

aerodays2015

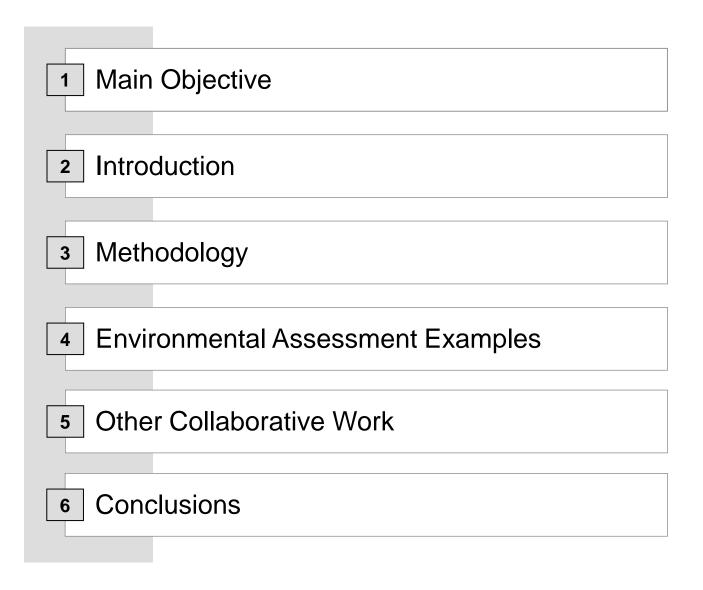
Aviation in Europe – Innovating for Growth

The 7th European Aeronautics Days

LONDON

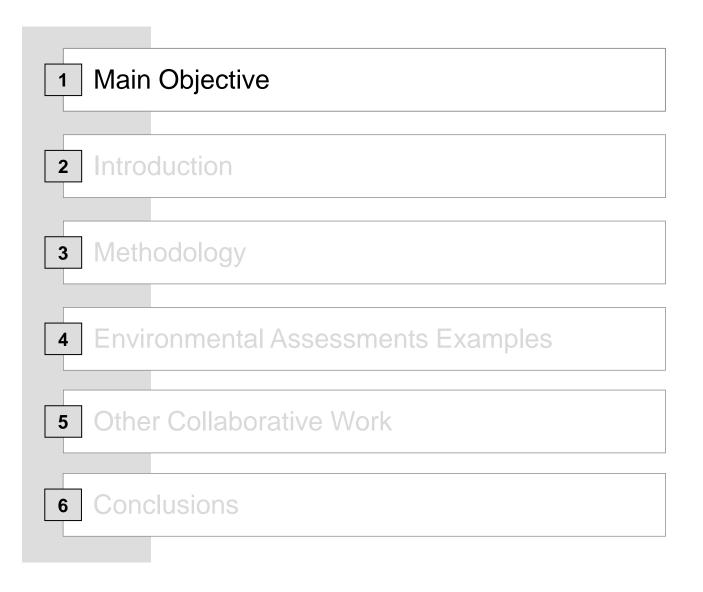
20-23 OCTOBER 2015

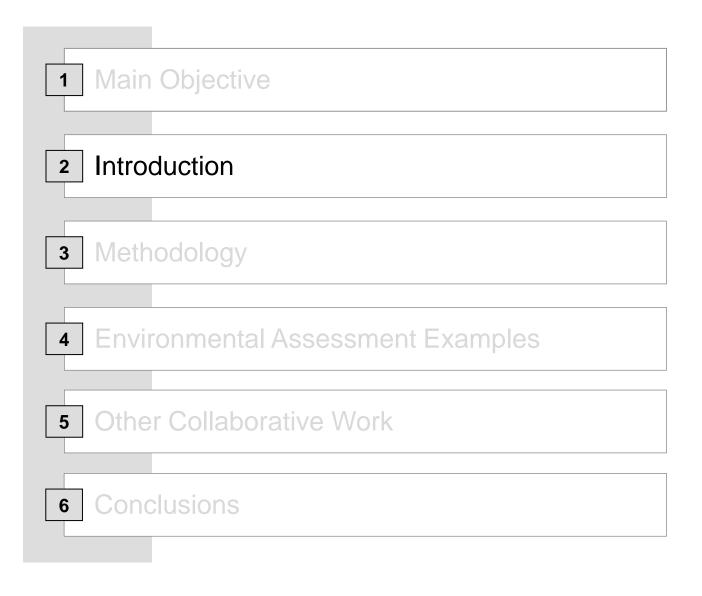
Clean Sky Technology Evaluator Environmental Performance Assessment of Rotorcraft


