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ROGER D. MADDUX The Origin of Relation 

Algebras in the Development 
and Axiomatization of 
the Calculus of Relations 

Abstract. The calculus of relations was created and developed in the second half of the 
nineteenth century by Augustus De Morgan, Charles Sanders Peirce, and Ernst Schrbder. 
In 1940 Alfred Tarski proposed an axiomatization for a large part of the calculus of 
relations. In the next decade Tarski's axiomatization led to the creation of the theory 
of relation algebras, and was shown to be incomplete by Roger Lyndon's discovery of 
nonrepresentable relation algebras. This paper introduces the calculus of relations and 
the theory of relation algebras through a review of these historical developments. 

1. Introduction 

One of the purposes of this paper is to present an introduction to both the 
calculus of relations and relation algebras in a historical context. This is done 
in ??2-3 through a close look at two of the seminal papers of the subject, On 
the Syllogism: IV, and on the Logic of Relations' by Augustus De Morgan, 
and Note B: the logic of relatives2 by Charles Sanders Peirce. In ?3 we 
accumulate a representative sample of results in the calculus of relations, 
presented in a uniform notation. In ?4 we discuss Tarski's axiomatization 
of the calculus of relations. The definition of relation algebras evolved from 
Tarski's axiomatization, as is shown in ?5. Tarski's axiomatization is strong 
enough to prove a huge number of results in the calculus of relations, so it 
is natural to ask whether this axiomatization is complete. In the context 
of relation algebras, this question turns out to be closely connected to the 
question of whether there are relation algebras which are not representable. 
Both questions were answered by Roger Lyndon3, as we shall see in ?6. 

The theory of relation algebras is currently classified as part of alge 
braic logic. (In the American Mathematical Society's Subject Classification, 
03G15 is relation, cylindric, and polyadic algebras, while 03Gxx is algebraic 
logic.) The reason for this is largely historical: the founding of the theo 
ries of cylindric and polyadic algebras by Tarski and Halmos, respectively, 

was a conscious effort to create algebra out of logic, more specifically, to 
create algebra out of first order predicate calculus. (This is also true, but 
less so, for relation algebras, as we shall see.) It is interesting to note, and 

l[De Morganl864b]. 
2 

[Peirce1 883b]. 

3[Lyndonl950], ?8. 
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it is one of the purposes of this paper to show, that the actual historical 
development is the other way around: first order predicate calculus has its 
origins in the calculus of relations. The calculus of relations is indeed the 
result of Peirce's efforts to create algebra out of logic, but these efforts took 
place decades before the emergence of first order logic in the 1920's, and 
are instead based on the pioneering work of Boole.4 Peirce's efforts to get a 
"good general algebra of logic" (as he called it) led him not only to develop 
the algebra of relations, but also to find convenient ways to explicate and 

work with his algebra, ways which led directly to first order logic. The main 
contributor to the development of first order logic is Frege, but FRege and 
Peirce worked independently. The early notation for quantifiers, as well as 
the name "quantifier", originate with Peirce. Lowenheim's original version 
of the L6wenheim-Skolem Theorem5 is not a theorem about first order logic, 
but about the calculus of relations. Indeed, it is in L6wenheim's 1915 pa 
per that "first order expressions" are first singled out for special attention.6 
This important step toward the emergence of first logic is connected to the 
initial work of Peirce through the only thorough treatise on the calculus of 
relations, namely Volume III of Ernst Schroder's Algebra der Logik7. In 
?3 we will see the beginnings of Peirce's move toward first order logic and 
how it was motivated by his algebra of relations. 

2. The calculus of relations: history and name 

The most important figures in the creation of the calculus of relations in 
the nineteenth century were Augustus De Morgan, Charles Sanders Peirce, 
and F. W. K. Ernst Schr6der. The roles of these three founders are sum 

marized in a brief historical sketch in the 1911 edition of the Dictionary 
of Philosophy and Logic.8 The sketch occurs at the end of the article on 

"Relatives". This article was written by Peirce himself.9 

Literature: relatives have, since Aristotle, been a recognized topic of logic. 
The first germ of the modern doctrine appears in a somewhat trivial remark 

of Robert Leslie Ellis. De Morgan did the first systematic work in his fourth 

memoir on the syllogism in 1860 (Cambridge Philosophical Transactions, x. 

331-358); he here sketched out the theory of dyadic relations. C. S. Peirce, in 

4[Boolel847]. 
5[L5wenheiml9l5]. 
6See [lMoorel987] for more details. 
7[Schroderl895]. 
8See [DPP1911]. For another brief history of the calculus of relations, including remarks 

on the forty years following Peirce's summary, see the first four paragraphs of rrarski1941], 
pp. 73-74. See also [Tarski-Givantl987], p. xv, and ELewisl918]. 

