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Introduction

The problem of estimating the dimensionality of a model occurs in various
forms in applied statistics: estimating the number of factors in factor analysis,
estimating the degree of a polynomial describing the data, selecting the vari-
ables to be introduced in a multiple regression equation, estimating the order
of an AR or MA time series model, and so on.

In factor analysis, this problem was traditionally solved by eyeballing re-
sidual eigenvalues, or by applying some other kind of heuristic procedure.
When maximum likelihood factor analysis became computationally feasible,
the likelihoods for different dimensionalities could be compared. Most statis-
ticians were aware of the fact that the comparison of successive chi squares
was not optimal in any well-defined decision theoretic sense. With the advent
of the electronic computer, the forward and backward stepwise selection pro-
cedures in multiple regression also became quite popular, but again there
were plenty of examples around showing that the procedures were not opti-
mal and could easily lead one astray. When even more computational power
became available, one could solve the best subset selection problem for up to
20 or 30 variables, but choosing an appropriate criterion on the basis of which
to compare the many models remains a problem.

But exactly because of these advances in computation, finding a solution
of the problem became more and more urgent. In the linear regression situa-
tion, the C, criterion of Mallows (1973), which had already been around much
longer, and the PRESS criterion of Allen (1974) were suggested. Although
they seemed to work quite well, they were too limited in scope. The structur-
al covariance models of Joreskog and others, and the log linear models of
Goodman and others, made search over a much more complicated set of
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models necessary, and the model choice problems in those contexts could
not be attacked by inherently linear methods. Three major closely related
developments occurred around 1974. Akaike (1973) introduced the informa-
tion criterion for model selection, generalizing his earlier work on time series
analysis and factor analysis. Stone (1974) reintroduced and systematized cross-
validation procedures, and Geisser (1975) discussed predictive sample reuse
methods. In a sense, Stone—Geisser cross-validation is the more general pro-
cedure, but the information criterion (which rapidly became Akaike’s infor-
mation criterion or AIC) caught on more quickly.

There are various reasons for this. Akaike’s many students and colleagues
applied AIC almost immediately to a large number of interesting examples
(compare Sakamoto, Ishiguro, and Kitagawa, 1986). In a sense, the AIC was
more original and more daring than cross-validation, which simply seemed
to amount to a lot of additional dreary computation. AIC has a close connec-
tion to the maximum likelihood method, which to many statisticians is still
the ultimate in terms of rigor and precision. Moreover, the complicated struc-
tural equations and loglinear analysis programs were based on maximum
likelihood theory, and the AIC criterion could be applied to the results with-
out any additional computation. The AIC could be used to equip computer-
ized “instant science” packages such as LISREL with an automated model
search and comparison procedure, leaving even fewer decisions for the user
(de Leeuw, 1989). And finally, Akaike and his colleagues succeeded in con-
necting the AIC effectively to the always mysterious area of the foundations
of statistics. They presented the method, or at least one version of it, in a
Bayesian framework (Akaike, 1977, 1978). There are many statisticians who
consider the possibility of such a Bayesian presentation an advantage of the
method.

Akaike’s 1973 Paper

Section 1. Introduction

We start our discussion of the paper with a quotation. In the very first sen-
tence, Akaike defines his information criterion, and the statistical principle
that it implies.

Given a set of estimates 0’s of the vector of parameters 6 of a probability distri-
bution with density f(x|6) we adopt as our final estimate the one which will give
the maximum of the expected log-likelihood, which is by definition

E(log f(X|0)) = E(Jf(XIB) log f(x6) dX),

where X is a random variable following the distribution with the density func-
tion f(x|6) and is independent of 6.
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This is an impressive new principle, but its precise meaning is initially
rather unclear. It is important to realize, for example, that in this definition
the expected value on the left is with respect to the joint distribution of 6 and
X, while the expected value on the right is with respect to the distribution of
6. It is also important that the expected log-likelihood depends both on the
estimate @ and the true value 6,. We shall try to make this more clear by using
the notation é(Z) for the estimate, where Z is the data, and Z is independent
of X. ,
Akaike’s principle now tells us to maximize over a class of estimates, but
it does not tell us over which class, and it also does not tell us what to do
about the problem when 6, is unknown. He points out this is certainly not
the same as the principle of maximum likelihood, which adopts as the esti-
mate the 6(Z) that maximizes the log-likelihood log f(z|6) for a given realiza-
tion of Z. For maximum likelihood, of course, we do not need to know 6.

