
Directions in Functional Programming

for Real(-Time) Applications?
Walid Taha??, Paul Hudak, Zhanyong Wan

Department of Computer Science,
Yale University, New Haven, CT, USA.ftaha,hudak,zwang@cs.yale.edu

Abstract. We review the basics of functional programming, and give a
brief introduction to emerging techniques and approaches relevant to build-
ing real-time software. In doing so we attempt to explain the relevance of
functional programming concepts to the real-time applications domain.
In particular, we address the use of types to classify properties of real-time
computations.

“If thought corrupts language, language can also corrupt thought.”
George Orwell, Politics and the English Language

1 Introduction

An important challenge facing functional programming is the successful ap-
plication of its principles to the domain of real-time software. Examples of
real-time software include controllers in audio systems, video cameras, video
games, imaging and data acquisition systems, and telecommunications hard-
ware. The significance of this challenge is two fold: First, real-time applications
are constantly growing in complexity, and society is growing more dependent
on their correctness. Second, real-time applications possess characteristics that
have been traditionally considered outside the scope of functional program-
ming languages. For example, real-time systems are often required to be:

– Responsive, reactive, or live: a response must be made to every input.
– Resource-bounded: responses must happen in a limited amount of time, using

limited hardware.
– Concurrent: components may run in parallel and manipulate shared data.
– Networked or distributed: communication between components of the system

may involve time delays or loss of information.

The purpose of this paper is to illustrate how many fundamental aspects of
functional programming are highly relevant not only to programming but also? Funded by DARPA F33615-99-C-3013 and NSF CCR-9900957.?? Funded by NSF ITR-0113569 and subcontract #8911-48186 from Johns Hopkins Uni-

versity under NSF agreement Grant # EIA-9996430.



2 Taha, Hudak, and Wan

to understanding real-time systems. Following on a long tradition of mathemat-
ical modeling using functions [3, 22, 38, 89, 96], we summarize the key benefits
of functional programming. In doing so, we put into context many on-going ef-
forts both in and outside the area of functional programming to address issues
that are specific to the real-time domain.

1.1 Audience and Organization of this Paper

The classic paper by Hughes presents excellent motivation for general purpose
functional programming [48]. The present paper is aimed at a reader interested
in using functional programming for real-time applications. We assume the
reader has a background in discrete mathematics, a few years experience with
programming in a mainstream language, and an informal familiarity with basic
programming language concepts. We focus on:

– Programming by writing and composing functions (Section 2),

– Understanding of the notion of types and type systems (Section 3),

– Using higher-order functions (Section 4), and

– Appreciating the presence of a wealth of formal semantics treatments for var-
ious aspects of functional languages (Section 5).

2 The Big Deal about Functions

What sets functions apart from arbitrary relations is two simple properties: for
two given sets A and B, a relation f � A � B is a function (written f : A ! B)
if and only if it satisfies:

– Totality: for every a 2 A, there exists an element b 2 B such that (a; b) 2 f ,
and

– Uniqueness: for any a 2 A and b; b0 2 B, if (a; b) 2 f and (a; b0) 2 f , thenb = b0. We write f(a) to denote this unique element b.
A relation that satisfies only uniqueness is called a partial function.

A framework that allows us to model programs as functions (from input
to output) has a natural appeal in the context of real-time systems, where each
of these properties is desirable: Totality means that the program will always
respond to its input, and uniqueness means that the program will return the
same result whenever it is subjected to the same input. While it may be hard to
see how this simple intuition scales to more complex settings, a key quality of
functions is that they compose naturally and without surprising interactions.

In this section we begin with a brief review of the state of the art both in
functional programming languages and programming languages for real-time
applications. We then proceed to illustrate how a “language of functions” can
be an expressive tool for the specifying real-time computational models.



Functional Programming for Real-Time Applications 3

2.1 State of the Art

A wide variety of functional programming languages are available today, in-
cluding Scheme [86], SML [66], Haskell [78], and OCaml [60]. But none of these
provides full support for programming with functions in the sense described
above, for two reasons. First, all of them permit the definition of partial func-
tions, thus leading to potentially non-terminating computations. Second, except
for Haskell, none of these languages are “purely” functional: that is, they allow
the expression of imperative programs that violate the uniqueness property. For
example, while Scheme is a highly expressive and versatile programming lan-
guage, historically its main goal was list and symbolic processing, and not so
much programming with functions. Scheme is not statically-typed and can ex-
press “impure functions” that depend implicitly on interactions with both ma-
chine state and the real world. ML and OCaml are typed functional languages,
but still permit partial and imperative computations.

Of these popular languages, Haskell comes closest to being “purely” func-
tional, in that both local state and interactions with the real world are mod-
eled without side-effects. Such interactions are also typed explicitly (see the dis-
cussion of monads below), ensuring that the type still reflects these interactive
properties. At the same time, Haskell provides special syntax for “imperative”
features. Although this paper presents most concepts in generic mathematical
notation, it is fairly straightforward to encode our equations in Haskell.

There are frameworks that fully support programming with functions. Im-
portant examples of such systems are Elementary Strong Functional Program-
ming (ESFP) [94], Nuprl [2], Martin-Löf’s Type Theory [74], the Calculus of
Constructions [21, 28, 73], Charity [19, 20], LEGO [61], and Twelf [80]. These
languages are still not in the mainstream, but we predict that they will grow
in popularity in the coming years.

Functional Programming for Real-time Applications While many languages
developed for the real-time domain are “imperative” (such as ESTEREL [9] and
STATECHARTS [37]), a number of these languages are expressly functional, in-
cluding LUSTRE [15], synchronous Kahn networks [16], SAFL [70] and FRP [30,
99]. But essentially all the “imperative”’ ones are deterministic (thus satisfying
uniqueness) and terminating (thus satisfying totality), and so it is reasonable
to classify them as functional.1 This statement is less surprising when we note
that Haskell also supports and encourages the imperative style, as long as side-
effects are properly encapsulated.

