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Abstract. SIMON is a recent, light-weight block cipher developed by
NSA. Previous work on SIMON shows that it is a very promising alter-
native of AES for resource-constrained platforms. While SIMON offers
a range of block sizes and key lengths, a straightforward implementa-
tion would select fixed values in order to achieve a compact design. In
contrast, we propose a flexible hardware architecture on FPGAs that
still preserves the compactness of SIMON. The proposed implementa-
tion can execute all configurations of SIMON, and thus provides a versa-
tile architecture that enables adaptive security using a variable key-size.
Moreover, it also reduces the inefficiency of encrypting slightly longer
messages by supporting a variable block-size. The implementation re-
sults show that the proposed architecture occupies 90 and 32 slices on
Spartan-3 and Spartan-6 FPGAs, respectively. To our best knowledge,
these area results are smaller than other block ciphers of similar security
level. Furthermore, we also quantify the cost of flexibility and show the
trade-off between the security level, throughput and area.

Keywords: Lightweight Cryptography, Block Ciphers, Flexible Archi-
tectures, SIMON, FPGA.

1 Introduction

Block ciphers are the building blocks of secure systems as they enable sending
a message over a non-secure medium. These ciphers perform symmetric-key en-
cryption by mapping a block of input plaintext to an output ciphertext using a
secret key. Once the ciphertext is generated, it can only be decrypted back into
the plaintext by using exactly the same secret key. Rijndael is the most widely
used block cipher algorithm and it is used as the Advanced Encryption Standard
(AES) [8].

Even though Rijndael serves as the AES, its area-cost restricts its use in
resource-critical domains like RFID tags. This is where lightweight cryptography
shines. The goal of lightweight cryptography is to minimize the area of imple-
menting and executing an operation while preserving similar or slightly reduced



levels of security. With the aim of reducing the area of the AES, two alternatives
named PRESENT and CLEFIA were previously developed and later standard-
ized by ISO [10]. Likewise, DARPA has an ongoing SHIELD project that is
targeted towards tackling counterfeit electronics [6]. The goal of the project is
to enable supply-chain management by means of a light-weight secure hardware
of 100 micron x 100 micron size [7]. Therefore, there are important incentives
to build the basic encryption block that are much smaller than the available
ones. SIMON is such an alternative which is optimized for compact hardware
implementations [2]. Aysu et al. showed that SIMON can break the area records
of block ciphers on FPGAs [1]. They implement a fixed 128/128 configuration
of SIMON that can only encrypt blocks of 128-bit messages using a 128-bit key.
However, the design space of digital systems are not solely composed of fixed
elements, and flexibility among others is an important design dimension.

1.1 Motivation

Security is a new design dimension for digital systems [12]. Schaumont et al.
labels this dimension as Risk and shows that flexibility, performance and risk
are the main design dimensions of secure embedded systems [18]. Furthermore,
they argue that a good design should consider the trade-offs between these di-
mensions. In that framework, performance refers to the capability of the system
for a given target metric (throughput, energy-efficiency, area, etc.), risk is the
potential for loss, and flexibility is the ability to (re)define the system parameters
and behavior. The dimension of flexibility is even more important especially for
applications with a diverse set of requirements. Wireless sensor networks (WSN)
are an outstanding example for this scenario. WSN typically consist of a large
number of devices (nodes) that are one-time programmed and deployed in the
field. The nodes run for long periods of time without human intervention.

A common practice of flexibility is to implement adaptive security for WSN.
Younis et al. proposes an adaptive security provision for wireless sensor nodes
[23]. They propose an efficient protocol in which the encryption strength (key-
size) varies between 32-bits to 128-bits depending on the trust level of the nodes.
Obviously, if a node is more trusted, an encryption with a lower level of security
allows computation savings. Wang et al. argues a similar case for computation
savings where the sensitive data within the network is encrypted with a higher
security level, while the less important information is encrypted using shorter
keys [21]. Sharma et al. claims that the application diversity of WSN ranges from
military surveillance to agriculture farming, each of which requiring a different
set of minimal security mechanisms [19]. Then, they present a comprehensive
security framework that can provide security services for a variety of applications.
Finally, Portilla et al. provides a case study on FPGAs using the Elliptic Curve
Cryptography and proposes a solution for a public-key based adaptable security
on WSN [17].