What remains to be done is to further clarify the unclear points we men-
tioned above and to justify this particular choice of distance measure. This is
what Akaike sets out to do in the rest of his paper.

Section 2. Information and Discrimination

In this section, Akaike justifies, or at least discusses, the choice of the in-
formation criterion. The model f(-|0) is a family of parametrized probability
densities, with 8 € ®. We shall simply refer to both 8 and ® as “models,”
understanding that the “model” © is a set of simple “models” 6. Suppose we
want to compare a general model  with the “true” model 6,. From general
decision theory, we know that comparisons can be based without loss of
efficiency on the likelihood ratio ©(-) = f(-|0)/f(:|6,). This suggests that we
define the discrimination between 6 and 6, at x as ®(z(x)) for some function
®, and to define the mean discrimination between 6 and 6,, if 6, is “true,” as

2(6, 8;, ®) = j_ ) S(x165)®(x(x)) dx = Ex[®(x(X))],

where E, is the expected value over X, which has density f(-|6,).
Now how do we choose ®? We study 2(9, 8,,) for 8 close to §,. Under
' suitable regularity conditions, we have

(8, 6o; @) = (1) + 5B(1)(0 — 6,) F(6,)(6 — o) + o(I16 — 6,]|),

where

_ [ [(0]1og f(x6) alog f(x|0)Y
F(0,) = I [<T>o=oo <_66—>0=00] flx |.00) dx

—

is the Fisher information at 6,. Thus, it makes sense to require that ®(1) =0
and ®(1) > 0 in order to make 2 behave like a distance. Akaike concludes,
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correctly, that this derivation shows the major role played by log f(-10),
and he also concludes, somewhat mysteriously, that consequently, the choice
(1) = —2 log(t) makes good sense. Thus, he arrives at his entropy measure,
known in other contexts as the negentropy or Kullback—Leibler distance.

+wo 00
20, 6,) =2 j_ f(x16,) logff(—();% dx

= 2Ex[log f(X16,)] — 2Ex[log f(X|0)].

It follows from the inequality In ¢ > 1 + t that the negentropy is always
nonnegative, and it is equal to zero if and only if f(-16) = f(-16,) a.e. The
negentropy can consequently be interpreted as a measure of distance between
f(-16) and the true distribution. The Kullback-Leibler distance was intro-
duced in statistics as early as 1951, and its use in hypothesis testing and model
evaluation was propagated strongly by Kullback (1959). Akaike points out
that maximizing the expected log-likelihood amounts to the same thing as
minimizing E,[2 (0(2), 6,)], the expected value over the data of the Kullback-
Leibler distance between the estimated density f(- |9(Z)) and the true density
f(-16,). He calls 2(0(Z), 8,) the probabilistic negentropy and uses the symbol
R (6,) for its expected value.

The justification given by Akaike for using ®(t) = —2 log(t) may seem a
bit weak, but the result is a natural distance measure between probability
densities, which has strong connections with the Shannon-Wiener informa-
tion criterion, Fisher information, and entropy measures used in thermody-
namics. One particular reason why this measure is attractive is the situation
in which we have n repeated independent trials according to f(-|6,). This
leads to densities f,(-, 8) and f,(-, 6) that are products of the densities of the
individual observations. If 2,(6, 6,) is the Kullback-Leibler distance between
these two product densities, then trivially 2,0, 6,) = n 20, 0,). Obviously,
the additivity of the negentropy in the case of repeated independent trials is
an important point in its favour.

Section 3. Information and the Maximum Likelihood
Principle

Now Akaike has to discuss what to do about the problem of the unknown 6,.
The solution he suggests is actually very similar to the approach of classical
statistical large sample theory, but because of the context of the information
principle, we see it in a new light.

Remember that the entropy maximization principle tells us to evaluate the
success of our procedure, and the appropriateness of the model ©, by com-
puting the expectation (6,) of the probabilistic negentropy over the data.
Also remember that

R(B,) = 2E[log f(X160)] — 2Ex z[log f(X 18521,
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which means that minimizing the expected probabilistic negentropy does in-
deed amount to the same thing as maximizing the expected log-likelihood
mentioned in Sec. 1. Akaike’s program is to estimate %#(6,), and if several
models are compared, to select the model with the smallest value.

