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Summary. Major speech production models from speech science literature and a number
of popular statistical “generative” models of speech used in speech technology are surveyed.
Strengths and weaknesses of these two styles of speech models are analyzed, pointing to the
need to integrate the respective strengths while eliminating the respective weaknesses. As
an example, a statistical task-dynamic model of speech production is described, motivated
by the original deterministic version of the model and targeted for integrated-multilingual
speech recognition applications. Methods for model parameter learning (training) and for
likelihood computation (recognition) are described based on statistical optimization princi-
ples integrated in neural network and dynamic system theories.

1. Introduction

In the past thirty years or so, the same physical entity of human speech has been
studied and modeled using drastically different approaches undertaken by largely
distinct communities of speech scientists and speech engineers. Models for how
speech is generated in human speech production system developed by speech sci-
entists typically have rich model structures [17, 24]. The structures have embodied
detailed multi-level architectures which transform the high-level symbolic phono-
logical construct to acoustic streams via intermediate stages of phonetic task spec-
ification, motor command generation, and articulation. However, these models are
often underspecified due to 1) deterministic nature which does not accommodate
random variabilities of speech and only weakly accommodates systematic variabil-
ities; 2) lack of comprehensiveness in covering all classes of speech sounds (with
some exceptions); and 3) lack of strong computational formalisms allowing for au-
tomatic model learning from data and for optimal choice of decision variables nec-
essary for high-accuracy speech classifications.

On the other hand, models for how speech patterns are characterized by sta-
tistical generative mechanisms, which have been developed in speech technology,
notably by speech recognition researchers, typically contain weak and poor struc-
tures. These models often simplistically assume direct, albeit statistical, correlates
between phonological constructs and the surface acoustic properties. This causes
recognizers built from these models to perform poorly for unconstrained tasks, and
to break down easily when porting from one task domain to another, from one speak-
ing mode to another, and from one language to another. Empirical system tuning
and ever-more increasing data appear to be the only options for making the systems
behave reasonably if no fundamental changes are made to the speech models under-
lying the recognizers. However, a distinct strength associated with these models is
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that they are equipped with powerful statistical formalisms, based solidly on math-
ematical optimization principles , and are suitable for implementation with flexible,
integrated architecture. The precise mathematical framework, despite poor and sim-
plistic model structure, gives rise to ease of automatic parameter learning (training)
and to optimal decision rules for speech-class discrimination.

Logically, there are strong reasons to expect that a combination of the strengths
of the above two styles of models, free from the respective weaknesses, will ulti-
mately lead to superior speech recognition. In this paper, some versions of a sta-
tistical dynamic speech production model1, with theoretical motivation, mathemat-
ical formulation, and procedures for parameter learning are described, aiming at
achievement of such superiority.

2. Speech production models in science/technology literatures

In this section I will briefly survey major speech production models in science and
technology literatures, with emphasis on drawing parallels and contrasts between
these two styles of models developed by largely separate research communities.
The purpose of scientific speech production models is to provide adequate represen-
tations to account for the conversion of a linguistic (mainly phonological) message
to the actions of the production system and to the consequent articulatory and acous-
tic outputs. Critical issues addressed by these models are the serial-order problem,
the degrees-of-freedom problem, and the related context-sensitivity or coarticula-
tion problem in both articulatory and acoustic domains. The models can be roughly
classied into categories of global and component models. Within the category of the
global production models, the major classes (modified from the classification of [17]
where a large number of references are listed) are: 1) Feedback-feedforward models,
which enable both predictive and adaptive controls to operate, ensuring achievement
of articulatory movement goals; 2) Motor program and generalized motor program
(schema) models, which use preassembled forms of speech movement (called goals
or targets) to regulate the production system; 3) Integrated motor program and feed-
back models, which combine the characteristics and modeling assumptions of 1)
and 2); 4) Dynamic system and gestural patterning models, which employ coor-
dinative structures with a small number of degrees of freedom to create families
of functionally equivalent speech movement patterns, and use dynamic vocal tract
constriction variables (in the “task” space) to directly define speech movement tasks
or goals; 5) Models based on equilibrium point hypothesis, which use shifts of vir-
tual target trajectories, arising from interactions among central neural commands,
muscle properties, and external loads, in the articulatory space (“body” rather than
“task” space) to control and produce speech movement; and finally 6) Connection-
ist models, which establish nonlinear units interconnected into a large network to

1Based mainly on the task-dynamic model originally developed by speech scientists [28]
and on our earlier work on overlapping articulatory features [8].
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functionally account for a number of prominent speech behaviors including serial
order and coarticulation.

