the eigenvalues, the
pseudospectra appears as lines bounding the spectrum which gets closer to the spectrum
as ǫ decreases. The form of these pseudospectra suggests that the potential spectrum
could be continuous, although this can not be conclusively stated from this type of
analysis.

The pseudospectrum illustrated in figure 2e corresponds to ǫ = 10−5. This pseudospec-
trum indicates that any point enclosed by this pseudospectrum are sufficiently close to
be eigenvalues to within a tolerance of 10−5.

A typical eigenvector corresponding to the discrete spectrum (point “a” in figure 2e)
is shown in figure 1a. We see that the energy is concentrated in the vortex core, which is
typical for all the reported asymptotically unstable modes. At appropriate combinations
of parameters, the discrete spectrum crosses the imaginary axis and the vortex flow
becomes asymptotically unstable. Most of the documented modes of the Batchelor vortex,
such as the helical unstable modes (Lessen, Singh & Paillet 1974; Lessen & Paillet 1974;
Heaton 2007) and viscously unstable modes (Khorrami 1991; Fabre & Jacquin 2004) are
discrete modes.

Typical potential modes corresponding to the continuous spectrum (points “b” and “c”
in figure 2e) are shown in figure 1b and 1c. The continuous spectrum is restricted in an
approximated rectangular region. For increasing M , more high frequency modes (distant
from the imaginary axis) are resolved, so the continuous spectrum is semi-infinite. The
pseudospectrum around the continuous spectrum indicates that all the points in the
region are estimates of the eigenvalues of D to within 10−5 (see figure 2e). The potential
mode decays in the radial direction and as the potential eigenvalue approaches the real
axis, the corresponding potential mode decays more slowly in the radial direction. Finally
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Figure 2. Convergence of the spectra and pseudospectra of D. The spectrum is denoted by
points while the pseudospectra is represented by lines. The azimuthal and axial wave numbers,
Reynolds number and swirl strength are the same as used in figure 1.
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Figure 3. Scaled radial distribution of free-stream modes at various axial wave numbers. The
solid lines denotes the real part while the absolute value is represented by the dotted lines. The
radial wave number is fixed at n = 2π, where n is the radial wave number (see appendix B).
The dashed lines r = 1.122, where the azimuthal velocity reaches maxima, represent the core
radius of the Batchelor vortex.

when the eigenvalue reaches the real axis, the corresponding eigenvector becomes a free-
stream mode, which oscillates in the far field without decay.

A typical free-stream mode corresponding to point “d” in figure 2e is shown in figure
1d. The existence of the free-stream spectrum, which is located on the real axis from −∞
to −k2/Re, is verified in appendix B. Under inviscid or axially homogeneous conditions,
the leading free-stream mode becomes neutrally stable.

Similar to the “continuous mode” of the Orr-Somerfeld equation, free-stream modes
with smaller axial wave numbers (larger wave length) penetrate into the vortex core while
axially short waves are sheltered from the vortex core, as shown in figure 3. These modes,
especially the one at k = 0.5 exhibit a slight decay in the radial direction owing to the
limited radial region shown in these figures. If these figures are extended from r = 0− 4
to r = 0−8, they no longer appear to decay. This decay suggests that free-stream modes
peak at finite values of r, and this problem is addressed in detail in section 6. In terms of
the radial wavenumber the result is reversed. Free-stream modes with larger radial wave
numbers, denoted by n (see appendix B), penetrate into the vortex core when the axial
wave number is fixed.

6. Wave-packet pseudomodes

Owing to the sensitivity of the spectrum to the discretization, the classic eigenvalue
solver is not a useful tool to study the continuous spectrum. In this section, we turn
to a pseudospectrum/mode approach to further investigate the nature of the continuous
spectrum.

6.1. Twist conditions for wave-packet pseudomodes

The linear evolution operator of the Batchelor vortex has exponentially large resolvent
norms, defined as ||(ωI − D)−1||, even when ω is far from the eigenspectrum in the
complex plane. These large norms can be explained by the existence of pseudofunctions
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in the form of localised wave packets, which, although they may not satisfy the differential
equations or the boundary conditions exactly, satisfy them with exponentially small error.

