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Abstract A project on Hill ciphers is discussed here that is suitable for a beginning lin-
ear algebra course. In the project, students use the computer algebra system

Mathematica to implement the Hill encipherment method and to “crack” a Hill cipher.
This paper explains Hill ciphers as an application of linear algebra over �n; describes the
project from the student’s point of view; and discusses the software implementation needed
for the project.

Introduction Students’ being able to learn math on their own is a desirable instructional
goal. Software such as Mathematica can facilitate achieving that goal.

How this can be done is illustrated by a project on Hill ciphers—an engaging application
of linear algebra to cryptology—in which students express the concepts in the form of
Mathematica functions which they then use to “crack” a Hill cipher, that is, to discover
its key. Aside from its intrinsic interest, the topic of Hill ciphers requires students to learn
some new linear algebra, namely, the situation in which the scalar field is finite.

Hill ciphers hardly have the currency of secret-key block ciphers such as Blowfish, or of
public-key systems such as RSA or elliptic-curve methods. Yet they do have interest at least
for historical reasons: they constitute the first general method for successfully applying
algebra—specifically, linear algebra—to polygraphic ciphers.1

This project could be implemented in essentially any computer algebra system or general-
purpose programming language (although to implement it completely as described, the
CAS or language must be able to load packages that the student is unable to read). In fact,
the author originally implemented the project in the array-based programming language
APL, and more recently reimplemented it in Kenneth Iverson’s programming language J.
Implementing the project in a programming language such as C, Pascal, or Java that is not
array-oriented would be more tedious for both instructor and students.

About Hill ciphers Letter-by-letter substitution ciphers easily succumb to frequency anal-
ysis and so are notoriously unsecure. Polygraphic ciphers, by con-

trast, in which each list of n consecutive letters of the plaintext—an n-graph—is replaced
by another n-graph according to some key, can be more challenging to break. The first
systematic yet simple polygraphic ciphers using more than two letters per group are the Hill

1See Kahn [6], especially pp. 404–408.



ciphers, first described by Lester Hill [4] in 1929.2 For a polygraphic substitution, changing
just one or two plaintext letters can completely change the corresponding ciphertext! That
is one reason that Hill ciphers are so difficult to crack.

A Hill n-cipher works as follows. Start with an m-character alphabet and code each
character with a unique integer in {0, 1, 2, . . . , m − 1}. The alphabet could consist of just
the usual 26 letters in English or, as here, those letters supplemented with the 3 punctuation
characters . and ? and � (where � denotes a blank space). For simplicity, the coding is done
here by numbering the 29 characters in order as shown in Table 1. Next, choose as key
matrix an n × n matrix A with entries in {0, 1, 2, . . . , m − 1} that is invertible modulo m.

a b c d e f g h i j k l m n o p q r s t u v w x y z . ? �
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Table 1: Numerical coding of 29-letter alphabet

Given a ciphertext string, encode it to the corresponding vector v of integers in the set
{0, 1, 2, . . . , m − 1}. If the length of v is not an integral multiple k of the key size n, then
pad v as needed by repeating its last entry. Partition v into k column vectors vj . Form each
of the products Avj ; equivalently, form the matrix product A[v1 | v2 | · · · | vk]. Reduce
the result modulom. Reassemble the consecutive columns of this product into a new vector
w. Finally, decode w into the corresponding ciphertext string.

The following Hill 3-cipher illustrates the procedure for our 29-character alphabet with its
encoding given in Table 1. The key matrix is:

A =



17 5 20
23 9 3
11 2 12




The plaintext is the following 10-character message (including the space and period):

want�help.

First, encode the plaintext to the corresponding numbers:

22 0 13 19 28 7 4 11 15 26

Second, group these into trigraphs, repeating the final number twice to fill out the fourth
group:

22 0 13 19 28 7 4 11 15 26 26 26

Third, form the 3 × 4 matrix having these groups of three numbers as its columns. Fourth,
apply the key:

A




22 19 4 26
0 28 11 26
13 7 15 26


 ≡




25 23 17 19
23 14 4 11
21 1 14 12


 (mod 29)

2Hill [5] subsequently generalized his ciphers to a more complex scheme that used block matrices.



Fifth, decode the numbers

25 23 21 23 14 1 17 4 14 19 11 12

from the unraveled columns of the last matrix to obtain the letters of the ciphertext:

z x v x o b r e o t l m

A Hill cipher is relatively immune from attack if its key size n is large enough to preclude
frequency analysis of n-graphs. But it is easy to crack if you have “captured” enough
plaintext along with the corresponding ciphertext, for then the method of the following
theorem applies. (This method was not explained in Hill [4] but is formulated, for example,
by Anton and Rorres [1]; a proof is included in the expository article [2].)

Cracking Theorem. Suppose the alphabet lengthm is prime. Letp1,p2, . . . ,pn ben plain-
text vectors for a Hill n-cipher having (unknown) key matrix A, and let c1, c2, . . . , cn be
the corresponding ciphertext vectors. Suppose these plaintext vectors are linearly indepen-
dent over �m. Form the matrices P = [

p1 p2 . . . pn

]
and C = [

c1 c2 . . . cn
]

having the plaintext vectors and ciphertext vectors, respectively, as their columns. Then the
same sequence of elementary row operations that reduces CT to the identity matrix reduces
P T to the transpose (A−1)T of the inverse key matrix A−1.

