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must be submitted according to the schedule below:
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CMI’s One Bow Street library holdings include two collections of 
mathematical books that were acquired as gifts by the Institute:

Raoul Bott Library, gift received from the Bott family in 2005.

701 volumes consisting of books, journals, and preprints on 
topology, geometry, and theoretical physics.

George Mackey Library, gift received from the Mackey family 
in 2007.

1,310 volumes consisting of books and periodicals related to 
quantum mechanics, group representations, and physics, in addition 
to titles on a wide range of historical, philosophical, and scientific 
topics.

CMI’s Digital Library includes the following facsimiles of significant 
historical mathematical books and manuscripts that are accessible 
online at www.claymath.org/library/historical:

Euclid’s Elements, Constantinople, 888 AD (Greek). MS at the 
Bodleian Library.

The oldest extant manuscript and printed editions of Euclid’s 
Elements, in Greek (888 AD) and Latin (1482 AD), respectively.  
High resolution copies of the manuscript are available for study 
at the Bodleian Library, Oxford University and at the Clay 
Mathematics Institute, Cambridge, Massachusetts. Full online 
editions are available at CMI, Libraries without Walls, and 
rarebookroom.org.

Euclid’s Elements, first printed edition, 1482 AD (Latin)

The first printed edition of Euclid’s Elements, Elementarum Euclidis, 
appeared in Venice in 1482 through the work of Aldus Manutius.  
See Libraries without Walls or rarebookroom.org.

Riemann’s 1859 Manuscript

The manuscript in which Riemann formulated his famous conjecture 
about the zeroes of the zeta function.

Felix Klein Protokolle

The Klein Protokolle, comprising 8,600 pages in twenty-nine 
volumes, records the activity of Felix Klein’s seminar in 
Goettingen for the years 1872-1912.
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Dear Friends of Mathematics

 
  Sincerely,

  
  James A. Carlson
  President

Letter from the President

The increase in mathematical knowledge in the last few years 
has been nothing short of phenomenal.  To highlight some 
examples: the work of Green and Tao on arithmetic progressions 
in the prime numbers, the proof of the fundamental lemma of 
the Langlands program by Laumon and Ngô, the resolution 
of the Ahlfors and Marden conjectures by Agol and Calegari-
Gabai, the work of Waldspurger in p-adic harmonic analysis, the 
extension of the theory of minimal models from dimension three 
to arbitrary dimension by Hacon and McKernan with Birkar 
and Cascini, the proof of the Sato-Tate conjecture by Harris 
and Taylor in collaboration with Clozel and Shepherd-Barron, 
and the astounding breakthrough of Perelman who, armed 
with the pioneering work of Richard Hamilton on Ricci flow, as 
well as ideas and techniques in Riemannian geometry, resolved 
not only the Poincaré conjecture, but also William Thurston’s 
geometrization conjecture. Because of limitations of space, and, 
more importantly, the author’s knowledge, one has to end a 
list at some point, necessarily omitting many developments that 
deserve mention.  But the list does drive home the point of the 
opening sentence, and it demonstrates the remarkable vigor and 
dynamism of our subject.
 

Such a list raises the question: have we reached a high point, is 
this work the product of a great generation, the likes of which 
we will not see again?  There are two parts to the query.  First, 
is the geometry of possible mathematical knowledge like that of 
the sphere, finite and in principle completely accessible as is the 
surface of our earth?  Or is it like the Euclidean or hyperbolic 
plane, infinite in extent, with the disk representing what is known 
ever increasing in both area and perimeter?

Beyond the perimeter lie great landmarks such as the Riemann 
hypothesis. We hope, as Hilbert did, that one day we will reach 
each of them—the ones already visible such as Riemann’s 
famous question, and those whose nature and location can not 
now be guessed, even by those among us who are most far-
sighted.

The question about the nature of the frontier, more philosophical 
than scientific, can perhaps never be properly formulated, let 
alone answered. But the feeling one gets from the course of 
mathematical history is that the circle dividing the dark from the 
light is one that not only grows, but accelerates. Thus if pressed, I 
would bet on the Euclidean or hyperbolic geometry. The second 
part of the question is a human one—is there enough talent 
going into mathematics to sustain the intellectual enterprise?  
One cannot know the long-term future, but in the short term the 
answer is a resounding yes. The ability and command of current 
knowledge of the younger generation is extraordinary—so much 
so that I am glad that I applied to graduate school when I did, 
over four decades ago!  

In this annual report you will find articles about some of the 
developments mentioned above: James Arthur’s commentary on 
the work of Jean-Loup Waldspurger, Jeff Brock’s article on the 
solution of the Ahlfors and Marden conjectures, and an article by 
David Gabai and Steve Kerckhoff on Thurston’s geometrization 
conjecture. We do live in a golden age of mathematics!

James A. Carlson, President
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The third Clay Research Conference, an event devoted to recent 
advances in mathematical research, was held at Harvard on 
May 4 and 5 at the Harvard Science Center (Hall E). The 
lectures, listed below, covered a wide range of fields: algebraic 
geometry, complex analysis, harmonic analysis, number theory, 
dynamical systems, and topology.

Conference speakers were Herwig Hauser (University of 
Vienna), Heisuke Hironaka (Seoul National University),  
Peter Jones (Yale University), Curtis T. McMullen (Harvard 
University), Yair Minsky (Yale University), Dinakar Ramakrishnan 
(Caltech), Kannan Soundararajan (Stanford University), and 
Jean-Loup Waldspurger (Institut de mathématiques de Jussieu). 
Abstracts of their talks are given below.  Videos of the talks are 
available on the Clay Mathematics Institute website, at  
www.claymath.org/video.

On the afternoon of May 4, the Clay Research Awards were 
presented to Jean-Loup Waldspurger and to Ian Agol together 
with Danny Calegari and David Gabai.  The citations read:

Jean-Loup Waldspurger 
(Institut de mathématiques  

de Jussieu)
 For his work in p-adic 

harmonic analysis.  

Ian Agol (UC Berkeley),
Danny Calegari (Caltech), 

and David Gabai (Princeton), 
for their solutions of the  

Marden Tameness Conjecture. 

Herwig Hauser delivering his talk at the conference.

2008  Cliff Taubes (Harvard University)
 Claire Voisin (Institut de Mathématiques de Jussieu, 
 CNRS, IHES)  

2007  Alex Eskin (University of Chicago)
 Christopher Hacon (University of Utah) and
 James McKernan (UC Santa Barbara)
 Michael Harris (Université de Paris VII) and
 Richard Taylor (Harvard University)

2005  Manjul Bhargava (Princeton University)
 Nils Dencker (Lund University, Sweden)

2004 Ben Green (Cambridge University)
 Gérard Laumon (Université de Paris-Sud, Orsay) and
 Bao-Châu Ngô (Université de Paris-Sud, Orsay)

2003 Richard Hamilton (Columbia University)
 Terence Tao (University of California, Los Angeles)

2002 Oded Schramm (Theory Group, Microsoft Research)
 Manindra Agrawal  (Indian Institute of Technology, Kanpur)

2001 Edward Witten (Institute for Advanced Study)
 Stanislav Smirnov (Royal Institute of Technology, Stockholm)

2000 Alain Connes (College de France, IHES, Vanderbilt University)
 Laurent Lafforgue (Institut des Hautes Études Scientifiques)

1999  Andrew Wiles (Princeton University)

The Clay Mathematics Institute presents the Clay Research Award 
annually to recognize major breakthroughs in mathematical research.  
Awardees receive the bronze sculpture “Figureight Knot Complement 
VII/CMI” by Helaman Ferguson and are named Clay Research 
Scholars for a period of one year.  As such they receive substantial, 
flexible research support.  Awardees have used their research  
support to organize a conference or workshop, to bring in one  
or more collaborators, to travel to work with a collaborator, and  
for other endeavors.

Previous recipients of the award, 
in reverse chronological order are: 

Clay Research Conference
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Clay Research Conference

Annual Meeting

Herwig Hauser 
University of Vienna

Resolution of singularities in zero and 
positive characteristic 
Hauser discussed the principal ideas in the proof of 
resolution of singularities in characteristic zero, the main 
obstructions to applying these ideas to the case of positive 
characteristic, and recent approaches to overcome these 
obstructions.

Heisuke Hironaka 
Harvard University and Kyoto University 

Resolution of singularities in algebraic 
geometry 
Hironaka presented his approach to proving resolution of 
singularities of an algebraic variety of any dimension over 
a field of any characteristic.  Parts of this approach are 
as interesting from a technical and conceptual standpoint 
as they are from the standpoint of the end result. The 
resolution problem for all arithmetic varieties (meaning 
algebraic schemes of finite type over the ring of integers) 
is reduced to the question of how to extend the result 
from modulo pm to modulo pm+1 after a resolution of 
singularities over Q.  Problems that arise in this approach 
were discussed. 

Peter Jones 
Yale University

Some remarks on SLE and an extended 
Sullivan dictionary 
The Sullivan dictionary translates statements about Kleinian 
groups into statements about Julia sets and vice versa. For 
example, a limit set on the Kleinian group side corresponds 
to a Julia set, and the orbit of a point under a Kleinian 
group corresponds to the inverse images of a point by 
a rational map. We discuss adding another category to 
the dictionary, namely SLE, Schramm-Loewner Evolution. 
Here limit sets and Julia sets correspond to the SLE “trace.” 
We point out that with suitable modifications, the Sullivan 
dictionary can be enlarged to include SLE. As an example, 
we discuss the various analogues of the Ahlfors conjecture 
for Kleinian groups. We also discuss the various versions of 
rigidity that appear in the dictionary. This lecture is aimed 
at a general mathematical audience; we stress ideas, not 
technicalities of the proofs. 

Curtis T. McMullen 
Harvard University

Billiards and moduli spaces 
We discuss ergodic theory over the moduli space of 
compact Riemann surfaces, and its connections with 
algebraic geometry, Teichmüller theory, and billiard tables 
with optimal dynamics.

Yair Minsky 
Yale University

Topology and geometry of ends of 
hyperbolic 3-manifolds 
The classification of non-compact hyperbolic 3-manifolds 
with finitely generated fundamental groups depends on an 
understanding of the topology and asymptotic geometry 
of their ends. A number of advances in recent years have 
made this classification possible, and more. I discuss the 
background and features of this theory, and its applications 
to a fuller understanding of how these manifolds (compact 
and non-compact) cover and approximate each other. 

Dinakar Ramakrishnan 
Caltech

Functoriality: ubiquity and progress 
Questions in automorphic forms and number theory often 
get tied up with the magnificent, largely conjectural, edifice 
of functoriality, a simple instance being the desire to know 
if certain four-dimensional Galois representations occurring 
inside the cohomology of Siegel modular threefolds are 
symplectic. Of particular importance, besides base change, 
is the transfer of automorphic forms from orthogonal and 
symplectic groups to the general linear group, which sheds 
light on many problems. Crucial progress has been made 
of late in the work of Arthur via the twisted trace formula, 
extending the earlier results known for generic cusp forms, 
which had relied on the elegant converse theorem insight 
of Piatetski-Shapiro. Part of what makes Arthur’s approach 
work is the incredible recent progress on the (different 
guises of) fundamental lemma due to Ngô, Waldspurger, 
and others. This talk will try to introduce the basic global 
statements, a few ideas, and applications.
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Kannan Soundararajan 
Stanford University

Quantum unique ergodicity and number 
theory 
A fundamental problem in the area of quantum chaos 
is understanding the distribution of high eigenvalue 
eigenfunctions of the Laplacian on certain Riemannian 
manifolds. A particular case which is of interest to number 
theorists concerns hyperbolic manifolds arising as a quotient 
of the upper half-plane by a discrete “arithmetic” subgroup 
of SL2(R) (for example, SL2(Z), and in this case the 
corresponding eigenfunctions are called Maass cusp forms). 
In this case, Rudnick and Sarnak have conjectured that 
the high energy eigenfunctions become equi-distributed. I 
discuss some recent progress that has led to a resolution 
of this conjecture, and I discuss a holomorphic analog for 
classical modular forms.

Jean-Loup Waldspurger  
Institut de mathématiques de Jussieu

Endoscopy and harmonic analysis  
on reductive groups 
Let G be a connected reductive group over a number field 
and let H be an endoscopic group of G. A conjecture 
of Langlands predicts that there exists a correspondence 
between automorphic representations of H(A) and 
automorphic representations of G(A), where A is the ring 
of adeles of the ground field. Langlands’ idea of proof is 
to compare the Arthur-Selberg’s trace formulas of H and 
G. It is necessary to solve many problems, in particular 
two problems of harmonic analysis over a local field: the 
transfer conjecture and the fundamental lemma. These 
two questions remained open until the decisive result of 
Bao-Châu Ngô, achieved two years ago. In my talk, I try 
to explain what is the endoscopic transfer and what is the 
fundamental lemma. I give several statements of that lemma, 
more or less sophisticated. I try to explain the situation at 
the present time. In fact, all the useful problems are  
resolved even if certain related questions of harmonic 
analysis remain open. 

t

t



Clay Research Awards

Recongnizing Achievement

Jean-Loup Waldspurger receiving the 2009 Clay Research Award that was  
presented by Landon Clay and President James Carlson.

David Gabai and Ian Agol after they received the Clay Research Award with 
Danny Calegari (not pictured).  

The Clay Mathematics Institute (CMI) presents the Clay 
Research Award annually to recognize major advances in 
mathematical research.  Recipients of the Clay Research 
Award are named as Clay Research Scholars, and receive 
flexible research support for a period of one year. They also 
receive the bronze sculpture “Figureight Knot Complement 
VII/CMI” by Helaman Ferguson. CMI gave two awards this 
year. The recipients are: Jean-Loup Waldspurger; Ian Agol, 
Danny Calegari, and David Gabai.  Previous recipients 
of the award are Cliff Taubes and Claire Voisin (2008), 
Alex Eskin, Christopher Hacon and James McKernan 
and Michael Harris and Richard Taylor (2007), Manjul 
Bhargava and Nils Dencker (2005), Ben Green, Gérard 
Laumon and Bao-Châu Ngô (2004), Richard Hamilton 
and Terence Tao (2003), Oded Schramm and Manindra 
Agrawal (2002), Edward Witten and Stanislav Smirnov 
(2001), Alain Connes and Laurent Lafforgue (2000), and 
Andrew Wiles (1999).

Jean-Loup Waldspurger 
For his work in p-adic harmonic analysis, particularly his 
contributions to the transfer conjecture and the fundamental 
lemma. This work, combined with that of others, makes it 
possible to finally resolve important, long-standing parts of 
the Langlands program.

Ian Agol, Danny Calegari and David Gabai
For their solutions of the Marden tameness conjecture, and, 
by implication through the work of Thurston and Canary, of 
the Ahlfors measure conjecture.

The Langlands program is a collection of conjectures and 
theorems that unify the theory of automorphic forms, relating 
it intimately to the main stream of number theory, with close 
relations to harmonic analysis on algebraic groups as well as 
arithmetic algebraic geometry. Since its origins in the winter 
of 1966-67, when it was laid out in a letter from Langlands 
to André Weil, it has served as the basis of much deep work, 
including applications to many famous problems in number 
theory, e.g., Artin’s conjectures on L-functions, Fermat’s last 
theorem, and the behavior of Hasse-Weil zeta functions.

The tameness conjecture asserts that a hyperbolic 3-manifold 
with finitely generated fundamental group is homeomorphic 
to the interior of a compact 3-manifold (possibly with 
boundary). The Ahlfors conjecture asserts that the limit set of 
a finitely generated Kleinian group (i.e., the minimal invariant 
set on the Riemann sphere, which is the boundary at infinity 
of hyperbolic 3-space) has either full or zero measure, and in 
the former case the action of the group on it is ergodic.

6  2009 CMI Annual Report
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Transfer, the fundamental lemma, and the work of Waldspurger 
by James Arthur

Clay Research Awards

Automorphic forms are eigenfunctions of natural
operators attached to reductive algebraic groups.
Their eigenvalues are of great arithmetic
significance. In fact, the information they contain
is believed to represent a unifying force for large
parts of number theory and arithmetic algebraic
geometry.

The Langlands program is a collection of
interlocking conjectures and theorems that
govern the theory of automorphic forms. It
explains in precise terms how this theory, with
roots in harmonic analysis on algebraic groups,
characterizes some of the deepest objects of
arithmetic. There has been substantial progress
in the Langlands program since its origins in a
letter from Langlands to Weil in 1967. In
particular, it has had applications to famous
problems in number theory, including Artin’s
conjecture on L-functions, Fermat’s last

theorem, the Sato-Tate conjecture, and the
behaviour of Hasse-Weil zeta functions.
However, its deepest parts remain elusive.

At the center of the Langlands program is the
principle of functoriality, a series of conjectural
reciprocity laws among automorphic forms on
different groups. There appears to be no direct
way to prove it in any but the simplest of cases.
One strategy for more general cases has been to
compare trace formulas. The general trace
formula for a reductive algebraic group G over a
number F is a complex identity, which relates
spectral and geometric objects. The spectral
side contains the inaccessible data in
automorphic forms to which the principle of
functoriality applies. The geometric side is more
explicit, but also more complicated. It is a sum of
various kinds of integrals over spaces attached
to G. The general idea is to compare the
spectral data on different groups by establishing
relations among the geometric terms in the
corresponding trace formulas.

A serious obstruction for over thirty years has
been the transfer of test functions between
different groups. Given a smooth function of
compact support for one group G, one tries to
define a function on the second group by
requiring that the orbital integrals on the
geometric side of its trace formula match those
of the first function. The problem is to show that
these numbers really do represent the integrals
of a smooth function of compact support. The
transfer conjecture was formulated precisely by
Langlands and Shelstad, and then later by
Kottwitz and Shelstad for more general twisted

Jean-Loup Waldspurger 
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James Arthur continued

Recognizing Achievement

Clay Research Awards

groups. The conjecture included a family of
explicit functions, called transfer factors, by
which orbital integrals on one group would have
to be multiplied in order to be orbital integrals on
the other. Transfer factors are themselves a
remarkable part of the story. They are natural if
complicated objects, whose construction goes to
the heart of class field theory.

A test function is defined on the adèlic group
G(A). At almost all p-adic places v of F , it is
required to be the characteristic function of a
maximal compact subgroup of G(Fv). The
fundamental lemma is a variant of the transfer
conjecture. It asserts that the transfer of such a
function must be of the same form, namely the
characteristic function of a maximal compact
subgroup of the Fv-points of the second group.
The fundamental lemma appears at first to be a
combinatorial problem, for the orbital integrals of
characteristic functions reduce immediately to
finite sums of terms that can be calculated
explicitly. However, there are infinitely many
orbital integrals to be treated, and as they vary,
the number of terms in the associated finite
sums increases without bound. Various
elementary methods have been applied to the
fundamental lemma over the years, but they
have always met with at best limited success.

In the mid 1990s, Jean-Loup Waldspurger
proved that the transfer conjecture would follow
from the fundamental lemma. This was quite a
surprise, for the fundamental lemma pertains to
very special functions at certain p-adic places,
while the transfer conjecture applies to general
functions at all p-adic places. (The transfer

problem for archimedean places had been
solved earlier by Shelstad, using the work of
Harish-Chandra. In fact, her solution served as a
guide for the later construction of general
transfer factors.) Waldspurger used global
methods, specifically a simple version of the
trace formula, to solve what was a local problem.
In the past few years, he has also completed a
far-reaching study of twisted harmonic analysis,
which among other things, reduces the twisted
transfer conjecture of Kottwitz and Shelstad to a
twisted form of the fundamental lemma.

