
High Performance Computing
- The Future

Dr M. Probert
Autumn Term 2015

Overview
• Big Computing / Big Data

• HPC Languages

• GPU programming

• New CPUs

Big Computing

Why do we need Big Computing?
•  Domain decomposed MD with dynamic non-regular domains

Beowulf
•  Beowulf designs are cheap and popular

–  Hardly use this name anymore – become so ubiquitous
–  Rapid growth since mid 1990s – large part of Top500
–  Enabled by powerful and cheap CPUs and developments

in network technology (Gigabit Ethernet, InfiniBand, etc.)
•  Typically a “fast compute, slow interconnect” cluster

–  Challenges to large-scale parallelism
–  Need lots of latency hiding to get good scaling
–  Also a problem in many cluster-based solutions

•  Hence interest in slow/low-power CPUs
–  E.g. Intel Atom and IBM Power PC CPUs
–  High packing density, lower running costs,
–  And easier to get codes to scale!

Tianhe-2 – current #1
•  A hybrid architecture = CPU+Accelerator

–  3,120,000 cores in 16,000 nodes
–  2 Ivy Bridge + 3 Xeon-Phi per node
–  54.9 TFLOP peak

•  Needs lot of power = 17.8 MW
•  A challenging machine to program

– Need hybrid MPI + OpenACC or OpenMP
•  Is this headline grabbing or serious science?

Titan – current #2
•  Another hybrid architecture – CPU+GPU

–  18,688 nodes each containing 1 AMD Opteron
16-core CPUs + 1 nVdida K20 GPUs

–  plus Cray Gemini interconnect
–  27.1 TFLOP peak & 8.2 MW power
– A more challenging machine to program

•  Need hybrid MPI + CUDA

•  Many of the Top500 are hybrid machines
– Not a trend that is going away soon
– But we desperately need some common open

standards to get portability and longevity of codes

ExaScale Computing
•  Currently plans are being drawn up as to

how to get to ExaScale
–  1018 FLOPs by 2018 according to exponential
– Power/cooling limitations
– Programming methods
– Component reliability - MTBF
– Parallel scaling challenges

•  What science will become capable? How to
manage the data generated?

The “Grid”
•  Grid computing has it origins in a 1998 book by

Carl Kesselman and Ian Foster called "The Grid:
Blueprint for a New Computing Infrastructure.“

•  Basic idea – to make the provision of HPC
resources as ubiquitous as the electrical grid
– When you turn on an electrical switch you don’t

know and don’t care where the power has come
from – so how about HPC?!

– Hence with so many wasted clock-cycles with
modern PCs running screen savers, why not harness
that for more useful ends?

The Grid Idea
•  So anyone with spare computing power could

donate it (or sell it?) to the Grid
•  And anyone needing extra computing power

could access (or buy?) it from the Grid
•  So the Grid is essentially middleware – a

broker service between supplier and customer
•  Currently fashionable – lot of e-science money

is being spent on developing Grid technology
– But who will use it? Does it work? What are the

advantages? What are the risks?

Grid Advantages
•  LHC at CERN generates huge datasets – 35

TB/day – which need to be stored and analysed
– Hence CERN is at the forefront of implementing

Grid technology – cannot store & process such
large amounts of data – needs to be able to
distribute it around the world to get local storage
and analysis

– Large strain on networks – dedicated 10 Gbit/s
fibre optic links to 11 “Tier 1” institutions

– Called ‘LHC Computing Grid’ – a practical way of
managing the volumes of data to be generated

– But is it really “Grid” as originally envisaged?

Grid Users / Big Data
•  Who else?

– Large data sets requiring distributed processing
–  Issue with trust – not standard PC types.

•  Square Kilometer Array (SKA)
– Building due to start in 2018 in South Africa &

Australia with total x50 sensitivity and 10,000x faster
than anything else

– On-site computer power of 108 PCs
– Generate 10x global internet traffic

•  Output 10 GB/s = 36 TB/hour …

•  National Grid Service
– Has standard suite of software available for all users

Distributed Computing Projects
•  Distributed computing projects, such as

SETI@home, etc. are already “Grid-like”.
•  Folding@Home

–  1st computing project ever to sustain 1 PFLOP
(Sept07)

– Now running at 40 PFLOPs with 108,000 active
CPUs + 64,000 active GPUs!

– Was also PS3 until Sony 2012 stopped support
– Data generated has produced over 115 papers so far
– MPI parallel since 2006, threads and OpenCL in 2010

•  Lots of other “@home” projects …

Power of Distributed Computing

HPC Languages

Dedicated Language?
•  Alternative to using a common language (e.g. C/

C++ or Fortran) + libraries or directives
•  Tried in early days but lost out
•  DARPA started High Productivity Computing

Systems program in 2004 to build peta-scale
–  IBM Roadrunner 2008 at Los Alamos USA
– Develop hardware + languages + o/s + file system

•  Languages included
– Fortress (Sun), Chapel (Cray), X10 (IBM)
– All examples of PGAS (partitioned global address

space) languages

•  Or improve traditional languages?