To guarantee termination, most real-time languages disallow general recur-
sion. Synchronous Kahn networks were developed as an extension to LUSTRE

that provides recursion and higher-order programming, but termination is sac-
rificed for this expressivity. Implementations of LUSTRE also have a macro-like

1 ESTEREL first translates programs into circuits (or state machines), then these circuits
are analysed to ensure determinism.



4 Taha, Hudak, and Wan

facility that supports recursion, but runs the risk of causing the compiler to di-
verge. FRP is embedded in Haskell [46, 31, 47] and so inherits recursion and
non-termination. RT-FRP [100] is a subset of FRP that guarantees resource-
bounded program execution: every interactive RT-FRP computation terminates.
Using a special type system, RT-FRP still allows two forms of recursion similar
in spirit to the idea of tail-recursion [86]. Because RT-FRP is a closed language
[56], it is possible to guarantee that no partiality is accidentally introduced.

2.2 Functions as a Tool for Analysis and Modeling of Computation

If we temporarily abstract away from issues of performance, practically all in-
teresting features of program behavior can be specified precisely using func-
tions. This means that we can easily simulate or prototype most interesting com-
putational phenomena in a functional language. We believe that this has tremen-
dous conceptual benefits, and that, in the long term, will have the same impact
on software engineering processes. In what follows, we give a brief description
of such computational phenomena, and review how they can be described in a
purely functional manner.

Input/Output, Uniqueness, and Interaction A function cannot implicitly in-
teract with an “outside world” during the course of its computation. If it did,
then it is very possible that each time it is applied to a value it would produce a
different output. In other words, this computation would not have the unique-
ness property.

A simple approach to modeling such computations is to view them as a
chain of functions that determine successive interactions with the outside world.
Given two types input and output, a recursive type equation can be written to
describe such a computation as follows:

computation 
 input ! (output � computation):
This equation says that a computation is a function which takes an input and
returns a pair. The pair consists of both the output of the first computation
and the computation that should be carried out on the next input. As such the
type computation models a strictly infinite sequence of interactions with the
outside world (as long as the outside world is providing an input). This model
of computations is well-suited for reactive and interactive systems.

A number of reactive languages, such as Lava [18], Hawk [62], and FRP [46],
have used streams to implement the idea presented above. Streams are infinite
datastructures which can be easily defined in a lazy language. However, most
of these systems have been developed as languages embedded into Haskell.
RT-FRP implements the same model, but as a closed language, which makes it
more suitable for direct use in a real-time setting.



Functional Programming for Real-Time Applications 5

Runtime Errors and Partiality A common challenge that one encounters when
trying to model various features of computation as functions is dealing with
partiality. For example, consider the following definition:f(x) , 1=x:
When x = 0, f(x) is not defined. Definitions similar to the one above are al-
lowed in most programming languages, even statically-typed ones that “guar-
antee that runtime errors do not occur.” This is not a flaw with these languages,
because what they do guarantee is the preclusion of a specific class of runtime
errors, not all [13, 14]. Whenever we start with primitives such as division that
can themselves generate runtime errors, those errors are generally ignored by
type systems. However, in the design of real-time systems where raising errors
is simply not acceptable, such primitives become a concern.

It is possible to prevent errors by replacing the faulty set of primitives by a
modified set. For example, we can define a new division function:x==y , if y = 0 then 0 else x=y:
A more elegant way to dealing with partiality is to introduce a distinguished
value? (read “bottom”) to be returned in the case of an error. To introduce such
a value in a type-sound manner, we use a lifting type constructor ? defined as
follows: �? ::= ? j �?:
Intuitively, this specification can be read as a parameterized BNF definition.
The variable � on the left-hand side is a type variable that can be instantiated to
a specific type, and on the right-hand side denotes a term of that type. The first
variant in this definition tells us that ? has type �? for any type �. The second
variant tells us that a term e? has type �? whenever e is a term of type �. The
type constructor �? is a standard concept that allows us to say that we may or
may not get a value as a result, and hence is useful for modeling partiality.2

Now we can redefine our division function as:x==y , if y = 0 then ? else (x=y)?
All we need to do is to check that the result of this operation is not ? before we
continue on to other computations.

Infinite Loops In any Turing-complete language, it is well known that one can
write programs that run forever without returning a result. This means that we
cannot directly treat arbitrary programs as functions. But we can still provide
functional models of such programs. In fact, we can do this using a combination

2 In implementations of typed functional programming languages �? is known as ei-
ther a “maybe” or an “option” type.



6 Taha, Hudak, and Wan

of the two techniques just introduced. We use a sum type constructor + that
takes two type parameters, and is defined as follows:�+ � ::= Alpha � j Beta �:
This new constructor allows us to package up values of two different types� and � in one common type � + �, and still retain the ability to recover the
original values.3 For any term e of some type �, the term Alpha e has type�+ �, for any type �. The Beta variant lets us do things the other way around.
Now, we can define a new kind of computation as:

computation
 input ! initialized-computation
initialized-computation
 output + initialized-computation

Such a computation takes an input and returns an initialized computation. An
initialized computation is either an output, in which case we are done, or an-
other initialized computation. In the second case, we have “try again.” Intu-
itively, this model is similar to observing a Turing machine as it performs a step
of a program. If a program is finished, it generates an output. If not, we get back
a machine that has been advanced by one step, and then we can try again.

Note that this model of computation is, at least intuitively, a special case of
the model for interaction presented above. This idea has been used to provide
a form of recursion suitable for real-time applications in RT-FRP.

Concurrency, Randomness, Non-determinism, and Sets Possibly the biggest
conceptual challenge to programming with functions is non-determinism. Ap-
plications that try to take advantage of either concurrency or randomness often
end up having to deal with non-determinism in one form or another. A ba-
sic approach to modeling non-determinism in the functional setting is to use of
sets [82, 88]. But a naive account of sets can itself get in the way of programming
functionally. For example, the order of elements in a set is generally considered
irrelevant. If our language provides any mechanism for turning an arbitrary set
into an ordered data structure, such as a list, then the language is forcing us
to make one of two choices: either the order of elements has to be fixed using
some mechanism (which would weaken our ability to model non-determinism
accurately), or the mechanism for turning sets into lists would itself be non-
deterministic (in which case we would lose the uniqueness property of the lan-
guage).

