An Empirical Study of Requirements Model
Understanding: Use Case vs. Tropos Models

Irit Hadar
MIS, University of Haifa
Carmel Mountain, Haifa
31905, Israel)
hadari@mis.haifa.ac.il

Iris Reinhartz-Berger
MIS, University of Haifa
Carmel Mountain, Haifa
~ 31905, Israel
iris@mis.haifa.ac.il

ABSTRACT

Visual modelling languages are commonly used to support
software requirements analysis and documentation. A vari-
ety of languages are available, based on different concep-
tual paradigms. They can be roughly divided into two
main groups: goal-oriented approaches and scenario-based
approaches. In the last ten years, numerous works developed
case studies that illustrate the effectiveness and limitations
of goal-oriented and scenario-based approaches. A few works
even suggest coupling these approaches in order to capture
requirements from different perspectives. However, exper-
imental comparisons of these approaches have been rarely
addressed. This paper presents the design and preliminary
results of an empirical study that compares two state of
the art requirements modelling methods: Use Cases, which
is a scenario-based approach, and Tropos, which is a goal-
oriented approach. The objective is to evaluate different
levels of comprehension of requirements models expressed
in both methods, as well as to estimate the time required
to perform simple analysis tasks using both methods. Pre-
liminary results show that Tropos models seem to be more
comprehensible, although more time consuming, than Use
Case models to novice requirements analysts.

Categories and Subject Descriptors

Tsvi Kuflik
MIS, University of Haifa
Carmel Mountain, Haifa
31905, Israel)
tsvikak@mis.haifa.ac.il

Filippo Ricca
DISI, University of Genova
Viale Dodecaneso, 35I
16146 Genova, ltaly

filippo.ricca@disi.unige.it

D.2.1 [Software Engineering]: Requirements/Specifications

General Terms

Requirements, Experimentation, Measurement

Keywords

Requirements Engineering, Controlled experiment, Tropos,
UML Use Cases

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’10 March 22-26, 2010, Sierre, Switzerland.

Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

2324

Anna Perini
FBK - IRST CIT
Via Sommarive, 18
38123 Povo - Trento, Italy

perini@fbk.eu

Angelo Susi
FBK - IRST CIT
Via Sommarive, 18
38123 Povo - Trento, Italy

susi@fbk.eu

1. INTRODUCTION

Conceptual modelling is considered a core activity along
the software development process. It acts as a starting point
for understanding the application domain and the require-
ments of the software system to be realized thus providing a
common basis for designers, developers and users, improving
understanding and communication. Different requirements
modelling methods are available. They are commonly di-
vided into goal-oriented and scenario-based [11, 15].

The basic building blocks of goal-oriented approaches [6,
16, 18] are goals, which capture the various objectives of
the system to be developed at different levels of abstrac-
tion. Goal-oriented approaches focus on why systems are
constructed, expressing the rationale and justification for
the proposed system. They aim at (1) understanding the
current organizational situation, (2) understanding the need
for change, (3) providing the deliberation context within
which the requirements engineering process occurs, (4) relat-
ing business goals to functional and non-functional system
components, and (5) validating system specification against
stakeholders’ goals. Within the category of goal-oriented ap-
proach, agent-oriented methods [4, 10, 18] received a special
attention. The agent-oriented paradigm rests on the idea
that a system can be perceived as a group of interacting
agents, each of which can be thought of as an autonomous
and social entity that can communicate, coordinate, and co-
operate with other agents to achieve individual and organi-
zational goals.

Scenario-based approaches, on the other hand, promote
the notion of a scenario, which is a sequence of interac-
tion events between a system and its environment in the
restricted context of achieving some implicit purposes [14].
Scenario-based approaches have been proposed for require-
ments elicitation and validation purposes. Jacobson’s Use
Case technique, which has been incorporated into UML,
is a widely used scenario-based requirement engineering
method [1].

