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Abstract

In an order-preserving encryption scheme, the encryption algorithm produces ciphertexts that
preserve the order of their plaintexts. Order-preserving encryption schemes have been studied
intensely in the last decade, and yet not much is known about the security of these schemes.
Very recently, Boneh et al. (Eurocrypt 2015) introduced a generalization of order-preserving
encryption, called order-revealing encryption, and presented a construction which achieves this
notion with best-possible security. Because their construction relies on multilinear maps, it is
too impractical for most applications and therefore remains a theoretical result.

In this work, we build efficiently implementable order-revealing encryption from pseudoran-
dom functions. We present the first efficient order-revealing encryption scheme which achieves
a simulation-based security notion with respect to a leakage function that precisely quantifies
what is leaked by the scheme. Moreover, we show how composing our construction with existing
order-preserving encryption schemes results in order-revealing encryption that is strictly more
secure than all preceding order-preserving encryption schemes.

1 Introduction

A symmetric encryption scheme is order-preserving if the ciphertexts preserve the numeric ordering
of their underlying plaintexts. The notion of order-preserving encryption (OPE) was introduced
by Agrawal et al. [AKSX04] who showed how it could be used to efficiently answer range queries
over encrypted data, as well as sorting queries, searching queries, and more. Indeed, existing OPE
solutions have been implemented in practice [Sky, PRZB11] for these exact purposes. Since the
introduction of OPE, there has been a plethora of work on analyzing the security of various OPE
schemes, found both in the cryptography community and the database community. However, it
is troubling that in spite of the numerous practical applications of OPE, the security of the best
candidate OPE schemes is still not well understood.

Prior work. The first OPE construction by Agrawal et al. [AKSX04] relied on heuristics and
lacked a formal security analysis. Subsequently, Boldyreva et al. [BCLO09] gave the first formal
security definitions for OPE schemes. Boldyreva et al. introduced two primary notions for security
of an OPE scheme. The first notion of security for an OPE scheme is called indistinguishability
under an ordered chosen plaintext attack (IND-OCPA). The IND-OCPA definition can be viewed as
a generalization of semantic security [GM84], and effectively says that encryptions of a sequence of
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messages should reveal nothing about the underlying messages other than their ordering. However,
in the same work, Boldyreva et al. showed that no efficient order-preserving encryption scheme can
be IND-OCPA secure, even in settings where the size of the ciphertext space is exponentially larger
than the size of the plaintext space.

In light of this lower bound for OPE schemes that satisfy IND-OCPA security, Boldyreva et al.
introduced a weaker notion of security (POPF-CCA security) where the encryption function for the
OPE scheme is compared to a random order-preserving function—that is, the encryption algorithm
for an OPE scheme behaves like a truly random order-preserving function. Under this definition,
an OPE scheme inherits the properties of a random order-preserving function.1 In the same work,
Boldyreva et al. gave an explicit construction of an OPE scheme that satisfies POPF-CCA security.
However, the POPF-CCA security definition does not precisely specify the information that is
leaked by an OPE scheme that achieves this definition. In fact, a scheme that achieves this notion
of security does not even satisfy semantic security for a single encryption, and indeed, in subsequent
work, Boldyreva et al. [BCO11] showed that ciphertexts in their OPE scheme leak approximately
the first half of the bits of the underlying plaintexts. In addition, they introduce several new security
definitions in order to better quantify the information leakage of OPE schemes that are POPF-CCA
secure.

Recently, Boneh et al. [BLR+15] proposed a generalization of OPE called order-revealing
encryption (ORE). In an OPE scheme, the ciphertexts are numeric-valued, and the ordering of the
underlying plaintexts is determined by numerically comparing the ciphertexts. In contrast, in an
ORE scheme, the ciphertexts are not constrained to any particular form, and instead, there is a
publicly computable comparison function which takes two ciphertexts and outputs the numeric
ordering of the underlying plaintexts.2 Although this generalization may at first seem subtle, Boneh
et al. constructed an ORE scheme from multilinear maps that achieves the “best-possible” notion
of security, which is equivalent to the IND-OCPA security notion for order-preserving encryption.

The main drawback of the Boneh et al. ORE construction is that it relies on complicated tools
and strong assumptions on these tools, and as such, is currently impractical to implement.

1.1 Our Contributions

We now summarize the main contributions of this work, which include a new simulation-based
security notion for ORE, along with a practical construction of an ORE scheme which achieves this
security notion. We also show how our new construction can be used to achieve a strictly stronger
notion of security compared to other stateless and efficiently implementable (e.g., constructions that
rely on powerful primitives such as multilinear maps and indistinguishability obfuscation) OPE and
ORE encryption schemes.

Security model. In our work, we take the general approach of Boneh et al. in constructing
an ORE scheme, except we take a more efficient route. Our first contribution is a new security
definition for order-revealing encryption schemes that both allows for and explicitly models the
leakage in the scheme. Our design goals for introducing this new security model are twofold: first,
the security model should enable constructions that are efficiently implementable, and second, it

1This definition is inspired by the similar definition for PRF security [GGM84], which compares the output of a keyed
function to that of a truly random function.

2This application was also observed and independently achieved by Goldwasser et al. [GGG+14] using indistinguisha-
bility obfuscation.
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should provide a precise quantification of any information leaked by the scheme. The two primary
notions of security, IND-OCPA and POPF-CCA, introduced by Boldyreva et al. [BCLO09] each
satisfy one of these two properties. In particular, all non-interactive, stateless3 ORE schemes that
achieve IND-OCPA security require strong cryptographic primitives such as multilinear maps or
indistinguishability obfuscation [GGG+14, BLR+15], and thus, are not efficiently implementable
today. At the other end of the spectrum, it is difficult to precisely quantify the leakage of schemes
that satisfy POPF-CCA security. The work by Boldyreva et al. [BCO11] provides some concrete
lower and upper bounds for the leakage under the strong assumption that the plaintexts are drawn
from a uniform distribution. For more general distributions, the leakage remains unclear.

In our work, we give a simulation-based definition of security for ORE with respect to a
leakage function L. In other words, our definition states that whatever an adversary is able to
deduce from seeing encryptions of messages m1, . . . ,mn, it could also deduce given only the leakage
L(m1, . . . ,mn). The “best-possible” security for ORE would correspond to the case where the
leakage function simply outputs whether mi < mj for all pairs of messages mi,mj . By allowing for
the possibility of additional leakage, it becomes possible to construct practical ORE schemes from
standard assumptions. Thus, our constructions provide a concrete trade-off between security and
efficiency. Our security definitions are similar to the simulation-based definitions that have been
considered previously in the searchable symmetric encryption literature [CM05, CGKO06].

Constructions. In our main construction, we show how to construct an ORE scheme from
one-way functions (more precisely, from pseudorandom functions (PRFs) [GGM84]). This particular
ORE scheme reveals slightly more information than just the ordering of the underlying messages.
Specifically, two ciphertexts encrypting messages m1 and m2 also reveal the index of the first bit in
m1 and m2 that differ. In other words, our ORE scheme leaks some information about the relative
distance between the underlying messages.

We give a brief overview of our PRF-based construction. The secret key in our scheme consists
of a PRF key k. The output space of the PRF is the set

{
0, 1, . . . , 2λ − 1

}
where λ is a security

parameter (equivalently, the set {0, 1}λ). Each ciphertext consists of the bits of the message blinded
by the outputs of the PRF evaluated on the prefixes of the message. More precisely, to encrypt an
n-bit message m = m1m2 · · ·mn, the encryption algorithm effectively computes the following for
each i ∈ [n]:

ui = F (k,m1m2 · · ·mi−1) +mi (mod 2λ).

Note that to support variable-length PRF inputs, we simply pad the input. We describe our
construction in greater detail in Section 3. The ciphertext is then the tuple ct = (u1, . . . , un) of
blinded values.

To compare encryptions ct = (u1, . . . , un) and ct′ = (u′1, . . . , u
′
n) of messages m and m′, the

evaluator first finds the first index i for which ui 6= u′i. Since ui and u′i are functions of just the first
i bits of m and m′, respectively, the first index i for which ui 6= u′i is the first bit of m and m′ that
differ. After identifying the ith bit that differs, the evaluator uses ui and u′i to determine which
message has 0 as the ith bit and which message has 1.4 Conversely, if ui = u′i for all i, then cti = ct′i,
and so m = m′. Security of this construction follows from the security of the PRF (Theorems 3.2).

3There are “mutable” order-preserving encryption schemes [PLZ13, KS14, Ker15] that do satisfy IND-OCPA, but
they require stateful encryption, and oftentimes, an interactive protocol to “update” ciphertexts. We survey some of
these constructions in Section 1.2.

