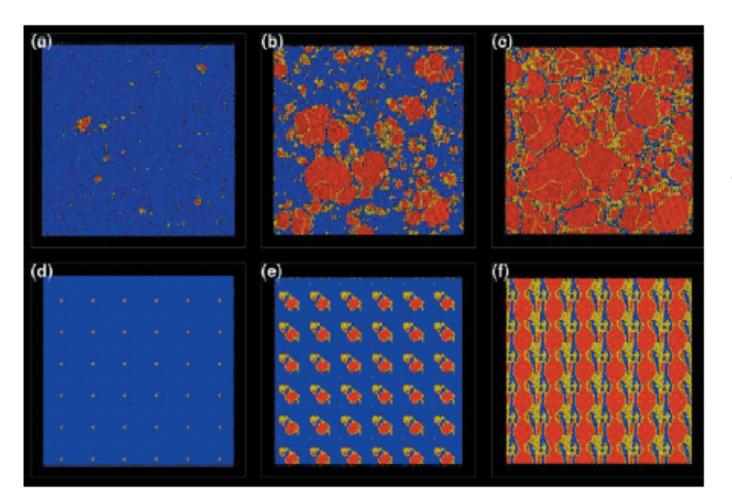
High Performance Computing - The Future

Dr M. Probert Autumn Term 2015


Overview

- Big Computing / Big Data
- HPC Languages
- GPU programming
- New CPUs

Big Computing

Why do we need Big Computing?

• Domain decomposed MD with dynamic non-regular domains

Snapshots from simulations of solidification in tantalum. The top sequence displays nucleation (a) and growth (b) occurring in a 16,372,000-atom simulation, resulting in a realistic distribution of grains and grain boundaries (c). The same process modeled using 64,000 atoms (d–f) produced the artificial final structure shown in (f).

Beowulf

- Beowulf designs are cheap and popular
 - Hardly use this name anymore become so ubiquitous
 - Rapid growth since mid 1990s large part of Top500
 - Enabled by powerful and cheap CPUs *and* developments in network technology (Gigabit Ethernet, InfiniBand, etc.)
- Typically a "fast compute, slow interconnect" cluster
 - Challenges to large-scale parallelism
 - Need lots of latency hiding to get good scaling
 - Also a problem in many cluster-based solutions
- Hence interest in slow/low-power CPUs
 - E.g. Intel Atom and IBM Power PC CPUs
 - High packing density, lower running costs,
 - And easier to get codes to scale!

Tianhe-2 – current #1

- A hybrid architecture = CPU+Accelerator
 - 3,120,000 cores in 16,000 nodes
 - 2 Ivy Bridge + 3 Xeon-Phi per node
 - 54.9 TFLOP peak
- Needs lot of power = 17.8 MW
- A challenging machine to program

 Need hybrid MPI + OpenACC or OpenMP
- Is this headline grabbing or serious science?

Titan – current #2

- Another hybrid architecture CPU+GPU
 - 18,688 nodes each containing 1 AMD Opteron
 16-core CPUs + 1 nVdida K20 GPUs
 - plus Cray Gemini interconnect
 - 27.1 TFLOP peak & 8.2 MW power
 - A more challenging machine to program
 - Need hybrid MPI + CUDA
- Many of the Top500 are hybrid machines
 - Not a trend that is going away soon
 - But we desperately need some common open standards to get portability and longevity of codes

ExaScale Computing

- Currently plans are being drawn up as to how to get to ExaScale
 - -10^{18} FLOPs by 2018 according to exponential
 - Power/cooling limitations
 - Programming methods
 - Component reliability MTBF
 - Parallel scaling challenges
- What science will become capable? How to manage the data generated?