A simple approach to soundly modeling a set is by its characteristic func-
tion:

set(�) 
 �! bool

For example, a specific set of integers can be represented by a characteristic
function of type int ! bool. With this representation, it is easy to define basic

3 As such, sums provide a kind of overloading.



Functional Programming for Real-Time Applications 7

set-theoretic functions, such as union, intersection, complement, and member-
ship. Slightly richer models allow us to define other operations on sets, such
as size. A large body of techniques exist for the specification of functional data
structures that have very reasonable performance characteristics [76].

To model concurrent/distributed computation, we must consider the effect
of running two or more interactive computations simultaneously. The model
would have to explicitly construct the set of all possible interactions between
these computations. Although reasoning about such a model is not easier than
about any non-deterministic computation, using function can help us identify
the sources of complexity.

Stateful Computation Pure functions do not have “memory.” So, no matter
what a function has been applied to before, it will always return the same re-
sult for the same input. How can we write a program that reads a sequence of
numbers, and continually prints the sum of the numbers up to this point? The
essential idea is to explicitly pass around the relevant state. In fact, the interac-
tive model that we presented earlier is also suitable for realizing this idea. That
is, a computation of type:

computation 
 int ! (int � computation)
can be a function that takes an input and returns the current sum as output
together with a computation that continues this process indefinitely. This idea
is exploited in RT-FRP, for example, to realize operations like integration.

3 Types and Type Systems

In addition to their “traditional role” in programming, types have an important
role in the classification of models and data structures. We begin this section by
first presenting a possible application of types as a tool for classifying models
of computation for real-time applications, and then move on to discuss their
newly emerging role as a tool for making assertions about performance.

3.1 Types as a Tool for Classifying Models of Computation

Model theory was developed partly as a tool for the classification of various
mathematical structures [42]. Types can do the same for models of computation.

In general, we can think of a reactive system as a map H that takes an inputX from the environment and returns an output Y , that is,Y = H(X):
The accuracy, tractability, and over all appropriateness of a particular model de-
pends on the specifics of each of these variables. A particularly important aspect
of these models is the treatment of time (or “the clock”), which can be treated



8 Taha, Hudak, and Wan

very concretely as a real number (R), more abstractly as a natural number (N), or
even more abstractly as a partial order [57]. In what follows we briefly demon-
strate how types can capture many of the key characteristics of some common
models for reactive systems [59].

Continuous/Differential Model The finest scale which we can use to model
the physical world (in the Newtonian sense) is achieved by using a time-line
of reals, and measuring features of the world as real numbers. We can also as-
sume that we can respond to these measurements in any manner, as long as it
is causal. Mathematically, our model would be:Y (t) = H(X j[0;t℄; t) and

X : R ! Ri ;Y : R ! Ro ;
where i and o are natural numbers corresponding to the number of inputs and
outputs to the system, and Rj is the Cartesian product of R repeated j times.
The restriction j[0;t℄ on the domain of X captures the standard constraint thatH is causal. Finding solutions to such equations where H is unconstrained,
however, would be extremely hard. More often we restrict our model to be one
where H is a tractable transformation on reals. For example, we may restrict
ourselves to ordinary differential equations. In this case, H can be a polyno-
mial of integro-differential operators on the inputs X . While this model is still
extremely accurate for many applications, it ignores the digital aspect of the
machinery that is typically used to implement such computations.

Discrete/Difference Model A more tractable model is the discrete/difference-
equation model. In a formal sense, this model is an approximation of the one
presented above. It can be described as follows:Y (n) = H(X j0::n; n) and

X : N ! Ri ;Y : N ! Ro :
In this case, H is typically a polynomial of values of X at times 0::n.

Synchronous/Reactive Model Several real-time programming languages are
built upon the notion of synchronous computation. In the literature, the word
“synchrony” has two meanings, corresponding to two important properties of
synchronous languages [7]: first, it implies the ability to share a common time
scale (that is, the logic time does not advance until all computations in the cur-
rent “step” have been completed); second, the elements of the streams are to
be consumed as soon as produced, making it possible to allocate only one cell
for one stream. The first part of this definition is already present in the discrete
model. The second is a performance issue, which is determined by the prim-
itives that we are allowed to use in combining signals. A key change in the
model, in our view, is that it becomes possible to use conditionals and partial



Functional Programming for Real-Time Applications 9

functions on signals. From this point of view, it is only a minor variation on the
model above:Y (0) = Y0Y (n+ 1) = H(X jn+1; Y jn) and

X : N ! (R? )i;Y : N ! (R? )o:
where Y0 is some initial state. An important change here is that the memory
of the system is restricted to a fixed size (width of Y ). With the constant de-
velopments of exact-arithmetic methods [29], this model can be realized quite
effectively.

Finite State Machine Model Reals can in general require an arbitrary amount
of space to represent. This makes analyzing space requirements non-trivial,
and makes another highly tractable model very attractive: finite state machines.
This model can be described as follows:Y (0) = Y0Y (n+ 1) = H(X jn+1; Y jn) and

X : N ! one-bit-inputi;Y : N ! one-bit-stateo;
The main difference between this model and the previous one is that the set of
inputs and states is restricted to be finite. This yields a model of computation
that is especially tractable and easy to analyze, at least for reasonably small
state sizes.

Abstract State Machine Model This model is a generalization of finite state
machines, where a state consists of a term rather than just a fixed number of
bits. At any n, the size of each term is finite, but there is no static limit on this
size. Y (0) = Y0Y (n+ 1) = H(X jn+1; Y jn) and

X : N ! term-inputi;Y : N ! term-stateo:
Discrete Event (or Event-Driven) Model An increasingly popular model is
the discrete event model. It can be viewed as a special case of the finite state
machine model, where updating a special set of inputs (the “event”) is what
drives the global clock. This model can be described as follows:Y (0) = Y0Y (n+ 1) = H(I jn+1; X jn+1; Y jn) and

I : N ! event;X : N ! inputi;Y : N ! outputo;
where I(n) is the nth event that occurs during the system’s life. So-called cycle-
driven models are special cases of discrete event models, where some events
are planned to occur at fixed intervals.



