
XML Flattened: The
lessons to be learnt
from XBRL

Lucian Holland, DecisionSoft Limited

Think of an XML document, and the chances are that you will be thinking
of a series of nested tags neatly indented to show the structure of the data
being presented. The average XBRL (eXtensible Business Reporting Language
[XBRL]) document, however, is almost entirely flat - a series of data items all
at the same level. All the information that would normally be encoded into the
hierarchical structure of a standard XML document has been stripped out, and
resides in an XBRL “taxonomy” that defines the concepts being used and their
relationships to one another. These taxonomies make heavy use of [XLink] in
combination with XML Schema to define fluid and extensible frameworks
for reporting different classes of business data.

In this paper I first of all give a brief description of how these mechanisms
work. I then go on to examine how and why XBRL takes an approach
that initially seems so counter-intuitive, looking at the advantages of
disadvantages of its separation of structure from content from a number of
angles, particularly validation, information reuse and versioning. While it
is undoubtedly true that there are some areas of the specification that are
very specific to the primarily financial domain that it addresses, and others
that have proved to be unexpectedly complex to implement and work with,
I believe that some of the core ideas in XBRL offer some interesting insights
into many problems faced by the wider XML community. For example,
extending existing content models whilst maintaining backward compatibility
is an area that has exercised many minds; through its use of an extensible
graph structure rather than a traditional hierarchy, XBRL offers a novel and
interesting solution. By drawing out positive lessons like this, and negative
ones where XBRL has taken routes that led it into difficulties, this paper aims
to be of interest both to those looking to work with XBRL itself, and to those
developing and using similar technologies that may be able to take advantage
of some of the techniques it is based on.

WHAT DOES XBRL DO?
Reporting, not transactions. XML standards for business data have tended to

focus on web service models; XML has been used as a common transmission

medium to enable broad interoperability of applications. But XML can also

be employed in longer-lived applications with less clearly defined consumers. This

parallels traditional markup as employed in web pages and publishing: information

is made available in a standard, annotated form, and is then processed by a

White paper	 2
XML Flattened:
The lessons to be learnt from XBRL

wide variety of consuming applications over an extended period of time. XBRL is

designed to be this sort of XML format, and provides a generic means of recording

business data in a structured fashion.

Write once, read many. XBRL is fundamentally a publishing medium. Authors of

XBRL documents make them available without much knowledge about how they

will be used, or by whom. A given report might be consumed by a whole range of

different users ranging from internal managers to external analysts and regulators.

All of these users might be using different applications that seek to use the data

in widely differing ways. This is a very different use case to a message passed

between two carefully defined service interfaces! In addition, many XBRL reports

will be archived and used for historical analysis over a period of many years. So

there is quite a powerful requirement for semantic stability.

A complex and changing problem domain. To those of us with no training in

it, accountancy can seem like a pretty black art. Much is open to interpretation

and re-interpretation, and the same underlying information can be presented in

a wide variety of different ways. Furthermore, practices are constantly changing

as businesses find new ways to present their finances in the most favourable light

allowed by laws which are themselves updated to impose ever-increasing

transparency. While the presentation of accounting data is one of the primary use

cases for XBRL, and it is an important design goal to improve transparency, it would

be unrealistic to expect a new technology to completely revise the operation of an

established profession overnight! So XBRL has to be able to cope with modelling a

highly complex domain without first reducing it to its simplest presentation.

A domain that is also highly regulated. For all its fluidity, the world of

accountancy and business reporting is also highly regulated. In the wake of the

accountancy scandals of the past few years, financial authorities around the world

are imposing increasingly detailed and stringent reporting requirements on

businesses. A technology designed to act as a medium for such reporting needs to

be capable of high degree of semantic precision to ensure that it reflects the

appropriate accountancy frameworks without introducing further ambiguity.

