Challenge \#1 107r0

## Challenge:

$\mathrm{h}=$

452105394347318164492346298290164126474353544406745930122 46192183324314223622215427325449813533010742512013544083 399228370404413654011873723182847847235515334822128205398
 16615559508280107 388]

Answer:
$\mathrm{f}^{\prime}=$
$\left[\begin{array}{llllllllllllllllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 6 & -3 & 3 & 0 & 0 & 3 & -6 & -3 & -6 & 0 & -3 & 0 & 3 & 3 & 0 & -3 & -3 & 0 & -3 & 3 & 3 & 3 & 0 & 3 & 0 & -3 & -3\end{array}\right.$

 $\left.0 \begin{array}{llllll}0 & -3 & 1 & 0 & 0 & 3\end{array}\right]$
such that
f'*h mod $q=$
$\left[\begin{array}{ccccccccccccccccccccccccccccccccc}-2 & -1 & -1 & 1 & 0 & 1 & -1 & 1 & 0 & 0 & -2 & 0 & -1 & 2 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & -2 & 2 & -\end{array}\right.$
$\begin{array}{llllllllllllllllllllllllllllllllll}1 & -1 & -1 & 0 & 1 & -2 & 0 & -1 & 0 & 0 & 1 & 0 & -2 & 2 & 0 & 2 & 2 & 0 & 1 & 0 & -1 & 2 & 1 & -1 & 0 & 2 & -2 & 2 & -2 & -1 & -1 & 0 & 1\end{array}$ $0 \begin{array}{llllllllllllllllllllllllllllllll} & 0 & -1 & -1 & 1 & -1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & -2 & -1 & 0 & -1 & 1 & 1 & -1 & 0 & -2 & 1 & 0 & -2 & 2 & 1 & 2 & 2 & 1 & -1\end{array}-1$

which isn't trinary, but it is (1-x^13)*g, where
g=
$\left[\begin{array}{llllllllllllllllllllllllllllllllll}-1 & -1 & -1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & -1 & 1 & 0 & 1 & -1 & -1 & 1 & 1 & -1 & 0 & 0 & 0 & -1 & -1 & 1 & 0 & 1 & -1 & 0 & 0 & -1 & 1 & - \\ \hline\end{array}\right.$
 $\begin{array}{llllllllllllllllllllllllllllllllll}1 & -1 & 1 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 1 & -1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & 1 & 1 & 0 & 0 & -1 & 0 & 1 & -1 & 1 & 0 & 1 & 1 & 0 & 0 & 0\end{array}$ $\left.1 \begin{array}{llllllll}1 & -1 & 1 & -1 & 1 & 0 & 1 & 1\end{array}\right]$
and $f * g=h \bmod q$. The fact $g$, $h$ are not invertible makes me submit the above solution (which is way smaller than the expected small vectors) rather than take the time to $f=h g^{\wedge}\{-1\}$ (although this should be very possible to find if you need me to).

Discovery:
I want to apply the hybrid technique to the lattice
q
ph 1
i.e. look for ( F g) close to ( $\mathrm{p}^{\wedge}\{-1\}$ 0)
but $1+\mathrm{p}^{*} \mathrm{~F}$ is harder to enumerate that $g$, so I first transformed this to an equivalent lattice

## q

1 X
and then removed the last 20 rows.
For reduction I started with NTL with BKZ blocksize around 22 (but tried smaller blocks with blocksize going up to 30 ). The reduction $I$ ended up with had |b_i^*| ranging from

## NTRU Challenge - Answers

324.9769223
320.4735098
322.957304
299.9457301
300.2212507
to
2.442338059
2.455610966
2.399027935

I launched the full hybrid method on this basis, but no small vector was found - so I am not including the time to do that in the time for completion.

I resolve to increase b_n^* a little more, so I downloaded fplll, and played with it.

I gave it the previous basis, and asked it to BKZ blocksize 24 reduce the basis, printing out the answer ever 2 hours.