Cook et al. approaches flexibility from another perspective [5]. If an input
plaintext is even one-bit larger than the encryption block-size n, it has to be
padded to 2n and the encryption should run more than once. Therefore, they



introduce an elastic block cipher that improves the inefficiency by allowing a
variable block-size. This methodology uses a fixed key-size with a variable block-
size.

Our solution combines the merits of both visions. We propose an architec-
ture that can have both variable block-size and key-size. Using such a flexible
architecture enables a single device to offer adaptable security for a variety of ap-
plications, or multiple levels of security within an application. It can also reduce
the redundancy of slightly longer messages by changing the encryption block-
size. Our unified architecture also minimizes the licensing/certification efforts
since we use a single design for many different use-cases. The complex crypto-
graphic module validation programs like NIST CMVP [16] also make the single
hardware running all configurations advantageous over the collection of many
that can execute a single configuration. Yet, the proposed architecture is still
very compact which makes it very suitable for light-weight applications.

From a design methodology perspective, the proposed hardware provides
flexibility (at the expense of area and throughput) to the system by enabling
on-the-fly security configuration management. It also allows a trade-off between
the performance and risk. Our results show that the system can increase the
security from 64-bits to 256-bits (from toy-settings to high-profile security) with
a throughput degradation of a factor of 2. Moreover, to our best knowledge,
the proposed flexible hardware architecture of SIMON is still smaller than other
block ciphers of similar security level.

1.2 Organization

The rest of the paper is organized as follows. Section 2 gives a brief overview of
SIMON block cipher and its configurations. Section 3 highlights the methodology
behind the compact block cipher architectures and how to extend it for flexibility.
Section 4 shows the implementation results and presents the trade-off between
flexibility, performance and risk. Section 5 concludes the paper and comments
on possible future extensions.

2 SIMON Block Cipher

SIMON is a Feistel-based lightweight block cipher recently published by NSA,
targeted towards compact hardware implementations [2]. SIMON has ten con-
figurations optimized for different block and key sizes providing a flexible level
of security. Table 1 shows the parameters for all configurations of SIMON. The
word size n is the bit length of each word in the Feistel network, which makes
the block size to be 2n. The key length is defined as a multiple of the Feistel
word size, and the parameter m indicates the number of Feistel words in a key.
Security configuration is a new parameter that we introduce to select the desired
configuration of SIMON.



Table 1: Simon Parameters

Security Block |Key| Word Key Rounds
Configuration |Size (2n)|Size|Size (n)|Words (m)
1 32 64 16 4 32
2 48 72 24 3 36
3 48 96 24 4 36
4 64 96 32 3 42
5 64 128 32 4 44
6 96 96 48 2 52
7 96 144 | 48 3 54
8 128 [128| 64 2 68
9 128 (192 64 3 69
10 128 [256| 64 4 72

2.1 Round Function

Figure 1 shows the round function for all configurations of SIMON. X, ., and
Xjower respectively denote the upper and lower words of the block and they
are n-bits each. These two words hold the initial input plaintext and the output
after each round is executed. The round function consists of bitwise AND, bitwise
XOR, and circular shift left operations. In each round, shifting and bitwise AND
operations are performed on the upper word and it is XORed with the lower word
and the round key. The resulting value is written back to the upper word while
its content is transferred over to the lower word. The round function continues
to run repeatedly until the desired number of rounds is reached.

2.2 Key Expansion

SIMON block cipher needs unique keys for each round and the key expansion
function generates these round keys. Unlike the round function, there are three
different configurations of key expansion as the number of words in a key can
be 2, 3 and 4 depending on the configuration. Figure 2 shows the key expansion
functions for three different key lengths, corresponding to two, three or four
Feistel words respectively (m=2, 3 or 4). The block K; holds the round key for
the i*" round. For m = 2 and m = 3, the logical operations of the key expansion
function are identical. The most significant word is circular shifted right by 3
and 4, and it is XORed with the least significant word and the round constant
z;. For m = 4, there is an extra step where the most significant word (K;3) is
circular shifted right by 3, XORed with K11, then circular shifted right by 1
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Fig. 1: SIMON Round Function

and XORed with the least significant word and the round constant. At the end of
each key expansion, the new round key is written into the most significant word,
and all the words are shifted one word right. As K is the key used in the current
round, it will no longer be needed and is overwritten. The key expansion function
has a sequence of one bit round constants used for eliminating slide properties
and circular shift symmetries. There are five different round constant sequences
uniquely tuned for each configuration to provide a cryptographic separation
between the different configurations.