10 Taha, Hudak, and Wan

3.2 Types for Performance

Most functional programming languages are based on the lambda-calculus [17,
4]. The untyped lambda-calculus is deterministic but not terminating. In fact,
in the absence of recursion and primitives that may introduce partiality, all
programs in the simply-typed lambda-calculus are terminating (see Hindley
[39] for an excellent introduction). The same is also true for more sophisticated
typed lambda-calculi, such as the Calculus of Constructions [5]. As such, typ-
ing is essential for using the lambda-calculus as a language for programming
with functions. But while these type systems guarantee termination, it might re-
quire super-exponential time [101]. This means that a traditional typed lambda-
calculus is not suitable for the real-time domain. It is only with the advent of
more modern concepts that type systems are proving to be useful for charac-
terizing resource consumption at a finer level. We give a brief introduction to
some of these developments in this section.

Abstract Functors and Di-Functors A functor is essentially a parameteric data
type, such as a list. For any type �, the list functor allows us to form the type
List(�), which is a list of values of type �. Adding functors to a language can
extend its expressivity in many ways.

As with data types, functors can be concrete or abstract. List is usually a
concrete data type. Modern programming languages allow users to introduce
new functors using either data type declarations or class instances. Abstract
functors, on the other hand, allow us to go beyond what can be defined in our
language, and can provide powerful encapsulation mechanisms. For example,
consider a situation where we want to handle values of type CouldDiverge(�),
which are computations that could either yield � when evaluated or diverge.
Can we introduce such a data type into a functional setting without losing
uniqueness or totality? This and many other interesting problems can be ad-
dressed by a variety of functors:

Monads: The very question raised above, for example, turns out to be funda-
mental. It can be expanded to include many computational effects other than
non-termination, such as state, concurrency, and exceptions. A particular fla-
vor of abstract functors called monads [68, 97, 79] was shown to be suitable for
precisely that. Using a monad, a wide variety of effectful computations can be
passed around, combined, and extended within a purely functional setting.

Linear types: Another kind of abstract functor is one based on linear logic [6].
Linear logic provides a means to expressing a notion of a “resource” in the
lambda-calculus. Recent work in this area has shown how linear types can be
used to build expressive programming languages with dynamic data structures
that can be compiled into malloc-free C [45]. Almost exactly the same system
has also been used to build a language where all programs run in constant
space and can take at most polynomial time to execute [1, 43]. Programs in both
languages are terminating.



Functional Programming for Real-Time Applications 11

Reactivity: FRP is built around two functors called Behavior and Event, corre-
sponding to continuous-time behaviors and discrete event occurrences. Seman-
tically, the same type constructors are present in RT-FRP, but they are made im-
plicit in the types. This is achieved by having a specialized type system that
only addresses the reactive part of FRP.

Staging: Multi-stage languages [12, 90, 92] are based on the key ideas of multi-
level [25, 26, 33] and two-level languages [52, 71], and provide mechanisms for
building programs that execute in multiple distinct stages. This is achieved by
providing constructs for building, combining, and executing code at runtime.
The presence of these constructs provides both hygienic program generation
and reflection mechanisms, all in one, statically-typed framework. Multi-stage
languages also provide a basis for heterogeneous languages, which combine
more than one “traditional” language in the same framework. All of these lan-
guages provide a functor for “code”. It is an abstract notion of code because it
is usually not possible to inspect its text. So, a more accurate way of describing
this kind of code is as a “future stage” computation. A variant of the code func-
tor has been used in RT-FRP to model “exportability annotations:” only those
variables whose type is marked as “exportable” can participate in computa-
tions in the base language. This allows a certain kind of cyclic definitions to be
detected statically, and to ensure totality.

We are not aware of many results on multi-stage programming in a resource-
bounded setting. McKay and Singh use partial evaluation for the dynamic spe-
cialization of FPGAs [63]. We see this as an important direction of future re-
search.

Arrows: More recently, it has been noted that it is useful to distinguish between
two kinds of types that a functor can be parameterized by: input types and
output types.4 This gives rise to a particular brand of di-functors called arrows.
Arrows can be viewed as a generalization of monads, and have been shown to
model a variety of interesting kinds of computations. Efforts are under way to
explore the utility of the notion of arrows in FRP.

Type-and-Effect Systems and Indexed-Types Another approach to increasing
the power of type systems is to enrich types with annotations that capture addi-
tional information about a value. An early example of this approach is the type-
and-effect system used by Talpin and Jouvelot [93] to introduce side-effects in
a functional manner. In this system, the type of every “impure function” is en-
riched with information about which variables are read or written when it is ex-
ecuted. This approach is as an alternative to monads. In some instances the two
are indeed equivalent [54, 98]. Effects were later used to develop region-based
memory management [11, 95]. In this approach, each type carries the name of a
region where it is allocated, in addition to the standard effect information. This

4 For the reader familiar with subtyping, the distinction alluded to here is related to co-
and contra-variance of type constructors.



12 Taha, Hudak, and Wan

enables a safe and high-level form of explicit allocation/deallocation of mem-
ory. Explicit memory management can make the execution of programs more
predictable than if it is left to a garbage collector. Effects have also been used to
build a type system for a multi-threaded language where freedom of deadlocks
can be statically tested [32].

Sized types are types enriched to capture the amount of space needed to
store a value. For example, a list of length n carrying values of type � would
have the type Listn(�). This idea has been used to build languages for reac-
tive systems, where properties such as termination and resource-boundedness
can be verified statically [50]. An especially interesting aspect of this work is
that one of the rules explicitly encodes an induction principle, which allows the
programmer to use recursion, as long as the type system can check that it is
well-founded. This idea is explored in the context of an execution model where
reactive systems are viewed as stream-processors where the rates of the various
streams can be different, and the key constraint is to ensure the “liveness” of the
output.

It has also been shown that sized types and region effects can be combined
naturally in a first-order system [49].