I resolved to wait until $\mid b n^{n}$ *| got to about 4.
The end of the b_i^*'s looked like this:
> tail -5 diag6_24_002hrs.dat
2.723524089
2.674156709
2.519634014
2.310050701
2.476350194
> tail -5 diag6_24_004hrs.dat
2.735465754
2.524798366
2.462141096
2.194307381
2.456038063
> tail -5 diag6_24_006hrs.dat
2.526344657
2.613929458
2.436445281
2.283290665
2.338143311
> tail -5 diag6_24_008hrs.dat
2.509917077
2.461420683
2.455892618
2.274964103
2.116750922
> tail -5 diag6_24_010hrs.dat
2.565747318
2.472501222
2.431957464
2.840271314
34.05773339

This |b_n^*| of 34 , was way larger than the 4 I was waiting for, and broke the GSA completely, so was a sign of reaching the solution.

## NTRU Challenge - Answers

As is typical with these things - if you find a large b_n* in the primal, then it corresponds to a small b 1 is the dual, and then $I$ reversed the coefficients, and got the above solution.

Challenge \#2 113r0

```
Challenge:
[910 191 25 288 935 686 171 790 849 922 477 528 126 464 466 488 242 326 909
727 388 887 778 807 68 20 442 306 248 241 443 826 70 118 432 962 656 196 413
330 499 349 618 388 502 653 353 1015 634 629 910 520 127 924 185 378 776 28
254 917 93 147 789 534 652 372 1009 859 39 391 682 314 733 718 579 628 809
515 383 1 636 1018 729 929 613 0 682 977 557 463 750 559 588 518 526 64 211
248 812 768 303 1005 729 116 744 71 130 339 642 743 83 509 65]
```

Answer:
$\mathrm{f}^{\prime}=$
$\left[\begin{array}{lllllllllllllllllllllllllllllllll}-9 & 6 & -6 & 0 & 6 & 0 & -9 & 3 & 6 & -3 & 0 & 0 & 0 & 3 & -3 & 0 & 0 & -3 & 3 & -3 & 6 & -3 & 0 & -6 & 6 & 3 & 0 & -3 & 3 & 3 & 0 & -3 & -\end{array}\right.$

 $\left.\begin{array}{lllllllllllllll}-3 & 3 & -3 & 0 & 0 & 6 & -6 & -3 & 3 & 0 & 0 & 3 & -6 & 6 & 3\end{array}\right]$
such that

```
f' * h mod q=
[-1 2
-1 0
-1 1 1 -2 1 1 1 -2 0 2 - -1 -1 2 2 0 00 -2 2 2 -2 0 1 1 0 -1 2 - -1 0 0 0 0 1 0 0
-1 1 1 -1 1 -1 0 0 0 0 1 1 1 -2 1 1 -1 1]
which isn't trinary, but it is (1-x)*g, where
g=
[-1 11 1 1 1 -1 1 0 0 1 1 1 0 0 -1 0 0 0 0 1 1 -1 -1 -1 -1 1 1 -1 1 1 1 -1
1 0}0
0
0 -1 0 -1 -1 -1 -1 0 1 1 -1 0
```

and $f * g=h$ mod $q$. The fact $g$, $h$ are not invertible makes me submit the above solution (which is way smaller than the expected small vectors) rather than take the time to $f=h g^{\wedge}\{-1\}$ (although this should be very possible to find if you need me to).

## Discovery:

I want to apply the hybrid technique to the lattice
q
ph 1
i.e. look for ( F g) close to ( $\mathrm{p}^{\wedge}\{-1\} 0$ )
but $1+p^{*} F$ is harder to enumerate that $g$, so $I$ first transformed this to an equivalent lattice
$1 \begin{array}{r}\text { q } \\ \mathrm{X}\end{array}$
and then removed the last 30 rows.
I reduce the basis using fplll BKZ blocksize 24 reduce the basis, printing out the answer ever 2 hours.

The end of the b_i^*'s looked like this:

## NTRU Challenge - Answers

> tail -5 diag_113_002hrs.dat
4.366552965
3.980021689
4.151024102
4.238854704
4.160573947
> tail -5 diag_113_004hrs.dat
4.469161544
4.389693485
3.904888212
3.979958444
4.099543537
> tail -5 diag_113_006hrs.dat
4.140395668
4.247721305
4.014150526
3.96951532
4. 311512066
> tail -5 diag_113_008hrs.dat
4.169200638
4.131102625
3.9378865
3.991580617
61.30527643

This |b_n^*| of 61 broke the GSA completely, so was a sign of reaching the solution.

As is typical with these things - if you find a large b_n* in the primal, then it corresponds to a small b_1 is the dual, and then $I$ reversed the coefficients, and got the above solution.

