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Abstract

Self-organization in biological nervous systems during the lifetime is known to
largely occur through a process of plasticity that is dependent upon the spike-
timing activity in connected neurons. In the �eld of computational neuroscience,
much e�ort has been dedicated to building up computational models of neural
plasticity to replicate experimental data. Most recently, increasing attention
has been paid to understanding the role of neural plasticity in functional and
structural neural self-organization, as well as its in�uence on the learning per-
formance of neural networks for accomplishing machine learning tasks such as
classi�cation and regression. Although many ideas and hypothesis have been
suggested, the relationship between the structure, dynamics and learning per-
formance of neural networks remains elusive. The purpose of this article is
to review the most important computational models for neural plasticity and
discuss various ideas about neural plasticity's role. Finally, we suggest a few
promising research directions, in particular those along the line that combines
�ndings in computational neuroscience and systems biology, and their syner-
getic roles in understanding learning, memory and cognition, thereby bridging
the gap between computational neuroscience, systems biology and computa-
tional intelligence.

Keywords: neural plasticity, neural networks, gene regulatory networks,
learning, neural self-organization

1. Introduction

Understanding the principles behind the self-organization of biological ner-
vous systems is the key to understanding cognition. Generally speaking, neu-
ral self-organization can be studied from the evolutionary and developmental
perspectives. There were a number of major transitions or divergences in the
evolution of nervous systems, for example, from the di�used nervous structure
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in cnidaria to the bilaterally symmetric one in �atworm [1]. Computational
models have been built up for co-evolving the development of the neural system
and body plan of an animate based on primitive organisms such as hydra and
�atworm and the results suggest that energy e�ciency might be the most impor-
tant constraint in neural self-organization [2, 3]. In addition, a strong coupling
between the evolution of neural systems and body plan is also revealed [4, 5].

Meanwhile, increasing evidence has shown that adult brains undergo in-
tensive rewiring [6], which involves neural plasticity including the strengthen-
ing or weakening of existing connections, or even formation of new synapses
and elimination existing ones. Seminal studies by Merzenich and Kaas [7, 8]
demonstrated that once sensory nerves are severed, the cortical maps to which
they projected are subsequently reorganized to accept nerves from surrounding
nerves. This topographic adaptation can only be realized through neural plas-
ticity and indicates the experience-dependent nature of plasticity and its central
role in forming the basis of continual learning.

There has been a number of trend changes in the investigation of plasticity
models. Initially, the focus was to provide a stable, self-regulated formulation
of Hebbian learning [9, 10, 11]. Then, a shift towards spiking neural networks
had models of plasticity emerge that depended on the precise timing of spikes
between connected neurons [12]. More recently, all of these models have been
recognized as phenomenological approaches [13], and more biological, molecular
bases are being sought [14, 15]. Also, neuro-modulators are being included in
spike-timing models that add reinforcement capabilities on top of the purely
associative [16, 17].

While the high level functions of neuroplasticity � learning and memory
� are taken for granted, the suggested roles of plasticity in formally de�ned
neural network models are varied and often contradictory. In some cases, simply
applying models of plasticity to existing paradigms, such as reservoir computing,
has yielded improved results [18, 19, 20, 21]. Other studies [22, 23, 24, 25, 20, 26]
link the role of plasticity with increasing the mutual information in the signals
between connected neurons. Some claim that Hebbian plasticity thus increases
the correlation between neurons in a reservoir [27], while others suggest that
the neural activity is decorrelated and that this is, in fact, a desirable property
[28, 29]. All of this is in addition to the classically proposed purpose of Hebbian
learning as associative. Of course, there could be multiple roles that plasticity
has to play in actual Human learning, each emerging in certain situations. Here
we do not argue for one functional role in particular, but present a number of
viewpoints.

The increasingly complex and self-regulated biological models of plasticity
present a qualitatively di�erent approach to the statistical optimization methods
in machine learning. However, the success of these machine learning methods,
particularly the recent advances made in deep learning [30], cannot be ignored.
Somehow, the new, biologically inspired �ndings in neuroscience must be sys-
tematically incorporated into applied methods in order to realize more advanced
capabilities that it is clear many living beings possess.

This review focuses on the role of neural plasticity in dynamics, structure and
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functions rather than a detailed review of research on computational modeling of
neural plasticity only. Related reviews can be found of spike-timing dependent
plasticity [31] and plasticity dynamics in recurrent networks [32]. Reviews of the
reservoir computing paradigm [33, 34] are also relevant to much of the current
practical application of computationally modeled plasticity.

The rest of the paper is organized as follows. Section 2 describes reservoir
computing neural network models that have bene�ted from the application of
neuro-plasticty, and deep neural networks that have the potential to. Section
3 outlines the early progression of formally de�ned and naturally inspired plas-
ticity models. Section 4 focuses on some recent developments in plasticity that
capture more details observed in more recent biological experiments. Section
5 explores the functional roles that have been suggested for plasticity models.
Some important challenges for future research are raised and promising areas of
potential in the �eld are discussed in Section 6.