by

Prof Vassilios Pachidis Head Gas Turbine Engineering Group, Cranfield University

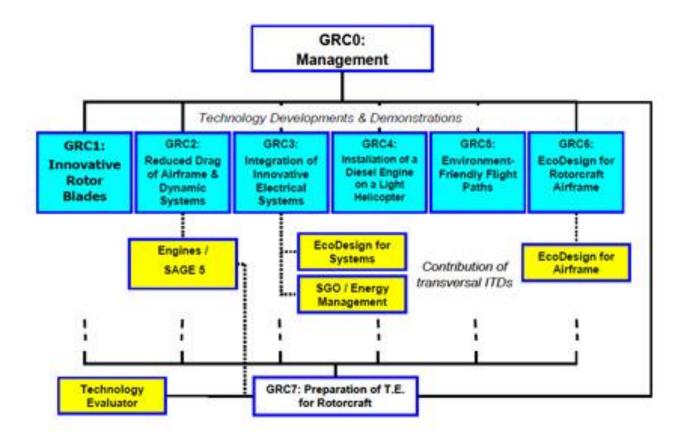
20th of October 2015


Slides courtesy of: AH, AW, CIRA, DRL, SISW, NLR, ONERA, THALES, TURBOMECA

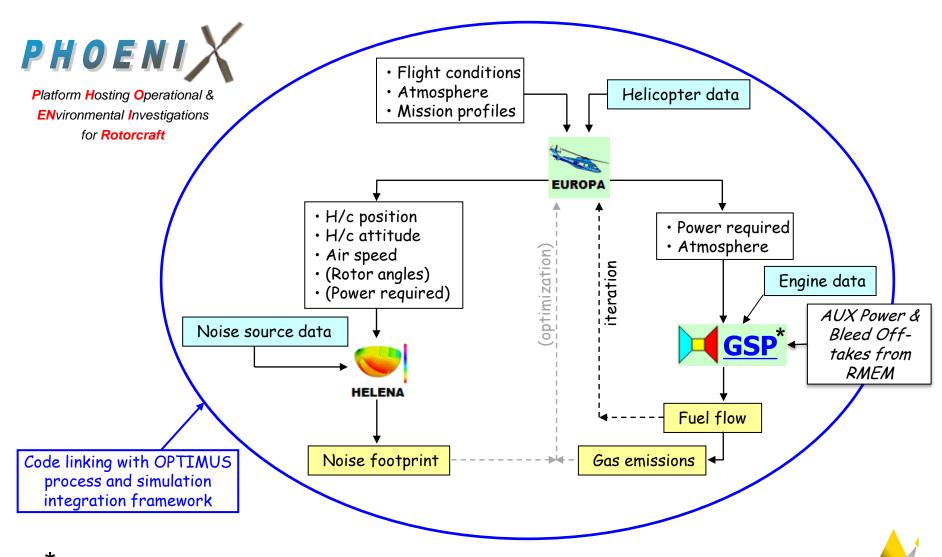

Main Objective

Cranfield UNIVERSITY

- Predict the environmental impact of all GRC technologies on the rotorcraft fleet of 2020 and beyond
 - Simulation framework developed by GRC7 participants (NLR, SISW, AH, AW, ONERA, DLR, PZL, CIRA) with input and support by TE partners (CU, NLR, ONERA, DLR, CIRA, THALES) and SAGE ITD (TM)
 - Special 'Research Cooperation Agreement' in place between GRC(7), CU(TE) & TM(SAGE 5)
 - Ability to run rotorcraft model trade-off studies (GRC7) and environmental impact assessments (TE)



Introduction TE Interface with GRC7



Introduction Phoenix Architectural Overview

7

*GSP code verified by TM, gradually being replaced by TM's engine decks

- EUROPA
 - Flight mechanics code, designed to calculate helicopter steady state (trim) and dynamic (manoeuvre) performance, developed and validated in the EU projects RESPECT [6] and NICETRIP (tilt rotor version) [3]

• HELENA

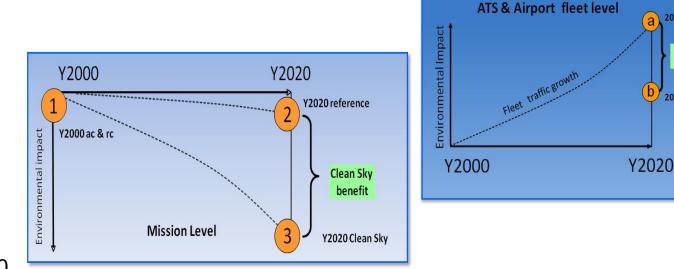
 Developed within the FRIENDCOPTER [2] project and is capable of computing and generating noise footprints on the ground starting from experimental or numerical (CFD) based helicopter noise databases [1]

• GSP

 In-house tool developed by NLR [4] to simulate gas turbine thermodynamic cycles for engine performance (fuel flow, power) and exhaust gas emissions

- TM engine decks
 - Provide turboshaft engine performance and emissions calculations
- Rotorcraft Mission Energy Management (RMEM) module
 - Models rotorcraft sub-systems following a bottom-up approach
 - Incorporates physics based, first-principles methods
 - Increases confidence in the modelling of sub-system power and bleed off-take requirements
 - Improved CO2 and NOx calculations
- OPTIMUS
 - Process integration simulation framework, provided by SISW with the aim of establishing a proper workflow between EUROPA, GSP and HELENA [5]. Provision of federation mechanism to include other codes
 - Simulation framework incorporates a GUI (provided by SISW)

Introduction RC Classes & Assessments



2020 reference fleet

2020 Clean Sky fleet

Clean Sky benefit

- In the context of the TE assessments, 5 different classes have been defined
 - Single Engine Light (SEL) with MTOW \leq 4 metric tons
 - High Compression Engine (HCE) with MTOW \leq 4 metric tons
 - Twin Engine Light (TEL) with MTOW \leq 4 metric tons
 - Twin Engine Medium (TEM) with $4 \leq MTOW \leq 8$ metric tons
 - Twin Engine Heavy (TEH) with MTOW > 8 metric tons
- 3 Assessment Levels; Mission / Airport / ATS

FE: Fuel Economy, PA: Population Avoidance

Introduction Mission Scenarios

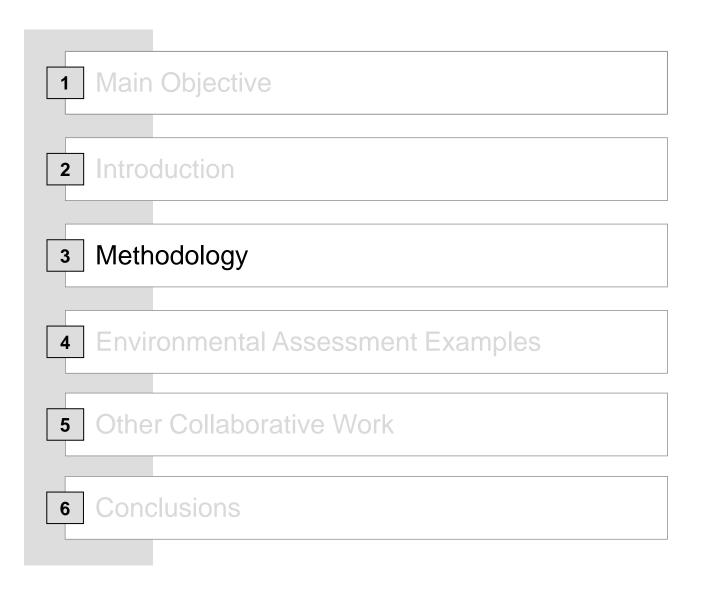
11

• Definition of the operational flight trajectories for the 5 RC classes

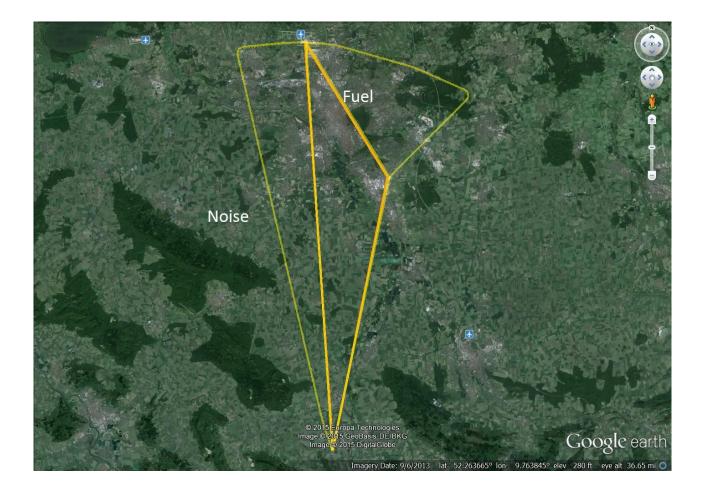
○ SEL_U1	Passenger	FE & PA - 5 x 2 missions
• HCE	Police Passenger Training	FE & PA - 2 x 2 missions FE & PA - 1 x 2 missions FE only - 2 missions
○ TEL_U1	EMS Police	FE & PA - 5 x 2 missions FE & PA - 5 x 2 missions
○ TEM	SAR Civil Utility	FE & PA - 5 x 2 missions FE & PA - 5 x 2 missions
• TEH_U1	Oil&Gas	FE only - 3 missions x 10

being assessed

Delivered


Introduction Mission Scenarios

- Number of missions represents the operational traffic of RC flights over 3 major cities :
 - Rome (EMS, Civil Utility)
 - Hannover (Passenger, Police and Civil Training)
 - Stockholm (SAR, Police)
- Den Helder heliport used for the Oil & Gas missions to represent a typical helicopter traffic of the North Sea Continental Shelf <u>http://www.chc.ca/OilandGas/FlightSchedule/Pages/default.aspx</u>