Challenge \#3 131r0

```
Challenge:
[754, 311, 612, 431, 914, 748, 62, 714, 128, 872, 349, 1021, 700, 854, 742,
1005, 420, 955, 881, 667, 793, 412, 837, 114, 411, 29, 182, 845, 748, 756,
513, 823, 114, 691, 308, 145, 980, 962, 45, 907, 309, 578, 671, 665, 236,
920, 229, 319, 498, 566, 421, 329, 728, 943, 50, 752, 654, 309, 395, 872,
691, 463, 225, 361, 359, 635, 47, 271, 958, 70, 932, 546, 917, 597, 952, 652,
982, 948, 972, 901, 551, 418, 8, 119, 232, 863, 90, 91, 647, 309, 97, 488,
698, 837, 574, 891, 944, 822, 395, 310, 378, 23, 401, 589, 316, 438, 927,
270, 363, 781, 948, 616, 515, 878, 372, 701, 556, 605, 514, 528, 228, 83,
469, 200, 405, 641, 892, 203, 220, 465, 70]
```

Answer:


```
g = [-1 1-1 0
1
-1
-1 -1 1.1
0
1 -1 -1]
```

Discovery:
We first used BKZ pre-processing on the Primal Lattice (the one generated by (3h, -1) and ( $q, 0$ ) ) and this took 12 hours. Then, we search for a solution to $3 \mathrm{~h} f-\mathrm{g}=\mathrm{r}$ * h where r is the inverse of $3 \mathrm{mod} q$. We did so by a CVP pruned enumeration (tweaked linear pruning) and it took about 6 hours. Single Core, 3.2 GHz . The BKZ pre-processing was ran using fplll 4.0 (available on github), while the enumeration ran on homebrew software. The pruned enumeration failed on the first trial, but thanks to rotational symmetry, we may run several trials from the same BKZ-reduced basis. The first trial took 4 hours and was unsuccesful, the second on found a close vector after about 1 hour.

Note: Using the $f$ and $g$ specified in this solution, the element ( $3 * f+1$, $g$ ) is a short element of the lattice.

Challenge \#4 139r1

```
Challenge:
[689, 612, 772, 630, 337, 459, 68, 285, 31, 519, 148, 804, 575, 609, 122,
517, 119, 640, 749, 138, 654, 840, 27, 172, 1, 488, 394, 597, 388, 847, 703,
167, 465, 983, 664, 165, 881, 453, 591, 973, 911, 722, 605, 877, 837, 808,
838, 747, 856, 988, 814, 675, 1019, 455, 323, 299, 407, 853, 490, 654, 150,
199, 790, 903, 271, 431, 469, 128, 982, 649, 268, 648, 86, 659, 332, 766, 54,
930, 650, 217, 957, 733, 948, 897, 997, 255, 179, 467, 309, 526, 235, 617,
816, 282, 928, 730, 860, 481, 681, 928, 575, 109, 990, 894, 293, 589, 505,
438, 592, 330, 450, 231, 221, 175, 2, 960, 191, 640, 836, 820, 640, 950, 167,
710, 61, 498, 196, 537, 678, 996, 134, 991, 176, 614, 175, 259, 953, 321,
1018]
```

Answer:

```
[1 0 3 0 -3 0 0 0 0 -3 0 -3 0 0 0 -3 0
0 -3 0 0 0 3 -3 3 -6 -3 -3 0 0 3 0 3 0 0 6 -3 -3 3 -3 0 0 0 - 6 0 -3 0 6 3 9 0 6
0 6 -3 -3 -3 0 -3 0 0 0 0 -3 0 -3 0 -3 3 -3 3 0 0 0 0 0 0 0 0-3 -3 00 -3 3 0 0 0
-3 0
6 6 3]
= 1+3F
```

where $\mathrm{F}=\left[\begin{array}{llllllllllllllllllllllll}0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 0 & 0 & -1 & 0 & 0 & 1 & 2 & 0 & 1 & -1\end{array}\right.$ $\begin{array}{lllllllllllllllllllllllllll}0 & 1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 & 1 & -2 & -1 & -1 & 0 & 0 & 1\end{array}$ $\begin{array}{lllllllllllllllllllllllllllllllllllll}0 & 1 & 0 & 0 & 2 & -1 & 1 & -1 & 0 & 0 & 0 & -2 & 0 & -1 & 0 & 2 & 1 & 3 & 0 & 2 & 0 & 2 & -1 & -1 & -1 & 0\end{array}$
 $\begin{array}{llllllllllllllllllllllllll}0 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 1 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 & -1 & 0 & -1 & 1 & 0 & 1\end{array}$ $\left.\begin{array}{lllllllllllll}0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 & -1 & 2 & 2 & 1]\end{array}\right]$

```
g = [-1 1-1 0
1
-1
-1 -1 1 1 1 1 1 1 -1 1 1 -1 -1 1
0
1 -1 -1]
```


