
Off-the-Record Instant Messaging
for Group Conversation

Jiang Bian
Department of Computer Science

University of Arkansas at Little Rock
Little Rock, Arkansas 72004

Email: jxbian@ualr.edu

Remzi Seker
Department of Computer Science

University of Arkansas at Little Rock
Little Rock, Arkansas 72004

Email: rxseker@ualr.edu

Umit Topaloglu
Department of Computer Science

University of Arkansas at Little Rock
Little Rock, Arkansas 72004

Email: umtopaloglu@gmail.com

Abstract—Instant Messaging (IM) is becoming an integral
part of social as well as business life. The main concern with
IM systems is that the information being transmitted is easily
accessible. Some protection could be achieved with the use of
a secure tunneling (i.e. VPN etc.). Nevertheless, even the use of
VPN-like technologies does not provide end-to-end secrecy. Off-
the-record (OTR) [1], designed by Borisov. N. et al., is a protocol
which enable IM users to have private conversations over the
open and insecure public Internet. However, the OTR protocol
currently does not support multi-user chat rooms via various
popular IM services. And there is a need for such a product,
which provides users the opportunity to meet in a IM-based,
virtual, and encrypted chat room. This project implements an
extension of the two-party OTR protocol, named Group OTR–
GOTR. GOTR enables users to have a free and secure multi-
user communication environment with no proprietary software
requirement. The case study describes a proof of concept plug-
in of GOTR developed for the GAIM [2], as well as the plug-
in implementation details. Such a product is believed to be
beneficial to small businesses to keep their privacy and their
competitiveness.

I. I NTRODUCTION

Current trend in message exchange systems around the
world is Instant Messaging (IM). IM systems are becoming
available even on cellular phones, pagers, and it is expected
that more mobile devices will support at least one IM tech-
nology and these technologies will be employed for business
solutions. Given the status quo of measures implemented for
privacy maintenance or intellectual property, there is still much
space for improvement.

Users seem to prefer IM systems because they are not as
intrusive as phone calls, yet are more interactive than e-mails.
Some of the popular IM systems include: Microsoft’s MSN
(or Windows) Messenger (MSN) [3], American Online Instant
Messaging (AIM) [4], Google Talk [5], etc. and these systems
are changing the way people communicate with friends, family
and business partners. On the other hand, confidentiality
has not been addressed in the IM environment. Most IM
protocols were implemented on the top of the existing public
Internet service, where there is no guarantee of the secrecy
of the transmitted messages. A message exchanged between
users sitting next to each other may still need travel a path
through several routers. Furthermore, if there is no proper
encryption and/or authentication in place, messages are almost

open to any eavesdropping, account hijacking, man-in-the-
middle, denial of service, and similar types of attacks thatis
potentially harmful for most of the current distributed network
applications.

As IM systems become part of the social and business
infrastructure, concerns related to protecting the content of
messages arise. Although it can be extended to other appli-
cation areas, the focus of this paper is limited to protecting
the intellectual property of small businesses. The reason for
focusing on small businesses is that, a vast majority of them
cannot afford implementing a service which ensures secrecyof
their intellectual property. Unveiling the company secrets may
harm its competitive advantages and result in capital loss.

A. IM system’s architecture

One could probably consider Internet Relay Chat (IRC) as
the first IM system. IRC provides a real-time communication
service among a group of people regardless of their physical
locations. In IRC, each participant needs to connect to a
centralized IRC server and join a conversation channel (or
topic). There are two types of conversations in IRC: one is
public in which messages could be read by everyone in the
same channel and the other is private in which messages are
exchanged between only two parties, who may or may not
be on the same channel [6]. Later on, the new generation IM
systems such as AIM, MSN, ICQ, Yahoo Messenger, Google
Talk etc. appeared. These systems share an identical concept
and provide similar functionalities such as real-time chat(peer-
to-peer or/and chat room) , file transfer and so on.

Instant Messaging is a typical client-server distributed net-
work application and as such can be partitioned into two
fundamental communication models:

• Client-Server-Client: AAll messages being exchanged
among participants need to go through a centralized
server regardless of the messages type, either system
messages (i.e. the messages that are taking place between
the client and the server to exchange status information
like: users buddy lists, IP addresses, client status, etc.)or
the actual conversation payload.

• Peer-to-Peer:Only the system queries and control mes-
sages are exchanged between the clients and the server.
Upon initiating a conversation, one party queries the



server to get another’s IP address and uses this infor-
mation to establish a communication channel. In this
model, the server stores user specific information such
as user profiles, clients’ IP addresses, client version, etc.
and provides a querying service for clients to find other
party’s address information.