3 Hardware Implementation

When implementing a block cipher on hardware, there are several parallelism
choices(bit level, round level, and encryption level) that affect the area and
throughput of the design. In bit level parallelism, the input size of the operators
range from one bit to n-bits where n is the block size. In round level parallelism,
we can have one round up to r-rounds per clock cycle where r is the total
number of rounds of the block cipher. Finally, in encryption level parallelism,
we can have one encryption engine up to e encryption engines where e is the
maximum number of engines that can fit in our area constraints. Depending
of the chosen levels of parallelism, our design space will range from p parallel
encryptions per clock cycles to one bit of one round of one encryption engine per
clock cycle. In order to keep the area of our design as low as possible, we used
the lowest parallelism level of one bit of one round of one engine, which is also
called the bit-serial implementation.

3.1 Bit-Serial

Figure 3 shows the details of the round (a) and key expansion functions (b,c,d)
of the bit serial SIMON. The current state holds the words that are used in the
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Fig.2: SIMON Key Expansions

current round and the next state holds the words that are generated after the
execution of the first round and will be used in the next round. Both of these
states share the same set of memory elements and they are overwritten in every
round. In the key expansion functions, K; denotes the key that will be used in
the i*" round. The highlighted bits indicate the bits that are processed at the
first clock cycle of each round.

Both the key expansion and the round function consist of two phases: Com-
pute and Transfer. The compute phase reads the necessary bits from the current
state, performs logic operations on them and writes the resulting bit into the
upper block of the next state, while the transfer phase copies the contents of
a word in the current states to a lower word in the next state. For the key
expansion, there are three different functions depending on the number of key
words. The compute phase is the same for m = 2 and m = 3 where only three
bits are necessary from upper and lower words. For m = 4, two additional bits
are required from the word K41 to compute the next state bit. The number of
transfer phases required to finish one expansion also changes with the key words
number.

The bit serial implementation of the SIMON block cipher fits very well into
the resources of an FPGA as we can use the Look Up Tables(LUT) as memory
elements. In a Spartan-3 family FPGA, each LUT can be configured as an 16x1
Shift Register LUT(SRL), in which we can store the words of the round and key
expansion functions. Since we are reading from and writing into the SRL one
bit per clock cycle, we will call them FIFOs throughout this paper. By using
these FIFOs we can overlap the compute and transfer phases to process one bit
in every clock cycle.



3.2 Round Function

The round function of the SIMON block cipher is the same for all ten configura-
tions except for the size of the memory elements (words). In the Feistel network
of the round function, the block is separated into two words, each keeping one
half of the complete block. As the block size changes with different versions, the
size of the FIFOs holding these words also change accordingly. In order to have
a round function that can work with any of the ten versions, we need to have a
flexible length of FIFOs.

Figure 4 shows the bit serial implementation of the flexible round function of
SIMON. There are two groups of FIFOs named FIFO_1 and FIFO_2, which hold
the upper and lower words of the block. Each group is divided into subsections of
FIFOs with different sizes, connected together through multiplexers. The sizes of
the subsection FIFOs are selected such that each additional FIFO increases the
total size to be equal to the desired word size. FIFO_1 is smaller than FIFO_2 as
the eight most significant bits of the upper word are stored in the Shift Registers
Up or Down. These shift registers are required due to the circular shift pattern
of the round function. As we are using one bit input-output FIFOs, we cannot
access the intermediate bits. Therefore, the registers store the first eight bits in
flip-flops to enable parallel access. According to the security configuration input,
multiplexers select the required size of the FIFOs for both the upper and lower
words and route the incoming data to the correct subsection of FIFOs.