9See [Peircel933], Volume III, pp. 404-409, for Peirce's article on relatives. The histor 

ical sketch is paragraph 3.643. (References to [Peircel933] of the form "n.m" refer to 

paragraph number m in volume n.) 
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1870, extended Boole's algebra so as to apply to them, and after many attempts 
produced a good general algebra of logic, together with another algebra spe 
cially adapted to dyadic relations (Studies in Logic, by members of the Johns 

Hopkins University, 1883, Note B, 187-203). Schroder developed the last in 
a systematic manner (which brought out its glaring defect of involving hun 
dreds of merely formal theorems without any significance, and some of them 
quite difficult) in the third volume of his Exacte Logik (1895). Schroder's work 
contains much else of great value. 

De Morgan's pioneering paper, referred to by Peirce simply as De Morgan's 
"fourth memoir", is On the Syllogism: IV, and on the Logic of Relations'0. 
It was completed by November 12, 1859, and was read before the Cambridge 
Philosophical Society on April 23, 1860. It appeared in print in 1864, in the 
Transactions of the Cambridge Philosophical Society." De Morgan opens 
with the following statement of purpose. 

In my second and third papers12 on logic I insisted on the ordinary syllogism 
being one case, and one case only, of the composition of relations. In this fourth 
paper I enter further on the subject of relation, as a branch of logic.'3 

In one section of his paper, De Morgan considers the complement and 
converse relations as well as the composition of relations, and states some 
laws governing combinations of these operations. 

De Morgan's fourth paper greatly influenced Peirce's paper of 1870, De 
scription of a notation for the logic of relatives, resulting from an amplifica 
tion of the conceptions of Boole's calculus of logic.'4 This paper is sometimes 
referred to as DNLR in Peirce circles, and it has been the object of some 
study.'5 It has also had contemporary mathematical influence'6. This large 
and complex paper opens as follows: 

Relative terms usually receive some slight treatment in works upon logic, but 
the only considerable investigation in the formal laws which govern them is 
contained in a valuable paper by Mr. De Morgan in the tenth volume of the 
Cambridge Philosophical Transactions. He there uses a convenient algebraic 
notation, which is formed by adding to the well-known spicul4e of that writer 
the signs used in the following examples. 

X..LY signifies that X is some one the objects of thought which stand to Y 
in the relation L, or is one of the L's of Y. 

X.LMY signifies that X is not an L of an M of Y. 
X.(L,M)Y signifies that X is either an L or an M of Y. 

'0[pe Morgan1864b]. 
"Volume 10, pp. 331-358. 
12De Morgan's second and third papers are [De Morganl856] and [De Morganl864a]. 
'3[:e Morganl966], p. 208. 
14 [Peircel870]. 
15See, for example, [Brink1978], [Brink1979], [Brunningl980], [Martinl976], [Martinl978], 
and [Merrilll984]. 
16See [Brinkl981] and [Brinkl988]. 
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LM' an L of every M. L,M an L of none but M's. 
L-1Y something to which Y is L. 1 (small L) non-L. 
This system still leaves something to be desired. Moreover, Boole's logical 

algebra has such singular beauty, so far as it goes, that it is interesting to 
inquire whether it cannot be extended over the whole realm of formal logic, 

instead of being restricted to that simplest and least useful part of the subject, 
the logic of absolute terms, which, when he wrote, was the only formal logic 

known. The object of this paper is to show that an affirmative answer can 
be given to this question. I think there can be no doubt that a calculus, or 
art of drawing inferences, based upon the notation I am to describe, would 
be perfectly possible and even practically useful in some difficult cases, and 

particularly in the investigation of logic. I regret that I am not in a situation 
to perform this labor, but the account here given of the notation itself will 

afford the ground of a judgment concerning its probable utility.'7 

In the years following Peirce's initial paper in 1870, he "produced a good 
general algebra of logic". The evolution of Peirce's algebra of logic can be 
traced through his major published papers on this subject.'8 On their basis 
one could defend the thesis that first order logic, and, to a lesser extent, 
second order logic evolved from Peirce's algebraic logic. 

De Morgan speaks of the "logic of relations". But Peirce refers to the logic 
of "relatives" instead of "relations" throughout most of his papers on the 
subject. One might therefore expect that the calculus of relations should 
actually be called the "calculus of relatives". Eventually Peirce regretted 
this change in terminology. 