B. Potential Vulnerabilities

The message packages in public IM systems need to traverse
through the public Internet regardless of the model and struc-
ture utilized. In general, these messages are not encryptedand
an eavesdropper could easily stand on one router between the
IM users, sniff their communication and access the messages.
Retrieving the contents of IM messages is a rather trivial
task once one grabs the packets traversing in the network.
Eavesdropping is considerably easier on a LAN network, since
the packages are broadcast and every node could reach the
distributed packet unless the LAN network is switch based.
For the switch based network, an eavesdropper could still
sniff the traffic from the line that connects the switch to the
router. There are also other available mechanisms for sniffing
traffic on a switched LAN; however, it is beyond the scope
of our paper. The discussion about an eavesdropper sniffing
traffic is to justify the need for protecting the content of the
IM messages utilizing an encryption method. Nonetheless,
the problem still remains unresolved as to how one would
distribute the keys securely, as well as, how the identity ofa
user can be verified.

Account Hijacking is another form of attack by which one
could hijack another user’s IM account and impersonates that
user in subsequent conversations with others. The reason this
attack is so successful, is because most of the IM systems have
been using vulnerable authentication mechanisms. Session
identifiers, widely used by most of the IM protocols, are not
difficult to forge. An attacker could produce a similar legal
key in accordance with the identifier’s format.

Man-in-middle attack is a type of attack that exposes
improper key exchange schemes of IM systems. For instance,
the Diffie-Hellman(DH) [7] key agreement protocol, which
is used by lots of IM security products, is vulnerable to
this attack. Suppose Alice and Bob want to communicate
privately and Alice initiates the Diffie-Hellman key exchange
protocol. In case of an eavesdropper, Carol, intercepts Alice’s
public key and sends her own public key to Bob. When Bob
replies, Carol gets Bob’s public key, substitutes it with hers and
replies to Alice. After all, Alice and Bob will think they are
sharing a private secret with each other and all their messages
encrypted by this secret are safe. But in fact, they are talking
through a middle-man (Carol). Carol could even go one step
further by modifying the messages and then re-encrypt with
the appropriate key before delivering to the other party. The
lack of authentication scheme employed in Diffie-Hellman
key agreement protocol allows aforementioned vulnerability.
The issue can be overcome by adding fingerprints (or digital
signatures) to each message.

The above mentioned security breaches in an IM envi-
ronment are usually addressed by employing encryption and
authentication algorithms. Nevertheless, utilizing onlyconfi-
dentiality and authentication schemes are not good enough to
provide an off-the-record conversation environment, in which
the deniability property is also satisfied. In 2004’s Workshop
on Privacy in the Electronic Society (WPES), Borisov, N.,
et. al. proposed and implemented the OTR protocol [1]. In a
later version of the OTR protocol, they have fixed a security
flaw pointed out by Raimondo, et al [8]. The OTR protocal
has two distinguishable security properties: perfect forward
secrecy and deniability. These features will be discussed in
Section III.

Yet, the OTR protocol only addressed the security issue of a
two-party conversation. On the other hand, chat rooms, where
several people can meet virtually to talk, could be useful not
only for fun, but also for business life. Lots of corporations
and organizations tend to move forward from conventional
teleconference to the cheaper, more efficient online meeting
environments, IM systems. For those companies, governments,
and institutions, the protection of communications is extremely
critical. Therefore, our intention is to address this need by
utilizing the original two-party OTR protocol to create a
guarded, assured and riskless multi-user IM ambiance.

Because of the differential characteristics between two-part
conversation and multi-user message exchange system, we
are facing amount of unique pitfalls in designing a security
scheme. The growing size of chatting members apparently
accumulates the complexity of the key exchange stage, which
would require more time and CPU power for both encryption
and decryption processes. Likewise, the synchronization of the
shared keys is a further hurdle. Similar to the clock problem
in distributed operating system (i.e., a universal clock system
is unobtainable), it is hardly possible to generate and maintain
an all-inclusive key among various users. We will go deep into
these problems in Section IV, when we are dealing with our
application design.

This paper is composed of four sections and the remaining
sections are organized as follows: Section II presents a intro-
duction of current popular mechanisms used for secure Instant
Messaging; Section III discusses the main concepts behind
the OTR project and signifies the need for chat room support,
a feature missing in the OTR protocol; Section IV presents
our implementation of secure group conversation based on
the OTR protocol. Conclusion and future work are given in
Section V and VI.

II. RELATED WORK

Security in distributed applications is supported by usu-
ally five typical security services which are defined by the
International Organization for Standardization (ISO). Those
are access control/authorization, identification/authentication,
confidentiality, integrity, and non-repudiation [9]. However, for
an IM system, some security features need to be reconsidered,
particularly, non-repudiation. In order to enable IM usersto
talk off-the-record, deniability (repudiation) is neededinstead



of non-repudiation. In other words, a user should have the
ability to deny what he or she said in the past. Several open
source projects and some commercial software have addressed
the security weaknesses that exist in the current IM systems.
Security in these applications is, in general, supported by
adding encryption and authentication schemes.