Each FIFO has a two input multiplexer at its input that bypasses the unused
FIFOs and routes the FIFO group input to the desired subsection FIFO. When
input ’0’ is selected, the FIFO group input is connected to the subsection FIFO
and when input ’1’ is selected, the next FIFOs output is connected. Figure 5
shows the required FIFO numbers for all security configurations.
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Security Datapath FIFO No. Key Expansion FIFO No.
Conf. |1.0(1_1|1_2(1_3(1_4/2_0|2_1{2_2|2_3|2_4]0_0[0_1|0_2|0_3[0_4|1_0|1_1{1_2|1_3|2_0[2_1|2_2|2_3|2_4{3_0|3_1|3_2(3_3(3_4

1 X X X X X
2 X | x X | x x| x X | x x| x
3 X | x x| x x| x x| x x| x x| x
4 X | x| x x| x| x X | x| x X | x| x X | x| x
5 X | x| x x| x| x X | x| x X | x| x X | x| x X | x| x
6 X[ x| x|x X | x| x| x X | x| x|x X [ x| x| x
7 X[ x| x|x x| x| x| x X[ x| x|x X | x| x| x X [ x| x| x
8 X[x x| x| x| x[x[x|x]|x|x|x|[x][x]x x| x| x| x|[x
9 X[ x| x| x| x| x[x[x|x]|x|x|x[x][x]x x| x| x| x| x| x|x]|x]|x]|[x
10 X x| x| x| x| x{x[x| x| x| x|[x[x|x]x|x[x[x]|x]x|x|[x|[x][x]x]x|[x]|x]x

Fig.5: FIFO Usage Schedule

For example, if the security configuration input is 1, the round function
use FIFO_1.0 and FIFO_2_0 while the rest of the FIFOs are grounded. The
output of FIFO_1_0 is connected to the input of FIFO_2_0 to perform the transfer
operation, and the data coming from SRU or SRD (depending on the round
number) is connected to the input of FIFO_1_0. When the security configuration
input changes to 2, the word size increases from 16 bits to 24 bits. Therefore,
one additional FIFO of size 8 is needed to store the upper and lower words. The
multiplexers at the inputs of FIFO_1_0 and FIFO_2_0 now select the output of
the FIFOs to their left (select input 1), and the FIFO group inputs are routed
to FIFO_1_1 and FIFO_2_1 (select input 0).

One important aspect of the bit serial implementation is the use of two sets
of shift registers named Shift Register Up(SRU) and Shift Register Down (SRD).
As the round function of SIMON requires three circular shift left operations (1,
2 and 8) on the upper block, the current state bits required to compute the next
state bit do not go in a sequentially ordered manner. For example, when the
block size n is 32, in order to compute the bit #0 of the next state, we need to
use the bits #31,#30 and #24 of the upper block of the current state. However,
the new computed bit #0 should also be stored in the same memory element
of the upper block which causes a conflict. We need to use the bit #0 of the
current state to compute the bit #1 of the next state so we cannot overwrite
it yet. In order to solve this problem, we implemented the ping pong registers
SRU and SRD. In the even numbered rounds, the output of the LUT is written
to the SRD and the output of the FIFO_1 is written to the SRU. Also for the
first eight bits, the input of the FIFO_1 is connected to the output of SRU and
for the rest it is connected to the output of SRD. In the odd numbered rounds,
we interchange the usage of SRU and SRD. By using this technique, we append
the least significant eight bits of the upper block to its most significant bits to
solve the circular shift problem and we can finish one round in n clock cycles.
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3.3 Key Expansion

Unlike the round function, there are three different key expansion functions
depending on the block size and the key size. Figure 6 shows the flexible bit-
serial key expansion of SIMON. There are four groups of FIFOs that store the
round keys and similar to the round function, they are divided into subsection
FIFOs in order to achieve a flexible size. Since the logical operations for the key
word number m = 4 are different, we need two LUTSs to perform the different key
expansion function operations. For m = 2 and m = 3 the hardware uses LUT2
for the logical operations, while for m = 4 it uses LUT1. A LUT based ROM
stores the round constants and according to the security configuration input, the
multiplexer selects the appropriate sequence.

