
1

Greedy algorithm

• Prim’s algorithm for constructing a Minimal
Spanning Tree is a greedy algorithm: it just
adds the shortest edge without worrying
about the overall structure, without looking
ahead. It makes a locally optimal choice at
each step.

Greedy Algorithms

• Dijkstra's algorithm: pick the vertex to
which there is the shortest path currently
known at the moment.

• For Dijkstra's algorithm, this also turns out
to be globally optimal: can show that a
shorter path to the vertex can never be
discovered.

• There are also greedy strategies which are
not globally optimal.

Example: non-optimal greedy
algorithm

• Problem: given a number of coins, count the
change in as few coins as possible.

• Greedy strategy: start with the largest coin
which is available; for the remaining
change, again pick the largest coin; and so
on.

Shortest path

• Find the shortest route between two vertices
u and v.

• It turns out that we can just as well compute
shortest routes to ALL vertices reachable
from u (including v). This is called single-
source shortest path problem for weighted
graphs, and u is the source.

Dijkstra’s Algorithm

• An algorithm for solving the single-source
shortest path problem. Greedy algorithm.

• The first version of the Dijkstra's algorithm
(traditionally given in textbooks) returns not
the actual path, but a number - the shortest
distance between u and v.

• (Assume that weights are distances, and the length
of the path is the sum of the lengths of edges.)

Example

• Dijkstra’s algorithm should return 6 for the
shortest path between A and B:

A

C D

B10

2

22

2

Dijkstra’s algorithm

To find the shortest paths (distances) from the start
vertex s:

• keep a priority queue PQ of vertices to be
processed

• keep an array with current known shortest
distances from s to every vertex (initially set to be
infinity for all but s, and 0 for s)

• order the queue so that the vertex with the shortest
distance is at the front.

Dijkstra’s algorithm

Loop until there are vertices in the queue PQ:

• dequeue a vertex u
• recompute shortest distances for all vertices

in the queue as follows: if there is an edge
from u to a vertex v in PQ and the current
shortest distance to v is greater than
distance(s,u) + weight(u,v) then replace
distance(s,v) with distance (s,u) +
weight(u,v).

Computing the shortest distance

If the shortest distance from s to u is
distance(s,u) and the weight of the edge
between u and v is weight(u,v), then the
current shortest distance from s to v is
distance(s,u) + weight(u,v).

s u v
weight(u,v)distance(s,u)

Example

• Distances: (A,0), (B,INF), (C,INF), (D,INF)

• PQ = {A,B,C,D}

A

C D

B10

2

22

Example (dequeue A)

• Distances: (A,0), (B,INF), (C,INF), (D,INF)

• PQ = {B,C,D}

A

C D

B10

2

22

Example (recompute distances)

• Distances: (A,0), (B,10), (C,2), (D,INF)

• PQ= {C,B,D}

A

C D

B10

2

22

3

Example (dequeue C)

• Distances: (A,0), (B,10), (C,2), (D,INF)

• PQ = {B,D}

A

C D

B10

2

22

Example (recompute distances)

• Distances: (A,0), (B,10), (C,2), (D,4)

• PQ = {D,B}

A

C D

B10

2

22

Example (dequeue D)

• Distances: (A,0), (B,10), (C,2), (D,4)

• PQ = {B}

A

C D

B10

2

22

Example (recompute distances)

• Distances: (A,0), (B,6), (C,2), (D,4)

• PQ = {B}

A

C D

B10

2

22

Example (dequeue B)

• Distances: (A,0), (B,6), (C,2), (D,4)

• PQ = {}

A

C D

B10

2

22

Pseudocode for D’s Algorithm

• INF is supposed to be greater than any
number

• dist : array holding shortest distances from
source s

• PQ : priority queue of unvisited vertices
prioritised by shortest recorded distance
from source

• PQ.reorder() reorders PQ if the values in
dist change.

