Solving the 8 Puzzle in a Minimum Number of Moves:
An Application of the A* Algorithm

Daniel R. Kunkle

Computer Science Dept.

College of Computing and Information Sciences
Rochester Institute of Technology
Rochester, NY, 14623
drk4633@rit.edu
http://www.rit.edu/~drk4633/

Introduction to Artificial Intelligence
October 8, 2001

Abstract

The 8 Puzzle is a simple game, but one with a
state space large enough to warrant the use of
heuristic search, as opposed to an exhaustive or
blind search. The A* algorithm is applied,
guaranteeing that the best solution (that with the
least number of moves) will be found. Heuristics
are examined to allow the algorithm to find the
optimal solution while examining as few states
as possible (maximizing the informedness of the
heuristic).

1 USING THE PROGRAM

This solution is implemented using Java. It includes four
classes, EightPuzzle, BFSearch, Board and Pos (provided
as Java source code). Also included is a test file, tests.txt,
which will provide a number of test boards as input.

EightPuzzle contains the main function. It begins by
reading two strings, on separate lines, from standard
input. They are both of the form ### ### ###, where # is
either a number from 1 to 8 or the character b.

If the problem is solvable, the sequence of moves (moves
representing the direction of movement of the b character)
are printed, as well as the number of board states
examined by the algorithm to arrive at the solution.

After printing the results the program checks for more
input and terminates when no more input is provided.

Once the code is compiled the program can be tested by
using the command

java EightPuzzle < tests.txt

Where tests . txt can be the provided test input file or
a custom test file. Input can also be provided by keyboard.

2 PROGRAM STRUCTURE

EightPuzzle is a simple main class that retrieves the
starting state of the board and the goal state of the board
from standard input and creates a Board object and
BFSearch object to solve the problem.

The Pos class is also a simple class, meant only for
holding ordered pairs corresponding to the row and
column positions of the board and performing simple
operations on them. The real work of the algorithm occurs
in the other two classes.

2.1 BFSearch CLASS

The act of searching a state space and the state space itself
are separated in this implementation, allowing an A*
algorithm to be easily applied to any problem. BFSearch
is the class responsible for performing a best-first search
of the state space.

A Board is passed to the BFSearch function solve(),
which then uses functions of Board to perform the search.
A Board object is required to have five functions for use
by BFSearch: equals(), h(), f(), children() and print().
equals() is a boolean function returning True if the board
is equal to another. h() returns the heuristic value of the
board. f() returns the sum of the h value and the number
of moves (tree depth). children() returns an ArrayList of
all of the children of the board reachable by one legal
move (with out the inverse of the last move).

The search algorithm requires that the heuristic value
passed by the Board is zero if, and only if, the board is in
the goal state.

The search algorithm maintains an open and closed list
and uses the functions provided by the Board object to
perform the following sequence of actions (which define a
best-first search):



1. Add the original board to the open list.

2. Check the first Board on the open list, if it is a goal
state, print the board and halt operation, otherwise go
to step 3.

3. Retrieve a list of children from the first Board on the
open list.

4. Move the first Board on the open list to the closed
list.

5. If any of the children appear in the closed or open
list, remove them.

6. Add the list of remaining children to the open list,
which is sorted by the f() value of each board.

7. Go to step two.

This algorithm is an A* algorithm, and therefore
guaranteed admissible, if for any value x returned by h(),
x is less than or equal to the actual number of moves left
to reach the goal state.

As long as the Board object provides the functions
specified by BFSearch any problem domain can be
searched by this class. The domain specific details are
handled by the Board class.

2.2 Board CLASS

The board is responsible for keeping tack of a particular
board state, the goal state, and the moves required to
reach the goal state.

Each board state (current and goal) are stored in 2D
arrays. For this problem the size of those arrays are 3x3,
but can easily support boards of other sizes. The list of
moves is a linked list.

The Board class provides all of the functions required by
the search class. Two Board objects are equal if all tiles in
the state of the board are in the same positions. Two equal
boards may have different numbers of moves to reach that
state. The search algorithm will only keep the board with
the least number of moves.