A few of such secure IM clients which are in use today will
be surveyed, and our focus is the ones that have encryption
and/or authentication support. A complete survey of all the
secure IM clients is beyond the scope of this paper.

SimpPro [10] is a commercial software developed by
Secway, a European company, providing privacy protection
in IM systems. It includes:

• Encryption of messages
• Key infrastructure support for user authentication
• Encrypted file transfers for MSN and ICQ/AIM
• Secure recording of conversations

Moreover, in SimPro encryption algorithm and authentication
key agreement can be customized by the users and the
following symmetrical algorithms : AES (128 bits), 3DES
(Triple DES, 128 bits), CAST (128 bits), Twofish (128 bits)
and Serpent (128 bits), are provided for encrypting messages;
and the asymmetrical algorithms such as, RSA (2048 or 4096
bits), Diffie-Hellman, ElGamal/DSA, and Elliptic curves, are
used for authentication and key agreement. [11]

Gaim-Encryption [12] is a security plug-in for GAIM1

and it uses NSS (Network Security Services) to provide
transparent RSA encryption. It can automatically generatethe
public/private key pairs upon loading the plug-in and exchange
the public keys during the initiation of conversations. Although
Gaim-Encryption does not provide free choice of encryption
algorithms, its API can be used as a wrapper and it can be
easily extended to support different encryption algorithms.
Obviously, without authenticating the participants, it suffers
from man-in-the-middle attacks.

Gaim-e is again an encryption plug-in for GAIM. It uses
GNUPG (GPG) to securely transfer the session keys encrypted
with RC5, a block cipher notable for its simplicity [13]. The
Gaim-e plug-in currently works with AOL, MSN, and Yahoo
IM systems (at the time of this writing, other protocols have
not been tested) [14].

Trillian is another IM client software with multi-protocol
support (like GAIM) [15]. It claimed to support encrypted
IM communication for AIM and ICQ protocols. Like most
the others, authentication and encryption are sustained. It uses
the combination of DH asymmetrical key-exchange agreement
with symmetrical 128 bits Blowfish cipher algorithm to secure
the messages and assure the identities.

As the literature survey shows, most of the available prod-
ucts for IM security address only part of the security services
defined by the ISO. Often, message integrity, perfect forward
secrecy, and deniability are not addressed. The next protocal

1GAIM is an open source, multi-protocol IM client and it is available for
Linux and Windows operating systems. [2]

we will survey examines these widely omitted concerns within
the IM domain.

III. O FF-THE-RECORD (OTR) INSTANT MESSAGING

SYSTEM

A. Basic concepts behind the OTR

The OTR protocol contains four basic cryptographic prim-
itives:

Perfect forward secrecy:[16] Confidentiality (i.e. only the
two communicating parties, Alice and Bob, should be able to
read the conversation messages), is introduced by using short-
lived encryption/decryption key(s). The basic idea is thatthe
two parities, Alice and Bob, should forget used keys after they
process the old messages2. It is computationally infeasible to
generate the previously used keys from the current key and
the long-term keys. The OTR mechanism guarantees that even
if an eavesdropper has the current key and can compute the
shared secret being used at the moment, the compromised
current key does not allow decrypting and reading previous
messages. OTR improves the well known Diffie-Hellman key
agreement protocol [7] to provide perfect forward secrecy.
Each key is used to secure one message only and a new key
is generated for transmitting the next message securely.

Digital signatures and non-repudiation:Digital signatures
are used to make up for the lack of authentication in the Diffie-
Hellman key agreement protocol. It is a popular approach in
authentication protocols to use digital signatures that act as
long-lived keys. These long-lived keys are solely for authen-
tication purposes and are not used to encrypt IM messages
in the OTR protocol. On the other hand, the signature along
with the message leads to another problem. It enforces the
non-repudiation property that the signatures can be verified by
a third party without the cooperation of the owners, and this
property conflicts the deniability service required by an OTR
IM session. The solution is to use a Message Authentication
Code (MAC) to authenticate the messages instead of the user’s
digital signature. In other words, the digital signatures au-
thenticate the keys instead of the messages and authentication
of keys provides the identification service, because only the
person who has the right key can read the cipher texts. In the
implementation, the previous key is used to authenticate the
new key at every key refreshing stage.

Message Authentication Code (MAC) and deniability:
Deniability is the ability to deny the content of conversations
and it is addressed in the OTR protocol by using MACs. The
way to generate each MAC is to use a one-way cryptographic
hash function with a secret MAC key shared by conversation
members. Alice uses her copy of the MAC key to compute
a MAC of her message, and sends this MAC along with her
message over a secure transmission channel; Bob verifies the
integrity and authenticity of the message by computing the
MAC for the received message using his copy of the shared
MAC key and comparing with the MAC sent by Alice [1].

