
Icon Scanning: Towards Next Generation QR Codes

Itamar Friedman
Technion

Haifa, Israel
itamarf@technion.ac.il

Lihi Zelnik-Manor
Technion

Haifa, Israel
lihi@ee.technion.ac.il

Abstract

Undoubtedly, a key feature in the popularity of smart-
mobile devices is the numerous applications one can install.
Frequently, we learn about an application we desire by see-
ing it on a review site, someone else’s device, or a maga-
zine. A user-friendly way to obtain this particular applica-
tion could be by taking a snapshot of its corresponding icon
and being directed automatically to its download link. Such
a solution exists today for QR codes, which can be thought
of as icons with a binary pattern. In this paper we extend
this to App-icons and propose a complete system for auto-
matic icon-scanning: it first detects the icon in a snapshot
and then recognizes it.

Icon scanning is a highly challenging problem due to
the large variety of icons (∼500K in App-Store) and back-
ground wallpapers. In addition, our system should further
deal with the challenges introduced by taking pictures of a
screen. Nevertheless, the novel solution proposed in this pa-
per provides high detection and recognition rates. We test
our complete icon-scanning system on icon snapshots taken
by independent users, and search them within the entire set
of icons in App-Store. Our success rates are high and im-
prove significantly on other methods.

1. Introduction
In recent years, the concept of information transfer via

visual search is becoming progressively more common. For
example, in SnapTell [5] the user snaps a picture of the
cover of a book or DVD and the system automatically rec-
ognizes the relevant product and delivers its related infor-
mation. Google-Goggles [3] recognizes text, landmarks and
certain objects. QR codes [1] are binary patterns that one
snaps in order to be directed to a relevant link. As seen
in Figure 1, QR codes are not visually appealing. Nev-
ertheless, the increasing popularity of QR codes suggests
this form of visual search is being endorsed by the crowds.
Hence, we wish to adopt this idea and extend it to general
icons. In particular, our solution focuses on iOS apps’ icons.

Current solution Our suggestion
CVPR QR-code CVPR Icon

Figure 1. From QR-codes to icons. Nowadays to quickly get to
the CVPR web-page one can scan its corresponding QR code. In-
stead, we propose scanning the conference icon.

Scanning Recognition result
Figure 2. App-scanning. In our system downloading an appli-
cation amounts to hovering over the corresponding icon with the
mobile device (left). Our system automatically detects and recog-
nizes it (right).

In this paper we describe an “App-scanner”. As illus-
trated in Figure 2, to download an application to one’s mo-
bile device all that needs to be done is to hover with the de-
vice’s camera in-front of the corresponding icon, or to take
a snapshot of it (same methodology as for QR codes). The
system then automatically detects the icon in the snapshot,
and recognizes it within the entire App-Store icon database.

A first attempt in this direction has been proposed by
AppSnap [2] – an iPhone application that lets the user install
any application by taking a picture of its icon. AppSnap
does not address detection. Instead, the user is requested
to manually mark the outline frame of each snapped icon.
A test we held showed that when given accurately marked
icons, AppSnap’s icon recognition rates are high, which we
find very encouraging. However, we further noticed that
when the accuracy of the icon’s snapshot is reduced, e.g,.
when 5% of the snapped icon is missing or replaced with

part of the background wallpaper, the recognition rates drop
drastically to almost null. Therefore, AppSnap recognition
system is not robust enough to be part of a complete scan-
ning system. Applications such as Google-Goggles [3] and
TinEye [6] do not address icon detection and therefore are
confused by the pattern of the background wallpaper. Fur-
thermore, they are not designed to handle the noise intro-
duced when taking pictures of a screen.

The first contribution of this paper is a novel algorithm
for automatic detection of icons in a snapshot (Section 2).
This removes the need for manually marking the icon’s
boundary, thus, facilitating significantly the user experi-
ence. To handle the large variety of icon and background
patterns we first apply multiple different boundary detec-
tors, and then aggregate and prune them to obtain the final
result. Our experiments show this leads to high detection
rates in real images taken by multiple different users.