The heuristic function used by the Board to evaluate its
state depends on the constant H TYPE. If H TYPE =
0, the h() function always returns 0 (hence turning the
BFSearch into a Breadth-First search). H TYPE = 1
corresponds to the Manhattan Distance heuristic.
H TYPE = 2 corresponds to the Manhattan Distance
plus a tile reversal penalty heuristic. (Heuristics will be
described in more detail in the next section).

The f() function will return the sum of h() and the number
of moves so far.

The children() function will return all legal children
boards. Each legal move of the blank (Up, Down, Left,
Right) is generated, given the current position of the
blank. The move that would negate the last move is
excluded from the children.

3 HEURISITICS

The most sophisticated heuristic supported by this
program is the Manhattan Distance plus a tile reversal
penalty.

The Manhattan Distance of one tile is the number of
moves that would be required to move that tile to its goal
location if it could move over any of the other tiles.
(Called the Manhattan Distance because it looks much
like moving along city blocks).

The tile reversal penalty will add one penalty move for
every direct reversal of tiles. So, the board:

213
8b4
765

would have a reversal penalty of 2, because 2 is reversed
with 1 and 1 is reversed with two. Reversal penalties will
always come in pairs.

For testing purposes, the Board can be set to use a subset
of the heuristic measures, including none at all. A
constant heuristic value of one if the board is not in the
goal state and zero if it is in the goal state yields a
Breadth-First search of the space (given, it is a very
inefficient way to implement a Breadth-First search).

Each of these heuristics results in an admissible search. In
other words, it always results in the optimal answer.
However, more sophisticated heuristics are more
informed, therefore searching fewer states. This can be
seen in the results section, which gives the results of using
different heuristic calculations.

4 RESULTS

The results listed on the following pages detail the
performance of the A* algorithm implemented with three
different heuristics. The first is not really a heurisitc at all,
it simply returns 0 if the board is in the goal position and
1 otherwise, resulting in a Breadth-First search. The
second uses only the Manhattan Distance heuristic. The
third uses the Manhattan Distance plus a direct reversal
penalty.

Each has listed for them the starting board state, moves
taken to solve the board, solution board state, and the
number of intermediate board states examined to arrive at
the solution.

4.1 Breadth-First Search

The breadth-first search finds an optimal solution (one
with the fewest number of possible moves), but does so
only after examining a great number of intermediate
states. The last test condition in the set (a full reversal of
tiles) was unable to be solved by this search after 100,000
state examinations. Even this unsuccessful search took
many hours.



4.2 Manhattan Distance Heuristic Search

This heuristic improves greatly over the blind, breadth-
first search. For the tests run (that finished in reasonable
time by the blind search), the Manhattan Distance
Heuristic search examined approximately 25 times fewer
states than did the blind search. This means that the initial
heuristic is more informed by a factor of 25. For the
hardest case presented, this search examined 10805. If the
blind search were to examine 25 times this number of
states it would search more than two-thirds of the entire
space.

Even this very simple heuristic provides enormous
efficiency gains over blind search.

4.3 Manhattan Distance plus Reversal Penalty Search

Additional improvements are made in informedness by
adding a penalty for directly reversed tiles. This is due to
the fact that reversed tiles are much more difficult to deal
with because one must “go around” the other.

This heuristic provides an approximately 16% gain in
informedness over Manhattan Distance alone when
dealing with non-trivial cases. In the most difficult
problem presented (the last case in for each in the output
summaries), the number of states examined to find an
optimal solution was reduced from 10804 to 9176, a gain
of about 18%.

4.4 Results Summary

Although all of these search methods find an optimal
solution they each take different amounts of time to do so.
The more sophisticated (informed) the heuristic, the faster
the results.

It is also interesting to note that they do not all find the
same optimal solution. Even the same heuristic search
given a problem and that problem’s inverse will not
always simply find the reverse of the moves made in the
solution to the first problem (as can be seen in the third
and fourth test cases presented to each search below).