We can see from the governing equations (2.1) that the highest derivatives are multi-
plied by a small factor h = Re−1/2, provided that the Reynolds number is large enough.
The classical method of deriving results for wave-packet pseudomodes of this kind of
operator is the Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) approximation, in which a
wave packet is constructed that is localised with respect to both the space variable and
the wave number. This approach requires the coefficients of the operator to be smooth.
Trefethen (2005) proposed an alternative approach that requires the winding number of
the symbol curve (as defined below) with respect to a point increases by one as the spatial
coordinate increases to pass this point. However, it is found that the difference between
these approaches is substantial rather than only transforming the condition from one
approach to another. For at least some problems with smooth coefficients that violate
the winding number condition, the pseudospectral effects are structurally unstable (sen-
sitive to discretization or boundary perturbations) and vanish when the coefficients are
perturbed in a non-smooth manner. By contrast, the effects associated with operators
that satisfy the winding number condition are robust (Trefethen 2005).

The symbol or the Fourier transformed operator of the linear evolution operator can
be obtained by substituting (v, w) = (ṽ, w̃)eiβr/h into equations (2.3) and transferring
the differential operator to a polynomial operator:

f(β, r) = σ =
M+ FH±

√
M2 + F2H2 − 2MHF + 4EGF

2F , (6.1)

where f denotes the symbol and the expressions of E ,F ,G,H,M are given in appendix
C. The same result can be obtained by adopting the matrix form of the symbol as used
by Obrist & Schmid (2008) for a differential operator with two dependent variables.
From equation (6.1), we see that owing to the square root operator the symbol has two
solutions. The solution corresponds to Im(±

√
M2 + F2H2 − 2MHF + 4EGF) > 0 is

denoted as solution (i), while the other is denoted as solution (ii).

The twist condition (winding number condition) for the existence of wave-packet pseu-
domodes can be expressed as

Im

{

∂f

∂r
/
∂f

∂β

}

< 0, (6.2)

or

Im{∂rFf2 − (∂rM+H∂rF + F∂rH)f +H∂rM+M∂rH− G∂rE − E∂rG
∂βFf2 − (∂βM+H∂βF + F∂βH)f +H∂βM+M∂βH

} < 0.

(6.3)

At a point (β∗, r∗) where the twist condition is satisfied, there exists a pseudomode
with exponentially small error, denoted as w∗, in the form of wave packet corresponding
to the symbols given by f∗ = f(β∗, r∗). This pseudomode is located at r = r∗ with radial
wave number β = β∗, and it approaches the exact eigenvalue as h decreases:

||(D − f∗I)w∗||
||w∗||

6K−1/h, (6.4)

|w∗(r)|
maxr|w∗(r)|

6C1exp(−C2(r − r∗)
2/h), (6.5)

where K > 1 and C1, C2 > 0.

The symbol is closely related to the eikonal equation in the WKBJ approximation,
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Figure 4. Ranges of {β∗, r∗} for which the twist condition is satisfied (-) or not (×).

where the pseudomode at r = r∗ is approximated by the leading term, such as

w∗ = exp(iβ∗r/h+ C3(r − r∗)
2), (6.6)

and then the real part of C3 is required to be negative so that the pseudomode peaks at
r = r∗ (Bender & Orszag 1978; Obrist & Schmid 2009). Here C3 < 0 has a similar effect
as C2 > 0 in the twist condition.

Clearly the twist condition is only satisfied when f is dependent on r. In the far
field when r → ∞ and f becomes independent of r, C2 > 0 is violated, and so the twist
condition is not satisfied in this region. Therefore, there are no wave-packet pseudomodes
in the far field. This is also confirmed by the oscillating absolute value of free-stream
modes discussed above, which is not in the form of a wave packet.