4Either ui + 1 = u′
i (mod 2λ), in which case m < m′, or ui − 1 = u′

i (mod 2λ), in which case m > m′.
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Ciphertexts in our candidate scheme are λn bits, where λ is the security parameter and n is the
bit-length of the message. As a point of comparison, ciphertexts in the OPE scheme of Boldyreva
et al. [BCLO09] are only n + 1 bits long. While the ciphertexts in our scheme are longer (by a
multiplicative factor λ), we note that the security provided by the Boldyreva et al. scheme does not
increase by a noticeable amount if we further increase the size of the ciphertext space.5

We then explain in Section 3.2 how to convert our ORE scheme into an OPE scheme. This
is useful for applications where it is more convenient to have a numeric ciphertext space and for
order relations to be computable without a “custom” comparison function. The transformation we
describe is natural and does not reduce the security of the original ORE scheme. In particular, we
note that the resulting OPE scheme does not behave like a random order-preserving function (the
ideal object from the POPF-CCA security notion). Thus, the scheme is able to achieve stronger
security than the Boldyreva et al. OPE scheme.

In Section 3.3, we also describe a simple extension that allows for shorter ciphertexts in our
ORE scheme. In particular, we show that if we view the messages in base-d rather than base-2, we
can (after making appropriate changes to the scheme) achieve a O(log d) reduction in the size of the
ciphertexts. However, this results in greater leakage, and so, our extension provides a space/security
trade-off that may be appropriate depending on the application.

Comparison with existing schemes. First, we note in Section 2.3 that the security of any
OPE scheme can be “augmented” by applying ORE encryption on top of OPE encryption. The
resulting scheme is at least as secure as the underlying OPE scheme, and moreover, inherits the
security properties of the ORE scheme. Hence, by composing our ORE construction with existing
OPE constructions, we obtain ORE schemes that are at least as secure.

While composing an OPE scheme with an ORE scheme yields a scheme that is at least as
secure as the underlying OPE scheme, we show that even without this composition, our basic ORE
scheme still achieves stronger security guarantees according to the one-wayness metrics introduced
by Boldyreva et al. [BCO11] for analyzing the leakage of random order-preserving functions (and
by extension, any OPE scheme that is POPF-CCA secure). In our work, we introduce two more-
general one-wayness notions and show that under a uniform plaintext distribution,6 our basic ORE
scheme achieves strictly stronger security compared to OPE schemes that are POPF-CCA secure.
Specifically, Boldyreva et al. [BCO11] show that a random order-preserving function leaks half of
the most-significant bits of the messages with probability close to 1. In contrast, under the same
settings, we can show that our basic ORE scheme will not leak any constant fraction of the message
bits with overwhelming probability.

1.2 Related Work

In recent years, there have been numerous works on order-preserving encryption and related
notions [AKSX04, BCLO09, BCO11, PR12, PLZ13, TYM14, KS14, Ker15, MCO+15, RACY15].
In this section, we survey some of these works.

Security definitions. Though the POPF-CCA security definition introduced by Boldyreva et
al. [BCLO09] is similar in flavor to PRF security, it is not immediately evident what kind of

5Boldyreva et al. [BCO11] remark that for n-bit messages, increasing the ciphertext length beyond n + 1 bits has
little to no effect on the security of the scheme.

6This is the only distribution for which we have concrete analysis of the leakage in any POPF-CCA secure scheme.
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information the output of a random order-preserving function leaks about its input. In a follow-up
work [BCO11], Boldyreva et al. introduce several notions (based on definitions of one-wayness [Gol01]
for one-way functions) to capture the information leakage in schemes that are POPF-CCA secure.
They show that a random order-preserving function leaks at least half of the bits in each message.

Teranishi et al. [TYM14] also introduce a stronger indistinguishability-based notion (stronger
than the one-wayness definitions from [BCO11], but weaker than IND-OCPA) for OPE schemes,
as well as a construction that achieves these stronger notions. Notably, their definition ensures
that under a uniform message distribution, any fraction of the low-order bits of the messages being
encrypted are hidden.

Modular OPE. Boldyreva et al. also introduced the notion of modular OPE as a possible
extension of standard OPE [BCO11]. In modular OPE, a modular shift is applied to each plaintext
before applying OPE—so the scheme is not order-preserving, but naturally supports “wrap-around”
range queries. Their modular OPE scheme adds an extra layer of security to vanilla OPE, but it is
worth noting that leakage of a small amount of information (say, a single plaintext-ciphertext pair)
reveals the shift value and nullifies this added security. Subsequently, Mavroforakis et al. [MCO+15]
designed several protocols to avoid leaking the shift value while using modular OPE schemes in
practice.

Mutable OPE. Popa et al. [PLZ13] introduced a related notion of a mutable order-preserving
encoding scheme which can be viewed as a two-party protocol that allows a user to insert and
store encrypted values in a database such that the database is able to perform comparisons and
range queries on the encrypted values without learning anything more about the values. Their
construction is interactive and leverages stateful encryption. By working in this setting, the authors
are able to circumvent the Boldyreva et al. [BCLO09] lower bound for order-preserving encryption
and show that their scheme is IND-OCPA secure.

In subsequent work, Kerschbaum and Schröpfer [KS14] improved on the communication com-
plexity of the Popa et al. construction at the expense of increasing the amount of client-side state.
Specifically, in their construction, the amount of persistent state the client has to maintain increases
linearly in the number of elements inserted into the database. More recently, Kerschbaum [Ker15]
introduced a new notion of frequency-hiding OPE that introduces additional randomness to hide
whether multiple ciphertexts encrypt the same value. Their notions provide a strictly stronger
guarantee than IND-OCPA.

Very recently, Roche et al. [RACY15] introduced the notion of partial order-preserving encodings,
which optimizes for the setting where there are a huge number of insertion queries but only a
moderate number of range queries. Their protocol improves upon the round-complexity for insertions
compared to the Popa et al. protocol [PLZ13], and requires the client to maintain less state than
the Kerschbaum-Schröpfer construction [KS14]. All of the schemes described here require stateful
encryption and employ an interactive encryption procedure.

ORE. Order-revealing encryption schemes, as introduced by Boneh et al. [BLR+15] provide
another method of circumventing the Boldyreva et al. lower bound [BCLO09]. In an ORE scheme,
the public comparison operation is not required to correspond to numerically comparing the
ciphertexts, and in fact, the ciphertexts themselves need not be elements of a numeric, well-ordered
set. This type of relaxation was previously considered by Pandey and Rouselakis [PR12] in the
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context of property-preserving encryption. In a property-preserving encryption scheme, there is
a publicly computable function that can be evaluated on ciphertexts to determine the value of
some property on the underlying plaintexts. Order-revealing encryption can thus be viewed as
a property-preserving encryption scheme for the comparison operation. Pandey and Rouselakis
introduce and explore several indistinguishability-based notions of security for property-preserving
encryption; however, they do not construct an order-revealing encryption scheme.

To the best of our knowledge, all existing ORE schemes that provide IND-OCPA security either
rely on very strong (and currently impractical) cryptographic primitives such as indistinguishability
obfuscation [GGG+14] and cryptographic multilinear maps [BLR+15], or only achieve a weaker
notion of security [AJ15, BKS15] when instantiated with simple cryptographic primitives such
as public key cryptography. For the constructions based on indistinguishability obfuscation or
multilinear maps [GGG+14, BLR+15], security of the ORE scheme is conditional on the conjectured
security of cryptographic multilinear maps [BS03, GGH13a, CLT13, GGH15, CLT15].7 However, in
the last few months, numerous attacks [CHL+15, BWZ14, CGH+15, HJ15, CLR15, MF15, Cor15]
on these multilinear maps have emerged, raising some doubts about the security of constructions
that leverage them.

To avoid multilinear maps in favor of more well-studied number-theoretic or lattice-based
assumptions, one can apply arity-amplification techniques [AJ15, BKS15] to a single-input func-
tional encryption scheme based on simpler assumptions such as learning with errors [GKP+13]
or semantically-secure public-key encryption [SS10, GVW12]. However, due to limitations of the
underlying functional encryption schemes, the resulting ORE scheme only provides “bounded-
message” security—that is, security only holds if there is an a priori (polynomial) bound on the
maximum number of messages that will be encrypted. Moreover, the length of the ciphertexts in this
scheme grows polynomially in the bound on the number of messages that will be encrypted. These
constraints severely limit the practicality of the resulting ORE scheme. To obtain full semantic
security, it would be necessary to apply the arity-amplification transformation to a more powerful
functional encryption scheme, but to date, the only known candidates of such schemes rely again on
indistinguishability obfuscation [GGH+13b] or multilinear maps [GGHZ14].

Recently, Bun and Zhandry [BZ15] investigated the connection between order-revealing encryp-
tion and problems in learning theory.

Other schemes. Numerous ad hoc or heuristic order-preserving encryption schemes [BHF09,
KAK10, XYH12] have been proposed in the literature, but most lack formal security analysis.

