How to Guard an Art Gallery and Other Discrete Mathematical Adventures

T. S. Michael

The Johns Hopkins University Press Baltimore ii

Contents

Pr	Preface		
1	How t	o Count Pizza Pieces	1
	1.1	The Pizza-Cutter's Problem	1
	1.2	A Recurring Theme	4
	1.3	Make a Difference	7
	1.4	How Many Toppings?	9
	1.5	Proof without Words	12
	1.6	Count 'em and Sweep	14
	1.7	Euler's Formula for Plane Graphs	16
	1.8	You Can Look It Up	20
	1.9	Pizza Envy	21
	1.10	Notes and References	22
	1.11	Problems	24
2	Count	on Pick's Formula	33
	2.1	The Orchard and the Dollar	33
	2.2	The Area of the Orchard	34
	2.3	Twenty-nine Ways to Change a Dollar	37
	2.4	Lattice Polygons and Pick's Formula	42
	2.5	Making Change	46
	2.6	Pick's Formula: First Proof	48
	2.7	Pick's Formula: Second Proof	53
	2.8	Batting Averages and Lattice Points	56
	2.9	Three Dimensions and <i>N</i> -largements	58
	2.10	Notes and References	65
	2.11	Problems	66
3	How t	o Guard an Art Gallery	73
	3.1	The Sunflower Art Gallery	73

V

	3.2	Art Gallery Problems	75
	3.3	The Art Gallery Theorem	81
	3.4	Colorful Consequences	83
	3.5	Triangular and Chromatic Assumptions	86
	3.6	Modern Art Galleries	88
	3.7	Art Gallery Sketches	89
	3.8	Right-Angled Art Galleries	93
	3.9	Guarding the Guards	96
	3.10	Three Dimensions and the Octoplex	102
	3.11	Notes and References	106
	3.12	Problems	107
4	Pixels	s, Lines, and Leap Years	113
	4.1	Pixels and Lines	113
	4.2	Lines and Distances	116
	4.3	Arithmetic Arrays	118
	4.4	Bresenham's Algorithm	123
	4.5	A Touch of Gray: Antialiasing	124
	4.6	Leap Years and Line Drawing	125
	4.7	Diophantine Approximations	128
	4.8	Notes and References	134
	4.9	Problems	135
5	Meas	ure Water with a Vengeance	139
	5.1	Simon Says: Measure Water	139
	5.2	A Recipe for Bruce Willis	142
	5.3	Skew Billiard Tables	144
	5.4	Big Problems	147
	5.5	How to Measure Water: An Algorithm	148
	5.6	Arithmetic Arrays: Climb the Staircase	151
	5.7	Other Problems to Pour Over	155
	5.8	Number Theory and Fermat's Congruence	160
	5.9	Notes and References	164
	5.10	Problems	165

CONTENTS

6	From	Stamps to Sylver Coins	169		
	6.1	Sylvester's Stamps	169		
	6.2	Addition Tables and Symmetry	173		
	6.3	Arithmetic Arrays and Sylvester's Formula .	176		
	6.4	Beyond Sylvester: The Stamp Theorem	180		
	6.5	Chinese Remainders	186		
	6.6	The Tabular Sieve	188		
	6.7	McNuggets and Coin Exchanges	190		
	6.8	Sylver Coinage	194		
	6.9	Notes and References	196		
	6.10	Problems	198		
7	Prime	s and Squares: Quadratic Residues	207		
	7.1	Primes and Squares	207		
	7.2	Quadratic Residues Are Squares	208		
	7.3	Errors: Detection amd Correctipn	212		
	7.4	Multiplication Tables, Legendre, and Euler	216		
	7.5	Some Square Roots	221		
	7.6	Marcia and Greg Flip a Coin	224		
	7.7	Round Up at the Gauss Corral	226		
	7.8	It's the Law: Quadratic Reciprocity	232		
	7.9	Notes and References	239		
	7.10	Problems	240		
References					
In	Index				

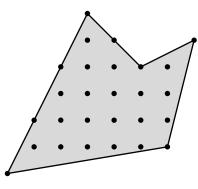
Preface

The adventures in this book are launched by easily understood questions from the realm of *discrete mathematics*, a wide-ranging subject that studies fundamental properties of the counting numbers 1, 2, 3, ... and arrangements of finite sets

The book grew from talks for mathematically inclined secondary school students and college students interested in problem solving. The aim is high, but the prerequisites are modest—mostly elementary algebra and geometry. Occasionally, a perspective gained from more advanced subjects is mentioned. A sampling of questions conveys the spirit and scope of the topics.

- **The art gallery problem.** What is the minimum number of stationary guards (or security cameras) needed to protect a given art gallery?
- **The pizza-cutter's problem.** What is the maximum number of pizza pieces we can make with four straight cuts through a circular pizza? What about *n* cuts?
- **The computer line drawing problem.** Which pixels should a computer select to represent a given straight line on a monitor?
- A quadratic residue question. Is there an integer whose square is 257 more than a multiple of 641? In the jargon of number theory, is 257 a quadratic residue modulo 641?

Our interest extends beyond answers to individual questions, no matter how accessible and enticing. The questions are gateways to deeper mathematical material that can be discussed without a lot of background. For instance, the following puzzle (taken from a memorable scene in the movie


ix

Die Hard: With a Vengeance) leads to a discussion of a famous result of Fermat in number theory.

• **The Bruce Willis problem.** We are at a fountain with two unmarked jugs with capacities 3 and 5 gallons. How can we measure exactly 4 gallons of water?

Our goal is to impart a genuine feel for discovery and mature mathematical thinking by attacking problems from several points of view and in various degrees of generality. We also reveal hidden connections between seemingly unrelated topics. For instance, we will discover a relationship between computer line drawing and quadratic residues. You will also likely be surprised to learn that the following two questions are related.

• **An area question.** What is the area of the oddly shaped orchard shown in the figure if the rows and columns of trees are 1 unit apart?

• **A dollar-changing question.** How many ways are there to make change for a dollar with quarters, dimes, and nickels?

Readers inspired to chart their own mathematical adventures can explore the problems at the end of each chapter. The more challenging problems include hints or are broken into smaller steps. The lightly annotated references are a starting point for further reading. Among the many people who helped and encouraged me as I wrote this book, several deserve special thanks. Amy Myers, Courtney Moen, and Sommer Gentry gave me valuable feedback on all aspects of early drafts and pointed out ways to improve each chapter. I also greatly appreciate the patience and guidance of my editor, Trevor Lipscombe.

Finally, I dedicate this book to Tom Apostol, who set me on the path to mathematical maturity 30 years ago.

How to Guard an Art Gallery and Other Discrete Mathematical Adventures

3

How to Guard an Art Gallery

I found I could say things with color and shapes that I couldn't say any other way things I had no words for. GEORGIA O'KEEFFE

3.1 The Sunflower Art Gallery

Figure 3.1 shows the unusual floor plan of the Sunflower Art Gallery and the locations of four guards. Each guard is stationary but can rotate in place to scan the surroundings in all directions. Guards cannot see through walls or around corners. Every point in the gallery is visible to at least one guard, and theft of the artwork is prevented. Of course, it

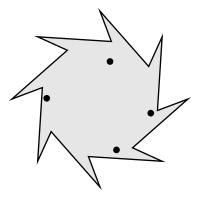


Figure 3.1: The Sunflower Art Gallery

73

would be more economical to protect the gallery with fewer guards, if possible.

74

Question. What is the smallest number of guards required to protect the Sunflower Art Gallery?

Removing any one of the four guards in Figure 3.1 leaves part of the gallery unprotected. Nonetheless, it *is* possible to protect the gallery with three suitably positioned guards. We can dismiss the lowest guard if we move the leftmost guard slightly downward. However, we cannot get by with two guards. To see why, consider the eight outer corners of the gallery. It is not possible for one guard anywhere in the gallery to keep an eye on more than three of these corners. So two guards could protect at most six of the eight outer corners.

The Sunflower Art Gallery has 16 walls and needs three guards. This raises a broader question.

Question. What is the smallest number of guards needed to protect any 16-walled gallery, regardless of its shape?

Our art gallery questions involve issues in *computational geometry*, a large and active field that blends geometry with ideas from discrete mathematics and optimization. Applications of computational geometry include:

- Barcode scanners that read prices at grocery stores
- Digital special effects common in today's movies and video games¹
- Calculations performed by global positioning satellite (GPS) receivers to determine location, speed, and direction

¹The special case of representing straight lines on a computer monitor is the topic of Chapter 4.

- Algorithms executed by machines and robotic arms on assembly lines to carry out complex tasks in a specific order
- Computerized fingerprint recognition schemes used in security systems and forensics

At the core of most problems in computational geometry is a connection between theory and algorithms. The theory describes or defines desired geometric configurations, which the algorithms construct using known mathematical procedures.

Theoretical and algorithmic issues are tightly linked in art gallery problems. For instance, we will discover a theorem asserting that every *w*-walled art gallery can be protected by at most w/3 guards. Our demonstration of this result leads to an algorithm telling us exactly where to post the guards. We also look at several variations, including an unsolved three-dimensional guarding problem.

3.2 Art Gallery Problems

Let us define our terms carefully. For our purposes, an *art gallery* is a polygon in the plane.² The polygon need not serve as the floor plan of any real-world art gallery. An art gallery includes the interior region as well as the boundary segments—the *walls.* We let *G* denote an arbitrary art gallery and write G_w for an art gallery with *w* walls.

Let p be any point in an art gallery. The point q is *visible* to p provided the line segment joining p and q does not exit the gallery. (We also assume that every point is visible to itself.) The segment represents the sight line of a guard. A set of guards protects an art gallery provided every point in

²More precisely, an art gallery is a *simple polygon*. We exclude polygons with holes, boundaries that cross, and other oddities.

the gallery is visible to at least one guard. Note that a guard at a corner protects the two adjacent walls.

Example 1. (a) The four guards in Figure 3.1 protect the Sunflower Art Gallery.

(b) The Sunflower Art Gallery is not protected by guards at the eight outer corners (Figure 3.2). Even though all of the walls are protected, a region in the center of the gallery remains invisible to all the guards.

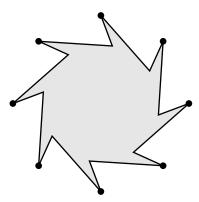


Figure 3.2: The eight guards protect the walls, but not the interior

(c) Each gallery in Figure 3.3 is protected by one or two guards, as shown.

An art gallery is *convex* provided every point in it is visible to every other point. A convex gallery is easy to guard; a guard can be posted anywhere in the gallery. Every triangle is convex, as are the first two galleries in the top row of Figure 3.3. The other galleries in the figure are nonconvex.