6.2. Wave packet pseudomodes of the Batchelor vortex

Figure 4 illustrates the range of (β∗, r∗) where the twist condition is satisfied or not.
We see that the twist condition is not satisfied almost everywhere at β∗ < 0. Since the
pseudomode with radial wave number β∗ = 0 is physically meaningless, in the following
study we only investigate the positive values of β∗. For r∗ > 5 or r∗ = 0, the twist
condition is also not satisfied, indicating that all the pseudomodes peak at r∗ < 5 and
that the axial boundary modes do not exist in the form of wave packets owing to the
zero Dirichlet axial boundary conditions.

As stated above, the prediction of wave-packet pseudomode method is expected to be
better at smaller h or equivalently larger Reynolds number. Figure 5 shows the symbol
curves at three Reynolds numbers Re = 103, 104 and 105. The points where the twist con-
dition is not satisfied is marked by “×”. Since the twist condition is not satisfied almost
everywhere for β < 0 (see figure 4) , the negative β∗ branches of symbol curves are not
illustrated for clarity. As expected, at increasing Reynolds number when the prediction
of the wave-packet pseudomode method becomes more reliable, the twist condition is
not satisfied only at the top and bottom boundary of the rectangular region. The upper
boundary of the pseudomode region corresponds to r∗ → ∞ and f∗ → −β2

∗
− k2/Re,

so the upper boundary of the pseudomode region starts at −k2/Re and extends to −∞
as β∗ increases, overlapping with the free-stream spectrum. The upper boundary of the
rectangular region where the twist condition is not satisfied therefore indicates that there
are no wave-packet pseudomodes along the negative real axis from −∞ to −k2/Re, which
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Figure 5. Symbol curves with β∗ > 0. “×” marks the points where the twist condition is not
satisfied. The arrows indicate the direction in which β∗ or r∗ increases.

is consistent with the result in section 5 that the free-stream modes are not in the form
of wave packets.

Setting y = 0, we get the bottom boundary of the rectangular region from equation
(6.1), that is Im(σ) = −ik. The bottom boundary corresponds to axial boundary modes,
which have been excluded by imposing zero Dirichlet axial boundary conditions.

As β∗ → 0, the right boundary of the pseudomode region is obtained from the two solu-

tions of equation (6.1), that is f∗ = (− 1
r2
∗

−k2)/Re− ikU or Re(f∗) =
(3/r2

∗
+k2)(1/r2

∗
−k2)

(1/r2
∗
+k2)Re .

Clearly the second solution can reach the right-half plane. As r∗ decreases, a smaller
value of k results in the penetration of pseudospectra into the unstable right-half-plane.
This penetration is induced by the non-orthogonality of multiple asymptotically stable
eigenmodes and it indicates the potential of significant transient energy growth at small
axial wave numbers.

We observe that wave-packet pseudomodes with larger axial wave numbers β∗ corre-
spond to σ far from the imaginary axis. If β∗ increases to infinity, the approximated
rectangular region where the twist condition is satisfied will extend leftwards to be a
semi-infinite rectangle. Any point in this rectangular region corresponds to a wave-packet
pseudomode. It will be demonstrated shortly that the pseudomodes provide reasonable
estimates eigenmodes of the matrix D. The continuous nature of the region where pseu-
domodes exist further supports the existence of a continuous spectrum.
Figure 6 illustrates the distribution of point at fixed β∗ and r∗ where the twist condition

is satisfied. Clearly, as β∗ increases, the points extend leftwards in the complex plane,
while as r∗ increases, the points approach the imaginary line. This is consistent with the
results discussed in section 5 that the radial frequencies of the eigenvectors increase as the
point moves leftwards and the peak of energy of the eigenvectors moves radially outwards
as the point approaches the real axis. We also note that there is a significant discrepancy
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Figure 6. Symbols where the twist condition is satisfied at fixed β∗ and r∗. The symbols from
solution (i) are denoted by “⋄” while symbols from solution (ii) are denoted by ”+”. The arrows
indicate the direction in which β∗ or r∗ increases.

between symbols from the two solutions, especially at the bottom of the rectangular
region. This discrepancy indicates that some values of the symbol correspond to two
pairs of (β∗, r∗) and so the corresponding pseudomodes can be of the form of two wave
packets. Since the discrepancy of wave numbers from the two solutions at a fixed symbol
is not as apparent as the discrepancy of peak locations, the pseudomode with the form
of two wave packets typically has two peaks and one wave number.