The second contribution of this paper is a recognition
system for icons that originate from photos of screens (Sec-
tion 3). We analyze the visual properties unique to App-
icons and propose a descriptor, that outperforms conven-
tional descriptors such as SIFT [16, 7]. We further explore
(in Section 3.2) the challenges introduced when handling
pictures of screens and suggest a solution that is robust to
them. Our experiments show this leads to recognition rates
significantly higher than those of AppSnap.

Finally, the third contribution of this paper is present-
ing a complete system for icon-scanning. We have imple-
mented the system as an App for iPhone and iPad, installed
it on several devices, and let independent users play with it,
thus collecting data for testing. In Section 4 we discuss im-
plementation details. Experimental validation is presented
throughout the paper.

2. Icon detection
Detecting icons within a screen image is a challenging

variant of image segmentation and boundary detection. The
difficulty stems from the variability in patterns and the low
quality of screen images taken by a hand-held device. Fur-
thermore, as is customary with QR codes, we want to detect
the icon while the camera hovers over it, i.e., the user need
not take a snapshot. Instead, our system should search for
an icon continuously and take a snapshot when one is de-
tected. This implies icon detection should run in real-time.
Accordingly, the solution proposed in this section presents
both high success rates as well as real-time performance.

By manually analyzing multiple screen images we have
noticed that often the icon is easily separable from the back-
ground in one color channel, while in the other channels the
boundaries are less vivid. We cannot, however, tell in ad-
vance which are the useful channels. Therefore, inspired
by [17], we first generate multiple boundary maps by an-
alyzing different color channels via several edge detectors.

Next, the detected edges are merged into contours which
serve as candidates for the icon boundary. Finally, we rely
on the unique structural properties of iOS’s App-icons to
determine the final detection of the icon’s boundary. We
next describe each step in detail.

Edge detection: Our initial step is edge detection. Re-
calling our detection should run in real-time we cannot use
any sophisticated edge detectors such as [8]. Instead, we
adopt the time-efficient Canny edge detector [9]. We de-
note by C1,...,9 the RGB, HSV and Lab color channels of
the input image. We compute the Canny edge response
of each of the 9 color channels Ci. Next, we produce 50
edge images Ei

1,...,50 for each channel Ci by thresholding
the response image at [5, 10, . . . , 250]. We use image open-
ing and closing operations to reduce noise and connect be-
tween nearby edges. As shown in Figure 3, each edge im-
age Ei

j reveals different boundaries. Hence, we further take
m = 50 pseudo-random linear combinations of the edge
images Ei

j , yielding our final edge images E+
1,...,m.

Finding potential contours: The next step is aggregating
the detected edge pixels into contours PC1,...,P , that serve
as candidates for the icon boundary. This is performed in
two stages, as shown in Figure 4. First, we join edge pix-
els into contours, and exclude over-fragmented contours.
Then, recalling that App-icons have a characteristic shape,
we compute the convex hull of each contour and exclude
candidates whose shape contradicts these characteristics.

We connect edge pixels (presented in Figure 4.(b)) into
contours using Suzuki’s contour detector [19]. As shown in
Figure 4.(c), this step yields multiple contours for each edge

(a)

(b)

(c)
Figure 3. Edge images. (top) Input image. (middle) Examples of
edge responses Ei

j obtained for different color channels. While
some boundary pixels are detected in one response they could be
missed in another. Hence, no single edge response suffices for
boundary detection. (bottom) Examples of combined edge re-
sponses E+

1,...,m. By taking linear combinations of the initial edge
responses we wish to obtain edge images that include all boundary
pixels (as well as other edges).