Galleries in Particular

Our desire to post as few guards as possible raises two general problems about art galleries. The first problem deals

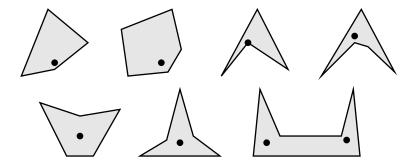


Figure 3.3: The first two galleries in the top row are convex

with specific galleries, and the second deals with all galleries with a fixed number of walls. These are generalizations of the two questions we posed earlier. Let

guard(G) = the minimum number of guards needed to protect the art gallery *G*.

Gallery problem 1. Find the value of guard(G) for every art gallery *G*. In other words, find the minimum number of guards needed to protect every art gallery.

Example 2. (a) A convex gallery *G* satisfies guard(G) = 1.

(b) We have seen that the Sunflower Art Gallery G_{16} satisfies guard(G_{16}) = 3.

To show that guard(G) = g, we must demonstrate two facts:

- The gallery *G* can be protected by *g* guards.
- The gallery *G* cannot be protected by fewer than *g* guards.

The first fact implies that $guard(G) \le g$, while the second gives $guard(G) \ge g$. The second fact becomes increasingly

difficult to demonstrate as the number of walls increases and the shape of the gallery becomes more complicated.

Ideally, we would have an efficient algorithm that takes an arbitrary gallery G as its input and produces the value of guard(G) as its output. Such an algorithm could be carried out by a computer (or a patient, careful person) to determine the minimum number of guards needed to protect any given gallery. Researchers in *computational complexity*, an advanced area of discrete mathematics, have strong evidence that we will never find an efficient algorithm of the desired type. The crux of the matter is that the number of essentially different guard configurations to examine increases exponentially as a function of the number of walls. Any proposed general algorithm becomes effectively worthless, even with the fastest computers available. In this sense, gallery problem 1 remains unsolved.

Galleries in General

Now suppose we know an art gallery has *w* walls, but we do not know its exact shape. Let

g(w) = the maximum number of guards required among all art galleries with *w* walls.

In other words, g(w) is the maximum value of guard(G_w) among all *w*-walled galleries G_w .

Example 3. (a) Any triangular art gallery can be protected with one guard. Therefore, g(3) = 1.

(b) The Sunflower Art Gallery has 16 walls and requires three guards. Therefore, $g(16) \ge 3$. We cannot conclude that g(16) = 3 since there could be a 16-walled gallery that requires more than three guards. In fact, we will soon see a 16-walled gallery requiring five guards.

Gallery problem 2. Find the value of the function g(w) for w = 3, 4, 5, ... In other words, find the largest number of guards required among all *w*-walled art galleries.

To show that g(w) = g, we must demonstrate two facts:

- Every *w*-walled gallery can be protected by *g* guards.
- There is a *w*-walled gallery that cannot be protected by fewer than *g* guards.

The first fact shows that $g(w) \le g$, while the second shows that $g(w) \ge g$. We will solve gallery problem 2 by establishing both facts. Naturally, we must first find the correct relationship between g and w.

Crown Galleries

To establish a lower bound for g(w), we construct "hard to guard" galleries—those that require at least as many guards as any other gallery with the same number of walls.

We have already noted that g(3) = 1. Also, g(4) = 1 since a convex quadrilateral clearly requires just one guard, and a nonconvex quadrilateral can be protected by posting one guard at the corner with the largest interior angle (see Figure 3.3). Moreover, it is not difficult to convince oneself that g(5) = 1.

The situation is more complicated for galleries with at least six walls, but we can take a hint from the nonconvex, "horned" hexagonal art gallery in Figure 3.3. Because no lone guard can possibly cover both of the two upper corners, we know that $g(6) \ge 2$. The crown-shaped galleries in Figure 3.4 extend this idea. The Crown Gallery G_{3t} has t tines³ and 3t walls and requires at least t guards since

³The crown with one tine is more suitable for a dunce than a prince.

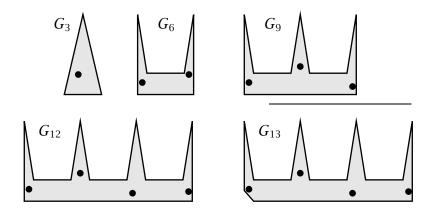


Figure 3.4: The Crown Gallery G_w requires $\lfloor w/3 \rfloor$ guards

no guard can see more than one of the uppermost corners. Therefore, $guard(G_{3t}) \ge t$ and

$$g(3t) \ge t$$
.

If *w* is one more than a multiple of 3, say, w = 3t + 1, then we put a small dent in the crown G_{3t} to produce the gallery G_{3t+1} . Figure 3.4 includes the dented gallery G_{13} , for instance. Because G_{3t+1} requires *t* guards, we have

$$g(3t+1) \ge t.$$

Similarly, if w = 3t + 2, a twice-dented crown shows that

$$g(3t+2) \ge t.$$

Some notation helps us state our findings concisely. The *floor* of the real number *x* is

 $\lfloor x \rfloor$ = the largest integer less than or equal to *x*.

So the floor function "rounds down." For example, $\lfloor 16/3 \rfloor = \lfloor 17/3 \rfloor = 5$ and

$$\left\lfloor \frac{3t}{3} \right\rfloor = \left\lfloor \frac{3t+1}{3} \right\rfloor = \left\lfloor \frac{3t+2}{3} \right\rfloor = t$$

for each positive integer *t*. Our crown-shaped galleries thus give the lower bound

$$g(w) \ge \left\lfloor \frac{w}{3} \right\rfloor.$$

3.3 The Art Gallery Theorem

We are now ready to solve the second gallery problem. The answer confirms that the crown-shaped galleries are indeed the hardest to guard.

Art gallery theorem. We have

$$g(w) = \left\lfloor \frac{w}{3} \right\rfloor$$
 for $w = 3, 4, 5,$

In other words, $\lfloor w/3 \rfloor$ guards are sufficient and sometimes necessary to protect an art gallery with w walls.

The art gallery theorem was first stated and proved by Vasek Chvátal in 1975 in response to a query from Victor Klee (1925–2007), an expert in combinatorial problems with a geometric flavor. We have already discovered that $g(w) \ge \lfloor w/3 \rfloor$. Chvátal's crucial contribution was to establish the reverse inequality by showing that every *w*-walled gallery can be protected by at most $\lfloor w/3 \rfloor$ guards. His proof uses mathematical induction on the number of walls (the validity of the inequality for galleries with *w* walls is deduced from its validity for galleries with fewer walls) and requires some care in its execution. Problem 24 at the end of this chapter outlines his argument.

A Colorful Idea

Steve Fisk produced a new and colorful proof of the art gallery theorem in 1978. His ingenious argument is less sophisticated than Chvátal's and has a visual appeal. He assigns

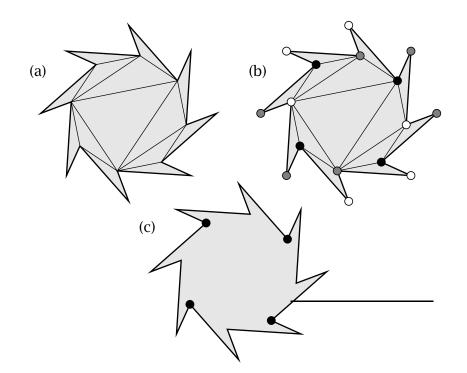


Figure 3.5: Fisk's colorful proof of the art gallery theorem

colors to the corners of the art gallery in a special way and then posts guards based on the arrangement of colors. Figure 3.5 illustrates the steps for the Sunflower Art Gallery.

First, partition the gallery into triangles by inserting suitable noncrossing diagonals, as in (a). The diagonals *triangulate* the gallery.⁴ Then assign one of three colors—black, gray, or white, say—to each of the *w* corners so that every triangle has one corner of each color. The resulting configuration is called a *polychromatic* 3-*coloring* of the triangulation. In (b) we have w = 16, and there are four black, six

⁴The vertices of the triangles must be corners of the gallery; interior vertices are forbidden. More general triangulations appear in Chapter 2 and in Problem 18 of Chapter 1.

gray, and six white corners. Finally, if we post guards at the four black corners, then every triangle is certainly protected (since every triangle has a black corner), and hence the entire gallery is protected by the guards in (c). The six white corners or the six gray corners also protect the gallery, but the black corners give us fewer guards in this case.

The same argument applies to any *w*-walled gallery. In a polychromatic 3-coloring of a triangulation, the least frequently used color occurs at most $\lfloor w/3 \rfloor$ times. Guards at those corners protect every triangle and hence the entire gallery.

3.4 Colorful Consequences

Fisk's colorful proof of the art gallery theorem has several consequences.

How to Guard an Art Gallery: An Algorithm

The colorful proof not only guarantees that $\lfloor w/3 \rfloor$ guards suffice to protect any *w*-walled gallery but also tells us exactly where to post at most $\lfloor w/3 \rfloor$ guards. Briefly, triangulate, color, and post. The *art gallery algorithm* (Algorithm 3.1) formalizes the process.

The interactive site

```
cut-the-knot.org/Curriculum/Combinatorics/Chvatal.shtml
```

lets you build your own art galleries and triangulations; the applet then produces a 3-coloring and posts the guards.

What Is an Algorithm?

We have seen the first of several algorithms in this book, and it is appropriate to make a few comments here. An algorithm is a recipe—a list of precise instructions—that be-

Algorithm 3.1. Art gallery algorithm

Input: art gallery G_w with w walls

Output: positions for at most w/3 guards that protect G_w

- 1. Triangulate G_w by inserting suitable diagonals.
- 2. Find a polychromatic 3-coloring of the corners of the triangulation.
- 3. Post guards at the corners with the least frequently used color.

gins with given ingredients (the input) and ends at a specified goal (the output). Algorithms occur throughout mathematics but are especially prevalent in discrete mathematics. Reading and writing a well-constructed algorithm hones our problem-solving skills and focuses our attention on the essential aspects of a mathematical problem.

An algorithm to be used in a real-world application must be written with great formality in a suitable programming language to avoid the glitches for which computers have become infamous. The algorithms we present in this book are intended for human edification, not actual computer implementation. They are therefore less formal and written in ordinary English.

Nice Try, But ...

Now that we know that $\lfloor w/3 \rfloor$ guards suffice to protect any *w*-walled gallery, it is natural to seek a simpler and direct process to post the guards. For instance, one attempt to avoid the fuss of triangulation and coloring in Algorithm 3.1 merely posts guards at every third corner of the gallery.