The breakthrough for the fundamental lemma
was provided by Bao-Châo Ngô. He discovered
a striking way to interpret the geometric side of
the simple trace formula (or rather its analogue
for a global field of positive characteristic). He
observed that the entire geometric side could be
expressed as a sum over the rational points of an
arithmetic Hitchin fibration, the arithmetic
analogue of a variety familiar from the theory of
G-bundles on a Riemann surface. Earlier,
Goresky, Kottwitz and MacPherson had
discovered a geometric interpretation for the
local terms in the simple trace formula (again for
a global field of positive characteristic). Building
on their work, and exploiting the interplay of local
and global methods in ingenious ways, Ngô was
at length able to establish a general form of the
fundamental lemma.

Ngô’s results actually apply to a p-adic Lie
algebra of positive characteristic. They include a
nonstandard fundamental lemma, which
Waldspurger was led to conjecture in his study of
twisted harmonic analysis. The theorem needed
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for the comparison of trace formulas applies to
p-adic groups of characteristic 0. The link is
provided by two separate results of Waldspurger.
A reduction to a Lie algebra of characteristic 0 is
included in his work on twisted harmonic
analysis. The transition to Lie algebras of
positive characteristic is a consequence of a
different study, but one which is again based on
methods of p-adic harmonic analysis. Another
proof of this reduction was subsequently
established by Cluckers, Hales, and Loeser, by
completely different methods of motivic
integration.

I should also mention a further generalization of
the fundamental lemma which, like it or not, is
also needed. It applies to the more exotic
weighted orbital integrals, which occur in the
general case of the trace formula. This has also
been established recently. Exploiting the ideas of
Ngô, with among other things, some remarkable
new applications of intersection cohomology on
which I am not qualified to comment,
Chaudouard and Laumon have now proved a
general form of the weighted fundamental
lemma. It again applies only to a p-adic Lie
algebra of positive characteristic. But
Waldspurger, working at the same time, has also
been able to extend his two theorems of
reduction. The most general form of the
fundamental lemma is therefore now available in
all cases. Thanks to Waldspurger, this in turn
implies the general form of the
Kottwitz-Langlands-Shelstad transfer conjecture.

I have emphasized the role of transfer in the
comparison of trace formulas. This is likely to

lead to a classification of automorphic
representations for many groups G, according to
Langlands’ conjectural theory of endoscopy. The
fundamental lemma also has other important
applications. For example, its proof fills a
long-standing gap in the theory of Shimura
varieties. Kottwitz had observed some years ago
that the geometric terms in the arithmetic
Lefschetz formula for a Shimura variety are
twisted orbital integrals. The twisted fundamental
lemma now allows a comparison of these terms
with corresponding terms in the trace formula.
This, in turn, leads to reciprocity laws between
the arithmetic data in the cohomology of many
such varieties with the spectral data in
automorphic forms.

Let me conclude by saying that Waldspurger has
made other major contributions to representation
theory, which are quite independent of his pivotal
role in the fundamental lemma and transfer.
They include a large body of early work on the
Shimura correspondence for modular forms that
is still very influential, a classification of
automorphic discrete spectra for general linear
groups (with C. Moeglin), fundamental results on
the homogeneity of p-adic characters and
Shalika germs, a characterization of the stability
properties of unipotent orbital integrals on p-adic
classical groups, and a profound study for the
group SO(2n+ 1) of the representations of
depth zero parametrized by Lusztig. As with all
of Waldspurger’s work, these contributions are
marked by their depth, and by the application of
Waldspurger’s extraordinary mathematical
power.
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Taming the field of hyperbolic 3-manifolds
by Jeffrey F. Brock
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A hallmark of the modern study of 3-dimensional
manifolds has been the role of geometry, or more
specifically, geometric structures, in exploring
their topology. W. Thurston’s geometrization
conjecture that each closed 3-manifold admits a
decomposition into pieces each with a geometric
structure is a powerful example of the force of
geometry to render topological questions
tractable, as its recent solution due to G.
Perelman illustrates.

But last year’s Clay Prize focuses on an earlier
example of such a role for geometric structures
on 3-manifolds, an example that beautifully
draws together topology, geometry, and

dynamics in low dimensions. The solution to
Albert Marden’s tameness conjecture represents
a remarkable story of how a natural initial
question can evolve and broaden in its
implications and depth, cross-pollinating different
subfields and disciplines along the way.

An open 3-dimensional manifold M is called
tame if it is homeomorphic to the interior of a
compact 3-manifold. In his efforts to prove
Poincaré’s conjecture that each simply
connected closed 3-manifold M is
homeomorphic to the 3-dimensional sphere,
J.H.C. Whitehead discovered the first non-tame
3-manifold: a contractible 3-manifold
topologically distinct from the open ball. This
example led the way to numerous constructions
of non-tame 3-manifolds with non-trivial
fundamental group. Albert Marden, in his
seminal investigation of the topological
properties of 3-manifolds with a complete metric
of constant negative curvature −1, the so-called
hyperbolic 3-manifolds, formulated the following
conjecture [Mar].

MARDEN’S TAMENESS CONJECTURE — Each
complete hyperbolic 3-manifold with finitely
generated fundamental group is homeomorphic
to the interior of a compact 3-manifold.

The conjecture, evidently easy to state,
historically well motivated, and resilient, is made
all the more remarkable by its profound
importance and applications to disparate
branches of mathematics. Last year’s Clay Prize
was awarded to Ian Agol, Danny Calegari, and
David Gabai for two independent solutions of
Marden’s conjecture [Ag], [CG].

Jeffrey F. Brock
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Its implications for

1. the Ahlfors measure conjecture for limit sets
of finitely generated Kleinian groups, and

2. the classification of finitely generated
Kleinian groups up to conjugacy,

lend it an unusual status at the intersection of
topology, geometry, and dynamical systems

The network of implications and connections
placing this conjecture in its modern framework
owes a great debt to the work of W. Thurston, F.
Bonahon, and R. Canary. We will attempt to
elucidate this web of dependencies, describe the
ramifications of the conjecture, now established,
and to give a perspective on its proof.

A few words about Kleinian groups. At the center
of the discussion is the notion of a Kleinian group
Γ, namely, a discrete subroup of PSL2(C), which
plays alternatively the role of a group of Möbius
transformations of Ĉ and a group of
orientation-preserving isometries of hyperbolic
3-space H3 via the natural extension to the
unit-ball model of H3. As the present discussion
concerns groups with a manifold quotient
M =H3/Γ, we will assume Γ is torsion free, and
we will for simplicity omit any discussion of the
case when Γ has parabolic elements, which
correspond to embedded cusp-regions of M with
standard topology.

The action of Γ on the Riemann sphere Ĉ
determines a partition Ĉ= Λ�Ω of the sphere
into its limit set Λ = Γ(0)∩ Ĉ, the smallest
closed Γ-invariant subset of Ĉ and its domain of
discontinuity Ω, where Γ acts properly

discontinuously by conformal homeomorphisms.

The quotient (H3 ∪Ω)/Γ gives a partial
boundary for the complete hyperbolic 3-manifold
M =H3/Γ, by adjoining Ω/Γ, the conformal
boundary of M, a finite collection of finite-type
Riemann surfaces by Ahlfors’ finiteness theorem
[Ah1].

The convex hull CH(Λ) in hyperbolic space of
the limit set Λ is the smallest hyperbolically
convex set in H3 that contains Λ in its closure.
As CH(Λ) is Γ-invariant, its quotient CH(Λ)/Γ is
a geometrically preferred subset C(M) of M, the
convex core of M.

Ahlfors’ conjecture. One of the more remarkable
features of Marden’s conjecture is its implication
for conformal dynamical systems, established by
Thurston, Bonahon, and Canary some years
after its formulation.

AHLFORS’ MEASURE-ZERO CONJECTURE — If the
limit set Λ of a finitely generated Kleinian group
Γ is not all of Ĉ, Λ has zero Lebesgue measure
in Ĉ.

The conjecture was later expanded to include the
expectation of ergodicity of the action of Γ on Λ if
Λ = Ĉ. Ahlfors’ motivation rested on questions in
the quasi-conformal deformation theory of
Kleinian groups. For if each such limit set has
measure zero, a non-trivial quasi-conformal
deformation of a Kleinian group induces a
non-trivial quasi-conformal deformation of its
conformal boundary, guaranteeing that this
deformation theory rests on a proper
understanding of the Teichmüller theory of the
conformal boundary.
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But it is perhaps lucky that Ahlfors did not have
access to modern computer renderings of the
limit sets of finitely generated Kleinian groups, as
the conjecture might never have been made in
the first place (see Figure 1).

Figure 1.
A measure-zero limit set of a degenerate group.

Marden’s conjecture. Marden set out to give a
coherent description of the topological type of
the quotient spaces H3/Γ of finitely generated
Kleinian groups. In the geometrically finite
setting, when the convex core is assumed to
have a finite volume unit neighborhood, his proof
that the quotient manifold is homeomorphic to
the interior of the compact manifold represented
the first deep investigation of this topological
question [Mar].

It was in this article that he formulated the

Figure 2. Inside the convex hull of the limit set.

tameness conjecture, predicting that such a
simple topological description should exist for
any finitely generated Kleinian group Γ. This
conjecture would later be proven in more general
cases and in turn be reinterpreted to serve as a
centerpiece of Thurston’s conjectural
classification of finitely generated Kleinian
groups. The conjecture grows out of the core
theorem of Peter Scott [Sco] that each 3-manifold
with finitely generated fundamental group admits
a compact submanifold whose inclusion is a
homotopy equivalence. In the setting of a
hyperbolic 3-manifold M =H3/Γ, then, finite
generation of Γ guarantees the existence of a
decomposition into a compact submanifold and a
finite collection of complementary pieces, termed
ends of the manifold (more properly, each piece
is a neighborhood of an end, of M, depending on
the choice of core).

To prove Marden’s conjecture amounts to
proving a choice of compact core M exists so
that each end E is a product S×R+ where S is a
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component of the boundary ∂M . In the
geometrically finite setting, a nearest point
retraction map from the conformal boundary
Ω/Γ provided a natural product structure for the
ends of H3/Γ, which later came to be called
geometrically finite ends.

Wild ends and tame ends. It is instructive to
review what can go wrong in general. We briefly
review Whitehead’s construction: consider S3

decomposed into solid tori U and V along a
common torus boundary component T . Let
h : V →V denote the pictured embedding of V

h

V

h(V )

Figure 3. Whitehead’s embedding.

into itself: int(V )\h(V ) is then the complement
of the Whitehead link in S3. A meridian J of V is
then homotopically essential in V \h(V ) but
bounds a disk in S3 \h(V ) =U ∪ (V \h(V )).

Then J,h(J),h2(J), . . . ,hn(J) denote loops that
are homotopically distinct and non-trivial in
V \hn(V ), all of which become trivial in
S3 \hn(V ).

Letting X∞ = ∩nhn(V ), the Whitehead manifold
S3 \X∞ is a simply connected, indeed

contractible 3-manifold with the property that the
removal of a compact submanifold V leaves a
3-manifold with infinitely generated fundamental
group (by an application of Van Kampen’s
theorem). Such a manifold cannot be
homeomorphic to int(B3).

Note, however, that by the Cartan-Hadamard
theorem, there is a unique simply connected
complete Riemannian manifold of constant
curvature −1, namely, hyperbolic 3-space H3.
So the assumption of negative curvature tames
the topology in this case.

What about lifting the assumption of simple
connectivity? In a variant of Whitehead’s
construction due to Tucker [Tck], one replaces U
and V with a handlebodies of the same genus,
and h : V →V becomes a knotted embedding of
V into itself (h is homotopic but not isotopic to
the identity). The result is an open 3-manifold
that is exhausted by compact cores, but for
which the complement of U has infinitely
generated fundamental group. The possibility

V

h

h(V )

Figure 4. A knotted handlebody.

that such a 3-manifold might admit a complete
hyperbolic structure was later ruled out by a
result of Souto [Sou], but examples of sequences
of embeddings with unbounded genus and more
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and more complicated knotting remained out of
reach until the solution of the full conjecture.

Geometric tameness. Though Ahlfors established
his measure-zero conjecture for geometrically
finite Kleinian groups [Ah2], W. Thurston
described an extension of Ahlfors’ theorem in his
Princeton Lecture Notes Geometry and Topology
of Three-Manifolds [Th1], employing very directly
the internal geometry of the quotient hyperbolic
3-manifold M =H3/Γ where Γ is a finitely
generated torsion-free Kleinian group.

A centerpiece of Ahlfors’ argument involves the
natural harmonic extension of the characteristic
function of a measurable set on the Riemann
sphere Ĉ to a harmonic function h̃ on hyperbolic
space H3, the solution to the Dirichlet problem. If
the set is invariant by the action of the Kleinian
group Γ, its characteristic function and hence its
extension are as well, and h̃ descends in the
quotient to a harmonic function h on the
hyperbolic 3-manifold M =H3/Γ. Harmonicity of
h guarantees that its gradient flow is volume
preserving.

A geometric condition introduced by Thurston
that generalizes geometric finiteness, termed
geometric tameness, ensures that no positive
measure set of flow lines can exit an end of the
convex core C(M). This gives a maximum
principle for non-constant harmonic functions on
C(M), showing that no measurable invariant
subset of Λ can have a point of Lebesgue
density unless it is all of Ĉ.

Briefly, the assumption of geometric tameness
for the end E of C(M) provides for intrinsically
hyperbolic surfaces Xn exiting the end E , each

homotopic to the boundary S of E ; the geometry
of Xn guarantees a bounded-diameter statement
that controls the volume swept out by a unit
neighborhood of each Xn, which in turn serves to
limit the measure of flow lines of ∇h crossing Xn.
The manifold H3/Γ is geometrically tame if all its
ends are geometrically finite (asymptotic to a
component of the conformal boundary) or
geometrically tame.

Topological and geometric tameness. Thurston
established the topological implications of
geometric tameness in many settings in his
Notes [Th1]. He used the surfaces exiting the
end to build a topological product structure for
the end, proving topological tameness in these
settings. A key role is played by sequences of
closed geodesics {γn} that exit E that can be
made simple (non self-intersecting) when
realized as curves on the boundary S. Such
geodesics serve to anchor the surfaces Xn and
force them to infinity.

Thurston’s geometric condition, moreover, gave
rise to a new invariant of the geometry of a
geometrically tame end, namely, its ending
lamination, a kind of limit of {γn}. A posteriori,
the ending lamination ν(E) encodes the limiting
combinatorial picture of bounded length closed
geodesics that exit the end E. It is only clearly
well defined, however, when the end is assumed
geometrically tame.

In ensuing years, Bonahon showed that one can
always find closed geodesics {γn} that may fail
the simplicity assumption above, and showed
how to use their limit to find new geodesics {γ ′n}
that do satisfy the simplicity condition, provided
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that S ↪→ M is injective on the level of
fundamental group [Bon]. Geometric tameness
followed in this case. Later, Canary showed how
to relax Bonahon’s hypotheses in such a way to
show that any topologically tame hyperbolic
3-manifold is geometrically tame, thereby
reducing Ahlfors’ original conjecture to Marden’s
[Can1]. He also showed how to generalize
Thurston’s argument to build topological product
structures for general geometrically tame ends,
thereby showing the equivalence of topological
and geometric tameness.

The proof. A complete description of the proof is
naturally out of the scope an article such as this
one. Essentially, the goal rested in trying to find
the appropriate replacement for the simple
closed geodesics {γn} exiting an end E that is
not geometrically finite as a method to produce
exiting surfaces Xn in the same homotopy class.
It is interesting to note both how geometry and
topology played key roles:

1. The original argument of Bonahon
guarantees the existence of closed
geodesics {γn} exiting the end E , not
necessarily homotopic to simple curves on
S.

2. A topological innovation called an
end-reduction allows one to find surfaces in
the end that lie outside or “engulf” an
arbitrary finite subcollection of these
geodesics.

3. Such surfaces can be pulled tight to
geometric surfaces in the complement of the
geodesics they enclose: the sets of

geodesics are said to be “shrinkwrapped” by
a geometric (CAT (−1)) surface, and
infinitely many such lie in the same
homotopy class.

4. A bounded diameter lemma together with a
homology argument guarantees these
surfaces exit the end, and then standard
techniques produce the desired product
structure as in the geometrically tame
setting.

A critical topological insight was to notice the
efficacy of technology on analyzing the ends of
open 3-manifolds due to M. Brin and T.
Thickstun, and R. Myers. Indeed, their end
reductions provide the key facts from 3-manifold
topology to guarantee the usefulness of the
exiting geodesics — one can imagine that they
provide cellophane that is used in the
shrinkwrapping. In effect, the shrinkwapped
surfaces Zn replace the surfaces assumed in
geometric tameness, and the exiting geodesics
γn serve to show the surfaces Zn exit the end E .

We remark that we have focused on the solution
presented by Calegari and Gabai, in which
shrinkwrapping is accomplished using minimal
surfaces, but a more recent treatment due to T.
Soma employs standard polyhedral techniques
to obtain the same result [So].

The Classification theorem. Much of Ahlfors’
original motivation for the measure-zero
conjecture was obviated in practice by Sullivan’s
rigidity theorem [Sul], which guaranteed the
absence of deformations supported on the limit
set alluded to previously. In more recent years, it
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was the progress toward and ultimate solution to
the ending lamination conjecture of Thurston due
to Minsky [Min] and concluded by work of this
author with Canary and Minsky [BCM2, BCM1]
that brought renewed attention to the tameness
conjecture.

The ending lamination conjecture predicts that
each geometrically tame hyperbolic 3-manifold
M =H3/Γ is determined up to isometry by its
homeomorphism type, its cusps (regions
corresponding to parabolic elements of Γ), and
its end invariant ν(M) consisting of the
conformal structures on Ω/Γ and the ending
laminations {ν(E )} for each geometrically tame
end of C(M). But in the intervening years, the
aforementioned work of Bonahon and Canary
showed the topological tameness of M to be the
complementary conjecture for a complete
classification theorem.

THE CLASSIFICATION THEOREM — Each
complete hyperbolic 3-manifold with finitely
generated fundamental group is determined up
to isometry by its topology, its cusps, and its end
invariant.

The theorem, which formally combines the
tameness theorem and the ending lamination
theorem, sets to rest what has been perhaps the
central motivating conjectural question in finitely
generated Kleinian groups. It is notable however,
that the output is richer than simply a
classification: the method of proof of the ending
lamination theorem produces a combinatorial
model for the ends M directly from the
end-invariant data ν(M), and thus a uniform
picture of its hyperbolic metric up to bi-Lipschitz

equivalence. That any finitely generated Kleinian
group can now be understood so concretely
provides new methods to study the internal
geometry of the full spectrum of hyperbolic
3-manifolds, their deformation spaces, and how
their topological, analytic, and geometric
invariants interrelate.

Implications. In his seminal Bulletin article [Th2],
Thurston’s list of twenty-four problems and
questions set the stage for the next thirty years
of activity in the geometry and topology of
3-manifolds, and in particular the fields of
Kleinian groups and deformation theory of
hyperbolic 3-manifolds. (It is notable that
Thurston’s celebrated geometrization conjecture
is question 1 on this list. To reflect on how far the
field of geometric structures on 3-manifolds has
progressed in the last ten years is, once again,
beyond the scope of this article, but we simply
state, for emphasis, questions in Thurston’s list in
which the solution to tameness plays a central
role.