2 Order-Revealing Encryption

In this section, we establish and review some conventions that we use in this work, and also formally
define our security notions for our encryption schemes.

Preliminaries. For n ∈ N, we write [n] to denote the set of integers {1, . . . , n}, and [0, n] to
denote the set {0, . . . , n}. If P(x) is a predicate on x, we write 1(P(x)) to denote the indicator
function for P: that is, 1(P(x)) = 1 if and only if P(x) = 1, and 0 otherwise. If x, y ∈ {0, 1}∗ are
bit-strings, we write x‖y to denote the concatenation of x and y. For a finite set S, we write Unif(S)

7To date, the only concrete instantiations of indistinguishability obfuscation [GGH+13b, BGK+14, AB15, Zim15]
leverage multilinear maps.
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to denote the uniform distribution on S. We say a function f(λ) is negligible in a security parameter
λ if f = o(1/λc) for all c ∈ N. We write negl(λ) to denote a negligible function in λ and poly(λ) to
denote a polynomial in λ. We say an event occurs with negligible probability if the probability of
the event is negl(λ), and it occurs with overwhelming probability if the complement of the event
occurs with negligible probability. Finally, we review the definition of a pseudorandom function
(PRF) [GGM84]. Let Funs[D,R] denote the set of all functions from a domain D to a range R.
Unless otherwise noted, we specialize the domain of our PRFs to {0, 1}n and the range to [0, 2λ− 1].

Definition 2.1 (Pseudorandom Function [GGM84]). Fix a security parameter λ. A PRF F :
K × {0, 1}n → [0, 2λ − 1] with key space K, domain {0, 1}n, and range [0, 2λ − 1] is secure if for all
efficient adversaries A,∣∣∣Pr

[
k

r←− K : AF (k,·)(1λ) = 1
]
− Pr

[
f

r←− Funs[{0, 1}n, [0, 2λ − 1]] : Af(·)(1λ) = 1
]∣∣∣ = negl(λ).

2.1 Order-Revealing Encryption

An order-revealing encryption (ORE) scheme is a tuple of algorithms Π = (ORE.Setup,ORE.Encrypt,
ORE.Compare) defined over a well-ordered domain D with the following properties:

• ORE.Setup(1λ)→ sk. On input a security parameter λ, the setup algorithm ORE.Setup outputs
a secret key sk.

• ORE.Encrypt(sk,m) → ct. On input the secret key sk and a message m ∈ D, the encrypt
algorithm ORE.Encrypt outputs a ciphertext ct.

• ORE.Compare(ct1, ct2) → b. On input two ciphertexts ct1, ct2, the compare algorithm
ORE.Compare outputs a bit b ∈ {0, 1}.

Remark 2.2 (Public Parameters). In general, the setup algorithm of an ORE scheme can also
output public parameters pp which are then passed as an additional input to the comparison
algorithm, as is done in Boneh et al. [BLR+15]. However, none of our constructions require these
public parameters, so we omit them in this work for simplicity.

Remark 2.3 (Support for Decryption). As described, our definition of an order-revealing encryption
scheme does not include a “decryption” function. However, this omission is without loss of generality.
To decrypt a message, the holder of the secret key can use the secret key to encrypt messages of her
choosing, apply the comparison algorithm, and perform binary search to recover the message. An
alternative method that avoids the need for binary search is to augment each ORE encryption of a
message m with an encryption of m under a CPA-secure symmetric encryption scheme. The secret
key of the ORE scheme would also include the key for the symmetric encryption scheme. As long
as the underlying encryption scheme is CPA-secure, including this additional ciphertext does not
compromise security. For the remainder of this work, we use the schema described above that does
not explicitly specify a decryption function.

Correctness. Fix a security parameter λ. An ORE scheme Π = (ORE.Setup,ORE.Encrypt,
ORE.Compare) over a well-ordered domain D is correct if for sk← ORE.Setup(1λ), and all messages
m1,m2 ∈ D,

Pr[ORE.Compare(ct1, ct2) = 1(m1 < m2)] = 1− negl(λ),
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where ct1 ← ORE.Encrypt(sk,m1) and ct2 ← ORE.Encrypt(sk,m2), and the probability is taken over
the random coins in ORE.Setup and ORE.Encrypt.

Security. We now give our simulation-based notion of security for an ORE scheme. As described
in Section 1.1, our security definition is parameterized by a leakage function L, which exactly
specifies what is leaked by an ORE scheme.

Definition 2.4 (Security of ORE with Leakage). Fix a security parameter λ ∈ N. Let Πore =
(ORE.Setup,ORE.Encrypt,ORE.Compare) be an ORE scheme. Let A = (A1, . . . ,Aq) be an adversary
for some q ∈ N. Let S = (S0,S1, . . . ,Sq) be a simulator, and let L(·) be a leakage function. We
define the experiments REALoreA (λ) and SIMore

A,S,L(λ) as follows:

REALoreA (λ):

1. sk← ORE.Setup(1λ)
2. (m1, stA)← A1(1λ)
3. c1 ← ORE.Encrypt(sk,m1)
4. for 2 ≤ i ≤ q:

(a) (mi, stA)← Ai(stA, c1, . . . , ci−1)
(b) ci ← ORE.Encrypt(sk,mi)

5. output (c1, . . . , cq) and stA

SIMore
A,S,L(λ):

1. stS ← S0(1λ)
2. (m1, stA)← A1(1λ)
3. (c1, stS)← S1(stS ,L(m1))
4. for 2 ≤ i ≤ q:

(a) (mi, stA)← Ai(stA, c1, . . . , ci−1)
(b) (ci, stS)← Si(stS ,L(m1, . . . ,mi))

5. output (c1, . . . , cq) and stA

We say that Πore is a secure ORE scheme with leakage function L(·) if for all polynomial-size
adversaries A = (A1, . . . ,Aq) where q = poly(λ), there exists a polynomial-size simulator S =
(S0,S1, . . . ,Sq) such that the outputs of the two distributions REALoreA (λ) and SIMore

A,S,L(λ) are
computationally indistinguishable.

Remark 2.5 (IND-OCPA Security). We briefly note how the IND-OCPA definition of security is
captured by this definition. Let L be the following leakage function:

L(m1, . . . ,mn) = {1(mi < mj) : 1 ≤ i < j ≤ n} .

If an ORE scheme is secure with leakage L, then it is IND-OCPA secure.

2.2 Order-Preserving Encryption (OPE)

An OPE scheme [AKSX04, BCLO09] is a special case of an ORE scheme, where the ciphertext
space is required to be a well-ordered range R and moreover, for two ciphertexts ct1, ct2 ∈ R, the
comparison algorithm outputs 1 if ct1 < ct2. For simplicity, we can write an OPE scheme as a tuple
of algorithms Π = (OPE.Setup,OPE.Encrypt) defined over a well-ordered domain D and well-ordered
range R with the following properties:

• ORE.Setup(1λ)→ sk. On input a security parameter λ, the setup algorithm ORE.Setup outputs
a secret key sk.

• ORE.Encrypt(sk,m) → ct. On input the secret key sk and a message m ∈ D, the encrypt
algorithm OPE.Encrypt outputs a ciphertext ct ∈ R.
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Correctness. An OPE scheme Π = (OPE.Setup,OPE.Encrypt) over a well-ordered domain D and
well-ordered range R is correct if sk← OPE.Setup(1λ), and all messages m1,m2 ∈ D,

m1 < m2 ⇐⇒ OPE.Encrypt(sk,m1) < OPE.Encrypt(sk,m2)

with overwhelming probability.

2.3 Composing OPE with ORE

By composing an ORE scheme with an OPE scheme, we obtain an ORE scheme whose security is at
least as strong as the security of the underlying OPE scheme. Let Πope = (OPE.Setup,OPE.Encrypt)
be an OPE scheme and Πin

ore = (OREin.Setup,OREin.Encrypt,OREin.Compare) be an ORE scheme.
Consider the following composed construction Πore = (ORE.Setup,ORE.Encrypt,ORE.Compare) of
an ORE scheme with an OPE scheme:

• ORE.Setup(1λ). The setup algorithm runs sk1 ← OPE.Setup(1λ) and sk2 ← OREin.Setup(1λ).
The secret key is sk = (sk1, sk2).

• ORE.Encrypt(sk,m). The encryption algorithm outputs OREin.Encrypt(sk2,OPE.Encrypt(sk1,m)).

• ORE.Compare(ct1, ct2). The compare algorithm outputs OREin.Compare(ct1, ct2).

Correctness of Πore follows immediately from the correctness of Πin
ore and Πope. Furthermore, we

note that under our simulation-based definition of security, the composed scheme Πore is at least as
secure as Πope. This intuition is formalized in the following remark, whose proof follows immediately
by construction.

Remark 2.6 (Security of Composed Scheme). For any leakage function L(·), if the OPE scheme
Πope is secure with leakage function L(·), then the ORE scheme Πore is also secure with leakage
function L(·).

