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Greedy algorithm

• Prim’s algorithm for constructing a Minimal 
Spanning Tree is a greedy algorithm: it just 
adds the shortest edge without  worrying 
about the overall structure, without looking 
ahead. It makes a locally optimal choice at 
each step.

Greedy Algorithms

• Dijkstra's algorithm: pick the vertex to 
which there is the shortest path currently 
known at the moment. 

• For Dijkstra's algorithm, this also turns out 
to be globally optimal: can show that a 
shorter path to the vertex can never be 
discovered. 

• There are also greedy strategies which are 
not globally optimal. 

Example: non-optimal greedy 
algorithm 

• Problem: given a number of coins, count the 
change in as few coins as possible. 

• Greedy strategy: start with the largest coin 
which is available; for the remaining 
change, again pick the largest coin; and so 
on.

Shortest path

• Find the shortest route between two vertices 
u and v. 

• It turns out that we can just as well compute 
shortest routes to ALL vertices reachable 
from u (including v). This is called single-
source shortest path problem for weighted 
graphs, and u is the source. 

Dijkstra’s Algorithm

• An algorithm for solving the single-source 
shortest path problem. Greedy algorithm.

• The first version of the Dijkstra's algorithm 
(traditionally given in textbooks) returns not 
the actual path, but a number - the shortest 
distance between u and v. 

• (Assume that weights are distances, and the length 
of the path is the sum of the lengths of edges.)

Example

• Dijkstra’s algorithm should return 6 for the 
shortest path between A and B:
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Dijkstra’s algorithm

To find the shortest paths (distances) from the start 
vertex s:

• keep a priority queue PQ of vertices to be 
processed

• keep an array with current known shortest 
distances from s  to every vertex (initially set to be 
infinity for all but s, and 0 for s)

• order the queue so that the vertex with the shortest 
distance is at the front. 

Dijkstra’s algorithm

Loop until there are vertices in the queue PQ:

• dequeue a vertex u
• recompute shortest distances for all vertices 

in the queue as follows: if there is an edge 
from u to a vertex v in PQ and the current 
shortest distance to v is greater than 
distance(s,u) + weight(u,v) then replace 
distance(s,v) with distance (s,u) + 
weight(u,v).

Computing the shortest distance

If  the shortest distance from s to u is 
distance(s,u) and the weight of the edge 
between u and v is weight(u,v), then the 
current shortest distance from s to v is 
distance(s,u) + weight(u,v). 

s u v
weight(u,v)distance(s,u)

Example

• Distances: (A,0), (B,INF), (C,INF), (D,INF)

• PQ = {A,B,C,D}
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Example (dequeue A)

• Distances: (A,0), (B,INF), (C,INF), (D,INF)

• PQ = {B,C,D}
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Example (recompute distances)

• Distances: (A,0), (B,10), (C,2), (D,INF)

• PQ= {C,B,D}
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Example (dequeue C)

• Distances: (A,0), (B,10), (C,2), (D,INF)

• PQ = {B,D}
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Example (recompute distances)

• Distances: (A,0), (B,10), (C,2), (D,4)

• PQ = {D,B}
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Example (dequeue D)

• Distances: (A,0), (B,10), (C,2), (D,4)

• PQ = {B}
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Example (recompute distances)

• Distances: (A,0), (B,6), (C,2), (D,4)

• PQ = {B}
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Example (dequeue B)

• Distances: (A,0), (B,6), (C,2), (D,4)

• PQ = {}
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Pseudocode for D’s Algorithm

• INF is supposed to be greater than any 
number 

• dist : array holding shortest distances from 
source s 

• PQ : priority queue of unvisited vertices 
prioritised by shortest recorded distance 
from source 

• PQ.reorder() reorders PQ if the values in 
dist change. 
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Pseudocode for Dijkstra’s
Algorithm

for(each v in V){
dist[v] = INF; 

dist[s] = 0; 
}
PriorityQueue PQ = new PriorityQueue();
// insert all vertices in PQ, 
// in reverse order of dist[] 