White paper	 3
XML Flattened:
The lessons to be learnt from XBRL

HOW DOES IT DO IT?
Schema with minimal hierarchy. A Taxonomy Schema defines the content model

of a corresponding XBRL instance. The elements that such a schema defines

are known as Concepts and fall into two categories - Items and Tuples. An Item

contains a single piece of data; with the exception of a special type designed to

allow the representation of fractions, Items contain simple content. They must

all derive from a common base type called itemType defined in one of the core

XBRL schemas. By contrast, Tuples are used to group other concepts, and can thus

contain only Items and other Tuples. Despite the availability of the Tuple construct,

XBRL content models generally do not contain deep levels of nesting: for reasons

that will be explained later in this paper, the generalisation implied by grouping

items hierarchically in this way is only appropriate in a limited number of scenarios

in the domains covered by XBRL.

Everything’s global. A corollary of the limited hierarchy is the requirement that

all concepts defined in an XBRL Taxonomy Schema must be defined globally. This

results in a very different style of schema to that which most people are used

to - an enormously long list of global element definitions, which often have long

names reflecting their very precise level of applicability. As an example, the IFRS

(International Financial Reporting Standards) taxonomy contains concepts with

names like:

AmountGainLossRecognisedFinancialAssetFairValueReliably

MeasuredBeenOvercomeAssetBeenSold.

Something of a mouthful! As a consequence, some taxonomy authors have already

started to take the view that a Taxonomy Schema should not be treated (primarily,

at any rate) as a human-readable document, and have used short codes as element

names. In general, the overall effect of the construction of these schemas has

the result that they are extremely easy to understand if you know exactly which

concepts you are interested in, but immensely difficult to “browse”.

XBRL extensions to schema. XBRL takes advantage of the open content model of

XML Schema to include a number of extra attributes that “decorate” the elements

Figure 1.
A schematic view of the relationships between

different XBRL documents.

White paper	 4
XML Flattened:
The lessons to be learnt from XBRL

in the Taxonomy Schema itself. These include an attribute to indicate whether a

monetary item should be considered a “debit” or a “credit” and an attribute to

indicate whether an item should be used to report a fact valid at a single instant in

time, or one that holds over an extended duration. These constitute an exception to

the general rule in XBRL that semantic details about concepts are not expressed in

the schema itself, but instead represented in the linkbases that accompany it.

Linkbases define relationships between concepts and resources.
A Linkbase is an [XLink] construct consisting of a series of extended-type links.

Such links are made up of two sorts of definition. First, they define a number of

end-points, which can be either resources local to the linkbase (such as a textual

label), or URI (Universal Resource Identifier) references to external resources. In the

case of XBRL, such external locators are generally used to point to concepts in the

Taxonomy schema. Second, each link also defines a number of arcs that connect

these endpoints together. In XBRL linkbases are used for two purposes. First they are

used to associate metadata such as human-readable labels and references to relevant

literature with the elements from the taxonomy schema. Second, they can be used to

construct complex graph structures that express relationships between concepts.

Five standard linkbases. The XBRL specification defines five linkbases that provide

core functionality:

Presentation Linkbase This defines a hierarchical organisation of the concepts in

the taxonomy for display purposes.

Label Linkbase This defines labels that can be used to display concepts; each

concept can have any number of labels associated with it for use in a variety of

different circumstances. For example, a balance concept might have one label if

positive, and another if negative.

Reference Linkbase This defines references to external sources of information such

as documentation or authoritative literature.

Calculation Linkbase This defines calculation relationships between concepts. So

Total might be defined as the sum of Item1 and Item2.

Definition Linkbase This defines a miscellany of logical relationships between

concepts, such as interdependency (i.e. the presence of a particular item requires

the presence of another).

A powerful extensibility mechanism. Building on the basic [XLink] functionality,

XBRL adds a mechanism for overriding arcs to allow taxonomies to be extended by

adding new linkbases. This allows extension taxonomies to cancel the effects of

relationships defined in base taxonomies; as will be discussed in more detail later

in this paper, this is important for achieving maximum flexibility and extensibility.

WHY?
A counter-intuitive approach? A well constructed XML schema can be a complex

document, but in general schemas are comprehensible to an appropriately

knowledgeable reader. The same frequently cannot be said of an XBRL taxonomy.