In the literature, the effectiveness of goal-oriented and
scenario-based approaches is analyzed in several works illus-
trating the application of different methods to case studies
(e.g., [2, 3, 7]) or comparing the strengths and limitations
of the approaches according to different criteria (e.g., [5,

13]). However, to the best of our knowledge, experimen-
tal comparisons of these requirements modelling paradigms
using different visualization methods are rare. Such com-
parisons may raise insights and help decide which modelling
paradigm to adopt for a given software development project.
One important factor for comparison or evaluation is the im-
mediacy in understanding the respective models by project’s
stakeholders, for instance by requirements analysts, who
have to understand a given model during analysis and refine-
ment tasks to accommodate new or changed requirements’.

In our research we focus on how requirements analysts
understand requirements models in two methods, namely
Use Cases [1] (UC) and Tropos [2]. These methods can be
respectively considered as representatives of the scenario-
based and goal-oriented (or more accurately agent-oriented)
paradigms. In the study, we measure comprehensibility of
requirements models in terms of performance and time to
complete tasks. Three categories of tasks can be distin-
guished: (1) determine consistency between the system story
and the requirements visual models. This is important for
checking completeness and correctness of requirements mod-
els; (2) understand the models (irrespectively of the system
story) for different analysis and development activities; (3)
cope with tasks that require changes and modifications of
existing requirements models. Tasks in the third category
usually require a higher level of model comprehension than
tasks in the two first categories. The comprehension in the
different categories can be measured by evaluating the per-
formance of the requirements analysts in different (represen-
tative) tasks and the time it takes to perform them.

The objective of this paper is to describe the design of
an experiment for comparing Use Case and Tropos models
comprehension and to discuss preliminary results of its exe-
cution with a group of 19 bachelor students playing the role
of requirements analysts. The experiment design follows the
guidelines by Wohlin et al. [17] on how to document and re-
port empirical studies in software engineering and exploits
interesting solutions proposed in previous experiments [8,
12] about how to define and measure the comprehension
level of a model.

The paper is structured as follows. Section 2 gives some
details of the two compared modelling methods. In Section 3
the experiment, in terms of the precise research questions,
hypotheses, subjects, design, material and procedure, is de-
scribed. Section 4 presents and discusses the preliminary
results. Section 5 reports on related work. Finally, Section 6
concludes the paper and gives some future directions.

2. REQUIREMENTS MODELS

Conceptual modelling in requirements engineering aims
at understanding the application domain and at support-
ing the identification and specification of the requirements
of the software system to be realized. Different modelling
paradigms offer their own specific set of concepts to repre-
sent properties of domains and systems under analysis.

Use Case diagrams [1] offer constructs to describe the in-
teractions between users and other systems, and the system-
to-be-developed. They are graphs collecting the use cases,
the actors taking place in the use cases, and the relation-

1Of course other elements usually contribute to this type of
decision, such as the availability of a clear documentation of
the method, as well as of tutorials and supporting tools.

2325

ships among them. In particular, they visualize the re-
lationships between different actors (specialization), actors
and use cases (participation), and compound and elemen-
tary use cases (e.g. include relationships). In conjunction
with the visual diagrams a description of the behaviors cap-
tured by a use case can be specified textually using Use Case
templates containing information such as the pre-conditions
or post-conditions for the described scenarios, and possible
alternative scenarios.

Figure 1 depicts the syntax of Use Case diagrams and a
commonly used template, which was used in our experiment.

For the goal-/agent-oriented paradigm, we considered the
Tropos method [2]. This method rests on a set of inten-
tional notions, such as actors, goals, plans, resources, and
dependencies. An actor represents an entity that has strate-
gic goals and intentionality within the system or the orga-
nizational setting. The actor is used to model both human
stakeholders (single persons and organizations) and artificial
agents (software and hardware systems and components).
Goals represent states of affairs an actor wants to achieve.
Executing a plan can be a means to realize a goal. Actors
may depend on other actors to attain some goals or resources
or for having plans executed.

Tropos models are visualized through actor and goal di-
agrams, the syntax of which is depicted in Figure 1. An
actor diagram is a graph whose nodes represent actors and
its labeled arcs - strategic dependencies between pairs of
actors. A goal diagram represents the individual actor per-
spective in terms of its main goals, and their decomposition
into sub-goals. Moreover, plans and resources that provide
means for goal achievement are depicted through means-end
relationships.