Input Edges Initial contours Convex-hull fitting Potential contours Final detection result
(a) (b) (c) (d) (e) (f)

Figure 4. Finding candidate contours. (a) Input images. (b) Examples of our combined edge images E+. Many edge pixels do not belong
to the icon boundary. (c) The edges are merged into contours. (d) A convex hull is fitted to each contour to close gaps. Over-fragmented
and concave shapes are excluded. (e) The final candidate boundary contours PC1..P , obtained by excluding contours whose shape does
not match that of an icon. It can be seen that only closed polygons with a small number of segments are kept. Most of the potential contours
fit the icon’s boundary very well. (f) our grading method chooses the best candidate bounding-box.

image, of all shapes and forms. To exclude overly frag-
mented contours we fit each contour with a polygon [11]
and filter out contours whose corresponding polygon has
over 64 line segments (this number was tuned empirically).
This process rejects more than 40% of the contours.

Finally, we adopt the following assumptions: (1) Icons
have convex structures. (2) May have non-continuous
edges. (3) Should have a small number of ribs. There-
fore, we compute for each contour a convex hull approxi-
mation [18], thus closing non-continuous edges. Following
assumptions (1) and (2) we reject concave contours. Ex-
ample results are shown in Figure 4(d). Furthermore, To
conform with assumption (3) we simplify each convex-hull
by fitting to it a polygon [11] with no-less than 4 line seg-
ments. This yields the colored potential contours PC1,...,P

displayed in Figure 4.(e).

Selecting the best contour: To choose the best candidate
we note that icons can appear as squares, or as mild affine
transformations of squares. Therefore, for each candidate
contour PCp we find the tightest rectangular bounding box
BBp. We then evaluate its squareness by computing:

AreaRatiop =
Area(PCp)

Area(BBp)

RibsRatiop = 2 ·
∣∣∣∣width(BBp)− height(BBp)

width(BBp) + height(BBp)

∣∣∣∣ .
We grade each candidate as follows:

Gradep = AreaRatiop − λ ·RibsRatiop,

where λ = 0.4. The bounding box with the highest grade is
selected as the final bounding box, see Figure 4.(f).

Recall, that our detection should run continuously in
real-time, while the user hovers with the camera over the
icon. Therefore, not all input images actually include an
icon. Our system should reject such images. Empirical
testing revealed that the detection is trustworthy when 0.92
< RibsRatio < 1.08 and AreaRatio > 0.7. We hence ex-
clude images whose best bounding box does not comply
with these values, and declare a detection otherwise. When
no bounding box passes this test we repeat the entire process
using a new set of edge images E+. We allow 4 attempts of
the said above and ask for user intervention if all failed.

Empirical evaluation of icon detection To evaluate our
approach we have collected a database of 900 snapshots,
taken by different users and from different screens, while
using our application. 500 of the snapshots include an icon
(of 228 different apps) and 400 do not. We then manu-
ally created ground-truth masks for each snapshot. This
database will be made public 1.

Running on Intel(R) Xeon(R) CPU E5410 @ 2.33GHz,
1.7G RAM, while testing 128× 128 images we show a fast
detection run time of 148ms ± 42ms when an icon exists
in the image and 259ms ± 3ms when no icon exists. The
respectively large variance, and the difference between the
two cases derives from the auxiliary mechanism that auto-
matically enlarges the set E+ if no icon was found.

Table 1 summarizes quantitatively the results obtained
by our system. As can be seen, the detection rates are ex-
tremely high. Most importantly, we never declare an icon
detected when there isn’t one in the image. This is an im-
portant behavior as we do not wish the system to take a
snapshot and head on to recognition unless an icon had
correctly been detected. Missing an icon when it exists

1“http://cgm.technion.ac.il/”

True Positive 94.2%
True Negative 100%
False Positive 0%
False Negative 5.8%

Table 1. Icon detection results. Our system makes no false posi-
tive detections while it detects most of the icons.