2. Neural Network Models

Two recent neural network models are described in this section. In di�erent
ways, they take inspiration from neural structures observed in the mammalian
cortex. However, while biologically motivated, both are also designed to work
algorithmically with machine learning principles on data classi�cation and pre-
diction tasks. We propose in this review, that these models are prime candidates
for being augmented with neural plasticity models in order to improve their per-
formance.

2.1. Recurrent Reservoir

Reservoir computing [35, 36] is a random projection paradigm in which a
randomly connected recurrent neural network transforms an input signal into
temporal, dynamic activity from which states are periodically 'read-out' and
used with standard regression to learn and predict supervised outputs. The
reservoir computing framework is illustrated in Figure 1.

There are two main �avors of the reservoir computing paradigm.

2.1.1. Echo State Networks

Echo State Networks (ESNs) [35] consist of arti�cial neurons, typically with
sigmoid or tanh activation functions. There are no variable time delays at the
neurons connections and the reservoir state is simply taken as the population
of neuron activation values within a single time-step.

2.1.2. Liquid State Machines

Liquid State Machines (LSMs) [36] consist of spiking neurons, in which an
excitable membrane is modeled and produces a sequence of timed spike activa-
tions in response to input stimuli. When taking the reservoir state, the spike
sequences must be converted into scalar values, typically by using a low-pass �l-
tering method. The connections are given varying delays to incorporate fast and
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Figure 1: Structural depiction of the Reservoir Computing architecture. The reservoir

consists of a randomly connected set of arti�cial or spiking neurons. The input vector is
fully or partially connected to a typically random subset of the reservoir nodes. The state
vector consists of scalar values and has the same dimension as the number of neurons in
the reservoir. If the reservoir consists of spiking neurons, the spike-train activity is typically
transformed to scalar values to produce the state vector. The readout is a single layer
perceptron, trained using gradient descent to produce a desired output.

longer-term dynamics to the recurrent activity. Synapses often use a dynamic
model of transmission between neurons, that further increases the long-term
dynamics of past activity in the network.

The potential for incorporating plasticity is greater for LSMs than it is for
ESNs due to the former include information in activation timings between neu-
rons as well as the strength of activation that ESNs rely on. Also, the neural
and synaptic models are far richer, with more parameters to a�ect plasticity in
activity-dependent ways.

2.2. Deep Belief Network

A deep belief network is a probabilistic, generative model that represents its
training data at multiple levels of abstraction. Sampled hidden layers can be
used to infer values of input and vice versa. In this way, a generative associative
memory exists that can be used to predict abstract features or input patterns.
To train weights, an e�cient learning algorithm is presented [30]. Figure 2
illustrates the structure and process. A contrastive divergence [37] procedure is
used to learn the weights layer by layer from the input to each additional hidden
layer. This learning procedure between pair-wise layers is termed a Restricted
Boltzmann Machine (RBM). Then, a �ne-tuning of the learned weights will
adjust them in a downward pass by starting with a high level state and adjusting
the bottom-up weights to maximize the likelihood of generating that state. So
far, this process is entirely unsupervised. It is possible to introduce supervised
learning by having target labels appended to the input of the highest hidden
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Figure 2: Deep Belief Network (DBN) illustration. The input vector, I , is the lowest layer,
followed by a number of hidden layers, h . Training is performed bottom-up, between pair-wise
layers, with the previously trained hidden layer becoming the visible input states to learn a
new layer of hidden causes. The bi-directional arrow in the Restricted Boltzmann Machine
(RBM) training procedure signi�es supervised gradient descent that iteratively maximizes the
likelihood of the hidden probability distributions to infer sampled input states.

layer. It is also possible to use the above described method to initialize a feed-
forward network that can be further trained with back-propagation.

3. Early Plasticity Models

3.1. Types of Neural Plasticity

There are various types of neural plasticity that have been observed in ex-
periments and thus also investigated in computational modeling. Generally
speaking, neural plasticity can be divided into the following three types.

• Synaptic plasticity. Synaptic plasticity means the strengthening or weak-
ening of the synapses that connect neurons and facilitate transmission
of electro-chemical signals [38]. The change in synaptic strength can be
caused by a change in the abundance of neuro-transmitter molecules at
the synapse, or by a rise or fall in conduction of post-synaptic receptors.
Any models that directly modify the connection strength between neurons
are examples of synaptic plasticity.

• Intrinsic Plasticity. Intrinsic plasticity denotes modi�cation of a neuron's
intrinsic ability to generate or propagate action potentials [39]. This pro-
cess is neuron wide and not synapse speci�c between two neurons. Intrinsic
plasticity is often taken to self-regulate a neuron's activity and to be in-
volved in a kind of homoeostatic mechanism to keep the activity within a
practical range.
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• Homeostatic plasticity. Modeling studies have demonstrated that changes
in synaptic weight based on correlations between pre- and post- synaptic
activity can be inherently unstable, as increases or decreases in synaptic
weights cause increases or decreases in post- synaptic �ring rate that sub-
sequently generate further increases or decreases in synaptic weights in
a positive feedback loop. Hence, homeostatic processes that regulate the
total synaptic drive to a neuron and / or the long-term average �ring rate
of a neuron are critical for the stable operation of neural networks.