3 Main Construction

In this section, we give a construction of an ORE scheme for the set of n-bit positive integers with
the following leakage function:

Lf(m1, . . . ,mt) := {(inddiff(mi,mj), 1(mi < mj)) : 1 ≤ i < j ≤ t}, (3.1)

where inddiff(x, y) gives the index of the first bit where x and y differ. If x = y, we set inddiff(x, y) =
n+ 1. In other words, for x 6= y, if x = x1 · · ·xn and y = y1 · · · yn, then inddiff(x, y) is the smallest
index ` ∈ [n] for which x` 6= y`.

Construction. Fix a security parameter λ ∈ N. Let F : K × ([n]× {0, 1}n−1)→ [0, 2λ − 1] be a
secure PRF. We define our ORE scheme Πore = (ORE.Setup,ORE.Encrypt,ORE.Compare) as follows:

• ORE.Setup(1λ). The setup algorithm chooses a uniformly random PRF key k for F . The
secret key is sk = k.
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• ORE.Encrypt(sk,m). Let b1 · · · bn be the binary representation of m and let sk = k. For each
i ∈ [n], the encryption algorithm computes

ui = F (k, (i, b1b2 · · · bi−1‖0n−i)) + bi (mod 2λ),

and outputs the tuple (u1, u2 . . . , un).

• ORE.Compare(ct1, ct2). The compare algorithm first parses

ct1 = (u1, u2, . . . , un)

ct2 = (u′1, u
′
2, . . . , un),

where u1, . . . , un, u
′
1, . . . , u

′
n ∈ [0, 2λ − 1]. Let i be the smallest index where ui 6= u′i. If no

such index exists, output 0. If such an index exists, output 1 if u′i = ui + 1 (mod 2λ), and 0
otherwise.

3.1 Correctness and Security

We now show that the above ORE scheme Πore is correct and secure against the leakage function Lf

from Equation (3.1).

Theorem 3.1. The ORE scheme Πore is correct.

Proof. Fix any two messages m1,m2 ∈ {0, 1}n. To show correctness, we show that for sk ←
ORE.Setup(1λ), and cti ← ORE.Encrypt(sk,mi) for i ∈ {1, 2}, then

Pr[ORE.Compare(ct1, ct2) = 1(m1 < m2)] = 1. (3.2)

Let k = sk be the PRF key output by the setup algorithm. Let b1 · · · bn be the binary representation
of m1 and let b′1 · · · b′n be the binary representation of m2. Next, write ct1 = (u1, u2, . . . un) and
ct2 = (u′1, u

′
2, . . . , u

′
n) We now show that m1 < m2 if and only if ORE.Compare(ct1, ct2) = 1.

• Suppose m1 < m2. Then, there exists some index i ∈ [n] such that bi = 0 and b′i = 1 and for
all j < i, bj = b′j . By construction of ct1 and ct2, for all j < i,

uj = F (k, (j, b1b2 · · · bj−1‖0n−j)) + bj

= F (k, (j, b′1b
′
2 · · · b′j−1‖0n−j)) + b′j = u′j (mod 2λ).

Since bi = 0 and b′i = 1, we have that

u′i = F (k, (i, b′1b
′
2 · · · b′i−1‖0n−i)) + b′i = ui + 1 (mod 2λ),

in which case, ORE.Compare(ct1, ct2) outputs 1.

• Suppose that ORE.Compare(ct1, ct2) = 1. This means that there exists an index i ∈ [n] such
that u′i = ui + 1 (mod 2λ) and for all j < i, uj = u′j . We first argue that for all 1 ≤ j < i,
bj = b′j . We proceed inductively on j. For the base case j = 1, we have that

F (k, (1, 0n−1)) + b1 = u1 = u′1 = F (k, (1, 0n−1)) + b′1 (mod 2λ),

10



from which we conclude that b1 = b′1. Next, suppose that b1b2 · · · bj = b′1b
′
2 · · · b′j . Then,

uj+1 = F (k, (j + 1, b1b2 · · · bj‖0n−j−1)) + bj+1 (mod 2λ)

u′j+1 = F (k, (j + 1, b′1b
′
2 · · · b′j‖0n−j−1)) + b′j+1 (mod 2λ).

By the inductive hypothesis, b1b2 · · · bj = b′1b
′
2 · · · b′j , and by assumption uj+1 = u′j+1, so

we conclude that bj+1 = b′j+1. By induction on j, we conclude that for all j < i, bj = b′j .

Finally, we argue that bi = 0 and b′i = 1. By assumption, u′i = ui + 1 (mod 2λ). Since
b1b2 · · · bi−1 = b′1b

′
2 · · · b′i−1, it follows that b′i = bi + 1 (mod 2λ). Finally, bi, b

′
i ∈ {0, 1}, so we

have that bi = 0 and b′i = 1. The claim follows.

Next, we state the security theorem for Πore, but we defer the formal proof to Appendix A.

Theorem 3.2. The order-revealing encryption scheme Πore is secure with respect to leakage function
Lf (Definition 2.4) under the PRF security of F .

3.2 Conversion to OPE

In this section, we explain how to convert Πore, an ORE scheme, into an OPE scheme. This means
that ciphertexts of the resulting OPE scheme can be compared using the normal comparison function
on numbers. To do this, we apply a simple transformation of any ciphertext ct of Πore into a number
c that lies in the range [0, 2λ − 1] for which direct numeric comparisons of two numbers c1 and c2

reveal the order relation of the underlying plaintexts.
Recall that in Πore, ciphertexts are of the form ct = (u1, u2 . . . , un), where for each i ∈ [n], ui

lies in the range [0, 2λ − 1]. The ciphertext in the resulting OPE scheme is taken to be the λn-bit
number

c =

n∑
i=1

ui · 2λ(n−i) ∈ [0, 2λn − 1]. (3.3)

Intuitively, we view u1u2 · · ·un as a base-2λ representation of the OPE ciphertext. Correctness
follows similarly to Πore, except here, there is a negligible probability of error (as opposed to Πore

where correctness held with probability 1). We claim that for any two messages m1,m2 ∈ [0, 2n− 1],

m1 < m2 ⇐⇒ c1 < c2,

with overwhelming probability, where c1, c2 ∈ [0, 2λn−1] are the ciphertexts obtained by first invoking
ORE.Encrypt on m1,m2, respectively, and then applying the transformation in Equation (3.3). To
see this, observe that the numeric comparison of the OPE ciphertexts behaves identically as the
ORE comparison procedure, except when the output of the PRF on a prefix of the message is the
value 2λ − 1.8 However, by PRF security, this event happens with negligible probability, and thus,
correctness holds with overwhelming probability.

Security of the resulting OPE scheme follows identically from security of Πore, as the trans-
formation from ciphertexts ct to numbers c is bijective and easily invertible. We note that while
this scheme is order-preserving, it does not behave like a random order-preserving function, and
thus, does not inherit the security limitations associated with such OPE schemes [BCO11]. In fact,
our simulation-based security model and associated security theorem (Theorem 3.1) enables us to
precisely specify the information leakage in this order-preserving encryption scheme.

8If no reduction modulo 2λ occurs in the ORE.Encrypt encryption, then numerically comparing the transformed
ciphertexts is identical to evaluating the ORE.Compare procedure (since all relations hold over the integers).
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3.3 Space Usage and Security Trade-offs

For a security parameter λ, the order-revealing encryption scheme Πore on n-bit inputs produces
encryptions of size λn. By considering the “d-ary” generalization of Πore, we obtain an order-
revealing encryption scheme which on n-bit inputs produces ciphertexts of size λ · dn/ log2(d)e.
However, the reduction in ciphertext size comes with a loss in security. In particular, this d-ary
generalization of Πore is secure with respect to the following more expressive leakage function:

Ldf (m1, . . . ,mn) :=
{(

ind
(d)
diff(mi,mj), 1(mi < mj)

)
: 1 ≤ i < j ≤ n

}
, (3.4)

where ind
(d)
diff(x, y) is defined as follows. For two d-ary inputs x = x1 · · ·xn and y = y1 · · · yn where

x 6= y, we define

ind
(d)
diff(x, y) = (k, xk − yk),

where k is the smallest index where xk 6= yk. If x = y, then ind
(d)
diff(x, y) = (n+ 1, 0).

Generalized construction. Fix a security parameter λ ∈ N. Let F : K× ([n]× [0, d− 1]n−1)→
[0, 2λ − 1] be a secure PRF. We define our ORE scheme Πgore = (ORE.Setup,ORE.Encrypt,
ORE.Compare) as follows:

• ORE.Setup(1λ). The setup algorithm chooses a uniformly random PRF key k for F . The
secret key is sk = k.

• ORE.Encrypt(sk,m). Let b1 · · · bn be the d-ary representation of m and let sk = k. For each
i ∈ [n], the encryption algorithm computes

ui = F (k, (i, b1b2 · · · bi−1‖0n−i)) + bi (mod 2λ),

and outputs (u1, u2 . . . , un).