(false-negative) is less of a problem. In such cases we re-
sort to asking the user to either try again or to mark the
icon manually. We further measured the accuracy of the
detected boundary using the scheme displayed in Figure 5.
The boundary detection accuracy is high, providing a good
starting point for recognition.

True Positive 94.58%
True Negative 94.57%
False Positive 5.42%
False Negative 5.43%

Figure 5. Accuracy of icon boundary detection. When an icon is
detected we measure the accuracy of the boundary by comparing
the outline of detected icon with the ground-truth mask. As can be
seen, our system detects the icons with high precision.

Figure 6 visualizes some successful detection results.
Even though the images are of low quality, as screen snap-
shots often are, and in spite of the challenging background
patterns, our algorithm successfully detects the icons.

Figure 6. Detection results. (top) Input images suffer from se-
vere degradation due to the screen snapshot process. (bottom) Our
detection results - our algorithm successfully detects the icons in
spite of the challenging input.

3. Icon recognition
Given the detection result our next goal it to find the cor-

responding icon in the App-Store database. This problem
is somewhat related to finding similar images [14, 15] or
near-duplicates [10] where visually resembling images are
sought. However, icon recognition is different. As shown
in Figure 7, often totally different Apps have highly simi-

TangoVideo FindEurope TouchWords
Figure 7. Similarity between icons of different Apps. Often
icons of different Apps vary only slightly. Methods for finding
similar images aim at being robust to such gentle variations and
hence are not a good fit for the problem. Icon recognition requires
capturing these subtle differences.

lar icons. While finding similar-images and near-duplicates
aim at robustness to small variations, icon recognition re-
quires capturing the differences. The intuitive solution of
correlation is unsatisfactory since it requires correlating
each query with the multitude of icons in the database, i.e.,
overly long run-time which is not acceptable for real appli-
cations. We hence seek a more compact representation for
icons that will lead to efficient recognition.

To evaluate the quality of each suggested representation
we have collected a set of 250 correctly detected icons (of
42 different apps) and search them within the entire set of
∼ 500K icons in App-Store.

3.1. A descriptor for icons

Capturing appearance: Our goal is to find a compact
image descriptor that captures subtle differences between
icons. This implies one should avoid representations based
on a sparse set of features, such as Bag-of-Words [13]. In-
stead we wish to define a descriptor based on the entire icon
data. One of the most successful descriptors of this type
is SIFT [16] and its color-based version Color-SIFT [12].
These descriptors are known to show minor performance
reduction due to small changes in the position of the inter-
est point. To test its usefulness for icon recognition we treat
the icon as a single feature and compute a single SIFT de-
scriptor over the entire icon region. As reported in Table 2
the resulting recognition rates are mediocre.

Analyzing the causes of failures we have made two ob-
servations, which led to two modifications of the SIFT de-
scriptor. First, the SIFT descriptor includes a Gaussian
weighting which assigns low importance to pixels far from
the icon center. This is not well suited for icons, which oc-
casionally differ only in the boundaries. For example, as
shown in Figure 8 the Cassina icon differs from the Imasys
icon in the white text near its top border. Similarly, Shazam
for iPad differs from Shazam for iPhone in the surrounding
gray outline. Hence, the first modification we apply is to
remove the Gaussian weighting step in SIFT.

Second, when dealing with icons one should exclude
the corners of the image. This is since the corners of the
icons are rounded, thus the image includes background pix-
els near them. Furthermore, as illustrated in the right panel

Cassina Imasys

Shazam iPad-Shazam
Figure 8. Icon boundaries. (left) Often icons differ only in regions
close to their boundary. A good descriptor should hence consider
the entire icon without reducing the importance of boundary pix-
els, as is done in SIFT. (right) Frequently, various visual symbols
are attached to one of the icon’s corner, hence, the corner regions
should be excluded from the icon descriptor.