Within the category of the component or subsystem models of speech production
are the models for respiratory subsystem, laryngeal subsystem, and supralaryngeal
(vocal tract) subsystem. In addition, composite models have also been developed to
integrate multiple subsystem models operating in parallel or in series [17, 24].

All of the scientifically motivated speech production models briefly surveyed
above have focused mainly on explanatory power for speech behaviors (including
articulatory movements and its relations to speech acoustics), and paid relatively
minor attention to computation issues. Further, in developing and evaluating these
models, comprehensiveness in covering speech classes is often seriously limited
(e.g. CV, CVC, VCV sequences only). In stark contrast, speech models developed
by technologists usually cover all classes of speech sounds, and computation issues
are given a high priority of consideration with no exception. Another key character
of the technology-motivated speech models is the rigorous statistical frameworks
for model formulation which permit automatic learning of model parameters from
realistic acoustic data of speech. On the negative side, however, the structures of
these models tend to be oversimplified, often deviating significantly from the true
stages in the human speech generation mechanisms which the scientific speech pro-
duction models are aiming to account for. To show this, let us view the HMM (which
forms the theoretical basis of the modern speech recognition technology) as a prim-
itive (very inaccurate) generative model of speech. To show such inaccuracy, we
simply note that the unimodal Gaussian HMM generates its sample paths which
are piecewise constant trajectories embedded in temporally uncorrelated Gaussian
noise, and, since variances of the noise are estimated from time-independent (except
with the HMM state-bound) speech data from all speakers, the model could freely
allow generation of speech from different speakers over as short as every 10 msec.2

A simplified hierarchy of statistical generative or production models of speech
developed in speech technology is briefly reviewed here. Under the root node of
conventional HMM there are two main classes of its extended or generalized mod-
els: 1) nonstationary-state HMM3 whose sample paths are piecewise, explicitly de-
fined stochastic trajectories (e.g. [3, 14, 11]); 2) multi-region dynamic system model
whose sample paths are piecewise, recursively defined stochastic trajectories (e.g.
[10]). 4 The parametric form of Class-1 models typically uses polynomials to con-
strain the trajectories, with the standard HMM as a special case when the polyno-

2For the mixture Gaussian HMM, the sample paths are erratic and highly irregular due
to lack of temporal constraints forcing fixed mixture component within each HMM state;
this deviates significantly from speech data coming from heterogeneous sources such as from
multiple speakers and multiple speech collection channels.

3also called trended HMM, segmental HMM, stochastic trajectory model, etc., with slight
variations in technical detail according to whether the parameters defining the trend functions
are random or not.

4Intimate relations and implementational differences between the explicitly defined and
recursively defined time series models are discussed in [19].
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mial order is set to zero. This model can be further divided according to whether the
polynomial trajectories or trends can be observed directly5 or the trends are hidden
due to assumed randomness in the polynomial coefficients. For the latter, further
classification gives discrete and continuous mixtures of trends depending on the as-
sumed discrete or continuous nature of the model parameter distribution[6, 16, 12].
For Class-2, recursively defined trajectory models, the earlier linear model aiming
at dynamic modeling at the acoustic level [10, 23] has been generalized to nonlinear
models taking into account detailed mechanisms of speech production. Subclasses
of such nonlinear dynamic models are 1) articulatory dynamic model; and 2) task-
dynamic model. They differ from each other by distinct objects of dynamic model-
ing, one at the level of biomechanic articulators (body space) and the other at the
level of more abstract task variables (task space)6 [1, 2, 9, 4, 5, 25]. Depending on
the assumptions about whether the dynamic model parameters are deterministic or
random, and whether these parameters are allowed to change within phonological
state boundaries, further subclasses can be categorized (see details in the following
sections).