1. AHLFORS’ MEASURE CONJECTURE.
Thurston’s harmonic flow argument together
with Canary’s theorem that topologically
tame implies geometrically tame guarantee
that the limit set Λ of a finitely generated
Kleinian group has zero or full measure, and
if full, the action of Γ is ergodic on Λ.

2. THE CLASSIFICATION OF FINITELY

GENERATED KLEINIAN GROUPS. Because
ending laminations are only defined for tame
ends, the proof of the ending lamination
conjecture [BCM2, BCM1] requires
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tameness to apply to all finitely generated
Kleinian groups.

3. THE DENSITY CONJECTURE. After work of
Namazi and Souto [NS], each candidate
end-invariant can be realized in a limit of
geometrically finite manifolds, and hence the
limit is isometric to a given (necessarily
tame) manifold by the ending lamination
conjecture. This resolves the Density
Conjecture of Bers, Sullivan, and Thurston
(independently resolved by [BS]).

4. THE MODEL MANIFOLD CONJECTURE. A
combinatorial bi-Lipschitz model for the
ends of hyperbolic 3-manifolds with finitely
generated fundamental group, conjectured
by Thurston, arises directly from the ending
lamination in the proof of the ending
lamination conjecture, and is thus only
operative in full generality after tameness.

There are numerous other deep implications of
tameness and the model manifold theorem for
the geometry, topology, and dynamics of finitely
generated Kleinian groups and their associated
hyperbolic 3-manifolds. The ergodicity of the
geodesic flow on the unit tangent bundle,
Simon’s tameness conjecture for covers of
compact manifolds, the recently claimed
local-connectivity theorem for limit sets of finitely
generated Kleinian groups [Mj], and the
enumeration of components of the deformation
space of a Kleinian group [BCM2], are just a few
other major examples. For a survey of these and
many other applications see [Can2].

The story of the symbiosis between geometry

and topology in 3-dimensions continues to be
written, and more and more precise connections
between geometric and topological invariants for
3-manifolds emerge with ever-increasing
frequency. The tameness theorem taken
together with the model manifold theorem
guarantees that for each finitely generated
Kleinian group Γ, the hyperbolic 3-manifold
H3/Γ can be modeled in a combinatorial way on
its ending laminations. Such a combinatorial
structure provides many new methods and tools,
and indeed new questions for investigation in the
study of 3-manifolds.

An apocryphal story has it that Ahlfors submitted
a one-line grant proposal late in his career
containing the single sentence: “I will continue to
try to understand the work of Thurston.” No doubt
he would be gratified to see how the cumulative
efforts of so many mathematicians have
culminated in such a rich narrative, intertwining
the solution to his own conjecture with those of
Marden, Thurston, Bers, and Sullivan, and how
so many fundamental questions in the geometry,
topology, and dynamics of Kleinian groups have
been set to rest.

Acknowledgtments. The author thanks Juan
Souto and Dick Canary for comments on a draft
version of this article. Computer programs of
Curt McMullen were employed to produce the
images of limit sets and their convex hulls.
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Researchers, Workshops & Conferences

Clay Research Fellows
Sucharit Sarkar, born in Calcutta, India, received his PhD 
from Princeton University in 2009 under the guidance 
of Zoltan Szabo. His research area is in low dimensional 
topology. His dissertation addressed topics in Heegaard Floer 
homology for 3-manifolds and knots inside 3-manifolds. He 
began his five-year appointment in July of 2009.

Sucharit Sarkar joined CMI’s current group of research 
fellows Mohammed Abouzaid (MIT), Spyros Alexakis (U 
of Toronto), Artur Avila (IMPA Brazil), Maria Chudnovsky 
(Columbia University), Soren Galatius (Stanford University), 
Adrian Ioana (Caltech), Bo’az Klartag (Princeton University), 
Ciprian Manolescu (Columbia University), Davesh Maulik 
(Columbia University), Maryam Mirzakhani (Princeton 
University), Sophie Morel (Institute for Advanced Study), 
Samuel Payne (Stanford University), David Speyer (MIT), 
Teruyoshi Yoshida (Harvard University), and Xinyi Yuan 
(Institute for Advanced Study).

Research Scholars
Bryna Kra (Northwestern)
January 5, 2009–June 4, 2009  
at University of Marne la Vallée in Paris. 

Fernando Rodriguez-Villegas (U of Texas at Austin)
September 1, 2008–August 31, 2009  
at Oxford University.
 
Richard Schwartz (Brown University)
February 1, 2009–March 31, 2009  
at Caltech.

Kasra Rafi (U of Oklahoma)
January 5, 2009–June 5, 2009  
at the University of Chicago.

Senior Scholars
Claire Voisin (IHES) 
February 1, 2009–February 28, 2009  
at the MSRI program on Algebraic Geometry. 

Christopher Hacon (U of Utah) and 
Rahul Panharipande (UC, Berkeley) 
April 1, 2009–May 16, 2009  
at the MSRI program on Algebraic Geometry.
 
Benedict Gross (Harvard University)
June 28, 2009–July 18, 2009.  
at the PCMI program on “The Arithmetic of L-functions,”  
part of the PCMI Clay Senior-Scholar-in-Residence program.

Clifford Taubes (Harvard University)
August 1, 2009–December 31, 2009.
at MSRI’s program on “Symplectic and Contact Geometry 
and Topology.”

John Tate (University of Texas at Austin, Harvard University)
June 28, 2009–July 18, 2009 
at the PCMI program on “The Arithmetic of L-functions,”  
part of the PCMI Clay Senior-Scholar-in-Residence program. 

The Activities of CMI researchers and research 
programs are sketched below. Researchers and 
programs are selected by the Scientific Advisory 
Board (see inside front cover).

Summary of 2009 Research Activities

Sucharit Sarkar
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Researchers, Workshops & Conferences

Research Programs organized  
and supported by CMI
January 12-16. CMI Workshop - Geometry and Physics of 
the Landau-Ginzburg Model, Cambridge. 

March 2-5. Clay Lectures on Mathematics, Kyoto, Japan.

March 17-20. IV International Symposium on Nonlinear 
Equations and Free Boundary Problems, Buenos Aires, 
Argentina. 

April 5. Singularities @ MIT, Cambridge.

April 20-22. Geometry and Physics: Atiyah80, Edinburgh, UK.

LiftOff Fellows
CMI appointed seven LiftOff Fellows for the summer of 
2009. Clay LiftOff Fellows are recent PhD recipients 
who receive one month of summer salary and travel 
funds during the summer following their graduation.

David Anderson 
Jonah Blasiak
Victor Lie 
Grigor Sargysan 
Andrew Snowden 
Melanie Wood 
Xinwen Zhu

Summary of 2009 Research Activities continued

Dan Abramovich, CMI Workshop - Geometry and Physics of the Landau-Ginzburg Model
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Researchers, Workshops & Conferences

Program Allocation

Estimated number of persons supported by CMI in selected 
scientific programs for calendar year 2009:

Research Fellows, Research Awardees, 
Senior Scholars, Research Scholars,
LiftOff Fellows                       36

Summer School Participants and Faculty             95

PROMYS/Ross Participants and Faculty            22

CMI Workshops                                             45

Participants attending Conferences and 
Joint Programs                                            > 5000

Independent University of Moscow (IUM)          80

Research Expenses for Fiscal   
Year 2009

May 4-5. Clay Research Conference, Harvard.

May 4-8. Power of Analysis, Princeton. 

June 2-30. Thematic Program on Probabilistic Methods in 
Functional Analysis, CRM Montreal, Canada.

June 15-July 10. CMI Summer School - Galois 
Representations, Hawai’i.

June 22-26. Topology of Algebraic Varieties Conference, 
Jaca, Spain.

June 24-30. Geometry and Functional Analysis in honor of 
Vitali Milman’s 70th birthday, Tel Aviv, Israel. 

July 6-10. Journées de Géometrie Arithmétique de Rennes, France.

July 23-October 7. Clay-Mahler Lecture Tour, Australia.

July 20-24. Dynamical Numbers: Interplay Between 
Dynamical Systems and Number Theory, Bonn,  Germany.

October 19-22. CMI Workshop - Geometry of Outer 
Space, Cambridge.

December 1-5. CMI Workshop - Sage Days 18, Cambridge. 

December 15-23. Geometry and Probability: the 
mathematics of Oded Schramm, Jerusalem, Israel. 



22  2009 CMI Annual Report

Twenty Years of PROMYS
The Program in Mathematics for Young Scientists

Special Projects

In July 2009, almost 200 friends and colleagues gathered 
from around the country and from as far away as Europe 
and Asia for a weekend at Boston University to celebrate 
a milestone: Twenty Years of PROMYS, the Program in 
Mathematics for Young Scientists.   Alumni representing all 
Twenty years of the program reconnected with old friends 
as they reminisced and shared stories from their time in the 
program. They attended mathematical lectures by eminent 
fellow alumni on topics ranging from sphere packing (Henry 
Cohn of Microsoft Research), through cryptography (David 
Jao of University of Waterloo), integral representations of 
quadratic forms (Jonathan Hanke of University of Georgia), 
logic (Cameron Freer of MIT), discrete mathematics (Blair 
Dowling Sullivan of Oak Ridge National Laboratories), and 
mathematics education (Dev Sinha of University of Oregon), 
to a discussion of what went wrong in the recent international 
financial crisis (Tom Brennan of Northwestern University). There 
was much discussion of the history of the program as well 
as of plans and ambitions for the future. Explicit and implicit 
throughout the Celebration was how important, often pivotal, 
PROMYS has been to the intellectual and career development 
of alumni. At PROMYS, they lived and worked for six weeks as 
mathematicians and scientists; and they believe that this had a 
long-term positive impact on their lives. 

PROMYS is an intensive and challenging six-week immersive 
program in mathematics that has been held at Boston University 
for each of the last twenty-one summers.  The program was 
founded in 1989 by a group of mathematicians who were 
themselves alumni of another summer program that had been 
pivotal to their own intellectual and career development: the 
famous Ross Program at Ohio State University, which continues 
to run strongly more than Fifty years after its inception. Like the 
Ross Program, PROMYS emphasizes creative mathematical 
investigation that includes experimentation, rigorous proof, 
and precise use of language, as well as the practice of the 
techniques of abstraction and generalization.  

Starting in 1989, PROMYS was supported by the National 
Science Foundation’s Young Scholars Program (YSP).  But 
following the demise of NSF’s YSP in 1997, the program 
struggled financially for several years until the Clay Mathematics 
Institute and other leading American mathematical institutions 
(notably AMS and NSA) came forward to offer aid and 
support. In 1999, the CMI/PROMYS partnership was 
founded with the specific goal of extending and deepening the 
advanced features of PROMYS.  Since then the partnership has 
grown and thrived as new dimensions have been added to the 
traditional PROMYS experience, including research opportunities 

Alumni gather at the Twenty Years of PROMYS Celebration at Boston University in July, 2009.
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for high school students guided by research mathematicians, 
and advanced seminars for counselors and students. 
Student research projects of recent years have included 
investigation into themes such as hyperbolic geodesics and 
continued fractions, tropical algebraic geometry, Gelfand-
Tsetlin patterns, finiteness theorems for integral quadratic 
forms, orbital systems, and the Artin-Hasse exponential 
series. Problems have been proposed and mentored by 
many mathematicians including Ben Brubaker, Henry 
Cohn, Keith Conrad, Paul Gunnells, Jonathan Hanke, Kiran 
Kedlaya, Jonathan Lubin, Dev Sinha, and others. At the end 
of each summer, students present their research to the entire 
PROMYS community.

About seventy-five mathematically gifted and highly 
motivated high school students join PROMYS each 
summer.  Of these, about twenty are returning students 
who come back to participate in the more advanced 
activities of the program. They join a staff of approximately 
eighteen counselors, outstanding undergraduates selected 
from top mathematics departments around the country 
often themselves PROMYS alumni. A major aspect of 
the PROMYS experience is the extended mathematical 
learning community formed by the first-year students, the 
returning students, the counselors, the faculty, and the 
visiting mentors and speakers–all of whom are creatively, 
intensely, and collaboratively focused on mathematical 
exploration. At the end of each summer all the documented 
elements of that summer’s program—the problem sets 
and notes from courses and seminars, as well as student 
research papers summarizing results—are collated into a 
bound volume which is then presented to all members of 
the PROMYS community. One of the central visual foci at 
the July Celebration was a long table laid out with twenty 
such annual testaments to creative intellectual struggle and 
sustained mental effort.   

The Twenty Years of PROMYS Celebration in July was 
the first-ever organized PROMYS alumni gathering.  
Encouraged by the overwhelmingly enthusiastic response 
from alumni who attended the Celebration (and by many 
eager but unable to attend), PROMYS began reaching 

out to the community to reestablish contact with those alumni 
with whom contact had been lost. Nine months later, the results 
are stunning—the program is now in touch with over 95% of 
its 1,144 alumni. One snapshot of data gathered: of the 80% 
of alumni for whom the program has seemingly up-to-date 
educational data, 43% of those old enough have completed, 
or are working on, a PhD in a science, technology, engineering, 
or mathematics (STEM) field. Of the forty-siz comparable 
alumni who have attended PROMYS more than three times, 
78% have completed, or are working on, a STEM PhD, almost 
all of which are in mathematics.  It is enlightening to look 
back and exciting to look forward. The Celebration has acted 
as a springboard for the alumni to extend and deepen their 
involvement with  
the program, and this can only strengthen PROMYS in the  
years ahead. 

Margy Baruch, Glenn Stevens (Director), David Fried, and  
Steve Rosenberg: founders and current faculty of PROMYS.



Interview with Research Fellow Artur Avila

Profile

What first drew you to mathematics? What are some 
of your earliest memories of mathematics?

My father, who came from Amazonas and was not able to start 
school until age fourteen or so, was enthusiastic about exposing 
me early to basic education, including mathematics.  At an early 
age, I was attracted by big numbers (like the speed of light in 
meters/second), and thought that multiplying trillions was a great 
topic for conversation (somehow the other kids did not agree).

Could you talk about your mathematical  
education? What experiences and people were 
especially influential?

I studied in an OK school, but for several years I was mostly 
reading on my own.  At fifth grade the program underwent 
a phase transition.  They were impressed with modern 
mathematics, so I guess they thought we should learn about 
set theory and various axioms. Unfortunately, I do not think I 
was quite ready to appreciate the notion of equivalence class.  
Infinite sets were fun and it was nice to learn the Cantor-
Bernstein-Schröder theorem, but I do not really consider the 
composition of homotheties to be more primitive than the 
multiplication of real numbers (even if properly introduced with 
Dedekind cuts).  Although some teachers did not understand

Artur Avila (b. 1979) received his PhD in 2001 

under the direction of Welington de Melo at the 

Instituto Nacional de Matemática Pura e Aplicada 

(IMPA), in Rio de Janeiro, Brazil. His thesis, 

“Bifurcations of unimodal maps: the topological and 

metric picture,” generalized the regular or stochastic 

dichotomy from the quadratic family to any non-trivial 

family of real analytic unimodal maps. Since then 

he has made numerous outstanding contributions to 

one-dimensional and holomorphic dynamics, spectral 

theory of the Schrödinger operator, and ergodic 

theory of interval exchange transformations and the 

associated Teichmüller flow. Avila is a Chargé de 

Recherche at the Centre Nationale de Recherche 

(CNRS). Below is an interview with Avila.
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what they were talking about, one of them was very charismatic 
(exam question: if x belongs to the empty set, is x an elephant?).  
This charismatic teacher told me about the existence of 
mathematical Olympiads, and there I went.  Suddenly, I was 
faced with much more concrete problems, and after the initial 
shock, it became my main occupation until the middle of the 
tenth grade. In Brazil high school runs up to eleventh grade, or 
at least used to when I started at 
IMPA.

Did you have a mentor? 
Who helped you develop  
your interest in mathematics, 
and how?

Since I went to IMPA while still in 
high school, it was very important 
for me to be guided carefully. Elon 
Lages Lima was my mentor during 
my first two years there, when I 
was learning the foundations.  I 
would frequently go to his office 
to discuss whatever I was getting 
excited about in the various 
courses, and he would give me his 
own perspective.  As I was getting 
closer to starting the PhD, I started 
discussing mathematics more with 
Welington de Melo, who later on 
would become my advisor.  He was 
a big influence, particularly on my mathematical taste. A bit later 
on, I got in touch with Misha Lyubich; his way of thinking made 
a big impression on me.  Many years later we still collaborate on 
long projects that always seem to take years to mature...

After my PhD I spent two years in Collège de France with Jean-
Christophe Yoccoz, who has a very different style. It was great to 
be constantly exposed to his way of doing math.

You were educated in Brazil.  Could you comment 
on the differences in mathematical education there 
and in the US?

I have very little contact with the US system, so I will just 
comment on my experience with the Brazilian system.  In my 
case an important role was played by mathematical olympiads: it 
was through them that I found out about IMPA.  Such a special 

place, right in my home city! Rules there are not strict, so it was 
possible to follow graduate classes even before finishing high 
school.  Since the quality of undergraduate education in math is 
not very high in Brazil, in practice the program starts from scratch 
and does not assume anything was learned beyond high school.

IMPA is of course a big attractor for the best students in 
Latin America, and many of my 
classmates went on to become 
very good mathematicians (and 
some of them coauthors).

What attracted you to the 
particular problems you 
have studied?

It depends a lot on my own 
understanding of the field.  After 
getting interested in a new 
topic, I tend to get attracted to 
conjectures which seem to be 
at least vaguely connected with 
my previous work.  For instance, 
with quasiperiodic Schrödinger 
operators, the link was 
renormalization. With Teichmüller 
flow, it was probabilistic parameter 
exclusion.

This outsider perspective tends 
to get replaced by an insider one with time, and eventually one 
gets one’s own ideas of what should be done in the field.  Then 
it is possible to just set some attractive but distant goal and 
concentrate on the bunch of problems that must be solved along 
the way.

Can you describe your research in accessible terms? 
Does it have applications to other areas?

I have worked on quite distinct areas: one-dimensional dynamics, 
ergodic Schrödinger operators, Teichmüller flow and interval 
exchange transformations, volume preserving, and partially 
hyperbolic maps.  If one tries (perhaps too much) to find some 
common ground among the largest possible number of works, 
one could say that it often involves a bit of a conflict between 
order and chaos.

After my PhD I spent  
two years in Collége  
de France with  
Jean-Christophe Yoccoz, 
who has a very different 
style. It was great to be 
constantly exposed to his 
way of doing math.

“
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Artur Avila interview continued

Profile

For instance, the Teichmüller flow can be understood as a 
renormalization operator for translation flows: while the dynamics 
of the Teichmüller flow is very chaotic, translation flows are 
relatively ordered.  Chaos brings in the power of probabilistic 
analysis, while the details of “relative order” may be incredibly 
messy, so what one can do is to see how the dynamics of the 
renormalization operator reflects on that of translation flows.

Sometimes what one wants is to prove a dichotomy order or 
chaos in a class of dynamics.  An example is the basic measure-
theoretical dichotomies, regular or stochastic for unimodal 
maps and reducibility or nonuniform hyperbolicity dichotomy for 
one-frequency SL(2,\R) cocycles.  I am looking right now at a 
spectral version of this dichotomy, for the associated Schrödinger 
operators: trying to break the spectrum in two parts, one 
absolutely continuous, another localized.