Using ideas from dependent typing, Crary and Weirich [24] develop a type
system that provides an explicit upper bound on the number of steps needed to
complete the computation. Space is conservatively bounded by the same bound
as time. The language does not have recursion, rather, provides special iterators
that are always guaranteed to terminate. The language supports higher-order
functions.

LUSTRE and Synchronous Kahn networks use the notion of a clock calculus,
which is essentially a type system characterizing the clocks underlying each
expression. Programs that are well-typed in this system, and that also pass a
cyclic dependency test, are guaranteed to be well-behaved.

4 Higher-Order Functions

Intuitively, higher-order functions are programming patterns. Formally, higher-
order functions are ones that can take functions as arguments, or return func-
tions as results. We have already seen the usefulness of returning functions: it
was used in various models of computations that we discussed earlier. In par-
ticular, it provides the ability to build new functions that are “evolved” versions
of older ones. Passing functions as arguments is equally useful, as it provides a
mechanism for parameterizing programs by functions.

Consider, for example, the pattern of performing point-wise operations on
elements of a container type, such as List(�). One way to do this is to write a
recursive (or iterative) program each time we want to carry out this pattern. But
with higher-order functions, we can capture this pattern once and for all with
one function (call it map) that has the following type:

map : (�! �)� (List(�))! (List(�)):



Functional Programming for Real-Time Applications 13

The presence of higher-order functions can drastically enhance the expressivity
of a programming language [75].

Higher-order programming is generally not supported in programming lan-
guages intended for the real-time domain. There are, however, a few notable
exceptions, such as FRP and synchronous Kahn networks. The main reason
seems to be that it is harder to guarantee resource boundedness in the presence
of higher-order functions. In RT-FRP, for example, higher-order functions are
not supported directly.

5 Mathematical Semantics

The semantics of a programming language is a mathematical specification of
what the programming language is supposed to do. While a semantics can be
abstract, it is not necessarily so. There is a colorful spectrum of ways to de-
fine the semantics of a programming language. A number of balanced textbook
treatments of the various approaches already exist [36, 67, 72], as do more ad-
vanced studies [23]. There are two flavors of semantics that are often viewed as
being in strong contrast: denotational semantics and operational semantics.

Denotational semantics is generally presented by a translation from syntax to
a more abstract mathematical domain, often called “the meaning” or “denota-
tion” of the syntax. It is concerned with traditional program equivalence, which
is a subtle and technical subject. A denotational semantics is frequently cho-
sen as the reference when it is the simplest semantics. This simplicity is often
what makes it abstract. While abstractness is perfect if we are only interested
in reasoning about program equivalence, it can have two disadvantages: first,
it can be alienating for the practitioner who does not have the mathematical
background to understand it. Second, it can be too abstract. For example, a de-
notational semantics does not traditionally describe the cost of a computation,
which is a crucial concern in real-time applications.

Operational semantics is generally presented by a set of rules for “building” a
computation, and thus can provide a basis for discussing performance. Origi-
nally promoted by Plotkin [83, 85, 10], in recent years this approach has gained
substantial popularity [35, 69, 81, 87]. When combined with typing, operational
techniques can also provide powerful proof techniques [34].

Essentially all of the languages mentioned above have been given some kind
of formal semantics. A large effort has been made to develop the semantics of
ESTEREL, including a denotational semantics in the point view of Scott’s ternary
logic, an operational semantics based on an interpretation scheme expressed
by term rewriting rules defining microstep sequences, and a circuit semantics
based on a translation of programs into circuits. These semantics are shown to
correspond in a certain way, constrained only by a notion of stability [8].

A distinguishing characteristic of FRP is that it has a continuous-time based
denotational semantics. It has also been shown that a stream-based implemen-



14 Taha, Hudak, and Wan

tation of FRP converges to this semantics at the limit as sampling intervals drop
to zero, modulo some uniform continuity conditions [99].

RT-FRP has a deterministic operational semantics. This semantics allows a
notion of cost to be defined in terms of derivation size, which is necessary for
proving that RT-FRP is resource bounded.

6 How Do I Learn More?

Jones [51] presents a language-based account of complexity and computability.
Hofmann [44] presents a detailed overview of results in the area of program-
ming languages that capture complexity classes.

While there are few implementations of purely functional programming
languages, there is a number of good introductions to programming in Haskell
which would still serve as an excellent introduction to the subject nevertheless
[47, 46]. Di Cosmo’s monograph on isomorphisms of types [27] and Hindley’s
treatment of the simply-typed lambda-calculus [39] are excellent introductions
to types in the sense that we have used them here.

Lee [58] gives an overview of how many ongoing efforts fit into the greater
picture of transferring software engineering techniques to the area of embed-
ded and real-time systems.

Finally, we have not discussed traditional real-time techniques like priority-
based and rate-monotonic scheduling [55]. We expect that these approaches
can fit within the traditional frameworks for concurrency [64, 84, 40, 41, 65], and
that the same approaches discussed above for the encapsulation of concurrency
apply.

Acknowledgments We would like to thank Françoise Bellegarde, Adriana Com-
pagnoni, Bill Harrison, Gordon Pace and John Peterson for reading and giving
us feedback on an earlier draft of the paper.

References

1. Klaus Aehlig and Helmut Schwichtenberg. A syntactical analysis of non-size-
increasing polynomial time computation. In the Symposium on Logic in Computer
Science (LICS’ 00), pages 84–94. IEEE, June 2000.

2. Stuart Allen, Robert Constable, Richard Eaton, Christoph Kreitz, and Lori Lorigo.
The nuprl open logical environment. In D. McAllester, editor, the International Con-
ference on Automated Deduction, volume 1831 of Lecture Notes in Artificial Intelligence,
pages 170–176. Springer-Verlag, 2000.

3. John Backus. Can programming be liberated from the von Neumann style? A func-
tional style and its algebra of programs. Communications of the ACM, 21(8):613–641,
1978.

4. Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of
Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam,
revised edition, 1984.



Functional Programming for Real-Time Applications 15

5. Henk P. Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabbay, and
T. S. E. Maibaum, editors, Handbook of Logic in Computer Science. Oxford University
Press, Oxford, 1991.