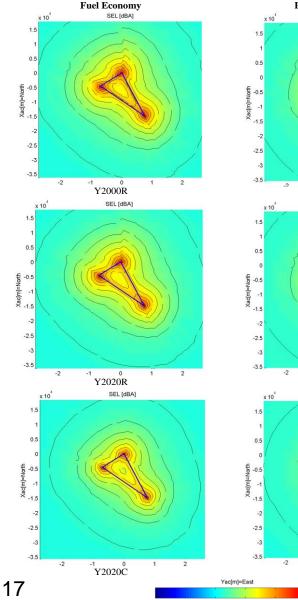
Airport Level

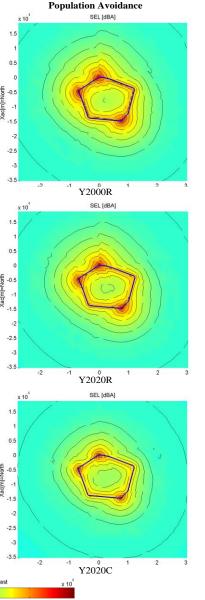
Passenger Missions SEL_U1

Fuel Economy & Population Avoidance

Ł

Methodology Example Operational Procedure

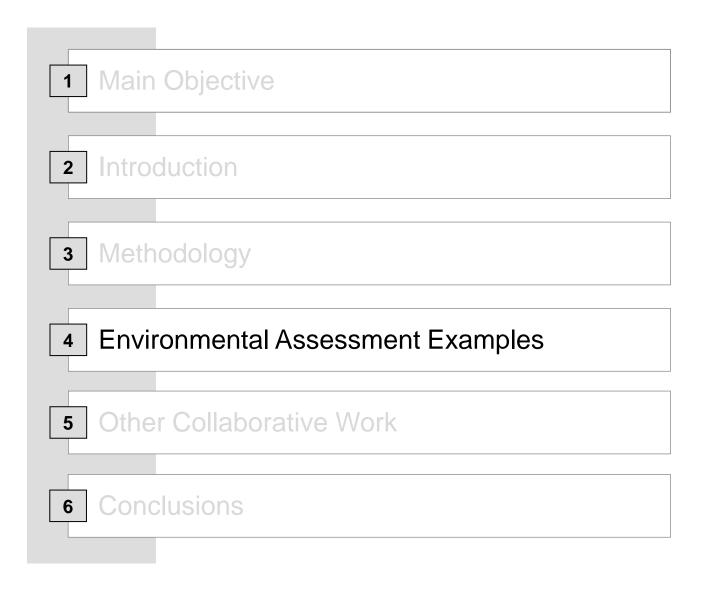



- The operational procedures for all the missions have been derived in conjunction with EHOC's input and recommendations
- Typical procedure for a SEL_U1 helicopter on a Passenger mission:
 - 1. The helicopter starts engine and rotors on the ground at the helipad
 - 2. The helicopter remains in idle for 5 minutes
 - 3. The helicopter transits to the main runway in ground effect and awaits take off clearance
 - 4. The helicopter lifts into hover
 - 5. The helicopter climbs to 1500 ft AGL at 80 knots
 - 6. The helicopter transits to the location of the passenger-executive pick up point at 120 knots
 - 7. The helicopter hovers whilst pilot positions for landing
 - 8. The helicopter lands at the passenger-executive pick up point and the passenger(s) get on board
 - 9. The helicopter awaits for take-off clearance
 - 10. The helicopter lifts into hover
 - 11. The helicopter climbs to 1500 ft AGL at 80 knots and heads towards the designated passenger drop-off zone at 120 knots
 - 12. The helicopter lands at the designated drop off zone and the passengers exit the aircraft
 - 13. The helicopter lifts into hover
 - 14. The helicopter climbs to 1000 ft AGL at 80 knots and heads towards the originating heliport at 120 knots
 - 15. The helicopter lands at the original heliport
 - 16. The helicopter sits for 1 minute with rotors turning on the ground

Methodology Example Assessment Process

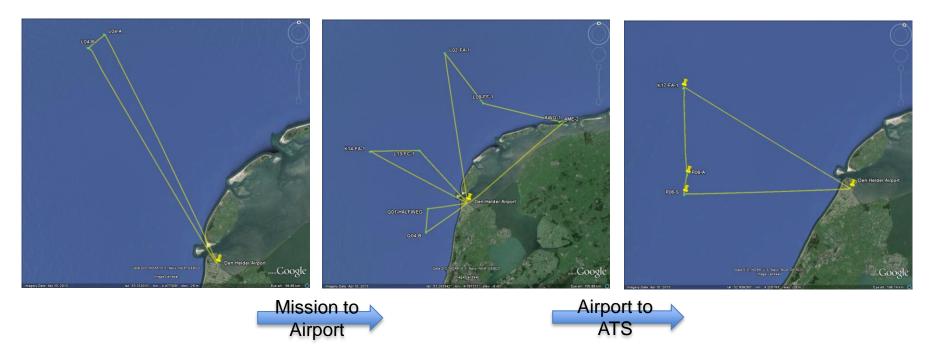
- Performance assessments between Y2000B, Y2020R and Y2020C configurations carried out on the basis of;
 - Fuel burn
 - CO2

- NOx
- Acoustic ground footprint


R/C	Mission	Mission Type	GRC CleanSky Benefits Applied to Y2020 Reference = Y2020 Conceptual	EUROPA	$\frac{\text{HELENA}}{\Delta}$	$\frac{\text{ENGINE}}{\Delta}$
		Noise	GRC1 - Active Twist & Passive Optimized Blades		\checkmark	
GET	Passenger	reduction requirement	GRC2 - Active devices/vortex on blunt fuse, improved skids & hub cap	\checkmark		
SEL	/ Taxi	< 2000ft, over densely populated	GRC3 - Brushless starter generator, power convertor, energy storage, distribution & recovery, electromechanical actuators, piezo actuators			
		area	SAGE ITD - CO ₂ and NO _x reduction applied to GSP engine model			$\sqrt{(GSP)}$
R/C	Mission	Mission Type	GRC CleanSky Benefits Applied to Y2020 Reference = Y2020 Conceptual	EUROPA A	$\frac{\mathbf{HELENA}}{\Delta}$	ENGINE A
			GRC1 - Passive Optimized Blades (no active rotor)			
	Passenger Noise reduction requirement		GRC2 - Active devices/vortex on blunt fuse, improved skids & hub cap			
		requirement	GRC3 - Brushless starter generator, power convertor, energy storage, distribution & recovery, electromechanical actuators, piezo actuators			
SELU1	LU1 / Taxi < 2000ft, over densely populated		GRC5 - Generic optimised trajectory to be updated in HELENA by GRC7 in the 2nd quarter	ТВА	ТВА	
		area	GRC6 - Thermoplastic tail, transmission shaft, roof panel, skid fairing	\checkmark		
			SAGE ITD - provision of TM engine models			√ (TM)
R/C	Mission	Mission Type	GRC CleanSky Benefits Applied to Y2020 Reference = Y2020 Conceptual	EUROPA A	HELENA A	$\frac{\text{ENGINE}}{\Delta}$
		Noise	Technologies as per SELU1-C defined above			
	Long	reduction requirement				
HCE	range Passenger	< 2000ft, over densely				
	Mission	populated area	LMS - Engine mo del representing the HCE low NO x combustion technology			√ (LMS)