4

Pseudocode for Dijkstra’s
Algorithm

for(each v in V){
dist[v] = INF;

dist[s] = 0;
}
PriorityQueue PQ = new PriorityQueue();
// insert all vertices in PQ,
// in reverse order of dist[]

// values

Pseudocode for D’s Algorithm

while (! PQ.isempty()){

u = PQ.dequeue();

for(each v in PQ adjacent to u){

if(dist[v] > (dist[u]+weight(u,v)){

dist[v] = (dist[u]+weight(u,v));

}
}

PQ.reorder();

}

return dist;

Modified algorithm

To make Dijkstra’s algorithm to return the path
itself, not just the distance:

• In addition to distances, maintain a path (list of
vertices) for every vertex

• In the beginning paths are empty

• When assigning dist(s,v)=dist(s,u)+weight(u,v)
also assign path(v)=path(u).

• When dequeuing a vertex, add it to its path.

Example

• Distances and paths:

(A,0,{}), (B,INF,{}), (C,INF,{}), (D,INF,{})

A

C D

B10

2

22

Dequeue A, recompute paths

• Distances and paths:

(A,0,{A}), (B,10,{A}), (C,2,{A}), (D,INF,{})

A

C D

B10

2

22

Dequeue C, recompute paths

• Distances and paths:

(A,0,{A}), (B,10,{A}), (C,2,{A,C}), (D,INF,{})

A

C D

B10

2

22

5

Dequeue C, recompute paths

• Distances and paths:

(A,0,{A}), (B,10,{A}), (C,2,{A,C}), (D,4,{A,C})

A

C D

B10

2

22

Dequeue D, recompute paths

• Distances and paths:

(A,0,{A}), (B,6,{A,C,D}), (C,2,{A,C}),
(D,4,{A,C,D})

A

C D

B10

2

22

Dequeue B, recompute paths

• Distances and paths:

(A,0,{A}), (B,6,{A,C,D,B}), (C,2,{A,C}),
(D,4,{A,C,D})

A

C D

B10

2

22

Optimality of Dijkstra's algorithm

So, why is Dijkstra’s algorithm optimal (gives
the shortest path)?

Let us first see where it could go wrong.

What the algorithm does

• For every vertex in the priority queue, we
keep updating the current distance
downwards, until we remove the vertex
from the queue.

• After that the shortest distance for the
vertex is set.

• What if a shorter path can be discovered
later?

Optimality proof

• Base case: the shortest distance to the start
node is set correctly (0)

• Inductive step: assume that the shortest
distances are set correctly for the first n
vertices removed from the queue. Show that
it will also be set correctly for the n+1st
vertex.

6

Optimality proof

• Assume that the n+1st vertex is u. It is at the
front of the priority queue and it’s current
known shortest distance is dist(s,u). We
need to show that there is no path in the
graph from s to u with the length smaller
than dist(s,u).

Optimality proof

• Proof by contradiction: assume there is such
a (shorter) path

• That path contains a vertex v1 to which the
shortest distance is set (it may be that v1=s)
which has an edge to a vertex v2 to which
the distance is not set (maybe v2=u)

s u
v1 v2

Optimality proof

• So the vertices from s to v1 have correct
shortest distances (inductive hypothesis)
and v2 is still in the priority queue.

s u
v1 v2

Optimality proof

• So dist(s,v1) is indeed the shortest path
from s to v1. Current distance to v2 is
dist(s,v2)=dist(s,v1)+weight(v1,v2)

s u
v1 v2

Optimality proof

• If v2 is still in the priority queue, then
dist(s,v1)+weight(v1,v2) >= dist(s,u)

s u
v1 v2

Optimality proof

• But then the path going through v1 and v2
cannot be shorter than dist(s,u). QED

s u
v1 v2

7

Complexity

• Assume that the priority queue is implemented as
a heap;

• At each step (dequeueing a vertex u and
recomputing distances) we do O(|Eu|*log(|V|))
work, where Eu is the set of edges with source u.

• We do this for every vertex, so total complexity is
O((|V|+|E|)*log(|V|)).

• Really similar to BFS and DFS, but instead of
choosing some successor, we re-order a priority
queue at each step, hence the |*log(|V|) factor.

Implementation

• A Java implementation of Dijkstra’s
algorithm is given in Goodrich and
Tamassia, Chapter 13.6.