6. Nick Benton and Philip Wadler. Linear logic, monads and the lambda calculus. In
the Symposium on Logic in Computer Science (LICS ’96), New Brunswick, 1996. IEEE
Computer Society Press.

7. Gerard Berry. Real time programming: Special purpose or general purpose lan-
guages. In IFIP World Computer Congress, San Francisco, 1989.

8. Gerard Berry. The constructive semantics of pure Esterel (draft version 3). Draft
Version 3, Ecole des Mines de Paris and INRIA, July 1999.

9. Gerard Berry and the Esterel Team. The Esterel v5.21 System Manual. Centre de
Mathématiques Appliquées, Ecole des Mines de Paris and INRIA, March 1999.
Available at http://www.inria.fr/meije/esterel.

10. Manfred Broy. A fixed point approach to applicative multi-programming. In Lec-
ture Notes. International Summer School on Theoretical Foundations of Program-
ming Methodology, 1981.

11. Cristiano Calcagno. Stratified operational semantics for safety and correctness
of the region calculus. In the Symposium on Principles of Programming Languages
(POPL’01), 2001.

12. Cristiano Calcagno, Eugenio Moggi, and Walid Taha. Closed types as a simple ap-
proach to safe imperative multi-stage programming. In the International Colloquium
on Automata, Languages, and Programming (ICALP ’00), volume 1853 of Lecture Notes
in Computer Science, pages 25–36, Geneva, 2000. Springer-Verlag.

13. Luca Cardelli. Typeful programming. In E. J. Neuhold and M. Paul, editors, Formal
Description of Programming Concepts, IFIP State-of-the-Art Reports, pages 431–507.
Springer-Verlag, New York, 1991.

14. Luca Cardelli. Type systems. In Allen B. Jr Tucker, editor, The Computer Science and
Engineering Handbook. CRC Press, 1997.

15. Paul Caspi, Halbwachs Halbwachs, Nicolas Pilaud, and John A. Plaice. Lustre: A
declarative language for programming synchronous systems. In the Symposium on
Principles of Programming Languages (POPL ’87), January 1987.

16. Paul Caspi and Marc Pouzet. Synchronous Kahn networks. In the International Con-
ference on Functional Programming (ICFP’96), pages 226–238, Philadelphia, Pennsyl-
vania, 24–26 May 1996.

17. Alonzo Church. The Calculi of Lambda Conversion. Princeton University Press,
Princeton, 1941.

18. Koen Claessen. Embedded Languages for Describing and Verifying Hardware. PhD
thesis, Chalmers, 2001.

19. J. Robin B. Cockett and Dwight Spencer. Strong categorical datatypes I. In R. A. G.
Seely, editor, Proceedings International Summer Category Theory Meeting, Montréal,
Québec, 23–30 June 1991, volume 13 of Canadian Mathematical Society Conf. Proceed-
ings, pages 141–169. American Mathematical Society, Providence, RI, 1992.

20. J. Robin B. Cockett and Dwight Spencer. Strong categorical datatypes II: A term
logic for categorical programming. Theoretical Computer Science, 139(1–2):69–113,
1995.

21. Thierry Coquand and Gérard Huet. A theory of constructions. Presented at the
International Symposium on Semantics of Data Types, Sophia-Antipolis, 1984.

22. Antony Courtney and Conal Elliott. Genuinely functional user interfaces. In Pro-
ceedings of the Haskell Workshop, September 2001.



16 Taha, Hudak, and Wan

23. Patrik Cousot. Constructive design of a hierarchy of semantics of a transition sys-
tem by abstract interpretation. In Mathematical Foundations of Programming Seman-
tics, 1997.

24. Karl Crary and Stephanie Weirich. Resource bound certification. In the Symposium
on Principles of Programming Languages (POPL ’00), pages 184–198, N.Y., January
19–21 2000. ACM Press.

25. Rowan Davies. A temporal-logic approach to binding-time analysis. In the Sympo-
sium on Logic in Computer Science (LICS ’96), pages 184–195, New Brunswick, 1996.
IEEE Computer Society Press.

26. Rowan Davies and Frank Pfenning. A modal analysis of staged computation. In
the Symposium on Principles of Programming Languages (POPL ’96), pages 258–270,
St. Petersburg Beach, 1996.

27. Roberto Di Cosmo. Isomorphisms of Types: from �-calculus to information retrieval and
language design. Progress in Theoretical Computer Science. Birkhäuser, 1995.

28. Gilles Dowek, Amy Felty, Hugo Herbelin, Gérard Huet, Chet Murthy, Catherine
Parent, Christine Paulin-Mohring, and Benjamin Werner. The Coq proof assistant
user’s guide. Rapport Techniques 154, INRIA, Rocquencourt, France, 1993. Version
5.8.

29. Abbas Edalat and Peter John Potts. A new representation for exact real numbers.
Electronical Notes in Theoretical Computer Science, 6:14 pp., 1997. Mathematical foun-
dations of programming semantics (Pittsburgh, PA, 1997).

30. Conal Elliott and Paul Hudak. Functional reactive animation. In International Con-
ference on Functional Programming, pages 163–173, June 1997.

31. John Peterson et. al. Haskell 1.4: A non-strict, purely functional language. Technical
Report YALEU/DCS/RR-1106, Department of Computer Science, Yale University,
Mar 1997. World Wide Web version at http://haskell.cs.yale.edu/haskell-report.

32. Cormac Flanagan and Martı́n Abadi. Types for safe locking. In European Symposium
on Programming (ESOP), volume 1576 of Lecture Notes in Computer Science, pages
91–108. Springer-Verlag, 1999.

33. Robert Glück and Jesper Jørgensen. Fast binding-time analysis for multi-level spe-
cialization. In Dines Bjørner, Manfred Broy, and Igor V. Pottosin, editors, Perspec-
tives of System Informatics, volume 1181 of Lecture Notes in Computer Science, pages
261–272. Springer-Verlag, 1996.