Of course, it is still not exactly easy to carry out this program. Because 6,
is unknown we cannot really minimize the negentropy, and we cannot com-
pute the expectation of the minimum over Z either. There is an approximate
solution to this problem, however, if we have a large number of independent
replications (or, more generally, if the law of large numbers applies). Minus
the mean log-likelihood ratio

= 2.8 f(xilb)

D.00) =, 2, 1°8 75 o)
will converge in probability to the negentropy, and under suitable regularity
conditions, this convergence will be uniform in 6. This makes it plausible that
maximizing the mean log- likelihood ratio (i.e., computing the maximum like-
lihood estimate) will tend to maximize the entropy, and that in the limit, the
maximum likelihood estimate is the maximum entropy estimate. We do not
need to know 6, in order to be able to compute the maximum likelihood
estimate. Thus, Akaike justifies the use of maximum likelihood by deriving it
from his information criterion. From now on, we will substitute the maximum
likelihood estimate 6(Z) for the unknown 6.

Section 4. Extension of the Maximum Likelihood Principle

This is the main theoretical section of the paper. Akaike proposes to combine
point estimation and the testing of model fit into the single new principle of
comparing the values of the mean log-likelihood or negentropy. This is his
“extension” of the maximum likelihood principle. We have seen in the previ-
ous section that negentropy is minimized, approximately, by using the maxi-
mum likelihood estimate for 6(Z). What must still be done is to find conve-
nient approximations for #(6,) at the maximum likelihood estimate.

This section is not particular easy to read. It does not have the usual
proof/theorem format, expansions are given without precise regularity cond-
itions, exact and asymptotic identities are freely mixed, stochastic and
deterministic expressions are not clearly distinguished, and there are some
unfortunate notational and especially typesetting choices. This is an “ideas
paper,” promoting a new approach to statistics, not a mathematics paper
concerned with the detailed properties of a particular technique. Although we
follow the paper closely, we have tried to make the notation a bit more
explicit, for instance by using matrices.

Akaike analyzes the situation in which we have a number of subspaces ©,
of ®, with 0 < k < m, ©,.,, a subspace of @, and @, = @. Let d, = dim(®,).
Actually, it is convenient to simplify this, by a change of coordinates, to the
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problem in which d = m, d, = k, and ©, is the subspace of ®R™, which has the
last m — k elements equal to zero. We assume 6, € ®,, and we assume we
have n independent replications in Z. Let 6,(Z) be the corresponding maxi-
mum likelihood estimates. Akaike suggests that we estimate the expectation
of the probabilistic entropy #(6,) by using 9,(8(Z), 6,(2)). But 2,00.2),
(90(2)) will be a biased estimator of %(6,), because of the substitution of the
maximum likelihood estimator for 6,.

It is known that n @,,(@(Z), éo(Z)) is asymptotically chi square withm — k
degrees of freedom if 6, € @,. In general, 2,(0,(2), 8,(Z)) will converge in
probability to 2(0,, 6,), i.e., the Kullback—Leibler distance between 6, and
the model closest to 8, in ®,. Now if n 2(®,, 6,) is much larger than m, then
the mean likelihood ratio will be very much larger than expected from the chi
square appoximation. If n 2(®,, 6,) is much smaller than m, then we can do
statistics on the basis of the chi square because the model is “true.” But the
intermediate case, in which the two quantities are of the same order, and the
model ©, is “not too false,” is the really interesting one. This is the case
Akaike sets out to study. It is, of course, similar to studying the Pitman power
of large-sample tests by using sequences of alternatives converging to the null
value.

First, we offer some simplifications. Instead of studying 2(6, 6,), Akaike
uses the quadratic approximation #°(6, 6,) = (6 — 6,)'1 (6,)(0 — 6,) discussed
in Sec. 2. Asymptotically, this leads to the same conclusions to the order of
approximation that is used. He uses the Fisher information matrix I(6,) to
define an inner product <+, and a norm |||, on ©, so that #°(6, 6,) =
|6 — 6, ||3. Define 6o, as the projection of 6, on O, in the information metric.
Then, by Pythagoras,

W (0(2), 85) = 100 — Ool1* + 10(Z) — Ooyell® M

The idea is to use E;[#7(8,(Z), 8,)] to estimate Z(6,).
The first step in the derivation is to expand the mean log-likelihood ratio
in a Taylor series. This gives

