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Abstract

In August 2003, 14,800 heat-related deaths occurred in Paris [1] during what is considered the warmest 

summer since at least 1500 [2–5]. These deaths resulted not only from unusually high peak temperatures and 

a reduction in the diurnal temperature swing, but also from a failure of buildings to successfully modify the 

external environment. It has been estimated [6] that that by the 2040s, a 2003-type summer is predicted to be 

average within Europe. Clearly this will have a great impact on morbidity and mortality and produce 

challenges for emergency services [7]. The effects of climate change on the internal environment are not well 

known and  are the subject of much current research [8]. For building scientists and emergency planners, 

there is the need to know the general form of the relationship between increases in external temperature due 

to climate change and increases in internal temperatures. Here we show that the relationship is linear, and 

that differing architectures give rise to differing constants of proportionality. This is a surprising result as it 

had been assumed that, given the complexity of the heat flows within large structures, no simple relationship 

would exist [9]. We term these constants of proportionality climate change amplification coefficients. These 

coefficients fully describe the change in the internal environment of an architecture given a seasonal or 

annual change in external climate and can be used to judge the resilience to climate change of a particular 

structure. The estimation and use of these coefficients for new or existing buildings will allow: the design of 

more resilient buildings adapted to a changing climate, cost-benefit analysis of refurbishment options and 

the rational assembly of at-risk registers of vulnerable building occupants. 
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Predictions of the world’s climate point to an increasingly warmer world, with greater warming across 

land and away from the equator [10]. Predictions contained in the IPCC’s fourth assessment report

indicate mid-latitude mean temperature rises over land of ~4°C (under the A1FI scenario) [10]. However,

recent research [11] shows that current emission trends imply that the actual temperature increase could 

be far higher than the A1FI scenario predicts. This implies that several highly populated regions not used 

to high temperatures will be exposed to a very different summertime experience. As the events in Paris in 

2003 showed, temperature rises and reductions in the diurnal cycle within the built environment can have 

life-threatening consequences and require a substantial response from emergency services [12]. In the 

absence of any human modification of climate, temperatures such as those seen in Europe in 2003 have 

been estimated to be 1-in-1,000 year events. However modeling by the Hadley Centre shows that, by the 

2040s, a 2003-type summer is predicted to be about average [6] and this will clearly have a great impact 

on the energy consumption of air condition spaces and the thermal comfort within non-conditioned ones.

Heat stoke was first recognised by the Romans in 24BC but it was not until 1946 that a true 

understanding of the extent of the damage it can cause to an individual was formed [13]. In order assess

the scale of the problem there is the need to understand the sensitivity of the internal environment of 

buildings to changes to climate and the sensitivity of the occupant, particularly of vulnerable groups. 

Here, we deal with the former, and attempt to quantify the response of all naturally ventilated, non air 

conditioned, buildings to changes to summertime temperatures. Given a scale of response, it should be 

possible to assemble risk registers of buildings and occupants, to improve the design of new buildings, 

and initiate the refurbishment of existing ones such that they are more resilient to a changing climate.

It seems natural to expect the response of a building to a perturbation in climate to be complex, with the 

functional form of the response depending on the degree of climate change and whether this is mainly a 

result of changes in, for example, wind rather than sunlight or air temperature rather than humidity, and 

on the architecture, construction material, ventilation strategy and controls present. The existence of such 



a complex response function would make it difficult to discuss in any simple way the relative benefits of 

one design over another, or even characterise the response of a building with a single measurable statistic. 

For example, it might be possible that one design demonstrates little change in internal temperature for 

small perturbations to the external climate, but then a large and rapid response for greater perturbations, 

and that another design might show the opposite response. In such a situation it would be very difficult to 

draw any simple conclusions as to which design is likely to perform better under any particular climate 

scenario. Instead, we would need to complete a substantial amount of costly computer modelling to report 

a time series of changes given a time series of exact predictions to climate change within the urban 

environment. Climate science has yet to be able to give such predictions with the required accuracy, and 

even if it could we might be in the situation where, for example, one building design outperforms another 

until 2040 and then under performs the alternative design. Again, we are trapped by the potential 

complexity of the relationship between the building and its driving forces, making it very difficult to draw 

general conclusions and drive the adaptation agenda forward.

In this paper we investigate the form of the response function of a large number of buildings given a 

range of predictions of future climate. From this work we conclude it is possible to derive a single set of 

coefficients that fully describe the expected response of any design to any reasonable amount of climate 

change. We further suggest that these coefficients can be used to establish a definition of climate change 

resilience within architectural dialogues and set minimum performance standards within building

regulations and codes, with the aim of promoting adaptation to a changing climate.

Prediction of Future Weather

Given statements of future climate by the IPCC and others [14] a time series of typical future weather can 

be assembled in one of several ways, for instance by using recorded historical data for locations whose 

current climate matches that predicted for the location in question. This has the downside that certain 

weather variables such as hours of daylight, will be incorrect. Other methods include interpolating (in 

space and time) the time series produced by a global circulation model, or to run a fine (in space and 



time) regional climate model connected to a global circulation model. All these methods have advantages 

and disadvantages, which are discussed in more detail in Belcher et al [15].