Descriptor Length Correct best Correct match
match within top 50

AppSnap 64.4% 69.6%
SIFT 128 68.8% 82.8%
Color-SIFT 384 69.6% 84%
Modified-SIFT 96 76% 86%
Color-Modified-SIFT 168 77.2% 88.4%

Table 2. Recognition results for various descriptors. Top 3 rows
show recognition results of previous approaches. The bottom rows
show results obtained with the descriptor proposed here. As can be
seen, our modification to the SIFT descriptor leads to a significant
improvement in finding the correct match.

of Figure 8 often visual symbols are attached to one of the
icon corners, e.g., to mark the number of messages wait-
ing within the App. Therefore, the second modification we
apply to SIFT is excluding the corner regions. Rather than
using all the bins of the standard 16 × 16 SIFT grid, we
use only 12 bins, excluding the corner bins. This implies
our Modified-SIFT descriptor is a vector of length 96 rather
than 128. As shown in Table 2, testing with this Modified-
SIFT descriptor improved recognition rates significantly in
comparison to the standard SIFT.

Capturing color: So far our descriptor was based on im-
age gradients only and hence does not capture variations in
color. As shown in Figure 9, color is often an important
cue for differentiating between icons. To incorporate color
information we could adopt the Color-SIFT [12] approach
and compute our descriptor on three color channels obtain-
ing a 96 × 3 = 288 long vector. Furthermore, Color-SIFT
is based only on gradients, hence, it fails to distinguish be-
tween icons with very low frequencies, such as a flat green
icon and a flat red icon. We next propose a more compact
representation to capture color, which tackles this problem.

We represent the icons in the Lab color-space, centering

Shazam Encore Shazam Red
Figure 9. Color differences. Some icons have a very similar
shape, but differ in color. A good descriptor must therefore con-
sider also color information.

and normalizing each channel around 0 (i.e., each channel
is spanned between −1 and 1). Even good quality images
taken of screens often suffer from color obliquity. We have
noticed, however, that typically the deformation in colors
is exhibited mostly in the low values of each of the Lab
channels. That is, when two icons differ in the close-to-|1|
values of the Lab channels they are more likely to be dif-
ferent, than when they differ in the close-to-0 values. To
give more importance to the extreme color values we com-
pute for each region the absolute mean positive value and
absolute mean negative value for each channel. This yields
6 values per region. When comparing descriptors, taking
the L2 distance between the absolute mean values empha-
sizes the extreme values more than the low values. Our final
icon descriptor, named Color-Modified-SIFT is therefore of
length 96 + 6 × 12 = 168. It further improves recognition
rates, as shown in Table 2.

3.2. Dealing with screen images

The query icons are typically captured by taking snap-
shots of a screen. As illustrated in Figure 10 the snapped
icons are of deteriorated quality, more than a slight obliq-
uity. Some regions are over-saturated and blur is evident
due to the unstable hand motion when taking a picture with
a hand-held device. These deformations could interfere
with recognition. For example, out of the six screen snap-
shots in Figure 10 both TinEye [6] and Google-Goggles [3]
successfully recognize only two.

Figure 10. Noisy input. (top) Three original icons. (bottom) Ex-
amples of screen snapshots of these icons. Since the query icons
are obtained by taking snapshots of a screen their colors are often
wrong, they could be saturated and/or blurred.

To overcome these phenomenons one could try to deblur
the query [22] and correct its color by removing saturated
regions [21]. We have found that common algorithms do
not always perform well for our purposes since often ring-
ing effects are introduced in the process, resulting in wrong

descriptors. Instead we adopt the opposite approach. Rather
than “cleaning” the query we add artifacts to the database.

For each original icon in the App-Store database we gen-
erate five deformed versions. These instances are obtained
by adding different levels of blur and by modifying the im-
age color curve to be more or less saturated. Examples of
the deformations we introduce are presented in Figure 11.
Our final database consists of those five deformed versions
of each icon. The color deformations we utilize are learned
from examples, as described next.