Two principal homeostatic mechanisms are synaptic scaling and meta-
plasticity. The former refers to a uniform, cell-wide modulation of synaptic
e�cacies [40]; and the latter refers to a uniform, cell-wide modulation of
the modi�cation threshold for synaptic plasticity, each controlled by a
long-term average of pre- or post- synaptic �ring rate [41].

3.2. Hebb's Postulate

An important landmark in the basis of associative learning in the brain came
from Hebb [9] in the form of a highly in�uential postulate. Essentially, it states
that if cells are active at the same time, a connection will develop between them
to facilitate further co-activation driven in a causal manner. In this way, coin-
cident neural activity becomes associated activity and provides a mechanistic
basis for the idea of associative learning that, until Hebb's postulation, had
existed largely as an abstract notion.

There are numerous quotes from [9] that describe Hebb's postulate. The
following quote is chosen for being succinct:

�Any two cells or systems of cells that are repeatedly active at the same time

will tend to become 'associated', so that activity in one facilitates activity in the

other.�

This can be formulated in the following equation:

∆wi = ηxiy (1)

∆wi, the change in synaptic strength, is increased in proportion to the prod-
uct of the pre- (xi) and post- (y) synaptic activity, multiplied by a learning
rate, η. As can be seen from both Hebb's postulate and the formula, connection
strength can only increase due to there being no depression term. This leads to
an untenable model in practice, as the synapses will continue to increase indef-
initely. If maximum bounds are put on the synaptic strength, then the weights
will saturate to the maximum values, at which point no further learning can
take place.

3.3. Homeostatic Regulation

In early simulations incorporating Hebbian learning, it became apparent
that a mechanism to reduce synaptic weight was needed to allow stability in the
adaptation. Von der Malsburg used a technique of synaptic scaling [42] to always
keep the sum total of the synaptic weights connected to a post-synaptic neuron,
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constant. This way, any increases in synaptic weight will be automatically
balanced out with a decrease in the others. It is therefore ensured that further
changes to all synapses are possible and always subject to the neural activity.

Synaptic re-normalization equation from [42]:

wik = w′ik ·N ·
wavg

w′k
(2)

The normalized synaptic weight from i to k, is wik. The previous, un-normalized
weight is w′ik and the sum total of all weights to a post neuron k is w′k. The
number of driving inputs is given as N while wavg is the average weight value
that all of the synapses take.

3.4. Self-Organizing Networks

Von der Malsburg [42] was the �rst to show that Hebb's plasticity could lead
the network to functionally self-organize into stimuli sensitive 'feature detectors'.
The simulations showed parallel with �ndings from biological experiments �
neighboring cells responding to similar stimuli [43] (simple and complex cells in
Hubel and Weisel's early work).

This work demonstrated that neural networks would organize according to
activity dependent synaptic modi�cation in addition to the genetically deter-
mined connectivity that was previously assumed.

Willshaw and Malsburg [44] show how a continuous topographic map be-
tween a layer of pre- and post-synaptic cells emerges with Hebbian plasticity
acting laterally between the cell sheets. It is argued that the concept of neural
mapping goes beyond the feature detecting neuron, and has a system-matching
property where symmetries in one layer are preserved in another. Topographic
maps are known to be particularly important in brain areas between the retina
and visual cortex in order to preserve spatial patterns in images. For ordered
maps to develop between cell sheets of varying dimensions, it was demonstrated
that a marker model is needed to establish the initial synaptic contacts [45].
However, later work [46] proposes a model based only on activity dependent
synaptic modi�cations that can form topographic maps. It uses noise induced
transitions to determine the ordered connections.

Amari [47] formulates a complete mathematical description of a self-organizing
neural �eld that treats the population of individual cells as a continuum, divided
spatially into a �nite set of parameters. A time step is also assumed so the frame-
work is coarse-grained in both space and time. Amari shows analytically how
pattern formation in the model has the ability to produce feature detectors for
categorization and topographic maps. Stability conditions for these patterns are
also derived. When it comes to the stability of self-organizing neural systems,
some works have gone beyond the synaptic modi�cation models. A morpho-
genetic model of synaptogenesis is presented in [48], that just considers the
growth and removal of synapses. A number of free elements are quanti�ed for
each cell that allows it to form new connections or those of a di�erent strength.
The elements are re-distributed through the network and therefore so are the

7



connections. In this regulated algorithm, it leads to a form of homeostasis. The
stability conditions required for ongoing operation are analyzed in another work
[49].

3.5. Anti-Hebbian Learning

An inverted form of Hebbian adaptation � anti-Hebbian plasticity � is pro-
posed [50] to be active in decorrelating sensory inputs in taste and vision, be-
tween laterally connected ganglion cells. This is to ensure that the output signals
of these cells represent changes in the input signal in the most e�cient manner.

Due to overlap in the cell sensitivities to the inputs, the initial outputs are
correlated. After a period of anti-Hebbian training on the lateral connections
between the cells, the variables are decorrelated. This is shown to produce
a larger spread of output values for correlated inputs and therefore increases
the sensitivity for small changes in the input which leads to a more e�cient
representation of the input variables.

The equation for anti-Hebbian adaptation takes the same form as Equation
1 above, but now with a negative learning rate.