The removal of all structure from the schema and its placement in [XLink] linkbases

makes for a schema that gives little idea of the sense of the data it is designed to

constrain. The linkbases themselves are equally hard to read, precisely because the

concepts they structure are in the schema! In short, without software designed to

process it, XBRL is very difficult to work with. So why on earth would anyone want

to use a format like this?

White paper	 5
XML Flattened:
The lessons to be learnt from XBRL

Requirements for flexibility. The answer to this question lies in the stringent

requirements that I mentioned earlier. The “X” in XBRL is more than just a moniker

stolen from its parent technology - XBRL strives to provide an unusual degree of

flexibility. At the heart of this lies an interesting approach to a very general problem

of data modelling in XML (and indeed data modelling more generally). What is the

best way to define a format such that it captures data with the maximum possible

precision, but at the same time can be extended/rearranged with the minimum

impact on backwards compatibility? In the following sections I will compare three

different approaches to this problem, ending with that chosen by XBRL.

Generic Self-Describing Elements
The problem of static typing. This approach aims to ensure maximum flexibility

and extensibility by dispensing with standard “static typing”. By the term “static

typing”, I refer to the practice of using specific elements for specific purposes;

these elements are defined in a schema complete with detailed content models.

In general, the syntax and semantics of a given element can thus be understood

simply be examining its name. Such an approach can be limiting, however, since

it ties the semantics of a given element to some precise syntactic constraints. For

example, lets say I have an element Expenses, whose content model is defined

as a sequence of PostageCosts, TravelExpenses and FoodExpenses. The

general semantics of the Expenses concept are quite clear and well defined - this is

an element used for reporting business expenses; and applications looking for such

information would always expect to be able to find them in an Expenses element.

The details of what is reported therein, and how, are much more likely to change.

In particular, I might want to introduce a new tag OutOfOfficeExpenses under

which to group TravelExpenses and FoodExpenses. But to do this involves a

radical change to the content model of the element, and would break backwards

compatibility.

Using dynamic typing in XML. Many highly configurable applications get round

this problem by moving to a greater degree of genericism. The example we looked

at above could be restructured to be much less rigid. We might replace all of the

different elements with a single one, Expense. This might have a “total” attribute,

a “type” attribute and a content model consisting of zero or more child Expense tags.

As you can see, it becomes a lot easier to extend the content model using this

method. Naturally, processing applications will have to be coded reasonably

defensively to ensure that they are able to cope with the extra flexibility, but at

least the constraint on extensibility is now the capabilities of a particular version

of the code rather than the definition of the data format itself. When a later version

of the expense reporting structure is used with an earlier version of the software,

the result should hopefully be a certain loss of detail rather than a complete failure

to process.

<Expense type=”TotalExpenses” total=”400”>

	 <Expense type=”PostageCosts” total=”10”/>

	 <Expense type=”OutOfOffice” total=”390”>

		 <Expense type=”TravelExpenses” total=”10”/>

	 	 <Expense type=”FoodExpenses” total=”380”/>

	 </Expense>

</Expense>

White paper	 6
XML Flattened:
The lessons to be learnt from XBRL

Poor schema validation. The major disadvantage of such a system arises precisely

because it does eschew the standard “static” typing system of XML, namely the

use of discrete element names. Most popular XML validation technologies use

element names as the primary means of locating content definitions against which

to validate. By using a single element and substantially deregulating its content

model, one is essentially bypassing most of the checking that grammar-based

validation can offer. Of course, it is possible to use rule-based systems like

Schematron to replace much of this lost capability, but this misses the point in two

ways. First of all, Schematron doesn’t provide typing - it just asserts the truth of

a series of statements; much of the power of grammar-based validation lies in its

ability to impose a conceptual framework of types onto the supplied data. Secondly,

simply adding back the validation in another form creates much the same problems

for extensibility as we saw earlier. The fundamental issue here is that imposing

detailed constraints on a content model immediately creates potential problems for

extensibility, since it may be necessary to change that very model.

Reliant on correct high-level analysis. The other problem with this approach is

that it only solves part of the problem. In our example, we analysed the different

elements being used and decided that there was a generic class to which they

all belonged, namely “Expenses”. But in a real domain, things are likely to be a lot

more complicated than this, and, inevitably, some of the analysis will be wrong.