Both modelling methods offer a richer set of concepts and
analysis techniques with respect to those recalled above, e.g.
early vs. late requirements modelling in Tropos [2]. How-
ever, for the purpose of our empirical study, we consider sub-
sets of the two modelling methods that can be comparable in
terms of expressiveness, thus concentrating on comprehen-
sion of late requirements models that focus on new systems
to be realized. For example, we use “OR decomposition” in
Tropos and the “Alternative Flow” field in Use Case tem-
plates to specify alternative behaviours of the system-to-be,
but avoid using UML activity diagram.

3. THE EXPERIMENT

The goal of the study is to consider requirements mod-
elling methods based on different conceptual paradigms,
namely the scenario-based UC and goal-oriented Tropos
methods, with the purpose of evaluating their effectiveness
when used to analyze and update the requirements models
of distributed software systems.

3.1 Hypotheses, Variables and Measure

In the pilot study we focused on the following research
questions and the corresponding set of null and alternative
hypotheses.

¢ RQ1 Which model, between Tropos Late Require-
ments, (i.e., Goals and Actors diagrams, Tropos for
brevity) and UC (i.e., diagrams and templates), is more
comprehensible in terms of consistency, understand-
ability, and modifiability?

UML Use Case diagram
] Relationships
arlicipation — — <include> =>
Actor /'\ participation
<incl:ude>

UML Use Case template

USE CASE Label

Type Primary/Secondary

Precondition What should be true before

Postcondition What will be true after

Main Flow Description of the principal task realizing

the UC

Alternative Flow

Description of task(s) alternative to the

main one (if any; 1 for each alternative
behavior)

Figure 1:

e RQ2 Which model requires less time to be evaluated
for consistency, understandability, and updating?

These research questions have been translated to the fol-
lowing hypothesis:

e Hol There is no difference in terms of comprehension
level between UC' and Tropos requirements models;

e o2 The amount of time needed by analysts for evalu-
ating consistency, understanding and updating Tropos
and UC requirements models is the same.

When the null hypothesis can be rejected with relatively
high confidence, it is possible to formulate an alternative
hypothesis:

e H,1 There is a difference in the comprehension level
of UC vs. Tropos requirements models;

e H,2 Evaluating consistency, understanding and up-
dating Tropos requirements models need a different
amount of time than evaluating consistency, under-
standing and updating UC models.

The independent variable of this experiment is the visual
modelling method which can assume one of the values in
{Tropos, UC}.

The dependent variables are the comprehension level of
models and the time (in minutes) it took the subjects to
perform different comprehension tasks. More specifically,
to measure the comprehension level, we asked the subjects
to answer a questionnaire and assessed the correctness of
the answers (as in [12]). An example of question aiming at
evaluating the understandability of a model is the following:

2326

Tropos Actor diagram

resource_dep

plan dep

Tropos Goal diagram

‘\
w’ goal 2) (goal_3)

b

goal 6

Dependenmes relatlonshlps

resource '

Goal or Plan
decomposition

—+—> AND dec.

—> ORdec.

Plan to goal

means-end
_

Positive contribution
e
+

The "why" of actor

dependency
— why —»

goal_dep

Diagrams and visual notations of Use Case (left) and Tropos (right) models.

“According to the model, who are the actors that
provide the data about the available ingredients
that the e-Restaurant uses to support the Chef?
[A]-Specify Actor(s) name(s)................. ”

Since the answer to each question is expressed as a list of
elements (e.g., actors, use cases and goals) we can count: (1)
the set of elements mentioned in the answer to a question ¢ by
asubject s and (2) the number of elements in the answer that
were expected as the correct answer to question 7. Based on
the above definition, we computed precision and recall for
each answer. Precision measures the fraction of items in the
answer that are correct, while Recall measures the fraction
of expected items that are in the answer. Since the two
above metrics measure two different concepts we added a
derived measure, F'—measure, which is a standard metrics
defined as the harmonic mean of precision and recall:

2 - precision ; - recalls ;

F—measure,; =

precision ; + recalls ;

To measure the comprehension levels of the models we used
the mean of the F-measure over all the questions in a par-
ticular category.