Methodology Implemented Technologies

R/C	Mission	Mission Type	GRC CleanSky Benefits Applied to Y2020 Reference = Y2020 Conceptual	$\frac{\text{EUROPA}}{\Delta}$	$\frac{\text{HELENA}}{\Delta}$	$\frac{\text{ENGINE}}{\Delta}$
		Noise	GRC1 - Active Twist & Passive Optimized Blades	\checkmark	\checkmark	
TEL	EMS	reduction requirement	GRC2 - Active devices/vortex on blunt fuse, improved skids & hub cap	\checkmark		
& TELU1	& Police	< 2000ft, over densely populated	GRC3 - Brushless starter generator, power convertor, energy storage, distribution & recovery, electromechanical actuators, piezo actuators	\checkmark		
		area	SAGE ITD - CO_2 and NO_x reduction applied to GSP engine model			√(GSP)
R/C	Mission	Mission Type	GRC CleanSky Benefits Applied to Y2020 Reference = Y2020 Conceptual	EUROPA A	HELENA A	ENGINE A
			GRC1 - Active Twist & Passive Optimized Blades	\checkmark		
		Noise	GRC2 - Active devices/vortex on blunt fuse, improved skids & hub cap	\checkmark		
	Utility over densely	GRC3 - Brushless starter generator, power convertor, energy storage, distribution & recovery, electromechanical actuators, piezo actuators				
TEM		over densely	GRC5 - Generic optimised trajectory	\checkmark	\checkmark	
	Fire-Sup	populated area	GRC6- Thermoplastic tail, transmission shaft, roof panel, skid fairing	\checkmark		
			SAGE ITD - Engine model representing the (Turbomeca) low NO _x combustion technology			√ (TM)
R/C	Mission	Mission Type	GRC CleanSky Benefits Applied to Y2020 Reference = Y2020 Conceptual	EUROPA A	HELENA A	$\frac{\text{ENGINE}}{\Delta}$
			GRC1 - AGF & Passive Optimized Blades	\checkmark		
		Performance	GRC2 - Passive shape optimization/vortex on blunt aft & improved hub cap			
ТЕН		noise	GRC3 - Brushless starter generator, power convertor, energy storage, distribution & recovery, electromechanical actuators, piezo actuators	\checkmark		
		reduction requirement	GRC6 - Thermoplastic tail, transmission shaft, door & floor demonstrators			
			SAGE ITD - Engine model representing the (Turbomeca) low NO _x combustion technology			√ (TM)



Environmental Assessment Example I Scenario Definition for TEH_U1

Oil & Gas Mission TEH_U1

ATS mission constructed based on the average of the heliport level missions

Environmental Assessment Example I Operational Procedure for TEH_U1

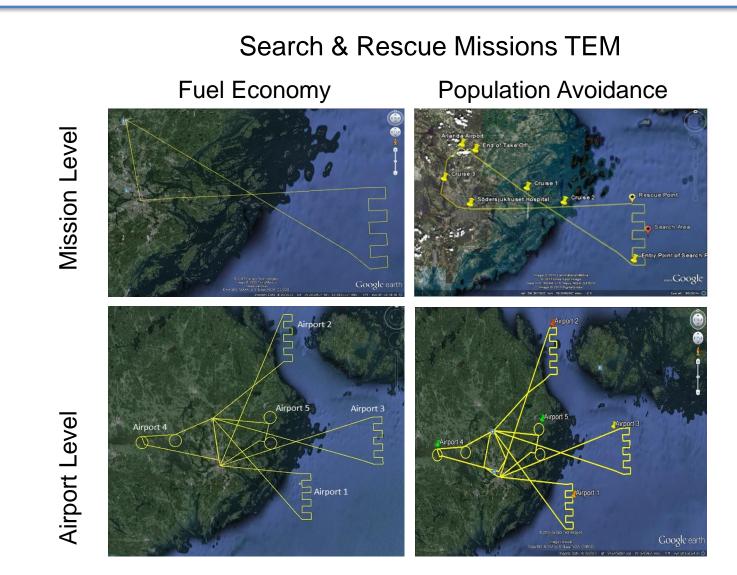
- The operational procedures for all the missions have been derived in conjunction with EHOC's input and recommendations
- Typical procedure for a TEH_U1 helicopter:
 - 1. The helicopter starts both engine(s) and rotors on the ground at the helipad
 - 2. The helicopter remains in idle for 5 minutes
 - 3. The helicopter taxis to the passenger terminal and collects 10 passengers and baggage
 - 4. The helicopter taxis to the main runway and awaits for take off clearance
 - 5. The helicopter lifts into hover
 - 6. The helicopter climbs to 3000 ft AGL at 80 knots.
 - 7. The helicopter transits at 120 knots towards the first oil off-shore platform
 - 8. The helicopter hovers over the oil platform where it eventually lands and unloads its payload as well as any personnel
 - 9. The helicopter sits for 10 minutes on the deck during passenger and baggage offloading and loading
 - 10. The helicopter lifts into hover with 10 passengers and baggage
 - 11. The helicopter climbs to 1000 ft AGL at 70 knots and heads towards the second oil off-shore platform
 - 12. The helicopter hovers over the oil platform where it eventually lands and unloads its payload as well as any personnel
 - 13. The helicopter sits for 10 minutes on the deck during passenger and baggage offloading and loading
 - 14. The helicopter lifts into hover with 5 passengers and baggage
 - 15. The helicopter climbs to 3000 ft AGL at 80 knots and heads towards the original heliport at 120 knots
 - 16. The helicopter lands at the original helipad

- 17. The helicopter sits for 10 minute with rotors turning on the ground during unloading
- 18. The helicopter taxis according to the directions provided by the ATC of the airport
- 19. The helicopter taxis to the hangar and shuts down

Oil & Gas Range 90 km	Y2000B	Y2020R	Y2020C	Y2020R vs Y2000B %Δ	Y2020C vs Y2020R %Δ	Y2020C vs Y2000B %Δ
Fuel Burn (kg)	353.4	316.7	280.8	-10.4	-11.3	-20.5
$CO_2 (kg)$	1116.7	1000.9	887.3	-10.4	-11.3	-20.5
NO _X (kg)	2.5	2.1	1.4	-16.0	-33.3	-44.0