And at that point, one is back to square one - one needs to change a content model

that is built into the data format.

THE XML SCHEMA APPROACH
Using object orientation. The above approach is employed in many existing XML

formats that require a high degree of flexibility, such as configuration files for

complex application frameworks. Nevertheless, readers will no doubt have noted

that it is a somewhat simplistic approach that takes no real advantage of objected

oriented techniques such as polymorphism. A more sophisticated alternative can

be achieved using type derivation and substitution groups in XML Schema. With a

carefully constructed schema, it is possible to ensure that a data format is highly

extensible whilst at the same time providing for complete and detailed validation of

the elements it contains.

Under such a scheme, one would define a content model very similar to the one

we’ve just seen: an Expense element that contains zero or more child Expense

elements. But the Expense element would be abstract - one would never actually

use the Expense element itself. Instead, one would use subtypes of the Expense

element that were defined to be substitutable for it - so one could again return to an

XML instance that looked something like this:

<TotalExpenses total=”400”>

		 <PostageCosts total=”10”/>

		 <OutOfOffice total=”390”>

			 <TravelExpenses total=”10”/>

		 	 <FoodExpenses total=”380”/>

		 </OutOfOffice>

	</TotalExpenses>

White paper	 7
XML Flattened:
The lessons to be learnt from XBRL

The definitions of the specific elements could then be given with as loose or as rigid

a content model as was deemed appropriate.

Greater semantic rigour. The primary advantage of such a solution is that it lets

the data structure do a bit more of the work - a processing application is no longer

responsible for ensuring that the basic format of the data is correct, since this

can be handled at the level of the schema. At the same time, programs capable

of working with the schema and the PSVI (Post Schema Validation Infoset) will

have access to a wealth of information about the type relationships between the

elements used. This is important because it gives them something to fall back on if

they don’t recognise a particular element - they can walk back up the type hierarchy

until they find something that they do recognise.

Content model extensibility still problematic. Exploiting the schema typing

system to the full goes a long way towards solving the problem of combining

semantic precision with extensibility. Unfortunately there are still significant limits

to the flexibility of what can be achieved. The type derivation rules in schema are

complex and comparatively restrictive; an instance of a derived type must always

be a valid instance of its base type, either without modification in the case

of derivation by restriction, or after a straightforward truncation in the case of

derivation by extension. Flexibility is achieved by postponing the specification of

detailed syntactic constraints, rather than employing constraints that are

inherently flexible in themselves 1.

HIERARCHIES: THE SOURCE OF THE PROBLEM?
The weakness of trees. At this point it may seem like there is something of a

logical contradiction in my arguments; it is almost as though I am looking for a rigid

format that is also flexible! In reality, the rigidity I’m looking for is of a different sort

to the flexibility that I am trying to blend it with. Semantic rigidity, with precise

names and fixed typing, is important to the kinds of applications I am considering;

but relational rigidity is not. The way that one concept connects with another is

typically expressed in terms of a hierarchy in XML. Often, this is the most direct

and concise way to structure one’s data. But in quite a number of cases, hierarchies

can turn out to be unnecessarily constraining. In Object Oriented software design,

many of the most powerful design patterns eschew simple inheritance hierarchies

in favour of more complex and dynamic networks of associations between objects.

An important reason for this is that tree structures based on strong parent-child

relationships can be difficult to change; the impact of any alteration increases

exponentially as one moves away from the leaves of a tree towards its root. As

tree-like structures, XML documents suffer a similar problem - an alteration in the

content model near to the root of a document can affect the interpretation of a huge

portion of the document, even if it appears comparatively trivial.

Hierarchies provide context. The meaning of the FoodExpenses element

changes subtly depending on whether it is used inside OutOfOfficeExpenses or

CorporateHospitality. One can reuse the same structure at different points in

the hierarchy, relying on context to distinguish them. This is especially important

when the nature of that context is itself dependent on the data being expressed. A

classic example of this is the concept of a record:

1Schema does provide the redefine mechanism, but even this permits only limited modification: types

must be redefined with themselves as a base type.