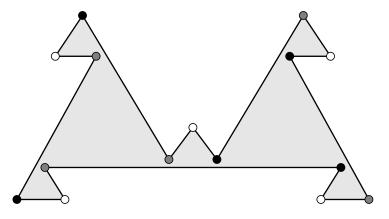


Figure 3.6: Guards at every third corner fail to protect the gallery

This naive strategy works for many galleries but fails for others. Consider the 15-walled gallery in Figure 3.6 with successive corners colored in a repeating black-white-gray pattern. If we post guards at all the black corners, then part of the gallery is unprotected. Guards at the white or gray corners also fail to protect the entire gallery.

Cornered Guards

The art gallery algorithm does not necessarily post the minimum number of guards needed to protect a given gallery. For instance, the algorithm posts four guards in the Sunflower Art Gallery in Figure 3.5, and we know that three guards suffice. In other words, Algorithm 3.1 solves the second gallery problem but not the first.

The algorithm also shows that we can protect the gallery G_w by placing at most $\lfloor w/3 \rfloor$ guards at *corners*. There is no need to place guards in the interior of the gallery—although such placements might be helpful in trying to find the true minimum number of guards required to protect G_w . For instance, one suitably placed guard along the "horizon" of

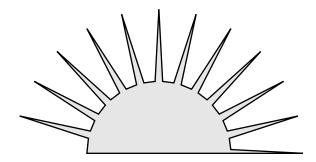


Figure 3.7: The Sunrise Gallery

the Sunrise Gallery in Figure 3.7 protects the entire gallery. But if we must place the guards at corners, then many more guards are needed to cover each ray of the sun.

3.5 Triangular and Chromatic Assumptions

A careful reader might object that our colorful proof of the art gallery theorem is incomplete because we relied on two assumptions without justifying them. Both assumptions are so plausible, you likely did not identify them as potential causes for concern.

Assumption 1. Every art gallery has a triangulation.

Assumption 2. Every triangulation has a polychromatic 3-coloring.

It is wise to question the assumptions we make in mathematics. Plausible assertions sometimes turn out to be false on closer inspection (as we will see later in this chapter), invalidating an entire line of reasoning. The correctness of the colorful proof art gallery theorem is not in doubt, however. Triangulations and polychromatic 3-colorings occur in several contexts in discrete mathematics and have been studied in detail. Rigorous justifications of both assumptions have been known for a long time. See Problems 22 and 23 for a verification of assumption 1.

Polychromatic 3-Colorings

There is a convincing, constructive way to verify assumption 2. To show that the particular triangulation of the gallery G_9 in Figure 3.8 has a polychromatic 3-coloring, we first assign three different colors to the corners of an arbitrary triangle, say, triangle *acd*, as shown. Since each triangle is to contain one corner of each color, corner *b* must be the same color as corner *d*. Also, corner *f* must be the same color as corner *c*, and then *i* must be the same color as *d*. We continue in this manner and eventually produce the desired polychromatic 3-coloring for the entire triangulation.

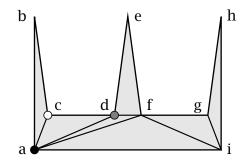


Figure 3.8: The start of a polychromatic 3-coloring

The same process works in general. Once three colors are assigned to the corners of any triangle, the colors for the remaining corners of the gallery are forced.

Degenerate Quadrilaterals

The triangulation of the gallery G_9 in Figure 3.8 illustrates a technical issue that sometimes arises in triangulating a gallery. We maintain that deleting diagonal *ad* destroys the tri-

angulation even though each remaining region would indeed be triangular. The problem is that the four corners a, c, d, and f of G_9 occur on the boundary of one triangular region. We regard such regions as *degenerate quadrilaterals*, not triangles, and exclude them from our triangulations. This exclusion is necessary for our colorful argument to work.

3.6 Modern Art Galleries

The art gallery theorem has inspired work on related problems in which the rules are changed in some manner to make the model more realistic or more interesting. The changes are of two types. First, we can restrict or relax the allowed shapes for the galleries. Second, we can bestow new powers on the guards or alter their responsibilities. All such variants are referred to as *art gallery problems*. The goals are the same as before. We want to find the minimum number of guards needed and write an efficient algorithm that posts a relatively small number of guards.

The remainder of this chapter is devoted to some of these art gallery problems. A few have been solved, usually by adapting Chvátal's inductive approach or Fisk's colorful argument, but many remain unsolved. The more realistic an art gallery problem, the more difficult it is to discover, to state, and to prove a counterpart to the basic guard formula $g(w) = \lfloor w/3 \rfloor$.

Fortresses, Prisons, and Zoos

Here are some examples of art gallery problems.

In the *fortress problem*, we view a polygon not as an art gallery to be protected against theft from the inside but as a fortress to be alerted to attack from the outside. The goal is to post the minimum number of guards along the fortress walls so that every point outside the fortress is visible to at least one guard.

The *prison yard problem* asks us to post guards on the boundary of a polygon so that every point in the plane— both inside and outside the polygon—is visible to at least one guard. From a mathematical perspective, a prison yard is an art gallery on the inside but a fortress from the outside, a viewpoint presumably not shared by the prison yard's occupants.

In some realistic art gallery problems, the guards are mobile. We can ask for a path of minimum length inside a polygon such that every point in the polygon is visible to some point on the path. Such a path is an efficient route for a lone guard patrolling a large art gallery.

In the *zookeeper problem* we have a collection of disjoint polygons (the animals' cages) inside a large polygon (the zoo). We seek a path of minimum length inside the zoo that meets the boundary of each cage, while avoiding the interior. Such a path traces an efficient and safe route for a zookeeper at feeding time.

The whimsical names bestowed on art gallery problems do not limit the scope of possible applications. For example, the scientists directing the actions of a rover on Mars confront a type of zookeeper problem. The goal is to maneuver the rover to various locations, gather images and measurements of interesting features in the vicinity of the landing spot, and send the data to Earth. There are constraints on time and energy, and steep terrain must be avoided.

3.7 Art Gallery Sketches

We now state some art gallery theorems with proofs omitted.

Galleries with Holes

Most art galleries in the real world contain obstacles that block the sight lines of the guards. We model this situation by allowing *holes* in the interior of the galleries. We assume

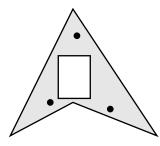


Figure 3.9: A gallery with eight walls and one hole

that each hole is a simple polygon. Guards must not be posted in the interiors of the holes, of course. Figure 3.9 shows a gallery with eight walls and one hole. The gallery is protected by three guards. It is not difficult to verify that the gallery cannot be protected by two guards.

The general problem asks for the minimum number of guards sufficient to protect any gallery with w walls and h holes. Note that the walls surrounding the holes contribute to w. Here is the main theorem in the area.

Theorem. Any art gallery with w walls and h holes can be protected by $\lfloor (w + h) / 3 \rfloor$ guards.

Half-Guards: Restricted Field of Vision

Suppose we want to protect a *w*-walled gallery with stationary cameras, each of which has a fixed 180° field of vision. We call this type of camera a *half-guard*. It seems likely that more than w/3 half-guards might be needed to compensate

HOW TO GUARD AN ART GALLERY

for the restricted field of vision of the guards. In any case, $2\lfloor w/3 \rfloor$ half-guards suffice since we can use $\lfloor w/3 \rfloor$ pairs of back-to-back half-guards. Surprisingly, we can always get away with just $\lfloor w/3 \rfloor$ half-guards.

91

Half-guard theorem. Any art gallery with w walls can be protected by $\lfloor w/3 \rfloor$ half-guards.

The half-guard theorem was established by the Hungarian mathematician Csaba Tóth in 2000. The new twist is that suitable corners for the half-guards can no longer be found by a colorful argument. In fact, it is sometimes necessary to place half-guards in the interior or along the walls of the gallery. Figure 3.10 shows a gallery protected by one half-guard along a wall. No corner placement of a lone halfguard does the job for this gallery.

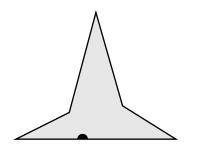


Figure 3.10: A gallery guarded by a half-guard

Rectangulated Galleries: Guarding the Met

Figure 3.11 shows a slightly modified floor plan of one section of the Metropolitan Museum of Art in New York City. (Some walls were adjusted, and a few new doorways were included.) Interior walls partition the large rectangle into rectangular rooms, and each pair of adjacent rooms is joined by

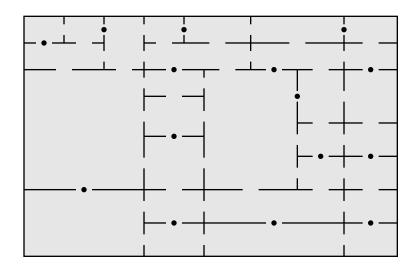


Figure 3.11: A rectangulated gallery with 29 rooms and 15 guards

a narrow doorway. We call this type of configuration a *rectangulated gallery*. As usual, we want to protect the gallery with as few guards as possible. Guards in doorways protect two rooms simultaneously. The gallery in Figure 3.11 has 29 rooms and is protected by 15 guards, which is the best we can hope for since 14 guards can protect at most 28 rooms. In general, if there are *r* rooms, then at least $\lceil r/2 \rceil$ guards are required. We have used the *ceiling* function, defined by

[x] = the smallest integer greater than or equal to x.

It turns out that $\lceil r/2 \rceil$ guards suffice, but this is difficult to prove.

Rectangulated gallery theorem. Any rectangulated gallery with r rooms can be protected by $\lceil r/2 \rceil$ guards, but no fewer.

3.8 Right-Angled Art Galleries

We now examine several art gallery problems in detail and illustrate how art gallery results are discovered and proved.

Adjacent walls in a *right-angled art gallery* meet at right angles, just like the floor plans of most buildings. See Figure 3.12. Each interior angle is 90° or 270°. A right-angled

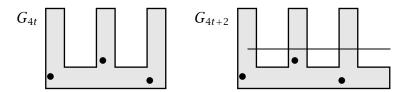


Figure 3.12: The comb-shaped galleries G_{4t} and G_{4t+2}

gallery can be drawn so that the walls run alternately northsouth and east-west. It follows that the number of walls must be even.

We let

 $g_{\perp}(w)$ = the maximum number of guards required to protect a right-angled art gallery with *w* walls.