// values 

Pseudocode for D’s Algorithm

while (! PQ.isempty()){ 

u = PQ.dequeue();     

for(each v in PQ adjacent to u){

if(dist[v] > (dist[u]+weight(u,v)){

dist[v] = (dist[u]+weight(u,v));

}
}

PQ.reorder();

}

return dist;

Modified algorithm

To make Dijkstra’s algorithm to return the path 
itself, not just the distance:

• In addition to distances, maintain a path (list of 
vertices) for every vertex

• In the beginning paths are empty

• When assigning dist(s,v)=dist(s,u)+weight(u,v) 
also assign path(v)=path(u).

• When dequeuing a vertex, add it to its path.

Example

• Distances and paths:

(A,0,{}), (B,INF,{}), (C,INF,{}), (D,INF,{})
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Dequeue A, recompute paths

• Distances and paths:

(A,0,{A}), (B,10,{A}), (C,2,{A}), (D,INF,{})
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Dequeue C, recompute paths

• Distances and paths:

(A,0,{A}), (B,10,{A}), (C,2,{A,C}), (D,INF,{})
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Dequeue C, recompute paths

• Distances and paths:

(A,0,{A}), (B,10,{A}), (C,2,{A,C}), (D,4,{A,C})
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Dequeue D, recompute paths

• Distances and paths:

(A,0,{A}), (B,6,{A,C,D}), (C,2,{A,C}), 
(D,4,{A,C,D})
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Dequeue B, recompute paths

• Distances and paths:

(A,0,{A}), (B,6,{A,C,D,B}), (C,2,{A,C}), 
(D,4,{A,C,D})
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Optimality of Dijkstra's algorithm

So, why is Dijkstra’s algorithm optimal (gives 
the shortest path)?

Let us first see where it could go wrong.

What the algorithm does

• For every vertex in the priority queue, we 
keep updating the current distance 
downwards, until we remove the vertex 
from the queue.

• After that the shortest distance for the 
vertex is set.

• What if a shorter path can be discovered 
later?

Optimality proof

• Base case: the shortest distance to the start 
node is set correctly (0)

• Inductive step: assume that the shortest 
distances are set correctly for the first n 
vertices removed from the queue. Show that 
it will also be set correctly for the n+1st 
vertex.
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Optimality proof

• Assume that the n+1st vertex is u. It is at the 
front of the priority queue and it’s current 
known shortest distance is dist(s,u). We 
need to show that there is no path in the 
graph from s to u with the length smaller 
than dist(s,u).

Optimality proof

• Proof by contradiction: assume there is such 
a (shorter) path

• That path contains a vertex v1 to which the 
shortest distance is set (it may be that v1=s) 
which has an edge to a vertex v2 to which 
the distance is not set (maybe v2=u) 

s u
v1 v2

Optimality proof

• So the vertices from s to v1 have correct 
shortest distances (inductive hypothesis) 
and v2 is still in the priority queue.

s u
v1 v2

Optimality proof

• So dist(s,v1) is indeed the shortest path 
from s to v1. Current distance to v2 is  
dist(s,v2)=dist(s,v1)+weight(v1,v2)

s u
v1 v2

Optimality proof

• If v2 is still in the priority queue, then 
dist(s,v1)+weight(v1,v2) >= dist(s,u)

s u
v1 v2

Optimality proof

• But then the path going through v1 and v2 
cannot be shorter than dist(s,u).  QED

s u
v1 v2
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Complexity

• Assume that the priority queue is implemented as 
a heap;

• At each step (dequeueing a vertex u and 
recomputing distances) we do O(|Eu|*log(|V|)) 
work, where Eu is the set of edges with source u.

• We do this for every vertex, so total complexity is 
O((|V|+|E|)*log(|V|)).

• Really similar to BFS and DFS, but instead of 
choosing some successor, we re-order a priority 
queue at each step, hence the |*log(|V|) factor.

Implementation

• A Java implementation of Dijkstra’s
algorithm is given in Goodrich and 
Tamassia, Chapter 13.6.