3. Derivation of discrete-time version of statistical task-dynamic
model

In this section, a discrete-time statistical task-dynamic model , which is imple-
mentable and trainable for use in speech recognition, is derived from the original
deterministic, continuous-time task-dynamic model well established in speech sci-
ence literature [28]. Starting with the original model but incorporating random noise
w(t):

d2z(t)

dt2
+ 2S(t)

dz(t)

dt
+ S

2(t)(z(t) � Z0(t)) = w(t);

whereS2 is normalized, gesture-dependent stiffness parameter (which controls
fast or slow movement of tract variablez(t)), andZ 0 is gesture-dependent point-
attractor parameter of the dynamical system (which controls the target and hence
direction of the movement). Here, for generality, we assume that the model param-
eters are (slowly) time-varying.

Rewrite the above into a canonical form (where_z(t) = dz(t)
dt

):

d

dt

�
z(t)
_z(t)

�
=

�
0 1

�S2(t) �2S(t)

��
z(t)
_z(t)

�
+

�
0

S
2(t)Z0(t)

�
+

�
0

w(t)

�

This, in matrix form, is:

5This happens when the model parameters (i.e. polynomial coefficients) are deterministic.
6They also have distinct origins, one from scientific speech production models based on

equilibrium point hypothesis, the other from the deterministic version of the task-dynamic
model.
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d

dt
Z(t) = F (t)Z(t)� F (t)T (t) +W (t);

where composite state is defined by

Z(t) �

�
z(t)
_z(t)

�
;

system matrix by

F (t) �

�
0 1

�S2(t) �2S(t)

�
;

and attractor vector for the system dynamics by

T (t) � �F�1(t)

�
0

S
2(t)Z0(t)

�
:

Explicit solution to the above task-dynamic equation is [21]:

Z(t) = �(t; t0)Z(t0) +

Z t

t0

�(t; �)[�F (�)T (�) +W (�)]d�;

where�(t; t0) (state transition matrix) is the solution to the following matrix homo-
geneous differential equation:7

_�(t; �) = F (t)�(t; �); init: cond: : �(t; t) = I:

Settingt0 = tk; t = tk+1, we have

Z(tk+1) � �(tk+1; tk)Z(tk)�[

Z tk+1

tk

�(tk+1; � )F (�)d� ]T (tk)+

Z tk+1

tk

�(tk+1; � )W (�)d�;

which leads to the discrete-time form of the task-dynamic state equation:

Z(k + 1) = �(k)Z(k) + 	(k)T (k) +Wd(k); (1)

where

�(k) � �(tk+1; tk) = exp(Fk�t); �t � tk+1 � tk

	(k) � �[

Z tk+1

tk

�(tk+1; �)F (�)d� ] � �

Z tk+1

tk

exp[Fk(tk+1 � �)]F (�)d�

� �Fk exp(Fk tk+1)

Z tk+1

tk

exp[�Fk� ]d� = I � exp(Fk�t) = I ��(k);

andWd(k) is discrete-time white Gaussian sequence which is statistically equiva-
lent through its first and second moments to

R tk+1
tk

�(tk+1; �)W (�)d� .

7The solution can be written in matrix exponential form:�(t; �) = exp[(t � � )Fk] if
F (t) = Fk for tk � t � tk+1)
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For a speech recognizer which has only acoustic data sequences at its disposal,
the dynamic associated with task variablesZ(k) described in Eqn.(1) is a hidden
or unobservable process. Following the treatment of task-dynamic model which
uses intermediate model-articulator variablesx(k) to link the task variablesZ(k) to
acoustic variablesO(k) via static nonlinear functions,O = O(x) andZ = Z(x),
we treat the hidden task-variable dynamic as observed through noisy (i.i.d. noise
V (k)) nonlinear relationh(�) between task-variableZ(k) and acoustic observation
O(k):

O(k) = O(x(k)) + V (k) = O[Z�1(Z(k))] + V (k) = h[Z(k)] + V (k): (2)