## Discovery:

It is well-known that finding the secret key can be heuristically reduced to bounded distance decoding (BDD) over the lattice L generated by (3h, -1) and ( $\mathrm{q}, 0$ ). We first computed a BKZ-reduced basis of L. Then we used this basis to solve BDD by pruned enumeration using a tailored bounding function [GNR10]1. The BKZ pre-processing was performed by a homebrew-BKZ along the lines of [CN11]2: this pre-processing took 10 hours on a single 1.3-Ghz core. And the search of bounding function took less than one hour on a single 1.3-Ghz core. The 9th pruned enumeration succeeded, where we took advantage of NTRU

[^0]
## NTRU Challenge - Answers

symmetries like for chll31rl. Each pruned enumeration took approximately 40 seconds on a $2.5-G h z$ core, so the global enumeration time was very small, less than 10 minutes. The total running time for chli31r1 can be seen to be less than 12 hours on a 1.3-Ghz core.

## Challenge \#5 149r1

## Challenge:

[571, 837, 462, 662, 107, 172, 608, 364, 163, 980, 674, 720, 95, 17, 101, 456, 686, 808, 968, 478, 905, 749, 278, 414, 406, 651, 566, 238, 698, 724, 751, 19, 505, 694, 652, 370, 222, 172, 212, 502, 422, 745, 439, 802, 703, 731, 286, 1005, 867, 621, 601, 223, 984, 917, 895, 869, 511, 525, 682, 160, 22, 472, 378, 389, 170, 937, 9, 25, 933, 185, 717, 444, 140, 697, 274, 636, $188,628,350,580,853,204,747,408,604,251,844,659,572,519,130$, 238, 771, 218, 661, 964, 507, 195, 313, 975, 588, 828, 312, 252, 405, 467, $997,508,24,480,356,756,13,4,370,277,981,550,188,407,896,699$, 966, 804, 202, 415, 839, 624, 782, 225, 565, 237, 790, 530, 27, 1018, 278, 450, 131, 366, 597, 170, 563, 319, 653, 204, 496, 373, 319]

Answer:


| where | F | $=$ | $[$ | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 3 | -1 | 1 | -2 | 0 | 0 |
| :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 2 | 1 | 0 | 1 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | -1 | 1 | 0 | 0 | -1 | 1 | 0 |
| 0 | -2 | 0 | 0 | 1 | 0 | 0 | -1 | 1 | 1 | -1 | 1 | 0 | 0 | -1 | 0 | 0 | 0 | -1 | 1 | -1 | 0 | -1 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | -1 | 0 | 1 | 0 | -1 | -1 | -2 | 0 | 0 | 0 | -1 | 0 | 0 | -1 | 1 | 0 | 1 | -1 | 1 | 0 | -1 |
| 0 | -1 | 0 | 0 | 1 | 0 | 0 | 1 | -1 | 1 | 1 | -1 | 0 | 0 | 0 | -2 | 1 | -1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
| 0 | -1 | 0 | -1 | -1 | -1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 2 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | -2 | $1] ;$ |  |  |  |