The "Grid"

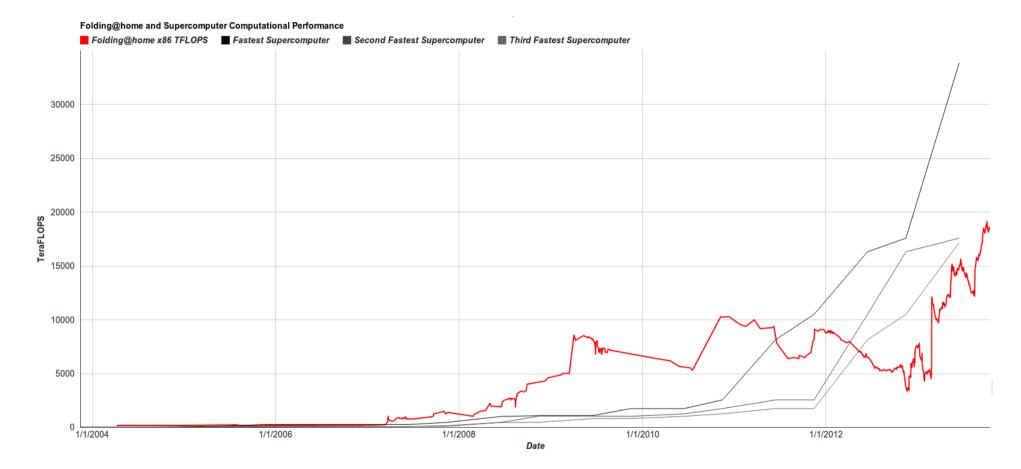
- Grid computing has it origins in a 1998 book by Carl Kesselman and Ian Foster called "The Grid: Blueprint for a New Computing Infrastructure."
- Basic idea to make the provision of HPC resources as ubiquitous as the electrical grid
 - When you turn on an electrical switch you don't know and don't care where the power has come from so how about HPC?!
 - Hence with so many wasted clock-cycles with modern PCs running screen savers, why not harness that for more useful ends?

The Grid Idea

- So anyone with spare computing power could donate it (or sell it?) to the Grid
- And anyone needing extra computing power could access (or buy?) it from the Grid
- So the Grid is essentially *middleware* a broker service between supplier and customer
- Currently fashionable lot of e-science money is being spent on developing Grid technology
 - But who will use it? Does it work? What are the advantages? What are the risks?

Grid Advantages

- LHC at CERN generates huge datasets 35 TB/day – which need to be stored and analysed
 - Hence CERN is at the forefront of implementing Grid technology – cannot store & process such large amounts of data – needs to be able to distribute it around the world to get local storage and analysis
 - Large strain on networks dedicated 10 Gbit/s fibre optic links to 11 "Tier 1" institutions
 - Called 'LHC Computing Grid' a practical way of managing the volumes of data to be generated
 - But is it really "Grid" as originally envisaged?


Grid Users / Big Data

- Who else?
 - Large data sets requiring distributed processing
 - Issue with trust not standard PC types.
- Square Kilometer Array (SKA)
 - Building due to start in 2018 in South Africa & Australia with total x50 sensitivity and 10,000x faster than anything else
 - On-site computer power of 10⁸ PCs
 - Generate 10x global internet traffic
 - Output 10 GB/s = 36 TB/hour ...
- National Grid Service
 - Has standard suite of software available for all users

Distributed Computing Projects

- Distributed computing projects, such as <u>SETI@home</u>, etc. are already "Grid-like".
- Folding@Home
 - 1st computing project ever to sustain 1 PFLOP (Sept07)
 - Now running at 40 PFLOPs with 108,000 active
 CPUs + 64,000 active GPUs!
 - Was also PS3 until Sony 2012 stopped support
 - Data generated has produced over 115 papers so far
 - MPI parallel since 2006, threads and OpenCL in 2010
- Lots of other "@home" projects ...

Power of Distributed Computing

HPC Languages

Dedicated Language?

- Alternative to using a common language (e.g. C/ C++ or Fortran) + libraries or directives
- Tried in early days but lost out
- DARPA started High Productivity Computing Systems program in 2004 to build peta-scale
 - IBM Roadrunner 2008 at Los Alamos USA
 - Develop hardware + languages + o/s + file system
- Languages included
 - Fortress (Sun), Chapel (Cray), X10 (IBM)
 - All examples of PGAS (partitioned global address space) languages
- Or improve traditional languages?