3.6. Oja's Rule

Oja's rule [10] is a modi�cation of the plain Hebbian interpretation that aims
to address the stability problem of an exclusively potentiating mechanism. The
rule is given in the following formula:

∆wi = η(xiy − y2wi) (3)

This formula is similar to Equation 1, except that it includes a depressive
term, −y2wi. The depression is proportional to both the current weight of the
connection strength and to the square of the post synaptic activity. The higher
the weight and the resultant post-synaptic activity is driven, the greater this
depressive term will be. This constitutes a self-regulating system that balances
against the purely potentiating Hebbian term.

In [10], it is shown that when the rule is applied to the incoming synapses
of a single neuron, the post-synaptic response extracts the principle component
of the pre-synaptic input vector. This is after the rule has been applied long
enough for the synapses to converge to a stable state where the average weight
change across the inputs is zero.

3.7. BCM Theory

Another regulated form of Hebbian plasticity was proposed at the same time
as Oja's work. Beinenstock, Cooper and Munro [11] took a similar approach
to regulating the post-synaptic activity in their model (named BCM), but this
time using a sliding threshold to determine whether the weight change should
be positive or negative.

The equation for the BCM weight update is as follows:

∆wi = y(y − θM )xi − εwi (4)
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Figure 3: The Bienenstock-Cooper-Munro plasticity rule illustrated with synaptic weight
change on the y-scale and post-synaptic activity on the x-scale. θM is the sliding modi�cation
threshold that changes based on a temporal average of post-synaptic activity.

Here, θM , the sliding threshold, is given as a temporal average �ring rate of
the post-synaptic neuron. This is given in the following formula:

θM = EP [(y/y0)] (5)

EP [...] is some function of the neural activity that constitutes a temporal
averaging. y is the post-synaptic output and y0 is a desired value that the post-
synaptic output will be regulated to. The sliding threshold increases as the
post-synaptic output exceeds the desired activity level. This causes the weight
change to be negative, thereby providing regulation to the weight adjustment.

Like Oja's rule, the weight change is also regulated based on the current
value of the connection weight. In BCM this is done in a uniform decay of all
weights using a small, subtractively applied learning rate, ε.

In its introduction, BCM theory is claimed to explain neural selectivity ob-
served in the receptive �elds of the visual cortex. It was also claimed to provide
a competitive mechanism in the context of binocular competition.

4. Recent Detailed Plasticity Models

With an increased focus on spike based neural models that model a biolog-
ically more realistic excitable membrane, new interpretations of plasticity were
required to make use of the new parameters that went beyond a simple rate
code. This trend, combined with increasingly detailed biological experiments,
has led to a number of new directions in the development of plasticity models
that we present in this section.

4.1. Spike Timing Dependent Plasticity

The previously described plasticity mechanisms all work on rate based neu-
ron activation models, in which the activity level of a neuron is assumed to be
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Figure 4: A collection of results from a number of STDP protocol experiments. The many,
highly varying patterns that constitute the 'learning windows' shows the variety of charac-
teristics plasticity can exhibit even when studies under the same experimental protocol. It
should be noted that many of the results do come from brain slices from creatures of di�erent
species, and from di�erent brain areas such as cortex and hippocampus. Data was extracted
from plots in (a),(b) Bell 1997 [51] (c) Bi & Poo 1998 [52] (d) Feldman 2000 [54] (e),(f),(g)
Wittenberg & Wang 2006 [55] (h) Zhang 1998 [53].

its instantaneous rate of generating action potentials. This means they are not
directly applicable to more realistic spiking models which account for precise
timing of action potentials rather than the average rate of �ring.

Experimental studies in a number of works [51, 52, 53, 54, 55] have shown
that the amount and direction of synaptic plasticity is dependent on both the
order of pre- and post- synaptic spikes and the time delay between them. After
repeated stimulation of brain cells in culture at di�erent spike timings, the in-
crease in post-synaptic potential is plotted against the delay between synaptic
transmission and post-synaptic action potential. The resulting patterns from
these experiments are reproduced in Figure 4, and constitute the observed 'learn-
ing windows' of spike timing dependent plasticity (STDP). Theoretically, these
learning windows present a temporal interpretation of Hebbian learning in which
causal co-activation is reinforced and anti-causal co-activation is diminished.
There is no explicit self-regulation in plain STDP, yet stability can be achieved
through the presence of depressive regions in the learning window.

The following subsections describe mathematical formulations of two com-
monly modeled forms of STDP.
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4.1.1. Bi-Phasic STDP

The original formulation of STDP as a mathematical model is made in [12].
It consists of two phases: a depressive phase in which pre- follows post-synaptic
spike, and a potentiating phase in which post- follows pre-synaptic spike. In
both phases, the weight change decreases in magnitude as the delay between
spikes increases.

The formula is as follows:

∆wi =

{
A+ exp(∆ti/τ+) if ∆ti < 0

−A− exp(−∆ti/τ−) if ∆ti > 0
(6)

A+ and A− are the learning rates for the potentiation and depression, re-
spectively. ∆ti is the delay of the post-synaptic spike occurring after the trans-
mission of the pre-synaptic spike. τ+ and τ− control the rates of the exponential
decrease in plasticity across the learning window.