The above global nonlinearity has been implemented numerically in the deter-
ministic version of task-dynamic model [28, 20] by geometric relationships in an
improved version of Mermelstein-type articulatory model (Z = Z(x)) together
with a configurable articulatory synthesizer (O = O(x)) [27]. For intended use in
statistical speech recognition, we need to parameterize this nonlinearity with train-
able sets of parameters and with the numerical simulation only serving as parameter
initialization. While many possibilities exist for the parameterization based on well
established statistical and neural-network techniques, in this tutorial I will describe
a straightforward method based on use of Multi-Layer Perceptron (MLP) neural
network which functions as a universal multidimensional functional approximation
device [15]. Leti denote the element index of the acoustic-variable vectorO as out-
put of MLP, andl index of the task-variable vectorZ as input to MLP. Then, each
vector component of the MLP output can be parameterized by8

hi[Z] =
X
j

Wijxj =
X
j

Wijg(
X
l

wjlg(Zl)); i = 1; 2; : : : ; I: (3)

The observation equation (2) can then be written in the parameterized form:

Oi(k) =
X
j

Wijg(
X
l

wjlg(Zl)) + Vi(k); i = 1; 2; : : : ; I: (4)

4. Algorithms for learning task-dynamic model parameters and
for likelihood computation

The deterministic version of the task-dynamic model [28], although well developed
and tested for use as an effective research tool in accounting for and in understand-
ing dynamic behaviors of the speech process, is unlikely to be directly useful for

8In this tutorial, the MLP is further simplified to contain only one hidden layer. The out-
put (acoustic variablesO1; O2; :::) layer is linear with weightsWij ; input (task variables
Z1; Z2; :::) and hidden layers are sigmoid nonlinear:g(v) = 1=[1 + exp(�v)], with weights
wjl. In actual implementation, since the hidden layerx is intended to represent model-
articulator variables, and since the relationship betweenx andZ and that betweenx and
O are known to be strongly nonlinear, two more hidden layers are placed between the three
layers illustrated here.
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engineering applications in speech recognition. Its lack of statistical structure does
not allow the model to effectively capture variabilities, either systematic or random,
in the observed speech data. Within the modeling framework of [28], there also
seem to be no principled ways to devise an optimal decision rule for speech clas-
sification by matching the model’s output to speech data. In contrast, the statistical
version of the task-dynamic model derived in the previous section permits the use
of computable likelihoods to construct the optimal decision rule with the optimality
guaranteed by Bayesian decision theory .

In this section, algorithms for learning parameters of three versions of statistical
task-dynamic model, with increasing complexity in the model construct consistent
with differing assumptions invoked by various phonetic theories, are outlined. Some
main steps of algorithm derivation, based on statistical optimization principles inte-
grated in neural network and dynamic system theories, are included also.

4..1 Model with deterministic, time-invariant parameters

This is the simplest version of statistical task-dynamic model where deterministic,
unconstrained, time-invariant parameters are assumed in the state equation Eqn.(1),
rewritten as

Z(k + 1) = �Z(k) + (I ��)T +Wd(k):

The nonlinearity in the observation equation is parameterized by a form of MLP
according to Eqn.(4).

With use of chain rule twice and use ofd
dv
g(v) = g(v)(1 � g(v)), the Jaco-

bian matrix (needed for parameter learning) of the MLP-parameterized nonlinear
mapping (Eqn.(3)) can be computeded in an analytical form:

Hz(Z) �
d

dZ
h(Z) = [Hil(Z)] =

0
BBB@

@h1
@Z1

@h1
@Z2

: : : @h1
@ZL

@h2
@Z1

@h2
@Z2

: : : @h2
@ZL

...
...

...
...