2an old message is a message for which the encryption-transmission-
decryption cycle is completed



Deniability is provided by using these MACs for IM: Carol, a
third party, cannot prove that the message was sent by Alice,
since she does not know the MAC key shared between Alice
and Bob. Even Bob cannot make a proof to the public that the
message is really came from Alice. Both of them know the
same MAC key, and so the message could have been forged
by Bob.

Malleable encryption and forgeability: Forgeability is
a stronger property than repudiation provided by the OTR.
Once a key expires, the associated MAC keys for message
authentication are revealed. The reason for revealing old MAC
keys is to allow forgeability of messages whose encryption
keys have expired. This feature enhances the ability of Alice
to deny that the messages were sent by her, because anyone
could calculate a MAC based on a modified message (even
though it’s encrypted) and validate it with one of the revealed
MAC keys. OTR protocol uses a malleable encryption scheme
(i.e. any change made to a cipher text will cause a meaningful
change in the right position of the plaintext). Revealing of
MAC keys together with a malleable encryption scheme, gives
a third party the ability to forge the messages sent by Alice.
Hence it gives Alice the ability to deny the fact that she has
sent those messages. Moreover, anyone who recovers the MAC
key in the future is unable to verify the authenticity of the
messages sent in the past, which means even if somebody
reads the messages it is hardly possible to track the messages’
origin.

B. Security Weakness in OTR

Mario Di Raimondo, et al. [8] pointed out three major
security flaws or vulnerabilities after they examined the OTR
protocol:

1) An authentication failure
2) A key refreshment flaw, and
3) Unreliable support of the deniability

All these three weaknesses are caused by the choice of
the key agreement protocol, which are adopted from DH
protocol. First, the OTR protocal inherits a possible ”identity
misbinding” attack originally discovered by Diffie et al. [17].
Suppose that Alice, Bob and Eve are in the same channel.
The key (gx, SignAlice(g

x)) sent from Alice to Bob could be
passed on by Eve but this time with her own digital signature
(i.e. under Eve’s name). When Bob receives the signed (by
Eve) key, he thinks that he is talking to Eve, and replies
(gy, SignBob(g

y)). Furthermore, Eve relays Bob’s response
back to Alice and gets Alice’s reply. After all, Alice thinks
Bob is on the other side, but actually it is Eve who is talking
to her; while Bob believes the key was exchanged with Eve.
Moreove, all of them had computed the same shared secret.
(i.e. since Eve did not changed Alice’s public key (gx) when
she was relaying the message.) This is critically harmful. For a
real life example, a criminal, Eve, can use this authentication
failure to mislead a customer, Alice, and a bank, Bob. One
simple solution is to include identity information in the digital
signature, but it will surely dismiss the deniability property.

Because signed keys were improperly used, the OTR proto-
col suffered from a possible man-in-the-middle attack. Sup-
pose that Alice wants to start a private conversation with
Bob by sending her signed public key (gx, SignAlice(g

x)).
Eve, however, stands between them and sniffs their messages.
Eve replaces Alice’s signature with hers, and passes it to
Bob. When Bob receives this message, he thinks that Eve
wants to talk with him, and he replies with his signed key
(gy, SignBob(g

y)) under his name. Eve relays this message to
Alice with no change. After all, Alice thinks that she is talking
to Bob, since she got Bob’s key under his name, but actually
it is Eve who is on the other side. Therefore, in this case,
Eve impersonates Bob. For this attack, one simple solution
is to include identity information in the digital signature(i.e.
gx, SignAlice(g

x, Alice)), so that no one could modify the
signature of a message. However, this change will definitely
void the deniability property.

Moreover, the revealing of an ephemeral private key could
cause an impersonation attack. An attacker could easily relay
the message,gx, SignAlice(g

x), with gx, SignAttacker(g
x),

to Bob, which was received from Alice, and he/she could
compute the session key upon regardless ofgy (i.e. Bob’s
pubic key) responded from Bob. This session key will be valid
as long as the long-term private key of Alice is not revoked.
As known, this flaw defeats the goal of a secure and well-
designed key protocol, the only way for a devil impersonate
into the conversation is the disclosure of the long-lived private
key rather than a piece of information used in the session.
Therefore, they suggest doing full key refreshment periodi-
cally, which ensures that the revealing of an ephemeral private
key will not affect the next fully-refreshed conversation.

Furthermore, the improper mechanism of revealing MAC
keys weakens the secrecy of encryption keys. Since the MAC
keys are generated as a one-way hash over the encryption
key, the attacker can easily use this knowledge to mount a
”dictionary attack”, although it is probably computationally
too expensive. And, the choice of using stream cipher may
also cause troubles, especially, when one is trying to manage
the encryption counters to avoid re-use of counter values.