4.1.2. Tri-Phasic STDP

In light of further STDP protocol experiments in the CA3-CA1 regions in
the hippocampus [55], a new pattern for the learning window emerged. A tri-
phasic rule is observed in this case, with a short potentiating region surrounded
on either side by two depressive regions. This can be observed in a number of
sub-plots in Figure 4 and is illustrated as a plotted formula in Figure 5.

One equation to describe the tri-phasic learning window is given in [56]:

∆wi = A

[
1− (∆ti − α)2

α2

]
exp

(
−|∆ti − α|

α

)
(7)

Another is given in a recent comparative study of plasticity rules [57]:

∆wi = A+ exp

(
−(∆ti − 15)2

200

)
−A− exp

(
−(∆ti − 15)2

2000

)
(8)

This learning window is visualized in Figure 5, withA+ = 0.25 andA− = 0.1.
This formula simply consists of two Gaussian functions, one narrow additive
curve, within another wider subtractive Gaussian of a lower magnitude. The
parameters were chosen to generally match the values observed in the data in
Figure 4.

4.1.3. Reward-Modulated STDP

Plain, unsupervised STDP has been questioned as a plausible mechanism for
meaningful learning to occur. Legenstein [17] proposes that a reward modulated
form of STDP (RM-STDP) can provide a tenable model for supervised learning
while maintaining a method based on biological plasticity. Beyond the timing of
pre- and post- synaptic spikes, this rule requires a third signal with the ability
to consolidate useful and meaningful changes in the network based on a reward
signal. It is proposed that this extra signal would be biologically realized in the
concentration on a neuromodulator. This is concurred with by Izhikevich [16],
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Figure 5: The two predominantly studied STDP learning windows. The bi-phasic rule is
plotted from the formula in [12] and the tri-phasic rule plotted from the formula in [57].
These curves have been derived by �tting formulas to the experimental data produced from
the STDP protocol. The bi-phasic rule roughly matches the observed pattern in Figure 4c,
and the tri-phasic rule roughly matches Figure 4g.

in a study that demonstrates (RM-STDP) with the neuromodulator dopamine
regulating the synaptic application of a globally applied reinforcement signal.

4.1.4. Reservations for Pure STDP

As a phenomenological model, STDP is particularly vulnerable to criticisms
from biologically oriented studies. In particular, it has been suggested in [58]
that contrary to a spike-timing model of plasticity, a post-synaptic spike is not
required for a change in synaptic e�cacy. The study goes further, to present
experimental evidence that the backpropagating signals that are implicitly re-
quired by STDP, are neither necessary nor su�cient for plasticity in vivo. A
follow-up work [59], reinforces this position by proposing that the protocol fol-
lowed in STDP experiments is arti�cial. That is, the post-synaptic current
injection leads to a phenomenon that is not observed when the Excitatory Post-
Synaptic Potential (EPSP) causes a spike, as is the norm.

The current �xation that plasticity models have on the synapse has also
recently been called into question in [60]. There, it is brought to attention
that many experiments show that the intrinsic excitability of neurons change,
often in accordance with the synaptic e�cacy. At the extremes of potentia-
tion/depression, the relation is observed to reverse, with a decrease/increase in
excitability, respectively.

It is easy to get immersed in precise formulations of plasticity that are either
derived from a class of biological experiment or inspired by a cybernetic principle
of self-organization and self-regulation. Of course, there is no guarantee that the
selected models for plasticity have much relevance to the processes interacting
in a living brain.

In a poster report on experimental �ndings [61], it is stated that when under
conditions of irregular, natural spiking patterns, popular models of plasticity �
including STDP, voltage-dependent plasticity and a calcium controlled model
� all have less in�uence than previously assumed. Irregular spiking reduces
the level of potentiation and depression in all tested models. Furthermore, the
calcium model becomes insensitive to spike correlations when there is a high
average �ring rate.
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4.2. Voltage-Dependent Plasticity

Rather than updating a synapses weight based on the pre- and post- synaptic
timing of action-potentials, a recent form of plasticity model uses the instanta-
neous voltage-level of the pre- and post-synaptic membrane [62]. The following
equation shows this model that shares much of its form with the equation for
bi-phasic STDP:

∆wi = −ALTDxi[ū− θ̄] +ALTP x̄i[u− θ][ū− θ̄] (9)

In this formulation; x is the pre-synaptic spike train, u is the post-synaptic
voltage, and θ is a threshold to be exceeded for synaptic weight change to
occur. Parameters x̄, ū and θ̄ are low-pass �ltered values of the previous three
parameters. ALTD and ALTP are learning rates for long-term depression and
potentiation, respectively.

The notable aspect of this rule is that an action-potential is no longer re-
quired to trigger a change in synaptic e�cacy, as has been observed in ex-
periment. Under di�erent stimulation regimes, it has been shown to �t both
bi-phasic STDP and BCM learning patterns. The introductory paper used the
model to explore cell selectivity and receptive �eld emergence that also corre-
sponds to experimental �ndings.