@hI
@Z1

@hI
@Z2

: : : @hI
@ZL

1
CCCA

where

Hil(Z) =
X
j

Wijg[
X
m

wjmg(Zm)][1�g(
X
m

wjmg(Zm))]wjl g(Zl)[1�g(Zl))]:

In developing a parameter-learning procedure, the joint log-likelihood for acous-
tic observation sequenceO = [O(1); O(2); : : : ; O(N)] and hidden task-variable
sequenceZ = [Z(1); Z(2); : : : ; Z(N)] is first written out as

logL(Z;O;�) =

�
1

2

N�1X
k=1

flogQ+ [Z(k + 1)� �Z(k)� (I � �)T ]TQ�1[Z(k + 1)� �Z(k)� (I � �)T ]g

�
1

2

NX
k=1

flogR+ [O(k)� h(Z(k))]TR�1[O(k)� h(Z(k))]g+ const:



8 Li Deng

Then a pseudo-EM algorithm is used for learning model parameters including those
in task-dynamics and those in MLP nonlinear mapping:�=fTF ;�F ;Wij ; wjl; i =
1; 2; : : : ; I ; j = 1; 2; : : : ; J ; l = 1; 2; : : : ; Lg.

E-step of the EM algorithm involves computation of the following conditional
expectation:9

Q(Z;O;�) = EflogL(Z;O)jO;�g = �
N � 1

2
logQ�

N

2
logR �

1

2

NX
k=1

ENf[Z(k + 1)� �Z(k)� (I � �)T ]TQ�1[Z(k + 1)� �Z(k)� (I � �)T ]jO;�g

�
1

2

N�1X
k=1

ENf[O(k)� h(Z(k))]TR�1[O(k)� h(Z(k))]jO;�g:

This can be simplified by standard algebraic manipulations to

Q(Z;O;�) = Q1(Z;O;�; T ) +Q2(Z;O;Wij ; wjl) (5)

= �
N � 1

2
logf

1

N � 1

N�1X
k=1

ENf[Z(k + 1)� �Z(k)� (I ��)T ]2jO;�gg

�
N

2
logf

1

N

NX
k=1

ENf[O(k)� h(Z(k))]2jO;�gg+ const:

Note that the task-dynamic parameters (�; T ) contained inQ1 only and the MLP
weight parameters (Wij ; wjl) of the observation equation contained inQ2 only can
be optimized independently in the subsequent M-step which is discussed now.

M-step of the EM algorithm aims at optimizing theQ function in Eqn.(5) with
respect to model parameters�=fT;�;Wij ; wjlg. For the model at hand, it seeks
solutions for

@Q1

@�
/

N�1X
k=1

EN [
@

@�
f[Z(k + 1)��Z(k)� (I ��)T ]2jO;�g = 0 (6)

@Q1

@T
/

N�1X
k=1

EN [
@

@T
f[Z(k + 1)��Z(k)� (I ��)T ]2jO;�g = 0 (7)

@Q2

@Wij

/
NX
k=1

EN [
@

@Wij

f[O(k)� h(Z(k))]2jO;�g = 0 (8)

@Q2

@wjl
/

NX
k=1

EN [
@

@wjl
f[O(k)� h(Z(k))]2jO;�g = 0: (9)

Eqns.(6) and (7) are third-order nonlinear algebraic equations (in� andT ):

9Together with a set of related sufficient statistics needed to complete evaluation of the
conditional expectation .
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N�T 2 � 2f
X
k

EN [Z(k)jO]g�T �NT 2 + f
X
k

EN [Z2(k)jO]g� +

f
X
k

EN [Z(k) + Z(k + 1)jO]gT � f
X
k

EN [Z(k + 1)Z(k)jO]g = 0;

N�2T � 2N�T � f
X
k

EN [Z(k)jO]g�2 +

f
X
k

EN [Z(k) + Z(k + 1)jO]g� +NT �EN [Z(k + 1)jO]g = 0:

The coefficients in the above algebraic equations constitute the sufficient statistics,
which can be obtained by the standard technique of Iterated Extended Kalman Fil-
tering (IEKF) with fixed-interval smoothing [21, 10], and the equations are solved
for (�; T ) by numerical methods. Alternatively, optimization ofQ 1 can be found
using gradient decent with explicit expressions of gradients given by Eqns.(6) and
(7).