6.3. Continuous modes approximated by wave-packet pseudomodes

Although we have verified by the twist condition method that pseudomodes with wave
packet forms exist in a continuous region, additional questions arise: are the predicted
radial wave numbers and peak locations of the wave-packet pseudomodes accurate and
are the pseudomodes sufficiently reasonable approximations of eigenmodes?

Figures 7a shows the radial frequency of the oscillating real/imaginary parts of an
eigenmode of matrix D obtained from Fourier decomposition in the radial direction,
while the radial distribution of this mode is shown in figure 7b (only the absolute value is
presented for clarity). The eigenmode/eigenvalue chosen here is in the region where the
discrepancy between the two solutions are small, so the eigenmode is of the form of one
wave packet. The eigenmode/eigenvalue considered in figure 8 is in the region where the
peak locations of the two predicted pseudomodes from the two solutions are separated, so
the eigenmode are of the form of two wave packets. Clearly the wave-packet pseudomode
method predicts the peak location and radial wave numbers of the eigenmodes reasonably
well.

7. Conclusion

From the spectra of the evolution operator of the Batchelor vortex, three families of
eigemodes can be identified: discrete modes, potential modes and free-stream modes.
The convergence study supports the well documented observation that there is a discrete
spectrum within the spectrum of the vortex flow. The energy of the discrete modes are
commonly concentrated inside the vortex core, where the strain rate is maximised. All
the asymptotically unstable modes of the Batchelor vortex are discrete modes, including
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Figure 7. Eigenmode at σ = −5.46−1.07i in the form of one wave packet. wabs = |w|/maxr|w|.
Predicted wave numbers and locations of the wave packets from two solutions are
(β∗1, r∗1) = (2.31, 1.53), denoted by the dashed line, and (β∗2, r∗2) = (2.31, 1.43), denoted
by the dotted line.
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Figure 8. Eigenmode at σ = −3.50−5.91i in the form of two wave packets. wabs = |w|/maxr|w|.
Predicted wave numbers and locations of the wave packets from two solutions are
(β∗1, r∗1) = (1.84, 0.792), denoted by the dashed line, and (β∗2, r∗2) = (1.84, 0.626), denoted
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helical unstable modes (Lessen, Singh & Paillet 1974) and viscous centre unstable modes
(Fabre & Jacquin 2004).

The potential modes correspond to a continuous spectrum and are asymptotically
stable. However a combination of potential modes could generate strong transient growth
(Obrist & Schmid 2003b; Mao 2010). This type of potential mode has also been reported
by Obrist & Schmid (2003a) and Obrist & Schmid (2010) in their investigation of the
lead-edge boundary layer flow.

When the radial decay rate of the potential modes tends to zero and the corresponding
eigenvalues reach the real axis, the potential modes become free-stream modes. The free-
stream mode oscillates in the free stream without radial decay. The existence of the
free-stream modes is analytically verified and the corresponding spectrum is continuous
ranging from −∞ to −k2/Re. In the inviscid limit or when the axial wave number tends
to zero, the leading free-stream mode becomes neutrally stable. As the increase of the
radial wave number and decrease of the axial wave number, free-stream modes penetrate
into the vortex core and have the potential to transfer perturbations from free-stream
turbulence into the vortex core (Zaki & Saha 2009).