White paper	 8
XML Flattened:
The lessons to be learnt from XBRL

Where one has an open-ended repeat of a single structure like this, hierarchies are

vital; one certainly wouldn’t want to work with something like this:

That’s because JoeBloggsTelephoneNo could only ever have one value, so it’s

not a terribly useful element!

Context is only important in some situations. Removal of hierarchy doesn’t

always produce such unworkable results:

In this example the elements remain conceptual: they are not tied to a particular

item of data, and thus have applicability beyond the scope of a single document.

On the other hand, they have been made much more specific, so they are likely to

be unique across a much broader context: a single company creating a report for

a single time period might list numerous FoodExpenses elements, but they’re

likely only to list a single CorporateHospitalityFoodExpenses. So what do we

lose in this sort of case by removing the hierarchy? Well, for a start, we lose some

self-description; having removed all the obvious structure and flattened everything

onto one level, we have lost information about how one piece of information

relates to another. There is nothing beyond our choice of verbose element names

that makes clear the close relationship between OutOfOfficeFoodExpenses and

CorporateHospitalityFoodExpenses, nor presumably, between these two and

OutOfOfficeExpenses and CorporateHospitalityExpenses. A corollary of

this is that in a large document, it can be hard to find the information one is looking

for, because all of the options are presented on one level.

For the purposes of browsing, exploration, and presentation, then, a “flattened”

XML structure has disadvantages. But is this really so important? Providing that one

is not dealing with the sort of record-based xml that simply doesn’t work without a

hierarchy, I don’t believe that the loss of structure from the data is as significant as

it might at first seem.

<CustomerRecord>

	 <Name>Joe Bloggs</Name>

	 <TelephoneNo>123456789</TelephoneNo>

	 <FaxNo>24681012</FaxNo>

</CustomerRecord>

<CustomerRecord>

	 <Name>Jane Bloggs</Name>

	 <TelephoneNo>987654321</TelephoneNo>

	 <FaxNo>1357911</FaxNo>

</CustomerRecord>

<JoeBloggsTelephoneNo>123456789</JoeBloggsTelephoneNo>

<JoeBloggsFaxNo>24681012</JoeBloggsFaxNo>

<JaneBloggsTelephoneNo>987654321</JaneBloggsTelephoneNo>

<JaneBloggsFaxNo>1357911</JaneBloggsFaxNo>

	 <OutOfOfficeFoodExpenses>123456789</OutOfOfficeFoodExpenses>

	 <CorporateHospitalityFoodExpenses>

24681012

	 </CorporateHospitalityFoodExpenses>

White paper	 9
XML Flattened:
The lessons to be learnt from XBRL

Once the concepts are made sufficiently precise to compensate for the lack of

context, one can accommodate all of the data that one was able to to with a

hierarchical structure. And one can then re-express separately all of the lost

relationships in terms of the definitions of the elements being used, rather than

within the data itself. So we could record the fact that OutOfOfficeFoodExpenses

is a subtype of FoodExpenses. Of course, this is exactly what XBRL does with

linkbases.

Semantic precision and flexibility combined. By taking this approach,

XBRL succeeds in decoupling information about type from information about

relationships. This means that the data can be expressed with great semantic

precision without tying it to a particular structure which may need to be changed

or extended in the future. Inevitably, the achievement of this sort of careful balance

involves trade-offs, assumptions and compromises; in the remainder of this paper,

I will look more specifically at the strengths and weaknesses of XBRL in the three

areas of extensibility, information reuse and validation.

Extensibility
Easy to override and extend. It is easy to change the relationships between

concepts in XBRL without breaking backwards compatibility. To pick up the

example that we used earlier, changing the breakdown of one’s expenses would be

trivial. Hierarchical relationships for the purposes of presentation are expressed in

a presentation linkbase.

The starting structure was a tree as shown below:

Without changing the original linkbase, an extension linkbase could prohibit the

relationships Expenses-FoodExpenses and Expenses-TravelExpenses. It

could then define a relationship between Expenses and a new concept expressed

in an extension schema, OutOfOfficeExpenses. Finally, the two relationships that

were prohibited could be replaced with the relationships OutOfOfficeExpenses-

FoodExpenses and OutOfOffice-Expenses-TravelExpenses. The result

would be a new tree as shown below, where the dotted lines represent the old,

prohibited relationships.