Fortress (Sun)

- In mid-2000s there was a lot of effort to rebrand Java as a HPC language (Java Grande) but:
 - No IEEE 754 support + few intrinsic math functions
 - Not in MPI or OpenMP standards
 - Slow unless converted to native code
 - Java Grande Forum died brief revival when Java went GPL (end 06) but then nothing ...
- SUN created a new HPC language "Fortress"
 - Designed to be a secure Fortran that was intrinsically parallel and type-safe with pseudocode syntax
 - Started in 2005, open source in 2007, but thenp roblems with JVM licensing meant Oracle decided to drop the project in 2012 so now looks dead ...

Chapel (Cray)

- Designed to separate algorithms from data representation
- Multi-threaded parallelism for data + task + nested parallelism

– Based upon HPF ideas

- With support for OOP
- Started in 2009, open source, latest version 1.11 in April 2015

X10 (IBM)

- Focus on concurrency and distribution with OOP like Java or C#
- Asynchronous PGAS
- Uses parent + child to handle locks/ race conditions

– Parent can wait for child but not v.v.

- Can use JVM or compile to native code
- Started in 2004, open source, latest version 2.5.3 in June 2015

UPC (Unified Parallel C)

- Based upon C99 with SPMD model
- Can handle either shared or distributed memory machines
 - An explicitly parallel execution model
 - Appears as shared address space to programmer
 - any variable can be r/w from any processor but physically associated with a single processor
 - Synchronization primitives and a memory consistency model
 - Memory management primitives

Fortran 2003

- IEEE exception handling
- Allocatables in derived types
- Interoperability with C
- More OOP:
 - procedure pointers and structure components, structure finalization, type extension and inheritance, polymorphism
- Access to environment (similar to argc etc)
- Asynchronous I/O
- Almost all features now available in gfortran (only 2 bits missing v4.9)

Fortran 2008 – Co-Arrays

- Allows SPMD within Fortran
 - easier to use than MPI
 - designed for data decomposition
- Example

REAL, DIMENSION(N)[*] :: X,Y

X(:) = Y(:) [Q]

- Additional [] shows that this item is a co-array and is distributed
- Second line shows how to copy values from 1 "memory image" to another (c.f. MPI_Send/Recv)
- Available in gfortran since v4.6
- Most of F2008 now in gfortran 4.9 (except 7 bits)

Future Fortran?

- Fortran 2015 draft standard published
 - Now in committee stage until 2018
- Two major additions:
 - TS29113 (Further Interoperability with C), was approved in 2012 and available in Intel ifc v16
 - TS18508 (Additional Parallel Features in Fortran), extends coarrays. Including DO CONCURRENT and SELECT RANK.
- Plus minor improvements
 - to environment variables, STOP commands, etc.

GPU Programming

GPU Programming - CUDA

- GPU has many inherently parallel features
- nVidia has released CUDA
 - a standard API for high level languages with support for Windows, Mac and Linux
 - SDK supports PathScale Open64 C compiler + third-party wrappers available for Python, .Net and Java, etc.
 - v4 (May 2012) *aka* Kepler with 3x
 performance/Watt of Fermi (v3, Jan 2010)
 - Supports GDR5 with ECC for proper science
- Also OpenCL, OpenACC and OpenMP v4 for non-vendor specific approaches!