• ORE.Compare(ct1, ct2). The compare algorithm first parses

ct1 = (u1, u2, . . . , un)

ct2 = (u′1, u
′
2, . . . , u

′
n),

where u1, . . . , un, u
′
1, . . . , u

′
n ∈ [0, 2λ− 1]. Let i be the smallest index where ui 6= u′i. If no such

index exists, output 0. If such an index exists, output 1 if there exists k ∈ [d− 1] such that
u′i = ui + k (mod 2λ), and 0 otherwise.

Correctness of the ORE scheme Πgore follows almost identically as the correctness of Πore by
adapting the correctness proof to deal with the d-ary representation of the message as opposed
to the binary representation. Also, Πgore can be converted into an OPE scheme analogously to
the conversion of Πore in Section 3.2, where correctness holds with high probability so long as
d = poly(λ). The proof of security for Πgore is also similar to that for Theorem 3.2, and is deferred
to Appendix B.

Theorem 3.3. The order-revealing encryption scheme Πgore is secure with respect to leakage function
Ldf under the PRF security of F .
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4 Comparison to Existing OPE Schemes

We now compare the leakage of our order-revealing encryption scheme to that of existing order-
preserving encryption schemes by Boldyreva et al. [BCLO09, BCO11]. As explained in Section 2.3,
composing any existing OPE scheme with an ORE scheme results in a new ORE scheme which is
at least as secure as the underlying OPE scheme.9 In this section, we show that even without the
composition, our construction still achieves stronger security according to the metrics proposed by
Boldyreva et al.

The security definition achieved by an order-preserving encryption scheme is that the encryption
function behaves like a random order-preserving function (ROPF) from the plaintext space to
the ciphertext space. While this definition has the same flavor as that for PRFs, the behavior
of a truly random function is very different from that of a random order-preserving function. In
particular, the output of an order-preserving function is not independent of its input, and thus,
reveals some information about the input. It turns out that quantifying the exact information
leakage is a non-trivial task in general. However, under certain assumptions (for example, if the
messages are drawn from a uniform distribution), it is possible to obtain concrete upper bounds
on the information leakage [BCO11]. In particular, Boldyreva et al. propose two security notions,
window one-wayness and window distance one-wayness, to analyze the security of an OPE scheme.
In our setting, the nature of our security definition allows us to analyze the construction under a
more generalized set of definitions compared to [BCO11]. We present these here.

4.1 One-Wayness

One of the most basic requirements of an encryption scheme is that it is one-way. Given a ciphertext,
an adversary that does not have the secret key should not be able to recover the underlying message.
In the standard definition of one-wayness [Gol01], the adversary is given the encryption of a random
message, and its goal is to guess the message. This is a very weak notion of security, and even if
an encryption is one-way, the adversary might still be able to deduce nontrivial information about
the message given only the ciphertext. To address this, Boldyreva et al. [BCLO09] introduce a
more general notion of one-wayness where the adversary is allowed to guess a contiguous interval (a
window) in the one-wayness challenge. The adversary succeeds if the message is contained within the
interval. Moreover, the adversary is given multiple encryptions (of random messages) and succeeds
if it outputs an interval that contains at least one of the messages.

The notion of window one-wayness is useful for arguing that an adversary does not learn many
of the most significant bits of the message, but if all bits of the message are equally sensitive, then
this definition is less useful. In our work, we present a more general definition of one-wayness, where
instead of outputting an interval, the adversary is allowed to specify a set of guesses. To allow the
adversary to specify a super-polynomially-sized set of guesses, we instead require the adversary
to submit a circuit C that encodes its set (C(x) = 1 if and only if x is in the set). By requiring
that the circuit encodes a contiguous interval, we recover the window one-wayness definition by
Boldyreva et al. [BCO11]. We now give our generalized definition.

Definition 4.1 (Generalized One-Wayness). Fix a plaintext space D and let Π = (ORE.Setup,
ORE.Encrypt,ORE.Compare) be an ORE over D. The (r, z)-generalized one-wayness advantage of

9In most cases, the security of the composed scheme is strictly greater than that of the base OPE scheme since our
ORE construction provides semantic security for a single ciphertext, whereas existing OPE schemes generally do not.
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an adversary A against Π is given by

Advgow
r,z,Π(A)

def
= Pr[Exptgow

r,z,Π,A(1λ) = 1],

where the (r, z)-generalized one-wayness experiment Exptgow
r,z,Π,A(1λ) is defined as follows:

Experiment Exptgow
r,z,Π,A(1λ):

1. sk← ORE.Setup(1λ)
2. sample m1, . . . ,mz uniformly from D without replacement
3. for i ∈ [z], cti ← ORE.Encrypt(sk,mi)
4. C ← A(ct1, . . . , ctz), where C : D → {0, 1} is a circuit
5. output 1 if C(mi) = 1 for some i ∈ [z] and |{x ∈ D : C(x) = 1}| ≤ r; otherwise, output 0

Remark 4.2 (Comparison with Existing One-Wayness Notions). By restricting the parameters
(r, z) and the classes of circuits the adversary is allowed to output, Definition 4.1 captures many
existing notions of one-wayness. For example, when r = z = 1, we recover the usual notion of
one-wayness [Gol01]. When the underlying plaintext space is the ring ZM for some integer M and
we require that the circuit output by the adversary encodes a contiguous interval of length at most
r in ZM , our definition corresponds to the notion of window one-wayness introduced by Boldyreva
et al. [BCO11].

We now state our security theorem, but defer the proof to Appendix C.

Theorem 4.3. Fix a security parameter λ and a plaintext space {0, 1}n where n = ω(log λ). Let
Πore be the ORE scheme given at the beginning of Section 3. Then, for any constant ε ∈ (0, 1], any
z = poly(λ), and all efficient adversaries A,

Advgow
r,z,Πore,A(1λ) = negl(λ),

where r = 2n(1−ε).

Comparison to existing schemes. When discussing the notion of one-wayness, we will always
assume that the message-space is super-polynomial in the security parameter. Otherwise, the trivial
adversary that just guesses a random point in the message space will succeed with non-negligible
probability.

In [BCO11], Boldyreva et al. give an upper bound on the one-wayness advantage of any
(possibly computationally unbounded) adversary A against a random order-preserving function
ROPF. This corresponds to setting r = 1 in our definition. They show [BCO11, Theorem 4.1] that
for z = poly(λ), Advgow

1,z,ROPF,A = negl(λ). The same statement holds for our ORE construction
assuming a computationally bounded adversary: simply instantiate Theorem 4.3 with ε = 1.

In addition to giving an upper bound on an adversary’s ability to guess the plaintext from the
ciphertext, Boldyreva et al. also give a lower bound on the advantage for the case when r is large.
In particular, they exhibit an efficient adversary A against an ROPF such that Advgow

r,z,ROPF,A(1λ) =
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1 − 2e−b
2/2 for a constant b when r = O(

√
2n) and for any z [BCO11, Theorem 4.2].10 In other

words, the authors describe a concrete adversary that is able to break the generalized one-wayness
of any ROPF scheme (with probability close to 1) if the adversary is allowed to specify a set with
r = O(

√
2n) elements, even when z = 1. An intuitive way to understand this result is that given

the output of an ROPF, an adversary can deduce roughly half of the bits of the associated input.
In contrast, in our ORE scheme, if the adversary only sees a polynomial number of ciphertexts
(z = poly(λ)), then invoking Theorem 4.3 with ε = 1/2, we have that for all efficient adversaries A,
Advgow

r,z,Πore,A(1λ) = negl(λ) where r =
√

2n. In fact, as Theorem 4.3 demonstrates, the adversary’s
advantage remains negligible even if we further increase the size of the sets the adversary is allowed
to submit.

Intuitively, our results show that if the adversary only sees a polynomial number of ciphertexts,
then it does not learn any constant fraction ε of the bits in the underlying plaintext from each
ciphertext. In contrast, with an ROPF, and correspondingly, any OPE scheme that realizes a ROPF,
each ciphertext alone leaks half of the most-significant bits of the underlying plaintext.

Similarly, while the OPE scheme by Teranishi et al. [TYM14] can be shown to hide any constant
fraction of the least significant bits of the plaintext, no such guarantee exists for the other bits of the
plaintext. Note though that the security notion proposed in [TYM14] is indistinguishability-based
and hence, stronger than the one-wayness security notions. In fact, our basic ORE construction (by
itself) does not achieve their indistinguishability-based definition. However, by composing our ORE
construction with their OPE construction, we obtain a resulting ORE scheme which is strictly more
secure, since it inherits the security properties of the underlying OPE scheme as well as semantic
security for a single ciphertext (Section 2.3, Remark 2.6).