Consequently, they suggested three alternate Authentication
Key Exchange (AKE) algorithms, SIGMA [18], SKEME [19]
(i.e. which is an early voice of a protocol designed to provide
deniability to IPsec’s IKE protocol.) and HMQV [20], and
discussed both the advantage and disadvantage of using these
three protocols.

This discussion leads the OTR developers reconsider their
design, which resulted in a second version of the OTR proto-
col, where:

1) They fixed the identity-binding flaw (the impersonate
attack vulnerability) simply by adding an additional
identification message at the beginning of the conver-
sation session.

2) No longer revealing the users’ public keys to passive
eavesdroppers and this helps in privacy-preserving for
the internal application’s OTR messages.

3) And, additionally, made a support of fragmentation OTR



messages, since a lot of Instant Messaging protocols
have limitation on each message’s size.

C. Lack of Chat Room Support

Chat room systems are often being utilized by companies
to increase the success of business for its efficiency. A chat
room system is more suitable for online discussions than
conventional mailing-list systems due to its interactive nature.
Many small businesses use chat room systems (and/or IM
systems) for daily business discussions, customer service, etc.
Using such technologies cuts down the operation costs of a
business and enables employees to multitask when necessary.
Many open source projects also use chat rooms to conduct
development meetings, since most project members are located
in disparate locations. And normally, these projects are relied
on donations, which limit their expense on phone meetings.
There is, however, no privacy protection in most modern chat
room systems. Security concerns associated with chat rooms
restrict their use for many businesses.

Some IM systems have chat room support built into them.
For example, MSN and Yahoo IM protocols support the chat
room concept and once a user invites another user to an ad-hoc
chat room, they can invite other parties to have a meeting in
that established chat room. Considering security related issues
(associated with both IM systems and chat rooms) mentioned
previously, it would be beneficial to extend the OTR protocol
to support a secure chat room facility.

A secure chat room that utilizes the existing IM infras-
tructure would bear virtually no cost on the participants. An
IM-based secure chat room will also avoid the need for a
VPN or dedicating a local server and the challenges that come
with having such systems and their management. Hence, we
extend the OTR protocol with a scheme to support multi-
party conversations and implemented a GAIM plug-in. Our
implementation currently supports secure chat room over the
MSN IM protocol.

D. MSN protocol

Our first GOTR implementation will base on the famous
MSN protocol, which has a native support of chat rooms. The
MSN Messenger [3], developed by Microsoft, was released
in July, 1999. It became popular with the wide use of the
Windows operating system. The end users’ MSN applications
are called an ”MSN Client”; it connects to the ”MSN Server”
hosted by Microsoft to acquire information about the user’s
personal profile, buddy list and so on. Whenever a user
modifies his/her profile, the client sends this information to
the server and the server notifies other users in your buddy
list.

The MSN protocol has a built-in support for chat rooms.
There are no major differences between a two-party conver-
sation session (referred to as ’SwitchBoard’) and a chat room
session other than the number of users in the session. If a
user wants to invite another to the chat room, s/he will send
an invite command and the invited user will receive an RNG
command containing the session id, buddy list of the chat

room, etc. Notice that, all messages exchanged in the chat
room session are broadcast to every user along with sender’s
account name, the message body and the timestamp.

IV. M ETHODOLOGY AND IMPLEMENTATION

A. Initial Design

The main concept of our implementation is to create a
virtual server. The term ”virtual” is used in the context of
acting as a server in the chat room. The server, which could
be any one of the members in the same conversation session,
will perform key exchanges with every other participant the
same way as if s/he would for a regular peer-to-peer OTR
conversation. Therefore, the virtual server is sharing a secret
with other chat room members. In another words, every one
other than the virtual server itself will establish a private
channel, each having its own shared secret with the host.
The server is responsible for relaying and routing all the IM
messages. This implies that the virtual server needs to process
and deliver all the messages from any one member to every
one else in the same chat room session, as shown in Figure 1.
The idea is simple. It is similar to the scenario that happens
in the WLAN network for DHCP system. When a computer
joins an anonymous wireless network, it needs to make an IP
address reservation first. The client computer will broadcast its
request and the server will response it with a specific empty IP
address slot. And therefore, they made a connection. However,
there is a major difference in our GOTR protocol. The server
instead of the clients broadcasts its request (i.e. requestfor a
key exchanging) meanwhile it informs every member that it
is the dedicated virtual server.

For example, in a GOTR chat room, we have three joiners:
Alice, Bob and Carol, and we suppose Alice to be the virtual
server. Later on, after all the key-exchange processes conclude,
we should have:

• Bob and Alice have a shared secretSSAlice−Bob.
• Carol and Alice have a shared secretSSAlice−Carol.