Some of the analysis of higher dimensional dynamics also fits 
somewhat in this philosophy: one may start from a system with 
some hyperbolic directions and some neutral directions and find 
out that the only way not to create new non-zero Lyapunov 
exponents is to keep the ordered behavior in the central.

As for the second part of the question, I feel my work already 
involves a bit of applying at least part of the ideology of one of 
those areas (say, one-dimensional dynamics) to another (say, 
quasiperiodic Schrödinger operators).

What research problems and areas are you likely to 
explore in the future?

My impression is that it is difficult to predict one’s research 
focus beyond a relatively short horizon.  Slightly more than one 
year ago, I had no idea that my dream problems about one-
frequency Schrödinger operators would be within reach. Then a 
little miracle happened and everything opened up.  So right now 
I am making quite an effort trying to work it all out.

However, at the general level, I do have an intention to try to 
move further in some natural directions.  I have played with 
aspects of the dynamics of group actions, so it would be sensible 
to try to expand my work there.  On the other hand, since there 
is already quite a bit of probability on my work, it could also be 
interesting to try to work on certain stochastic processes.

Could you comment on collaboration versus solo 
work as a research style? Are certain kinds of 
problems better suited to collaboration?

My collaborations have been very diverse, ranging from basically 
a smooth dialogue (two or more people together in front of the 
blackboard, or in a chat window, for hours) to long stretches of 
essentially individual work interspersed with quick discussions.

Collaboration is also a very efficient way to get into a new  
topic.  I do not read much and prefer to learn from 
mathematical discussions. I also like the obligation to 
communicate: it may be only at the moment one tries to 
verbalize thoughts that something clicks.

For all those reasons, I think the real question is why some 
problems do not seem to benefit from collaboration.  But it  
does happen.

Regarding individual work versus collaboration, 
what do you find most rewarding or productive? 

It is much more fun to collaborate.  But usually most of the work 
is done while thinking obsessively night after night, by oneself.

Collaboration is a very 
efficient way to get into 
a new topic.  I also 
like the obligation to 
communicate: it may be 
only at the moment one 
tries to verbalize thoughts 
that something clicks.

“
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How has the Clay Fellowship made a difference  
for you?

At my CNRS job in Paris, I already had quite a bit of freedom 
(no teaching duties, flexibility to travel).  The Clay Fellowship 
gave me the opportunity to change my base to wherever I 
wanted. For five years I had been in the French system, and I 
already intended to spend some time at IMPA. So I did that.  
Initially I planned to stay for one year, but it was going so well 
that I extended it to the three years of my fellowship (while 
traveling often to the US and Europe).  I found out I work 
somewhat differently when I am in Rio than when I am in Paris, 
and my impression is that the best is to try to combine both: 
going forward I will be splitting my time between both places. 

What advice would you give to young people starting 
out in math (i.e., high school students and  
young researchers)?

There are so many different ways one can approach 
mathematics that I find it difficult to give practical advice that 
is not artificially constraining. Maybe this in itself is worthwhile to 
know: there is no one style of doing math that is a priori better 
than all others.

What advice would you give lay persons who would 
like to know more about mathematics—what it is, 
what its role in our society has been and is, etc.? What 
should they read? How should they proceed?

If the goal is to know what mathematicians do, a starter 
would be the article of Thurston, “On proof and progress in 
mathematics.”

How do you think mathematics benefits culture and 
society?

Looking backwards, the largest impact must be through physics.  
How current mathematics will benefit society is harder to 
predict.  Obviously through things like computer science, but 
it would seem too imprudent to discard a possible increasing 
mathematization of biology, for instance.  Going further, it seems 
natural to me that a qualitative understanding of dynamical 
systems should benefit even those fields which are less amenable 
to precise quantification, like economics.

Please tell us about things you enjoy when not doing 
mathematics.

Living (part-time) in Paris, I try to take the time to enjoy my 
meals (usually with some wine).  This may involve going to 
restaurants, which is often also a good opportunity to get 
together with friends.  But since it can get tiresome to eat out 
too much (and while traveling I may find myself in some place 
with more restricted options), my girlfriend and I have started to 
work on the diversity of dishes that we can cook at home.

Besides this, I would say that I like old movies—I usually end up 
seeing them on DVDs.

There are so many 
different ways one can 
approach mathematics 
that I find it difficult 
to give practical advice 
that is not artificially 
constraining. Maybe  
this in itself is worthwhile 
to know: there is no one 
style of doing math that  
is a priori better than  
all others.

“
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“When I encountered 

resolution of singularities 

in the nineties, skepticism 

kept me from thoroughly 

entering the subject for a 

long time.

I Spy With My Little Eye

Feature Articles

You have recently been working on the resolution of 
singularities in positive characteristic, a still-unsolved 
problem that is very algebraic in nature. The proof in 
characteristic zero already avoids a great deal of the 
geometric intuition, while the positive characteristic 
case is even more algebraic and abstract. You also 
design and produce film visualizations of algebraic 
surfaces that fascinate the viewer with their vivid and 
spontaneous graphical quality. How do you explain 
this apparent contradiction? 

That’s right, seemingly contradictory interests are at play here. 
But they also have things in common. When I encountered 
resolution of singularities in the nineties, skepticism kept me from 
thoroughly entering the subject for a long time. I got hooked 
when I tried to understand in my own language the more 
recent proofs by Villamayor and Bierstone-Milman of Hironaka’s 
original result, and to lift them to a more conceptual level. It 
seemed as if a beautiful mansion had opened its door. Since 
the characteristic zero assumption was spread throughout the 
proofs of that time, I also wanted to localize more precisely the 
special problems that occur in positive characteristic. Although 
these proofs are, of course, pure algebra, their logical structure 
of mutual induction is set in the context of a huge, interwoven 
architecture. To a certain extent this structure is also geometry, 
but a geometry of proof, of reasoning, like the structure of a 
symphony, or the construction of a cathedral, or the mechanism 
of a clock. It is the geometry of analytical thinking. 

Herwig Hauser is Professor of Mathematics at 

the University of Vienna in Austria, specializing 

in algebraic geometry. Among other things, he 

works in singularity theory, with a recent emphasis 

on the resolution of singularities in zero and prime 

characteristic. He is the author of the movie 

“ZEROSET – I spy with my little eye,” presented 

at the ICM 2006 in Madrid, and of a series 

of expository works on algebraic surfaces and 

singularities. The fictitious interview below took place 

in the Tyrolean Alps in August 2009.1 

Mathematical Visualization and the Animation of Singularities in the Film Zeroset 
by Herwig Hauser 
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turn on the machine, type the equation and press the “enter” 
key. In a few seconds (with such simple equations), a picture is 
produced 

And what a picture! Most often you don’t see anything, or only 
shadows and splotches of color. To arrive at a reasonable 
result, you have to know how POV-Ray works. There are also 
the more recent programs such as Surf, Surf-ex, and Surfer.3 

Which you will now explain to us! 

Yes, the principle is really simple, and precisely what you would 
devise if you had to develop the program yourself. (The real 
challenge lies in the technical aspects of programming, such 
as optimization of the running time.) 

Imagine that you have a spatial object (for instance, the solution 
set of an equation) which you want to render as accurately as 
possible. The naive method would be to compute all solutions 
of the equation in a sufficiently fine grid. This would give you a 
collection of 3D-data that you could represent visually, say by 
making a photograph.4 If you only want a photo (i.e., 2D-data), 
the effort can be substantially reduced. 

We place—virtually—a camera in space by fixing its position, 
viewing direction, and  angle of aperture. This determines a 
real cone, which we fill with rays emanating from the camera, 
their density adjusted to the desired degree of precision. We 
intersect each of these rays with the object, which in the case of 
algebraic surfaces corresponds to solving a polynomial equation 
in one variable. This works rather quickly and, for one ray, often 
produces several solutions (since there can be several intersection 
points). The computation is more delicate when a ray hits the 
surface tangentially; in that case, artifacts may appear. 
Once all intersection points on the various rays are calculated, it 
is routine to compose the complete picture from them. 
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And sometime around then the visualizations  
started ... 

Yes, I still remember the moment, somewhere around 2002, 
when Josef Schicho turned up with the POV-Ray program. But 
in fact, my involvement with geometric figures started much 
earlier, shortly after my PhD, when I crafted paper models of 
singular surfaces for my talks and classes. This was not a very 
straightforward thing to do, since paper cannot be stretched 
to make bows. I had to insert small slits to allow for the curvature. 
These paper models still exist, in a Christmas cookie tin. 

New opportunities arose because of POV-Ray.2 The program 
is intended for the production of scenes for the video and 
advertising industry, creating virtual landscapes and spaces. 

However, the POV-Ray is also able to represent graphically  
the zero-sets of polynomial equations in three variables—real 
algebraic surfaces. This is done with amazing accuracy and 
beauty. 

Couldn’t this also be done using available computer 
algebra programs like Maple or Mathematica? 

Not with comparable mathematic or aesthetic quality. Even 
though POV-Ray does occasionally display artifacts, such as 
fringes and wrinkles, that are inconsistent with the mathematical 
reality, the results are in general very satisfactory. 

And then you started to generate the classical surfaces 
on the computer ... 

Not only the classical surfaces; there was also a great deal of 
trial and error that resulted in new surfaces. Soon it became 
clear that there are certain criteria and demands that need to be 
considered: simplicity, plainness, naturality, vividness, mathematical 
relevance, modesty. 

And how does this work out in practice? What do you 
have to do when “inventing” a new surface? 

Suppose we start with the equation x2yz +xy2+y3+y3z = x2z2, 
without first contemplating its geometric configuration. An 
algebraic geometer who is only equipped with pencil and paper 
will obviously first determine some basic data: the irreducible 
components, the singular locus, the tangent cone, the intersection 
curves with planes and spheres. With POV-ray you simply 

Solitude, of equation x2yz +xy2+y3+y3z = x2z



Even though it is very simple, many people find Zitrus quite 
appealing. For Platonic Stars we had to use some basic invariant 
theory to find with a suitable equation. 

In this case, the choice of parameter values was very subtle, 
since these values strongly influence the aesthetics of the 
resulting form. 

The surface Daisy was also developed by first imagining its 
shape. The goal was to find a surface that is singular along an 
entire curve, which itself should be singular. Furthermore, the 
transversal sections to this curve should again be singular, namely 
cusps. 
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I Spy With My Little Eye by Herwig Hauser continued

That seems pretty clear, but is it really as simple  
as that? 

The difficulty lies in the choice of parameters. If we don’t know 
what the surface looks like (which we have to assume to be the 
case), we must first try to get a rough impression, 
say by looking from longer distances and from different angles.5 

Then the real work begins: the choice of perspective, position, 
intensity and color of the light source, degree of reflection 
(respectively, transparency) of the surface material, and the 
coefficients in the equation. Here POV-Ray is unsurpassed, and 
with some practice you can achieve very nice results. It really 
takes on the roles of the lighting technician and the stage 
designer in theater. The stage designer has to compose the 
scene with its moving actors and static scenery. And some 
surfaces are as stubborn as spoiled actors, who play hard to 
get! The tricky geometry of a singularity often prevents us from 
clearly representing it in a convincing manner. 

As you suggested before, the choice of equation doesn’t 
need to be the only approach to visualization, does it? 

No, we can also go in the other direction, an equation for a 
surface with given properties. A simple example is the surface 
Zitrus, for which we can find a global equation from our 
knowledge of local equations at the two singular points.

Daisy, of equation (x2-y3)2 = (z2-y2)3

Zitrus, of equation x2+z2 = y3(1-y)3

The Dodecahedral Star, one of the Platonic Stars 
(with complicated equation)
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Are there new mathematical problems that have 
emerged from your work on visualization? 

Yes, several. First, there is the problem of finding an equation 
for a surface with a given geometric configuration.6 A deeper 
problem is to codify geometric shapes using a mathematical 
language that is not based on algebraic expressions such as 
implicit equations. While such equations are the most compact 
way of describing a surface, it can be difficult to extract the 
geometric information from them. It is clear that our brain—
when seeing a surface—stores the data in a way that allows 
us to reproduce the image from memory (these data are most 
probably not the coefficients of an equation). Up to now there 
is no means to communicate this type of data: look at Daisy 
for two minutes, then go to your colleague next door and try to 
describe the geometry so that she is able to draw an accurate 
picture of the surface. The development of such a language 
could be a new goal for Algebraic Geometry; it would go far 
beyond the traditional, algebraic-logical based mathematics. 
And finally, the visualization feeds back on the resolution 
of singularities. Such a resolution is, roughly speaking, a 
parametrization of the singular surface by a smooth surface. If 
we could compute resolutions efficiently (it seems that we are still 
far away from doing this), we could represent surfaces exactly 
and without errors. Using quick resolution would be the Rolls 
Royce of visualization. 

To conclude, a few words about your movie 
“ZEROSET – I spy with my little eye.” A prominent 
mathematician said, after viewing  
the film at its premiere in Madrid: “Great work 
—but rather wierd.” Do you know what he  
meant by this? 

This premiere was quite impressive—a full auditorium, with 
mathematicians taking pictures and videos during the 
presentation. The success was overwhelming and very 
astonishing. For the movie does not explain anything (in contrast 
to what mathematics aims to do), and it contains only a small 
number of mathematical pictures. Between the pictures are a 
series of snapshots of real scenes—cartoons, formulas, the writing 
of a love story—everything built on the main element of the film, 
the music. Most of this is the work of my student, Sebastian 
Gann, who spent many, many hours producing the POV-Ray 
animations, after which he composed the various parts for the 
video. The credit goes to him and his team. 

1 The pictures and online video clips were produced by Alexandra Fritz from the University  
   of Vienna. The interviewer is indebted to Karl Knight for very valuable support in polishing    
   the translation. 

2 www.povray.org. 

3 See www.imaginary2008.de/surfer.php. 

4 In many situations it is advantageous to obtain 3D-data, for instance for 3D-prints or        
   model-building. 

5 Various programs permit one to move the camera in real time, or, said differently, to make  
    the surface rotate. 

6 This has led to a current challenge where people try to visualize everyday objects such as  
   cherries, coffee cups, and snowmen using algebraic surfaces. 

7 www.bregenzerfestspiele.com.

It was important for us not to focus on a single subject. The 
movie is a modest attempt to see and represent mathematics in 
a larger cultural context as something beautiful and exciting. 

Your dream, your vision? 

To build a truly huge sculpture of a singular algebraic surface, as 
for example Anish Kapoor does in the smooth (non-algebraic) 
case with his Chicago Cloud Gate. Or, still better, to produce 
the surface Solitude on a large scale as the stage design for the 
Bregenz Festival.7 

Fakultät für Mathematik Universität Wien, Austria 
www.hh.hauser.cc 
herwig.hauser@univie.ac.at 

[My dream vision is] 

to build a truly huge 

sculpture of a singular 

algebraic surface...Or, 

to produce the surface 

Solitude on a large 

scale...

“
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Thurston’s Geometrization Conjecture
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David Gabai.  
Photo courtesy of  Reina Gabai

Steven Kerckhoff

Bill Thurston: Photo by Michael Pirrocco, courtesy of the American Mathematical Society

by David Gabai and Steven Kerckhoff 

1 Introduction

In the late 1970s Bill Thurston proved his
hyperbolization theorem for Haken manifolds and
stated his geometrization conjecture for closed
3-manifolds. With Perelman’s spectacular proof it
is appropriate to review the history of this
conjecture and be reminded of the enormous
influence of Thurston’s work towards
geometrization on many other subfields of
mathematics.

2 Two-dimensional manifolds

By the end of the nineteenth century all the
closed connected 2-manifolds were discovered

and it was known that each supported a metric of
constant curvature. (Unless otherwise stated, all
manifolds in this article are orientable.)1

Theorem 2.1. If S is a closed connected
orientable surface, then S is homeomorphic to
either the sphere, torus or a surface of genus g

for some g ≥ 2. If S is a sphere, then S has a
metric of constant curvature +1, if S is a torus,
then it has a metric of constant curvature 0 and
if S is a surface of genus g, g ≥ 2, then S has a
metric of constant curvature −1.

1A rigorous classification of triangulable surfaces was
not achieved until 1907 by Dehn and Heegaard. In 1925,
Rado completed the classification theorem by showing that
any topological surface is triangulable.

Introduction

Two dimensional manifolds
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The surfaces that support a metric of curvature
+1 (i.e., the sphere) are exactly those that have
a finite fundamental group (i.e., one element in
the case of the sphere). The surfaces S that
support a metric of curvature zero (i.e., the torus)
are exactly those with Z ⊕ Z ⊂ π1(S).
(π1(torus)= Z ⊕ Z) . The surfaces that support a
metric of constant curvature −1 are exactly
those with infinite fundamental group that do not
have Z ⊕ Z as a subgroup. Amazingly, a similar
but immensely deeper result holds for
3-dimensional manifolds.

3 Thurston’s geometrization
conjecture

We say that a 3-manifold M is prime if every
smoothly embedded separating 2-sphere bounds
a 3-ball. If M is not prime, then we obtain two
3-manifolds by splitting M along an essential
separating 2-sphere and capping off each
2-sphere boundary component with a 3-ball. The
opposite operation is called connected sum. It is
a theorem of Kneser that any closed orientable
3-manifold can be finitely decomposed in this
manner into a union of prime 3-manifolds. By a
result of Milnor, the set of 3-manifolds so
obtained is uniquely determined. There is the
closely related concept of a 3-manifold M being
irreducible. This means that every smoothly
embedded 2-sphere in M bounds a 3-ball. The
only closed 3-manifold that is both reducible and
prime is S2 × S1.

Thurston’s geometrization conjecture 3.1.

Let M be a closed irreducible 3-manifold. Then

exactly one of the following holds:

i) π1(M) is finite and M has a metric of
constant curvature +1.

ii) Z ⊕ Z ⊂ π1(M).

iii) M has a metric of constant curvature −1.

Thurston’s original formulation involved
elaborating possibility ii), although by 1990 the
geometrization conjecture was reduced to this
statement. Thurston’s original formulation states
that an irreducible 3-manifold, after possibly
cutting along a canonical collection of disjoint
tori2, splits into pieces each of which supports
one of eight homogeneous geometries.3

An astounding feature of Thurston’s conjecture
was that it subsumed many very interesting
long-standing conjectures, of which the Poincaré
conjecture was the most famous. For example,
there was the spherical space form problem that
a finite group that acts smoothly and freely on
the 3-sphere is isomorphic to a subgroup of
SO(4) and there was the linearization conjecture
that such actions are conjugate to actions by
isometries. Both are implied by case i). There
was also the Seifert fibered space conjecture,
proved in 19904, a consequence of which
reduced Thurston’s conjecture to the statement
3.1 above. There was also the universal covering
R3 conjecture for closed aspherical 3-manifolds
and the residual finiteness of 3-manifold groups
conjecture.

2This is the Jaco-Shalen, Johannson (JSJ) characteristic
manifold.

3In the hyperbolic case the metric is complete of finite
volume and is defined on the interior of the piece.

4This was the culmination of the work of many
mathematicians over a thirty year period.

Thurston’s geometrization 
conjecture
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4 Historical remarks

Although the above description of the
geometrization conjecture suggests that it is a
natural outgrowth of the geometric classification
of surfaces, this is far from the case. Indeed,
before Thurston’s work in this area, there was
virtually no evidence for such a conjecture. The
idea that one could use homogeneous geometry
to study the topology of 3-manifolds was truly
revolutionary. In large part, this was because
there were so few examples known of closed
hyperbolic 3-manifolds. Surfaces of a fixed
genus have many different hyperbolic structures,
and it is easy to construct examples. In contrast,
a hyperbolic structure on a closed 3-manifold is,
by Mostow rigidity, unique up to isometry. This
suggests that construction of such a structure
should be an extremely delicate matter. In 1912,
Gieseking found the first example of a complete,
finite volume hyperbolic 3-manifold (which was
nonorientable). The first closed examples were
found in 1931 by Lobell and in 1933 by Seifert
and Weber. The collection of known examples
was tiny.