I must, with pain and shame, confess that in my early days I showed myself so 
little alive to the decencies of science that I presumed to change the name of 
this branch of logic, a name established by its author and my master, Augustus 

De Morgan, to "the logic of relatives." I consider it my duty to say that this 

thoughtless act is a bitter reflection to me now, so that young writers may be 
warned not to prepare for themselves similar sources of unhappiness. I am the 
more sorry, because my designation has come into general use.19 

In his tistorical sketch, Peirce made special reference to his small paper 
called Note B, which appears at the end of the book Studies in Logic. This 
book, which was edited by Peirce, contains papers by students in Peirce's 
courses on logic at the Johns Hopkins University, 1879-82. These papers 
were first presented in meetings of the Metaphysical Club, which Peirce 
started in 1879 and over which he presided for its first three years. Studies 
in Logic ends with a paper by Peirce himself, called A theory of probable 
inference. The running head for the second note (Note B) appended to this 

paper is The logic of relatives. This note outlines the final form of Peirce's 

17[Peircel933], 3.45. 
18The most important papers are [Peircel870], [Peircel880], [Peircel882], [Peircel883b], 

LPeircel885], [Peircel892] and [Peircel897]. 
19This is the second footnote in [Peircel9O3]; see [Peircel933], 3.574. 
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"algebra specially adapted to dyadic relations". It is the system sketched in 
this paper which Schroder develops into 649 pages, perhaps thereby incurring 
Peirce's assessment that Schirder "brought out its glaring defect of involving 
hundreds of merely formal theorems without any significance". 

3. The calculus of relations: basic concepts and formulae 

We present the calculus of relations by following the presentation in Peirce's 
Note B, with comparisons to De Morgan's On the Syllogism: IV. The nota 
tion of this paper is primarily that of Schroder. At the end of this section is a 
list of nearly all the formulae of the calculus of relations which can be gleaned 
from Peirce's Note B. In this section, any reference of the form "(Bn)", with 
1 < n < 50, refers to that list. 

Let U be an arbitrary nonempty set, called the "universe of discourse". 
In the laws stated below, X, y and z are arbit:rary binary relations between 
elements of U. In symbols, x, y, z < U x U. (Here we use " < " to symbolize 
set inclusion.) Hence, for example, 

(A1) X = {(a,b): (a,b) E X}. 

As Peirce puts it, 

A dual relative term, such as "lover," "benefactor," "servant," is a common 
name signifying a pair of objects. Of the two members of the pair, a determinate 
one is generally the first, and the other the second; so that if the order is 
reversed, the pair is not considered as remaining the same. 

Let A, B, C, D, etc., be all the individual objects in the universe; then all 
the individual pairs may be arrayed in a block, thus: 

A:A A:B A:C A:D etc. 
B : A B : B A: C B:D etc. 

C:A C: B C: C C: D etc. 
D:A D:B D: C D:D etc. 

etc. etc. etc. etc. etc. 

A general relative may be conceived as a logical aggregate of a number of 
such individual relatives. Let 1 denote "lover"; then we may write 

1 -i Ej (l)ii (I: J) 

where (1)ij is a numerical coefficient, whose value is 1 in case I is a lover of 
J, and 0 in the opposite case, and where the sums are to be taken for all 
individuals in the universe.20 

De Morgan mixes symbols for the individual objects with symbols fof the 
relations: 

2[EPeircel983], p. 107, and [Peircel933], 3.328. 
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Just as in ordinary logic existence is implicitly predicated for all the terms, so in 
this subject every relation employed will be considered as actually connecting 
the terms of which it is predicated. Let X..L Y signify that X is some one of 
the objects of thought which stand to Y in the relation L, or is one of the Ls 
of Y. Let X.L Y signify that X is not any one of the Ls of y.21 

De Morgan and Peirce consider two unary operations on relations: com 
plementation and conversion. The complement of x is Y. Its definition 
depends on the universe of discourse: 

(A2) ={(a, b): a,b G U and (a,b) ? x}. 

The converse of x is ., obtained by "turning around" all the pairs in x: 

(A3) { (b, a) : (a, b) C x}. 

Here is how De Morgan explained these operations: 

The converse relation of L, L-1, is defined as usual: if X..L Y, Y.L'-X: if X 
be one of the Ls of Y, Y is one of the L-1s of X. And L-1X may be read 
'L-verse of X.' Those who dislike the mathematical symbol in L'1 might write 

L1'. This language would be very convenient in mathematics: 4-lx might be 
the '+-verse of x,' read as '0-verse x.' 

Relations are assumed to exists between any two terms whatsoever. If X be 
not any L of Y, X is to Y in some not-L relation: let this contrary relation 
be signified by 1; thus X.L Y gives and is given by X..l Y. Contrary relations 

may be compounded, though contrary terms cannot: Xx, both X and not-X, 
is impossible; but L1X, the L of a not-L of X, is conceivable. Thus a man may 
be the partisan of a non-partisan of X.22 

Peirce's introduction of these operations runs as follows:23 

Every relative has a negative (like any other term) which may be represented 
by drawing a straight line over the sign for the relative itself. The negative of 
a relative includes every pair that the latter excludes, and vice versa. Every 
relative has a converse, produced by reversing the order of the members of the 
pair. Thus, the converse of 'lover" is "loved". The converse may be represented 
by drawing a curved line over the sign for the relative, thus: 1. It is defined by 
the equation 

ij = 
(1)j i 

After this explanation, Peirce notes that (B1)-(B5) hold. De Morgan ex 
plains (B1)-(B5) more verbally. His first three paragraphs below explain 
(B1)-(B3) and their consequences, while his fourth paragraph expresses 
(B4)-(B5) and their converses. 