There comes to a
Problem: How can Bob communicate with Carol?
Bob cannot send his GOTR encrypted messages directly to
Carol since the two do not have a common secret, and even if
he could, Carol would not be able to decrypt his messages and
read them. It is true that they could start their own OTR session
and talk to one another without Alice knowing (Alice would
not be able to see their messages). But either way will defeat
the purpose of a chat room. (i.e. every one in the same chat
room should have the same screen of conversations.) However,
both Bob and Carol, each have a shared secret with the Virtual
Server, Alice. Therefore Bob can send the OTR messages to
Alice first and then Alice decrypts Bob’s messages by using
SSAlice−Bob, re-encrypts them withSSAlice−Carol and gets
done with sending them to Carol. Now Carol has no problem
to decipher the messages. All of our GOTR implementation
is based on this straightforward idea.



Fig. 1. OTR chat room scheme: a virtual server in the middle

B. Design and Implementation Details

Design Problem 1:
The MSN IM protocol specifies that the messages sent out in
a chat room are broadcast to every user in that IM session.
Therefore, in proposed design, it is hard to tell the real receiver
of the message. When a message goes through and is relayed
by the virtual server, the MSN protocol is not really helpful
to tell the end receiver where the message indeed came from.
It could be a word said by the server itself or any other user
in the chat room, since in either case the message has to be
passed over by the server. In our virtual server scenario, a user
only has the capability to decrypt the instant messages coming
from the server and all other messages are discarded. Since
only the senders explicitly know the messages are encrypted
with which shared key and for whom, we need an identifier
at the beginning of a message to determine the receiver of the
message.

Now, we would like to show some more examples of our
idea. Assume we have an OTR chat room via MSN IM system
with three users: Alice, Bob, and Carol. Again, suppose that
Alice is the virtual server for this secure chat session. And
thereupon, after the key exchange stage, as we said in the
previous example:

• Bob and Alice have a shared secretSSAlice−Bob.
• Carol and Alice have a shared secretSSAlice−Carol.

Example 1:
Alice, the virtual server, sends a message (no matter what kind
of messages, including OTR system messages, which are used
for key management) to Bob,which should be encrypted with
SSAlice−Bob and formatted into the following manner:

Alice->Bob:
?RECV?Bob@hotmail.com?ENDRECV?
+ <Encrypted Message>

When Carol receives this message, she will check the receiver

tag (i.e. prefix of the encrypted messages) first and find out
that the message is not hers (i.e. in terms of she can not
decrypt it and read it) according to the account name in
between?RECV ? and ?ENDRECV ? markers, she just
discards this message. When Bob receives the same message,
and after he checks the tag and finds out that the message does
belong to him, he will send this message to the OTR message
encryption and decryption routine (using the OTR library) and
use the secret shared between him and Alice (SSAlice−Bob)
successfully decode the message.

Example 2:
Bob says something in the chat room, but Carol could not read
it, since the two do not have a common shared key. Hence,
Bob has to send his message first to the virtual server, Alice,
with the receiver tag [Alice@hotmail.com]. And the message
will be something like this:

?RECV?Alice@hotmail.com?ENDRECV?
+ <Encrypted Message from Bob>

When Alice receives the message, she will decrypt it with the
key she shared with Bob (SSAlice−Bob), write the message to
her screen, then encrypt it again withSSAlice−Carol and set
Carol to be the receiver as:

?RECV?Carol@hotmail.com?ENDRECV?
+ <Encrypted Message from Alice>

Now, on the Carol’s side, she will receive both messages
encrypted with different keys, one from Bob and another one
from Alice. She will simply dismiss the first, since she does
not know the right key; but process the second one to the
decryption routine and retrieve the decoded content of the
message.

It seems to be perfect, but there remains another issue:
Design Problem 2:

Since the server is basically a router which is responsible
for reformatting and transferring all the messages. It is hardly
possible to know the real sender without any additional effort.
If the previous example is revisited: when Carol gets the
message from Alice, the virtual server, although she could
decipher the message, she wouldn’t know the real sender,
which could be either Alice or Bob. This is because of that the
messages do not contain any source information. Conceivably,
Carol will assume the message was started by Alice, since it
is Alice that Carol received the message from. However it was
originated by Bob. There is no such support mechanism for
message tracking” or ”transitive authentication” in either the
MSN protocol or GAIM project. The solution proposed is to
add another tag after the receiver tag to indicate the real sender
like what we did to classify the receiver. In accordance with
the previous example IV-B, now all the messages will appear
to be the following format:

Part One: Message from Bob to Alice

Bob->Alice:
?RECV?Alice@hotmail.com?ENDRECV?
+ ?SEND?Bob@hotmail.com?ENDSEND?



+ <Encrypted Message>

Part Two: Retransfered message from Alice to Carol

Alice->Carol:
?RECV?Carol@hotmail.com?ENDRECV?
+ ?SEND?Bob@hotmail.com?ENDSEND?
+ <Encrypted Message>

Till to this point, the messages include all the necessary tags
to identify both the real sender and the receiver.