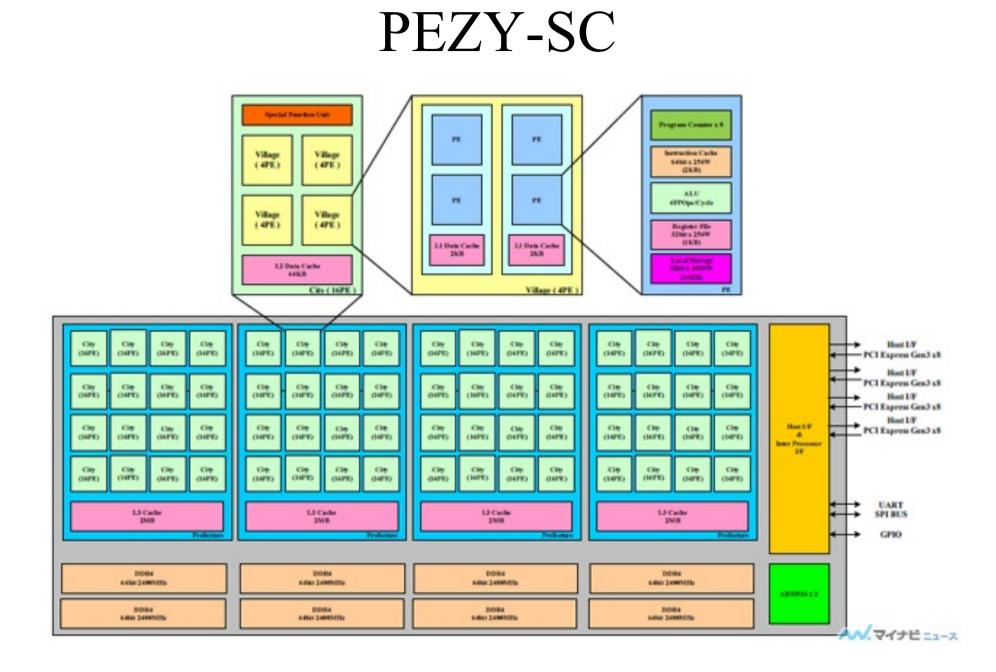
OpenCL

- A language for data and task parallel computing using CPUs and GPUs
 - Created by Apple and based on c99
 - released as open standard in June 2008
 - Built into MacOS since v10.6 ("Snow Leopard")
 - Works on NVidia, AMD, IBM, S3, etc
 - Platform independent cf. OpenGL
- Low level even more so than CUDA but device independent and an open standard ...
- Microsoft has released DirectCompute as set of DirectX APIs to enable GPU usage in Windows

OpenACC

- CUDA and OpenCL have steep learning curve
 Need to know about device memory etc.
- OpenACC is a compiler directive based approach – Hence much higher level, more like OpenMP
 - Minimal change to existing codes
 - Supports Fortran, C/C++, etc
 - Backend generates CUDA or OpenCL as required!
 - Originally proprietary CAPS but open standard
 - Similar ideas in Portland Group 'accelerator model' ...

New CPUs


Low Power HPC

- Green500 focuses on power-per-Watt (latest Nov 2015)
 - Top machine (at RIKEN) has 7.0 GFLOP/W
 - Top places dominated by hybrid designs with novel combinations of hardware e.g.
 - Xeon + PEZY-SC (top 1+2+3) or AMD Fire Pro or nVidia K40 accelerators
- Exascale?
 - If could scale #1 machine to Exascale it would take
 143 MW to run
 - When Green500 was launched in 2007 it was projected to take 3000 MW => 21x better!
- Also look at SWaP (space, wattage and performance) = performance/(space*power)

PEZY-SC

- 2nd gen SC=Super Computer
 - Launched Sept 2014
 - 1024 cores, 65 W and 1.5 TFLOP with double precision – twice the power efficiency of K40
 - Programmed using OpenCL
- Japanese company launched in 2010

 Peta, Exa, Zeta, Yotta initials!
 PEZY-SC2 with 4096 cores in development

PEZY-SC in Shoubu at RIKEN

AMD

- FirePro S9170
 - Launched in July 2015
 - Peak performance 2.6 TFLOP and 32 GB GDDR5
 - Designed to beat nVidia claim OpenCL has 40% better performance with DGEMM than nVidia K80 dual GPU card
 - 275 W and \$3100 (vs K80 \$4200 = 24 GB)
- APU line (Accelerated Processing Unit)
 - Current (3rd gen) best is 'Kaveri' (July 2014)
 - Fusion of 4 CPU + 8 GPU cores in a single package for 95 W and ~£100 - flat memory model
 - Used in PS4 & Xbox One almost 'system on a chip'