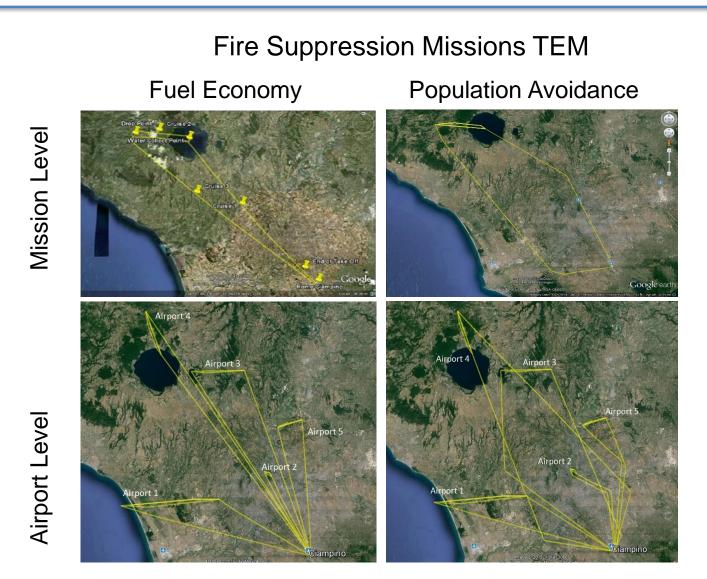
Oil & Gas Range 180 km	Y2000B	Y2020R	Y2020C	Y2020R vs Y2000B %Δ	Y2020C vs Y2020R %Δ	Y2020C vs Y2000B %Δ
Fuel Burn (kg)	556.0	497.5	440.2	-10.5	-11.5	-20.8
CO ₂ (kg)	1756.8	1572.0	1390.9	-10.5	-11.5	-20.8
NO _X (kg)	4.1	3.4	2.4	-15.9	-30.9	-42.0

Oil & Gas Range 332 km	Y2000B	Y2020R	Y2020C	Y2020R vs Y2000B %Δ	Y2020C vs Y2020R %Δ	Y2020C vs Y2000B %Δ
Fuel Burn (kg)	1018.8	911.7	807.7	-10.5	-11.4	-20.7
CO_2 (kg)	3219.4	2880.9	2552.3	-10.5	-11.4	-20.7
NO _X (kg)	7.7	6.5	3.6	-16.0	-44.6	-53.4


Oil & Gas ATS	Y2000B	Y2020R	Y2020C	Y2020R vs Y2000B %Δ	Y2020C vs Y2020R %Δ	Y2020C vs Y2000B %Δ
Fuel Burn (kg)	663.6	593.6	525.5	-10.5	-11.5	-20.8
$CO_2 (kg)$	2096.8	1875.7	1660.6	-10.5	-11.5	-20.8
NO _X (kg)	5.0	4.2	2.4	-16.0	-42.9	-52.0

- Consistent reduction in fuel burn and CO₂ across the range of missions flown, ~ 10% between Y2020R and Y2000B and ~10% between Y2020C and Y2020R
- NOx reduction largely depends on mission profile and engine power setting, varies between 30% and 45% when comparing Y2020C against Y2020R

Environmental Assessment Example II Scenario Definition for TEM


Cranfield UNIVERSITY

Environmental Assessment Example II Scenario Definition for TEM

Cranfield UNIVERSITY

Environmental Assessment Example II Operational Procedure for TEM

• Typical procedure for a TEM helicopter on a Fire Suppression mission:

- 1. The helicopter starts both engines and rotors on the ground at the helipad
- 2. The helicopter remains in idle for 5 minutes
- 3. The helicopter taxis to the main runway and awaits take-off clearance
- 4. The helicopter lifts into hover
- 5. The helicopter climbs to 3000 ft AGL at 80 knots
- 6. The helicopter heads towards the designated water collection point at 120knots
- 7. The helicopter, having reached the water collection point, descends to an altitude according to the specifications of the helicopter and the terrain altitude in order to effectively collect water
- 8. The helicopter will hover at the water collection point for a small period of time until its tank or water bucket is filled
- 9. The helicopter climbs to 1500 ft AGL at 80 knots
- 10. The helicopter transits at 110 knots towards the location of the hypothetical fire incident
- 11. The helicopter descends to the suitable operational altitude towards the incident location and initiates the fire extinguishing process
- 12. The aforementioned process is repeated depending on the fire incident extent or other restrictions that will deem necessary the presence of the helicopter (e.g. monitoring of the fire and coordination of the firefighters)
- 13. The helicopter climbs to 3000 ft AGL at 80 knots and heads towards the landing helipad at 120 knots
- 14. The helicopter makes a landing hover at the helipad
- 15. The helicopter sits for 1 minute with rotors turning on the ground
- 16. The helicopter taxis according to the directions provided by the ATC of the airport

Load Type	Quantity	Weight (Kg)
Survival suits	12	36
Water tank + spraying system	1	136
Water to extinguish fires	650 liters	650
Total Payload	822	2 Kg

SAR Fuel Economy	Y2000B	Y2020R	Y2020C	Y2020R vs Y2000B %Δ	Y2020C vs Y2020R %Δ	Y2020C vs Y2000B %Δ
Fuel Burn (kg)	643.6	635.4	577.5	-1.3	-9.1	-10.3
CO_2 (kg)	2013.3	1987.5	1806.6	-1.3	-9.1	-10.3
NO _x (kg)	3.764	3.800	2.420	0.9	-36.3	-35.7

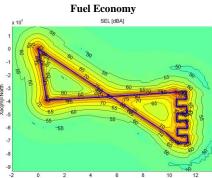
SAR Population Avoidance	Y2000B	Y2020R	Y2020C	Y2020R vs Y2000B %Δ	Y2020C vs Y2020R %Δ	Y2020C vs Y2000B %Δ
Fuel Burn (kg)	660.8	652.0	592.5	-1.3	-9.1	-10.3
CO_2 (kg)	2067.1	2039.4	1853.4	-1.3	-9.1	-10.3
NO _x (kg)	3.878	3.913	2.461	0.9	-37.1	-36.5

Environmental Assessment Example II Mission Level Results - TEM

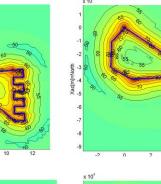
Population Avoidance

SEL [dBA]

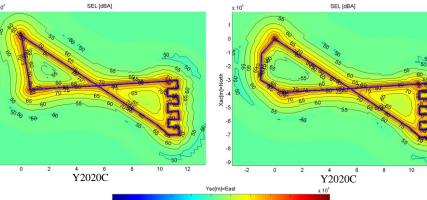
¥2000R


Y2020R

100 110


12

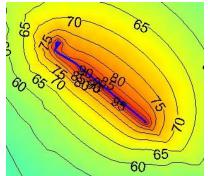
SEL [dBA]