The notation $g_{\perp}(w)$ is pronounced "*g* perp of *w*." The subscript is a visual reminder of the perpendicularity of the walls. The comb-shaped galleries in Figure 3.12 play the role of our earlier crown-shaped galleries. Each of the *t* teeth of the comb adds four more walls and requires one additional guard. It follows that the galleries G_{4t} and G_{4t+2} in the figure require *t* guards, giving us the lower bound

$$g_{\perp}(w) \ge \left\lfloor \frac{w}{4} \right\rfloor.$$

To establish the reverse inequality, we attempt to modify Fisk's colorful argument. Figure 3.13 depicts a promising strategy. First, partition the right-angled gallery G_w into

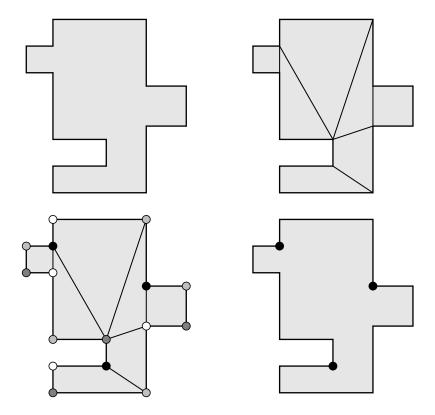


Figure 3.13: A colorful argument for right-angled galleries

quadrilaterals by inserting noncrossing diagonals. The resulting configuration is a *quadrangulation* of G_w . Each quadrilateral has exactly four corners of G_w on its boundary. If three of the corners are collinear, then the quadrilateral has a triangular shape, a degeneracy we now allow. Second, assign one of four colors (black, dark gray, light gray, white) to each of the *w* corners of G_w so that each quadrilateral has one corner of each color. The least frequently used color in this *polychromatic 4-coloring* occurs at most $\lfloor w/4 \rfloor$ times. Finally, post guards at these corners (the black ones in Figure 3.13); the whole gallery is protected since every quadrilateral has a black corner. It seems we have established the following result.

Right-angled art gallery theorem. We have

$$g_{\perp}(w) = \left\lfloor \frac{w}{4} \right\rfloor$$
 for $w = 4, 6, 8, \ldots$

In other words, $\lfloor w/4 \rfloor$ guards are sufficient and sometimes necessary to protect a right-angled art gallery with w walls.

Alas, our colorful argument has a flaw. It fails to post the guards correctly in some situations. Consider the polychromatic 4-coloring of the quadrangulation in Figure 3.14. The three guards at the black corners fail to protect part of the rightmost nook of the gallery. The reason is clear. A guard at a corner of nonconvex quadrilateral might not cover the entire quadrilateral.

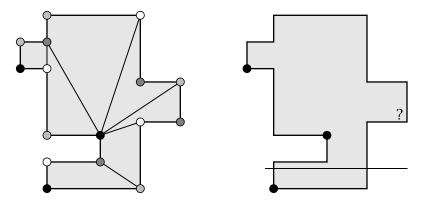


Figure 3.14: A convex quadrangulation is required

To guarantee that the colorful argument works, we must start with a *convex quadrangulation*—one whose quadrilaterals are all convex. Jeffry Kahn, Maria Klawe, and Daniel Kleitman fixed the flaw in the above argument by proving the following result in 1985. **Convex quadrangulation theorem.** Every right-angled art gallery has a convex quadrangulation.

The right-angled art gallery algorithm (Algorithm 3.2) formalizes our discussion.

Algorithm 3.2. Algorithm for right-angled art galleries

Input: right-angled art gallery G_w with w walls **Output:** positions for at most w/4 guards that protect G_w

- 1. Form a convex quadrangulation of G_w by inserting suitable diagonals.
- 2. Find a polychromatic 4-coloring of the corners of the quadrangulation.
- 3. Post guards at the corners with the least frequently used color.

3.9 Guarding the Guards

We now demand that our guards protect one another in addition to the art gallery. Every guard must be visible to at least one other guard. Such configurations protect against an ambush of an isolated guard. We refer to *guarded guards* in this case and study the function

> gg(w) = the maximum number of guarded guards required to protect an art gallery with *w* walls.

96

It is not difficult to see that gg(w) = 2 for w = 3, 4, 5, 6. We must have

$$\left\lfloor \frac{w}{3} \right\rfloor \le gg(w) \le 2 \left\lfloor \frac{w}{3} \right\rfloor.$$

The left inequality is clear because we need at least g(w) guards just to cover the gallery. Also, by starting with a feasible configuration of g(w) guards and assigning each guard a nearby partner, we see that no more than 2g(w) guarded guards are needed.

To determine the formula for gg(w), we might start with another modification to the crown galleries. The New Wave Gallery G_{5t} (shown for t = 4 in Figure 3.15) has t waves and 5t walls. Note that G_{5t} requires 2t guarded guards since each additional wave increases the number of walls by 5 and the number of guarded guards required by 2. We dent the gallery in suitable places if w is not divisible by 5 and conclude that

$$gg(w) \ge \left\lfloor \frac{2w}{5} \right\rfloor$$
 for $w = 5, 6, 7, \dots$

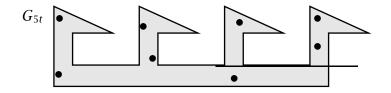


Figure 3.15: The New Wave Gallery G_{5t}

It is tempting to conjecture that $gg(w) = \lfloor 2w/5 \rfloor$, but a rude counterexample intrudes at w = 12. The 12-walled gallery in Figure 3.16 requires five guarded guards, contrary to the predicted maximum of $\lfloor 2w/5 \rfloor = \lfloor (2 \times 12)/5 \rfloor = 4$. As

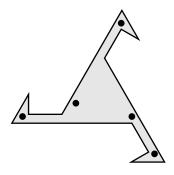


Figure 3.16: A 12-walled gallery requiring five guarded guards

this counterexample suggests, the true formula for guarded guards is more complicated than any we have encountered so far.

Guarded guards theorem. We have

$$gg(w) = \left\lfloor \frac{3w-1}{7} \right\rfloor$$
 for $w = 5, 6, 7, ...$

In other words, $\lfloor (3w - 1)/7 \rfloor$ guarded guards are sufficient and sometimes necessary to protect an art gallery with wwalls for w = 5, 6, 7, ...

Table 3.1 gives some values of the function gg(w). The only known proof of the guarded guards theorem follows the same general scheme of Chvátal's inductive argument

Table 3.1: Number of guarded guards for a gallery with *w* walls

W	5	6	7	8	9	10	11	12	13	14	15	16	17
gg(w)	2	2	2	3	3	4	4	5	5	5	6	6	7

for the original art gallery theorem, but two issues complicate the argument. First, the *w*-walled galleries that require $\lfloor (3w - 1)/7 \rfloor$ guarded guards have complex shapes that are difficult to discover and describe.

Challenge 1. Can you find a 17-walled gallery that requires seven guarded guards? Look at Figure 3.15 if you are stumped.

Second, the inductive step is more subtle than the one used by Chvátal. Is there a pleasant, colorful argument? Nobody has found one yet.

Research problem. Find a colorful, Fisk-like argument for the inequality $gg(w) \le \lfloor (3w - 1)/7 \rfloor$.

Guarded Guards in Right-Angled Galleries

The guarded guards formula for right-angled galleries turns out to be less complicated. Let

 $gg_{\perp}(w)$ = the maximum number of guarded guards required to protect a right-angled art gallery with *w* walls.

The Square Wave Gallery G_{6t} (shown for t = 4 in Figure 3.17) has t waves and 6t walls. Note that G_{6t} requires

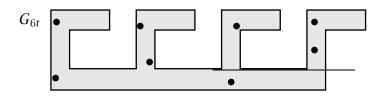


Figure 3.17: The Square Wave Gallery G_{6t}

2t guarded guards since each additional wave increases the number of walls by 6 and the number of guarded guards required by 2. We truncate the gallery in suitable places if w is not divisible by 6 and conclude that

$$gg_{\perp}(w) \ge \left\lfloor \frac{w}{3} \right\rfloor$$
 for $w = 6, 8, 10, \dots$

This time there are no surprises.

Guarded guards theorem for right-angled galleries. We have

$$gg_{\perp}(w) = \left\lfloor \frac{w}{3} \right\rfloor$$
 for $w = 6, 8, 10, \ldots$

In other words, $\lfloor w/3 \rfloor$ guarded guards are sufficient and sometimes necessary to protect a right-angled art gallery with w walls for $w = 6, 8, 10, \ldots$

To show that $\lfloor w/3 \rfloor$ guarded guards are sufficient for a right-angled gallery, we again modify Fisk's colorful argument. Start with a convex quadrangulation of a right-angled gallery G_w , as in Figure 3.18(a). Then triangulate the gallery by inserting a diagonal in each quadrilateral (the thin lines in (b)). The inserted diagonals should "alternate" so that if two quadrilaterals share an edge, then their diagonals do not share a corner. After the diagonal for one quadrilateral is selected arbitrarily, the diagonals for the other quadrilateral is are all forced by this alternating condition. The resulting triangulation has a polychromatic 3-coloring, as shown in (b), and we post guards temporarily at the corners of the least frequently used color—the four black corners in (c). Of course, we have posted at most $\lfloor w/3 \rfloor$ guards, and these guards protect the entire gallery.

Alas, some guards might be invisible to all other guards. The lowest guard in (c) is invisible to the other guards, as is the rightmost guard. We remedy this situation by giving

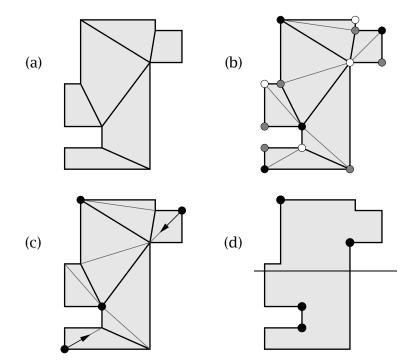


Figure 3.18: Guarded guards for right-angled galleries

marching orders to each guard standing at a corner with exactly one diagonal. Such a guard must march along the diagonal to the opposite corner, as indicated by the arrows in (c). If two or more guards end up at the same corner, then the extra ones are sent home. One can prove that the resulting configuration of guards is indeed guarded and that the entire gallery remains protected, as in (d). We do not give the details.

As with the original art gallery theorem, the resulting configuration of guarded guards need not be minimal. For instance, the process posts four guarded guards in the right-angled gallery in Figure 3.18(d), but three guarded guards suffice; simply dismiss the uppermost guard.

3.10 Three Dimensions and the Octoplex

Art galleries and other buildings in the real world are threedimensional, a fact that has been conspicuously absent from our discussion so far. Let us model three-dimensional galleries by *polyhedra*—solid shapes bounded by polygons. Familiar polyhedra include cubes, prisms, and pyramids. As usual, we want to post cameras in the gallery so that every point is visible to at least one camera. We use security cameras instead of guards since it will sometimes be necessary to post them on the ceiling, in midair, or at other inconvenient locations. We make the somewhat unrealistic assumption that a camera can see in all directions.

Research question. What is the maximum number of security cameras required to protect a three-dimensional gallery with *c* corners?