Original Color-deformed icons added to our DB
Figure 11. Extended database. To enable recognition of noisy
input images we add to the database color-deformed versions of
the original icons.

Learning deformation models. To learn the best set of
deformations we have collected a set of 250 real screen
snapshots of icons, taken by our users. For each snapshot
we have found the corresponding original icon, resulting
in a training set of 250 image pairs. Our system considers
two types of deformations: blur and tone-mapping transfor-
mations. The best K deformation models are then learned
via a two stage approach. The first stage searches greed-
ily the space of transformations for a good representative
set. To guarantee reasonable run-time, we consider at this
stage only transformations with a small number of param-
eters. The second stage refines the initial models using an
EM-like approach.

Greedy initialization. We model blur as smoothing the
image with a Gaussian kernel with standard deviation σ.
Color transformation is modeled as multiplying each color
channel c by a constant αc. For each original icon we gener-
ate multiple deformed versions by combining blur and color
transformation. In our implementation we use three blur
kernels with σ = 0.65, 0.95, 1.25 and 14 values for each
color multiplier αc in the range [0.65, 1.3]. We consider
only transformations where |αi − αj | < 0.25, hence, the
total number of deformations we generate for each original
icon is 3612.

Denote by Io an original icon and by Is the correspond-
ing screen snapshot. Let Xi, i ∈ [1, 3612] be the generated
deformed versions of the icon with deformation parameters
Ti = [α1

i , α
2
i , α

3
i , σi]. To find the best representative set of

deformations we compute the similarity between each noisy
snapshot Is to all the corresponding deformed icons Xi:

sim(Is, Xi) = exp

(
−‖Is −Xi‖2 − τ

τ

)
where τ = mini,j‖Is(j) − Xi(j)‖2 is the minimum dis-
tance over all the icon pairs j in the training set, over all
color deformations Ti. We then compute for each deforma-
tion Ti the total similarity over all icon pairs j:

totalsim(Ti) =
∑
j

sim(Is(j), Xi(j))

A good representative set of transformations Ti is ob-
tained by finding all local maxima points of totalsim over
the parameter space Ti. Note, that the number M of local
maxima points is data dependent. To find the best com-
bination of K transformations we search greedily over all
possible sets of K transformations, and select the combi-
nation with maximal totalsim. Our experiments revealed
that K = 8 is sufficient (adding more transformations re-
sulted in negligible increase in totalsim). However, due
to run-time and memory limitations, in our implementation
we use K = 5.

K-models clustering. The transformations obtained in
the previous step were selected among a discrete set of lim-
ited color deformations. To further refine the set of transfor-
mations we consider, we next propose an EM like approach
for learning the best set of K models. First, for each origi-
nal icon in our training set we generate K blurred versions
using the gaussian kernels obtained in the previous stage.
We extend our training set to include these blurred versions
resulting in 250 groups of K + 1 images for training, i.e.,
each group consists of a screen snapshot andK blurred ver-
sion of the original icon.

Next, to allow for more elaborate color deformations
than those of the previous stage, we consider all possible
tone-mapping functions. This is done as follows. All our
images are stacked column wise while concatenating the
three RGB color channels into a single column vector. For
each color channel c we construct a matrix representation
M c of size N2×256, where N is the number of pixels. We
set M c(p, q) = 1 if pixel p has intensity q in color channel
c, and 0 otherwise. Using this matrix representation, all pos-
sible tone mappings can be obtained by taking the product
between M c and a vector βc:

I =

RG
B

 =

MR 0 0
0 MG 0
0 0 MB

βR

βG

βB

 =Mβ (1)

Figure 12. Icon scanning. Examples of queries and the retrieved results. Even though the input is often saturated or blurred the system
successfully detects the icons, and others similar to it. More results including failures can be found in the supplemental.