Belcher et al [15] have developed a methodology for transforming historic weather files into future 

weather years representative of different climate change scenarios by the use of a set of simple 

mathematical transformations. The simplicity of this method has made it attractive to building scientists. 

In this method hourly weather data for the current climate is adjusted with the monthly climate change 

prediction values of a regional climate model (in the case of the UK, the output from UKCIP02 [16]).

This methodology is termed ‘morphing’ (see Method). 

The morphing process has the advantage that it starts from observed weather from the location in 

question, the variables output are likely to therefore be self-consistent and it is simple to achieve given the 

resources available to building scientists. However, it doesn’t allow for fundamental changes in the 

weather, with for example, weather systems following identical trajectories across the landscape. Table 1 

shows summary statistics for the future weather times series created using morphing and used in this 

work. 



Table 1. Values of min, max and mean dry bulb temperature (Dry T) and deviation of the mean from the 

third warmest summer over the period 1983 to 2004 (termed DSY) all for London, UK. Historic TRY 

refers to a typical year assembled from data spanning the period 1983 to 2004. Low, medium-low, 

medium-high and high refer to morphed weather based on the DSY weather file using coefficients 

produced for London by the UK climates impacts programme [16]. Hi+L, Hi+m1, Hi+m2 and Hi++ 

refer to morphed weather created by applying the morphing twice to the DSY weather file. The values 

shown are for the summer-period April to September.

Scenario Min Dry T(qC) Max Dry T (qC) Mean Dry T (qC) G Mean T (qC)

Historic TRY 1.10 30.10 14.71 -1.14

Historic DSY 0.00 33.60 15.85 0

Low 1.50 37.70 18.42 2.57

Medium-low 1.80 38.40 18.85 3.00

Medium-high 2.50 40.30 20.07 4.22

High 3.00 41.50 20.83 4.98

Hi+L 4.60 45.60 23.40 7.55

Hi+m1 4.80 46.30 23.83 7.98

Hi+m2 5.60 48.30 25.05 9.20

Hi++ 6.00 49.50 25.81 9.96

Approach

Over 400 different combinations of future weather, architecture, ventilation strategy, thermal mass, 

glazing, U-value and building use (house, school, apartment, or office) were studied. This makes the 

extent of the design space investigated far greater than that considered in other works [9]. In addition, 

more extreme predictions of future weather were included (see Table 1) in order to ensure the results 

would be still be valid if future climate modelling work or measurements indicate different climatic 

futures than currently predicted by UKCIP. Since the morphing procedure does not change the underlying 

weather patterns, several scenarios were included that represent complete changes in the weather patterns 



and particularly the correlations between temperature and humidity. Each building was modelled within

the IES [17] dynamic simulation environment which models radiative, conductive and convective heat 

exchange between building elements and the internal and external environment, and includes dynamic 

representations of occupancy densities, solar gains, air densities, air flow and heating systems. Table 2 

gives details of the range of architectural and constructional parameters studied. All buildings were 

assumed to be sited in London.

Table 2. Range of architectural and constructional parameters included in the study.

Parameter Range

Thermal capacity 10 KJ/m2K o 230 KJ/m2K

Fabric thermal resistance 0.11 W/m2K o 0.44 W/m2K

Glazed fraction 14% o 60% of main facade

Building size 135 m2 o 2814 m2

Orientation of main facade 0q, 90q, 180q 225q and 270q degrees east of north

Window opening 10% o 75%

Infiltration rate 0.1 ach–1o 1 ach–1

Results

Figure 1 shows a subset of the results for five of the buildings. Figure 2 shows the results for all the 

buildings characterised by the response of a building to a change in the climate. We can observe the 

following (and this is true of all the designs):

1. The form of the response to the perturbation of the weather file is always linear, regardless of the 

architecture, construction or use of building.

2. Different buildings demonstrate different gradients.

3. The intercept of any two regression lines is always at negative values of the perturbation (i.e. to 

the left of the graph). This implies that any building, which shows a lower mean or maximum 

internal temperature than another in the current climate will continue to do so for future climates.



4. From points 2 and 3 it can be concluded that the response can be characterised solely by the 

gradient of the regression line—the intercept is not relevant.

5. Some designs show gradients greater than unity, others less. A value greater than unity indicates 

that the building amplifies the effects of climate change, while a value less than unity means that it 

suppresses the effects of climate change.

6. There is no advantage in multiple simulations of a building with a range of carbon and climate 

scenarios. Two simulations are enough to identify the gradient and therefore the response of the 

building to other scenarios can simply be calculated from the gradient.