The continuity of the potential mode spectrum is further confirmed by the wave-
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packet pseudomode method, which indicates that pseudomodes with the form of wave
packets exist in a semi-infinite rectangular region. The two branch nature of the governing
pseudomode equation highlights that pseudomodes are of the form of either one or two
wave packets. This method was also seen to predict the radial wave numbers and peak
locations of the eigenmodes reasonably well.
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Appendix A. Linearised evolution operator

Lvv =Re(
d2

dr2
+

d

dr
/r − 1/r2 − k2),

Lvw =imRe(
d

dr
/r − 1/r2),

Lwv =− im/k2(
d

dr
/r + 1/r2),

Lww =1 +
m2

k2r2
,

Rvv =
d4

dr4
+ 2

d3

dr3
/r − (3/r2 + f + k2)

d2

dr2
+ (3/r3 − f/r − df

dr
− k2/r + ik

dU

dr
Re)

d

dr

− 3/r4 + f/r2 − df

dr
/r + k2f + k2/r2 + ik

d2U

dr2
Re,

Rvw =i[m
d3

dr3
/r − 2m

d2

dr2
/r2 +m(3/r3 − f/r)

d

dr
− 3m/r4

+ fm/r2 −m
df

dr
/r + 2k2m/r2 + 2iWk2Re/r],

Rwv =− i/Re/k2[m
d3

dr3
/r + 2m

d2

dr2
/r2 + (−fm/r −m/r3)

d

dr

+m/r4 − fm/r2 + imk
dU

dr
Re/r − 2k2m/r2 − ik2ERe],

Rww =[(1 +
m2

k2r2
)
d2

dr2
+ (1/r − m2

k2r3
)
d

dr
− /r2 − f − fm2

k2r2
+

m2

k2r4
]/Re,

where f = k2 +m2/r2 + ikURe+ imWRe/r and E = W/r + dW
dr .

Appendix B. Existence and distribution of the free-stream spectrum

Here we will analytically present the existence and distribution of a free-stream spec-
trum in the vortex flow following the algorithm introduced by Gustavsson (1979). We
start from the linearised Navier-Stokes equations (2.1) and consider the perturbation
with axial wave number k and azimuthal wave number m, denoted by ũ(k, r,m, t) =
ei(kx+mθ)u′(x, r, θ, t). Applying a Fourier decomposition with respect to time t gives

u(k, r,m, σ) = (u, v, w) =

∫

∞

0

e−σtũ(k, r,m, t)dt,
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where σ is the temporal growth rate of the perturbation and u, v and w represent the
axial, radial and azimuthal components of u. The transformed and linearised Navier-
Stokes equations can be written as

iku+ (
d

dr
+

1

r
)v +

im

r
w = 0, (B 1)

(σ + ikU +
imW

r
)u− u0 +

dU

dr
v + ikp = Re−1(

d2

dr2
+

1

r

d

dr
− k2 − m2

r2
)u, (B 2)

(σ + ikU + imW
r )v − v0 − 2W

r w + d
drp

= Re−1
[

( d2

dr2 + 1
r

d
dr − k2 − m2+1

r2 )v − 2im
r2 w

]

,
(B 3)

(σ + ikU + imW
r )w − w0 + (Wr + dW

dr )v + im
r p

= Re−1
[

( d2

dr2 + 1
r

d
dr − k2 − m2+1

r2 )w + 2im
r2 v

]

,
(B 4)

where (U, V,W ) denote the base flow of the Batchelor vortex(see equation 1.1) and
(u0, v0, w0) represent the initial perturbation: (u0, v0, w0) = (u, v, w)|t=0.