Much of the field of Kleinian groups, (discrete
groups of PSL(2, C)), developed out of parts of
complex analysis. The work of Ahlfors, Bers, and
others on quasi-conformal maps provided a
robust theory of geometrically finite Kleinian
groups, particularly those with a non-trivial
domain of discontinuity under the action by linear
fractional transformations on the 2-sphere. One
of the main results of the Ahlfors-Bers theory is
that these groups are parametrized by conformal
structures on the Riemann surfaces obtained as

quotients of the domains of discontinuity. These
groups also act on hyperbolic space with
quotient a hyperbolic 3-manifold with infinite
volume (so Mostow rigidity does not apply). The
theory of 3-manifolds rarely played a role in this
field before 1970.

In a seminal paper published in 1972, Al Marden
found important connections between Kleinian
groups and 3-manifold theory. Among other
things he showed how the the Klein-Maskit
combination theorem corresponds to Haken’s
decomposition along incompressible surfaces. At
the end of that paper he offered “... two problems
which appear insurmountable at this time.” The
first became known as the Marden tameness
conjecture5. The second asked for necessary
and sufficient conditions on the fundamental
group of a 3-manifold for that manifold to have a
hyperbolic structure.

Also in the early 1970s new but very specialized
examples of finite volume hyperbolic manifolds
were discovered. In 1975, Bob Riley showed that
the figure-eight knot complement had a
complete, finite volume hyperbolic structure. He
also stated the necessary condition for a knot
complement to have a hyperbolic structure,
namely, that all of the Z⊕ Z subgroups of π1 be
peripheral.6 Around the same time, Troels
Jørgensen constructed finite volume hyperbolic
structures on many punctured torus bundles over
S1. Thurston was strongly influenced by these
examples.

5A Clay Research Award was just given for its
resolution.

6This is the finite volume analogue of condition ii) not
occurring.

Historical Remarks

by David Gabai and Steven Kerckhoff continued
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Initially, Thurston was dubious that a 3-manifold
fibering over the circle (such as the figure-eight
knot complement) could be hyperbolic, for such a
structure would probably have the following
striking consequence. The fiber would lift to an
open disk in hyperbolic 3-space whose ideal
boundary would be a space-filling curve in the
2-sphere at infinity.7 He then began his analysis
of surface diffeomorphisms that led to the theory
of pseudo-Anosov diffeomorphisms and his
compactification of Teichmüller space. The
geometry of these maps as well as the Riley and
Jorgensen examples convinced him to reverse
his initial opinion, and he began to believe that
the general hyperbolization theorem for
3-manifolds8 might be true.

Major breakthroughs occurred at a frenzied pace
during the 1976-1977 academic year. Thurston
began his graduate course at Princeton by
discussing the JSJ decomposition of 3-manifolds
and conjecturing that, when the decomposition is
non-trivial, the non-Seifert fibered pieces have
finite volume hyperbolic structures. Later, he
discussed the Ahlfors-Bers theory and explained
how a gluing problem for conformal structures
(later called the “skinning map”) provided an
inductive approach to the conjecture. At the
beginning of the spring semester, he announced
that he had solved the gluing problem and could
solve the hyperbolization conjecture in the case
of an irreducible, sufficiently large 3-manifold
(called a Haken manifold), except when it fibers
over S1. By the end of the semester, the fibering

7This was ultimately proven in a beautiful paper of Jim
Cannon and Thurston.

8That is, if a manifold does not satisfy i) and ii) above,
it is hyperbolic.

case had also fallen.

During the next two academic years, Thurston’s
courses at Princeton revolved around his proof of
his Haken theorem. However, it quickly became
clear that he viewed it as a special case of a
general geometric theory of 3-manifolds. It is
unclear exactly when the geometrization
conjecture was first stated, but by 1978 it was
being discussed in the form we know it today.

After Thurston’s Haken geometrization theorem,
there were two main developments that seemed
to lead toward the general geometrization
conjecture. One was the solution of the
Seifert-fibered space conjecture, which reduced
the conjecture to the spherical and hyperbolic
cases (cases i) and iii) above). The other was
the orbifold theorem which proved the
geometrization conjecture for 3-dimensional
orbifolds (definition given below) with non-trivial
1-dimensional local fixed point set. Announced
by Thurston in 1982, it was the first general
theorem that dealt with the spherical case as
well as the other geometries. Part of the proof
utilized Hamilton’s pioneering work on
3-manifolds with positive Ricci curvature, a
harbinger of the role that Ricci flow was later to
play. However, it would be another twenty years
before Perelman would bring this to fruition.
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5 Remarks on the proof of
Thurston’s hyperbolization
theorem

In the late 1970s Thurston’s result was known as
the monster theorem. It was an incredible
amalgam of immensely original work from a wide
range of (at the time) disparate mathematics.
Various pieces of the argument (or its
byproducts) invigorated or created many
subfields of mathematics that are distinct from
geometrization. Many of these are visible in
Thurston’s flow chart created for a conference at
Bowdoin College in the summer of 1980; they
include those that I describe below.

Automorphisms of surfaces

Thurston found a model for a generic surface
diffeomorphism, called a pseudo-Anosov
diffeomorphism, which generalizes the
stretch-squeeze map of the torus induced by a
linear diffeomorphism with two distinct real
eigenvalues. In the process, he rediscovered
important theorems of Nielsen and created
objects of study that have tremendously
influenced geometric group theory, ergodic
theory, and 3-dimensional topology.

Measured foliations of surfaces

The boundary of Thurston’s compactification of
Teichmüller space is a space of measured
foliations that is a completion of the set of simple
closed curves on a surface. Remarkably, these
foliations are the topological incarnation of those
determined by holomorphic quadratic

differentials, a central object in Riemann surface
theory. This put in a new context various density
conjectures in that theory and they remain a
central tool in Teichmüller theory, polygonal
billiards, interval exchange maps, and numerous
parts of low-dimensional topology.

Geometrically finite groups and pleated
surfaces

Thurston provided a tight internal geometric
structure on the ends of the hyperbolic
3-manifold determined by a geometrically finite
Kleinian group by filling them with families of
pleated surfaces. The surfaces are isometric to
hyperbolic surfaces but are bent along a union of
geodesics, called a geodesic lamination. These
laminations are the hyperbolic geometric
realization of a measured foliation and provide
strong compactness properties for these groups.

Classification of Kleinian groups and ending
laminations

Thurston showed that certain limits of
geometrically finite groups possess a structure at
infinity called an ending lamination which is a
geodesic lamination that can be viewed as a limit
of the laminations from pleated surfaces exiting
an end. He conjectured that finitely generated
Kleinian groups should be classified by a
combination of the conformal structures at infinity
(as in the Ahlfors-Bers theory) and the ending
laminations. Called the ending lamination
conjecture, it became a central conjecture in the
field and provided the basis for a tremendous
amount of research. It has been recently solved
by Brock, Canary, and Minsky.

Remarks on the Proof of Thurston’s 
Hyperbolization theorem

by David Gabai and Steven Kerckhoff continued
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Extension problem and local connectivity

The lift of an incompressible surface in a
hyperbolic 3-manifold to its universal cover is a
topological disk that can have a very complicated
behavior at infinity. Cannon and Thurston
showed that its ideal boundary maps to a
space-filling curve when the surface is the fiber
of a fibering over S1. This raised the general
question of when maps of certain disks extend to
the boundary. Closely related is the question of
whether or not the limit set of a general finitely
generated Kleinian group is locally connected, a
problem that pre-dates Thurston’s work. It has
recently been solved by Mj.

Andreev’s theorem and circle packings

In the Haken manifold proof, a hyperbolic
structure is built up by gluing together simpler
pieces that inductively possess hyperbolic
structures. The initial step, when the pieces are
balls, is solved by putting the structure of a
polyhedron on the boundary. In the process,
Thurston gave a new proof of Andreev’s
existence and uniqueness theorem for convex
hyperbolic polyhedra, and then greatly
generalized it. The structures were also
interpreted as circle packings, generating an
entirely new theory of these as well.

Theory of orbifolds

An orbifold is locally modeled on the quotient of
an open set in Euclidean space by a finite group
in the way a manifold is locally modeled on a
Euclidean open set. Thurston showed that this
concept, which was introduced by Satake under

the name of V -manifold, is a flexible and
powerful tool when applied to geometric
structures. Orbifolds arise in his proof when
interpreting the polyhedra described above as
groups generated by reflections in the faces; the
local fixed-point set consists of the entire
boundary that has been “mirrored.” Examples of
hyperbolic manifolds can be constructed by
taking finite index subgroups of the reflection
groups.

Hyperbolic Dehn filling

Thurston’s hyperbolization theorem provides
complete finite volume hyperbolic structures on
the interior of many compact manifolds with torus
boundary, including most knot complements9.
Although the complete structure is unique,
Thurston showed that there are many nearby
incomplete structures that, when completed, give
a smooth hyperbolic structure on a closed
manifold that is obtained by attaching a solid
torus to the boundary. There are an infinite
number of topologically distinct ways to attach
the solid torus, and all but a finite number can be
given a hyperbolic structure in this way. Thus, a
single non-compact hyperbolic structure gives
rise to an infinite number of closed ones. This
process, called hyperbolic Dehn filling, is a purely
3-dimensional phenomenon and helps explain
why hyperbolic manifolds are so prevalent in
dimension 3 but not in higher dimensions. The
study of hyperbolic Dehn surgery quickly
became a central topic in the field.

9Indeed, all knot complements and all compact
manifolds whose boundary is a nonempty union of tori are
covered by this theorem, i.e., it determines exactly which
of these have a hyperbolic structure on its interior.
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Non-Haken manifolds

In analyzing hyperbolic Dehn surgery on a single
example, the figure-eight knot complement,
Thurston showed that all but a finite number of
the topological manifolds obtained from it by
Dehn filling are non-Haken. This topological
result was the first of its kind, spinning off an
entire research area. It also provided a huge
number of hyperbolic manifolds that were not
covered by the original Haken geometrization
theorem.

Volumes of hyperbolic 3-manifolds

Based on a few hand and computer calculations,
Thurston conjectured that there are interesting
connections between the volume of a hyperbolic
3-manifold and its topological complexity. He
used work of Jørgensen and Gromov to show
that the set of volumes is a closed well-ordered
set of type ωω. This created the very active new
subfield of (among many other things) finding the
lowest volume manifolds of various topological
types and finding various topological constraints
on low-volume manifolds.

6 Conclusion

Bill Thurston made a bold and revolutionary
conjecture. The mathematics he discovered
trying to prove it was (and is) tremendously
influential, extending far beyond that of
geometrization itself.
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Lectures at RIMS, Kyoto University

The 2008/2009 Clay Lectures were organized in
collaboration with the Research Institute for
Mathematical Sciences (RIMS) in Kyoto, Japan,
which graciously hosted the event.

The lecturers were Roman Bezrukavnikov (MIT),
Dennis Gaitsgory (Harvard), and Hiraku
Nakajima (RIMS). The event included a public
lecture by CMI President Jim Carlson, entitled
Numbers, Patterns, and Primes.

Each Clay Lecturer delivered a series of three
talks aimed at introducing the audience to
research in his speciality. Roman Bezrukavnikov

and Dennis Gaitsgory also gave public lectures
entitled From Positive Characteristic to Stringy
Moduli Spaces via Representation Theory and
Introduction to Geometric Langlands
Correspondence, respectively. These public talks
aimed to motivate graduate students and
researchers in other fields.

Roman Bezrukavnikov spoke on Some New Ties
between Algebraic Geometry and
Representations via Derived Categories,
beginning with a version of
Beilinson-Bernstein-Brylinsky-Kashiwara
localization theorem which holds in positive
characteristic on the level of derived categories.
Hiraku Nakajima spoke on Quiver Varieties and
Geometric Langlands Correspondence for Affine
Lie Algebras, beginning with an exploration of
the geometric Satake correspondence for the
affine Kac-Moody group Gaff recently proposed
by Braverman-Finkelberg. Dennis Gaitsgory
spoke on Classical and Quantum Geometric
Langlands Correspondence, begining with the
geometrization suggested by Drinfeld in which
the space of automorphic functions is replaced
by the category of automorphic sheaves.

Organizers 
David Ellwood (CMI) 
Masaki Kashiwara (RIMS)
Hisashi Okamoto (RIMS)
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Clay Lectures on Mathematics
Clay-Mahler Lectures, Australia 

The 2009/2010 Clay Lectures was organized in collaboration 

with the Australian Mathematical Society and the Australian 

Mathematical Sciences Institute to create a national event that 

took place in six cities and fourteen institutions. The lecturers 

were Terry Tao (Fields Medalist, Clay Research Awardee, and 

former Clay  Research Fellow), Danny Calegari (Clay Research 

Awardee and former Clay LiftOff Fellow), and Mohammed  

Abouzaid (current Clay Research Fellow). 

The outstanding success of Australian mathematicians in recent  

years has been highlighted by the prominence of Australian 

recipients of Clay awards. The Clay-Mahler tour was organized 

Organizers
Alan Carey (ANU) 
David Ellwood (CMI)
Andrew Hassell (ANU)

to celebrate that success through a series of thirty-six talks at  

many of Australia’s leading educational establishments. All three 

Clay Lecturers delivered plenary lectures at the annual meeting 

of the Australian Mathematical Society at the University of 

South Australia in Adelaide. The Clay-Mahler Lecture tour was 

comprised of a series of talks at different levels and accessible to 

audiences ranging from members of the general public (public 

lectures) to students studying mathematics at the undergraduate 

or post graduate level (colloquium talks) to professional 

mathematicians interested in the state of the art of a particular 

field (specialist talks). Listed below are abstracts for the various 

talks, together with a calendar of the event.

July 23 - October 7, 2009 Melbourne - Perth - Brisbane - Sydney - Canberra - Adelaide
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Mohammed Abouzaid (MIT & CMI)

Colloquium talks
Understanding hypersurfaces through tropical geometry
Given a polynomial in two or more variables, one may study 
the zero locus from the point of view of various mathematical 
subjects (number theory, algebraic geometry, etc.). In his talk 
Abouzaid  explained how tropical geometry allows one to 
encode topological quantities by combinatorial objects now 
known as tropical varieties.

Functoriality in homological mirror symmetry
Kontsevich’s original version of the homological mirror symmetry 
conjecture was a statement about pairs of Calabi-Yau manifolds, 
with no indication of any connection between mirrors of varieties 
that are related to each other. In this talk Abouzaid described 
recent progress which reveals situations in that homological 
mirror symmetry exhibits more “functorial” properties. This 
conjectural functoriality is clearest for the case of the inclusion 
of an anticanonical divisor in a Fano variety. The talk focused 
on examples starting in dimension one, and on explaining the 
geometric source of these phenomena.

Specialist talks
A mirror construction for hypersurfaces in toric varieties 
(Parts I & II)
The Strominger-Yau-Zaslow conjecture gives an intrinsic 
explanation for homological mirror symmetry in the case of 
Calabi Yau manifolds. In this talk Abouzaid explained that by 
extending the SYZ conjecture beyond the Calabi-Yau case, 
one may associate a Landau-Ginzburg mirror to generic 
hypersurfaces in toric varieties. The key idea is to use tropical 
geometry to reduce the problem to understanding the mirror of 
hyperplanes.

String topology and the Fukaya category of  
cotangents bundles
The most interesting version of the Fukaya category of cotangent 
bundles includes Lagrangians that are allowed to be non-
compact. Abouzaid explained how this category is equivalent 
to the category of modules over the based loop space. The 
“classical” equivalence between symplectic homology and the 
homology of the based loop space (with the pair of pants 
product on one side and the Chas-Sullivan product on the 
other) follows from this story.

A topological model for the Fukaya category of plumbings
The simplest examples of symplectic manifolds beyond cotangent 
bundles are obtained by plumbing. In his talk Abouzaid 
explained a topological model for the Fukaya categories of these 
manifolds; the model is given in terms of classical invariants from 
algebraic topology (the cochain complexes on the skeleta).

Terry Tao (UCLA) 

Public lectures
Structure and randomness in the prime numbers
“God may not play dice with the universe, but something strange 
is going on with the prime numbers.” – Paul Erdös. The prime 
numbers are a fascinating blend of both structure (for instance, 
almost all primes are odd) and randomness. It is widely believed 
that beyond the “obvious” structures in the primes, the primes 
otherwise behave as if they were distributed randomly; this 
“pseudorandomness” then underlies our belief in many unsolved 
conjectures about the primes, from the twin prime conjecture to 
the Riemann hypothesis. Although this pseudorandomness has 
been frustratingly elusive to prove rigorously, there has been 
recent progress in capturing enough of this pseudorandomness 

Mohammed Abouziad (MIT / CMI)

Terry Tao (UCLA)
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to establish new results about the primes. Among these new 
results is the fact that they contain arbitrarily long arithmetic 
progressions. Tao surveyed some of these developments in  
his talk.

The cosmic distance ladder
How do we know the distances from the earth to the sun and 
moon, from the sun to the other planets, and from the sun to 
other stars and distant galaxies? Clearly, we cannot measure 
these directly. Nevertheless, there are many indirect methods of 
measurement, combined with basic high-school mathematics, 
which allow one to get quite convincing and accurate results 
without the need for advanced technology. For instance, even 
the ancient Greeks could compute the distances from the earth 
to the sun and moon with moderate accuracy. These methods 
rely on climbing a “cosmic distance ladder,” using measurements 
of nearby distances to then deduce estimates on distances 
slightly further away. In this talk Tao discussed several rungs in 
this cosmic distance ladder.

Mathematical research and the Internet
Prof. Tao discussed some personal experiences of how the 
Internet is transforming the way he, and other mathematicians, 
do research. These range from such mundane tools as email, 
home pages, and search engines, to blogs, preprint servers,  
wikis, and more.

Colloquium talks
Recent progress in additive prime number theory
Additive prime number theory is the study of additive patterns in 
the primes. Tao surveyed some recent advances in this subject, 
including the results of Goldston, Pintz, and Yildirim on small 
gaps between primes, the results of Green and himself on 
arithmetic progressions in the primes, and the results of Bourgain, 
Gamburd, and Sarnak for detecting almost primes in orbits.

Compressed sensing
Suppose one wants to recover an unknown signal x in Rn from 
a given vector Ax=b in Rm of linear measurements of the signal 
x. If the number of measurements m is less than the degrees of 
freedom n of the signal, then the problem is underdetermined 
and the solution x is not unique. However, if we also know 
that x is sparse or compressible with respect to some basis, 
then it is a remarkable fact that (given some assumptions on 

the measurement matrix A) we can reconstruct x from the 
measurements b with high accuracy, and, in some cases, with 
perfect accuracy. Furthermore, the algorithm for performing 
the reconstruction is computationally feasible. This observation 
underlies the newly developing field of compressed sensing. In 
this talk Tao discussed some of the mathematical foundations of 
this field.