Expenses

Travel ExpensesPostage Costs Food Expenses

Figure 2.
Starting Expense Tree

White paper	 10
XML Flattened:
The lessons to be learnt from XBRL

A parallel extension could be made for the calculation linkbase, to make

OutOfOfficeExpenses into a subtotal for the items it grouped. The important

thing to note is that in the case of both the presentation and the calculation

extensions, data that is valid according to the extension will remain valid according

to the original taxonomy, because applications using the original taxonomy will

simply ignore any value for OutOfOfficeExpenses.

Modularised extensions - original remains unchanged. The XBRL linkbase

mechanism provides authors of extension taxonomies with extremely fine-grained

control over the extension and redefinition of structures from the taxonomies

they are based upon. It is true that something fairly similar can be achieved with

redefine in XML Schema, but the XBRL system allows one to make changes at the

level of individual relationships of specific types between specific concepts, rather

than being forced to completely redefine a whole type in order to make a change; it

also allows considerably more wide-reaching changes since it is not constrained by

the rules of schema type derivation2.

XBRL framework itself designed for extensibility. Factoring out different

relational information into individual linkbases doesn’t just make data formats

defined with XBRL more flexible - it also makes XBRL itself more flexible. New

linkbases can be added to capture information about new types of relationships

between concepts without having any negative impact on existing applications

and taxonomies.

Extensibility - limitations
Complex webs of documents. An area of the XBRL 2.1 specification that has

proved quite problematic to define and implement has been the DTS (Discoverable

Taxonomy Set). A side-effect of the power of the redefinition mechanism provided

by XBRL is that a taxonomy that has been extended to any great extent can become

a very large web of inter-referring XML documents. Processors must follow all of

Expenses

Postage Costs Out of Office
Expenses

Travel Expenses Food Expenses

Figure 3.
Updated Expense Tree

2It is also worth noting that schema redefine alters components within their original namespace, which

limits its usefulness as a robust extensibility mechanism.

White paper	 11
XML Flattened:
The lessons to be learnt from XBRL

the different types of links in all of these documents, to find the limits of the DTS,

and then combine all of the data from the discovered documents into a single,

consolidated taxonomy view. This is obviously a complex enough task for an

application to perform, but it can be even harder for a human reader to follow3.

XBRL taxonomies are verbose. People have come to accept that there is

bandwidth price to pay for the transparency and flexibility of XML formats - markup

tags are generally a verbose method of storing data. The actual data as reported

in XBRL instances carries a comparatively light overhead by XML standards

thanks to the lack of deep nesting, but this is only achieved at the expense of

significant additional weight in the taxonomies that describe them. [XLink] is not a

lightweight technology at the best of times, and when one has 5 separate linkbases

all describing the same concept set, one tends to get very repetitive, verbose data

structures; and this also worsens the problem of readability. It should be borne in

mind, however, that in a wide variety of situations, the verbosity of the taxonomy

never becomes an issue: those using it view it through the mediation of specialist

software, and the large taxonomies themselves generally do not have to be

transmitted as part of the submission or distribution of an XBRL report.

Information reuse
Presentation neutral. An XBRL instance is a sequence of global elements, not laid

out with any presuppositions about how it will be presented; it effectively acts as a

straightforward set of named values. It is thus very easy to tailor the presentation

of the data to the purpose at hand. By swapping in a new label linkbase, one can

translate a report into another language; different presentation linkbases could

draw on the same underlying data to produce a profit and loss report or a balance

sheet. Since it contains just the core facts reported as individual, disconnected

items, an XBRL instance can act as the basic data source for a very wide variety of

different applications, representations and analyses.

Semantic stability. Another requirement that I identified at the start of this paper

was for semantic stability of reported data over time. XBRL taxonomies satisfy

this requirement because every item of data, whether completely independent, a

specialisation of a more general type of item, or a sub-item in a particular category,

always has its own unique element in which it is reported. Thus items in an XBRL

instance do not depend for their interpretation on other items, providing some

degree of insulation from change.