Solutions to Eqns.(8) and (9) for finding (W ij ; wjl) to maximizeQ2 in Eqn.(5)
have to rely on approximation (due to the complexity in theh(:) function). The
approximation involves first finding smoothed estimates of hidden variablesZ(k),
Z(kjN), via the IEKF fixed-interval smoother. Given such estimates, the conditional
expectations can be approximated (pseudo-EM) to give

@Q2

@Wij

/
X
k

[O(k) � h(Z(kjN))]T
@h(Z(kjN))

@Wij

@Q2

@wjl
/

X
k

[O(k) � h(Z(kjN))]T
@h(Z(kjN))

@wjl
;

where the partial derivatives can be evaluated using the MLP structure to give

@h(Z(kjN))

@Wij

=

0
BBBBB@

0
...

g[
P

m
wjmg(Zm(k))]

...
0

1
CCCCCA
 (ith element non � zero)

@h(Z(kjN))

@wjl

= g[
X
m

wjmg(Zm(k))][1� g(
X
m

wjmg(Zm(k)))]g(Zl(k))]

0
BB@

W1j

W2j

...
WIj

1
CCA :

Given the explicit expressions for@Q2

@Wij
; @Q2

@wjl
derived above, gradient-decent algo-

rithm is effectively used to obtain optimized parameters (W ij ; wjl) in the M-step.

4..2 Model with random, time-invariant parameters

Statistical motivation for developing a model with random parameters (contrasting
the deterministic model parameters discussed in the previous section) is a Bayesian
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one [21]; that is, we, as modelers, desire to achieve robustness in model parame-
ter estimation and have some prior knowledge to use about the model parameters.
Phonetic motivation for allowing for random parameters in task-dynamic model is
that different classes of speech sounds have well known, systematic variations in
their production strategies (which can be directly quantified in terms of the task-
dynamic model’s parameter variations), and that speakers tend to use a great degree
of (constrained) freedom in choosing their production strategies (plasticity of pho-
netic gestures advocated in H&H theory).

For example, since parametersT = (T1; :::; Tl; :::; TL) (l is index to utterance
token) in task-dynamic model represents attractor constriction properties (degree
and location) of the vocal tract, it is possible to use well established speech produc-
tion knowledge (e.g. articulation-acoustics relationships described in quantal theory
of speech [29]) to construct the prior in the form of inverse Gaussian distribution
(non-negatively valued):

f(Tl;�l; �l) =

r
�l

2�
� T

�
3
2

l � exp[�
�l(Tl � �l)

2

2�2l Tl
]; Tl > 0

Note that various broad classes of speech sounds have systematically different
hyperparameters�’s and�’s, which are largely predictable, in the above inverse
Gaussian distribution . Hence, such prior information can be effectively used to
initialize these parameters in subsequent automatic MAP training.

The EM algorithm similar to the earlier deterministic-parameter case applies
here for parameter estimation, except now three additional terms are needed in the
auxiliary functionQ1 of the E-step due to use of the additional prior distribution:

Q1(Z;O;�; T ) / �f
1

N � 1

N�1X
k=1

ENf[Z(k + 1)� �Z(k)� (I � �)T ]2jO;�gg

+

LX
l=1

f
1

2
log�l �

3

2
logTl � �l

(Tl � �l)
2

2�2l Tl
g

M-step of the EM algorithm then gives MAP (empirical Bayes) estimates of
both hyper and random model parameters by solving

@Q1

@T
= 0 and

@Q1

@�
= 0;

where the second equation above is identical to that in the earlier deterministic-
parameter case (Eqn.(7)). Solutions for the first one require that hyper parameters be
given, and can be obtained by jointly or iteratively solving@Q1

@�
= 0 and @Q1

@�
= 0,

which gives optimal estimates for the hyper-parameters. Alternatively, M-step can
be accomplished by gradient-decent methods.

4..3 Model with random, smoothly time-varying parameters

This further extension of the statistical task-dynamic model is again motivated by
H&H theory of speech gesture plasticity: speakers have significant freedom in artic-
ulation, only to be constrained by tradeoffs between the speech-economy principle
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and by the listener’s demand for clarity or sufficient perceptual contrast. In addition
to using random parameters, the speaker’s freedom in articulation can be further
quantitatively represented in the task-dynamic model by allowing for time-varying
parameters (within phonological-unit boundaries). On the other hand, the speech-
economy principle can be simultaneously quantified by smoothness prior constraints
imposed on possible sample paths of these random, time-varying parameters.