The proof of the Poincaré conjecture
In a series of three terse papers in 2003 and 2004, Grisha 
Perelman made spectacular advances in the theory of the Ricci 
flow on 3-manifolds, leading in particular to his celebrated 
proof of the Poincaré conjecture (and most of the proof of the 
more general geometrization conjecture). Remarkably, while the 
Poincaré conjecture is a purely topological statement, the proof is 
almost entirely analytic in nature, in particular relying on nonlinear 
PDE tools together with estimates from Riemannian geometry to 
establish the result. In this talk Prof. Tao discussed some of the 
ingredients used in the proof, and sketched a high-level outline of 
the argument.

Specialist talks
Discrete random matrices
The spectral theory of continuous random matrix models (e.g., 
real or complex gaussian random matrices) has been well 
studied, and very precise information on the distribution of 
eigenvalues and singular values is now known. However, many of 
the results rely quite heavily on the special algebraic properties 
of the matrix ensemble (e.g., the invariance properties with 
respect to the orthogonal or unitary group). As such, the results 
do not easily extend to discrete random matrix models, such 
as the Bernoulli model of matrices with random ±1 signs as 
entries. Recently, however, tools from additive combinatorics and 
elementary linear algebra have been applied to establish several 
results for such discrete ensembles, such as the circular law 
for the distribution of eigenvalues, and also explicit asymptotic 
distributions for the least singular values of such matrices. Tao 
surveyed some of these developments in his talk.

Arithmetic progressions in the primes
A famous and difficult theorem of Szemerédi asserts that 
every subset of the integers of positive density will contain 
arbitrarily long arithmetic progressions; this theorem has had 
four different proofs (graph-theoretic, ergodic, Fourier analytic, 

Program Overview

Clay Lectures on Mathematics
Clay-Mahler Lectures, Australia continued
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and hypergraph-theoretic), each of which has been enormously 
influential, important, and deep. It had been conjectured for 
some time that the same result held for the primes (which of 
course have zero density). Tao discussed recent work with Ben 
Green establishing this conjecture, by viewing the primes as a 
subset of the almost primes (numbers with few prime factors) 
of positive relative density. The point is that the almost primes 
are much easier to control than the primes themselves, thanks to 
sieve theory techniques such as the recent work of Goldston  
and Yildirim. To “transfer” Szemerédi’s theorem to this relative 
setting requires that one borrow techniques from all four known 
proofs of Szemerédi’s theorem, and especially from the ergodic 
theory proof.

Wave maps
The wave map equation is one of the fundamental geometric 
wave equations, being on the one hand the dynamic analogue 
of harmonic maps, and a simplified model for the Einstein 
equations and gauge field theories, such as the Yang-Mills 
equations, on the other. In recent years there has been 
substantial progress in understanding basic questions such as 
global regularity and singularity formation for this equation using 
new tools such as the induction-on-energy strategy of Bourgain, 
the concentration-compactness technology of Kenig and Merle, 
a geometric gauge fixing arising from the harmonic map heat 
flow, and even some limiting arguments used by Perelman in his 
proof of the Poincaré conjecture. In his talk Tao surveyed some of 
these developments.

Recent progress on the Kakeya problem
The Kakeya needle problem asks: is it possible to rotate a unit 
needle in the plane using an arbitrarily small amount of area? 
The answer is known to be yes, but analogous problems in higher 
dimensions (where one now seeks to find sets of small dimension 
that contain line segments in all directions) remain open, and 
are related to many other important conjectures in harmonic 
analysis, PDE, and even number theory and computer science. 
There have been many partial results on this problem, using 
such diverse techniques as geometric measure theory, incidence 
combinatorics, additive combinatorics, and PDE; more recently, 
algebraic geometry, and even algebraic topology have been 
used to obtain new breakthroughs in this subject. Tao discussed 
many of these new developments in his talk.

Danny Calegari (Caltech)

Colloquium talks
Faces of the stable commutator length norm ball
It often happens that a solution of an extremal problem in 
geometry has more regularity and nicer features than one has 
an a priori right to expect. In his talk, Calegari explained how a 
simple topological problem–when does an immersed curve on a 
surface bound an immersed subsurface?–is unexpectedly related 
to linear programming in nonseparable Banach spaces, and 
gives rise to geometric and dynamical rigidity and discreteness of 
symplectic representations.

Specialist talks
Stable commutator length (scl) answers the question of: 
“what is the simplest surface in a given space with prescribed 
boundary?” where “simplest” is interpreted in topological terms. 
This topological definition is complemented by several equivalent 
definitions–in group theory, as a measure of non-commutativity 
of a group; and in linear programming, as the solution of a 
certain linear optimization problem. On the topological side, scl 
is concerned with questions such as computing the genus of 
a knot, or finding the simplest 4-manifold that bounds a given 
3-manifold. On the linear programming side, scl is measured 
in terms of certain functions called quasimorphisms, which arise 
from hyperbolic geometry (negative curvature) and symplectic 

Danny Calegari (Caltech)
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geometry (causal structures). In his lectures, Calegari discussed 
how scl in free and surface groups is connected to such diverse 
phenomena as the existence of closed surface subgroups 
in graphs of groups, rigidity and discreteness of symplectic 
representations, bounding immersed curves on a surface by 
immersed subsurfaces, and the theory of multidimensional 
continued fractions and Klein polyhedra.

Surface subgroups from homology
A two-sided embedded surface in a 3-manifold is either injective 
in p1, or can be simplified by a “compression,” using Dehn’s 
lemma (famously proved by Papakyriakopoulos). It follows that 
embedded surfaces of least genus representing an integral 
homology class are injective in p1, and therefore the fundamental 
groups of many 3-manifolds contain surface subgroups. For more 
complicated groups or spaces, no tool resembling Dehn’s lemma 
exists; nevertheless, if G is a graph of free groups amalgamated 
along cyclic subgroups, we show that every rational class in 
H

2
(G;Q) is (virtually) represented by a map of a surface group 

of least Gromov norm, and such a map is injective. In particular, 
such groups often contain surface subgroups.

Faces of the scl norm ball 
An immersed loop in the plane might or might not bound an 
immersed disk, and if it does, the disk it bounds might not be 
unique. An immersed loop on a surface might not bound an 
immersed subsurface, but admit a finite cover which does. Most 
homologically trivial geodesics on hyperbolic surfaces with 
boundary do not even virtually bound an immersed surface.
However, we show that every homologically trivial geodesic in a 
closed hyperbolic surface virtually bounds an immersed surface, 
and every homologically trivial geodesic in a hyperbolic surface 
with boundary virtually cobounds an immersed surface together 
with a sufficiently large multiple of the boundary. This gives rise 
to a codimension one face in the unit ball in the scl norm of a 
free group associated to each realization of the free group as 
the fundamental group of a surface with boundary, and shows 
how hyperbolic geometry and surface topology are manifest in 
the abstract bounded cohomology of a free group.

Scl, sails and surgery
We establish a close connection between stable commutator 
length in free groups and the geometry of sails (roughly, the 
boundary of the convex hull of the set of integer lattice points) in 
integral polyhedral cones. This connection allows one to compute 
stable commutator length on certain infinite families of elements 
in a free group, those obtained by a line of surgeries on some 
fixed element in a free product of Abelian groups. Using this 
technology, one can show that the scl spectrum of a free group 
contains numbers congruent to every rational number mod Z, 
and contains well-ordered sequences of numbers with ordinal 
type ww.

David Ellwood (CMI),  Terry Tao (UCLA), Amanda Battese (CMI)

Perth, Western Australia

Program Overview

Clay Lectures on Mathematics
Clay-Mahler Lectures, Australia continued
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Schedule

July 23 - August 19,  
Melbourne
Thursday, July 23, Danny Calegari: Surface subgroups from homology 
@ Melbourne University

Monday, August 3, Danny Calegari: Faces of the scl norm ball @ 
Melbourne University

Monday, August 10, Danny Calegari: Scl, sails, and surgery @ 
Melbourne University

Friday, August 14, Danny Calegari: Faces of the stable commutator 
length norm ball @ La Trobe University

August 31 - September 2,  
Melbourne
Monday, August 31, Terry Tao:
Mathematical research and the internet @ Melbourne University

Tuesday, September 1, Terry Tao: Compressed sensing @ Royal 
Melbourne Institute of Technology

Wednesday, September 2, Terry Tao: Discrete random matrices
@ Monash University

September 3 - 4,  
at the University of Western Australia, Perth
Thursday, September 3, Terry Tao: The cosmic distance ladder

Friday, September 4, Terry Tao: Compressed Sensing

September 8 - 9,  
Brisbane
Tuesday, September 8, Terry Tao: Cosmic Distance Ladder @ 
Queensland University of Technology

Wednesday, September 9, Terry Tao: Compressed sensing @ 
University of Queensland

September 15 - 18,  
Sydney
Tuesday, September 15, Terry Tao: Compressed sensing 
@ Sydney University

Wednesday, September 16, Danny Calegari: Faces of the stable 
commutator length norm ball @ University of New South Wales

Wednesday, September 16, Terry Tao: Structure and randomness in 
the prime numbers @ University of New South Wales

Thursday, September 17, Terry Tao: Recent progress on the Kakeya 
problem @ Macquarie University 

Thursday, September 17, Mohammed Abouzaid: Understanding 
hypersurfaces through tropical geometry @ Macquarie University

Friday, September 18, Danny Calegari: Faces of the stable 
commutator length norm ball @ Sydney University

Friday, September 18, Mohammed Abouzaid: A mirror construction for 
hypersurfaces in toric varieties @ Sydney University

September 21 - 24,  
at the Australian National University, Canberra
Monday, September 21, Terry Tao: Recent progress on the Kakeya 
problem 

Tuesday, September 22, Danny Calegari: Faces of the stable 
commutator length ball 

Tuesday, September 22, Terry Tao: Structure and randomness in the 
prime numbers 

Wednesday, September 23, Mohammed Abouzaid; Understanding 
hypersurfaces through tropical geometry 

Wednesday, September 23, Terry Tao: Recent progress in additive 
prime number theory

Thursday, September 24, Danny Calegari: Faces of the stable 
commutator length norm ball 

Thursday, September 24, Mohammed Abouzaid: A mirror construction 
for hypersurfaces in toric varieties 

September 25,  
at the University of Adelaide
Friday, September 25, Mohammed Abouzaid: Understanding 
hypersurfaces through tropical geometry 

Friday, September 25, Danny Calegari: Faces of the stable 
commutator length norm ball 

Friday, September 25, Terry Tao: The proof of the Poincaré conjecture 

Septemer 28 - October 1,  
AustMS 2009 Annual Conference, University of South 
Australia, Adelaide
Monday, Septemmber 28, Plenary lecture by Danny Calegari: Faces 
of the stable commutator length norm ball 

Tuesday, September 29, Plenary lecture by Mohammed Abouzaid: 
Functoriality in homological mirror symmetry 

Tuesday, September 29, Public lecture by Terry Tao: Structure and 
randomness in the prime numbers 

Thursday, October 1, Plenary lecture by Terry Tao: The proof of the 
Poincaré conjecture 

Friday, October 2, Royal Institution of Australia Public Lecture by Terry 
Tao: The cosmic distance ladder 

October 6 - 7, 
at the University of Melbourne 
Tuesday, October 6, Mohammed Abouzaid: Understanding 
hypersurfaces through tropical geometry 

Wednesday, October 7, Mohammed Abouzaid, : String topology and 
the Fukaya category of cotangent bundles 

Wednesday, October 7, Mohammed Abouzaid: A topological model 
for the Fukaya category of plumbings
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One of the most exciting experiments of physics has just 
commenced at CERN. The Large Hadron Collider, LHC, 
collides two beams of protons moving with almost the speed 
of light. The  center of mass energy is eventually targeted at 
ten TeV, about five times higher energy than the highest energy 
currently reached by any collider. By probing this energy region, 
we expect to be able to answer some of the most important 
questions that fundamental physics has tried to answer in the 
past forty years.  A key missing ingredient in what is called 
the standard model of particle physics is a particle known as 
the Higgs boson. It is predicted to exist based on electroweak 
symmetry breaking.  Moreover, all particles we know of are 
believed to receive their mass through their interactions with a 
condensate of the Higgs field.

While the discovery of the Higgs particle would be a 
spectacular confirmation of decades-long anticipation by 
theoretical physicists, that may not be the most exciting find of  
the LHC. Through astrophysical and cosmological observations, 
we know that the matter making up the universe consists mostly 
of unknown particles. Moreover, simple estimates of the energy 
range relevant for probing this so-called dark matter suggests 
that the LHC energy is roughly right for producing matter of 
this kind.  The LHC may produce dark matter and thus solve a 
major puzzle of physics. The main theoretical question is: what 
do we expect this kind of matter to be? 

Over the past few decades, string theory, with deep links to 
mathematics, has emerged as a prime candidate for unifying 
gravity with the other forces and for providing a consistent 
framework for a quantum theory of gravity. One important 
symmetry of string theory at the shortest distance scale is 
supersymmetry. This is a symmetry that relates bosons and 
fermions.  In other words, for each particle there would exist 
its supersymmetric partner, whose spin differs by1/2, but with 
otherwise exactly the same properties. We know that this 
symmetry cannot exist at the larger length scales at which we 
have performed experiments.  For example, there is no partner of 
the electron (“selectron”) which has the same mass and charge 
as the electron but which has spin zero. Thus supersymmetry, 
even if it is a true symmetry of nature at shortest distance scale, 
must be broken at longer distance scales.

Supersymmetry has also played a key role in connecting 
modern physics with mathematics. In particular, in the context 
of the topological field theories initiated by Witten, the concept 
of supersymmetry is a key ingredient. Supersymmetry yielded 
a deeper understanding of Donaldson invariants for smooth 
4-manifolds, and had a significant impact on our understanding 
of enumerative geometry. Supersymmetry is thus aesthetically 
and mathematically a very rich structure. Since we know that 
this symmetry is not realized at the lowest energy scales, the 
main question for string theory is to explore at what scale this 
symmetry is broken. If it is broken at a very short distance (high 
energy) scale, there would be no leftover imprint of it at the 
scale at which the LHC will perform its experiments. This is a 
logical, though unfortunate possibility! 

Program Overview

CMI Workshops
Stringy Reflections on the LHC by Cumrun Vafa

Photo courtesy of Stephanie Mitchell, Harvard University News Office

Organizers
James Carlson (CMI) 
David Ellwood (CMI)
Cumrun Vafa (Harvard)
Herman Verlinde (Princeton)



None the less, there are good reasons to speculate that 
supersymmetry plays a role at the energy scale of the LHC.  
One such reason is that unification of forces works more 
naturally in this context.  Another reason has to do with the 
hierarchy problem. The hierarchy problem asks why the mass of 
the Higgs particle is so small compared to the fundamental mass 
scale in physics, that is, the Planck scale. Supersymmetry, while 
it would not by itself explain why the scale is so different, would 
explain why it is natural for this small mass scale to be stable 
with respect to quantum corrections. This would be the case as 
long as supersymmetry breaking occurs at sufficiently low energy 
scales. For these reasons, one of the most popular ideas pursued 
by particle theorists for models beyond the standard model has 
been the supersymmetric extension and its breaking at energies 
at the scale of the LHC.

Even if one assumes that supersymmetry plays a key role at the 
energy scales of the LHC, predictions of precisely what would 
be seen requires knowledge of how supersymmetry is broken.  
This symmetry breaking involves a choice of parameters–the 
choice can be viewed as the selection of a point on a manifold 
of 100+ dimensions! One can make various assumptions, as 
particle physicists have done to narrow the region for search, 
but still, typically, the remaining region is too wide to be viewed 
as capable to give a definitive prediction. The one prediction 
that essentially all such models make is the existence of a stable 
dark matter particle, the lightest of the supersymmetric particles.  
However, we need to narrow the choice of parameters for the 
supersymmetry-broken theory in order to make more specific 
predictions for the LHC, and thus to confirm or reject such 
theories.

At first sight, string theory seems not to help much in narrowing 
the parameter range for the search for supersymmetry breaking 
at low energy scales.  However, with some mild assumptions 
(that the matter and gauge forces arise from tiny regions 
of internal compactification manifolds), some colleagues, 
in particular Jonathan Heckman, and I have made some 
surprisingly specific predictions. These predictions involve the 
study of the geometry of elliptically fibered Calabi-Yau 4-folds 
and the interpretation of the various singular loci in terms of 
physics.  Using this work, we have come to the conclusion 
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that if supersymmetry leaves an imprint at the LHC energy 
scale, the lightest supersymmetric particle is the gravitino (the 
supersymmetric partner of the graviton), with a mass one 
hundred times larger than that of the electron. Such a particle 
interacts too weakly to observe directly. Therefore, what is 
important is the nature of the next lightest particle. In our 
models, this particle turns out to be semi-stable, with a lifetime 
in the range of a second to an hour. There are two possibilities 
for this next particle.  In most parameter ranges, it turns out to 
be a charged particle (known as the stau), which would leave 
a dramatic track in the LHC detectors.  There is also the less 
likely possibility that this particle would be neutral (a particle 
known as bino). The bino can not be directly observed by the 
LHC, but can be discovered using conservation of energy. 
Other relations connecting mathematics, string theory, and 
physics were explored last fall at a workshop held at CMI 
(“Stringy Reflections on LHC”). 

The next few years may be among the most exciting for 
physicists’ search for the fundamental laws of nature. The 
discovery of supersymmetry, if indeed it does occur, would be 
not only one of the most exciting discovery of a new principle 
of physics, but would also nicely mirror the important role 
supersymmetry has played in providing a bridge between 
physics and mathematics.

We will have to wait a few years and see!
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CMI Workshops
Singularities by Jim Carlson

In 1964 Heisuke Hironaka changed the world of 
mathematics by proving resolution of singularities in 
characteristic zero for varieties of arbitrary dimension.  In 
dimension one the result is almost trivial, a consequence of 
the existence of normalization.  In dimension two, informal 
proofs over the complex numbers date as far back as 
the work of Levi (1899), Chisini (1921), and Albanese 
(1924). Modern proofs for surfaces of characteristic 
zero were given by Walker (1935), Zariski (1939), 
and Abhyankar, who also did the non-imbedded positive 
characteristic p case (1956). Zariski established non-
imbedded, characteristic zero resolution of singularities for 
varieties of dimension three in 1944.

Hironaka’s theorem states that given an algebraic variety X 
defined over a field of characteristic zero, there is a smooth 
algebraic variety Y and a surjective map of Y to X that is an 
isomorphism over the complement of the set of non-smooth 
points of X. Moreover, he showed that one may choose Y 
and the map of Y to X such that the inverse image of the 
set of non-smooth points is a union of smooth hypersurfaces 
meeting transversally. For this work, Hironaka received the 
Fields Medal in 1970.

Almost overnight, Hironaka’s theorem became one of the 
standard tools for work in algebraic geometry. To take just 
one example, Deligne’s construction of a mixed Hodge 
structure on a quasi-projective variety relied  on resolution of 
singularities.

Despite its status as a powerful and frequently applied 
theorem, few mathematicians had mastered the details of 
Hironaka’s proof. However, over the the years, a sequence 
of papers—Villamayor 1989 and 1991, Bierstone 
and Milman (1991 + 1997), Encinas and Villamayor 
(1998), Encinas and Hauser (2002), Cutkosky (2004), 
Włodarczyk (2005), Kollár (2007)—led to a dramatically 
better understanding of the theorem. To give just one 
measure, Hironaka’s original proof, occupying roughly 200 
pages in the Annals of Mathematics, a very challenging read 
at the time, can now be presented to advanced graduate 
students using Kollár’s book, which has about the same 
length. Kollár’s book contains much preparatory material; the 
actual proof in its modern form for a working mathematician 

occupies about a tenth of the space of the original.This  
is progress!