The situation described by the theorem, which in practice would not be wholly unrealistic,
is the one that arises in the project.

What the student does To start, the student reads a 19-page article [2] about Hill ciphers
that describes the underlying mathematics regarding arithmetic

modulo m and linear algebra over �m; the Hill encipherment scheme; and the Cracking
Theorem.

Next, the student defines in Mathematica a main function encipher that takes as argu-
ments a key matrix and plaintext string and returns as result the corresponding ciphertext
string. He prepares auxiliary functions to do the requisite conversions between text to num-
bers and to arrange lists into matrices and vice versa. Guided by a Mathematica notebook,
the student next “validates” hisencipher: he loads an instructor-prepared Mathematica
package that automatically generates various key matrix and plaintext pairs, evaluates the
student’s encipher at those pairs as arguments, and compares the results with what they
should be.

Now the student is ready for the project problems. He loads another instructor-prepared
Mathematica package that creates data—key matrices, plaintexts, and ciphertexts—and
stores them in named variables. As with the test pairs for validation, this data is individual-
ized for the student through randomly generated key matrices and randomly selected entries
from a database of texts. The package prints a list of three problems to be solved:

1. Given ciphertext and the inverse of the key matrix, decipher the text.

2. Given ciphertext and the key matrix, decipher the text.

3. Given the key matrix size and “captured” ciphertext along with corresponding plain-
text, if possible “crack” the cipher—determine the inverse key.



Results Of all the computer-related linear algebra projects the author has assigned over
the past twenty years, this one unquestionably has generated the most favorable

student response. Nearly all students have been able to complete it, even if they were unable
to get completely correct the details of padding (which can now be handled automatically
with Mathematica Version 4). And with many students one can almost see the “light
bulb lighting up” as they realize that the function for decipherment is the same as that for
encipherment, but with the key matrix replaced by its inverse.

Over many years the author has observed that students typically are quite persistent in
carrying out computer projects to completion (and one can but dream that they would be
just as persistent with problems that are not computer-related!). And of all these computer
projects, with this one on Hill ciphers students been the most persistent. Perhaps the
challenge of cracking a cipher is too enticing to ignore.

Implementation The suite of files needed for a student to carry out the project, available
at the author’s Web site [3], consists of:

• The expository article [2] about Hill ciphers, in Adobe .pdf format. (Given the
primary purpose of the project, little would seem to be gained by making this article
available in the interactive form of a Mathematica notebook.)

• The Mathematica notebook “About Hill” that guides the student through validating
encipher and obtaining test data for the project problems.

• The Mathematica packages that validate the student’s encipher and generate the
data for the project problems, respectively. The former includes a short database of
plaintext strings used. The latter package does a hidden import of a third encoded
package, which produces a database of plaintext strings—literary quotations, pithy
sayings, etc. These packages are encoded.

These files are ready for student use once they are downloaded into a directory to which
Mathematica has direct access. For security reasons, only the encoded forms of the
packages are available on the Web site. Instructors wishing to alter the packages—for
example, to change the database of texts—should apply directly to the author for copies
of the unencoded source Mathematica notebooks; then the packages can be recreated in
ASCII form and encoded again by Mathematica.

In both packages, each key matrix is generated on the fly by iterating the process of forming
a random matrix and checking it for invertibility modulo 29, with a default matrix being
used if too many iterations are required.

Designing the packages involved two subtleties in Mathematica programming. The first
is conditional evaluation within a package: When the package is loaded, a function in it
tests the value of a global variable (such as the student’s name or ID number) to see if it
has been defined and, if so, has the proper format; the package’s “context” is created only if
the global variable passes the test. The second involves indirectly creating symbolic names
and assigning to them the values used for validation and problem data. For details, see the
package source notebooks.



Extensions and
complications

The project, as currently implemented in Mathematica, is about as
simple as Hill ciphers can be. The project could be modified in one or
more of the following ways:

• The student writes his own functions—ormodifies instructor-provided ones that work
over the field �—to do row reduction and matrix inversion modulo the alphabet
length m, instead of using the option Modulus -> m to Mathematica’s built-in
RowReduce and Inverse functions.3 Such new functions require finding inverses
of integers modulo m. And this could be done with the brute-force method of using
a lookup table or, for a mathematically more instructive approach, by programming
and applying the euclidean algorithm.

• Allow, as did Hill himself, nonprime alphabet length m (for example, m = 26). Then
include the problem of checking whether a given key matrix for such an alphabet is
in fact invertible.

• Use affine transformations, as Hill did in his original paper [4], instead of just linear
transformations.

• Make the cipher more realistic by using some arbitrary transposition cipher first.

The project could also be enhanced by including detection of key matrix size or by using
frequency analysis to break the cipher even in the absence of a captured ciphertext-plaintext
pair. Of course, such enhancement would take the project beyond the realm of a typical
linear algebra course.
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