For example, the task dynamic with time-varying state transition matrix can be
described by

Z(k + 1) = �(k)Z(k) + [I ��(k)]T (k) +Wd(k); (10)

where�(k) is a random parameter (matrix) and is constrained to change slowly
over time. A stochastically perturbed difference-equation (orderr) model is used
to quantitatively provide smoothness prior constraints for random time variation of
�(k):

rr�(k) = v(k); v(k) � N (0; �2):

Whenr = 1, �(k) has locally constant trend (i.e. random walk); whenr = 2 and
3, �(k) has locally linear and quadratic trends, respectively, etc.

For the special case ofT = 0 in Eqn.(10), a constrained least-square solution to
parameter estimation of�(k) has been proposed in [18] as an optimization problem
for the following objective function:

X
k

[Z(k + 1)��(k)Z(k)]2 + �2
X
k

[rr�(k)]2;

where�2 is the tradeoff parameter which balances the infidelity of the model to the
dataZ(k) and the infidelity of the model to the smoothness constraint.10

Difficulties in solving the above least-square problem have prompted statisti-
cians to devise more elegant solutions. Results contained in [19, 13] have shown
that the smoothness-constraint problem on polynomial parameter trajectories can
be equivalently treated as optimal smoothing problem using state-space model for-
mulation. To see this, the smoothness polynomial constraintr r�(k) = v(k) is
rewritten as an equivalent state-space (Gauss-Markov) system:

r = 1 : �(k + 1) = �(k) + v(k)

r = 2 : �(k + 1) = 2�(k)� �(k � 1) + v(k)

r = 3 : �(k + 1) = 3�(k)� 3�(k � 1) + �(k � 2) + v(k)

::: :::

This, via the state-augmentation technique, can be equivalently written as a time-
invariant linear system:

~�(k + 1) = G~�(k) +H~v(k);

10Bayesian interpretation of the above least-square problem is also given in [18].
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where

for r = 1 : G = I (constant trajectory)

for r = 2 : G =

�
2I �I
I 0

�
(linear trajectory)

for r = 3 : G =

0
@ 3I �3I I

I 0 0
0 I 0

1
A (quadratic trajectory)

::: :::

and

H =

0
BBB@

1
0
...
0

1
CCCA ; ~�(k) =

0
BBB@

�(k)
�(k � 1)

...
�(k � r + 1)

1
CCCA :

This state-space formulation for time variation of parameter�(k), together with
the task dynamic state equation, allows all the EM estimation results for the model
with time-invariant parameters (discussed earlier) apply to the current time-varying
parameter case.

4..4 Discriminative learning of production models’ parameters

Discriminative model learning, as opposed to the maximum likelihood one dis-
cussed so far, can be theoretically motivated by the argument expressed in H&H the-
ory that the listener’s perceptual contrast is the primary objective of human speech
communication while employing speech economy in speech production. For possi-
ble speech recognition applications in the context of task-dynamic model discussed
so far, such an objective can be quantitatively formulated as the problem of min-
imizing speech recognition errors subject to a tradeoff principle of “least effort”
implemented by smoothness constraint on time-varying, random model parameters.
Analogies can be made here between the above machine speech recognition strategy
and human speech perception: the smoothness constraint on model parameter vari-
ations implemented in the recognizer is analogous to minimizing speaker’s efforts
of production, and the criterion of minimizing speech recognition errors is analo-
gous to maximizing human perceptual contrasts across different phonetic or lexical
classes.

The basis of computational formalisms for carrying out the above constrained
optimization in the framework of task-dynamic model is already established by
speech technologists. The major step involves computation of the gradient of a
smoothed estimate of the empirical recognition error with respect to all parame-
ters in the model. For efficiency of training, the gradient has to be expressed in an
analytical form. The computation of the gradient is lengthy and laborious and is not
included here, but the general spirit of such computation can be gleaned from the
work published in [26] applied to a far less sophisticated speech model.
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5. Other types of computational models of speech production