21EDe Morganl966], p. 220. 

22 De Morgan1966], pp. 222-223. 

23[Peircel983], p. 188, and [Peircel933], 3.330. 
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Contraries of converses axe converses: thus not-L and not-L-1 axe converses. 

For X..L Y and Y.L'1 X are identical; whence X..not-L Y and Y..(not-L'1)X, 
their simple denials, are identical; whence not-L and not-L~1 are converses. 

Converses of contraries axe contraries: thus L-1 and (not-L)'1 are con 

traries. For since X..L Y and X..not-L Y are simple denials of each other, so 

are their converses Y.L-1X and Y.(not-L)'1X; whence L` and (not-L) 

are contraries. 
The contrary of a converse is the converse of a contrary: not-L-1 is 

(not-L)'1. For X..LY is identical with Ynot-L-1X and with X.(not-L)Y, 
which is also identical with Y.not-L-1X. Hence the term not-L-verse is unam 
biguous in meaning, although ambiguous in form. 

If a first relation be contained in a second, then the converse of the first is 

contained in the converse of the second: but the contrary of the second in the 

contrary of the first.24 

If we use "-x" as notation for complementation instead of " Y, we can 
echo De Morgan by saying that " -x " is unambiguous in meaning, although 
amnbiguous in form. 

We let x + y denote the union of x and y, and x y the intersection of 
x and y. These are defined as usual: 

(A4) X y={(a,b):(a,b)Exand (a,b)Ey}, 

(A5) x+y {(a,b): (a,b) E x or (a,b) Ey}. 

Here are Peirce's remarks on these operations:25 

Relative terms can be aggregated and compounded like others. Using + for the 

sign of logical aggregation, and the comma for the sign of logical composition 

(Boole's multiplication, here to be called non-relative or internal multiplica 
tion), we have the definitions 

(1 + b)ij = (1)ij + (b)ij 

(1, b)ij 
= 

(1)jj x (b)ij. 

The first of these equations, however, is to be understood in a peculiar way: 
namely, the + in the second member is not strictly addition, but an operation 
by which 

0 + 0 = 0 0+1=1+0=1+1 =1. 

De Morgan, on the other hand, had no inmediate application for these 
operations. After pointing out that he does not need to make a certain 
symbolic distinction, he says, 

Neither do I at present find it necessary to use relations which are aggregates 
of other relations: as in X..(L, M)Y, X is either one of the Ls of Y, or one of 

the Ms, or both.26 

24EDe Morgan1966], p. 223. 

25[Peircel983], p. 188, and [Peircel933], 3.331. 
26[De Morganl966], p. 221. 
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Peirce notes a few familiar laws governing umion and intersection, and then 
declines to give additional ones, "being the same as in non-relative logic." 

Peirce then proceeds to introduce relative mutltiplication and relative ad 
dition. The relative product of x and y is x; y. It is defined as follows: 

(A6) X;y = {(a,c) :for some b, (a,b) Cx and (b,c) C y}. 

The operation of forming the relative product is called relative multiplica 
tion. Relative multiplication is heavily used throughout mathematics. For 
example, if x is a function mapping X to Y, and y is a function mapping 
Y to Z, then x; y is the composition of x and y. It is a function mapping 
X to Z. Relative mutltiplication also occurs frequently in everyday life, and 
nutmerous examples of its use are easily found. As De Morgan puts it, "The 
most apposite instances are taken from the relations between human beings: 
among which the relations which have almost monopolized the name, those 
of consanguinity and affinity, are conspicuously convenient, as being in daily 
use."27 One of De Morgan s examples is that "brother of parent is identical 
with uncle, by mere definition."28 This same example used by Whitehead 
and Russell, and also by Lewis and Langford.29 As another example, White 
head and Russell say "the relative product of father and father is paternal 
grandfather" . 

Intersection and union are dual to each other, in the sense that 

(A7) X +y 

(A8) X * = +y 

The operation which is dual to relative multiplication is relative addition. 
For any two relations x and y, the relative sum of two relations x and y is 
x t Y It is defined by 

(A9) x ty = {(a,c) : for every b e U, either (a,b) e x or (b,c) C y}. 

That t and; are duals is expressed by the relations 

(A10) tY= 

(All) ;Y 

While relative multiplication is relatively familiar, relative addition is not. 

For example, it is easy to see that the relative product of two functions is 

27[De Morganl966], p. 222. 