Information reuse - limitations.
Only applicable to some types of data structure As discussed earlier, as a

solution to the problem of extensibility, the model used by XBRL only works well

for some types of data. In particular, it is extremely poor at capturing transactional

and record-based data which require lots of repeating structures to be meaningful4.

3An added complication is the relationship of schemas discovered in the DTS to the set of grammars

available for validating other documents in the DTS; the current XBRL specification does not discuss this

matter in any detail.
4Naturally, such structures do appear to a limited degree even in documents which are predominantly

report-based. To represent these, XBRL provides Tuples, which allow hierarchical structures to be

created. Their use anywhere that they are not strictly necessary is discouraged, however, since it makes

identifying the target of arcs in linkbases considerably more complicated, and can potentially diminish the

expressive power of the linkbase constructs.

White paper	 12
XML Flattened:
The lessons to be learnt from XBRL

XBRL works best in fields like financial reporting where it is possible to identify

precise, narrowly defined concepts that can be translated into global elements

that repeat only for different reporting contexts5 rather than within a single

reporting context.

Requires specialist software. As will by now be apparent, XBRL’s flexibility is

achieved at the cost of a considerable increase in the complexity and size of the

taxonomies. Apart from the immediate problems that this raises, it also effectively

imposes the requirement for specialist software to do any significant processing

of XBRL data, since traditional XML tools and technologies turn out to be of

somewhat limited use. For example, while it is possible to parse an XBRL

taxonomy into a series of DOM (Document Object Model) trees, this gives one

very little leverage on the XBRL constructs, since it doesn’t really simplify the

task of aggregating all of the various links across the different linkbases. For this,

one needs an [XLink] processor. [XLink] processors, however, will be unaware

of the XML Schema significance of the concepts being linked; more importantly,

the overriding prohibiting mechanism in XBRL is an extension to the standard

[XLink] graph model, and will not be handled by a standard processor. When it

comes to extracting and transforming XBRL data, one might be tempted to use

XSL (eXtensible Stylesheet Language). But it doesn’t take much time battling with

multitudes of interdependent xsl:keys built from 5 different documents to realise

that this approach is only really viable if one is prepared to ignore (or recreate in

XSL) the information contained in the taxonomy itself6 . Despite this, XBRL is still

an XML format, and a heavily standards-based one at that; as a consequence it fits

well into existing XML processing pipelines and is easy to integrate into standard

web services.

Validation
Modularised validation. As we have seen, XBRL factors out many of the details of

constraints and relationships into a number of linkbases outside the core schema

for a taxonomy. Furthermore, even within these linkbases, it is possible to partition

and group the graph structures in completely configurable ways using the [XLink]

mechanisms of arcroles and roles. With suitably flexible software, or with some

fairly standard XML manipulation, it is possible to be highly selective about which

relationships one wishes to make use of; this is obviously of particular interest in

the field of validation, where the ability to perform different checks at different

times can be extremely helpful both for those authoring reports and taxonomies,

and those accepting submissions of XBRL data.

Fine-grained validation. The use of linkbases also makes it feasible to express

data in very narrowly defined elements, since it removes the need to use common

elements to express common purpose; instead one can simply link the relevant

concepts appropriately to indicate their relationships to one another. An important

consequence of this is that the validation constraints on individual items of data

can be highly specific, thanks to their very narrow context of applicability.

5XBRL defines an element context which effectively allows reports to be partitioned by time or perspective

(e.g. projected or actual); the most common example of a context is a particular time period, such as

“The year ending April 2004”. As can be imagined, there are many XBRL reports that only use one or two

contexts, because they report factual information about a single time period.
6This is not to say it is not possible. In fact, DecisionSoft and others have produced XSL to process XBRL in

a taxonomy aware fashion; it’s just that having done so, we’d rather not do it again...

