
 emitcom: An Emitter of COM Interfaces- 507

emitcom Syntax

Appendix E. emitcom: An Emitter of COM Interfaces

The emitcom emitter is a program that creates a binding for a SOM class so the class can
be used in the context of COM, Microsoft’s component interface model. The binding exports
COM-style interfaces so that a SOM class can be used from OLE 2.0 programs. The
generated COM interface is aggregatable. The emitcom emitter generates all the files
necessary to build a DLL for the binding, and emitcom can generate COM bindings for
ancestor classes.

Contents

emitcom Syntax

Execution of emitcom

Interface Identifiers

User Procedure

The Generated Interface

Customizing the comstem.makCOM

emitcom Example

emitcom Limitations

emitcom Syntax
The emitcom command is issued as follows:

emitcom filestem comstem

filestem
the prefix name of a SOM IDL file (filestem.idl).

comstem
the prefix for the corresponding COM binding files.

Execution of emitcom
For the IDL file filestem.idl , emitcom creates a set of files that compose an interface (or
usage binding) that gives an OLE 2.0 program access to the SOM class described in
filestem.idl . The following files are created: comstem.mak , comstem.xh , comstem.cpp ,
comstem.def and comstem.reg . Once emitcom has run, issue the commands:

nmake -f comstem.mak to create a DLL and LIB;

regedit /s comstem.reg to register the DLL with the REG.DAT database.

The COM interface generated by emitcom is the SOM class’s interface. That is, the
interface contains the union of the methods of the SOM class and all of its ancestors.

The COM interface is generated in C++; comstem.cpp is the implementation file and
comstem.xh is a header file for users of the interface. Because SOM is language neutral, it
does not matter what language is used to implement the SOM class.

The comstem.def file is used by the linker to make the DLL. In generating a makefile
(comstem.mak), emitcom makes the following decision:

• If the filestem.idl file contains a dllname modifier, the associated dllname.lib file is
used in the link statement. If there is no dllname modifier in the IDL file, then the link

508 Programmer’s Guide for SOM and DSOM

Interface Identifiers

statement is generated with filestem.obj . See Modifier Statements on page 133 of
SOMobjects Developer Toolkit Programmer’s Guide.

• If filestem.obj is not desired, one can always edit the comstem.mak .

The comstem.reg file contains the information for registering the COM interface to the SOM
class in the registration database. The DLL file name that is used in comstem.reg is
comstem.dll ; if this DLL is to be named otherwise, you must edit the comstem.reg file.

The COM interface for the SOM class named className is defined in comstem.xh . The
interface is implemented as a C++ class named classNameCOMIntf . To use the SOM class
in a program, one must include the header comstem.xh and create instances of the C++

class classNameCOMIntf , which creates instances of the SOM class.

Interface Identifiers
The filestem.idl file must give the class identifier and the interface identifier needed for
registration. This is done with two new modifiers:

CLSID className
IID_className

where className is the name of the SOM class for which a COM interface is being
generated. The various forms of the modifiers are as follows:

CLSID_className = guid1;
IID_className = guid2;
IID_parentClassName1 = guid3;
IID_parentClassName2;
IID_SOMObjectsToolkitClassName;

The first two forms are mandatory, because the class and interface identifiers for the SOM
class must be specified. The third form is used to specify an interface identifier for a parent
class. However, if an interface identifier is specified in the IDL of the parent, the fourth form
should be used. The fifth form is used for parent classes that are part of the SOMObjects
Toolkit. Note that the third, fourth, and fifth forms are used only when an interface to the
parent is to be aggregated into the COM binding.

Each ancestor of a SOM class provides an interface to instances of that class. Therefore,
each of these may be aggregated into the COM binding. This is indispensable in the case
where the instance is to be passed to code that was created for the ancestor interface (that
is, code that uses the COM binding generated from the ancestor’s IDL). In such cases, the
caller must coerce the instance interface by calling QueryInterface before passing the
instance into the code created for the ancestor.