There remained the challenge of proving resolution of singularities 
in positive characteristic. This has been done in dimension two 
(embedded case) and in dimension three with characteristic 
greater than five  by Abhyankar. The general case for dimension 
three, that is, non-embedded resolution, is due to Cutkosky, who 
greatly simplified Abhyankar’s proof, and by Cossart-Piltant, 
who removed the characteristic greater than five assumption. In 
addition, Cossart-Jannsen-Saito established embedded resolution 
of excellent surfaces of arbitrary codimension. 

In an important different line of attack, Johan de Jong (1996) 
proved a weaker form of  resolution in all dimensions and all 
characteristics: any variety X is dominated by a smooth variety 
Y of the same dimension  by a generically finite map.  For many 
applications this is sufficient; however, the map from Y to X need 
not be birational.  Thus, despite much progress, the challenge of 
arbitrary characteristic and arbitrary dimension remains.

In the last few years, there have been renewed attempts to 
surmount this challenge.  To this end, CMI organized a workshop 
during the week of September 22, 2008, that brought 
together many of the mathematicians who are working on the 
problem or have a strong interest in it:  Dan Abramovich, Dale 
Cutkosky, Herwig Hauser, János Kollár,  Heisuke Hironaka, James 
McKernan, Orlando Villamayor, and Jaroslaw Włodarczyk . A 
superset of this group met later at RIMS in Kyoto at a workshop 
organized by Shigefumi Mori, where the Kawanoue-Matsuki 
approach was also discussed. Professor Hironaka opened the 
CMI workshop with a talk at Harvard, and spoke energetically 
each morning at 9:30. Others gave talks as the workshop 
progressed, with organization quite fluid, and with much time for 
informal discussion.

The problem of resolution of singularities in arbitrary characteristic 
and arbitrary dimension, an area of renewed research interest, 
remains open. The article cited below gives some idea of the 
status of current efforts.

Reference 
Herwig Hauser, on the Problem of Resolution of Singularities in 
Positive Characteristic (Or: A proof we are still waiting for). Bull. 
Amer. Math. Soc. 47, (2010),1-30. 

Jim Carlson Heisuke Hironaka
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Organizers: 
David Ellwood (CMI), Mladen Bestvina (Utah)

Speakers:
Mladen Bestvina (Utah), Yael Algom-Kfir (Utah), 
Martin Bridson (Oxford), Matt Clay (Allegheny College), 
Mark Feighn (Rutgers), Vincent Guirardel (Toulouse), 
Ursula Hamenstaedt (Bonn), Michael Handel (CUNY), 
Ilya Kapovich (Urbana-Champaign), Alexandra Pettet (Michigan), 
Juan Souto (University of Michigan), Karen Vogtmann (Cornell), 
Kasra Rafi (Oklahoma), Ruth Charney (Brandeis), 

Dan Margalit (Tufts)

Outer space is a contractible complex on which Out Fn, the 
group of outer automorphisms of a free group, acts properly. It 
is analogous to Teichmüller space, which plays a crucial role in 
the study of mapping class groups. The topology of outer space 
has been studied for the last twenty-five years and is now very 
well understood. However, our understanding of the geometry 
of outer space is lacking and has only begun to be investigated 
in the last couple of years. It lags behind the corresponding 
geometric understanding of Teichmüller space. 

Of the recent developments, the following are significant: 
I. Kapovich-Lustig’s proof that the length pairing between 
measured geodesic currents and R-trees is continuous (replacing 
the continuity of the intersection pairing between measured 
laminations), Bestvina-Feighn’s construction of a Gromov-
hyperbolic Out Fn-complex (replacing the hyperbolicity of 
the curve complex), Scott-Swarup-Guirardel’s notion of 
intersection number and core for a pair of splittings, and its 
subsequent applications in the work of Clay-Pettet on detecting 

Geometry of Outer Space      

October 19 - 22, 2009

fully irreducible automorphisms (analogues of pseudo-Anosov 
mapping classes), Mosher-Handel’s work on axes of fully 
irreducible automorphisms, Hamenstädt’s work on lines of minima 
and her point of view of the boundary, using currents, and 
Algom-Kfir’s theorem that axes of fully irreducible automorphisms 
are strongly contracting. Most of the above people were at the 
workshop, where they explained their work and points of view to 
the others. 

The workshop provided a venue for geometric group theorists 
and Teichmüller geometers to meet in an informal setting that 
favored communication.  Several of the lectures were attended 
by Curtis McMullen and his seminar participants. The sense of 
the meeting was optimistic.  The hope is that the results cited 
above will be followed by breakthroughs that will give us a deep 
understanding of the geometry of outer space. A concrete goal 
is to prove the quasi-isometric rigidity of Out Fn.  The analogous 
result for the mapping class group was achieved recently by 
Behrstock-Kleiner-Minsky-Mosher. 
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This one-day event highlighted a topic that Richard Melrose 

extensively explored in his own research: the role played by 

singularities (and the desingularization of thereof by blowing-up 

techniques) in microlocal analysis, in non-linear PDE theory, and 

in differential geometry. The talks were an  impressive testament 

to the fact that this “Melrose philosophy” has become more and 

more pervasive, not only on the theoretical side of this subject but 

also in down-to-earth applications. MacPherson’s semi-popular 

talk on the role of singularities in material sciences provided 

beautiful examples of concrete applications of these techniques, 

and the talks of Sjostrand and Mazzeo, although a bit more 

technical, did so as well. At the other end of the spectrum were 

Honoree and Organizers:
Richard Melrose (MIT) 
Victor Guillemin (MIT)
Pierre Albin (MIT)
David Ellwood (CMI)
 

Speakers:
Jean-Michel Bismut (Paris-Sud XI)
Robert MacPherson (IAS)
Rafe Mazzeo (Stanford))
Peter Sarnak (Princeton)
Johannes Sjostrand (Bourgogne)
Isadore Singer (MIT)

April 4, 2009 Massachusetts Institute of Technology

the talks of Bismut and Singer on the the role of these methods 

in quantum theory and of Sarnak on their role in analytic number 

theory.  

 

This meeting also provided a much-needed opportunity for 

specialists in superficially different areas to communicate recent 

results. This was of benefit not only to the experts themselves, but 

especially to the many graduate students and young researchers 

who were able to attend. On the whole, the talks made a 

compelling case for “Singularities” as a viable new mathematical 

discipline not just “@MIT” but in the mathematics (and physics 

and material science) community at large. 

 

CMI Supported Conference
Singularities @ MIT: A Celebration of Richard Melrose’s 60th Birthday

Peter Sarnak and Richard Melrose
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The “Atiyah 80” workshop was organized in honor of Sir 
Michael Atiyah’s 80th birthday. It consisted of eleven lectures by 
Witten, Hitchin, Bridgeland, Kirwan, Hopkins,  Segal, McDuff, 
Seidel, Vafa, Donaldson and Dijkgraaf on their latest research 
in  geometry and physics, one historical lecture by Hirzebruch, 
and one panel discussion on  the Higgs Boson involving Atiyah, 
Higgs, Saxon and Witten.  The panel discussion was a  joint 
event with the Royal Society of Edinburgh.  The lecture by 
Hopkins announced the  solution (with Hill and Ravenel) of 
the forty-five year-old Kervaire invariant problem, a major  
advance in homotopy theory. The meeting was a fitting tribute 
for Sir Michael Atiyah’s 80th birthday, reflecting his enormous 
influence on current activities in both mathematics and physics.  
The conference benefited from the active participation of Sir 
Michael himself. 

The lectures were of the high caliber to be expected from 
such a distinguished group of mathematicians.  Hopkins’ 
announcement of the solution of the Kervaire invariant problem 
and Donaldson’s Kaehler-Einstein metric announcement were 
the scientific highlights of the conference.   
 
The workshop offered a range of activities for all participants: 
apart from the lectures themselves there were ample 
opportunities for meetings and dicussions, as is made clear 
in the answers to the ICMS questionnaire. There was the 
opportunity to hear Atiyah himself speak at the panel discussion 
and at the conference dinner. An exhibition of posters about 
Atiyah prepared by Sebastià Xambo of Barcelona was 
displayed as well as biographical material about the late Raoul 
Bott and two related videos. 

The conference website at http://www.maths.ed.ac.uk/~aar/
atiyah80.htm includes videos of all the lectures, the audio 

recording of the Higgs panel discussion at the Royal Society 
of Edinburgh, and  much other Atiyah80-related material. This 
includes a photo of the 6 bottles of whisky of total age 80 
years which were presented to Sir Michael by the conference! 
The University Communication and Marketing Department 
made a short YouTube film “Great minds honour maths maestro” 
which gives a faithful snapshot of the conference atmosphere, 
and includes interviews with Atiyah himself, Bourguignon, Witten 
and M. Singer.   

Thanks to the generosity of the various sponsors (EPSRC, LMS, 
EMS, NSF, the Clay Mathematics Institute, and Trinity College, 
Cambridge) it was possible for the workshop to support not only 
the speakers but also a large contingent of the collaborators 
(such as I.Singer) and mathematical descendants of Atiyah, and 
many postdoctoral researchers and doctoral students. 
 
The main workshop was followed by a successful one-day 
“Atiyah80plus” meeting at the headquarters of ICMS in 14 
India Street (supported by the Roberts Fund for Transferable 
Skills) which was organized by the Edinburgh postgraduate 
students, with talks by Frances Kirwan and visiting postdoctoral 
researchers.  But perhaps the most remarkable feature of the 
workshop was that the sun shone every day.

Organizers
David Ellwood (CMI)
Andrew Ranicki (University of Edinburgh)

Scientific Committee
Simon Donaldson FRS (Imperial College)
Nigel Hitchin FRS (Oxford)
Frances Kirwan FRS (Oxford)
Graeme Segal FRS (Oxford)

The panel: Michael Atiyah, Peter Higgs, David Saxon, and Edward Witten

Photo courtesy of Thomas Koeppe

Program Overview

CMI Supported Conference
Geometry and Physics: Atiyah80
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July 20 - 24, 2009, Max Planck Institute for Mathematics, Bonn

CMI Supported Conference
Dynamical Numbers: Interplay between Dynamical Systems and Number Theory

Organizers

David Ellwood (CMI), Sergiy Kolyada (Institute 
of Mathematics of the NASU, Ukraine & MPIM), 
Yuri Manin (MPIM & Northwestern University), 
Martin Moeller (MPIM), Pieter Moree (MPIM), 
Don Zagier (MPIM & Collège de France) 

The theory of dynamical systems is currently one of the most 
vibrant areas of mathematical research, born from H. Poincaré’s 
“Les Méthodes nouvelles de la Mécanique Céleste” at the 
end of nineteenth century.  Dynamical systems theory draws 
on methods from many branches of mathematics (algebra, 
analysis, geometry, and topology) and has arisen in attempting 
to formulate an adequate description of phenomena in the 
world around us. It provides the theoretical framework for 
many models in physics, biology, economics, and other fields.  
It also contributes tools for solving problems in other fields of 
mathematics. Finally, the perspective of dynamical systems 
theory leads one to ask completely new questions.

While the classical branches of dynamical  systems theory – 
ergodic theory,  topological  dynamics, and low-dimensional, 
smooth, and complex dynamics – have grown in importance, 
completely new areas have appeared of late, including algebraic 
and arithmetic dynamics. 

The goal of the MPI conference was to stimulate communication 
and cooperation among participants in the various branches 
of this very diverse field. The eighty participants and twenty-
six lectures by leading experts in the core areas of dynamical 
systems, number theory, and closely related areas gave a 
panoramic view of current research.

The main subjects of the lectures were: asymptotic geometric 
analysis and (topological) transformation groups; arithmetic 
dynamics; polynomials and pointwise ergodic theorems; Bernoulli 
convolutions; actions of Polish groups; low-dimensional dynamics: 
graph theory, rotation theory, smooth interval dynamics, area 
preserving diffeomorphisms and time-one maps on surfaces; 
complex and real dynamics; interval exchange transformations 
and translation flow; billiards; leafwise cohomology of algebraic 
Anosov diffeomorphisms; symbolic dynamics; multifractal analysis 
and Diophantine approximations; dynamics and moduli spaces; 
invariant measures and Littlewood’s conjecture; Moebius number 
systems, flows on manifolds; translation surfaces and Abelian 
differentials, symbolic representations of toral automorphisms, 
noncommutative Mahler measures; representations of integers; 
statistical properties of dynamical systems; transfer operators 
for geodesic flows and Hecke operators; transfer operators 
for Anosov diffeomorphisms; shift operators on buildings and 
noncommutative spaces; topological orbit equivalence; and 
theory of entropy and chaos. 

The International conference “Dynamical Numbers - Interplay between Dynamical Systems and Number Theory” was the main 
event of the Max Planck Institute (MPI) for Mathematics program “Dynamical Numbers: Interplay between Dynamical Systems 
and Number Theory Dynamical Systems” (May 1- July 31, 2009). 
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Galois Representations,  
University of Hawai’i at Manoa

Summer School

The University of Hawai‘i at Mānoa in Honolulu,
Hawai‘i provided an exquisite location for the
2009 Clay Mathematics Institute Summer
School. The aim of the school was to provide an
overview of the ideas and applications of the
theory of Galois representations. Many advances
in number theory within the last fifteen years
(such as the solutions of the Shimura-Taniyama
conjecture, the Sato-Tate conjecture and Serre’s
conjecture, as well as decisive progress on the
Fontaine-Mazur conjecture and main conjectures
for modular forms) have relied heavily upon
advances in the theory of Galois representations.
For example, such advances have enabled the
local and global aspects of modularity lifting
theorems to be extended far beyond the
traditional 2-dimensional case over the rational
numbers, and have led to generalizations of the
“classical” theory of p-adic modular forms in a
way that makes

more effective use of representation theory and
geometry to obtain results on the arithmetic of
L-values.

The program was built around three foundational
courses:

• p-adic Hodge Theory by Olivier Brinon and
Brian Conrad

• Deformations of Galois Representations and
Modular Forms by Mark Kisin and Jacques
Tilouine

• Iwasawa Theory and Automorphic
Applications by Joël Bellaı̈che and Chris
Skinner

These courses were supplemented by several
mini-courses:

• Proofs of p-adic Comparison Theorems by
Fabrizio Andreatta

by Zachary A. Kent

Organizers
Brain Conrad (Stanford) 
David Ellwood (CMI)
Mark Kisin (Harvard)
Chris Skinner (Princeton)
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Galois Representations  
by Zachary A. Kent continued

Summer School

• Introduction to the p-adic Langlands
Correspondence by Matthew Emerton

• Construction of Galois Representations by
Sug Woo Shin

Our motivating example comes from the Birch
and Swinnerton-Dyer conjecture, which asserts
that the rank of an elliptic curve E over a number
field F is encoded in a p-adic representation
ρ : GF → GL2(Zp) where p is a rational prime
and GF is the absolute Galois group of F . For
any prime ℘ in F we may choose an embedding
of algebraic closures F ↪→ F℘ and we may
restrict to get a representation ρ℘ := ρ|GF℘

that
encodes local information about E at ℘. Birch
and Swinnerton-Dyer believed that the rank of E
is determined by the behavior at s = 1 of the
meromorphically continued L-function with Euler
product over primes ℘ in F of good reduction.
For each p, the Galois representation on the Tate
module of E encodes all of the Euler factors at
primes ℘ of good reduction that are also
unramified (for ℘ � p). For this reason, the theory
of p-adic representations of Galois groups is very
useful for studying the arithmetic of L-functions.
On the other hand, for primes ℘ of good
reduction such that ℘ | p, we must use deep
results of p-adic Hodge theory to replace the
property of being unramified at ℘ with the
property of being crystalline at ℘.

The p-adic variant of Hodge theory has its
origins in Serre and Tate’s study of Tate modules
for abelian varieties with good reduction over
p-adic fields and the concept of a Hodge-Tate
representation. Brian Conrad began with this
example in the first foundational course and

continued by discussing the deep result of
Faltings relating p-adic cohomology to Hodge
cohomology, i.e., the comparison isomorphism
CHT . The coefficient ring for BHT for Faltings’
isomorphism is called a period ring. Another
example given was the concept of étale
φ-modules, which comes from the
Fontaine-Wintenberger theory of norm fields and
classifies all p-adic representations of GK for
any field K of characteristic p.

Olivier Brinon and Brian Conrad then took turns
in presenting the more general theory developed
by Fontaine and his coworkers. They focused on
the construction of several other period rings
BdR (de Rham), Bcris (crystalline), and Bst

(semi-stable), for passing between pairs of
p-adic cohomology theories, i.e., the comparison
isomorphisms CdR, Ccris, and Cst. Next, they
introduced p-divisible groups as a testbed for
various ideas in p-adic Hodge theory, while
filtered (φ,N)-modules were discussed as a way
to deal with “bad reduction.” They then
considered integral p-adic Hodge theory making
use of rigid-analytic geometry. They did this for
the purpose of studying Galois deformation
theory with artinian coefficents, which requires a
finer theory (introduced by Fontaine and Laffaille
with more recent developments by Breuil and
Kisin). In this theory, p-adic vector spaces are
replaced by lattices or torsion modules. Finally,
(φ,Γ)-modules were introduced as an
improvement over the theory of étale φ-modules,
since they provide a classification of all p-adic
representations of the entire Galois group GK .
Several applications of (φ,Γ)-modules were then
discussed, including the proof of
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overconvergence of p-adic representations and
recent developments in the p-adic Langlands
correspondence for GL2.

In his mini-course, Fabrizio Andreatta presented
a new proof of Fontaine’s crystalline conjecture,
which is the comparison isomorphism Ccris

relating p-adic étale cohomology and crystalline
cohomology. After studying the underlying sheaf
theory of a special topology of Faltings, a new
cohomology theory was defined for sheaves of
periods that was then used to compute the
cohomologies appearing in Ccris via the theory
of almost étale extensions.

Returning to our motivating example from earlier,
Andrew Wiles developed techniques for proving
that various representations ρ : GF → GL2(Zp)

not initially related to modular forms actually
come from them in a specific way. He does this
by deforming ρ, e.g., we may consider the
deformation ρ̃ : GF → GL2(Zp[[x]]) that
recovers ρ at x = 0 and is unramified at all but
finitely many primes of F . Understanding
deformations of ρ|GF℘

when ℘|p was a key idea
behind his technique. Some of the most
important improvements of Wiles’ technique
were discussed by their creator, Mark Kisin, in
the second foundational course. He began by
discussing deformations of pro-finite group
representations and pseudo-representations. He
showed, in particular, that one may study
deformation theory by considering deformations
of trace functions. Next, Kisin talked about
representability of deformations and global
deformation rings. Finishing off by making use of
integral p-adic Hodge theory, he introduced flat

deformations which arise from finite flat group
schemes over a ring of integers.

Jacques Tilouine continued the second
foundational course from the dual perspective of
deformation theory: quaternionic and Hilbert
modular forms and their Galois representations.
He began by discussing Shimura varieties and
later introduced quaternionic and Hilbert forms.
After proving several results about eigenforms
and eigenvarieties, he focused on the
Jacquet-Langlands correspondence, which he
repeatedly used to prove various theorems
throughout his lectures. Tilouine then moved on
to Galois representations and local versus global
deformations. Recalling Kisin’s work throughout
his lectures, Tilouine finished by discussing the
Taylor-Wiles-Kisin method.