4.2 Distance One-Wayness

Boldyreva et al. [BCO11] also introduce an additional metric they use to analyze the security of an
OPE scheme called “window distance one-wayness.” This metric helps quantify the extent to which
an OPE scheme reveals information about the distance between the underlying plaintexts. In a
semantically-secure ORE scheme, recall that no distance information between ciphertexts is revealed
aside from information that can be directly inferred from the ordering of the ciphertexts. As was
the case for one-wayness, we present here a more general notion of window distance one-wayness,
and then show that our proposed ORE scheme is robust under this definition.

Definition 4.4 (Generalized Distance One-Wayness). Fix a plaintext space ZM and let Π =
(ORE.Setup,ORE.Encrypt,ORE.Compare) be an ORE over ZM . The (r, z)-generalized distance one-
wayness advantage of an adversary A against Π is given by

Advgdow
r,z,Π(A)

def
= Pr[Exptgdow

r,z,Π,A(1λ) = 1],

where the (r, z)-generalized distance one-wayness experiment Exptgdow
r,z,Π,A(1λ) is defined as follows:

10Strictly speaking, the adversary they describe is for the window one-wayness experiment, but any adversary
that succeeds in the window one-wayness experiment also succeeds in the generalized one-wayness experiment
(Definition 4.1).
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Experiment Exptgdow
r,z,Π,A(1λ):

1. sk← ORE.Setup(1λ)
2. sample m1, . . . ,mz uniformly from ZM without replacement
3. for i ∈ [z], cti ← ORE.Encrypt(sk,mi)
4. C ← A(ct1, . . . , ctz), where C : ZM → {0, 1} is a circuit
5. output 1 if there exists distinct i, j ∈ [z] such that C(dij) = 1 where dij = mj − mi

(mod M) and |{x ∈ ZM : C(x) = 1}| ≤ r; otherwise, output 0

Remark 4.5 (Comparison with Window Distance One-Wayness [BCO11]). In Definition 4.4, if we
restrict the adversary to outputting circuits C that represent a contiguous interval of length at most
r in ZM , then we recover the notion of windowed distance one-wayness from [BCO11, §3].

We now state our security theorem, but defer the proof to Appendix D.

Theorem 4.6. Fix a security parameter λ and a plaintext space {0, 1}n (or equivalently, the ring
Z2n) where n = ω(log λ). Let Πore be the ORE scheme given at the beginning of Section 3. Then,
for any constant ε ∈ (0, 1], any z = poly(λ), and all efficient adversaries A,

Advgdow
r,z,Πore,A(1λ) = negl(λ),

where r = 2n(1−ε).

Comparison to existing schemes. As was done with one-wayness, Boldyreva et al. [BCO11]
also give a lower and upper bound for the advantage of an adversary for a random order-preserving
function in the distance one-wayness game. Specifically, they show [BCO11, Theorem 4.3] that

when r = 1 and z = poly(λ), for all (not necessarily efficient) adversaries A, Advgdow
r,z,ROPF,A = negl(λ).

A matching upper bound holds for the advantage of all computationally bounded adversaries for
our ORE scheme (simply instantiate Theorem 4.6 with ε = 1). Intuitively, this statement says that
given encryptions of several uniformly sampled ciphertexts, the adversary cannot guess the exact
distance between any pair of ciphertexts. This does not rule out learning partial information about
the distances between ciphertexts, and as it turns out, some partial information is in fact leaked.

Similar to the case of one-wayness, when r is large, there exists an efficient adversary against
the ROPF that can win the generalized distance one-wayness game with advantage close to 1.
Specifically, when r = O(

√
2n), and any z ≥ 2, there exists an efficient adversary A where

Advgdow
r,z,ROPF,A(1λ) = 1− c where c is a constant (independent of λ) [BCO11, Theorem 4.4]. Note that

the results in [BCO11] are with respect to adversaries restricted to submitting circuits that encode a
contiguous interval in the ring Z2n . Conceptually, this means that two ciphertexts encrypted under
an OPE scheme that implements an ROPF reveal roughly half the bits of the distance between the
underlying plaintext values.

In contrast, instantiating Theorem 4.6 with ε = 1/2, we have that for r =
√

2n, and for all

efficient adversaries A, the advantage Advgdow
r,z,Πore,A is negligible. In fact, Theorem 4.6 states that

given polynomially many ciphertexts, no efficient adversary is able to even learn a constant fraction
of the bits in the distance between any pair of encrypted messages. Thus, in this setting, our ORE
scheme provides a provably stronger security guarantee.

16



In the same work [BCO11], Boldyreva et al. also introduced the notion of a modular OPE
(MOPE) scheme to obtain stronger security guarantees over a standard OPE scheme. At a high
level, in an MOPE scheme, a secret and fixed modular offset is added to the plaintext value before
encryption with an OPE scheme. On the one hand, an MOPE scheme substantially improves the
one-wayness security of the underlying encryption scheme. Specifically, Boldyreva et al. show that
the (r, w) window one-wayness advantage (Remark 4.2) of any adversary is optimal (no better than
the trivial adversary that outputs a random window of size r). However, this security guarantee is
unstable in the sense that a small piece of information (such as a single plaintext-ciphertext pair)
reveals the secret offset, reverting the one-wayness security to that of the underlying OPE scheme.
Moreover, information about the secret offset can be inferred from range query distribution in a
näıve practical implementation [BCO11].

Subsequent work [MCO+15] proposed strategies to avoid leaking the MOPE secret offset when
the distribution of range query inputs is known, through the use of “dummy queries.” However, if
the distribution is far from uniform, the number of necessary dummy queries can be prohibitive. In
addition, Boldyreva et al. [BCO11] show that MOPE schemes do not help to hide the distances
between plaintext values. Like an OPE scheme, an MOPE scheme reveals roughly half of the bits of
the distance between two plaintext values. Thus, for a uniform message distribution, we conclude
that our ORE scheme achieves better hiding properties on the distances between plaintexts, while
retaining direct support for efficiently answering range queries.

5 Conclusions

In this work, we introduced a new notion of security for order-preserving, and more generally,
order-revealing encryption. Our simulation-based security notion is defined with respect to a leakage
function which precisely characterizes what the ciphertexts in the scheme leak about the underlying
messages. We then give a practical order-revealing encryption scheme which achieves this security
notion for a simple leakage function. By composing our ORE construction with existing OPE
schemes, we obtain an ORE scheme with increased security. It is our hope that having a concrete
leakage model will enable practitioners to make better-informed decisions on whether an ORE
scheme is appropriate for their particular application. We conclude with several open problems:

1. Can we construct a practical ORE scheme with stronger security guarantees?

2. Can we reduce the ciphertext length of our ORE scheme while still maintaining a similar level
of security?

3. Is it possible to build a practical ORE scheme with best-possible security from standard
assumptions?
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A Proof of Theorem 3.2

Fix a security parameter λ and let A = (A1, . . . ,Aq) where q = poly(λ) be an efficient adversary
for the ORE security game (Definition 2.4). To prove security, we give an efficient simulator
S = (S0, . . . ,Sq) for which the outputs of the distributions REALoreA (λ) and SIMore

A,S,Lf
(λ) are

computationally indistinguishable.
We use a hybrid argument. We begin by defining the hybrid experiments:

• Hybrid H0: This is the real experiment REALoreA (λ).

• Hybrid H1: Same as H0, except during ORE.Setup, a random function f
r←− Funs[([n] ×

{0, 1}n−1), [0, 2λ − 1]] is chosen. In all invocations of ORE.Encrypt, the function F (k, ·) is
replaced by f(·).

Hybrids H0 and H1 are computationally indistinguishable under the PRF security of F . Thus,
it suffices to show that there exists a simulator S such that the distribution of outputs in H1 is
computationally indistinguishable from SIMore

A,S,Lf
(λ).

Description of the simulator. We now describe the simulator S = (S0, . . . ,Sq). First, S0

initializes an empty lookup tables L : [q] × [n] → [0, 2λ − 1]. It outputs stS = L. Then, for each
t ∈ [q], after the adversary outputs a query mt, the simulation algorithm St is invoked on input
stS = L and Lf(m1, . . . ,mt). In particular, Lf(m1, . . . ,mt) contains the values 1(mj < mt) and
inddiff(mj ,mt) for all j ∈ [t− 1], where inddiff(mj ,mt) is the index of the first bit in mj and mt that
differ. For each s ∈ [n], there are three cases to consider:

• Case 1: There exists a j ∈ [t − 1] such that inddiff(mj ,mt) > s. If there are multiple j for
which inddiff(mj ,mt) > s, let j be the smallest one. Then, the simulator sets us = L(j, s).

• Case 2: For each ` ∈ [t − 1], inddiff(m`,mt) ≤ s and there exists a j ∈ [t − 1] for which
inddiff(mj ,mt) = s. If there are multiple j for which inddiff(mj ,mt) = s, let j be the smallest
one. Then, the simulator sets us = L(j, s)− (1− 2 · 1(mj < mt)) (mod 2λ).