34. Healfdene Goguen. A Typed Operational Semantics for Type Theory. PhD thesis, Uni-
versity of Edinburgh, 1994.

35. Andrew D. Gordon. Functional Programming and Input/Output. Distinguished Dis-
sertations in Computer Science. Cambridge University Press, September 1994.

36. Carl A. Gunter. Semantics of Programming Languages. MIT Press, 1992.
37. David Harel. STATECHARTS: a visual formalism for complex systems. Science of

Computer Programming, 8(3):231–274, June 1987.
38. Peter Henderson. Functional programming, formal specification and rapid proto-

typing. IEEE Transactions on Software Engineering, 12(2):241–250, 1986.
39. J. Roger Hindley. Basic Simple Type Theory, volume 42 of Cambridge Tracts in Theo-

retical Computer Science. Cambridge University Press, Cambridge, 1997.
40. C. A. R. Hoare. Communicating sequential processes. Comm. ACM, 21(8):666–677,

1978.
41. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
42. Wilfred Hodges. A Shorter Model Theory. Cambridge University Press, 1997.
43. Martin Hofmann. Linear types and non-size-increasing polynomial time computa-

tion. In the Symposium on Logic in Computer Science (LICS ’99), pages 464–473. IEEE,
July 1999.



Functional Programming for Real-Time Applications 17

44. Martin Hofmann. Programming languages capturing complexity classes.
SIGACTN: SIGACT News (ACM Special Interest Group on Automata and Computability
Theory), 31, 2000.

45. Martin Hofmann. A type system for bounded space and functional in-place up-
date. Nordic Journal of Computing, 7(4), Winter 2000.

46. Paul Hudak. The Haskell School of Expression – Learning Functional Programming
through Multimedia. Cambridge University Press, New York, 2000.

47. Paul Hudak and Joe Fasel. A gentle introduction to Haskell. ACM SIGPLAN No-
tices, 27(5), May 1992.

48. R.J.M. Hughes. Why functional programming matters. Technical Report 16, Pro-
gramming Methodology Group, Chalmers University of Technology, November
1984.

49. R.J.M. Hughes and Lars Pareto. Recursion and dynamic data-structures in
bounded space: Towards embedded ML programming. In Proceedings of the Fourth
ACM SIGPLAN International Conference on Functional Programming (ICFP-99), vol-
ume 34.9 of ACM Sigplan Notices, pages 70–81, N.Y., September 27–29 1999. ACM
Press.

50. R.J.M. Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of reactive
systems using sized types. In Guy L. Steele Jr, editor, In proceedings of the ACM
Symposium on Principles of Programming Languages (POPL), volume 23, St Peters-
burg, Florida, 1996. ACM Press.

51. Neil D. Jones. Computability and Complexity From a Programming Perspective. Foun-
dations of Computing. The MIT Press, Cambridge, MA, USA, 1997.

52. Neil D Jones and C. K. Gomard. A partial evaluator for the untyped lambda cal-
culus. DIKU report, University of Copenhagen, Copenhagen, Denmark, 1990. Ex-
tended version of [53].

53. Neil D. Jones, C. K. Gomard, A. Bondorf, O. Danvy, and T. Mogensen. A self-
applicable partial evaluator for the lambda calculus. In IEEE International Confer-
ence on Computer Languages, pages 49–58, 1990.

54. Richard Kieburtz. Taming effects with monadic typing. In the International Confer-
ence on Functional Programming (ICFP ’98), volume 34(1) of ACM SIGPLAN Notices,
pages 51–62. ACM, June 1999.

55. Richard Kieburtz. Real-time reactive programming for embedded controllers.
Available from author’s home page, March 2001.

56. Richard B. Kieburtz. Implementing closed domain-specific languages. In [91],
pages 1–2, 2000.

57. Leslie Lamport. Time, clocks and the ordering of events in a distributed system.
Communications of the ACM, 21(7), 1978.

58. Edward A. Lee. What’s ahead for embedded software? In IEEE Computer, Septem-
ber 2000.

59. Edward A. Lee. Computing for embedded systems. In IEEE Instrumentation and
Measurement Technology Conference, Budapest, Hungary, 2001.

60. Xavier Leroy. Objective Caml, 2000. Available from http://caml.inria.fr/ocaml/.
61. Zhaohui Luo and Robert Pollack. The LEGO proof development system: A user’s

manual. Technical Report ECS-LFCS-92-211, University of Edinburgh, May 1992.
62. John Matthews, Byron Cook, and John Launchbury. Microprocessor specification

in Hawk. In Proceedings of the 1998 International Conference on Computer Languages,
pages 90–101. IEEE Computer Society Press, 1998.

63. Nicholas McKay and Satnam Singh. Dynamic specialization of XC6200 FPGAs
by partial evaluation. In Reiner W. Hartenstein and Andres Keevallik, editors,



18 Taha, Hudak, and Wan

International Workshop on Field-Programmable Logic and Applications, volume 1482 of
Lecture Notes in Computer Science, pages 298–307. Springer-Verlag, 1998.

64. Robin Milner. A Calculus of Communicating Systems, volume 81 of Lecture Notes in
Computer Science. Springer-Verlag, 1981.

65. Robin Milner. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, 1989.

66. Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of
Standard ML (Revised). MIT Press, 1997.

67. John C. Mitchell. Foundations for Programming Languages. MIT Press, Cambridge,
1996.

68. Eugenio Moggi. Notions of computation and monads. Information and Computation,
93(1), 1991.

69. Andrew Moran and David Sands. Improvement in a lazy context: An operational
theory for call-by-need. In the Symposium on Principles of Programming Languages
(POPL ’99), pages 43–56, San Antonio, Texas, January 1999. ACM.

70. Alan Mycroft and Richard Sharp. A statically allocated parallel functional lan-
guage. In Automata, Languages and Programming, pages 37–48, 2000.

71. Flemming Nielson and Hanne Riis Nielson. Two-level semantics and code genera-
tion. Theoretical Computer Science, 56(1):59–133, 1988.

72. Hanne Rijs Nielson and Flenning Nielson. Semantics with Applications : A For-
mal Introduction. John Wiley & Sons, Chichester, 1992. Available online from
http://www.daimi.au.dk/~bra8130/Wiley book/wiley.html.

