Greedy algorithm

Prim’s algorithm for constructing a Minimal
Spanning Treeis agreedy algorithm: it just
adds the shortest edge without worrying
about the overall structure, without looking
ahead. It makes alocally optimal choice at
each step.

Greedy Algorithms

Dijkstra's algorithm: pick the vertex to
which there is the shortest path currently
known at the moment.

For Dijkstra's algorithm, this aso turns out
to be globally optimal: can show that a
shorter path to the vertex can never be
discovered.

There are aso greedy strategies which are
not globally optimal.

Example: non-optimal greedy
algorithm

Problem: given a number of coins, count the
changein asfew coins as possible.

Greedy strategy: start with the largest coin
which is available; for the remaining
change, again pick the largest coin; and so
on.

Shortest path

Find the shortest route between two vertices
uandv.

It turns out that we can just as well compute
shortest routes to ALL vertices reachable
from u (including v). Thisiscalled single-
source shortest path problem for weighted
graphs, and u is the source.

Dijkstra’s Algorithm

An algorithm for solving the single-source
shortest path problem. Greedy algorithm.

Thefirst version of the Dijkstra's algorithm
(traditionally given in textbooks) returns not
the actua path, but a number - the shortest
distance between u and v.

(Assume that weights are distances, and the length
of the path is the sum of the lengths of edges.)

Example

* Dijkstra’s algorithm should return 6 for the

shortest path between A and B:

A 10 B

Dijkstra’s algorithm

To find the shortest paths (distances) from the start
vertex s.

» keep apriority queue PQ of verticesto be
processed

* keep an array with current known shortest
distancesfrom s to every vertex (initially set to be
infinity for all but s, and O for s)

« order the queue so that the vertex with the shortest
distanceis at the front.

Dijkstra’s algorithm

Loop until there are verticesin the queue PQ:
* dequeue avertex u

» recompute shortest distances for al vertices
in the queue as follows: if there is an edge
from u to avertex v in PQ and the current
shortest distance to v is greater than
distance(s,u) + weight(u,v) then replace
distance(s,v) with distance (s,u) +
weight(u,v).

Computing the shortest distance

If the shortest distancefromstouis
distance(s,u) and the weight of the edge
between u and v is weight(u,v), then the
current shortest distancefromstovis
distance(s,u) + weight(u,v).

distance(s,u) weight(u,v)

Example

« Distances: (A,0), (B,INF), (C,INF), (D,INF)
.« PQ={A,B,C,D}

A 10 B

Example (dequeue A)

« Distances: (A,0), (B,INF), (C,INF), (D,INF)
* PQ={B,C,D}

A 10 B

Example (recompute distances)

« Distances: (A,0), (B,10), (C,2), (D,INF)
- PQ={C,B,D}

A 10 B

Example (dequeue C)

« Distances: (A,0), (B,10), (C,2), (D,INF)
* PQ={B,D}

Example (recompute distances)

« Distances: (A,0), (B,10), (C,2), (D,4)
- PQ={DB}

A 10 B

A 10 B
2 2
C 2 D
Example (dequeue D)

« Distances. (A,0), (B,10), (C,2), (D,4)
- PQ={B}

Example (recompute distances)

« Distances. (A,0), (B,6), (C,2), (D,4)
- PQ={B}

A 10 B

2 2

A 10 B
2 2
C 2 D
Example (dequeue B)

« Distances: (A,0), (B,6), (C,2), (D,4)
- PQ={)

A 10 B

Pseudocode for D’s Algorithm

« INF is supposed to be greater than any
number

« dist : array holding shortest distances from
source s

* PQ : priority queue of unvisited vertices
prioritised by shortest recorded distance
from source

* PQ.reorder() reorders PQ if the valuesin
dist change.