28pe Morganl966], p. 225. 
29See [Whitehead-Russelll9lO], *34, and [Lewis-Langfordl959], p. 112. 
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also a function, even if that product is empty.30 On the other hand, it is not 
so obvious that the relative sum of two functions is also a ftmction. In fact, 
at first glance it may appear to be false.3' 

Peirce explains relative multiplication and addition as follows. 

We now come to the combination of relatives. Of these, we denote two by 
special symbols; namely, we write 

lb for lover of a benefactor, 

and 
1 t b for lover of everything but benefactors. 

The former is called a particular combination, because it implies the existence 
of something loved by its relate and a benefactor of its correlate. The second 
combination is said to be universal, because it implies the non-existence of 
anything except what is either loved by its relate or a benefactor of its correlate. 
The combination lb is called a relative product, 1 t b a relative sum.32 

Peirce notes that (B6)-(B9) hold, and continues: 

The two combinations are defined by the equations 

(1b)ij = Ex(l)ixf(bxj 

(I t b)ij = Ix {(1)ix + (b)j} 

The sign of addition in the last formula has the same signification as in the 
equation defining non-relative multiplication. 33 

The last formula also shows that 1 t b is perhaps better expressed by "lover 
of all non-benefactors". Peirce then presents (B10)-(B25), along with some 
commentary. For example, (B12) and (B13) are "[t]wo formulae so constantly 
used that hardly anything can be done without them," while (B16)-(B19) 
are "curious development formulae", in which "[t]he summations and multi 
plications denoted by E and II are to be taken non-relatively, and all relative 
terms are to be successively substituted for p." 

De Morgan discusses three binary operations on relations. One of them, 
which he calls composition, coincides with relative mulltiplication. The other 
two are different from relative addition. 

When the predicate is itself the subject of a relation, there may be a compo 
sition: thus if X..L(M Y), if X be one of the Ls of one of the Ms of Y, we 

may think of X as an 'L of M' of Y, expressed by X..(LM)Y, or simply by 

30The empty relation 0 is a function since it contains no two pairs which begin with the 
same element and end with different elements. 
31It is stated in [Chin-Tarskil951] that the relative sum of two functions may not be a 
function. This mistake was noted in [Monkl961]. 

32EPeircel983], p. 189, and [Peircel933], 3.332. 

33 EPeircel983], p. 189, and [Peircel933], 3.333. 
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X..LM Y. A wider treatment of the subject would make it necessary to effect 
a symbolic distinction between 'X is not any L of any M of Y' and 'X is not 
any L of some of the Ms of Y'. For my present purpose this is not necessary: 
so that X.LM Y may denote the first of the two.... 

We cannot proceed further without attention to forms in which universal 
quantity is an inherent part of the compound relation, as belonging to the 
notion of the relation itself, intelligible in the compound, unintelligible in the 
separated component. 

First, let LM' signify an L of every M, LM' X being an individual in the 
same relation to many. Here the accent is a sign of universal quantity which 
forms part of the description of the relation: LM' is not an aggregate of cases 
of LM. Next let L,M signify an L of an M in every way in which it is an L at 
all: an L of none but Ms. Here the accent is also a sign of universal quantity: 
and logic seems to dictate to grammar that this should be read 'an every-L of 

m.X34 

We have thus three symbols of compound relation: LM, an L of an M; 
LM', an L of every M, L,M, an L of none but Ms. No other compounds will 
be needed in the syllogism, until the premises themselves contain compound 
relations.35 

De Morgan's L,M and LM' are definable from previous operations. 

(A12) xa,y -it yrx;y 

(A13) xy/=2 Xt-Y 2;y 

These operations are just two out of a system of sixty-four operations con 
sidered by Peirce.36 Define four unary operations on relations by 

f1(X) =X f2(X) 

f3(X) =f4(X) 

For each triple (i,j,k) with i, j, k 17,... )4, there is an operation defined 

by 

gijk (Xy) Y f (fj (x); fk ()) 

There are sixty-four such operations. Peirce first rejects all those obtained 
by using f3 or f4, and then rejects all those which use f2 an odd number of 
times. This leaves four operations, namely, relative multiplication and the 
following three operations (With Peirce's names and notation for them): 

34[Oe Morganl966], pp. 221. 

35EDe Morgan1966], pp. 222. 

36See Part III, ?5, "The Composition of Relatives", in [Peircel880], or [Peircel933], 3.236 

242. 
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(A14) y Y = x Y regressive involution 

(A15) x t = z;y progressive involution 

(A16) X Y= t Y =;Y transaddition 

The three operations discussed by De Morgan are relative multiplication, 
regressive involution, and progressive involution.37 Peirce used the expo 
nential notation for the involutions because of some remarkable formulae, for 
example,38 

(A17) (X. Y)z .yz 

(A18) X z X 

(A19) (xY)z = -y z 

Nevertheless, in his later papers Peirce abandoned transaddition and the 
involutions. Instead he adopted relative addition in Note B. 