White paper	 13
XML Flattened:
The lessons to be learnt from XBRL

Validation - limitations
Constrictions of linkbases. The key to XBRL’s flexibility lies in its use of [XLink]

linkbases to express relationships between the concepts defined in the taxonomy

schemas, but to do this in a graph structure independent of the schemas

themselves. Unfortunately, this does impose some restrictions, since it means

that the relationships being captured must be susceptible to modelling as a

graph connecting the taxonomy concepts. For many purposes, such as providing

a hierarchical presentation view, this causes no problems at all; but there are

other situations where graphs become problematic. For example, while simple

summations can easily be expressed as a tree of subtotals and contributing

items, more involved calculations become increasingly complicated to express,

particularly when they involve multiple ways of calculating the same total. More

importantly, it becomes extremely difficult to determine whether a given network

of calculation relationships expressed in a taxonomy is actually meaningful, or

whether it ultimately simplifies to a contradiction of some form.

Overriding hard to control. Generally speaking, increased flexibility is a good

thing; but inevitably there are situations in which one wishes to impose rigid

controls on data rather than allowing a format to be extended to fit individual

circumstances. Since XBRL encourages the use of very specific elements for

reporting, and this strategy is made possibly to a large extent because of the ease

with which taxonomies can be extended and specialised by individual users, these

situations where tight control is required can become problematic. Disallowing

extension taxonomies altogether is frequently not an option, since it may well

prevent report authors from expressing all of the information they need to;

but on the other hand, the enormous power of the XBRL overriding mechanisms

mean that any extension could potentially rewrite the majority of the base

taxonomy! This is a difficult area, but there are a number of possible solutions.

The simplest is to validate the data against both the extended and non-extended

versions of the taxonomy, to ensure that the extension is not redefining core

relationships. Slightly more sophisticated would be to configure an XBRL validator

to prevent overriding of certain specific types of relationship considered to be

critical. Finally, at the most complex end of the spectrum, there is no reason why

tools could not be written to check for the backwards compatibility of extensions in

a more generic fashion.

Conclusions
XBRL takes an unusual approach to data modelling in XML that at first sight appears

to be highly counter-intuitive. But if one looks beyond the complexity, I believe

that this system is a valuable addition to one’s XML toolbox. Nevertheless, it must

be remembered that it is a tool. A good tool used for the right job can produce

better results with less expenditure of effort; misuse it, however, and you may find

yourself with a few less fingers than when you started! This is as true of XBRL’s

linkbase and schema combination as of any other tool.7 As we have seen, the

strength of this system lies in its ability to define a rich conceptual framework for

recording data without requiring instances of that data to reflect the complexity of

the framework in their structure. For this to work effectively, it must be possible

(and sensible) to define the majority of the relationships that exist between items

of data in abstraction from the actual data itself; in other words, one must be able

to provide a complete and fixed description of the shape of the data independently

7Not literally, of course. There aren’t yet any reports of bodily harm caused by XBRL.

White paper	 14
XML Flattened:
The lessons to be learnt from XBRL

of the data. Furthermore, XBRL is complex and heavyweight as XML technologies

go - for it be worth using, the domain being modelled must be large enough to

warrant the extra overhead. But if these criteria are met, the approach we have

been examining has the potential to provide significant advantages in the areas of

extensibility, semantic stability and validation.

Bibliography
[XBRL] XBRL is the eXtensible Business Reporting Language. It is defined by XBRL

International, a not-for-profit consortium of companies including many large

accountancy firms. For more details see the XBRL International website.

http://www.xbrl.org

[XLink] XLink is an XML linking technology created by the World Wide Web

Consortium. Details are available on their website.

http://www.w3.org/XML/Linking

[XML Schema] XML Schema has become the de facto standard for defining XML data

formats. It is defined by the World Wide Web Consortium. Details are available from

the schema homepage.

http://www.w3.org/XML/Schema

CoreFiling Limited
Osney Mead House, Osney Mead, Oxford, OX2 0FA United Kingdom

Tel: +44 1865 203 192 Fax: +44 1865 203 194

CoreFiling Inc.
14th Floor, 40 East 52nd Street, New York, NY 10022 USA

Tel: +1 212 752 9600 Fax: +1 212 752 9457

CoreFiling Pty Limited
194 Mowbray Road, Willoughby, Sydney, NSW 2068 Australia

Tel: +61 409 888783

http://www.corefiling.com Email: info@corefiling.com