19, 00(Z), Oo) = n0o(2) — o) #[05(2), 0641 60(2) — o,
n9,(OZ), Ooi) = MOUZ) — B0y HTOUZ), 0041 (B(Z) — Boye).
where

i 0% log f(x:160 + p({ — 0)
=1 0000’ ’

for some 0 < p < 1. Subtracting the two expansions gives
19, (0,(2), 00(Z)) = n(86(Z) — Oop) H [06(2): 0011 6o(Z) — Bou)
— n(B(Z) — Oo1) #[0(2), Bop 1 B(Z) — boy)-

Let n and k tend to infinity in such a way that n'/? (6, — 6,) stays bounded.
Then, taking plims, we get

#10,00 =
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nF0(Z), 00(2)) = n100(Z) — Oopll3 — n118(Z) — Oopl3- (2)
This can also be written as
nZ,(0(2), 65(2)) ~ nllOoy — o113 + n1166(Z) — Ool1Z — n116(Z) — Ooyell3
— 2nBy(Z) — By, Ooy — 6o 3)

In the next step, Taylor expansions are used again. For this step, we use
the special symbol =,, where two vectors x and y satisfy x =, y if their first k
elements are equal.

iz [2108 £x10)
i 00

=1

:l =k "mf[ék(z), 00|k] (00|k - ék(z))
=00

= n'2H[0o(2), 0031 (Bo — Bo(2))

Then let n and k tend to infinity again in such a way that n'? (6, — 6,) stays
bounded and take plims. This gives

n'21(6,)(B(Z) — Boy) =4 n*1(86)(00(Z) — o),

and because of the definition of 6, also,

n21(80)(0(2) — Bop) =4 n"1(6)(86(2) — 6). @
It follows that ((9,((2) — B5,) is approximately the projection of (90(2) —6,)

on ©,.

This implies that n [|105(Z) — 015 — nl10,(2) — 6oy 13 and n [16,(2) — O 13
are asymptotically independent chi squares, with degrees of freedom m — k
and k. Akaike then indicates that the last (linear) term on the right-hand side
of (3) is small compared to the other (quadratic) terms. If we ignore its contri-
bution, and then subtract (3) from (1), we find

nW (6(2), 65) — nZ,(0.(2), 00(2))
& n16(2) — Ool* — n106(Z) — 0613 — n16(Z) — Ooyell3.
Replacing the chi squares by their expectations gives
nEz[# (0,(2), 00)1 = nZ,(0.2), 05(2)) + 2k — m. (5)

This defines the AIC. Of course, in actual examples, m may not be known
or may be infinite (think of order estimation or log-spline density estima-
tion), but in comparing models, we do not actually need m anyway, because
it is the same for all models. Thus, in practice we simply compute —2
Yo, log f(x; 8,(Z)) + 2k for various values of k.

Section 5. Applications

In this section, Akaike discusses the possible applications of his principle to
problems of model selection. As we pointed out in the introduction, the sys-
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tematic approach to these problems and the simple answer provided by the
AIC, at no additional cost, have certainly had an enormous impact. The
theoretical contributions of the paper, discussed above, have been much less
influential than the practical ones. The recipe has been accepted rather uncrit-
ically by many applied statisticians in the same way as the principles of least-
squares OF maximum likelihood or maximum posterior probability have been
accepted in the past without much questioning.

Recipes for the application of the AIC to factor analysis, principal compo-
nent analysis, analysis of variance, multiple regression, and autoregressive
model fitting in time series analysis are discussed. It is interesting that Akaike
already published applications of the general principle to time series analysis
in 1969 and to factor analysis in 1971. He also points out the equivalence of
the AIC to C, proposed by Mallows in the linear model context.

Section 6. Numerical Examples

This section has two actual numerical examples, both estimating the order k
of an autoregressive series. Reanalyzing data by Jenkins and Watts leads to
the estimate k = 2, the same as that found by the orginal analysis using partial
autocorrelation methods. A reanalysis of an example by Whittle leads to k =
65, while Whittle has decided on k = 4 using likelihood-ratio tests. Akaike
argues that this last example illustrates dramatically that using successive
Jog-likelihoods for testing can be quite misleading.