In this representation, when the left-hand-side vector I and
the matrix M are constructed of the same image, there ex-
ists a solution for β which guarantees equality. When I and
M are constructed from different images, we can find the
best solution for β in the least-squares sense and compute
the representation error as:

Error = ‖I −Mβ‖2. (2)

We use this representation to model the transformation
between each snapshot image Is and the corresponding
original icon Io, by solving for β such that Is = M(Io)β.
Hence, finding a representative set of K deformations re-
duces to finding a set of K vectors βk. This is done via an
EM like framework.

Let rjk be an indicator function equal to 1 when image
pair j is associated with model k. We wish to minimize the
following objective:

J =

N∑
j=1

K∑
k=1

rjk ‖Is(j)−M(Io(j))βk‖2 (3)

where N is the number of image groups in our training set.
We initialize the vectors βk according to the K transfor-

mations computed in the previous stage. Then, in the Ex-
pectation phase, each pair of images from our training set
is associated with the vector βk which yields the minimal
Error of Eq. (2):

rjk =

{
1 if (k = argminlError(βl))
0 otherwise (4)

In the Maximization phase we can separate the problem into
K optimization problems:

Jk =
∑
j

rjk · ‖Is(j)−M(Io(j))βk‖2 . (5)

Correct best match within top 1 top 50
Database of original icons only 44.4% 50.8%
Our extended database 77.2% 88.4%

Table 3. Recognition results with and without our extension to the
database, using our Color-Modified-SIFT descriptor. This shows
our extension to the database is crucial for the system to function
successfully.

Setting the derivative of Jk to zero with respect to βk, yields
a set of linear equations that can be solved in closed form.

The proposed EM framework is guaranteed to converge
to a local minimum. We initialize it wisely using the trans-
formations learned in the previous stage. Our empirical
evaluation indicates that we obtain a good minima point.

Empirical evaluation of icon recognition The recog-
nition rates presented in Table 2 were all obtained us-
ing the extended database. When removing the deformed
icons from the database and testing with only the original
icons, the success rates drop dramatically for all descrip-
tors. See Table 3. We hence conclude that using the ex-
tended database is crucial for obtaining acceptable recogni-
tion rates.

4. Implementing a complete system

The detection and recognition algorithms have been im-
plemented in C++ and use openCV2.2 [20]. Our system has
been successfully installed and tested on various versions of
iPhone and iPad.

The detection module requires 330ms on iPhone4 to pro-
cess an image. Once an icon has been detected its descrip-
tor is computed (which takes 90ms) and sent to a server

for matching against the database. Matching is performed
using the MySQL tree [4] constructed a-priori for the entire
database. The entire recognition process takes∼ 4 seconds.

Figure 12 presents a few of our results (more examples
are in the supplemental). Note, that our system finds the
correct match even-though the input image is of low quality.
The retrieved icons are often highly similar visually, which
suggests our descriptor captures appearance nicely.

Finally, we further tried to evaluate the icon-scanning
performance of existing systems for visual retrieval. TinEye
is a web-app that allows users to search for similar images
to a selected input image. When provided with an image of
an original icon, TinEye usually successfully finds replicas
of its image on the web. However, when tested on real input
from our database, i.e., the queries were snapped of screens
by real users and are hence noisy, TinEye fails on almost all
of the examples we’re tried.

Google-goggles does not require a cropped icon as an in-
put in order to perform the recognition task. Nevertheless,
for fairness we have tried both cropped and un-cropped im-
ages of icons. Goggles shows a low success-rate and unsta-
ble results, as shown in Figure 13.

(a) (b) (c) (d)
Figure 13. Google-Goggles. (a) A successful recognition of twit-
ter. (b) Facebook icon mistakenly recognized as twitter. (c) Cut-
the-rope was successfully recognized. (d) A recognition failure of
a blurred Cut-the-rope icon.