The formulae (B26)-(B50) involve some distinguished relations which we 
now define. Let 1 be the Cartesian square, or direct square, of U. Thus 
1 consists of all ordered pairs (a, b), where a and b are elements of U: 

(A20) 1= Ux U= {(a,b) :a,b EU} 

The relation 1 is the universal relation. It is that relation which always 
holds between any two members of the universe of discourse. Let 0 be the 
relation which never holds between two members of the universe of discourse; 
0 is the empty relation. We distinguish two other special binary relations: 

(A21) 1' =(a, aj a EU} 

(A22) 0' = {(a, b): a, b C U and a + b} = 1 

The relation 1' is the identity relation on U and 0' is the divlersity 
relation on U. Peirce's explanation of these distinguished relations goes as 
follows: 

There is but one relative which pairs every object with itself and with every 
other. It is the aggregate of all pairs, and is denoted by oo. It is translated 

37Except for transaddition, these operations already occur in [Peircel870]. In that paper, 
the two involutions are called involution and backward involution. 
38See [Peircel933], 3.249-250, for these and dozens of other formule. These operations 
are also mentioned in [Schrbderl895], ?29(5). 
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into ordinary language by 'is coexistent with." Its negative is 0. There is but 
one relative which pairs every object with itself and none with any other. It is 

(A : A) +(B :B) +(C :C) +etc.; 

is denoted by 1, and in ordinary language is "identical with -." Its negative, 
denoted by n, is "other than -," or "not."39 

Inimediately after defining these special relations, Pierce lists various laws 
involving them, including (B26)-(B31). We follow Schroder here in replacing 
00, 0, 1, and n, by 1, 0, 1', and 0', respectively.40 De Morgan did not deal 

with these distinguished relations. 
Peirce goes on to make some interesting observations regarding the alge 

braic system he has invented: 

The logic of relatives is highly multiform; it is characterized by innumerable 
immediate conclusions from the same sets of premises. ... The effect of these 
peculiarities is that this algebra cannot be subjected to hard and fast rules like 
those of the Boolian calculus; and all that can be done in this place is to give 
a general idea of the way of working with it.41 

One could perhaps regard this as a prophetic statement, for Tarski proved 
that there is no algorithm for determining whether a given formula is a 
conclusion of a given set of premises.42 Peirce goes on to illustrate how to 
eliminate a variable from a given set of equations, pointing out the utility of 
(B12), (B13), (B30)-(B32). Near the end of Note B he states (B33)-(B50), 
and refers to (B33) as a "remarkable property". Peirce then embarks on the 
road to first order logic:43 

When the relative and non-relative operations occur together, the rules of the 
calculus become pretty complicated. In these cases, as well as in such as in 
volve plural relations (subsisting between three or more objects), it is often 
advantageous to recur to the numerical coefficients on page 187. Any propo 
sition whatever is equivalent to saying that some complexus of aggregates and 
products of such numerical coefficients is greater than zero. Thus, 

Yi Ej lij > 0 

means that something is a lover of something; and 

llzThljj >0 

39EPeircel983], p. 191, and [Peircel933], 3.339. 

40See the remarks after 38) in ?25 of [Schrbderl895], and [Peircel933], 3.510. Peirce was 

not happy with Schrbder's changes. 

4C[Peirce1983], pp. 192-193, and [Peircel933], 3.342. 

42This result, which was first announced in [Tarskil941], p. 88, is equivalent to the un 

decidability of the equational theory of representable relation algebras. See also [Tarski 
Givant1987], ?8.7, p. 268. 
43%Peircel983], p. 200, and [Peircel933], 3.351. 
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means that everything is a lover of something. We shall, however, naturally 
omit, in writing the inequalities, the > 0 which terminates them all; and the 
above two propositions will appear as 

EiE2lj and IiEjliji. 

Here is another one of Peirce's examples: 

Let a denote the triple relative "accuser to - of-," and c the triple relative 
"excuser to - of-." Then 

Ei llj Sk ( ij k. (--)j ki 

means that an individual, i, can be found, such, that taking any individual 
whatever, j, it will always be possible to select a third individual, k, that i is 
an accuser to j of k, and j an excuser of k of i.44 

Peirce gives some rules for the deduction of conclusions from sets of premises. 
One such rule is 

EiHj ?< ljE 
by which he means that a umiversal quantifier can be moved in front of an 
existential quantifier. For example, EiHjlij < HjEilij, which asserts "if 
someone loves everyone then everyone is loved by someone". In the notation 
of Note B, this becomes 1; (I t 0) < 1; I t 0, a special case of (B12), one of the 
"[t]wo formulae so constantly used that hardly anything can be done without 
them". 