Design Problem 3:
In the MSN IM protocol, every one in a chat room has the

same privilege, which means there is no special power for one
to be the ”owner” of the chat room established via the MSN
IM server. Every one in the chat room can invite another buddy
without restriction. Such scenario causes the GOTR protocol
a serious problem. For example, assume a new user has been
invited to the GOTR session, in order to keep the chat room
in protection, the new user should first do a key-exchange
with the virtual server and build up the private connection
like every one else. But neither the MSN protocol nor the
GAIM implementation supports the ability to tell the ”owner”
of a chat room, which would be our virtual server. Since we
would like to offer participants a degree of security via OTR,
there is a work around to the aforementioned problem in the
following way: Each member of the chat room keeps some
additional information and they are recorded in a file named
otr.chatinfo located in the.gaim folder, which is used by
GAIM to keep configuration files. This file is designed to have
the following format:

?AC?[account name] ?CID?[chat_id]
?HOST?[host name] ?STAT?[security level]

• AC: indicate the account name of the user who owns the
current conversation window.

• CID : chatid is used by GAIM to identify different chat
rooms.

• HOST: the user who made to be the virtual server for
the MSN chat session.

• STAT: indicate the security level used by OTR library;
the security level can be:

– 0 indicates no private conversation.
– 1 indicates private session over.
– 2 indicates private session.

Implementation Assumptions:
It is assumed that, the user who initiates the private conver-

sation, would be the virtual server. For example, Alice starts
a private conversation, and therefore, she is the virtual server.
So herotr.chatinfo would look like:

?AC?Alice@hotmail.com ?CID?1
?HOST?Alice@hotmail.com ?STAT?2

For all other users, when a private conversation is requested
by the virtual server (e.g. Alice). The invited user will write
the following information to his/herotr.chatinfo file:

?AC?Bob@hotmail.com ?CID?2
?HOST?Alice@hotmail.com ?STAT?0

Notice that the conversation’s security status is initiated to
be 0 (not private). After they finish the first key exchange
round and establish the private communication channel, the
security status will be changed to2 (private level) accordingly:

?AC?Bob@hotmail.com ?CID?2
?HOST?Alice@hotmail.com ?STAT?2

Now, we are confident to say that Alice, Bob and Carol are
talking privately under our GOTR system.

V. CONCLUSION

There is a need for secure chat room environments via the
existing IM infrastructure, and therefore an approach to extend
OTR to provide secure chat room support via IM is provided.
The proposed approach is useful in addressing the needs
of individuals (e.g. small businesses where confidentiality
of information is crucial) to have off-the-record and secure
meetings with virtually has no cost. As proof of concept,
a plug-in for GAIM was developed. Although the current
implementation only supports chat rooms via the MSN IM
network, the idea can be easily extended to other IM protocols
such as Yahoo IM, AOL IM, etc.

Some additional network traffic might be an overhead
introduced by the proposed approach, it is considered to be
preferable rather than dealing with the complicated issue of
group key-exchanging protocols particularly in the Deffie-
Hellman key agreement protocol. The performance of group
key management algorithm remains an issue. Although having
some light and small extra packet payloads, will not hinder the
performance as much as a complex group key management
protocol would. Actually, since the payloads and the network
bandwidth traffics are distributed to every chat member, the
performance is not an issue for those participants except for
the virtual server. But, the result of the initial test showsthat
the performance for the virtual server is still ideal.

VI. FUTURE WORK

The issue of how to deal with a new user (no matter who
invited him/her, could or could not be the virtual server)
remains. Ideally, the dedicated virtual server should be re-
sponsible to respond the change of the secure status due to
a new joined member. In other words, when a new user,
say Eve, joins the private chat room and breaks the security
(i.e. since Eve does not have any shared secrets with any
members in that chat room), the virtual server, Alice, should
react accordingly. Alice could restart the whole key-exchange
process pair-wisely, which is the same process as a fully key
refreshment, but including the new member, Eve, this time.
And after the reestablishment of the keys, it becomes a normal
OTR chat room session. Or, as mentionedDesign Problem 3,
the server could individually do the key exchange with the new
user, which will fitly keep the privacy of the whole chat room.
Now, the solution to this problem is the virtual server needs
react manually. But in our following research, the next version



of GOTR chat room, this problem will be addressed in terms
of reestablish the private conversation session automatically.
Basically, we have two choices: one, as we said, is to do a full
key-refreshment together with the new member; and another
one is only do a peer-to-peer OTR key-exchange between the
virtual server and the new user. Either way could solve this
problem, but we prefer the first scenario, since it will help to
enhance the security by the extra full key refreshment.