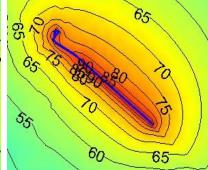


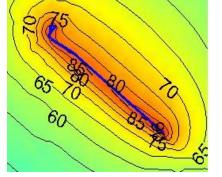
Y2000R SEL [dBA]

50

SAR Fuel Economy SEL dB(A)	Y2020R vs Y2000B %Δ	Y2020C vs Y2020R %∆	Y2020C vs Y2000B %∆
75-80 dB	-11.54	-1.46	-12.83
80-85 dB	-46.49	-3.03	-48.11
85-90 dB	-46.97	0.00	-46.97


SAR Fuel Economy SEL dB(A)	Y2020R vs Y2000B %Δ	Y2020C vs Y2020R %Δ	Y2020C vs Y2000B %Δ
>75 dB	-20.78	-1.70	-22.12
>80 dB	-46.53	-2.78	-48.01
>85 dB	-46.97	0.00	-46.97
Average	-22.05	-0.91	-22.67


 ... and similarly for Population Avoidance



Environmental Assessment Example II Mission Level Results - TEM

Y2000B conventional approach

Y2020R conventional approach

Y2020C GRC5 optimised approach

Benefits of GRC5	Conventional landing		GRC5 optimized landing	Y2020 R vs	Y2020C vs	Y2020C vs
landing approach	Y2000B SEL area (km²)	Y2020R SEL area (km²)	Y2020C SEL area (km²)	Υ2000 Β %Δ	Y2020R %Δ	Y2000Β %Δ
>75 dB	92.8	84.8	70.0	-8.6	-17.4	-24.5
>80 dB	48.8	44.0	36.3	-9.7	-17.6	-25.6
>85 dB	21.5	16.5	5.3	-23.3	-68.2	-75.6
30		ŀ	Average %∆	-13.9	-34.4	-41.9

Environmental Assessment Example II Airport Level Results - TEM

SA Fuel Ec	AR conomy	Y2000B	Y2020R	Y2020C	Y2020R vs Y2000B %Δ	Y2020C vs Y2020R %Δ	Y2020C vs Y2000B %Δ
1	Fuel Burn (kg)	528.1	521.5	474.0	-1.3	-9.1	-10.2
SAR #1	$CO_2 (kg)$	1651.9	1631.1	1482.6	-1.3	-9.1	-10.2
SA	NO _x (kg)	3.083	3.127	1.825	1.4	-41.6	-40.8
#2	Fuel Burn (kg)	566.8	560.9	509.4	-1.0	-9.2	-10.1
	$CO_2 (kg)$	1772.9	1754.6	1593.4	-1.0	-9.2	-10.1
SAR	NO _X (kg)	3.353	3.408	1.960	1.6	-42.5	-41.6
#3	Fuel Burn (kg)	646.9	640.0	580.6	-1.1	-9.3	-10.2
	CO_2 (kg)	2023.4	2001.8	1816.1	-1.1	-9.3	-10.2
SAR	NO _X (kg)	3.855	3.923	2.165	1.8	-44.8	-43.8
44	Fuel Burn (kg)	410.4	405.8	369.5	-1.1	-9.0	-10.0
SAR #4	$CO_2 (kg)$	1283.8	1269.4	1155.8	-1.1	-9.0	-10.0
SA	NO _x (kg)	2.353	2.383	1.542	1.3	-35.3	-34.4
#5	Fuel Burn (kg)	375.5	370.3	337.8	-1.4	-8.8	-10.1
	CO_2 (kg)	1174.6	1158.4	1056.5	-1.4	-8.8	-10.1
SAR	NO _x (kg)	2.148	2.166	1.369	0.9	-36.8	-36.3

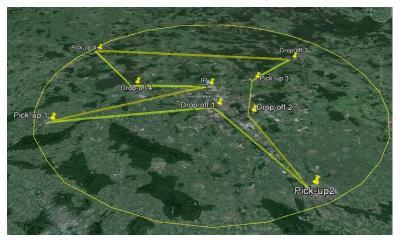
• ... and similarly for Population Avoidance

Environmental Assessment Example II ATS Level Results - TEM

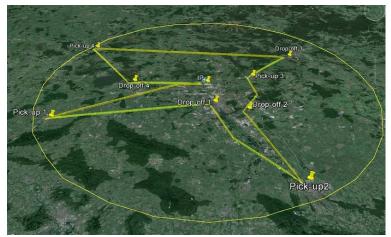
SAR Fuel Economy	Y2000B	Y2020R	Y2020C	Y2020R vs Y2000B %Δ	Y2020C vs Y2020R %Δ	Y2020C vs Y2000B %Δ
Fuel Burn (kg)	506.0	501.1	455.3	-1.0	-9.1	-10.0
CO_2 (kg)	1582.7	1567.4	1424.1	-1.0	-9.1	-10.0
NO _x (kg)	2.948	2.998	1.860	1.7	-38.0	-36.9

SAR Population Avoidance	Y2000B	Y2020R	Y2020C	Y2020R vs Y2000B %Δ	Y2020C vs Y2020R %Δ	Y2020C vs Y2000B %Δ
Fuel Burn (kg)	511.2	506.8	460.0	-0.9	-9.2	-10.0
CO_2 (kg)	1599.1	1585.4	1439.0	-0.9	-9.2	-10.0
NO _x (kg)	2.988	3.044	1.856	1.9	-39.0	-37.9

- Large reduction in acoustic area footprint ~ 45% (for the higher dB levels) compared to today's technology
- ~10% reduction in fuel burn and CO2
- ~45% reduction in NOx (depends strongly on mission profile)