4.3. Calcium Controlled Plasticity

STDP, as a class of models, does not consist of underlying molecular mech-
anisms formalized in biological terms. In fact, some of the implicit assumptions
of STDP have been called into question, as discussed later in this section.

Shouval has commented that the simple viewpoint of STDP neglects that
actual mechanisms that modify synapses [13]. He points out �that synaptic plas-
ticity is induced by a variety of receptor-generated second messengers, which in

turn activate kinases, phosphatases, and other downstream targets�. By assum-
ing that the essential character of plasticity can be abstracted away from the
biology, STDP will miss these fundamental mechanisms that may prove essential
to learning and memory ability.

A new class of plasticity model that is governed by calcium concentration
at the synapse is emerging as a possible underlying mechanism that is compat-
ible with some of the empirical observations in STDP experiments. Two recent
models are de�ned in [14] and [15]. The former has a more explicit biological
grounding in that calcium concentration is regulated through kinase and phos-
phatase channels. The latter forgoes this detail with the bene�t of having a
simpler model to implement and analyse. Both models emphasize their ability
in reproducing a set of commonly observed STDP learning windows. Figure 6
shows one such set produced by the model in [15].

5. Functional Role of Plasticity

5.1. Learning Input Structure and Coding

It has been demonstrated [63] that temporal information could be encoded
spatially in a population of spiking neurons connected through STDP. Such a
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Figure 6: A variety of STDP learning windows can be predicted/explained by a uni�ed plas-
ticity model based on calcium concentration. If one look carefully at the experimental data
presented in Figure 4, corresponding patterns can be observed for each of the learning win-
dows. The calcium control model is [15] and these sub-plots are reproduced from there.

representation formed an auto-associative memory, where partial presentation of
the temporal input signal triggered the activation of the whole spatial represen-
tation. This generalizes spatial auto-associative memories to spatio-temporal
ones, with STDP taking the role of learning the temporal order of patterns
through reinforcement of causal chains of activations.

Polychronous groups [64] have been used to analyze [65] recurrently con-
nected networks trained to classify temporal spike patterns. These groups are
spatio-temporal structures which were found to develop under STDP and acti-
vated in response to particular classes of input. In this way, it is evident that
these groups are input speci�c to a certain degree and can therefore be seen as
a representation of the input patterns.

The structural development of recurrent networks has been studied [62] in
terms of receptive �eld formation. It was shown that using a voltage based
model of STDP led to input speci�city and structures forming that re�ected
the neural code. Feed-forward structure emerged temporal coded input while
bi-directional structure emerged under rate coded input. This reinforces the
hypothesis that the structure that develops under plasticity shares structure
that is present in the input signal.

Under a number of STDP models, cell assemblies are shown to develop that
can be reliably activated using either rate-based or temporal spike codes [66]. It
is argued that a temporal code would be more energy e�cient as it requires far
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fewer spikes. Such a temporal code presented in the previously mentioned work
depends on synchronized inputs in order for neurons within a cell assembly to
become synchronized.

5.2. Correlate or Decorrelate Neural Activity

An interesting contradictory area in the theoretical role of plasticity is whether
it is desirable to increase or decrease the correlations of spikes in a population
of neurons. The standard Hebbian interpretation of associative learning would
have plasticity lead to an increase in correlation for any learned associations
between neurons. Work in this vein has been modeled and it was shown that
STDP would select pre-synaptic activity that had higher correlation [27], thus
would increase the overall level in a neural population. Conversely, it has been
proposed [20, 28, 29] that decorrelation is more desirable because it would max-
imize the information content in the network and also improve supervised learn-
ing methods. With this aim, a form of anti-Hebbian learning is employed. It is
shown in [29] that an anti-Oja rule leads to improved time-series prediction in
a reservoir computing model.

5.3. Increasing Sparsity and Information Maximization

A computational model of neurons would have them perform some transfor-
mation on input patterns, such as in the case of reservoir computing mentioned
above. In contrast to this view, some view neurons as signal carriers in which
the maximal possible amount of information is transmitted between cells. It has
been demonstrated that both BCM [22] and STDP [23] lead to maximal mutual
information being retained between pre- and post-synaptic spike trains. Close
to optimal transmission is shown to result from a triplet model of STDP, while
the pair based model does show less improvement for information transmission
[25]. A study has suggested that the purpose of STDP is to reduce the variance
in a neurons response when presented with a speci�c spike input pattern, thus
tuning selective sensitivity [24]. More recently, IP has been incorporated with
a supervised learning scheme � the error-entropy minimization algorithm � as
a cooperative information maximization mechanism that improves the perfor-
mance on time-series prediction [26].

5.4. Improving Reservoir Computing for Learning

Reservoir computing, introduced in Section 2, does not rely on structural
learning for its basic operation. However, recent studies have applied plasticity
to 'shape' the reservoir and thereby improve performance in machine learning
tasks such as prediction, regression and classi�cation.

A large body of research work [19, 20, 21, 29, 67, 68] shows an improve-
ment in the reservoirs predictive performance when plasticity is active within
the reservoir in the form of an unsupervised pre-training phase. It is thought
this improves the reservoir characteristics such as the fading memory of the re-
verberating dynamics or scaling the spectral radius of the weight matrix closer
to 1, leading to an activity regime balanced on the 'edge of chaos'.