Another difference of key generation is the dependence of the FIFO group
activity to the security configuration input. As there are three possible numbers
of key words (m = 2,3,4), not only the number of subsection FIFOs but also the
number of FIFO groups utilized should be flexible. The number of FIFO groups
required for each security configuration is equal to the number of key words m
of the selected configuration. For m = 2 the hardware only uses FIFO_0 and
FIFO_3. When m = 3 it also utilizes FIFO_2, and if m = 4 it enables all four
FIFO groups. Additionally, the number of subsection FIFOs changes with the
key size. Figure 5 gives the details of which FIFOs are used for all the security
configurations.

As it can be seen in Figure 6, FIFO_3 and FIFO_1 have four (FIFO_3_FF)
and two (FIFO_1_FF) additional flip-flops at their outputs, respectively. The
necessity of these separate flip-flops come from the circular shift operations of
the key expansion function. We used the same technique to overcome the circular
shift patterns of the round function, but this time we put the flip-flops at the
end of the FIFOs, as the key expansion function uses circular shift right, rather
than left. At the first four clock cycles of each round, the input for FIFO_3 is the
output of FIFO_3_FF. This way, the least significant four bits of the word are
appended into the most significant four bits. At the same time, the output of
LUT has to be connected to the same memory element which causes a conflict.
Therefore, the architecture uses another set of four flip-flops (LUT_FF) that
store the output of the LUT for the first four clock cycles. After this period ends,
FIFO_3 can directly store the output of LUT since appending more bits is not
necessary. At the beginning of the second round, the content of FIFO_3_FF is not
fresh as it contains the four bits from the previous round. Therefore, FIFO_3_FF
will only be active in the first round. LUT_FF takes its responsibility to append
the first four bits to FIFO_3 and also store the outputs of the LUT. Note that
in this discussion we do not mention the security configuration input because no
matter what the configuration is, FIFO_3 will use this scheduling, only the size
of the subsection FIFOs will change.

For m = 2, FIFO_3 group stores the upper key word and FIFO_0 group
stores the lower one. The transfer operation performs data transfer operation
between these two FIFOs. Since the LUT_FF stores the first four bits of each
new computed key, during this period the input of FIFO_0 is LUT_FF, and for
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Fig. 7: SIMON Modified Key Expansion Function for m = 4

the rest of the clock cycles, it is FIFO_3. For m = 3, in addition to FIFO_0
and FIFO_3, the hardware also utilize FIFO_2 group to store the additional
key word. There are two concurrent transfer operations; the first from FIFO_3
to FIFO_2, and the second one from FIFO_2 to FIFO_0. LUT2 computes the
logical operations for both m = 2 and m = 3.

Executing a circular shift operation after a logical operation is problematic for
bit-serialized implementation. Therefore, the original form of the key expansion
for m = 4 is not suitable for a bit-serial implementation because it requires a
circular shift right operation after the XOR, of K;;3 and K;;1. In order to solve
this problem, we modify the key expansion function for m = 4. Figure 7 shows
the required transformation. The gray regions highlight the original operations
which are replaced with the bold regions. Originally, the output of the XOR
operation has two fanouts, one going directly to another XOR with K; and the
second one to a circular shift operation. We moved the circular shift right by
1 operation from the output to the inputs of the XOR. The XOR from K, 3
was originally circular shifted right by 3 and when we shift it one more after the
modification, it becomes a circular shift right by 4. Similar to the functionality
of FIFO_3_FF, FIFO_1_FF enables the circular access pattern of m = 4.

4 Implementation Results

The proposed hardware architecture is written in Verilog HDL. The Verilog HDL
RTL codes are synthesized to the Xilinx Spartan-3 s50 FPGA using a speed grade
of -5, and to the Spartan-6 1x4 FPGA using a speed grade -3. Then, the resulting
netlists are placed and routed to the same FPGAs using Planahead. In order
to minimize the slice count, we hand-pick our design elements and assign their
mapping into the slices.

4.1 Area

Comparison with other block ciphers Figure 8 shows hardware resource
utilization of our architecture and the previous work. We have compared our
work with the smallest version of AES[4], as well as alternative compact block
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Fig.8: Occupied slices and the resource utilization ratio of flexible SIMON vs.
previous work.

cipher implementations such as PRESENT[22], HIGHT[22], SEA[14], XTEA[11],
CLEFIA[3] and ICEBERG[20]. In order to have a fair comparison, we map our
hardware into the same FPGA (Spartan-3) with the previous work, but we also
show the occupied area on a more recent FPGA like Spartan-6. The proposed
hardware occupies 90 and 32 slices on a Spartan-3 and a Spartan-6 FPGA,
respectively. Out of all these implementations, our hardware architecture is the
only one that provides the flexibility, whereas the rest of them use a fixed key
and block size. Yet, our flexible hardware architecture is still smaller than all
block ciphers. These results show that our bit-serial design methodology and our
back-end tool-optimization was able to achieve very compact hardware instances
while still enabling the flexibility.