Environmental Assessment Example III Scenario Definition for HCE



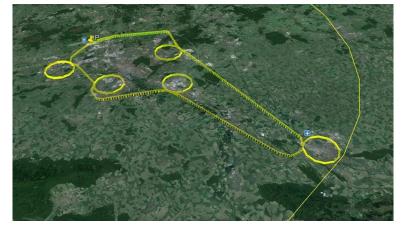
Passenger Missions HCE

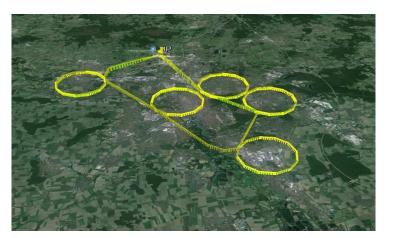
Fuel Economy

Population Avoidance

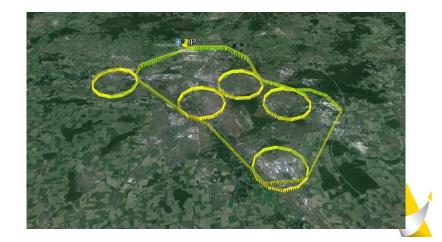
Training Missions HCE Mission 1 Mi

Environmental Assessment Example III Scenario Definition for HCE

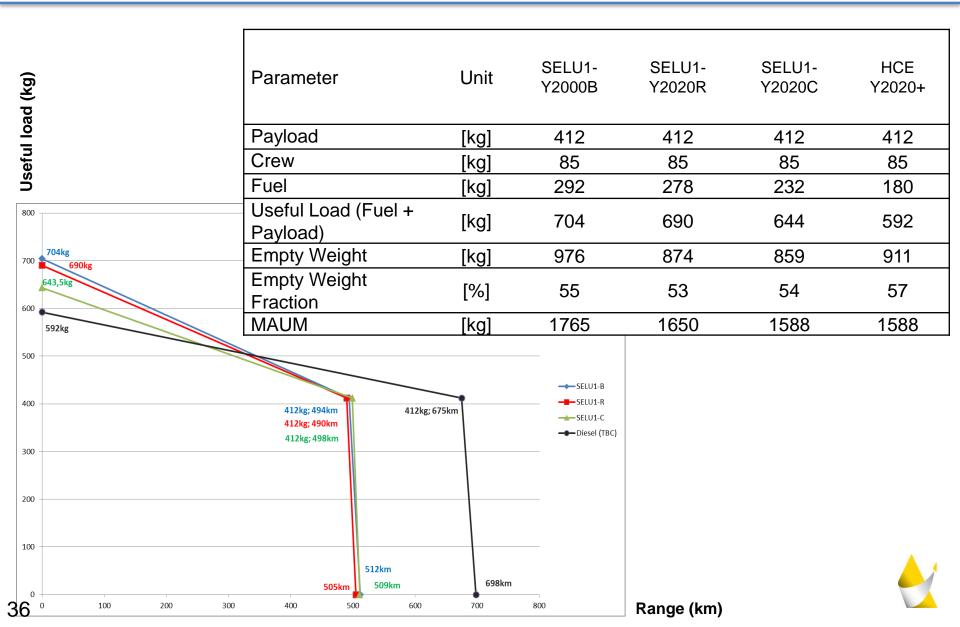



Police Missions HCE

Fuel Economy



Population Avoidance


Environmental Assessment Example III Operational Procedure for HCE

- Typical procedure for a HCE helicopter on a training mission:
 - 1. The helicopter starts its engine and rotors on the ground at the helipad
 - 2. The helicopter remains in idle for 5 minutes
 - 3. The helicopter lifts into hover
 - 4. The helicopter climbs to 1000 ft AGL at 80 knots
 - 5. The helicopter transits at 100 knots in level flight
 - 6. The helicopter performs a counter-clockwise turn with 1 mile radius at 60 knots
 - 7. The helicopter climbs to 1500 ft with target speed 100 knots
 - 8. The helicopter performs a counter-clockwise turn with 1 mile radius at 60 knots
 - 9. The helicopter descends towards the originating runway and performs hover above the initial point at 200 ft AGL
 - 10. The helicopter climbs to 2000 ft AGL at 80 knots
 - 11. The helicopter transits at 100 knots in level flight
 - 12. The helicopter performs a counter-clockwise turn with 1 mile radius at 60 knots
 - 13. The helicopter climbs to 2500 ft with target speed 100 knots
 - 14. The helicopter performs a counter-clockwise turn with 1 mile radius at 60 knots
 - 15. The helicopter descends to 1000 ft AGL with target airspeed 100 knots
 - 16. From a distance of 1 mile the helicopter begins its landing procedure towards the helipad
 - 17. The helicopter lands at the original helipad
 - 18. The helicopter sits for 1 minute with rotors turning on the ground

Environmental Assessment Example III Payload/Range Calculations for HCE

Cranfield

Environmental Assessment Example III Mission Level Results - HCE vs SEL_U1

Comparison #1

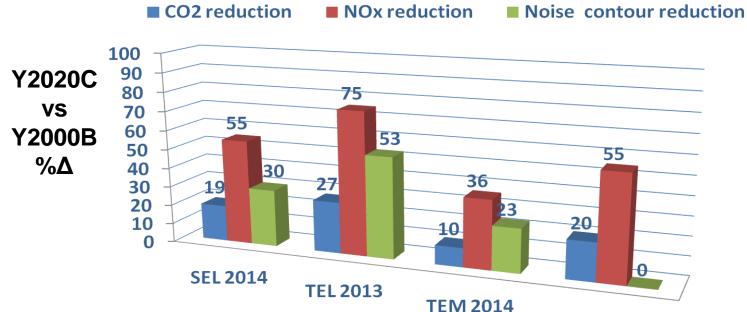
	HCE Y2020C	HCE Y2020C]
Passenger	VS	vs	
Fuel Economy	SEL_U1 Y2020R	SEL_U1 Y2020C	
	%Δ	%Δ	
CO_2 (kg)	-58.45	-49.93	
NO _X (kg)	-64.30	-11.46	

 Direct comparison, assessed on exactly the same mission profile

Comparison #2

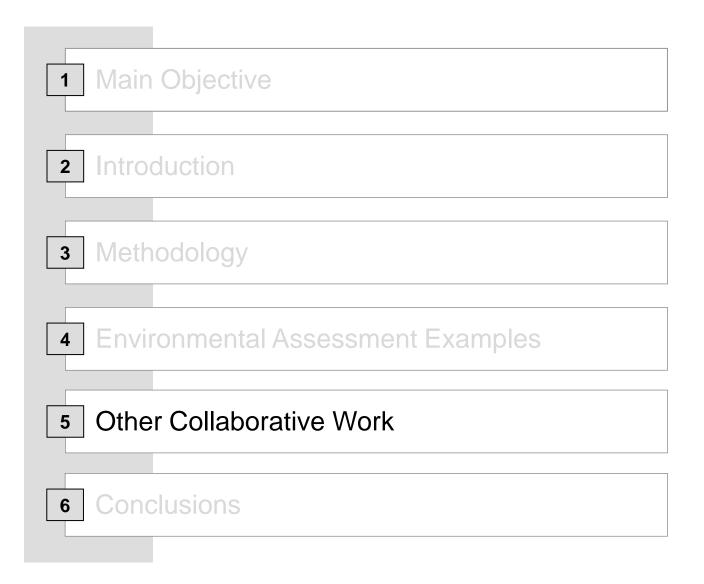
	HCE Y2020C	HCE Y2020C
Passenger	vs	VS
Fuel Economy	SEL_U1 Y2020R	SEL_U1 Y2020C
	%Δ	%Δ
CO ₂ per km	-67.73	-62.08
NO _x per km	-68.02	-34.15

 Different mission profiles – results normalised wrt distance (44km mission range for SEL_U1 and 250km for HCE)