$g=\left[\begin{array}{lllllllllllllllllllllllll}1 & -1 & 1 & 0 & 1 & 0 & 1 & 0 & -1 & 1 & 1 & 1 & 0 & 0 & -1 & -1 & 0 & 0 & -1 & 0 & 1 & 0 & 0 & -1\end{array}\right.$
$\begin{array}{llllllllllllllllllllllllllll}-1 & -1 & 0 & 1 & 0 & 0 & -1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & -1 & 0 & -1 & 1 & 1 & 0 & 1 & 1 & -1 & -1 & 1 & 0\end{array}$
$\begin{array}{llllllllllllllllllllllllllll}0 & 1 & 1 & 1 & -1 & 1 & -1 & 1 & 1 & 0 & -1 & -1 & 1 & -1 & 0 & 0 & 0 & -1 & -1 & -1 & 0 & -1 & 1 & 1 & 0 & 1\end{array}$
$1 \begin{array}{llllllllllllllllllllllllllll}1 & 0 & 0 & 1 & 0 & -1 & 0 & -1 & -1 & -1 & 0 & 1 & -1 & 0 & 0 & 1 & 0 & -1 & -1 & 1 & 1 & 1 & 1 & -1 & 1 & 0\end{array}$
$\begin{array}{llllllllllllllllllllllllllll}-1 & -1 & 0 & -1 & 1 & 1 & 1 & 0 & 1 & 0 & -1 & -1 & 0 & -1 & 1 & 0 & 1 & 1 & 0 & -1 & 1 & 1 & -1 & -1 & -1 & -1\end{array}$
$\left.\begin{array}{llllllllllllllllllllll}1 & -1 & 0 & 1 & 1 & -1 & -1 & 0 & -1 & 0 & -1 & -1 & 1 & 0 & -1 & 0 & 0 & -1 & -1 & 1 & 1]\end{array}\right]$

## Discovery:

It is well-known that finding the secret key can be heuristically reduced to bounded distance decoding (BDD) over the lattice L generated by (3h, -1) and ( $q, 0$ ). We first computed a BKZ-reduced basis of L. Then we used this basis to solve BDD by pruned enumeration using a tailored bounding function [GNR10]³. The BKZ pre-processing was performed by a homebrew-BKZ along the lines of [CN11] $: ~ t h i s ~ p r e-p r o c e s s i n g ~ t o o k ~ a b o u t ~ 48 ~ h o u r s ~ o n ~ a ~ s i n g l e ~ 1.3-G h z ~ c o r e . ~ A n d ~$ the search of bounding function took less than one hour on a single 1.3-Ghz

[^1]
## NTRU Challenge - Answers

core. The 16th pruned enumeration succeeded, where we took advantage of NTRU symmetries like for chll39r1. Each pruned enumeration took approximately 760 seconds on a $2.5-G h z$ core, so the global enumeration time was not so large, less than 4 hours. The total running time for chll49r1 can be seen to be less than 50 hours on a 1.3-Ghz core.

Challenge \#6 163r1

```
Challenge:
[391, 858, 742, 459, 973, 558, 532, 799, 233, 936, 523, 614, 304, 481, 978,
513, 356, 737, 593, 43, 944, 277, 273, 667, 979, 150, 302, 898, 826, 141,
672, 203, 281, 494, 995, 771, 839, 946, 805, 21, 481, 504, 20, 450, 596, 465,
22, 577, 149, 240, 169, 226, 72, 380, 61, 736, 735, 665, 91, 488, 51, 288,
753, 69, 351, 325, 459, 740, 860, 316, 504, 71, 934, 277, 555, 1007, 920,
612, 771, 753, 842, 347, 758, 328, 49, 216, 466, 826, 810, 524, 336, 815,
693, 486, 867, 543, 557, 359, 199, 729, 445, 209, 142, 460, 741, 619, 777,
612, 209, 574, 419, 440, 9, 225, 113, 388, 836, 341, 933, 524, 144, 372, 977,
908, 600, 866, 232, 133, 240, 552, 134, 456, 158, 371, 465, 503, 932, 385,
829, 838, 389, 249, 624, 207, 926, 621, 539, 863, 664, 32, 77, 1008, 215,
401, 297, 1011, 1001, 571, 436, 340, 968, 951, 868]
```