Our design brings up an additional security issue and it is
remaining to be solved. There is always a possibility that the
virtual server gets attacked. It has all the ability, not only to
read but also to modify the messages, since it is responsible
for delivering them. Hence, if the virtual server turns intoa
malicious node, it could easily read messages from a user,
modify it, and then send it to the other users. We think
the integrity of the messages can be assured by maintaining
MD5 (any one-way hash table should be applicable) values of
the original plain-text messages on each user’s computer and
verifying them periodically. In order to keep it simple, letus
continue with the previous examples:

Carol receives a message which is under Bob’s name, but
how could she verify that and the message has not been
changed by Alice? So when Bob says something, he could
attach an additional message digest (i.e. hash value generated
by MD5 algorithm), a unique identifier (i.e. timestamp) along
with the original message. And as we discussed, in MSN
IM protocol, messages are broadcast in a chat room session,
so that Alice has no control to prevent Carol from receiving
the authentic message digest (i.e. Carol would not be able to
decrypt the message part, but this does not hinder her from get-
ting the message’s MD5 hash value. She could simply discard
the unreadable message, but keep the hash value). Thus, Carol
could use this knowledge to verify the messages’ integrity,
when she receives the re-encrypted copy from Alice. In detail,
the only thing she needs to do is: decrypts the message from
Alice, calculates the MD5 value over the plain-text message
and compares this value with the one she gained from Bob. If
they are same, which means, Alice has not changed the content
of what Bob said; otherwise, Alice has been cheating. This
approach will cause further traffic. However, an automated way
of checking integrity of messages would be more beneficial
than drawback.

REFERENCES

[1] N. Borisov, I. Goldberg, and E. Brewer, “Off-the-recordcommunication,
or, why not to use pgp,” inWPES ’04: Proceedings of the 2004 ACM
workshop on Privacy in the electronic society. New York, NY, USA:
ACM Press, 2004, pp. 77–84.

[2] G. Project. (2006, Oct.) What is gaim? [Online]. Available:
http://gaim.sourceforge.net/about.php

[3] M. Corp. (2006) Windows live messenger. [Online]. Available:
http://get.live.com/messenger/features

[4] A. Online. (2006) American online, aim. [Online]. Available:
http://aimexpress.aol.com/

[5] Google. (2006) Chat history saving. [Online]. Available: http:
//www.google.com/talk/chathistory.html

[6] D. Caraballo and J. Lo. (2006, 06) The irc prelude. [Online]. Available:
http://www.irchelp.org/irchelp/new2irc.html

[7] T. I. S. N. W. Group. (1999, 06) Rfc2631:diffie-hellman key agreement
method. [Online]. Available: http://www.ietf.org/rfc/rfc2631.txt

[8] M. D. Raimondo, R. Gennaro, and H. Krawczyk, “Secure off-the-record
messaging,” inWPES ’05: Proceedings of the 2005 ACM workshop on
Privacy in the electronic society. New York, NY, USA: ACM Press,
2005, pp. 81–89.

[9] Information Processing Systems - Open Systems Interconnection Ref-
erence Model - Security Architecture, International Organization for
Standardization Std. 7498-2, 1988.

[10] Secway. (2006) Simppro: Instant messengers, instant security. [Online].
Available: http://www.secway.fr/us/products/simppro/

[11] ——. (2006) Secway products: compare table. [Online]. Available:
http://www.secway.fr/us/products/compare.php

[12] G.-E. Project. Gaim-encryption. [Online]. Available: http:
//gaim-encryption.sourceforge.net/

[13] R. L. Rivest, “The rc5 encryption algorithm,” inIn the Proceedings of
the Second International Workshop on Fast Software Encryption. FSE,
1994, pp. 86–96.

[14] G. e Project. (2002, 06) Gaim-e, encryption plug-in forgaim. [Online].
Available: http://gaim-e.sourceforge.net/

[15] C. Studios. Cerulean studios: Learn about trillian. [Online]. Available:
http://www.ceruleanstudios.com/learn/

[16] D. P. Jablon, “Strong password-only authenticated keyexchange,”
Computer Communication Review, vol. 26, no. 5, pp. 5–26, 1996.
[Online]. Available: citeseer.ist.psu.edu/jablon96strong.html

[17] W. Diffie, P. C. V. Oorschot, and M. J. Wiener, “Authentication and
authenticated key exchanges,”Des. Codes Cryptography, vol. 2, no. 2,
pp. 107–125, 1992.

[18] H. Krawczyk, “Sigma: The ’sign-and-mac’ approach to authenticated
diffie-hellman and its use in the ike-protocols.” inCRYPTO, ser. Lecture
Notes in Computer Science, D. Boneh, Ed., vol. 2729. Springer, 2003,
pp. 400–425.

[19] ——, “Skeme: a versatile secure key exchange mechanism for internet,”
sndss, vol. 00, p. 114, 1996.

[20] ——, “Hmqv: A high-performance secure diffie-hellman protocol.” in
CRYPTO, ser. Lecture Notes in Computer Science, V. Shoup, Ed., vol.
3621. Springer, 2005, pp. 546–566.