User Procedure
The following diagram depicts the total process, where filestem is S and comstem is C.

 emitcom: An Emitter of COM Interfaces- 509

The Generated Interface

Figure 37. emitcom Total Process

In summary, you will perform the following steps:

1. Add CLSID and IID to filestem.idl with the modifiers:

CLSID_className
IID_className

and to produce the files:

comstem.mak , comstem.xh , comstem.cpp , comstem.def , comstem.reg

comstem.mak is generated with the value of the dllname SOM IDL modifier or
filestem.obj in the LINK command.

2. Run “nmake -f comstem.mak” to produce the files:

comstem.lib , comstem.dll

3. Run “regedit /s comstem.reg” to update reg.dat (\windows\reg.dat). Remember
to update the DLL location in comstem.reg if necessary.

4. Install the header (comstem.xh) and library (comstem.dll and comstem.lib) in the
required directory.

The Generated Interface
Suppose the SOM class in filestem.idl is named X. The COM interface generated by
emitcom in the comstem.xh file then appears as follows.

#include “<filestem>.xh”

DEFINE_GUID (CLSID_X, <class identifier>);
DEFINE_GUID (IID_X, <interface identifier>);
class XCOMIntf : IUnknown
{
 public:
 XCOMIntf(LPUNKNOWN); // constructor
 STDMETHOD(QueryInterface)(REFIID riid, void FAR* FAR* ppv);
 STDMETHOD_(ULONG, AddRef)(void);
 STDMETHOD_(ULONG, Release)(void);

510 Programmer’s Guide for SOM and DSOM

Customizing the comstem.makCOM

 // SOM methods
 < all methods supported by X >

};
class XCOMFactory : public IClassFactory
{
 public:
 XCOMFactory();
 STDMETHOD(QueryInterface)(REFIID riid,void FAR* FAR* ppv);
 STDMETHOD_(ULONG, AddRef)(void);
 STDMETHOD_(ULONG, Release)(void);
 STDMETHOD(CreateInstance)(IUnknown FAR* punkOuter,
 REFIID riid,
 void FAR* FAR* ppv);
 STDMETHOD(LockServer)(BOOL fLock);
};

There is a C++ class named XCOMIntf that contains the three IUnknown methods and all
of the methods that the SOM class X supports. Any method defined in the X SOM class or
any of its ancestor classes).

There is one constructor for XCOMIntf which takes an LPUNKNOWN parameter that is the
pUnkOuter of the controlling interface in the case that XCOMIntf is part of an aggregate. If
the interface is not part of an aggregate, the constructor should be called with a NULL value.

Customizing the comstem.makCOM
The comstem.mak file is used to create a DLL that implements COM interface. The file is
designed to be invoked from a makefile. There are two macro parameters in comstem.mak
that can be set: OBJS and LIBS. The first is used to indicate any other object files that are
to be linked into the DLL. The second is used to specify any other libraries on which the
DLL depends.

In addition, when the environment variable COMDEBUG is set to 1, the comstem.dll is
compiled with the debugger options.

emitcom Example
As an example, the standard SOM Hello sample has been modified to generate a COM
binding for the Hello class. The full text of this modified example is among the SOM
samples. The following is a modified IDL file for the Hello SOM sample program that can
be used to generate a COM interface. The Hello sample SOM class is implemented in C
(not C++), yet the COM binding is implemented in C++.

#include <somobj.idl>
interface Hello : SOMObject
/* this is a simple class that demonstrates how to define
 * the interface to a new class of objects in SOM IDL.
 */
{
 string sayHello();
 // This method returns the string “Hello, World!”.
#ifdef __SOMIDL__
implementation
 {
 releaseorder: sayHello;
 CLSID_Hello = “12345678-abcd-1234-1234-123456789012";

 emitcom: An Emitter of COM Interfaces- 511

emitcom Example

 IID_Hello = “01234567-0123-cdef-0123-012345678901";
 };
#endif
};

Next is a fragment of a main program that uses the COM interface generated by emitcom .
Although this looks like using a SOM class with the C++ bindings, it actually is an example
of using a COM interface. That is, HelloCOMClass is an implementation of a COM
interface that supports both the IUnknown methods and all the methods of the Hello
SOM class.