Peirce gives a couple similar rules, and then, as an example, shows how 
to deduce 

EX Eu Xy St} (E ILX Cuv + EILYX lytL + ? t.XV bvx) 

from the premises 

YhH IijHk (Cthik + Sjj Iji), 

EuE1)HxHI(Euyx + jyvbvx). 

Peirce's next paper45 on the algebra of logic is truly remarkable for its 
farsightedness. Parts of this paper deal with topics from contemporary text 
books of logic, such as truth values,46 an axiomatization of propositional 
logic based on the connectives -- and -?47 a decision procedure for propo 
sitional logic,48 quantifiers and first order formulae, prenex normal form,49 
second order logic,50 and axioms for set theory.5' 

44[Peircel983], p. 201, and [Peirce1933], 3.353. 
45 EPeircel885]. 
46[Peircel933], 3.366-370. The first explicit use of truth values appears [Peircel885]; see 

[Churchl956], footnote 67, p. 25. 
47[Peircel933] 3.376-384. 
48 [Peircel933], 3.387. 
49 [Peircel933], 3.396. 

50[Peircel933], 3.398-400. 
1 [Peircel933], 3.398-400. 
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In this paper, Peirce abandons the convention that formulae of the kind 
just illustrated assert facts about sums and products of numerical coefficients 
and that each such formula is therefore equivalent to a certain corresponding 
proposition. Instead, he allows each formula to assert its corresponding 
proposition directly. In this interpretation, E, is not really a sum, but a 
quantifier. Peirce credits this device to 0. H. Mtchell, but his notation is 

carried over from Note B. 

Mr. Mitchell has a very interesting and instructive extension of his notation for 
some and all, to a two-dimensional universe, that is, to the logic of relatives. 

Here, in order to render the notation as iconical as possible we may use E for 

some, suggesting a sum, and II for all, suggesting a product. Thus Ei xi means 
that x is true of some one of the individuals denoted by i or 

Ei Xi = Xi + 'X + Xk + etc. 

In the same way, II xi means that x is true of all these individuals, or 

Ii Xi = Xi Xj xk, etc. 

... It is to be remarked that Yi and IIJ xi are only similar to a sum and a 

product; they axe not strictly of that nature, because the individuals of the 

universe may be innumerable.52 

On the basis of this paper, Peirce and Mitchell share credit with Frege for 
the introduction of quantifiers.53 

Now we turn to a theorem which is among De Morgan's most important 
contributions to the calculus of relations. In what follows, De Morgan uses 
"))" in the way that " < " is used in this paper. 

If a compound relation be contained in another relation, by the nature of the 
relations and not by casualty of the predicate, the same may be said when 

either component is converted, and the contrary of the other component and 

of the compound change places. That is if, be Z whatever it may, every L of 

M of Z be an N of Z, say LM))N, then L-1n))m, and nM-1))l. If LM))N, 
then n))lM' and nM-'))1M'M-1. But an 1 of every M of an M-' of Z 

must be an 1 of Z: hence nM-1))l. Again, if LM))N, then n))Ltm, whence 

L-mn))L-1L, m. But an L-1 of an L of none but ms of Z must be an m of Z; 

whence L-n))m. 
I shall call this result theorem K, in remembrance of the office of that letter 

in Baroko and Bokardo; it is the theorem on which the formation of what I 

called opponent syllogisms is founded.54 ... 

Here is De Morgan's Theorem K in the notation of this paper: 

(A23) X;y < Z X';- < v A z; < 

52[Peirce1933], 3.393. 
53[Churchl956], footnote 103, p. 45, and footnote 453, p. 288. For more details, see 

[Moorel987] . 
54jDe Morganl966], p. 224. 
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De Morgan was well aware that all three formuae in (A23) are equivalent.55 

Given De Morgan's emphasis on Theorem K, and the fact that Peirce 
read De Morgan's paper, it is puzzling that Theorem K is given no proni 
nent treatment in any of Peirce's papers. Schroder, on the other hand, 
presents the following elaborate version of Theorem K, but with no mention 
of De Morgan. In (A24)-(A27) below there are four groups of twelve for 

mulae each. Any two formulae in the same group are equivalent.56 The three 
formulae of De Morgan's Theorem K occur in (A26). 