73. Bengt Nordström. The ALF proof editor. In Proceedings of the Workshop on Types for
Proofs and Programs, pages 253–266, Nijmegen, 1993.

74. Bengt Nordström, Kent Peterson, and Jan M. Smith. Programming in Martin-Löf’s
Type Theory: An Introduction, volume 7. Oxford University Press, New York, NY,
1990.

75. Chris Okasaki. Even higher-order functions for parsing or why would anyone ever
want to use a sixth-order function? Journal of Functional Programming, 8(2):195–199,
March 1998.

76. Chris Okasaki. Purely Functional Data Structures. Cambridge University Press,
Cambridge, UK, 1998.

77. Oregon Graduate Institute Technical Reports. P.O. Box 91000, Portland, OR 97291-
1000,USA. Available online from ftp://cse.ogi.edu/pub/tech-reports/README.html.
Last viewed August 1999.

78. Paul Hudak Simon Peyton Jones, Philip Wadler, Brian Boutel, John Fairbairn,
Joseph Fasel, Maria M. Guzman, Kevin Hammond, John Hughes, Thomas Johns-
son, Dick Kieburtz, Rishiyur Nikhil, Will Partain, and John Peterson. Report on the
programming language Haskell. SIGPLAN Notices, 27(5):Section R, 1992.

79. Simon Peyton Jones and Philip Wadler. Imperative functional programming. In the
Symposium on Principles of Programming Languages (POPL ’93). January 1993. 71–84.

80. Frank Pfenning and Carsten Schürmann. System description: Twelf — A meta-
logical framework for deductive systems. In H. Ganzinger, editor, the International
Conference on Automated Deduction (CADE-16), pages 202–206, Trento, Italy, July
1999. Springer-Verlag LNAI 1632.

81. Andrew M. Pitts. Operationally-based theories of program equivalence. In P. Dy-
bjer and Andrew M. Pitts, editors, Semantics and Logics of Computation. Cambridge
University Press, 1995. Based on lectures given at the CLICS-II Summer School
on Semantics and Logics of Computation, Isaac Newton Institute for Mathematical
Sciences, Cambridge UK, September 1995.



Functional Programming for Real-Time Applications 19

82. Gordon D. Plotkin. A powerdomain construction. SIAM Journal of Computing,
5(3):452–487, September 1976.

83. Gordon D. Plotkin. A structural approach to operational semantics. Technical
report, Computer Science Department, Aarhus University, 1981.

84. Gordon D. Plotkin. An operational semantics for CSP. Technical report, University
of Edinburgh, Department of Computer Science, 1982.

85. Jean-Claude Raoult and Jean Vuillemin. Operational and semantic equivalence
between recursive programs. JACM, 27(4):772–796, October 1980.

86. Jonathan Rees, William Clinger, H. Abelson, N. I. Adams IV, D. Bartley, G. Brooks,
R. K. Dybvig, D. P. Friedman, R. Halstead, C. Hanson, C. T. Haynes, E. Kohlbecker,
D. Oxley, K. M. Pitman, G. J. Rozas, G. J. Sussman, and M. Wand. Revised4 report
on the algorithmic language Scheme. Technical Report AI Memo 848b, MIT Press,
1992.

87. David Sands. A naı̈ve time analysis and its theory of cost equivalence. Journal of
Logic and Computation, 5(4), 1995.

88. Michael B. Smyth. Powerdomains. In the Mathematical Foundations of Computer
Science Symposium, volume 45 of Lecture Notes in Computer Science, pages 537–543.
Springer-Verlag, 1976.

89. Joseph E. Stoy. Some mathematical aspects of functional programming. In John
Darlington, Peter Henderson, and David A. Turner, editors, Functional Programming
and its Applications, pages 217–252. Cambridge University Press, 1982.

90. Walid Taha. Multi-Stage Programming: Its Theory and Applications. PhD thesis, Ore-
gon Graduate Institute of Science and Technology, 1999. Available from [77].

91. Walid Taha, editor. Semantics, Applications, and Implementation of Program Generation,
volume 1924 of Lecture Notes in Computer Science, Montréal, 2000. Springer-Verlag.

92. Walid Taha and Tim Sheard. Multi-stage programming with explicit annotations.
In Proceedings of the Symposium on Partial Evaluation and Semantic-Based Program Ma-
nipulation (PEPM), pages 203–217, Amsterdam, 1997. ACM Press.

93. Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline. In A. Scedrov,
editor, Proceedings of the 1992 Logics in Computer Science Conference, pages 162–173.
IEEE, 1992.

94. Alastair Telford and David Turner. Ensuring Streams Flow. In Michael Johnson,
editor, Algebraic Methodology and Software Technology, 6th International Conference,
AMAST ’97, Sydney Australia, December 1997, volume 1349 of Lecture Notes in Com-
puter Science, pages 509–523. AMAST, Springer-Verlag, December 1997.

95. Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Informa-
tion and Computation, 132(2):109–176, 1 February 1997.

96. David A. Turner. Functional programs as executable specifications. Philosophical
Transactions of the Royal Society of London, A312:363–388, 1984.

97. Philip Wadler. The essence of functional programming. In the Symposium on Prin-
ciples of Programming Languages (POPL ’92), pages 1–14. ACM, January 1992.

98. Philip Wadler. The marriage of effects and monads. In the International Conference on
Functional Programming (ICFP ’98), volume 34(1) of ACM SIGPLAN Notices, pages
63–74. ACM, June 1999.

99. Zhanyong Wan and Paul Hudak. Functional reactive programming from first prin-
ciples. In the Symposium on Programming Language Design and Implementation (PLDI
’00). ACM, 2000.

100. Zhanyong Wan, Walid Taha, and Paul Hudak. Real-time FRP. In the International
Conference on Functional Programming (ICFP ’01), Florence, Italy, September 2001.

101. Hongwei Xi. Upper bounds for standardizations and an application. Journal of
Symbolic Logic, 64(1):291–303, March 1999.