Comparison #3

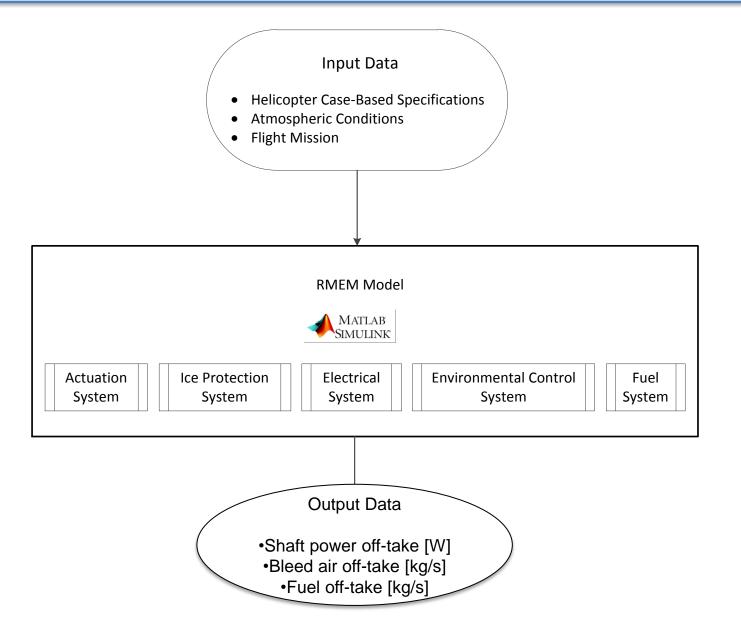
	HCE Y2020C	HCE Y2020C
Passenger	vs	VS
Fuel Economy	SEL_U1 Y2020R	SEL_U1 Y2020C
	%Δ	%Δ
CO ₂ per hr	-52.34	-44.00
NO _x per hr	-52.76	-2.77

 Different mission profiles – results normalised wrt time (0.48hr mission duration for SEL_U1 and 1.85hr for HCE)

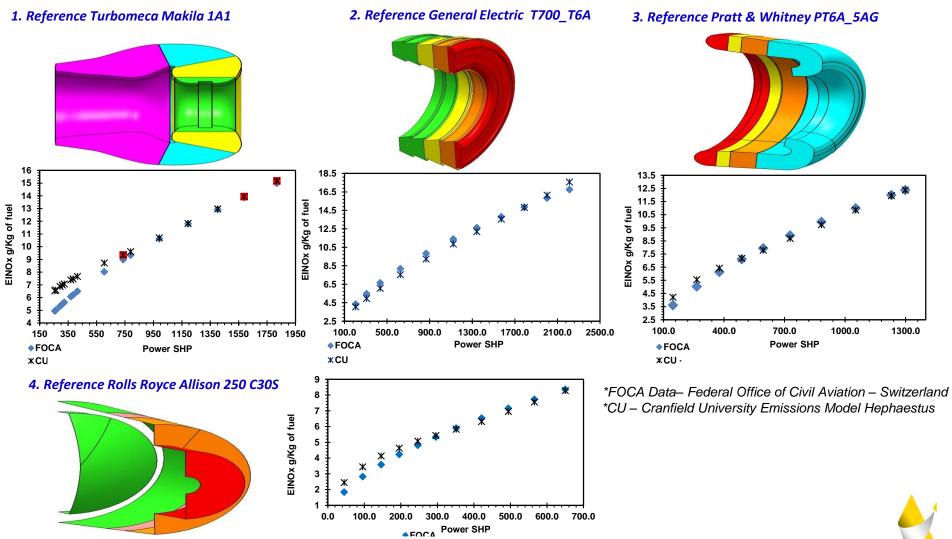

	CO2	NOx	Noise contour
			area reduction
SEL	-10 to -25%	-50 to -65%	-50%
TEL	-25 to -40%	-30 to -50%	-50%
TEM	-15 to -30%	-55 to -70%	-50%
TEH	-15 to -35%	-55 to -70%	N/A

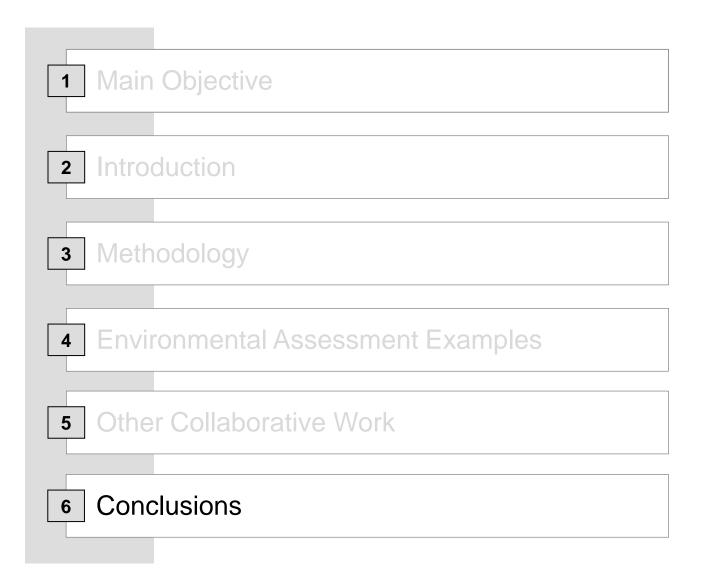
Cranf

TEH 2014



Other Collaborative Work RMEM Platform Overview




Other Collaborative Work Turboshaft Engine Emissions Prediction

Current rotorcraft combustor models library – representing SEL,TEL & TEH rotorcraft configurations

Cranfield UNIVERSITY

•Effective collaboration between TE and GRC ITD through GRC7

- •Collaboration with the SAGE ITD on emissions predictions
- •Implementation of a wide range of helicopter models
- •All GRC helicopter models delivered/being assessed
- •On-going assessments cover 100% of the existing RC fleet
- •Continuous model update until the end of the program
- Increased accuracy through TRL improvement

- [1] Gervais, M., Gareton, V., Dummel, A., Heger, R. "Validation of EC130 and EC135 Environmental Impact Assessment using HELENA", American Helicopter Society 66th Annual Forum, Phoenix, AZ, May 11-13, 2010.
- [2] FRIENDCOPTER http://www.friendcopter.org
- [3] NICETRIP http://nicetrip.onera.fr
- [4] NLR GSP http://www.gspteam.com/
- [5] Noesis Solutions N.V., OPTIMUS Rev. 9 SL1, May 2010
- [6] RESPECT http://www.sciencedirect.com/science/article/pii/S1290095801901145

Cranfield

Image courtesy of EAA.org

Thank you for your attention

Cranfield UNIVERSITY

- © 2015 by the CleanSky JU / Technology Evaluator (TE) Members: AgustaWestland, Airbus, Alenia Aeronautica, Centro Italiano Ricerche Aerospaziali, Cranfield University, Dassault Aviation, Deutsches Zentrum für Luft- und Raumfahrt, EADS-CASA, Airbus Helicopters, Fraunhofer, Liebherr Aerospace,Nationaal Lucht- en Ruimtevaartlaboratorium, Office National d'Etudes et de Recherches Aérospatiales, Rolls-Royce, Saab, Safran, Thales Avionics Electrical Systems.
- All rights reserved. This presentation material is provided for information of parties/persons invited to the meeting as indicated herewith. No information contained in this material may be disclosed to any other party/person, nor reproduced in whole or in part, nor used without the prior written consent of the specific TE/GRC member(s) to which the information belong(s).