Comparison with other flexible architectures There are several architec-
tures in literature that implement the multiple configurations of AES. However,
none of them where targeted for light-weight platforms. AES has three configu-
rations, AES-128, AES-192, and AES-256 all use 128-bit block size with 128,192
and 256 bit key-size, respectively. McLoone et al. proposes an architecture that
can perform all configurations using 4681 slices [15]. Li et al. later optimizes this
implementation and reduces the slice count to 3223 slices [13].
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Comparison with commercial soft-core processors One alternative way
to implement a flexible encryption engine on an FPGA is through a soft-core
processor. Xilinx provides Microblaze whereas Altera proposes NIOS as a com-
mercial soft-core processor. These processors execute software that enables the
capability of running all configurations. However, the minimum area-cost of a
NIOS and Microblaze is approximately 700 logic elements (logic element is 1
LUT + 1 register) and 600 slices, respectively. Picoblaze is an area-optimized
Xilinx processor that can bring the area-cost down to 96 slices and 1 BRAM,
which is still higher than our memory-free architecture.

4.2 Performance vs. Risk Trade-off

Figure 9 shows the trade-off between the performance and the risk. As we in-
crease the size of the key, we decrease the risk of the system. However, we also
increase the total time of computation because SIMON requires more rounds to
complete, and the bit-serial architecture requires more clock cycles to finish one
round. For example, if the system selects the security configuration 1, it takes 32
rounds to complete the encryption of a 32-bit block and one round is processed
in 16 clock cycles. Therefore, the throughput of the encryption is 5.27 Mbps.
On the other hand, the system will be using a key-length of 64-bits which can
be regarded as a toy-setting since dedicated machines like COPACOBANA can
break a block cipher with 57-bits in less than a week [9]. If the system changes its
settings to the security configuration of 10, the key size will be 256-bits. Hence,
the risk will be much lower, but the throughput will decrease by a factor of 2.

4.3 Flexibility vs. Performance Trade-off

Flexibility comes at the expense of performance. Figure 10 illustrates the cost
of implementing the flexible architecture. We compare our flexible architecture
running at the security configuration of 8 to the results of Aysu et al., as they



Area —@-Throughput

140 4
120 35
3
100
2
'g 2.5 g
S 80 g
%) p=}
= 2 £
8 2
< 60 °
15 F
40
1
2 05
0 0
Bit-Serial [1] Flexible Bit-Serial

FPGA Implementations — SIMON 128/128

Fig. 10: The cost of flexibility on area and throughput

both use 128-bit key size and block size [1]. Since the proposed flexible archi-
tecture has to support all available configurations, including the ones that has
larger keys and block sizes, the slice count is approximately three times of the
fixed implementation. Even though the required clock cycles to complete the
encryption is equal for the two architectures, a larger circuit causes longer inter-
connect delays and a lower maximum achievable frequency. Therefore, compared
to the fixed implementation, the throughput of the flexible architecture degrades
by 23%.

5 Conclusion and Future Work

In this paper, we propose a flexible and compact architecture for the block cipher
SIMON. SIMON is a very promising alternative of AES for resource-constrained
platforms and we show that the bit-serialized flexible implementation of SIMON
is still smaller than other block ciphers. The proposed architecture can imple-
ment all configurations of SIMON and enables on-the-fly security configuration
management. Thus, we propose a light-weight, yet flexible and adaptive solution
for secure systems. We also show the trade-offs that a designer can utilize regard-
ing the flexibility, performance and risk. A further extension of this work may
be proposing a complete system that can use the proposed architecture in an
adaptive security protocol. Such a protocol provides different levels of security
to its users based on some pre-defined criteria or may scale-up/down the risk
on-the-fly, to meet the real-time performance requirements.
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