We seek a simple answer to the three-dimensional art gallery problem, similar to our expressions for two-dimensional galleries. However, no one has been able to find such a formula—or even propose a plausible guess—for reasons we will explain soon.

In a two-dimensional gallery the number of corners is equal to the number of walls. But these parameters are unequal for most three-dimensional galleries. (A corner is a point where three or more walls meet.) We would be just as pleased to answer the research question in terms of the number of walls.

The Octoplex

Guards posted at each corner of a two-dimensional gallery certainly protect the whole gallery. Astonishingly, this obvious assertion is false for three-dimensional galleries. This

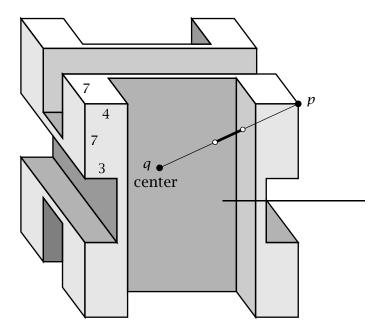


Figure 3.19: The Octoplex

fact frustrates would-be solvers of the three-dimensional problem.

The example in Figure 3.19 is constructed as follows. Start with a 20-by-20-by-20 cube. Remove a rectangular channel 12 units wide and 6 units deep from the center of the front face. There is an identical channel in the back face. The channels in the left and right faces are 6 units wide and 3 units deep, while those in the top and bottom faces are 6 units wide and 6 units deep. The figure that remains is the *Octoplex.* It consists of eight 4-by-7-by-7 theaters connected to one another and to a central lobby by passageways 1 unit wide. The Octoplex has 56 corners and 30 walls.

Claim. Even if we post a camera at every corner, part of the Octoplex is unprotected.

To see why the claim is true, observe that the center point q of the Octoplex is not visible to a camera at the corner p in Figure 3.19 since the direct line of sight from pto q exits and then reenters the Octoplex, as shown. Similar reasoning shows that point q is hidden from cameras at the other 55 corners. In fact, there is a small region in the middle of the lobby that is hidden from every corner camera.

Challenge 2. Protect the Octoplex with 25 cameras. At least one of your cameras will not be at a corner. Can you find a way to use fewer cameras?

The Megaplex

For some three-dimensional galleries, the number of cameras required greatly exceeds the number of corners. The Megaplex is formed by a cubical arrangement of m^3 abutting copies of the Octoplex, as shown for m = 4 in Figure 3.20. The interior walls of adjacent theaters are removed so that some theaters in the Megaplex are formed by merging two, four, or eight Octoplex theaters. For the sake of clarity, the walls separating each Octoplex from its neighbors are retained in the figure. There are m^3 lobbies in the Megaplex. Also, The many channels and shafts do not cross one another.

Claim. The Megaplex has $c = 24m^2 + 24m + 8$ corners and requires at least $m^3/8$ cameras to protect.

To see why the claim is true, observe that the Megaplex has eight outer corners, and that each of the 3m(m + 1) shafts and channels also contributes eight corners. The total number of corners is therefore

$$c = 8 + 3m(m+1) \times 8 = 24m^2 + 24m + 8$$

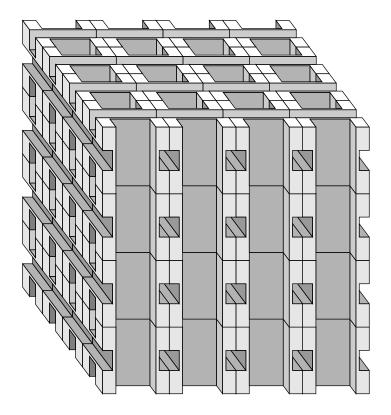


Figure 3.20: The Megaplex

A little experimentation shows that no camera could possibly cover the centers of eight lobbies, and it follows that at least $m^3/8$ cameras are required.

Notice that the ratio of cameras to corners satisfies

$$\frac{\text{cameras}}{\text{corners}} \ge \frac{m^3/8}{24m^2 + 24m + 8} \ge \frac{(m^3 - 1)/8}{24(m^2 + m + 1)} \ge \frac{m - 1}{192}.$$

The factorization $m^3 - 1 = (m - 1)(m^2 + m + 1)$ was used for the last inequality. If $m \ge 194$, then the number of cameras required exceeds the number of corners of the Megaplex. Moreover, as *m* increases, the ratio of cameras to corners becomes arbitrarily large, which dashes any hope for a linear upper bound (say, 1000*c*) for the number of cameras required. A similar assertion holds in terms of the number of walls. Although our Megaplex with $m \ge 194$ does not resemble any three-dimensional building in the real world, it does show that the three-dimensional guarding problem is fundamentally different from the two-dimensional problems we have seen.

The horizontal shafts passing completely through the Megaplex from front to back form undesirable "holes." We can eliminate them by erecting a thin wall to close up the back of each shaft. The shafts in other directions can be dealt with similarly, and the essential features of the Megaplex are preserved.

3.11 Notes and References

106

The original proof of the art gallery theorem is by Chvátal [2]. A more leisurely treatment of Chvátal's proof by mathematical induction appears in Honsberger's book [5]. The book [1] includes a first-hand account of how Fisk discovered his colorful proof [4] on a bus trip in Afghanistan. The right-angled art gallery theorem was first proved by Kahn, Klawe, and Kleitman [6]. Guarded guards are examined in [7]. Żyliński [12] surveys the use of colorful arguments in proving art gallery theorems. The theorem on rectangulated galleries appears in the paper by Czyzowicz et al. [3].

In 1987, O'Rourke wrote *the* book [9] on art gallery theorems, covering both theory and algorithms. Variants examined in O'Rourke's book include mobile guards, the fortress and prison yard problems, and three-dimensional galleries. The encyclopedic tome [11] spans all of computational geometry, and the chapter on art gallery theorems has more than 100 references. Algorithms for art gallery problems (and computational geometry in general) are treated in [10], which also covers computational complexity.

The site

http://maven.smith.edu/~orourke/TOPP/

lists unsolved problems in computational geometry.

- 1. Burger, Edward B., and Starbird, Michael, *The Heart of Mathematics*. Key College Publishing, Emeryville, California, 2000.
- 2. Chvátal, V., A combinatorial theorem in plane geometry, *Journal of Combinatorial Theory, Series B* **18** (1975), 39–41.
- 3. Czyzowicz, J., Rivera-Campo, E., Santoro, N., Urrutia, J., and Zaks, J., Tight bounds for the rectangular art gallery problem, *Graph-Theoretic Concepts in Computer Science (Fischbachau 1991)*, 105–112, Lecture Notes in Computer Science 570, Springer, Berlin, 1992.
- 4. Fisk, S., A short proof of Chvátal's watchman theorem, *Journal of Combinatorial Theory, Series B* 24 (1978), 374.
- 5. Honsberger, Ross, *Mathematical Gems II.* Mathematical Association of America, Washington, DC, 1976.
- Kahn, J., Klawe, M., and Kleitman, D., Traditional galleries require fewer watchmen, *SIAM Journal of Algebraic and Discrete Methods* 4 (1983), 194–206.
- 7. Michael, T. S., and Pinciu, V., Art gallery theorems for guarded guards, *Computational Geometry* **26** (2003), 247–258.
- 8. O'Rourke, J., Galleries need fewer mobile guards: a variation on Chvátal's theorem, *Geometriae Dedicata* **14** (1983), 273–283.
- 9. O'Rourke, Joseph, *Art Gallery Theorems.* Oxford University Press, Cambridge, U.K., 1987.
- 10. O'Rourke, Joseph, *Computational Geometry in C*, 2nd ed. Cambridge University Press, Cambridge, U.K., 1998.
- 11. Sack, J.-R., and Urrutia, J. (eds.), *Handbook of Computational Geometry*. North Holland, Amsterdam, 2000.
- 12. Żyliński, P., Placing guards in art galleries by graph coloring, *Contemporary Mathematics* **352** (2004), 177–188.

3.12 Problems

The problems deal with two-dimensional art galleries.

- 1. Find a triangulation of the Sunflower Art Gallery and a polychromatic 3-coloring that leads to a posting of three guards.
- 2. True or false.
 - (a) If *G* is a convex gallery, then guard(G) = 1.
 - (b) If guard(G) = 1, then the gallery *G* is convex.

- (c) If $guard(G) \ge 2$, then *G* has at least six walls.
- (d) If *G* has at least six walls, then $guard(G) \ge 2$.
- 3. (a) Exhibit an art gallery with eight walls that has a unique triangulation.
 - (b) Exhibit a *w*-walled gallery that has a unique triangulation for each w = 3, 4, ...
- 4. Which corners are the same color as *c* when Figure 3.8 is completed to a polychromatic 3-coloring?
- 5. Let *s* be the number of 90° interior angles in a right-angled gallery with *w* walls. Show that w = 2s 4. Hint: What is the sum of all the angles in the gallery?
- 6. Exhibit an art gallery with both of the following properties.
 - The gallery can be protected by one guard.
 - It is possible to post guards at seven corners and not protect the entire gallery.
- 7. Exhibit an art gallery with both of the following properties.
 - The gallery can be protected by two guards but not by one guard.
 - It is possible to post guards at 29 corners and not protect the entire gallery.
- 8. Let G_{15} denote the 15-walled gallery in Figure 3.6.
 - (a) Protect G_{15} with five guards.
 - (b) Show that G_{15} cannot be protected by four guards.
 - (c) What is the minimum number of guarded guards needed to protect G_{15} ?
- 9. The galleries in Figure 3.17 show that $gg_{\perp}(w) \ge \lfloor w/3 \rfloor$ when *w* is divisible by 6. Exhibit right-angled galleries for the cases when w 2 or w 4 is divisible by 6.

- 10. Find the final configuration of guarded guards if we begin with guards at the four white corners in Figure 3.18(b).
- 11. Write an algorithm to post guarded guards in right-angled galleries. The input of your algorithm will be a right-angled gallery G_w with w walls ($w \ge 6$), and the output will be the positions of at most $\lfloor w/3 \rfloor$ guarded guards that protect G_w .
- 12. Post 10 guards in a particular 17-walled art gallery so that the entire gallery is protected, but dismissal of any guard leaves some part of the gallery unprotected.
- 13. Figure 3.21 shows four guards that protect a rectangulated gallery with six rooms and one rectangular hole.
 - (a) Explain why the gallery cannot be protected by three guards.
 - (b) Explain why every rectangulated gallery with *r* rooms and one rectangular hole can be protected by $\lceil (r + 1)/2 \rceil$ guards.
 - (c) Explain why every rectangulated gallery with *r* rooms and *h* rectangular holes can be protected by $\lceil (r + h)/2 \rceil$ guards.