Pseudocode for Dijkstra's

Algorithm
for(each v in V){
dist[v] = INF
dist[s] = 0O;

}

PriorityQueue PQ = new PriorityQueue();
/] insert all vertices in PQ

/1 in reverse order of dist[]

/'l val ues

Pseudocode for D’s Algorithm

while (! PQisenpty()){
u = PQ dequeue();
for(each v in PQ adjacent to u){
if(dist[v] > (dist[u]+weight(u,v)){
dist[v] = (dist[u]+weight(u,v));
}
}
PQ reorder();
}

return dist;

Modified algorithm

To make Dijkstra s algorithm to return the path
itsdlf, not just the distance:

 |naddition to distances, maintain a path (list of
vertices) for every vertex

« |nthe beginning paths are empty

* When assigning dist(s,v)=dist(s,u)+weight(u,v)
aso assign path(v)=path(u).

* When dequeuing a vertex, add it to its path.

Example

« Distances and paths:
(A0{}), (B.INF{}), (CINF{}), (D,INF{})

A 10 B

Dequeue A, recompute paths

« Distances and paths:
(A0{A}), (B,10{A}), (C.2{A}), (D,INF{})

A 10 B

Dequeue C, recompute paths

« Distances and paths:
(A0{A}), (B,10{A}), (C2{A,C}), (D.INF{})

A 10 B

Dequeue C, recompute paths

« Distances and paths:
(A0{A}), (B,10{A}), (C2{A,C}), (D.4{AC})

A 10 B

Dequeue D, recompute paths

« Distances and paths:
(A0{A}), (B.,6{A,CD}), (C2{A,C}),
(D,4{ACD})
A 10 B

Dequeue B, recompute paths

« Distances and paths:
(A,0{A}), (B,6{A,CD,B}), (C2{A,C}),

Optimality of Dijkstra's algorithm

So, why is Dijkstra’ s algorithm optimal (gives
the shortest path)?

Let usfirst see where it could go wrong.

(D,4{A,CD})
A 10 B
2 2
C 2 D
What the algorithm does

* For every vertex in the priority queue, we
keep updating the current distance
downwards, until we remove the vertex
from the queue.

« After that the shortest distance for the
vertex is set.

« What if ashorter path can be discovered
later?

Optimality proof

 Base case: the shortest distance to the start
node is set correctly (0)

* Inductive step: assume that the shortest
distances are set correctly for thefirst n
vertices removed from the queue. Show that
it will also be set correctly for the n+1st
vertex.

Optimality proof

» Assumethat the n+1st vertex isu. It is at the
front of the priority queue and it’s current
known shortest distanceis dist(s,u). We
need to show that thereis no path in the
graph from s to u with the length smaller
than dist(s,u).

Optimality proof

* Proof by contradiction: assume thereis such
a (shorter) path

« That path contains a vertex v1 to which the
shortest distance is set (it may be that v1=s)
which has an edge to a vertex v2 to which
the distance is not set (maybe v2=u)

vl V2

Optimality proof

» So the vertices from sto v1 have correct
shortest distances (inductive hypothesis)
and v2 is gtill in the priority queue.

Optimality proof

» So dist(s,vl) isindeed the shortest path
from sto v1. Current distancetov2is
dist(s,v2)=dist(s,v1)+weight(v1,v2)

Optimality proof

« If v2istill inthe priority queue, then
dist(s,v1)+weight(vl,v2) >= dist(s,u)

Optimality proof

* But then the path going through v1 and v2
cannot be shorter than dist(s,u). QED

Complexity

Assume that the priority queueisimplemented as
aheap;

At each step (degqueueing a vertex u and
recomputing distances) we do O(|E,[*log(|V]))
work, where E, is the set of edges with source u.
We do thisfor every vertex, so total complexity is
O((MI+[ED*log(IV).

Redlly similar to BFS and DFS, but instead of
choosing some successor, we re-order a priority
queue at each step, hence the [*log(|V|) factor.

I mplementation

* A Javaimplementation of Dijkstra's
algorithmis given in Goodrich and
Tamassia, Chapter 13.6.