The time to answer to the questionnaire was recorded di-
rectly by subjects noting down their start and stop time.

3.2 Experiment Design

The experiment population included 19 Management In-
formation Systems (MIS) bachelor students in the last
semester of their studies at the University of Haifa, Is-
rael. The experiment took place in the elective course “Hu-
man Aspects of Software Engineering”. The students in the
course had already studied in previous years all the basic
IS courses including “IS Analysis”. In general, the students

Table 1: Experimental design.

Group Lab 1 Lab 2

Group 1 mss-UC eRest-Tropos
Group 2 mss-Tropos eRest-UC
Group 3 eRest-Tropos mss-UC
Group 4 eRest-UC mss-Tropos

completed all core mandatory MIS courses, hence they can
be considered having the same theoretical level of knowledge
of requirements analysis. The experiment was conducted in
two lab sessions, lasting 1 hour and a half each with half
an hour break between the two sessions. Two different (but
similar in complexity) software systems were considered, in
application domains the subjects are familiar with. The first
is a meeting scheduler system (called “mss” in short) that as-
sists the user in planning and organizing meetings, the sec-
ond is a system that automates several tasks in a restaurant
(eRestaurant system, “eRest” in short), such as automatic
ordering of dishes from customers or ingredients from the
chef.

To avoid learning effects, the experiment design ensures
that each subject worked on different application domains in
the two labs, receiving each time a different treatment. Also,
the design permits us to consider different combinations of
application domains and treatment in different order across
labs. Table 1 summarizes the experimental design. The
subjects were split randomly into the four groups since they
have similar level of knowledge and experience in require-
ments modelling.

3.3 Experiment material and procedure

Prior to the lab sessions, two lessons of 90 minutes re-
minded notions of software requirements and conceptual mod-
eling in scenario-based approaches (Use Case modeling) and
introduced conceptual modeling in goal-oriented approaches
(with Tropos). Practical examples about how to build mod-
els and use them for analyzing software requirements were
also provided using application domain different from those
used for the experiment objects, but of similar complexity.
Moreover, notions about the purpose of empirical studies in
software engineering have been given.

For each of the two labs the experimental package that
has been distributed included: a story describing the in-
tended use of the software system, the Tropos/UC models
of the software requirements, a questionnaire about model
comprehension, and the slides of the lessons (they can be
consulted for answering the questionnaire).

The questionnaire about the models is composed, simi-
larly to [8], of 14 open questions on the assigned system.
Most of the questions are realistic scenarios in requirements
engineering tasks. Questions span from assessing the con-
sistency of the visual model with the textual description of
the system story, to understanding of the models for gather-
ing typical information (such as which are the actors in the
domain, what are their interactions, objectives and tasks,
and so on), to some possible modifications to the models
to capture changes or revisions of the knowledge about the
domain and of the system requirements.

The procedure we followed for each lab session of the ex-
periment has been: 1. we introduced the experiment describ-
ing to the subjects the material that will be given to them

and the fact that they will have to play the role of require-
ments analysts; 2. we distributed the experimental package
to the subjects; 3. we requested the subjects to specify sur-
name, name, start-time in the questionnaire, before starting
working with the questionnaire; 4. at the end we invited the
subjects to mark the end-time of the task and collected all
the questionnaires.

4. PRELIMINARY RESULTS

This section reports preliminary analyses aimed at test-
ing the hypotheses formulated in Section 3.1 and threats to
validity. Detailed analysis of confounding factors and sur-
vey questionnaires, as well as other analyses (e.g., paired
analysis per subject), will be reported in future works. Re-
sults of statistical tests are intended to be significant for a
significance level of 95%.