15



In [67], a k-winner-takes-all (kWTA) model of reservoir is shown to only
improve when both IP and STDP are active together. When either plasticity
rule is enabled on its own, there is a degeneration in the reservoir activity that
prevents e�ective learning by the readout. IP alone leads to chaotic activity
while STDP alone leads to time-locked spiking of initially activated neurons.
These resulting patterns of activity are plotted in Figure 7. This result may be
an e�ect unique to using the kWTA model, however.

The ESN form of reservoir computing has most notably been applied to
time-series prediction data. [19, 67] are notable works that have applied IP and
STDP to ESNs and that have shown improvement in regression to time-series
prediction problems. NARMA and a prediction task based on Markov processes
are used as the benchmark tasks. [29] applies anti-Oja plasticity to an ESN and
shows an improvement in predictive performance on a time-series sun spot data
set.

LSMs tend to be applied to classi�cation of temporal sequence data, in
contrast to prediction. [21, 68, 69] are works in which BCM and STDP have
been used to improve results in temporal classi�cation using LSMs. Notably,
spoken digit and human behavior recognition are the applied learning tasks
that consist of temporal samples in the form of sensory input. Having plasticity
applied as a pre-training phase, or by having it continuously active at a slower
rate than supervised learning, classi�cation of temporal samples has been shown
to improve.

6. Challenges and Potential

6.1. Relationship between Plasticity, Structure and Performance

There is a current divide in the spiking network and plasticity literature.
On one side, the neuroscienti�c literature analyses the structural adaptation
and learning of networks under the in�uence of plasticity [62, 71, 72, 73, 74].
In these, typically, a hierarchical network inspired by the layered structure and
connectivity of the cortex is shown to develop input speci�c receptive �elds
that correspond to audio or visual stimuli. However, little/no application of
these methods are made to machine learning algorithms. On the other side,
some computational studies have been reported that do show that plasticity can
improve applied neural network methods [21, 29, 68]. However, these works tend
to have an extremely limited analysis of the input-speci�c structural learning
that takes place within the networks. It is very unclear how or why plasticity
works in these circumstances.

We have done some preliminary work on analyzing the link between plastic-
ity, network structure and performance. After applying a number of plasticity
rules to a reservoir on a speaker recognition learning task [70], the speaker spe-
ci�c changes to the synaptic strength were extracted as matrices of perturbed
weights. These were then plotted against the average reservoir activation vec-
tor, S, and the readout weights, Wout, learned in supervised gradient descent.
Three of the nine speaker classes are shown in Figure 8 with BCM as the plas-
ticity rule used for this particular experiment. Each heat map is the average
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Figure 7: Spike raster plots reproduced from [67]. Each of the sub-plots show the di�erences
in spike dynamics when Intrinsic Plasticity (IP), Spike-Timing-Dependent-Plasticity (STDP),
or a combination of the two are active in a population of neurons. Only IP and STDP together
lead to a spiking regime that is balanced between time-locked order and chaotic activity.

Figure 8: BCM plasticity applied to a spiking reservoir learns class-speci�c structure on a
speaker recognition task [70]. Three out of nine total classes are shown here. The main heat
maps show the change in the reservoir weight matrix after presentation of voice input data
from each speaker. Blue values show a reduction in synaptic weight and red values show an
increase. The bar-chart, S , shows the average neuron activation for each class. The bar-
chart, Wout , shows the learned reservoir readout weights. The patterns highlighted in green
dashes are examples of the weights being driven in opposing directions for di�erent classes.
There are many other instances that together produce class-speci�c weight changes over all
the connections taken as a whole.
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Figure 9: An illustration of a GRN regulating the structure of a spiking neural network that
is optimized to produce a particular spectral output pattern. Each neuron has a GRN that
determines the local connectivity of that neuron. This �gure is reproduced from [75].

weight change for a speci�c class of input, where each point in the heat map is
an increasing (red), decreasing (blue), or unchanging (white) synaptic weight.
What these results show is that unsupervised plasticity does learn highly speci�c
structural changes per class of temporal input pattern. However, by looking at
the similarity of the reservoir activation vectors, this class speci�c structure is
not retained enough for the activity of the reservoir to become as signi�cantly
sensitive to each class. This is due to the e�ect of catastrophic forgetting, the
averaging out of these di�erent weight directions to produce a homogeneous set
that leads to minimal changes in activity for given di�erences in input signal.
Here, plasticity has succeeded yet the reservoir computing framework is not
adapted to bene�t from the learned structure.

For a complete and coherent understanding of neuro-plasticity, a precise
formalization of how structural adaptation contributes to speci�c learning tasks
is required. This may be possible by applying the analysis of receptive �eld
emergence to applied neural networks that use regression learning. However,
in the process, the current network models used in machine learning tasks, like
reservoirs, will have to be modi�ed to allow the abstract, numerical feature-
vector data sets to be converted into the sensory �eld format of input stimulus
in neuroscience literature.