The third foundational course was dedicated to
Iwasawa theory and automorphic applications.
For his part, Chris Skinner focused on Iwasawa
theory and special values of L-functions. After
an introduction to the major results in a basic
course in algebraic number theory, Skinner
sketched the ideas behind a proof for the main
conjecture of Iwasawa theory for a large class of
elliptic curves. Along the way, he was able to
show that the vanishing at a certain point of an
L-function associated with eigenforms of even
integer weight and trivial level means that the
associated Selmer group (Galois cohomology
group related to the Galois representation under
consideration) is nonzero.

Joël Bellaı̈che discussed two automorphic
applications as part of the third foundational
course. The first application was the Bloch-Kato
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Galois Representations  
by Zachary A. Kent continued

Summer School

conjecture, which describes the mysterious
relationship between the algebraic and analytic
objects associated to a geometric representation
of V of GF . The algebraic object is called the
Bloch-Kato Selmer group, H1

f (GF , V ), and the
analytic object is a meromorphic L-function of a
complex variable s, L(V, s). The second
application was Ribet’s lemma, a tool to
construct non-trivial extensions of Galois
representations. After presenting the lemma and
its proof, Bellaı̈che discussed some
generalizations of Ribet’s lemma for
pseudo-representations. He ended his lectures
by proving the fundamental theorems by Taylor
and Rouquier-Nyssen.

A special case of the global Langlands
correspondence was the focus of Sug Woo
Shin’s mini-course. In his lecture, he discussed
some ideas centered on the conjecture in the
case of the group GLm, and he explained how to
use the cohomology of varieties over number
fields to construct the predicted Galois
representations. Viewing things locally, the focus
of Matthew Emerton’s mini-course was to
provide an introduction to the p-adic Langlands
correspondence. It follows that the p-adic local
Langlands correspondence coupled with a
certain local-global compatibility conjecture
implies most cases of the Fontaine-Mazur
conjecture for two-dimensional odd
representations of GQ.

All lecturers included topics of interest to
advanced students, but also took care to provide
concrete examples that were accessible to
non-experts.

conjecture, which describes the mysterious
relationship between the algebraic and analytic
objects associated to a geometric representation
of V of GF . The algebraic object is called the
Bloch-Kato Selmer group, H1

f (GF , V ), and the
analytic object is a meromorphic L-function of a
complex variable s, L(V, s). The second
application was Ribet’s lemma, a tool to
construct non-trivial extensions of Galois
representations. After presenting the lemma and
its proof, Bellaı̈che discussed some
generalizations of Ribet’s lemma for
pseudo-representations. He ended his lectures
by proving the fundamental theorems by Taylor
and Rouquier-Nyssen.

A special case of the global Langlands
correspondence was the focus of Sug Woo
Shin’s mini-course. In his lecture, he discussed
some ideas centered on the conjecture in the
case of the group GLm, and he explained how to
use the cohomology of varieties over number
fields to construct the predicted Galois
representations. Viewing things locally, the focus
of Matthew Emerton’s mini-course was to
provide an introduction to the p-adic Langlands
correspondence. It follows that the p-adic local
Langlands correspondence coupled with a
certain local-global compatibility conjecture
implies most cases of the Fontaine-Mazur
conjecture for two-dimensional odd
representations of GQ.

All lecturers included topics of interest to
advanced students, but also took care to provide
concrete examples that were accessible to
non-experts.
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Publications

Selected Articles by Research Fellows

Mohammed Abouzaid
“Framed bordism and Lagrangian embeddings of exotic spheres,” 
arXiv:0812.4781.

“Homological mirror symmetry for the four-torus,” with Ivan Smith. 
To appear in Duke Mathematical Journal.

Spiridon Alexakis
“Hawking’s local rigidity theorem without analyticity,” with 
A. Ionescu and S. Klainerman. Accepted for publication at 
Geometric and Functional Analysis. 

“The decomposition of global conformal invariants IV: A 
proposition on local Riemannian invariants.” Accepted for 
publication at Advances in Mathematics.

Artur Avila
“The ten martini problem,” with Svetlana Jitomirskaya.
Annals of Mathematics 170 (2009), 303-342.

“Combinatorial rigidity for unicritical polynomials,” with 
Jeremy Kahn, Mikhail Lyubich, and Weixiao Shen. Annals of 
Mathematics 170 (2009), 783-797.

Soren Galatius
“Monoids of moduli spaces of manifolds,” with O. Randal-
Williams. Submitted. arXiv:0905.2855. 

“Madsen-Weiss for geometrically minded topologists,” with 
Y. Eliashberg, S. Galatius, and N. Mishachev. Submitted. 
arXiv:0907.4226. 

Adrian Ioana
“Non-orbit equivalent actions of Fn.” Annales scientifiques de 
l’ENS 42, fascicule 4 (2009), 675-696.  

“Ergodic subequivalence relations induced by a Bernoulli cction,” 
with Ionut Chifan. Accepted for publication in  
Geometric and Functional Analysis.

“Subequivalence relations and positive-definite functions,” with 
TodorTsankov and Alekos S. Kechris. Groups, Geometry, and 
Dynamics, Volume 3, Issue 4, (2009), 579-625.

Davesh Maulik
“Néron-Severi groups under specialization,” with B. Poonen and 
C. Voisin. To appear in Les Annales Scientifiques de l’École 
Normale Supérieure.

Sophie Morel
“Cohomologie d’intersection des variétès modulaires de Siegel, 
suite” (2008). 

“Note sur les polynomes de Kazhdan-Lusztig” (2009).

Sam Payne
“Cayley decompositions of lattice polytopes and upper bounds 
for h*-polynomials,” with Christian Haase and Benjamin Nill. 
J. reine angew. Math. 637 (2009), 207–216.

“A tropical proof of the Brill-Noether theorem,” with Filip Cools, 
Jan Draisma, and Elina Robeva. Preprint. arXiv:1001.2774.

Sucharit Sarkar
“A combinatorial description of knot Floer homology,” with 
Ciprian Manolescu and Peter Ozsváth. Annals of Mathematics 
169, (2009), 633-660.

David Speyer
“The multidimensional cube recurrence,” with Andre Henriques 
Advances in Mathematics, Volume 223, Issue 3, (2010), 
1107-1136.

“Sortable elements in infinite Coxeter groups,” with Nathan 
Reading. To appear in Transactions of the AMS. 

Teruyoshi Yoshida
“Local class field theory via Lubin-Tate theory.” Annales de la 
Faculté des Sciences de Toulouse, Ser. 6, 17-2 (2008), 411-
438. (math.NT/0606108)

Xinyi Yuan
“Calabi-Yau theorem and algebraic dynamics,” with  
WShou-wu Zhang.

“On volumes of arithmetic line bundles II.”



Books and Videos

Publications

Arithmetic Geometry; 
Proceedings of the 2006 CMI Summer 
School at Gottingen. 
Editors: Henri Darmon, David Ellwood, 
Brendan Hassett, Yuri Tschinkel. CMI/
AMS 2009, 562 pp., http://www.
claymath.org/publications/Arithmetic_
Geometry. 

This book is based on survey lectures given 
at the 2006 CMI Summer School at the 
Mathematics Institute of the University of 
Gottingen. It will introduce readers to modern 
techniques and outstanding conjectures at 
the interface of number theory and algebraic 
geometry. 

Dirichlet Branes and Mirror 
Symmetry 
Editors: Michael Douglas, Mark Gross. 
CMI/AMS 2009, 681 pp., http://
www.claymath.org/publications/
Dirichlet_Branes. 

The book first introduces the notion of 
Dirichlet brane in the context of topological 
quantum field theories, and then reviews the 
basics of string theory. After showing how 
notions of branes arose in string theory, it 
turns to an introduction to the algebraic 
geometry, sheaf theory, and homological 
algebra needed to define and work with 
derived categories. The physical existence 
conditions for branes are then discussed, 
culminating in Bridgeland’s definition of 
stability structures. The book continues with 
detailed treatments of the Strominger-Yau-
Zaslow conjecture, Calabi-Yau metrics and 
homological mirror symmetry, and discusses 
more recent physical developments.

Analytic Number Theory: 
A Tribute to Gauss and Dirichlet.
Editors: William Duke, Yuri Tschinkel. 
CMI/AMS, 2007, 265 pp., www.
claymath.org/publications/Gauss_
Dirichlet.

This volume contains the proceedings of 
the Gauss–Dirichlet Conference held in 
Göttingen from June 20–24 in 2005, 
commemorating the 150th anniversary of  
the death of Gauss and the 200th 
anniversary of Dirichlet’s birth. It begins with 
a definitive summary of the life and work 
of Dirichlet by J. Elstrodt and continues 
with thirteen papers by leading experts on 
research topics of current interest within 
number theory that were directly influenced 
by Gauss and Dirichlet.

Ricci Flow and the Poincaré 
Conjecture
Authors: John Morgan, Gang Tian.  
CMI/AMS, 2007, 521 pp., www.
claymath.org/publications/ricciflow. 

This book presents a complete and detailed 
proof of the Poincaré conjecture.  This 
conjecture was formulated by Henri Poincaré 
in 1904 and has remained open until 
the recent work of Grigory Perelman. The 
arguments given in the book are a detailed 
version of those that appear in Perelman’s 
three preprints.

The Millennium Prize Problems
Editors: James Carlson, 
Arthur Jaffe, Andrew Wiles. CMI/AMS, 
2006, 165 pp., 
www.claymath.org/publications/
Millennium_Problems. 

This volume gives the official description of 
each of the seven problems as well as the 
rules governing the prizes.  It also contains an 
essay by Jeremy Gray on the history of prize 
problems in mathematics. 

58  2009 CMI Annual Report



2009 CMI Annual Report  59   

Pu
bl

ica
tio

ns

Surveys in Noncommutative 
Geometry 
Editors: Nigel Higson, John Roe. CMI/
AMS, 2006, 189 pp., www.claymath.
org/publications/Noncommutative_
Geometry.  

In June of 2000, a summer school on 
noncommutative geometry, organized jointly 
by the American Mathematical Society and 
the Clay Mathematics Institute, was held at 
Mount Holyoke College in Massachusetts.  
The meeting centered around several series 
of expository lectures that were intended 
to introduce key topics in noncommutative 
geometry to mathematicians unfamiliar with 
the subject. Those expository lectures have 
been edited and are reproduced in this 
volume.

Harmonic Analysis, the Trace 
Formula and Shimura Varieties; 
Proceedings of the 2003 CMI Summer 
School at Fields Institute, Toronto. 
Editors: James Arthur, David Ellwood, 
Robert Kottwitz. CMI/AMS, 2005, 
689 pp., www.claymath.org/
publications/Harmonic_Analysis. 

The subject of this volume is the trace formula 
and Shimura varieties.  These areas have 
been especially difficult to learn because of 
a lack of expository material. This volume 
aims to rectify that problem. It is based 
on the courses given at the 2003 Clay 
Mathematics Institute Summer School. Many 
of the articles have been expanded into 
comprehensive introductions, either to the 
trace formula or to the theory of Shimura 
varieties, or to some aspect of the interplay 
and application of the two areas.

Publications

Books and Videos

Floer Homology, Gauge Theory, 
and Low-Dimensional Topology; 
Proceedings of the CMI 2004 Summer 
School at Rényi Institute of Mathematics, 
Budapest. 

Editors: David Ellwood, Peter Ozsváth, 
András  Stipsicz, Zoltán Szábo. CMI/
AMS, 2006, 297 pp., www.claymath.
org/publications/Floer_Homology. 

This volume grew out of the summer school 
that took place in June of 2004 at the 
Alfréd Rényi Institute of Mathematics in 
Budapest, Hungary.  It provides a state-
of-the-art introduction to current research, 
covering material from Heegaard Floer 
homology, contact geometry, smooth four-
manifold topology, and symplectic four-
manifolds.

Lecture Notes on Motivic 
Cohomology 
Authors: Carlo Mazza, Vladimir 
Voevodsky,  Charles Weibel.  CMI/
AMS, 2006, 210 pp., www.claymath.
org/publications/Motivic_Cohomology. 

This book provides an account of the 
triangulated theory of motives.  Its purpose 
is to introduce the reader to motivic 
cohomology, to develop its main properties, 
and finally to relate it to other known 
invariants of algebraic varieties and rings 
such as Milnor K-theory, étale cohomology, 
and Chow groups.
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Global Theory of Minimal 
Surfaces 
Proceedings of the 2001 CMI Summer 
School at MSRI. 
Editor: David Hoffman. CMI/AMS, 
2005, 800 pp., www.claymath.org/
publications/Minimal_Surfaces.  

This book is the product of the 2001 CMI 
Summer School held at MSRI.  The subjects 
covered include minimal and constant-mean-
curvature  submanifolds, geometric measure 
theory and the double-bubble conjecture, 
Lagrangian geometry, numerical simulation of 
geometric phenomena, applications of mean 
curvature to general relativity and Riemannian 
geometry, the isoperimetric problem, the 
geometry of fully nonlinear elliptic equations, 
and applications to the topology of three-
manifolds.

Strings and Geometry
Proceedings of the 2002 CMI Summer 
School held at the Isaac Newton 
Institute for Mathematical Sciences, UK.
Editors: Michael Douglas, Jerome 
Gauntlett, Mark Gross. CMI/AMS, 
376 pp., paperback, ISBN 0-8218-
3715-X. List: $69. AMS Members: 
$55. Order code: CMIP/3. To order, 
visit www.ams.org/bookstore.

Mirror Symmetry 
Authors: Kentaro Hori, Sheldon Katz, 
Albrecht Klemm, Rahul Pandharipande, 
Richard Thomas, Ravi Vakil. 
Editors: Cumrun Vafa, Eric Zaslow. 
CMI/AMS, 929 pp., hardcover, ISBN 
0-8218-2955-6. List: $124. AMS 
Members: $99. Order code: CMIM/1. 
To order, visit www.ams.org/bookstore.
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Strings 2001
Authors: Atish Dabholkar, Sunil Mukhi, 
Spenta R. Wadia. Tata Institute of 
Fundamental Research. 
Editor: American Mathematical Society 
(AMS), 2002, 489 pp., paperback, 
ISBN 0-8218-2981-5. List: $74. AMS 
Members: $59. Order code: CMIP/1. 
To order, visit www.ams.org/bookstore. 

Video Cassettes

The CMI Millennium Meeting 
Collection 

Authors: Michael Atiyah, Timothy Gowers, 
John Tate, François Tisseyere. 
Editors: Tom Apostol, Jean-Pierre 
Bourguignon, Michele Emmer, Hans-
Christian Hege, Konrad Polthier. Springer 
VideoMATH, Clay Mathematics Institute, 
2002. 

Box set consists of four video cassettes: 
The CMI Millennium Prize Problems, 
a lecture by Michael Atiyah; and The 
Millennium Prize Problems, a lecture by 
John Tate. VHS/NTSC or PAL. ISBN 
3-540-92657-7. List: $119, EUR 
104.95. To order, visit www.springer-ny.
com (in the United States) or www.
springer.de (in Europe). 

These videos document the Paris meeting 
at the Collége de France where CMI 
announced the Millennium Prize Problems. 
The videos are for anyone who wants 
to learn more about these seven grand 
challenges in mathematics. 

Videos of the 2000 Millennium event are 
available online and in VHS format from 
Springer-Verlag. To order the box set or 
individual tapes, visit www.springer.com.
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Date Event Location

January 4-March 31, 2010

January 18-22 and 
March 8-12, 2010

January 1-May 31, 2010

January 11-May 21, 2010

March 8-11, 2010

June 2-6, 2010

June 7-9, 2010

June 14-July 3, 2010

June 27-July 17, 2010

July 11-August 7, 2010

July 26-August 6, 2010

August 2-9, 2010

Galois Trimester at the Institut Henri Poincare (IHP)

Senior Scholar Pierre-Louis Lions at  
Issac Newton Institute (INS)  
Stochastic Partial Differential Equations (SPD)

Senior Scholar Tomasz Mrowka at MSRI - 
Homology Theories of Knots and Links  

Senior Scholar Peter Ozsvath at MSRI - 
Homology Theories of Knots and 

CMI Workshop on Macdonald Polynomials  
and Geometry

Number Theory & Representation Theory in 
Honor of Dick Gross 

Clay Research Conference at the  
Institut Henri Poincare (IHP) 

ICTP Summer School on Hodge Theory  

Senior Scholar Ingrid Daubechies at PCMI -  
The Mathematics of Image Processing  

CMI Summer School 2010 
Probability & Statistical Physics in Two  
(and More) Dimensions

Winter School on Topics in Noncommutative 
Geometry at Departamento de Matemàtica

Conference in Honor of the 70th birthday  
of Endre Szemerédi

Paris, France

Cambridge

MSRI

MSRI

Cambridge

Harvard

Paris, France

ICTP Trieste, Italy

PCMI

Buzios, Brazil

Universidad de Buenos Aires

Budapest, Hungary

Activities

2010 Institute Calendar
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1 Bow Street | 4th Floor | Cambridge, MA 02318

Workshops at CMI

CMI holds a limited number of Workshops at its One Bow Street office in Cambridge, Massachusetts. Although the format is 
flexible, these are typically of three to six days duration with eight to sixteen participants. Participants are fully funded. Workshops 
in topics undergoing rapid development can be organized with little lead time. Please contact Jim Carlson (jcarlson@claymath.org) 
or David Ellwood (ellwood@claymath.org) to discuss a proposal. 

Workshops to date have been held on the following topics: Goodwillie Calculus (Haynes Miller and Jack Morava), Algebraic 
Statistics and Computational Biology (Bernd Sturmfels, Lior Pachter, Seth Sullivant and Jim Carlson), Eigenvarieties (David 
Ellwood, Barry Mazur and Richard Taylor), Moduli Spaces of Vector Bundles (David Ellwood, Emma Previato and Montserrat 
Teixidor-i-Bigas), Hopf Algebras and Props (David Ellwood, Jean-Louis Loday, and Richard Stanley), Recent Developments in 
Symplectic Topology (Denis Auroux, Victor Guillemin, Tomasz Mrowka, and Katrin Wehrheim), Recent Developments in Higher-
dimensional Algebraic Geometry (in conjunction with the 2007 Clay Research Conference), Solvability and Spectral Instability 
(Nils Dencker, David Ellwood, and Maciej Zworski), Computational Arithmetic Geometry (Jim Carlson, David Harvey, Kiran 
Kedlaya, and William Stein), Rational Curves and Diophantine Problems over Function Fields (David Ellwood, Brendan Hassett, 
Johan de Jong, Jason Starr, and Yuri Tschinkel), Shrinking Target Properties (Jayadev Athreya, David Ellwood, Anish Ghosh, and 
Dmitry Kleinbock), K3s: Modular Forms, Moduli, and String Theory (Jim Carlson, David Ellwood, Davesh Maulik, and Rahul 
Pandharipande), Automorphic Forms in Moduli Problems of Schottky and Brill-Noether Type (David Ellwood, Emma Previato and 
Leon Takhtajan), The Foundations of Algebraic Geometry: Grothendieck’s EGA Unbound (Jim Carlson, David Ellwood,  Joe Harris, 
and David Smyth), Stringy Reflections on LHC (Jim Carlson, David Ellwood, Cumrun Vafa, and Herman Verlinde), Geometry and 
Physics of the Landau-Ginzburg Model (David Ellwood, Yongbin Ruan, and Tyler Jarvis).

See www.claymath.org/programs/cmiworkshops

Clay Mathematics Institute | One Bow Street | Cambridge, MA 02138 | www.claymath.org
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