HelloCOMIntf *pintf;
HRESULT hr;
LPCLASSFACTORY pHelloFactory;
switch (message){
case WM_CREATE:

 hr = CoGetClassObject(CLSID_Hello,
 CLSCTX_INPROC_SERVER,
 NULL,
 IID_IClassFactory,
 (void FAR* FAR*)& pHelloFactory);
if (SUCCEEDED(hr)) {
pHelloFactory->CreateInstance(NULL,
 IID_Hello,
 (void FAR* FAR*)&pintf);
pHelloFactory->Release();
}
else {
PostQuitMessage(2);
}
return 0;
case WM_PAINT:
hdc = BeginPaint (hwnd, &ps) ;
GetClientRect (hwnd, &rect) ;
strcpy(sBuf,
 pintf->sayHello(somGetGlobalEnvironment()));
DrawText (hdc, sBuf, -1, &rect,
 DT_SINGLELINE |
 DT_CENTER | DT_VCENTER);
EndPaint (hwnd, &ps) ;
return 0 ;
case WM_DESTROY:
PostQuitMessage (0) ;
return 0 ;
}

Following is an example of the main procedure for the preceding message loop.

#include <comhello.xh>
long FAR PASCAL _export WndProc (HWND, UINT, UINT, LONG) ;
int PASCAL WinMain (HANDLE hInstance,
 HANDLE hPrevInstance,
 LPSTR lpszCmdParam, int nCmdShow)
{
static char szAppName[] = “Hello” ;
HWND hwnd ;
MSG msg ;
WNDCLASS wndclass ;
HRESULT hr;
hr = CoInitialize(NULL);
if (!SUCCEEDED(hr)) {
exit(1) }
if (!hPrevInstance){
 wndclass.style = CS_HREDRAW | CS_VREDRAW ;
 wndclass.lpfnWndProc = WndProc ;

512 Programmer’s Guide for SOM and DSOM

emitcom Limitations

 wndclass.cbClsExtra = 0 ;
 wndclass.cbWndExtra = 0 ;
 wndclass.hInstance = hInstance ;
wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
 wndclass.hCursor = LoadCursor (NULL, IDC_ARROW);
 wndclass.hbrBackground = GetStockObject (LTGRAY_BRUSH);
 wndclass.lpszMenuName = NULL ;
 wndclass.lpszClassName = szAppName ;
 RegisterClass (&wndclass) ; }
hwnd = CreateWindow (
 szAppName, // window class name
 “Hello Program”, // window caption
 WS_OVERLAPPEDWINDOW, // window style
 CW_USEDEFAULT, // initial x position
 CW_USEDEFAULT, // initial y position
 CW_USEDEFAULT, // initial x size
 CW_USEDEFAULT, // initial y size
 NULL, // parent window handle
 NULL, // window menu handle
 hInstance, // program instance handle
 NULL) ; // creation parameters
ShowWindow (hwnd, nCmdShow) ;
UpdateWindow (hwnd) ;
while (GetMessage (&msg, NULL, 0, 0)) {
TranslateMessage (&msg) ;
DispatchMessage (&msg) ;}
CoUninitialize();
return msg.wParam ;
}

emitcom Limitations
The following are known limitations at the current time:

• filestem.idl cannot contain more than one interface nor can it contain IDL modules.

• emitcom creates the following temporary files: filestem.cmm , filestem.cmh ,
filestem.cmc , filestem.cmd , and filestem.reg . The emitcom emitter should not be run
in a directory where you have files with these names (when emitcom runs, it overwrites
these files). filestem is the first parameter to emitcom .

• comstem.mak is for Microsoft’s nmake ; comstem.mak expects the C++ compiler to be
named cl . This makefile uses the temporary file comstem.lrf .