Fortress (Sun)
•  In mid-2000s there was a lot of effort to rebrand

Java as a HPC language (Java Grande) but:
– No IEEE 754 support + few intrinsic math functions
– Not in MPI or OpenMP standards
– Slow unless converted to native code
–  Java Grande Forum died – brief revival when Java

went GPL (end 06) but then nothing …
•  SUN created a new HPC language – “Fortress”

– Designed to be a secure Fortran that was intrinsically
parallel and type-safe with pseudocode syntax

– Started in 2005, open source in 2007, but thenp
roblems with JVM licensing meant Oracle decided to
drop the project in 2012 so now looks dead …

Chapel (Cray)

•  Designed to separate algorithms from
data representation

•  Multi-threaded parallelism for data +
task + nested parallelism
– Based upon HPF ideas

•  With support for OOP
•  Started in 2009, open source, latest

version 1.11 in April 2015

X10 (IBM)

•  Focus on concurrency and distribution
with OOP like Java or C#

•  Asynchronous PGAS
•  Uses parent + child to handle locks/

race conditions
– Parent can wait for child but not v.v.

•  Can use JVM or compile to native code
•  Started in 2004, open source, latest

version 2.5.3 in June 2015

UPC (Unified Parallel C)
•  Based upon C99 with SPMD model
•  Can handle either shared or distributed

memory machines
– An explicitly parallel execution model
– Appears as shared address space to programmer

•  any variable can be r/w from any processor but
physically associated with a single processor

– Synchronization primitives and a memory
consistency model

– Memory management primitives

Fortran 2003
•  IEEE exception handling
•  Allocatables in derived types
•  Interoperability with C
•  More OOP:

–  procedure pointers and structure components,
structure finalization, type extension and
inheritance, polymorphism

•  Access to environment (similar to argc etc)
•  Asynchronous I/O
•  Almost all features now available in

gfortran (only 2 bits missing v4.9)

Fortran 2008 – Co-Arrays
•  Allows SPMD within Fortran

–  easier to use than MPI
–  designed for data decomposition

•  Example
REAL, DIMENSION(N)[*] :: X,Y
X(:) = Y(:)[Q]
– Additional [] shows that this item is a co-array and is

distributed
– Second line shows how to copy values from 1 “memory

image” to another (c.f. MPI_Send/Recv)
•  Available in gfortran since v4.6
•  Most of F2008 now in gfortran 4.9 (except 7 bits)

Future Fortran?
•  Fortran 2015 draft standard published

– Now in committee stage until 2018
•  Two major additions:

– TS29113 (Further Interoperability with C), was
approved in 2012 and available in Intel ifc v16

– TS18508 (Additional Parallel Features in
Fortran), extends coarrays. Including DO
CONCURRENT and SELECT RANK.

•  Plus minor improvements
–  to environment variables, STOP commands, etc.

GPU
Programming

GPU Programming - CUDA
•  GPU has many inherently parallel features
•  nVidia has released CUDA

–  a standard API for high level languages with
support for Windows, Mac and Linux

– SDK supports PathScale Open64 C compiler +
third-party wrappers available for Python, .Net
and Java, etc.

–  v4 (May 2012) aka Kepler – with 3x
performance/Watt of Fermi (v3, Jan 2010)

– Supports GDR5 with ECC for proper science
•  Also OpenCL, OpenACC and OpenMP v4

for non-vendor specific approaches!

OpenCL
•  A language for data and task parallel computing

using CPUs and GPUs
– Created by Apple and based on c99
–  released as open standard in June 2008
– Built into MacOS since v10.6 (“Snow Leopard”)
– Works on NVidia, AMD, IBM, S3, etc
– Platform independent cf. OpenGL

•  Low level – even more so than CUDA – but device
independent and an open standard ...

•  Microsoft has released DirectCompute as set of
DirectX APIs to enable GPU usage in Windows

OpenACC
•  CUDA and OpenCL have steep learning curve

– Need to know about device memory etc.
•  OpenACC is a compiler directive based approach

– Hence much higher level, more like OpenMP
– Minimal change to existing codes
– Supports Fortran, C/C++, etc
– Backend generates CUDA or OpenCL as required!
– Originally proprietary – CAPS – but open standard
– Similar ideas in Portland Group ‘accelerator model’...

New CPUs

Low Power HPC
•  Green500 focuses on power-per-Watt (latest Nov 2015)

– Top machine (at RIKEN) has 7.0 GFLOP/W
– Top places dominated by hybrid designs with novel

combinations of hardware e.g.
– Xeon + PEZY-SC (top 1+2+3) or AMD Fire Pro or

nVidia K40 accelerators
•  Exascale?

–  If could scale #1 machine to Exascale it would take
143 MW to run

– When Green500 was launched in 2007 it was
projected to take 3000 MW => 21x better!