RESULTS OF SIMPLE BREADTH-FIRST SEARCH

INITTAL BOARD
134

726

MOVES TO SOLUTION: DR UUL D
NUMBER OF MOVES: 6

GOAL: BOARD
123

765

ANSWER WAS FOUND IN 69 STATE EXAMINATIONS

INITTAL. BOARD
231

654

MOVES TO SOLUTION: RU LD RD LLURULDR
NUMBER OF MOVES: 14

GOAL BOARD
123
84
765

ANSWER WAS FOUND IN 3685 STATE EXAMINATIONS

INITTAL BOARD
231

765

MOVES TO SOLUTION: UL DRURDL LURDRULD
NUMBER OF MOVES: 16



GOAL: BOARD
123

765

ANSWER WAS FOUND IN 9137 STATE EXAMINATIONS

INITTAL BOARD
123

765

MOVES TO SOLUTION: URDL UL DR RULDLURD
NUMBER OF MOVES: 16

GOAL: BOARD
231

765

ANSWER WAS FOUND IN 9137 STATE EXAMINATIONS

INITTAL. BOARD
283

765

MOVES TO SOLUTION: UL DR
NUMBER OF MOVES: 4

GOAL: BOARD
123

765

ANSWER WAS FOUND IN 21 STATE EXAMINATIONS

INITIAL BOARD



876
165
234

NO ANSWER WAS FOUND WITHIN 100000 STATE EXAMINATIONS

RESULTS OF MANHATTAN DISTANCE SEARCH

INITTAL BOARD
134

726

MOVES TO SOLUTION: DR UUL D
NUMBER OF MOVES: 6

GOAL: BOARD
123

765

ANSWER WAS FOUND IN 6 STATE EXAMINATIONS

INITTAL. BOARD
231

654

MOVES TO SOLUTION: RU LD RD LLURULDR
NUMBER OF MOVES: 14

GOAL BOARD
123
84
765

ANSWER WAS FOUND IN 70 STATE EXAMINATIONS

INITIAL BOARD



231

765

MOVES TO SOLUTION: RULLD RRULDLURRDTL
NUMBER OF MOVES: 16

GOAL: BOARD
123

765

ANSWER WAS FOUND IN 292 STATE EXAMINATTIONS

INITTAL BOARD
123

765

MOVES TO SOLUTION: LU RRD LLURDURULLDR
NUMBER OF MOVES: 16

GOAL BOARD
231
84
765

ANSWER WAS FOUND IN 292 STATE EXAMINATTIONS

INITTAL BOARD
283

765

MOVES TO SOLUTION: UL DR
NUMBER OF MOVES: 4

GOAL: BOARD
123



765

ANSWER WAS FOUND IN 4 STATE EXAMINATIONS

INITTAL. BOARD
876

234

MOVES TO SOLUTION: DL URRDLUURDDLUULDDRUULDRRULD
NUMBER OF MOVES: 28

GOAL BOARD
123
84
765

ANSWER WAS FOUND IN 10804 STATE EXAMINATIONS

RESULTS OF MANHATTAN DISTANCE PLUS REVERSAL PENALTY SEARCH

INITTAL. BOARD
134

726

MOVES TO SOLUTION: DR UUL D
NUMBER OF MOVES: 6

GOAL: BOARD
123

765

ANSWER WAS FOUND IN 6 STATE EXAMINATIONS

INITTAL. BOARD
231



654

MOVES TO SOLUTION: RU LD RDLLURULDR
NUMBER OF MOVES: 14

GOAL BOARD
123
84
765

ANSWER WAS FOUND IN 61 STATE EXAMINATIONS

INITTAL. BOARD
231

765

MOVES TO SOLUTION: RULLD RRULDLURRDTL
NUMBER OF MOVES: 16

GOAL: BOARD
123

765

ANSWER WAS FOUND IN 257 STATE EXAMINATTIONS

INITTAL BOARD
123

765

MOVES TO SOLUTION: LU RRD LLURDURULLDR
NUMBER OF MOVES: 16

GOAL: BOARD
231

765



ANSWER WAS FOUND IN 257 STATE EXAMINATTIONS

INITTAL BOARD
283

765

MOVES TO SOLUTION: UL DR
NUMBER OF MOVES: 4

GOAL: BOARD
123

765

ANSWER WAS FOUND IN 4 STATE EXAMINATIONS

INITTAL. BOARD
876

234

MOVES TO SOLUTION: DL URRDLUURDDLUULDDRUULDRRULD
NUMBER OF MOVES: 28

GOAL BOARD
123
84
765

ANSWER WAS FOUND IN 9176 STATE EXAMINATIONS