• Case 3: For each ` ∈ [t − 1], inddiff(m`,mt) < s. In this case, the simulator samples

y
r←− [0, 2λ − 1] and sets us = y.

For each s ∈ [n], the simulator adds the mapping (t, s) 7→ us to L. Finally, the simulator St outputs
the ciphertext ctt = (u1, u2, . . . , un) and the updated state stS = L. This completes the description
of the simulator S.

Correctness of the simulation. We show that the simulator S = (S0, . . . ,Sq) perfectly simulates
the distribution in hybrid H2. Let (ct1, . . . , ctq) be the joint distribution of the ciphertexts output in
hybrid H2, and let (ct1, . . . , ctq) be the joint distribution of the ciphertexts output by the simulator.
We proceed inductively in the number of queries q. The base case (q = 0) follows trivially.

Suppose now that (ct1, . . . , ctt−1) ≡ (ct1, . . . , ctt−1) for some t ∈ [q]. We show that the statement
holds for t+ 1. Consider the distributions of ctt and ctt. First, for any j ∈ [t], write ciphertext ctj
as (uj,1, uj,2, . . . , uj,n) and ctj as (uj,1, uj,2, . . . , uj,n). In addition, for j ∈ [t], we write bj,s to denote
the sth bit of mj . For each s ∈ [n], we consider three cases:
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• Case 1: There exists a j ∈ [t − 1] such that inddiff(mj ,mt) > s. If there are multiple j for
which inddiff(mj ,mt) > s, let j be the smallest one. This means that mj and mt share a prefix
of length at least s. Let p ∈ {0, 1}s−1 be the first s− 1 bits of this common prefix. Then, in
hybrid H1, we have

ut,s = f(s, p‖0n−s) + bt,s = uj,s.

In the simulation, ut,s = L(j, s) = uj,s. Since j < t, we conclude from the induction hypothesis
that ut,s and ut,s are identically distributed.

• Case 2: For each ` ∈ [t − 1], inddiff(m`,mt) ≤ s and there exists a j ∈ [t − 1] such that
inddiff(mj ,mt) = s. If there are multiple j for which inddiff(mj ,mt) = s, let j be the smallest
one. This means that mj and mt share a prefix p ∈ {0, 1}s−1 of length s− 1. Then, in hybrid
H1, we have

ut,s = f(s, p‖0n−s) + bt,s (mod 2λ).

In the simulation,

ut,s = L(j, s)− (1− 2 · 1(mj < mt)) = uj,s − (1− 2 · 1(mj < mt)) (mod 2λ).

In hybrid H2, uj,s = f(s, p‖0n−s) + bj,s. By assumption, bj,s 6= bt,s, so we can write bt,s =
bj,s − (1− 2 · 1(mj < mt)). Thus, in hybrid H2, we have

ut,s = f(s, p‖0n−s+1) + bt,s = uj,s − (1− 2 · 1(mj < mt)) (mod 2λ).

By the inductive hypothesis, uj,s and uj,s are identically distributed, so we conclude that ut,s
and ut,s are identically distributed.

• Case 3: For each ` ∈ [t− 1], inddiff(m`,mt) < s. Let p ∈ {0, 1}s−1 be the first s− 1 bits of
mt. In hybrid H1, we have

ut,s = f(s, p‖0n−s) + bt,s (mod 2λ),

while in the simulation ut,s is a uniformly random string. By assumption, none of the messages
m1, . . . ,mt−1 begin with the prefix p. Since f(·) is a truly random function, the value of
f(s, p‖0n−s) is uniform in [0, 2λ − 1] and independent of all other ciphertexts. Thus, ut,s and
ut,s are identically distributed.

We conclude that for all s ∈ [n], ut,s ≡ ut,s. Since the components of each ciphertext are constructed
independently in both hybrid H1 and in the simulation, this suffices to show that ctt and ctt are
identically distributed. The claim then follows by induction on t.

B Proof of Theorem 3.3

This proof is very similar to that of Theorem 3.2 from Appendix A. Fix a security parameter λ
and let A = (A1, . . . ,Aq) where q = poly(λ) be an efficient adversary for the ORE security game
(Definition 2.4). To prove security, we give an efficient simulator S = (S0, . . . ,Sq) for which the
outputs of the distributions REALoreA (λ) and SIMore

A,S,Ldf
(λ) are computationally indistinguishable.

We use a hybrid argument similar to the argument used in the proof of Theorem 3.2. We begin
by defining the hybrid experiments:
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• Hybrid H0: This is the real experiment REALoreA (λ).

• Hybrid H1: Same as H1, except during ORE.Setup, a random function f
r←− Funs[([n]× [0, d−

1]n−1), [0, 2λ − 1]] is chosen. In all invocations of ORE.Encrypt, the function F (k, ·) is replaced
by f(·).

By the same argument as in the proof of Theorem 3.2, hybrids H0,H1 are computationally indistin-
guishable under the PRF security of F . It suffices to show that there exists a simulator S such that
the distribution of outputs in H1 is computationally indistinguishable from SIMore

A,S,Ldf
(λ).

Description of the simulator. We now describe the simulator S = (S0, . . . ,Sq). First, S0

initializes an empty lookup tables L : [q]× [n]→ [0, 2λ − 1]. It then outputs stS = L. Then, for each
t ∈ [q], after the adversary outputs a query mt, the simulation algorithm St is invoked on input
stS = L and Ldf (m1, . . . ,mt). In particular, Ldf (m1, . . . ,mt) contains the values 1(mj < mt) and

ind
(d)
diff(mj ,mt) for all j ∈ [t− 1], where ind

(d)
diff(mj ,mt) consists of a pair (k,w) where k ∈ [n] is the

index of the first d-ary chunk in mj and mt that differ, w = mj,k −mt,k, and mj,k and mt,k are the
kth d-ary chunks of mj and mt, respectively. For each s ∈ [n], there are three cases to consider:

• Case 1: There exists a j ∈ [t− 1] and (k,w) ∈ [n]× [−d, d] such that ind
(d)
diff(mj ,mt) = (k,w)

and k > s. If there are multiple j for which the property holds, let j be the smallest one.
Then, the simulator sets us = L(j, s).

• Case 2: For each ` ∈ [t−1], there exists a (k, z) ∈ [n]×[−d, d] for which ind
(d)
diff(m`,mt) = (k, z)

and k ≤ s, and there exists a j ∈ [t− 1] and w ∈ [−d, d] for which ind
(d)
diff(mj ,mt) = (s, w). If

there are multiple j for which ind
(d)
diff(mj ,mt) = (s, w) for some w, let j be the smallest one.

Then, the simulator sets us = L(j, s)− w (mod 2λ).

• Case 3: For each ` ∈ [t−1], there exist a (k, z) ∈ [n]× [−d, d] for which ind
(d)
diff(m`,mt) = (k, z)

and k < s. In this case, the simulator samples y
r←− [0, 2λ − 1] and sets us = y.

For each s ∈ [n], the simulator adds the mapping (t, s) 7→ us to L. Finally, the simulator St outputs
the ciphertext ctt = (u1, u2, . . . , un) and the updated state stS = L. This completes the description
of the simulator S.

Correctness of the simulation. We show that the simulator S = (S0, . . . ,Sq) perfectly simulates
the distribution in hybrid H1. Let (ct1, . . . , ctq) be the joint distribution of the ciphertexts output in
hybrid H1, and let (ct1, . . . , ctq) be the joint distribution of the ciphertexts output by the simulator.
We proceed inductively in the number of queries q. The base case (q = 0) follows trivially.

Suppose now that (ct1, . . . , ctt−1) ≡ (ct1, . . . , ctt−1) for some t ∈ [q]. We show that the statement
holds for t+ 1. Consider the distributions of ctt and ctt. First, for any j ∈ [t], write ciphertext ctj
as (uj,1, uj,2, . . . , uj,n) and ctj as (uj,1, uj,2, . . . , uj,n). In addition, we write bj,s to denote the sth

d-ary chunk of message mj . For each s ∈ [n], we again consider three cases:

• Case 1: There exists a j ∈ [t− 1] and (k,w) ∈ [n]× [−d, d] such that ind
(d)
diff(mj ,mt) = (k,w)

and k > s. If there are multiple j for which this property holds, let j be the smallest one.
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This means that mj and mt share a prefix of length at least s. Let p ∈ [0, d− 1]s−1 be the
first s− 1 d-ary chunks of this common prefix. Then, in hybrid H1, we have

ut,s = f(s, p‖0n−s) + bt,s = uj,s.

In the simulation, ut,s = L(j, s) = uj,s. Since j < t, we conclude from the induction hypothesis
that ut,s and ut,s are identically distributed.