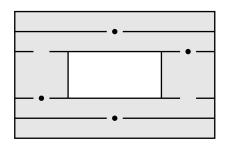


Figure 3.21: A rectangulated gallery with a hole

- 14. There is an art gallery with 8t walls and t holes that requires 3t guards for each t = 1, 2, 3, ... Figure 3.9 shows such a gallery for t = 1. Find a gallery for t = 2, 3, ...
- 15. What is the minimum number of half-guarded needed to protect the Sunflower Art Gallery?
- 16. Give an example of a gallery that can be protected by one guard but not by one half-guard.
- 17. Explain why a triangulation of a *w*-walled gallery must have w 2 triangles and w 3 diagonals.
- 18. (a) Find a 10-walled gallery requiring four guarded guards.
 - (b) Find a 15-walled gallery requiring five guarded guards.
- 19. The Scorpio Gallery in Figure 3.22 has 17 walls.
 - (a) Protect the gallery with seven guarded guards.
 - (b) Show that the gallery cannot be protected by six guarded guards.

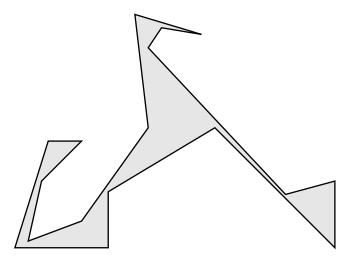


Figure 3.22: The Scorpio Gallery

- 20. Consider a triangulation of an art gallery with at least four walls. Identify each statement as true or false.
 - (a) Every triangle in the triangulation must have at least one side in common with the boundary of the gallery.
 - (b) There is a triangle with exactly two sides in common with the boundary.
 - (c) There are at least two triangles with exactly two sides in common with the boundary.
- 21. Consider a triangulation of an art gallery with at least four walls. Let N_k denote the number of triangles with exactly k sides in common with the boundary of the gallery. Of course, $N_k = 0$ for $k \ge 3$.
 - (a) Explain why $N_0 + N_1 + N_2 = w 2$.
 - (b) Explain why $N_1 + 2N_2 = w$.
 - (c) Show that $3N_0 + 2N_1 + N_2 = 2w 6$.
 - (d) Show that $N_2 = N_0 + 2$.
- 22. The purpose of this problem is to prove that every art gallery with at least four walls has a diagonal. Let G_w be an art gallery with w walls ($w \ge 4$), and let q be the leftmost corner of the gallery. If more than one corner is leftmost, choose the lowest of these. Let p, q, and r be consecutive corners of the gallery and consider the triangle pqr.
 - (a) Suppose that p, q, and r are the only corners of G_w in pqr (including the boundary). Show that segment pr is a diagonal of G_w .
 - (b) Suppose that pqr contains at least one other corner of G_w . Show that G_w has a diagonal with one endpoint at q.
- 23. Show that every art gallery has a triangulation. Hint: Assume that every art gallery with at least four walls has a diagonal (Problem 22).

- 24. This problem outlines Chvátal's proof of the art gallery theorem. Consider a triangulated art gallery G_w with w walls $(w \ge 4)$. Select any diagonal of the triangulation. The diagonal partitions G_w into two galleries with w_1 and w_2 walls.
 - (a) Explain why $w_1 + w_2 = w + 2$.
 - (b) Show that if $w \ge 6$, then we can always select a diagonal so that $w_1 = 5$, 6, or 7. Hint: Among all diagonals for which $w_1 \ge 5$, choose one for which w_1 is smallest.
 - (c) Assume that $w_1 = 5$. Show that

$$\left\lfloor \frac{w_1}{3} \right\rfloor + \left\lfloor \frac{w_2}{3} \right\rfloor = \left\lfloor \frac{w}{3} \right\rfloor.$$

Hint: Show that

$$\left\lfloor \frac{w_2}{3} \right\rfloor = \left\lfloor \frac{w-3}{3} \right\rfloor = \left\lfloor \frac{w}{3} \right\rfloor - 1.$$

(d) Assume that $w_1 = 5$. Make an inductive hypothesis and apply (c) to show that $g(w) \le \lfloor w/3 \rfloor$. Chvátal also deals with the more difficult cases $w_1 = 6$ and $w_1 = 7$.

The picture will have charm when each color is very unlike the one next to it. LEON BATTISTA ALBERTI

Who will guard the guardians? JUVENAL

Science is what we understand well enough to explain to a computer. Art is everything else we do. DONALD KNUTH

Mighty is geometry; joined with art, resistless. EURIPEDES

References

- Alexanderson, G. L., and Wetzel, J. E., Simple partitions of space, *Mathematics Magazine* **51** (1978), 220–225.
- Bailey, H., Fetching water with least residues, *College Mathematics Journal* **39** (2008), 304–306.
- Ball, Keith, *Strange Curves, Counting Rabbits, and Other Mathematical Explorations.* Princeton University Press, Princeton, New Jersey, 2003.
- Banks, Robert B., *Slicing Pizzas, Racing Turtles, and Further Adventures in Applied Mathematics.* Princeton University Press, Princeton, New Jersey, 1999.
- Beck, Anatole, Bleicher, Michael, N., and Crowe, Donald W., *Excursions into Mathematics.* A. K. Peters, Natick, Massachusetts, 2000.
- Beck, Matthias, and Robins, Sinai, *Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra.* Springer, New York, 2006.
- Beihoffer, D., Hendry, J., Nijenhuis, A., and Wagon, S., Faster algorithms for Frobenius numbers, *Electronic Journal of Combinatorics* **12** (2005), #R27 38 pp (electronic).
- Bellman, R., Cooke, K. L., and Lockett, J. A., *Algorithms, Graphs, and Computers*. Academic Press, New York, 1970.
- Berlekamp, Elwyn, R., Conway, John H., and Guy, Richard K., *Winning Ways for Your Mathematical Plays.* Academic Press, London, 1985.
- Beutelspacher, Albert, *Cryptology.* Mathematical Association of America, Washington, DC, 1994.
- Blatter, C., Another proof of Pick's area theorem, *Mathematics Magazine* **70** (1974), 200.
- Blum, L., Blum, M., and Shub, M., A simple unpredictable pseudorandom number generator, *SIAM Journal on Computing* **15** (1986), 364–383.
- Boldi, P., Santini, M., Vigna, S., Measuring with jugs, *Theoretical Computer Science* **282** (2002), 259–270.
- Brauer, A., On a problem of partitions, *American Journal of Mathematics* **64** (1942), 299–312.
- Bresenham, J. E., Algorithm for computer control of a digital plotter, *IBM Systems Journal* 4 no. 1 (1965), 25–30. Also available at: www.research.ibm.com/journal/sj/041/ibmsjIVRIC.pdf
 - 245

- Brualdi, Richard A., *Introductory Combinatorics*, 4th ed. Pearson/Prentice-Hall, Upper Saddle River, New Jersey, 2004.
- Bruckenheimer M. and Arcavi, A., Farey series and Pick's area theorem, *Mathematical Intelligencer* **17** (1995), 200.
- Burger, Edward B., and Starbird, Michael, *The Heart of Mathematics*. Key College Publishing, Emeryville, California, 2000.
- Burn, R. P., *A Pathway into Number Theory.* Cambridge University Press, Cambridge, U,K., 1982.
- Chartrand, Gary, and Lesniak, Linda, *Graphs & Digraphs*, 4th ed. Chapman & Hall/CRC, Boca Raton, Florida, 2005.
- Chvátal, V., A combinatorial theorem in plane geometry, *Journal of Combinatorial Theory, Series B* **18** (1975), 39–41.
- Coxeter, H. S. M., and Greitzer, S. L., *Geometry Revisited*. Mathematical Association of America, Washington, DC, 1967.
- Crandall, Richard, and Pomerance, Carl, *Prime Numbers*, 2nd ed. Springer, New York, 2005.
- Cromwell, Peter R., *Polyhedra*, New ed. Cambridge University Press, Cambridge, U.K., 1999.
- Cuoco, Al, *Mathematical Connections*. Mathematical Association of America, Washington, DC, 2005.
- Czyzowicz, J., Rivera-Campo, E., Santoro, N., Urrutia, J., and Zaks, J., Tight bounds for the rectangular art gallery problem, *Graph-Theoretic Concepts in Computer Science (Fischbachau 1991)*, 105–112, Lecture Notes in Computer Science 570, Springer, Berlin, 1992.
- Davenport, H., *The Higher Arithmetic*, 7th ed. Cambridge University Press, Cambridge, U.K., 2000.
- DeTemple D., and Robertson, J. M., The equivalence of Euler's and Pick's theorems, *Mathematics Teacher* **67** (1974), 222–226.
- Ehrhart, E., Sur les polyèdres rationnels homothétiques à *n* dimensions, *Comptes Rendus de l'Academie des Science* **254** (1962), 616-618.
- Ehrhart, E., *Polynómes arithmétiques et Méthode des Polyèdres en Combinatoire.* International Series of Numerical Mathematics, vol. 35, Birkhäuser Verlag, Basel/Stuttgart, 1977.
- Fisher, D. C., Collins, K. L., and Krompart, L. B., Problem 10406 and solution, *American Mathematical Monthly* **104** (1997), 572–573.
- Fisk, S., A short proof of Chvátal's watchman theorem, *Journal of Combinatorial Theory, Series B* 24 (1978), 374.
- Funkenbusch, W. W., From Euler's formula to Pick's formula using an edge theorem, *American Mathematical Monthly* **81** (1974), 647–648.