The free stream boundary conditions are u = 0, v = 0 and w = 0 and the boundary
conditions imposed at r = 0 depend on the azimuthal wave number:

m = 0 : du/dr = v = w = dp/dr = 0, (B 5)

m = −1 : u = v − iw = dv/dr = p = 0, (B 6)

m < −1 : u = v = w = p = 0. (B 7)

In the far free stream, we assume r → ∞ and so terms divided by r tend to zero.
Substituting equations (B 1) and (B 2) into equations (B 3) and (B 4) to eliminate the
axial velocity component and pressure results in

d4v

dr4
− (2k2 + σRe)

d2v

dr2
+ (k4 + σk2Re)v = k2Rev0, (B 8)

d2w

dr2
− (k2 + σRe)w = −w0Re. (B 9)

We note that unlike the free-stream simplification of the O-S equations where both the
streamwise and spanwise wave numbers appear explicitly, all the terms related to the
azimuthal wave number m vanish in the free-stream equations (B 8)-(B 9). Considering
the boundary conditions given in equations (B 6)-(B 7), the boundary conditions at r = 0
for equations (B 8)-(B 9) can be obtained by differentiating equation (B 1) twice, while
the conditions at r → ∞ can be obtained from equation (B 1) directly

r = 0 : v = w =
d2v

dr2
= 0 and r = ∞ : v = w =

dv

dr
= 0. (B 10)

Equation (B 8) has four homogeneous solutions: v1 = e−kr, v2 = e−λr, v3 = ekr and
v4 = eλr where

λ2 = k2 + σRe. (B 11)

Due to the symmetry of the problem, we only need to consider the case when k > 0 and
Re(λ) > 0.
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Using the method of variation parameters, solutions to equation (B 8) can be written
as

v = A1v1 +A2v2 +A3v3 +A4v4. (B 12)

Ai satisfies

N
dA

dr
= B, (B 13)

where

N =





















v1 v2 v3 v4

dv1

dr
dv2

dr
dv3

dr
dv4

dr

d2v1

dr2
d2v2

dr2
d2v3

dr2
d2v4

dr2

d3v1

dr3
d3v2

dr3
d3v3

dr3
d3v4

dr3





















, A =

























A1

A2

A3

A4

























, B =





















0

0

0

k2v0Re





















.

Solve equation (B 13) by application of the Crammer’s rule, we obtain

Ai =

∫ r

ri

Dik
2v0Re/ωdy, i = 1, 2, 3, 4 (B 14)

where Di is the cofactor of d3vi/dr
3 and ω is the Wronskian. Here D1 = −2λσekrRe,

D2 = 2kσeλrRe, D3 = 2λσe−krRe, D4 = −2kσe−λrRe and ω = |N | = −4kλσ2Re2.

Substituting equation (B 14) into equation (B 12) and applying the boundary condi-
tions defined in equation (B 10) result in

v =
−k

4λσ2Re
[v1(a1+

∫ r

0

D1v0dy)+v2(a2+

∫ r

0

D2v0dy)+v3

∫ r

∞

D3v0dy+v4

∫ r

∞

D4v0dy],

(B 15)
where

a1 =
a3[v20(

d2v3

dr2 )0 − (d
2v2

dr2 )0v30] + a4[v20(
d2v4

dr2 )0 − (d
2v2

dr2 )0v40]

v10(
d2v2

dr2 )0 − (d
2v1

dr2 )0v20
,

a2 = −a3[v10(
d2v3

dr2 )0 − (d
2v1

dr2 )0v30] + a4[v10(
d2v4

dr2 )0 − (d
2v1

dr2 )0v40]

v10(
d2v2

dr2 )0 − (d
2v1

dr2 )0v20
,

a3 =

∫ 0

∞

D3v0dy = −a1,

a4 =

∫ 0

∞

D4v0dy = −a2.

The subscript 0 denotes the value at r = 0. Here
∑4

i=1 Divi = 0 and
∑4

i=1 Di
dvi

dr = 0
are used.

Similarly, solve equations (B 9, B 10), we obtain

w =
Re

2λ

[

v2(

∫ 0

∞

w0e
−λydy +

∫ r

0

w0e
λydy)− v4

∫ r

∞

w0e
−λydy

]

. (B 16)
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Figure 9. Integration contour of inverse Laplace transformation.

The axial velocity can then be obtained from equation (B 1) as

u = − i

k

dv

dr
.