Intel

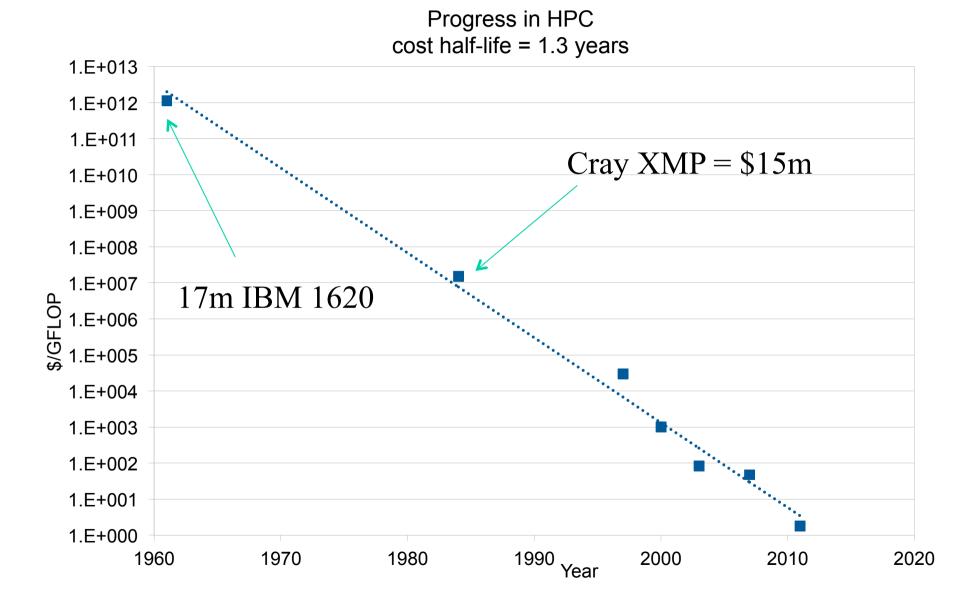
- More multi-core processors
 - Experimental 48-core "Single Chip Cloud Computer" released mid-2010 – not on roadmap
 - Design "can be scaled to 100 cores" claim
 - Limited by on-chip network + issues with cache coherency
 - 6x4 array of Pentium tiles
- Larabee
 - CPU+GPU fusion but with x86 instruction set
 - Full cache coherency
 - Much more flexible and easier to programme
 - v1 was due early 2010 but not released as uncompetitive with GPUs project used as basis for ...

Intel Xeon Phi (Knight's Corner)

- "Many Integrated Core Architecture"
 - Built upon Larabee + SCC + 80-core Tera-scale
 - 60 core accelerator in 2013 1 TFLOP dp @300W
 - c.f. Intel ASCI Red = first TeraFLOP supercomputer in 1997 cost \$55 million with 10,000 Pentiums!
- Easy programming model as x86 architecture
- 2nd Gen = Knight's Landing mass release 2016
 - 72 Atom cores with 4 threads/core so 2.8 TFLOP dp@200 W target and integrated memory
 - 2 versions accelerator and host CPU

Intel Xeon Phi Roadmap

User Upgrade Program Available <u>TODAY</u>	Intel [®] Xeon Phi [™] Product Family Industry and User Momentum	y Announcing
1 TFLOPS ¹ Knights Corner	3+ TFLOPS ² -Bootable Processor -On-Pkg, High BW Memory -Integrated Fabric -Integrated Fabric -Integrate	Knights
The bar	Knights Landing	Hill 3 rd Generation Intel [®] Xeon Phi [™] Product Family 2 nd Generation
Intel® Xeon Phi™ Coprocessor – Applications and Solutions Catalog	>50 systems providers expected ³ many more card-based systems >100 PFLOPS customer system compute commits to-date ³	Intel Omni-Path Architecture 10nm process technology