- Gaskell, R. W., Klamkin, M. S., and Watson, P., Triangulations and Pick's theorem, *Mathematics Magazine* **49** (1976), 35–37.
- Glassner, Andrew S., (ed.), *Graphics Gems.* Academic Press Professional, Boston, 1990.
- Grimaldi, Ralph P., *Discrete and Combinatorial Mathematics: An Applied Introduction*, 5th ed. Addison Wesley Longman, Reading, Massachusetts, 2004.
- Grünbaum B., and Shephard, G. C., Pick's theorem, *American Mathematical Monthly* **100** (1993), 150–161.
- Hankerson, D. R. Hoffman, D. G., Leonard, D. A., Lindner, C. C., Phelps, K. T., Rodger, C. A., and Wall, J. R., *Coding Theory and Cryptography*, 2nd ed. Marcel Dekker, New York, 2000.
- Harris M. A., and Reingold, E. M., Line drawing, leap years, and Euclid, *ACM Computing Surveys* **36** (2004), 68–80.
- Hess, R. I., Bonus problem, *The Bent of Tau Beta Pi* **96** (2005), No. 3, 53.
- Honsberger, Ross, *Mathematical Gems II.* Mathematical Association of America, Washington, DC, 1976.
- Iseri, H., An exploration of Pick's theorem in space, *Mathematics Magazine* **81** (2008), 106–115.
- Ismailescu, D., Slicing the pie, *Discrete and Computational Geometry* **30** (2003), 263–276.
- Kahn, J., Klawe, M., and Kleitman, D., Traditional galleries require fewer watchmen, *SIAM Journal of Algebraic and Discrete Methods* 4 (1983), 194–206.
- Kertzner, S., The linear diophantine equation, *American Mathematical Monthly* **88** (1981), 200–203.
- Larsen, L., A discrete look at $1+2+\cdots+n$, *College Mathematics Journal* **16** (1985), 369–382.
- Laubenbacher R. C. and Pengelley, D. J., *Mathematical Intelligencer* **16** (1994), 67-72.
- Liu, A. C. F., Lattice points and Pick's theorem, *Mathematics Magazine* **52** (1979), 232–235.
- Lovász, Lászlő, Pelikán, József, and Vesztergombi, Katalin, *Discrete Mathematics: Elementary and Beyond.* Springer, New York, 2003.
- Macdonald, I. G., The volume of a lattice polyhedron, *Proceedings of the Cambridge Philosophical Society* **59** (1963), 719-726.
- McDiarmid, C. J. H., and Ramírez Alfonsín, J. L., Sharing jugs of wine, *Discrete Mathematics* **125** (1994), 279–287.
- Michael, T. S., and Pinciu, V., Art gallery theorems for guarded guards, *Computational Geometry* **26** (2003), 247–258.

- Moon, Todd K., *Error Correction Coding: Mathematical Methods and Algorithms.* Wiley-Interscience, Hoboken, New Jersey, 2005.
- Nelson, Roger B., *Proofs without Words: Exercises in Visual Thinking.* Mathematical Association of America, Washington, DC, 1993.
- Nelson, Roger B., *Proofs without Words II: More Exercises in Visual Thinking.* Mathematical Association of America, Washington, DC, 2000.
- Nijenhuis, A., and Wilf, H. S., Representation of integers by linear forms in non-negative integers, *Journal of Number Theory* **4** (1972), 98– 106.
- Niven, Ivan, Diophantine Approximations. Dover, New York, 2008.
- Nyblom, M. A., Pick's theorem and greatest common divisors, *Mathematical Spectrum* **38** (2005/06), 9–11.
- O'Bierne, T. H., *Puzzles and Paradoxes.* Oxford University Press, New York, 1965.
- Ogilvy, C. Stanley, and Anderson, John T., *Excursions in Number Theory*. Dover, New York, 1988.
- O'Rourke, J., Galleries need fewer mobile guards: a variation on Chvátal's theorem, *Geometriae Dedicata* **14** (1983), 273–283.
- O'Rourke, Joseph, Art Gallery Theorems. Oxford University Press, Cambridge, U.K., 1987.
- O'Rourke, Joseph, *Computational Geometry in C*, 2nd ed. Cambridge University Press, Cambridge, U.K., 1998.
- Owens, R. W., An algorithm to solve the Frobenius problem, *Mathematics Magazine* **76** (2003), 264–275.
- Parshall, Karen Hunger, *James Joseph Sylvester: Jewish Mathematician in a Victorian World.* Johns Hopkins University Press, Baltimore, 2006.
- Peterson, Ivars, *The Mathematical Tourist.* W. H. Freeman, New York, 1988.
- Pfaff, T. J., and Tran, M. M., The generalized jug problem, *Journal of Recreational Mathematics* **31** (2002-03), 100-103.
- Pick, G., Geometrisches zur Zahlenlehre, *Sitzungsberichte Lotos (Prag) Naturwissenschaftlich-Medizinschen Vereines für Böhmen* **19** (1899), 311–319.
- Rabin, M. O., Digitalized signatures and public-key functions as intractable as factorization, Technical Report: TR-212, 1979, Massachusetts Institute of Technology, Cambridge, Massachusetts.
- Ramírez Alfonsín, J. L., *The Diophantine Frobenius Problem*. Oxford University Press, New York, 2005.
- Reeve, J. E., On the volume of lattice polyhedra, *Proceedings of the London Mathematical Society* (3rd Ser.), **7** (1957), 378–395.

- Reingold, Edward M., and Dershowitz, Nachum, *Calendrical Calculations: The Millennium Edition.* Cambridge University Press, Cambridge, U.K., 2001.
- Reingold, Edward M., and Dershowitz, Nachum, *Calendrical Tabulations, 1900–2200.* Cambridge University Press, Cambridge, U.K., 2002.
- Richeson, David S., *Euler's Gem: The Polyhedron Formula and the Birth of Topology.* Princeton University Press, Princeton, New Jersey, 2008.
- Roberts, Fred S., and Tesman, Barry, *Applied Combinatorics*, 2nd ed. Prentice Hall, Upper Saddle River, New Jersey, 2003.
- Roberts, S., On the figures formed by the intercepts of a system of straight lines in a plane, and on analogous relations in space of three dimensions, *Proceedings of the London Mathematical Society* **19** (1899), 405-422.
- Rosenholtz, I., Calculating surface areas from a blueprint, *Mathematics Magazine* **52** (1979), 252–256.
- Sack, J.-R., and Urrutia, J. (eds.), *Handbook of Computational Geometry*. North Holland, Amsterdam, 2000.
- Sawyer, W. W., On a well-known puzzle, *Scripta Mathematica* **16** (1950), 107–110.
- Schumer, Peter D., *Mathematical Journeys.* Wiley Interscience, Hoboken, New Jersey, 2004.
- Shepherd, S. J., Sanders, P. W., and Stockel, C. T., The quadratic residue cipher and some notes on implementation, *Cryptologia* **17** (1993), 264–282.
- Sicherman, G., Theory and practice of Sylver Coinage, *Integers: Electronic Journal of Combinatorial Number Theory* **2** (2002), #G02 11 pp (electronic).
- Sloane, N. J. A., The On-Line Encyclopedia of Integer Sequences, *Notices* of the American Mathematical Society **50** (2003), 912–915.
- Steiner, J., Eineige Gesetze über die Theilung der Ebene und des Raumes, *J. für die Reine und Angewandte Mathematik* 1 (1826), 349– 364.
- Stewart, Ian, Another Fine Math You've Got Me Into.... Dover, New York, 2003.
- Stillwell, John, *Elements of Number Theory.* Springer, New York, 2003. Stillwell, John, *Numbers and Geometry.* Springer, New York, 1998.
- Stinson, Douglas, *Cryptology: Theory and Practice,* 2nd ed. Chapman Hall/CRC, Boca Raton, Florida, 2002.

- Sylvester, J. J., On subinvariants, i.e. semi-invariants to binary quantics of an unlimited order, *American Journal of Mathematics* **5** (1882), 119–136.
- Tweedie, M. C. K., A graphical method of solving Tartaglian measuring puzzles, *Mathematical Gazette* **23** (1939), 278–282.
- Varberg, D. E., Pick's theorem revisited, *American Mathematical Monthly* **92** (1985), 584–587.
- Weaver, C. S., Geoboard triangles with one interior point, *Mathematics Magazine* **50** (1977) 92–94.
- Wetzel, J. E., On the division of the plane by lines, *American Mathematical Monthly* **85** (1978), 647–656.
- Wilf, H. S., A circle-of-lights algorithm for the "money-changing problem," *American Mathematical Monthly* **85** (1978), 562–565.
- Wu, X., and Rokne, J. G., Double-step incremental generation of lines and circles, *Computer Vision, Graphics, and Image Processing* **37** (1987), 331–334.
- Zimmerman, S., Slicing space, *College Mathematics Journal* **32** (2001), 126–128.
- Żyliński, P., Placing guards in art galleries by graph coloring, *Contemporary Mathematics* **352** (2004), 177-188.

Index

Abbot Albert, 155 abbreviated state sequence, 145, 151 absolute sequence, 122 addition table, 173, 174 additive number theory, 170 additivity of area, 50 Afghanistan, 106 Aikman, Leo, 113 Alberti, Leon Battista, 112 algorithm, 75, 78, 83 art gallery, 83, 84 right-angled, 96 Bresenham's, 115, 122, 123, 134 Bruce Willis problem, 143 circle of lights, 197, 202 Euclid's, 132, 135, 242 line drawing, 115, 122 Bresenham's, 115, 122, 123, 134 water measuring, 148-150 Alice and Bob, 194, 200, 201, 204 Anderson, John T., 135 antialiasing, 124 Apostol, Thomas M., xi approximation, 41, 125 area, 34 Diophantine, 128 arithmetical Islamic calendar, 126, 130.137 arithmetic array, 118, 119, 151, 152, 163, 168, 198, 201, 230 diminished, 182, 184, 186, 201 arithmetic array theorem, 153, 185, 199

arithmetic progression, 120, 152-154art gallery, ix, 51, 73, 75, see also gallery algorithm, 83, 84 right-angled galleries, 96 problems, 75, 88 theorem, 81 AT&T Laboratories, 20 Atiyah, Michael, 32 ATM card, 164 attainable number, 170 uniquely, 181 axis-parallel, 44 Ball, Keith, 65 Banks, Robert B., 22 barcode. 74 baseball, 56 batting average, 56, 68 Beck, Matthias, 65 Berra, Yogi, 1 bijection, 180 binomial theorem, 161, 167 Bogomolny, Alex, 156 Boldi, P., 164, 168 Bresenham, Jack, 115, 134 Bresenham's algorithm, 115, 122, 123.134 Brualdi, Richard A., 22 Bruce Willis problem, x, 139, 152, 156calculus, 8, 43 calculus of finite differences, 7 calendar, 125 Hebrew, 125 Islamic, 126, 137 Julian, 131