Section 7. Concluding Remarks

Here Akaike discusses briefly, again, the relations between maximum like-
lihood, the dominant paradigm in statistics, and the Shannon—Wiener en-
tropy, the dominant paradigm in information and coding theory. As Sec. 3
shows, there are strong formal relationships, and using expected likelihood
(or entropy) makes it possible to combine point-estimation and hypothesis
testing in a single framework. It also gives “easy”’answers to very important
but very difficult multiple-decision problems.

Discussion

The reasoning behind using X, the independent replication, to estimate Z(0,),
is the same as the reasoning behind cross-validation. We use 6(2) to predict
X, using f(X| 6(Z) as the criterion. If we use the maximum likelihood estimate,
we systematically underestimate the distance between the data and the model,
because the estimate is constructed by minimizing this distance. Thus, we




Introduction to Akaike (1973) 607

need an independent replication to find out how good our fit is, and plugging
in the independent replication leads to overestimation of the distance. The
AIC corrects for both biases. The precise relationship between AIC and cross-
validation has been discussed by Stone (1977). At a later stage, Akaike (1978)
provided an asymptotic Bayesian justification of sorts. As we have indicated,
AIC estimates the expected distance between the model and the true value.
We could also formulate a related decision problem as estimating the dimen-
sionality of the model, for instance by choosing from a nested sequence of
models. It can be shown that the minimum AIC does not necessarily give a
consistent estimate of the true dimensionality. Thus, we may want to con-
struct better estimates, for instance choosing the model dimensionality with
the highest posterior probability. This approach, however, has led to a pro-
liferation of criteria, among them the BIC criteria of Schwartz (1978) and
Akaike (1977), or the MDL principle of Rissanen (1978 and later papers).
Other variations have been proposed by Shibata, Bozdogan, Hannan, and
others. Compare Sclove (1987), or Hannan and Deistler (1988, Chap. 7), for
a recent review. Recently, Wei (1990) proposed a new “F.L.C.” criterion, in
which the complexity of the selected model is penalized by its redundant
Fisher informations, rather than by the dimensionality used in the conven-
tional criteria. We do not discuss these alternative criteria here, because they
would take us too far astray and entangle us in esoteric asymptotics and ad
hoc inference principles. We think the justification based on cross-validation
is by far the most natural one.

We have seen that the paper discussed here was an expository one, not a
mathematical one. It seems safe to assume that many readers simply skipped
Sec. 4 and rapidly went on to the examples. We have also seen that the argu-
ments given by Akaike in this expository are somewhat heuristic, but in later
work by him, and by his students such as Inagaki and Shibata, a rigorous
version of his results has also been published. Although many people contrib-
uted to the area of model selection criteria and there are now many competing
criteria, it is clear that Akaike’s AIC is by far the most important contri-
bution. This is due to the forceful presentation and great simplicity of the
criterion, and it may be due partly to the important position of Akaike in
Japanese and international statistics. But most of all, we like to think, the AIC
caught on so quickly because of the enormous emphasis on interesting and
very real practical applications that has always been an important compo-
nent of Akaike’s work.

- Biographical Information

Hirotogu Akaike was born in 1927 in Fujinomiya-shi, Shizuoka-jen, in Japan.
He completed the B.S. and D.S. degrees in mathematics at the University of
Tokyo in 1952 and 1961. He started working at the Institute of Statistical
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Mathematics in 1952, worked his way up through the ranks, and became its
Director General in 1982. In 1976, he had already become editor of the Annals
of the Institute of Statistical Mathematics, and he still holds both these func-
tions, which are certainly the most important in statistics in Japan. Akaike
has received many prizes and honors: He is a member of the I.S.I,, Fellow of
the .M.S., Honorary Fellow of the R.S.S., and current (1990) president of the
Japanese Statistical Society.

It is perhaps safe to say that Akaike’s main contribution has been in the
area of time series analysis. He developed in an early stage of his career the
program package TIMSAC, for time series analysis and control, and he and
his students have been updating TIMSAC, which is now in its fourth major
revision and extension. TIMSAC has been used in many areas of science. In
the course of developing TIMSAC, Akaike had to study the properties of
optimization methods. He contributed the first theoretically complete study
of the convergence properties of the optimum gradient (or steepest descent)
method. He also analyzed and solved the identification problem for multi-
variate time series, using basically Kalman’s state-space representation, but
relating it effectively to canonical analysis. And in modeling autoregressive
patterns, he came up with the FPE (or final prediction error) criterion, which
later developed rapidly into the AIC.
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