6.2. Systems Biology for Gene-Regulated Plasticity

Genetically driven neural development has been computationally modeled
in a number of works [76, 77, 78] that demonstrate the activity-independent
organization of neural networks. Of course, even after the development of the
brain, the genetic factors will remain to also a�ect plasticity in response to
activity driven from the environment.

It is becoming clear through neurobiology studies [79] that neural activity,
plasticity and gene-regulatory networks are interlinked in a complex system of
adaptation and regulation. A commentary [80] laments the lack of computa-
tional modeling that includes all the facets of neuronal systems biology. Some
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Figure 10: An illustration of a gene-regulated, evolving neural network that is recreated from
[68]. A Gene Regulated Network (GRN) regulates the parameters of a plasticity rule that
adapts the synapses according to the input patterns. An Evolutionary Algorithm (EA) evolves
the parameters of the GRN model. There are multiple levels of regulation and structural
learning that happen at di�erent time scales in parallel.

work has been done on analyzing gene-regulated neural development [75, 81],
but it has yet to be applied to learning models for data driven tasks. Figure
9 is reproduced from [75] and illustrates how a GRN can be used to regulate
the structure of a neural network in order to produce particular output activity.
In this case, a target spectral pattern is approximated by optimizing the GRN
weights. The neuron speci�c GRN weights produce local dynamics that give
rise to heterogeneous connectivity across the network.

Gene regulated neural plasticity in spiking neural networks have been applied
to machine learning tasks. An evolutionary approach to incorporating plasticity
in reservoir computing is presented in [68]. Here, a gene regulatory network
(GRN) is evolved that adapts the parameters in BCM plasticity that is then
applied to the reservoir. In speech and human behavior recognition tasks, this
form of adaptation is shown to signi�cantly improve classi�cation accuracy, as
well as improving regression on a time-series benchmark. The evolving process
of the GRN-BCM reservoir model is illustrated in Figure 10. A similar GRN-
regulated BCM rule has also been applied to adapt the weights of a feed-forward
spiking neural network [82].

The models previously described in this review each consist of a relatively
simpli�ed set of formulae when compared to the overwhelming complexity found
in the biological literature. Currently, calcium control theory provides one of
the most comprehensive plasticity models from the systems biological perspec-
tive. In [14], calcium neuro-transmitter concentration is regulated by kinase
and phosphatase channels which provides speci�c molecular mechanisms for a
biological model of plasticity. However, there are many more ion channels,
neuro-transmitter and neuro-modulating proteins that are not accounted for
[83]. Furthermore, the complex and varying network of interactions between
these elements is not even well understood in the biological literature.

While these approaches have the advantages of faster computability and
easier comprehensibility, the diversity and variation lost from the complete ex-

19



perimental accounts may prove to be a weakness at the same time. The high
degree of complexity and diversity in gene regulatory networks may lead to
much higher tunability and robustness in the resulting epi-genetic interactions
[84, 85], thus leading to uni�ed models of neural plasticity that account for
synaptic, intrinsic and homeostatic plasticity [86].

6.3. Plasticity in Deep, Semi-Supervised Learning

The current learning algorithms for deep learning, described in Section 2,
share characteristics with how plasticity has been applied to reservoir comput-
ing. In both, an unsupervised iterative update of the weights are made, based on
the causal inference of connected nodes. Of course, there are structural di�er-
ences as well as procedural. Learning in deep networks is done by layer pairwise,
while reservoirs are unstructured and randomly recurrent. Notably, contrastive
divergence produces a generative set of weights, while Hebbian learning and
STDP have yet to demonstrate that ability in bi-directional networks. It is not
clear whether a generative model is needed for machine learning tasks, or if it
is even possible in a reservoir structure. If combined, the reservoir model could
provide temporal pattern learning ability to deep networks. In such a scheme,
for example, the nodes of the deep network could be modeled by recurrent net-
works, where hierarchical and spatial features are learned through contrastive
divergence and temporal features learned within the nodes through Hebbian
plasticity mechanisms.

Use of plasticity rules to shape the structure of the reservoir also shares a
similar philosophy in semi-supervised learning [87], where the structural infor-
mation in the in features, which can be seen as sensory inputs are exploited to
enhance the top-down supervised learning. The research activities in these two
areas are completely separated so far, can however bene�t from each other.

7. Conclusion

This article presented the prominent computational models of plasticity and
their current applicability to empirical improvements as neural network adap-
tation mechanisms. The existing examples of plasticity in use tend to apply
it to randomly connected recurrent reservoirs to learn the structural informa-
tion in the inputs, achieve sparsity in neural connectivity and enhance learning
performance.

We suggest that computational modeling of neural plasticity may provide
a unique platform that bridges the gap between computational neuroscience,
systems biology and computational intelligence. We advocate the use of gene
regulatory networks in modeling neural plasticity to achieve uni�ed plasticity
models. Such models of plasticity are more likely to be self-regulated and sen-
sitive to the network and input structure. A philosophical similarity between
neural plasticity and deep learning and semi-supervised learning is pointed out.
We suggest that plasticity and recurrence, when combined with deep learning
or supervised learning, could yield models with bene�ts from each paradigm.
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We hope the above suggested research will result in a gene-neuron approach to
understanding cognition.
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