So far in this paper I have concentrated on a specific type of speech production
model, i.e., task dynamic one. This is a functional model, with no direct represen-
tation of biomechanical properties of the vocal tract and with dynamic properties
of the system residing only in the “controller”. One main virtue of this model is its
uniform definition of the goal of speech production across all consonant and vowel
classes in terms of vocal tract constriction properties. This has greatly facilitated
algorithmic developments which enable implementation of the model for speech
recognition applications. A number of other, non-task-dynamic types of computa-
tional models of speech production have been developed, intending to incorporate
dynamics either at the biomechanical articulator level or more directly at the acous-
tic observation level. Within the former class or articulatory-dynamic models, an
articulatory stochastic target model was developed which aims at accounting for
detailed movement behaviors of biomechanical articulators guided by the highly
complex, multi-dimensional target distributions defined in the biomechanical artic-
ulator coordinate [9, 25]. Correlations among subsets of articulators in such tar-
get distributions are essential because it is the articulator coordinate, rather than
the task-variable coordinate, in which the targets are defined. Some more empirical
methods used to model articulatory dynamics for purpose of speech recognition in-
clude those in [1, 2], where the dynamic of a set of pseudo-articulators is realized
by FIR filtering from sequentially placed, phoneme-specific target positions or by
applying trajectory-smoothness constraints.

Within the class of acoustic-dynamic models, the model which attempts to con-
dition the properties of the dynamic directly on specific feature-coded speech pro-
duction mechanisms is described in [7]. In that model, the underlying articulatory-
feature based phonological units are used to determine dynamic or static trajecto-
ries (order of polynomials) that describe the acoustic correlates of the phonological
units, and substantial phonetic recognition performance improvements have been
demonstrated. An earlier version of this model, using piecewise-static trajectories
(conventional HMM) to approximate continuous trajectories in speech acoustics, is
described in [8].

Along the line of acoustic-dynamic model of speech production, there exists a
further possibility of choosing more appropriate parametric forms than polynomials
to describe production-correlated acoustic variables. For example, the polynomial
trajectories (as used in many earlier segmental models) do not entail the concept
of formant target since they do not have the asymptotic property which allows the
trajectory to slowly and smoothly relax to an asymptotic value such as the formant
target. Exponential form of trajectories, however, has such an asymptotic property;
e.g.f(t) / f 0� (1��t�exp[�
� t]). But some serious difficulties would arise if
this exponential form of the trajectory model were to be used for formants directly.
Because many consonants do not show acoustically measurable formants (due to
full or partial pole-zero cancellation in vocal-tract acoustics caused by supraglottal
excitation sources), the trajectory model has to be generalized from that describ-
ing measurable formant trajectories (applicable only to vowels) to that describing
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hidden vocal-tract resonance dynamics (applicable to all types of speech sounds).
Smoothness and continuity constraints can then be naturally applied to the hidden
vocal-tract resonance trajectories through entire utterances, thus naturally produc-
ing speech undershoot phenomena characteristic of casual, fast speech (as observed
in Switchboard data). Due to the hidden nature of vocal-tract resonances, especially
for consonants, it will be appropriate to use MFCCs as speech observations and to
empirically build noisy nonlinear mappings from vocal-tract resonances (poles of
vocal-tract transfer function) to MFCCs.

6. Summary and discussions

In this tutorial, major classes of speech models developed by two largely sepa-
rate, scientific and technological, communities are surveyed, compared, and ana-
lyzed. Similar comparisons and analyses from a more global perspective have been
made earlier in [22]. A particular type of speech production model, task-dynamic
one, is developed which integrates the strengths of the two previously separate
styles of production models. This integration owes much to successful use of the
smoothness-prior (Bayesian equivalent) technique, motivated by gesture-plasticity
and movement-economy principles in human speech production, in establishing
the statistical task-dynamic model. Both maximum likelihood (via EM) and min-
imum classification error (via gradient descent) criteria are used for model param-
eter learning, justified in terms of various versions of phonetic theories. In either
case, optimization of the likelihood or empirical classification error rate for a small
number of hyperparameters in the model permits robust modeling of true dynamic
behaviors of human speech. Modeling such behaviors requires a complex structure,
but the technique we adopted enables use of a most compact set of hyperparameters
which encompass a large number of implicitly inferred parameters.
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