Answer:

```
Let F = [0 1 0 0 0 0 -1 0 1 0 0 0 0 1 0 1 1 1 -2 -1 0 1 -2 0 -2 0 0 0 -1 0 0
0 -1 -2 -1 0 -1 -1 -1 0 1 0 -1 0 -1 0 1 -2 0 0 0 -2 0 0 1 0 0 0 0 -1 -1 0 0 -
2 -1 -2 0 -1 1 -1 0 0 0 -1 0 0 1 0 0 0 0 0 0 1 0 0 0 -1 0 -1 0 0 0 0 0 0 1 0
0 0 0 0 0 -1 1 0 0 0 0 1 1 0 0 1 1 0 -1 0 0 4 0 0 0 1 1 1 0 1 2 0 0 0 -1 2 0
1 0 1 0 0 -1 1 1 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 1 0 0 1 0 1]
f = 1+3*F = [1 3 0 0 0 0 -3 0 3 0 0 0 0 3 0 3 3 3 -6 -3 0 3 -6 0 -6 0 0 0 -3
0 0 0 -3 -6 -3 0 -3 -3 -3 0 3 0 -3 0 -3 0 3 -6 0 0 0 -6 0 0 3 0 0 0 0 -3 -3 0
0 -6 -3 -6 0 -3 3 -3 0 0 0 -3 0 0 3 0 0 0 0 0 0 3 0 0 0 -3 0 -3 0 0 0 0 0 0 3
0 0 0 0 0 0 -3 3 0 0 0 0 3 3 0 0 3 3 0 -3 0 0 12 0 0 0 3 3 3 0 3 6 0 0 0 -3 6
0 3 0 3 0 0 -3 3 3 0 0 0 0 0 0 3 0 0 0 0 -3 0 0 3 0 0 3 0 3]
g = [0 1 1 0 0 1 0 -1 -1 -1 -1 0 -1 1 1 -1 -1 -1 -1 1 1 -1 0 -1 -1 0 -1 0 0 1 -1
-1 0 0 1 -1 1 0 -1 -1 -1 -1 1 1 1 1 1 -1 0 0 1 1 -1 1 -1 -1 1 1 1 0 1 0 1 0 1 0
-1 -1 0 -1 0 1 0 -1 0 1 0 1 -1 -1 -1 1 1 -1 -1 0 0 1 -1 0 0 0 -1 0 -1 1 1 0 -
1 0 0 -1 -1 0 0 1 -1 0 0 1 0 1 -1 1 1 1 0 1 1 0 -1 1 --1 0 -1 1 0 -1 1 1 1 1 0
0 1 -1 1 -1 -1 1 0 -1 0 1 1 -1 -1 1 -1 0 1 0 0 0 0 0 0 0 -1 1 1 -1 -1 0 1]
```

Then $\mathrm{h} * \mathrm{f}=\mathrm{g} \bmod \mathrm{q}$

Discovery:
Similar to chll31r1, ch139r1 and ch149r1.
The BKZ preprocessing was performed with a homebrew-BKZ and the BKZ 2.0 implementation of [CN11]5: the preprocessing running time was approximately 30 core-days on a 2.53 GHz core. The BDD enumeration was performed by a slightly modified version of the [LN13] ${ }^{6}$ algorithm, which is a BDD adaptation of the SVP pruned-enumeration algorithm [GNR10]'. The secret key was found after approximately 100 enumerations, and each enumeration took about 9000s on a 2.53 GHz core, so the global enumeration running time was 11 core-days. Hence, the total running time is about 41 core-days.

[^2]Challenge \#7 173r1

```
Challenge:
\([349,1012,730,343,582,26,372,113,748,272,510,490,926,792,89\), \(152,330,513,798,254,998,232,421,584,590,96,735,81,616,279,212\), 654, 5, 844, 551, 63, 960, 153, 68, 109, 586, 422, 497, 786, 6, 558, 405, 208, 141, 324, 6, 322, 123, 392, 235, 440, 737, 881, 980, 856, 226, 472, 763, \(244,419,201,62,547,575,660,516,788,666,968,922,729,166,751\), 936, 951, 783, 27, 704, 654, 883, 970, 475, 193, 660, 728, 250, 1008, 532, 264, 963, 147, 659, 9, 607, 415, 21, 888, 15, 460, 369, 998, 855, 687, 66, 928, 218, 235, 266, 429, 74, 413, 685, 1, 733, 46, 846, 381, 584, 155, 475, 419, 252, 1012, 1018, 265, 892, 118, 65, 354, 600, 213, 793, 600, 7, 413, 671, 103, 515, 342, 643, 878, 579, 398, 895, 297, 719, 174, 462, 71, 71, 319, \(744,632,571,731,573,793,255,290,380,471,1006,544,975,81,13\), 204, 646]
```