251

INDEX

Cartesian coordinates, 35, 113 plane, 39, 42 ceiling function, [x], 92 Chinese Remainder Theorem, 172, 187.222 choose function, 10, 12, 167, 241 chords, 26 Chvátal, Vasek, 81, 88, 98, 106, 112 circle of lights algorithm, 197, 202 code length, 214 parameters, 214 quadratic residues, 214, 240 repetition, 213 size, 214 code word, 213 coding theory, 208, 213 coin exchange problem, 190 coin theorem, 192 comb-shaped gallery, 93 complete state sequence, 145 complete the square, 241 compound, 200 computational complexity, 78 computational geometry, 74 computer graphics, 113, 115 computer line drawing, see line drawing congruence, 161, 187, 209 Fermat's, 160, 162, 167, 242 connected graph, 17 continued fractions. 130 continuity error, 146 convex, 76 convex polyhedron, 60 convex quadrangulation, 95, 100 theorem. 96 Conway, John Horton, 194 co-primality theorem, 133, 154, 155, 164, 187

co-prime, 122, 140, 141, 147, 167, 168, 172 Cromwell, Peter R., 22 Crown Gallery, 79 cryptography, 164, 208, 224, 225 cube, 19, 102 Cuoco, Al, 22 Czyzowicz, J., 106 Davenport, H., 239 Dean, James, 207 degenerate quadrilateral, 88, 94 derivative, 8 determinants, 37 Die Hard: With a Vengeance, x, 139, 146 difference table, 2, 7, 11, 24, 30 digital signature, 164, 225 diminished arithmetic array, 182, 184, 186, 201 Diophantine approximation, 128 Diophantus, 129 discrete mathematics, ix, 2, 5, 34, 65, 74, 78, 84, 86, 150, 164, 196 dissection puzzle, 68 distance formula, 117 vertical, 117 dollar-changing, 37 problem, x, 33, 171 theorem, 47 Ebert, Roger, 146 edge. 17 Ehrhart polynomial, 65 Einstein, Albert, 43 Eisenstein, Ferdinand, 237, 239 Eppstein, David, 22 Eratosthenes, 188 error-correcting code, 213 Euclid's algorithm, 132, 135, 242 Euler, Leonhard, 16, 216, 219, 236

INDEX

Euler's criterion, 219, 220, 226, 244 Euler's formula, 16, 17, 22, 25-27, 56, 65 Euripedes, 112 face, 17 factorial, 12 Fermat, Pierre de, x, 142, 160 Fermat's congruence, 160, 162, 167, 242 Fermat's theorem, 160 fingerprint recognition, 75 finite differences, 7 Fisk, Steve, 81, 88, 93, 100, 106 floor function, |x|, 80 forensics, 75 fortress problem, 88 four squares theorem, 171 framed (triangle), 36, 52 Frobenius, Ferdinand Georg, 191 Frobenius number, 191, 198, 202 gallery, 75 comb, 93 convex, 77 Crown, 79, 80 New Wave, 97 rectangulated, 92, 109 theorem, 92 right-angled, 93 Scorpio, 110 Square Wave, 99 Sunflower, 73, 76, 110 Sunrise, 86 Gauss, Carl Friedrich, 226, 236, 244 Gauss's lemma, 226, 243 gcd, see greatest common divisor generating function, 196 Gentry, Sommer, xi

global positioning satellite (GPS), 74 golden theorem, 237 grapefruit-cutter's formula, 11, 30 grapefruit-cutter's recurrence, 30 greatest common divisor, 45, 132, 141, 172, 204, 242 Gruber, Simon, 139, 150 guard, 73 guarded, 96 half-, 90, 110 guarded guards, 96 theorem, 98 right-angled galleries, 100 half-guard, 90, 110 theorem, 91 Harris, M. A., 135 Hebrew calendar, 125 Heron's formula, 35, 67 holes, 44, 70, 75, 90, 106, 109, 110 Honsberger, Ross, 106, 197 IBM, 115 integer pairs, 39 integer triangle, 72 intercalation, 125 irrational number, 129 Islamic calendar, 126 Ismailescu, Dan, 22 Ismailescu's theorem, 22, 30 Jenny's prime, 242 Julian calendar, 131 Juvenal, 112 Kahn, Jeffry, 95, 106 Kertzner, S., 164 Klawe, Maria, 95, 106 Klee, Victor, 81 Kleitman, Daniel, 95, 106 Knuth, Donald, 112

Lagrange, Joseph Louis, 171 Larson, Loren, 22 lattice point, 42, 58, 113, 227, 238 enumerator, 61, 65, 68, 70, 71 theorem, 62, 63 lattice polygon, 42, 180, 204 lattice polyhedron, 58 Law of Quadratic Reciprocity, 208, 234, 243 leap day, 125 leap month, 125 leap year, 113, 125, 135 Legendre, Adrien-Marie, 216, 218, 236 Legendre symbol, 218, 226 length of a code. 214 Leyland number, 240 line drawing, 229 algorithm, 115, 122 problem, ix, 74, 130, 152, 208 line segment, 113 Longfellow, Henry Wadsworth, 168 Mach, Ernst, 43 majority rules, 213 Marcia and Greg, 224, 241 McDonald's, 190 McNuggets problem, 190, 192, 195 Megaplex, 104, 105 Metropolitan Museum of Art, 91 mnemonic, 149 modular arithmetic, 161, 164, 187, 208 modulus, 161, 187, 209 Moen, Courtney, xi Muir, John, 72 multiplication table, 216 multiplicativity, 218, 219 Myers, Amy, xi

Nelson, Roger B., 22

Neumann, John von, 138 New Wave Gallery, 97 Nijenhuis, A., 197 *N*-largement, 58, 60, 62 nonconvex, 76 number attainable, 170 Frobenius, 191, 198 irrational, 129 Leyland, 240 rational, 69, 129, 132 unattainable, 170 uniquely attainable, 181 number theory, ix, x, 160, 172, 225,239 additive, 170 Octoplex, 103 **OEIS**, 20 Ogilvy, C. Stanley, 135 O'Keeffe, Georgia, 73 **On-Line Encyclopedia of Integer** Sequences (OEIS), 20, 30 O'Rourke, Joseph, 106 Owens, R. W., 197 palindrome, 122, 209, 217 parameters of a code, 214 Parshall, Karen Hunger, 196 partition problem, 171, 197 periodicity, 219 permutation, 20 Pick, Georg, 34, 43, 65 Pick's formula, 33, 42, 65, 180, 204 pixels, ix, 113, 212, 227 pizza-cutter's formula, 7, 10 pizza-cutter's problem, ix, 1, 16 pizza-cutter's recurrence, 5 pizza envy theorem, 21 plane-cutting, 3 plane graph, 16, 17 polychromatic, 82

254

3-coloring, 82, 86, 108 4-coloring, 94 polygon convex, 76 holes, 44, 70, 75, 90, 109, 110 lattice, 42, 180, 204 simple, 43, 75, 90 polyhedron, 19, 29, 58, 102 convex, 60, 71 holes. 106 lattice, 58, 71 polynomial, 8, 178 Ehrhart, 65 prime, 188, 201, 207 Jenny's, 242 primitive lattice triangle, 50, 52 theorem, 50 primitive lattice triangulation, 50 prism, 19, 102 prison yard problem, 89 problem art gallery, ix, 75, 88 coin exchange, 190 dollar-changing, x, 171 fortress, 88 line drawing, ix, 74, 113, 130, 208 McNuggets, 190, 192, 195 partition, 171, 197 pizza-cutter's, ix prison yard, 89 stamp, 169, 172 Steiner's plane-cutting, 3 Tartaglian water measuring, 155, 167 water measuring, 139 Willis, Bruce, x, 139, 152, 156 zookeeper, 89 proof without words, 12, 22, 27, 28 puzzle

dissection. 68 three utilities, 28 pyramid, 19, 58, 102 Pythagorean triple, 171 quadrangulation, 94 convex, 95, 100 quadratic reciprocity, 152 quadratic residue, ix, 207-209 quadrilateral, 94 convex, 95 degenerate, 87, 94 nonconvex, 95 Ramírez Alfonsín, J. L., 197 rational number, 69, 129, 132 rectangulated gallery, 92, 109 theorem, 92 recurrence, 2, 5, 25 grapefruit cutter's, 30 pizza-cutter's, 5 Reichenbach, Hans, 244 Reingold, E. M., 135 repetition code, 213 right-angled art gallery, 93 theorem, 95 Robins, Sinai, 65 Rokne, J. G., 135 rounding function, round [Y], 114 round-up counter, 226 Santini, M., 164 Schumer, Peter D., 197 Schur, Issai, 193, 197 Scorpio Gallery, 110 semiperimeter, 67 Sharp, C. W. Curran, 178 Sicherman, George, 197 sieve Eratosthenes, 188 tabular, 188, 192, 201 simple polygon, 43, 75, 90 size of a code, 214

skew billiard table, 144, 148, 156 Sloane, Neil J. A., 20, 22 square pyramid, 19, 71 square root, 221, 222 square root formula, 221 Square Wave Gallery, 99 stamp problem, 169, 172 stamp theorem, 184, 191 state, 142 state sequence abbreviated, 145 complete, 145 Steiner, Jakob, 3, 22 Steiner's plane-cutting problem, 3 Stewart, Ian, 65 Stillwell, John, 135, 239 strategy-stealing, 195, 197 Sunrise Gallery, 86 supplementary law, 212, 219, 220, 227,232 sweep-line, 15 sylver coinage, 169, 172, 194, 197, 200, 201, 204 sylver theorem, 196 Sylvester, James Joseph, 169, 170, 194, 196, 200, 205 Sylvester's formula, 177, 200, 204

table

addition, 173, 174 multiplication, 216 tabular sieve, 188, 192, 201 Tartaglia, Niccolò, 156 Tartaglian water measuring problem, 155, 167 tetrahedron, 58, 59 theorem arithmetic array, 153, 185, 199 art gallery, 81 binomial, 161, 167

Chinese Remainder, 172, 187, 222 coin. 192 convex quadrangulation, 96 co-primality, 133, 154, 155, 164, 187 dollar-changing, 47 Fermat's, 160 four squares, 171 golden, 237 guarded guards, 98 right-angled galleries, 100 half-guard, 91 lattice point enumerator, 62, 63 pizza envy, 21 primitive lattice triangles, 50 rectangulated gallery, 92 right-angled art gallery, 95 stamp, 184, 191 sylver, 196 three denominations, 48 triangulated polygon, 32, 55 water measuring, 147 general, 158, 164, 168 theorema aureum, 237 Theresienstadt, 43 three denominations theorem, 48 three utilities puzzle, 28 Tommy Tutone, 242 Tóth, Csaba, 91 transitivity, 161 triangular lattice, 71 triangular prism, 19 triangular pyramid, 19, 70 triangulated polygon, 31 theorem, 32, 55 triangulation, 51, 82, 108, 111 primitive, 50 trigonometry, 22, 69 trilinear coordinates, 164 Tweedie, M. C. K., 147, 156, 164

256

INDEX

unattainable number, 170 uniquely attainable number, 181 vectors, 37 vertex, 17 video games, 74 Vigna, S., 164 visible points, 75, 96 water measuring, 139 algorithm, 148-150 problem, 139 theorem, 147 general, 158, 164, 168 Wetzl, John E., 22 Wilde, Oscar, 33 Wilf, Herbert, 197 Willis, Bruce, x, 139, 142, 155 Wright, Steven, 32 Wu, X., 135 zonohedra, 20 zookeeper problem, 89

Żyliński, P., 106