We need to invert the Laplace transformation to establish the time dependence of the
modes explicitly:

ũ =
1

2πi

∫ γ+i∞

γ−i∞

eσtudσ,

The path of integration must be to the right of all the singularities and this path is
denoted by C0 in figure 9.

There are three singularities in equation (B 15): v10(
d2v2

dr2 )0 − (d
2v1

dr2 )0v20 = 0, σ = 0
and λ = 0. The first two singularities are the same condition, since when σ = 0 the first
condition is also satisfied. Further, under these conditions the homogeneous solutions
should also be modified to one without singularities. Actually we see from equation
(B 11) that when σ = 0, λ = k, and so (v1, v2, v3, v4) becomes dependent, and therefore a
different representation of homogeneous solutions must be used, for example v1 = e−kr,
v2 = ekr, v3 = rekr and v4 = re−kr. In this case, the Wronskian ω = 16k4, does not have
any singularity.

Therefore, the only relevant singularity of equation (B 15) in the real analysis is λ = 0.
Then we establish that in the complex analysis, λ = 0 represents the end of a branch cut
singularity. Considering λ = λr + iλi and λr > 0 due to the symmetry as we discussed
before, from equation (B 11) we have

σ = (λ2
r − λ2

i − k2)/Re+
2λrλi

Re
i.

Then λ is a multivalued function of σ when λr → 0 because in equation (B) each value of
σ corresponds to two values of λi. This one-to-many mapping results in a discontinuity
of λ across the branch cut represented by the line (Cs in figure 9) where

σ = −(n2 + k2)/Re, 0 < n = |λi| < ∞.
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When this branch cut is approached from above, we observe that λ → in, while if this
line is approached from below, λ → −in. Hence, we have a branch line lying on the left
of σ = −k2/Re associated with the singularity of λ = 0, so the integration contour must
be deformed to go around the branch cut, as shown in figure 9. The modes corresponding
to the values on Cs have the form v ∼ eλr, so n can be interpreted as the radial wave
number of the modes.

Applying the inverse Laplace transformation, it follows that

2πiũ =

∫

C0

eσtudσ = −
∫

C1

eσtudσ −
∫

C2

eσtudσ,

where λ = in in the integration along C1 and λ = −in along C2.
The thick line denoted as Cs in figure 9 represents the free-stream spectrum of equa-

tions (B 8)-(B 10). Because this branch cut is the only singularity of equations (B 8)-
(B 10), modes associated with values along the line Cs are the only modes in the far free
stream of the vortex flow under the initial assumption of this analysis.
With the increase of the Reynolds number and decrease of the axial wave number, the

free-stream spectrum, whose right end point is −k2/Re, approaches the imaginary axis.
When k → 0 or Re → ∞, the leading free-stream modes become neutrally stable.

Appendix C. Variables in equation (6.1)

After substituting the base flow velocity expressions of the Batchelor vortex, the vari-
ables in the symbol equation (6.1) can be written as

F =(−β2

h2
+

iβ

rh
− 1

r2
− k2)/ν,

M =
β4

h4
− 2iβ3

rh3
+

β2

h2
(
3

r2
+ 2k2) +

iβ

h
(
3

r3
− 2k2

r
)− 3

r4
+

2k2

r2
+ k4

− ik

ν
[U(−β2

h2
+

iβ

rh
− 1

r2
− k2) +

1

r

dU

dr
− d2U

dr2
]

=
β4

h4
− 2iβ3

rh3
+

β2

h2
(
3

r2
+ 2k2) +

iβ

h
(
3

r3
− 2k2

r
)− 3

r4
+

2k2

r2
+ k4

− ik

ν
e−r2(−β2

h2
+

iβ

rh
− 1

r2
− k2 − 4r2),

G =− 2k2/ν/r = −2qk2(1− e−r2)

r2ν
,

E =− Φ = −2qe−r2 ,

H =(−β2

h2
+

iβ

rh
− 1

r2
− k2)ν − ikU = (−β2

h2
+

iβ

rh
− 1

r2
− k2)ν − ike−r2 .
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