4.1 Data Analysis

We tested the presence of a significant difference between
the two different treatments (Tropos and UC'), using for
both hypotheses (Hol and Ho2) the two-tailed Wilcoxon
test. We selected a non-parametric test because it is very
robust and sensitive when a small number of data points,
as in our case (number of subjects = 19), is considered.
Moreover we used a two-tailed statistical test due to the
non-directionality of the hypotheses.

The left diagram in Figure 2 depicts boxplots of the F-
measure for Tropos and UC models. The plot shows that
subjects using Tropos models answered better to the ques-
tionnaire given that the median values of F-measure are
higher for Tropos than for UC. This difference is significant
as the Wilcoxon test results in a p-value = 0.042. Thus, the
first null hypothesis can be rejected (see also the “Overall”
raw in table 2).

o] p— p—
5 ° S
@
<) —_— o | _—
~ ! ~
g e ’—‘—‘ o 9
8 o | ; £ ©
£ ° : ; =
0 | | (=3
uwoe ' red
ha (=} _—
o <
® °
o ° o |
‘ 7 ® : ‘
TROPOS uc TROPOS uc
Treatment Treatment

Figure 2: Boxplots of F-measure (left) and boxplots
of time needed to perform the tasks (right).

We took a closer look at the results, separating the three
different comprehension levels (the first 3 rows in table 2).
For consistency, Tropos outperforms UC while for under-
standability and modifiability the differences are not signif-
icant. Thus, we decided to take a closer look at the two dif-
ferent cases separately (results presented in table 3). We can
see that indeed usually Tropos outperforms UC, but for the
individual systems the differences are not significant. Turn-
ing to the comprehension levels we see that with the “mss”

2Measuring separately the statistical significance of preci-
sion and recall we obtained a p-value = 0.23 for precision
and a p-value = 0.017 for recall.

2327

Table 2: Experiment results.

F-Tropos F-UC p-value
Consistency 0.72 0.58 <0.01
Understandability |0.79 0.70 0.13
Modifiability 0.56 0.57 0.90
Overall 0.71 0.62 0.04

case Tropos outperforms UC for the first two levels while
with the “eRest” case the differences are not significant. For
the modifiability level, the results are mixed: in one case
Tropos seems better and in the other UC, but in both cases
the differences are not significant. Still in general, Tropos
seems indeed to outperform UC, but more in-depth anal-
ysis is required for better understanding the results before
carrying out a large scale experiment. Note that the small
number of participants may also be a reason for insignificant
results in this case.

However, what seems to be a better performance of Tropos
comes with a cost. The right diagram in Figure 2 reports
boxplots of the time needed to answer the questionnaire in
both methods. It is clear that the time to answer the ques-
tionnaire is larger with Tropos than with UC. Considering
the medians the difference in time between the two methods
is 10 minutes. However, the difference is not significant as
the Wilcoxon test results in a p-value = 0.07. Thus, the
second null hypothesis can not be rejected.

4.2 Threats to validity

As usual in controlled experiments, we identified the main
threats to the validity [17] of our results: construct, internal,
conclusion, and external validity threats.

Construct validity threats concern the relationship be-
tween theory and observation. They are mainly due to the
method used to assess the outcomes of tasks. The measure-
ments we conceived — comprehension questions in different
categories — are as objective as possible.

Internal validity threats concern external factors that may
affect a dependent variable. We used two systems similar in
complexity and domains well-known to all subjects. Ques-
tions were carefully chosen and models double-checked by
two of the authors. Moreover the design is a one-factor
balanced experiment design with random assignments that
balances individual factors and learning effects. Another in-
ternal threat to the validity may be the background of the
subjects. Even though the subjects are supposed to have
the same (theoretical) level of knowledge, there may be dif-
ferences in their performance due to work experience. How-
ever, the impact of these differences could not be assessed
and since the experiment within subjects, this should not
have impacted the results, but may need to be considered
in the future.

Conclusion validity concerns the relationship between the
treatment and the outcome. The statistical analysis is per-
formed mainly using non-parametric tests that do not as-
sume data normality.

FEzternal validity concerns the generalization of the find-
ings. The main threat in this area stems from the type
of subjects. They are bachelor students with not much (but
same level) experience in requirements. Only further studies
may confirm whether the results obtained can be generalized
to more experienced subjects (e.g., professionals).