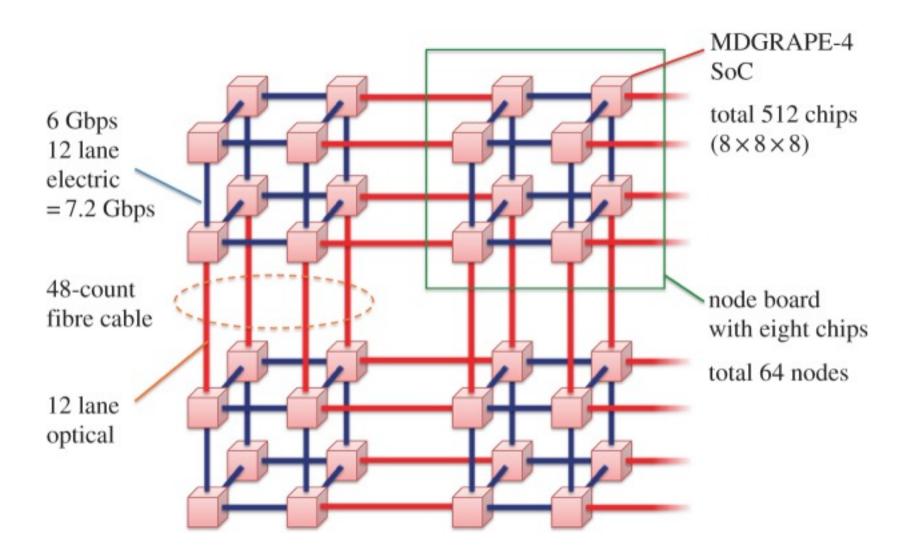

(intel)

¹Claim based on calculated theoretical peak double precision performance capability for a single coprocessor. 16 DP FLOPS/clock/core * 61 cores * 1.23GHz = 1.208 TeraFLOPS ²Over 3 Teraflops of peak theoretical double-precision performance is preliminary and based on current expectations of cores, clock frequency and floating point operations per cycle

Affordable Supercomputing?

- Cost/FLOP has been going down for many years
- Recent developments in supercomputing include Beowulf / GPU / MIC etc
- New startups include Adapteva (developer of Epiphany chip and the Parallella "supercomputer")
 - Used KickStarter to raise \$898k in 1 month in 2012
 - Epiphany has 16 cores = 32 GFLOP @ 2W
 - Parallela is complete credit-card size computer with 2
 A9 CPU + Epiphany + RAM etc for \$99
 - FPGA based

Moore's Law for HPC Cost


FPGA?

- Field-Programmable Gate Array
- A chip where the interconnects between logic blocks can be decided by the user 'in the field' using HDL
- NOT a general purpose computer but can implement key functions in hardware
- Traditionally much slower and more expensive and lower volumes than ASIC

MD-GRAPE

- Special purpose computer for protein MD calcs
- Dedicated hardware for particular classes of force calculation etc
- System-on-Chip design: combines dp and sp cores + memory + 3D torus interconnect
- V3 had 1 PFLOP with 4080 CPUs in 2006 and cost \$9m c.f. BlueGene/L at same time had 131,072 cores for 0.28 PFLOP and \$250m
- V4 being built (now overdue ...)

MDGRAPE-4

Further Reading

- Grid at http://www.epcc.ed.ac.uk/services/grid-computing/
- National Grid Service at http://www.ngs.ac.uk
- Folding@Home at http://folding.stanford.edu/
- Fortress at http://projectfortress.java.net
- Chapel at http://chapel.cray.com
- X10 at http://x10-lang.org
- Fortran2003 at http://www-users.york.ac.uk/~mijp1/COL/fortran_2003.pdf
- UPC at http://upc.gwu.edu/
- Green500 at http://www.green500.org
- AMD FirePro at http://www.amd.com/Documents/firepro-s9150-datasheet.pdf
- PEZY-SC at http://pezy.co.jp/en/products/pezy-sc.html
- Xeon Phi at http://en.wikipedia.org/wiki/Xeon_Phi
- Parallela at http://www.parallella.org
- MDGRAPE at http://www.ncbi.nlm.nih.gov/pubmed/24982255