•  Also look at SWaP (space, wattage and
performance) = performance/(space*power)

PEZY-SC
•  2nd gen SC=Super Computer

– Launched Sept 2014
– 1024 cores, 65 W and 1.5 TFLOP with double

precision – twice the power efficiency of K40
– Programmed using OpenCL

•  Japanese company launched in 2010
– Peta, Exa, Zeta, Yotta initials!
– PEZY-SC2 with 4096 cores in developement

PEZY-SC

PEZY-SC in Shoubu at RIKEN

AMD
•  FirePro S9170

– Launched in July 2015
– Peak performance 2.6 TFLOP and 32 GB GDDR5
– Designed to beat nVidia – claim OpenCL has 40%

better performance with DGEMM than nVidia K80
dual GPU card

–  275 W and $3100 (vs K80 $4200 = 24 GB)

•  APU line (Accelerated Processing Unit)
– Current (3rd gen) best is ‘Kaveri’ (July 2014)
– Fusion of 4 CPU + 8 GPU cores in a single package

for 95 W and ~£100 - flat memory model
– Used in PS4 & Xbox One – almost ‘system on a chip’

Intel
•  More multi-core processors

– Experimental 48-core “Single Chip Cloud Computer”
released mid-2010 – not on roadmap

– Design “can be scaled to 100 cores” claim
•  Limited by on-chip network + issues with cache coherency
•  6x4 array of Pentium tiles

•  Larabee
– CPU+GPU fusion but with x86 instruction set

•  Full cache coherency
•  Much more flexible and easier to programme
•  v1 was due early 2010 but not released as uncompetitive

with GPUs – project used as basis for …

Intel Xeon Phi (Knight’s Corner)
•  “Many Integrated Core Architecture”

– Built upon Larabee + SCC + 80-core Tera-scale
–  60 core accelerator in 2013 – 1 TFLOP dp @300W
–  c.f. Intel ASCI Red = first TeraFLOP supercomputer

in 1997 cost $55 million with 10,000 Pentiums!
•  Easy programming model as x86 architecture
•  2nd Gen = Knight’s Landing mass release 2016

–  72 Atom cores with 4 threads/core so 2.8 TFLOP
dp@200 W target and integrated memory

–  2 versions – accelerator and host CPU

Intel Xeon Phi Roadmap

Affordable Supercomputing?

•  Cost/FLOP has been going down for many years
•  Recent developments in supercomputing include

Beowulf / GPU / MIC etc
•  New startups include Adapteva (developer of

Epiphany chip and the Parallella “supercomputer”)
– Used KickStarter to raise $898k in 1 month in 2012
– Epiphany has 16 cores = 32 GFLOP @ 2W
– Parallela is complete credit-card size computer with 2

A9 CPU + Epiphany + RAM etc for $99
– FPGA based ….

Moore’s Law for HPC Cost

1.E+000

1.E+001

1.E+002

1.E+003

1.E+004

1.E+005

1.E+006

1.E+007

1.E+008

1.E+009

1.E+010

1.E+011

1.E+012

1.E+013

1960 1970 1980 1990 2000 2010 2020

$/
G

FL
O

P

Year

Progress in HPC
cost half-life = 1.3 years

Cray XMP = $15m

17m IBM 1620

FPGA?

•  Field-Programmable Gate Array
•  A chip where the interconnects between logic

blocks can be decided by the user ‘in the field’
using HDL

•  NOT a general purpose computer but can
implement key functions in hardware

•  Traditionally much slower and more expensive
and lower volumes than ASIC

MD-GRAPE

•  Special purpose computer for protein MD calcs
•  Dedicated hardware for particular classes of

force calculation etc
•  System-on-Chip design: combines dp and sp

cores + memory + 3D torus interconnect
•  V3 had 1 PFLOP with 4080 CPUs in 2006 and

cost $9m c.f. BlueGene/L at same time had
131,072 cores for 0.28 PFLOP and $250m

•  V4 being built (now overdue …)

MDGRAPE-4

Further Reading
•  Grid at http://www.epcc.ed.ac.uk/services/grid-computing/
•  National Grid Service at http://www.ngs.ac.uk
•  Folding@Home at http://folding.stanford.edu/

•  Fortress at http://projectfortress.java.net
•  Chapel at http://chapel.cray.com
•  X10 at http://x10-lang.org
•  Fortran2003 at http://www-users.york.ac.uk/~mijp1/COL/fortran_2003.pdf
•  UPC at http://upc.gwu.edu/

•  Green500 at http://www.green500.org
•  AMD FirePro at http://www.amd.com/Documents/firepro-s9150-datasheet.pdf
•  PEZY-SC at http://pezy.co.jp/en/products/pezy-sc.html
•  Xeon Phi at http://en.wikipedia.org/wiki/Xeon_Phi
•  Parallela at http://www.parallella.org
•  MDGRAPE at http://www.ncbi.nlm.nih.gov/pubmed/24982255