5. Conclusion
In this paper we have described a practical novel solution

for automatic icon scanning. Our system first detects the
icon with a high success rate with no false alarms – doing all
that in real-time. Next, the system recognizes the detected
icon within the entire App-Store database in a few seconds.
The system has been installed on several devices and tested
by a number of independent users that reported high satis-
faction from its performance. An embodiment is released
as in app in App-Store, currently named “eyeconit”.

While the current system was designed and tested for
scanning App-icons, we consider it as the first step towards
a complete icon-recognition system. Our future goal is to
extend this and propose a more visually appealing alterna-
tive to QR Codes.

—————————————————————
Acknowledgements: This research is supported in part by
the Ollendorf foundation, the Israel Ministry of Science,
and by the Israel Science Foundation under Grant 1179/11.

References
[1] QR Code is registered trademark of DENSO WAVE INCOR-

PORATED. http://www.qrcode.com/. 1
[2] Appsnap ltd. www.getappsnap.com. 1
[3] Google ltd. - google mobile. google search app.

http://www.google.com/mobile/goggles/. 1, 2, 5
[4] Mysql - database software. down-

load.oracle.com/docs/cd/E17952 01/refman-5.1-en/mysql-
indexes.html. 8

[5] Snaptell inc. acquired by a9.com. www.snaptell.com. 1
[6] Tineye mobile, ide inc - the visual search company.

http://ideeinc.com/products/tineyemobile/. 2, 5
[7] A. E. Abdel-Hakim and A. A. Farag. Csift: A sift descriptor

with color invariant characteristics. CVPR (2), pages 1978–
1983, 2006. 2

[8] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour de-
tection and hierarchical image segmentation. PAMI, 33:898–
916, 2011. 2

[9] J. Canny. A Computational Approach to Edge Detection.
PAMI, 8(6):679–698, Nov. 1986. 2

[10] O. Chum, J. Philbin, and A. Zisserman. Near duplicate image
detection: min-hash and tf-idf weighting. Proceedings of the
British Machine Vision Conference, 2008. 4

[11] D. Douglas and T. Peucker. Algorithms for the reduction of
the number of points required to represent a digitized line or
its caricature. The Canadian Cartographer, 10(2):112–122,
1973. 3

[12] J. M. Geusebroek, R. van den Boomgaard, A. W. M. Smeul-
ders, and H. Geerts. Color invariance. IEEE Transactions on
PAMI, 23(12):1338–1350, 2001. 4, 5

[13] H. Jegou, M. Douze, and C. Schmid. Packing bag-of-
features. The 12th ICCV, pages 2357 –2364, 2009. 4

[14] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregat-
ing local descriptors into a compact image representation.
CVPR, pages 3304–3311, 2010. 4

[15] B. Kulis and K. Grauman. Kernelized locality-sensitive
hashing for scalable image search. The 12th ICCV, pages
2130 –2137, 2009. 4

[16] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision, 60:91–
110, 2004. 2, 4

[17] B. C. Russell, W. T. Freeman, A. A. Efros, J. Sivic, and
A. Zisserman. Using Multiple Segmentations to Discover
Objects and their Extent in Image Collections. CVPR,
2:1605–1614, Oct. 2006. 2

[18] J. Sklansky. Finding the convex hull of a simple polygon.
Pattern Recognition Lett, 1:79–83, 1982. 3

[19] S. Suzuki and K. Abe. Topological structural analysis of dig-
itized binary images by border following. CVGIP, 30(1):32–
46, 1985. 2

[20] willowgarage. http://opencv.willowgarage.com/. 7
[21] D. Xu, C. Doutre, and P. Nasiopoulos. Correction of clipped

pixels in color images. IEEE Transactions on Visualization
and Computer Graphics, 17(3):333 –344, march 2011. 5

[22] M. Zhao, W. Zhang, Z. Wang, and F. Wang. Spatially adap-
tive image deblurring based on nonlocal means. The 3rd
CISP, pages 853 –858, 2010. 5