Answer:
Let $\mathrm{F}=\left[\begin{array}{llllllllllllllllllllllllllllll}0 & 1 & -1 & 2 & -1 & -1 & -1 & 0 & 0 & -1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & -1 & 0 & -1 & -1 & -1 & 1 & -2 & 0 & 0 & 0\end{array}\right.$
 $0 \begin{array}{lllllllllllllllllllllllllllllllll} & 0 & -1 & 1 & -2 & 0 & 0 & -1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & -1 & 1 & 0 & -1 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & -2 \\ 0 & -2\end{array}$ $1 \begin{array}{llllllllllllllllllllllllllllllllll}1 & -1 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 1 & 1 & -1 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 2 & -1 & 0 & -1\end{array} 1$ $-110 \begin{array}{llllllllllllllllllllllllllllllllll}-1 & 0 & 0 & 1 & 0 & 1 & -1 & 0 & 0 & 0 & -1 & 0 & 1 & -1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0\end{array}$ $\left.\begin{array}{lll}-1 & 1 & 0\end{array}\right]$
$\mathrm{f}=1+3 * \mathrm{~F}=\left[\begin{array}{llllllllllllllllllllllllllll}1 & 3 & -3 & 6 & -3 & -3 & -3 & 0 & 0 & -3 & 3 & 3 & 0 & 0 & 3 & 0 & 3 & 0 & 0 & -3 & 0 & -3 & -3 & -3 & 3 & -6 & 0\end{array}\right.$



 $\left.0 \begin{array}{llll}0 & -3 & 3 & 0\end{array}\right]$

```
g = [-1 0 1 1 -1 1 1 1 1 1 -1 1 1 1 0 0 -1 -1 -1 1 1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 0
0
1 0 0 0 0 1 0 0 -1 -1 0 0-1 0 1 1 1 1 -1 0 1 1 0 0 0 -1 -1 0
1 0
1 1 1 1 0 0 -1 -1 1 1 -1 0 1 0 0 -1 -1 -1 -1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 0
0}0
```

Then $h * f=g \bmod q$

## Discovery:

Similar to ch163r1.
The BKZ preprocessing was performed with a homebrew-BKZ and the BKZ 2.0 implementation of [CN11]8: the preprocessing running time was approximately 240 core-days on a 2.53 GHz core. The BDD enumeration was performed by a

[^3]
## NTRU Challenge - Answers

slightly modified version of the algorithm presented in [LN13]9, which is an adaptation of the SVP-enumeration algorithm presented in [GNR10] ${ }^{10}$.

The secret key was found after approximately 400 enumerations, and each enumeration took about 3 hours on a 2.53 GHz core, so the global enumeration running time was 50 core-days. The total running time is therefore about 290 core-days.

Compared to chll63r1, there was one noticeable difference: several reduced bases were used.

[^4]SecurityInnovation ${ }^{\circ}$
EMBEDDED SECURITY BUSINESS UNIT


[^0]:    1 [GNR10] Nicolas Gama, Phong Q. Nguyen, Oded Regev: Lattice Enumeration Using Extreme Pruning. EUROCRYPT 2010: 257-278
    2 [CN11] Yuanmi Chen, Phong Q. Nguyen: BKZ 2.0: Better Lattice Security Estimates. ASIACRYPT 2011: 1-20

[^1]:    3 [GNR10] Nicolas Gama, Phong Q. Nguyen, Oded Regev: Lattice Enumeration Using Extreme Pruning. EUROCRYPT 2010: 257-278
    4 [CN11] Yuanmi Chen, Phong Q. Nguyen: BKZ 2.0: Better Lattice Security Estimates. ASIACRYPT 2011: 1-20

[^2]:    5 [GNR10] Nicolas Gama, Phong Q. Nguyen, Oded Regev: Lattice Enumeration Using Extreme Pruning. EUROCRYPT 2010: 257-278
    ${ }^{6}$ [CN11] Yuanmi Chen, Phong Q. Nguyen: BKZ 2.0: Better Lattice Security Estimates. ASIACRYPT 2011: 1-20
    7 [LN13] Mingjie Liu, Phong Q. Nguyen: Solving BDD by Enumeration: An Update. CT-RSA 2013: 293-309.

[^3]:    8 [CN11] Yuanmi Chen, Phong Q. Nguyen: BKZ 2.0: Better Lattice Security Estimates. ASIACRYPT 2011: 1-20

[^4]:    9 [LN13] Mingjie Liu, Phong Q. Nguyen: Solving BDD by Enumeration: An Update. CT-RSA 2013: 293-309.
    10 [GNR10] Nicolas Gama, Phong Q. Nguyen, Oded Regev: Lattice Enumeration Using Extreme Pruning. EUROCRYPT 2010: 257-278