Mathematically, we can see that we have two constants (CTmean and CTmax) that represent the propensity of 

any design to overheat given a known perturbation to the current climate:

CTmean
 
GTmean

internal

GTmean
external    and   CTmax

 
GTmax

internal

GTmax
external ,

where mean and max refer to the mean or maximum temperature observed either in the weather file  

(external) or within the building (internal). We term such constants climate change amplification 

coefficients (CT), and presumably other such descriptors could be identified (for example changes in 

cooling demand for air conditioned buildings). The correlation coefficient (R2) of CT exceeds 0.997 for all 

the buildings studied.

lines Tmax
internal  T0 � CTmaxGTexternal , showing the linearity of the response and therefore the potential for fully 

describing the response of any building with a single parameter.

CTmean and CTmax fully describe the response of the maximum and mean temperature of any design to a 

changing climate and the existence of such coefficients of proportionality demonstrates that the concern 

expressed in the introduction about the potential complexity of the response function is invalid. We 

believe that such coefficients are highly suitable for describing the response and relative benefits of a 



series of design alternatives. In essence they indicate the degree of amplification (or suppression) the 

architecture of a building is capable of. So if, for example, CTmean = 1.5 for a building, a prediction of 2°C 

rise in mean summertime temperature from a climate model implies with a high degree of accuracy a 3°C 

rise in mean summertime internal temperature. Because these two coefficients appear to be able to take 

values either side of unity, it is tempting to describe buildings that have values less than one, as resilient, 

and those with values greater than one as non-resilient. However, this simple binary classification ignores 

the potentially serious consequences of higher indoor temperature for vulnerable groups, where even a 

mild increase in temperature can be fatal if it is sustained over several days with a minimal diurnal cycle.

It might be thought that one possible explanation for the linear response can be found in the form of the 

perturbations given by equations 1 to 3 (see Method). As mentioned above, another way to produce a time 

series of future weather is to use historic weather from a location that has a climate similar to that 

predicted for the future climate in the location of interest. In general, such time series diverge far more 

from the historic weather in the location of interest and can not be represented by shift and stretch 

functions. A subset of the buildings were simulated with historic weather files from other locations, the 

results for one building are summarised in Figure 3. Again, we see that such perturbations engender a 

linear response, although with a lower correlation coefficient.

Summary and Conclusions

Driven by questions of increased morbidity and mortality of vulnerable groups particularly in mid-latitude 

cities as the climate warms, the general form of the response of the internal environment within buildings 

to perturbations in weather has been studied. The response, as measured by the change in mean, or 

maximum, internal summertime temperature, to a change in mean or maximum external temperature, 

would appear to be linear, regardless of whether the perturbations are created by simple mathematical 

transformations of historic weather, or by the use of historic weather from other, warmer, cities.



We have termed the resultant constants of proportionality climate change amplification coefficients (CT), 

and suggest that the estimation of these for new or existing buildings will allow more rapid thermal 

modelling of buildings with respect to climate change, the design of more resilient buildings, cost-benefit 

analysis of refurbishment options and the rational assembly of at-risk registers of building occupants.

Method

The basic underlying process for the morphing of the weather files consists of three different algorithms 

depending on the nature of the parameter to be morphed. 

(1) A ‘shift’ of a current hourly weather data parameter by adding the predicted absolute monthly mean 

change:

eqn. 1                                                             x = x0 + 'xm,

where x is the future climate parameter, x0 the original present-day parameter and 'xm the absolute 

monthly change. This equation is, for example, used for adjusting atmospheric pressure. 

(2) A ‘stretch’ of an hourly weather data parameter by scaling it using the predicted relative monthly 

mean change:

eqn. 2                                                               x = Dmx0,

where Dm is the fractional monthly change. This is used for example to morph present-day wind 

speed values.

(3) A combination of a ‘shift’ and a ‘stretch’ for current hourly weather data. In this method a current 

hourly weather data parameter is shifted by adding the predicted absolute monthly mean change and 

stretched by the monthly diurnal variation of this parameter:



eqn. 3                      x = x0 + 'xm + Dm(x0 – ¢x0²m) = ¢x0²m + 'xm + (1 + Dm)( x0 – ¢x0²m),

where ¢x0²m is the monthly mean related to the variable x0 and Dm is the ratio of the monthly variances of 

'xm and x0. This method is for example used to adjust the present-day air temperature. It uses predictions 

for the monthly change in the diurnal mean, minimum and maximum dry bulb temperature in order to 

integrate predicted variations of the diurnal cycle.
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Figure 1. Results for five design varients of a typical new build house together with linear regression 
lines Tmax

internal  T0 � CTmaxGTexternal , showing the linearity of the response and therefore the potential for fully 
describing the response of any building with a single parameter.

Figure 2. Box and whiskers plot of the amplification coefficient for all the buildings studied. The square 
represents the mean and the box represents the 25-75 percentile range. The whiskers represent one 

standard deviation away from the mean and the crosses the max and min values.

Figure 3. Change in mean internal temperature for one of the buildings in the study as a function of 
change in mean external temperature (with respect to the London DSY) given by a series of weather files 

from around the world: the response would appear to be approximately linear. The correlation 
coefficient is still high for this data with R2 > 0.985.
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