2328

S. RELATED WORK

The benefits and limitations of both goal-oriented and
scenario-based requirements engineering approaches have
been discussed in different works (e.g., [15]). The main
strengths of goal-oriented approaches mentioned in the liter-
ature are: (1) they make the requirements engineers focus on
the problem domain and the needs of the stakeholders, (2)
they cover both functional and non-functional requirements,
and (3) they address various kinds of conflicts, as well as
correctness and completeness concerns. However, goals are
sometimes hard to elicit, since stakeholders may have diffi-
culties expressing them in an abstract form. Scenario-based
approaches, on the other hand, are rich, informal, and used
in other fields as well. Nevertheless, several problems with
scenarios in the context of requirements engineering have
been identified, most notably: (1) they are inherently par-
tial, raising a coverage problem, (2) they may raise a combi-
natorial explosion, as scenarios are specified at the instance
level, and (3) scenarios leave required properties about the
intended system implicit and neglect non-functional require-
ments.

Evaluation of approaches in the two modelling paradigms
has been made using different comparison criteria. In [9], a
comparative study has been made, in order to help practi-
tioners choose an appropriate technique for their project.
The main conclusion in this paper is that the most ap-
propriate requirements engineering paradigm would be a
”golden combination” of both goal-oriented and scenario-
based approaches, since they are complementary to each
other. [13] also goes in this direction, suggesting definition
of bi-directional coupling between scenarios and goals. Us-
ing an exemplar from the health care domain, [5] compares
an agent-/goal-oriented approach, i*/Tropos, and an object-
oriented (scenario-based) method, UML/RUP. The conclu-
sions here are that object-orientation is not sufficiently ef-
fective for representing and analyzing complex situations,
whereas agent-/goal-orientation suffers from a number of
pragmatic concerns, such as learning curve and availability
of efficient tools.

Our work aims at empirically justifying the aforemen-
tioned benefits and limitations of both requirements mod-
elling paradigms, using representative methods from both
categories. From the first pilot experiment, reported in this
paper, we can already see that the general comprehension
of Tropos models is better than that of Use Case models.
In particular, the consistency between textual descriptions
of the intended system and requirements models, which is
in the core of different requirements engineering tasks, is
significantly better with Tropos.

6. CONCLUSION AND FUTURE WORK

In this paper we presented the design and preliminary re-
sults of an experiment to compare two state-of-the-art visual
methods for requirements modelling of software systems:
Use Cases and Tropos Late Requirements. We adopted a
one-factor balanced experiment design with two treatments.

We focused on two variables: the comprehensibility level
of the requirements models in the two methods and the time
required for consistency evaluation, understanding and up-
dating. The experiment was conducted with 19 bachelor
students acting as requirements analysts who worked on the
models related to two different exemplar software systems.

Table 3: Detailed experiment results separated according to systems.

eRest mss

F-Tropos F-UC p-value F-Tropos F-UC p-value
Consistency 0.71 0.57 0.15 0.73 0.59 <0.01
Understandability |0.84 0.86 0.49 0.75 0.52 <0.01
Modifiability 0.73 0.58 0.22 0.41 0.55 0.20
Overall 0.76 0.67 0.07 0.66 0.57 0.08

Results show that Tropos seems more effective than Use
Cases in terms of comprehensibility. This result is further
strengthen by the fact that the subjects had been familiar
with UML in general and Use Cases in particular prior to
the experiment, as opposed to Tropos which they learned
towards the experiment only. However, a closer look re-
veals some interesting issues regarding possible differences
between the different levels of comprehensibility as well as
the two cases that resulted in different scores. This may also
be attributed to the small number of participants (when
looking at the two cases individually). In any case, what
seems as improved performance comes with a cost: partici-
pants spent more time performing the required tasks using
Tropos. This may be attributed to the fact that they had
considerably less experience in using Tropos compared to
UcC.