• Case 2: For each ` ∈ [t−1], there exists a (k, z) ∈ [n]×[−d, d] for which ind
(d)
diff(m`,mt) = (k, z)

and k ≤ s, and there exists a j ∈ [t− 1] and w ∈ [−d, d] for which ind
(d)
diff(mj ,mt) = (s, w). If

there are multiple j for which ind
(d)
diff(mj ,mt) = (s, w) for some w, let j be the smallest one.

This means that mj and mt share a prefix p ∈ {0, 1}s−1 of length s− 1. In hybrid H1, we have

ut,s = f(s, p‖0n−s) + bt,s (mod 2λ).

In the simulation,
ut,s = L(j, s)− w = uj,s − w (mod 2λ).

In hybrid H1, uj,s = f(s, p‖0n−s) + bj,s. By definition of ind
(d)
diff , we have that w = bj,s − bt,s,

so we can write bt,s = bj,s − w. Thus, in hybrid H1, we have

ut,s = f(s, p‖0n−s) + bt,s = uj,s − w (mod 2λ).

By the inductive hypothesis, uj,s and uj,s are identically distributed, and the claim follows.

• Case 3: For each ` ∈ [t−1], there exist a (k,w) ∈ [n]×[−d, d] for which ind
(d)
diff(m`,mt) = (k,w)

and k < s. Let p ∈ {0, 1}s−1 be the first s− 1 d-ary chunks of mt. In hybrid H1, we have

ut,s = f(s, p‖0n−s) + bt,s (mod 2d− 1),

while in the simulation ut,s is a uniformly random string. By assumption, none of the messages
m1, . . . ,mt−1 begin with the prefix p. Since f(·) is a truly random function, the value of
f(s, p‖0n−s) is uniform in [0, 2λ − 1] and independent of all other ciphertexts. Thus, ut,s and
ut,s are identically distributed.

We conclude that for all s ∈ [n], ut,s ≡ ut,s. Since the components of each ciphertext are constructed
independently in both hybrid H1 and in the simulation, this suffices to show that ctt and ctt are
identically distributed. The claim then follows by induction on t.

C Proof of Theorem 4.3

We first define a sequence of hybrid experiments:

• Hybrid H0: This corresponds to experiment Exptgow
r,z,Πore,A(1λ).

• Hybrid H1: Same as H0, except m1, . . . ,mz
r←− {0, 1}n (rather than sampled without replace-

ment).
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• Hybrid H2: Same as H1, except the ciphertexts ct1, . . . , ctz are constructed by invoking the sim-
ulator (Theorem 3.2) on Lf(m1, . . . ,mz) where Lf is the leakage function from Equation (3.1).

• Hybrid H3: Fix a parameter k = ω(log λ) where k ≤ n. In hybrid H3, after sampling the

messages m1, . . . ,mn
r←− {0, 1}n, the experiment also samples messages m′i

r←− {0, 1}n subject
to the restriction that the first k bits of mi and m′i are equal. The ciphertexts are constructed
by invoking the simulator on Lf(m

′
1, . . . ,m

′
z), but the success criterion at the end of the

experiment is still checked using m1, . . . ,mn.

Lemma C.1. Hybrids H0 and H1 are statistically indistinguishable.

Proof. In H0, the messages are sampled without replacement from {0, 1}n. In particular, this
means that for i ∈ [z], the message mi is sampled from Unif({0, 1}n \ {m1, . . . ,mi−1}). But since
z = poly(λ) and n = ω(log λ) (so the size of the message space {0, 1}n is super-polynomial in λ),
the distribution Unif({0, 1}n) is statistically close to Unif({0, 1}n \ {m1, . . . ,mi−1}) for all i ∈ [z].
Thus, H0 and H1 are statistically indistinguishable.

Lemma C.2. Hybrids H1 and H2 are computationally indistinguishable.

Proof. Follows directly by simulation security of Πore (Theorem 3.2).

Lemma C.3. Hybrids H2 and H3 are statistically indistinguishable.

Proof. It suffices to argue that Lf(m1, . . . ,mn) = Lf(m
′
1, . . . ,m

′
n) with overwhelming probability.

Take any distinct pair of indices i, j. With overwhelming probability mi 6= mj . Consider the
probability Pr[inddiff(mi,mj) = k]. Since inddiff(mi,mj) gives the first bit on which messages mi

and mj differ, inddiff(mi,mj) = k only if the first k − 1 bits of mi and mj match and the kth bit of
mi and mj differ. Since mi and mj are both sampled uniformly and independently from {0, 1}n, we
conclude that Pr[inddiff(mi,mj) = k] = 2−k. Moreover, Pr[inddiff(mi,mj) ≥ k] =

∑n
s=k 2−s ≤ 2−k+1.

By a union bound, we have that for each i ∈ [z],

Pr[∀j 6= i : inddiff(mi,mj) < k] ≥ 1− z

2k−1
.

For k = ω(log λ) we have that Pr[∀j 6= i : inddiff(mi,mj) < k] = 1 − negl(λ). By another union
bound, we conclude that inddiff(mi,mj) < k for all distinct i, j with probability 1− negl(λ). This
means that all pairs of messages mi,mj differ on at least one of the first k bits. In H3, the messages
mi and m′i all agree on the first k bits for all i ∈ [q], and so the first bit on which each pair of
messages m′i,m

′
j differ is unaffected. We conclude that Lf(m1, . . . ,mz) = Lf(m

′
1, . . . ,m

′
z), and the

claim follows.

To complete the proof we bound the adversary’s advantage in hybrid H3. Let C be the circuit
output by the adversary in H3, and let S = {x ∈ {0, 1}n : C(x) = 1}. Without loss of generality,
assume that |S| ≤ r (otherwise, the adversary’s advantage is 0). Take any message mi and consider
the probability Pr[mi ∈ S]. In hybrid H3, the view of the adversary depends only on the first k bits
of each message m1, . . . ,mz, and in fact, it is equivalent to sample the remaining n− k bits of the
test messages m1, . . . ,mz after the adversary has submitted its circuit.11 If the latter n− k bits of

11This is equivalent since m
r←− {0, 1}n, so each bit of m can be viewed as an independent and uniform value in {0, 1}.
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mi are chosen after the adversary has committed to the circuit C, then Pr[mi ∈ S] ≤ |S| /2n−k. By
a union bound over each message, we have

Advgow
r,z,Πore,A(1λ) = Pr[∃i ∈ [z] : mi ∈ S] ≤ z |S|

2n−k
=

z · r
2n−k

.

We can set k = εn/2 = ω(log λ) since n = ω(log λ). Finally, since r = 2n(1−ε), the advantage is
bounded by

Advgow
r,z,Πore,A(1λ) ≤ z · 2n(1−ε)

2n(1−ε/2)
=

z

2nε/2
= negl(λ),

since z = poly(λ).

D Proof of Theorem 4.6

The proof of this statement proceeds very similarly to that of Theorem 4.3. For completeness, we
describe the set of hybrid arguments we use:

• Hybrid H0: This corresponds to experiment Exptgdow
r,z,Πore,A(1λ).

• Hybrid H1: Same as H0, except m1, . . . ,mz
r←− {0, 1}n.

• Hybrid H2: Same as H1, except the ciphertexts ct1, . . . , ctz are constructed by invoking the
simulator (Theorem 3.2) on Lf(m1, . . . ,mz).

• Hybrid H3: Fix a parameter k = ω(log λ) where k ≤ n. In hybrid H3, after sampling the

messages m1, . . . ,mn
r←− {0, 1}n, the experiment also samples messages m′i

r←− {0, 1}n subject
to the restriction that the first k bits of mi and m′i are equal. The ciphertexts are constructed
by invoking the simulator on Lf(m

′
1, . . . ,m

′
z), but the success criterion at the end of the

experiment is still checked using m1, . . . ,mn.

Invoking Lemmas C.1 through C.3 from the proof of Theorem 4.3, we have that hybrids H0 and H3

are computationally indistinguishable. Consider the probability that the experiment H3 outputs 1.
Let C be the circuit output by the adversary and let S = {x ∈ {0, 1}n : C(x) = 1}. It suffices to
assume that |S| ≤ r since otherwise, the output of H3 is 0. Take any distinct pairs of indices i, j and
let dij = mj −mi (mod 2n). Take any z ∈ {0, 1}n. Since the view of the adversary is independent of
the last n− k bits of mj and mj is sampled uniformly and independently from {0, 1}n, we conclude
that

Pr[dij = z] = Pr[mj = z +mi (mod 2n)] ≤ 1

2n−k
.

By a union bound over the elements of S, we conclude that Pr[dij ∈ S] ≤ r/2n−k. Applying another
union bound to all pairs i, j, we conclude that in H3,

Pr[∀i 6= j : dij /∈ S] ≥ 1− r · z2

2n−k
.

As in the proof of Theorem 4.3, the theorem now follows by setting k = εn/2 = ω(log λ).
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