As future works we plan to complete the analysis of the
collected data considering also the confounding factors and
to extend the experiment to a larger number of subjects.
Moreover, it would be interesting to further refine the design
of the experiment in order to explore in detail the compre-
hensibility when the subjects have to perform different tasks
of analysis and construction of the requirements models.

7.
1]

REFERENCES

G. Booch, I. Jacobson, and J. Rumbaugh. The Unified
Modeling Language User Guide (Second Edition).
Addison-Wesley, 2005.

P. Bresciani, P. Giorgini, F. Giunchiglia,

J. Mylopoulos, and A. Perini. Tropos: An
Agent-Oriented Software Development Methodology.
Autonomous Agents and Multi-Agent Systems,
8(3):203-236, July 2004.

J. Castro, M. Kolp, and J. Mylopoulos. Towards
requirements-driven information systems engineering:
the tropos project. Information Systems,
27(6):365-389, 2002.

A. Dardenne, A. van Lamsweerde, and S. Fickas.
Goal-directed requirements acquisition. Science of
Computer Programming, 20(1-2):3-50, 1993.

L. M. C. Filho, V. Werneck, J. Amaral, and E. S. K.
Yu. Agent/goal orientation vs object orientation for
requirements engineering: A practical evaluation using
an exemplar. In WER’2005, pages 123-134, 2005.

E. Kavakli. Goal-oriented requirements engineering: A
unifying framework. Requirements Engineering
journal, 6(4):237-251, 2002.

M. Kim, S. Park, V. Sugumaran, and H. Yang.
Managing requirements conflicts in software product
lines: A goal and scenario based approach. Data &
Knowledge Engineering, 61(3):417-432, 2007.

2]

3]

[4]

[5]

(6]

[7]

(10]

(11]

(12]

2329

[8] L. Kuzniarz, M. Staron, and C. Wohlin. An empirical
study on using stereotypes to improve understanding
of UML models. In 12th IEEE International Workshop
on Program Comprehension (IWPC’04), pages 14-23.
IEEE CS, 2004.

S. Misra, V. Kumar, and U. Kumar. Goal-oriented or
scenario-based requirements engineering technique -
what should a practitioner select? In Canadian
Conference on Electrical and Computer Engineering,
pages 2288-2292, 2005.

J. Mylopoulos. Information Modeling in the Time of
the Revolution. Inf. Syst., 23(3-4):127-155, 1998.

B. Nuseibeh and S. Easterbrook. Requirements
Engineering: a roadmap. In Proceedings of the
Conference on The Future of Software Engineering
(ICSE’00), pages 35-46, 2000.

F. Ricca, M. Di Penta, M. Torchiano, P. Tonella, and
M. Ceccato. The role of experience and ability in
comprehension tasks supported by UML stereotypes.
In Proceedings of the 29th International Conference on
Software engineering (ICSE’2007), pages 375-384.
IEEE Computer Society, 2007.

C. Rolland, G. Grosz, and R. Kla. Experience with
goal-scenario coupling in requirements engineering. In
Proceedings of IEEE International Symposium on
Requirements Engineering, pages 74-81, 1999.

A. Sutcliffe. Scenario-based requirements engineering.
In Proceedings of the 11th IEEE International
Conference on Requirements Engineering (RE’2003),
pages 320-329, 2003.

A. van Lamsweerde. Requirements engineering in the
year 00: a research perspective. In Proceedings of the
22nd International Conference on Software
engineering (ICSE’2000), pages 5-19, 2000.

A. van Lamsweerde. Goal-oriented requirements
enginering: a roundtrip from research to practice
[enginering read engineering]. In Proceedings of the
12th IEEE International Conference on Requirements
Engineering (RE’2004), pages 4-7, 2004.

C. Wohlin, P. Runeson, M. Hést, M. Ohlsson,

B. Regnell, and A. Wesslén. Ezxperimentation in
Software Engineering - An Introduction. Kluwer
Academic Publishers, 2000.

E. Yu. Modelling Strategic Relationships for Process
Reengineering. PhD thesis, University of Toronto,
Department of Computer Science, University of
Toronto, 1995.