(A24) y;yz < x z < z Z;Y <, - z 

Y Z tzX < < < X tz; <y 

(A27) x?ytz <;x <z t X'?Y 

g; o e f b using < f lw5 

(A25) Y < Y z y;z < z Xz < -X; x;y < zm 

Y< z X Y t; Z< 1 < y X z -,; < y 

(A26)~~ <X t;Y < z X < zt Y; X < Z' X 

(A28) 
x;y?z <- Z Z<X 1 <- x y + ;y*z =x ; y <y x +z= Z 

Scbri5der proved that every Boolean combination of equations is equivalent 
to a single equation, and, in fact, an equation of the form "< 1" 58 This 

55See [De Morganl966], pp. 186-187. 
56[Schr6derl895], ?17(2)(3). 
57[Schr5derl895], ?17, p. 244. 
58[Schr5derl895], ?11, pp. 153ff. 
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follows from the following formulae: 

(A29) =y X y+y= 1 

(A30) x 7 & 1;Y;1 =1 
(A31) X 1 A y=1 - y=1 

(A32) X= 1 V y= 1 OtxtO+y=1 

x+OtytO=1 

OtxtOtytO= 1 

(A33) (x=1 -- y=l) > 1 1;Y;l+y=1 

We close this section with some laws about transitive relations, due to 
Peirce, 1893: 

(A34) (x= Yt V t = Yty) -> (X; X< A 1< X) 
(A35) (x=xt2) *-( =tx) +-> (X X < X A 1'?<) 

Here is Peirce's manner of expressing these results: 
V 

Yet really, the form 1 t 1 is all-important, inasmuch as it is the basis of all 
quantitative thought. For the relation expressed by it is transitive. ... This is 
not only a transitive relation, but it is one which contains the identity under it. 

... But it is further demonstrable that every transitive relation which includes 

identity under it is of the form I t i59 

Formulas from Peirce9s Note B30 

Any missing parentheses in the following formulae should be restored ac 
cording to the convention that unary operations are performed first, followed 
by binary operations in the following order: ;,, , and finally +. The com 
putation should proceed from left to right in case of repeated operations. 
Thus, for example, Ot x + 1; z = (Ot x) + ((1; z). x) and x; y; z = (X; y); z. 

(B1) =x 

(B2) x = X 

(B3) v 

(B4) if x < y then y- < 

59[Peircel933], 4.94. 
60Peirce did not actually include the second equation of (B14) in [Peircel883b], but both 
forms occur in [Peircel880]; see [Peirce1933], 3.249. With two exceptions, formule be 
longing strictly to the calculus of dasses have not been included. 
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(B5) fx < ythen X < y 

(B6) ifx <zthen x;y< z;y 

(B7) if <zthen x t y < z t y 

(B8) fy < zthen x;y < X;z 

(B9) ify < zthen x t y < x t z 

(B10) x t (y t z) = (x t y) t z 

(Bll) x;(y;z) = (x;y);z 

(B12) x;(y t z) < x;y t z 

(B13) (x t y);z < x t y;z 

(B14) (x +y);z= X;z+y;z andx;(y+z)= x;y+x;z 

(B15) (x y) tz = (x tz) (ytz) 
(B16) (x+y);=z Hp(x;?(z p) +y; (z 

(B17) x;(y z)= Hp((x p);y+(x p);z) 

(B18) (x + y) t z = EpE[ (z + P] [Y t (z +P)]} 

(B19) x t (y +z) = p{[(x+ p) y] [(x+p) t z]} 

(B20) xtl=y l t; 

(B21) X;y= Oxty 

(B22) (X + Y)v= t+y 

(B23) (xy)'= xO y' 

(B24) (x Y)- =, X 

(B25) (x;y) = Y';x 

(B26) xhtO )1= 1 ofO txh 

(B27) x;0 = 0 0;x 

(B28) xz t ?' = X = ?' t x 

(B29) x;O1? X 1'; 1 

(B30) ('<OtX )) 

(B31) x;x < 0 

(B32) 1' < y t x f 1' < xt y if 1' < Yt X' if'< XY 

(B33) each of0t xt0, (0t x); 1, 0t x; , ad 1; x; is either 0or 1 

(B34) x tO x ad X < x; 1 

(B35) x; z- (y t ,)<(X - Y); z 

(B36) z;x .(-zty) < z; (x .y) 

(B37) (0 t xt 0) .(0t yt 0) 0 t (xy) t 
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(B 38) (0 
tx);1; 

(0; 
x; 

0) < (? 
x2);( 

t?) 

(B39) (0 t x);l; (l;( t ?)) = (? tx); (Y t ?) + (? txa); 0';( t ) 
(B40) (0 t x);1; ((0 t y);l) < (0 t X)y;l; 

(B43) (0 t x;); 1; (0 t; 1) =) (0 t x; x e x); 1 
(B44) (0 t P);c1 an(0 S bd) e(0 t c y;it1); 1 

(B45) (0 t fo );ml;(0 f ;ro ) s e (;e tyw;); t 
(B46) (0 tx; 1) .(0 y; 1) = X; 1 y; 1 

(B47) (0 t x: t 0);(1;y';1) = 0 (x; y;x 
. 
) t 

(B49) (0 t x; 1); (1; ~;1) =(0 xt -5;y1) + (0 xt ;O';y;l) 

(B50) 1; x; l; (l;y';1) = J; x;y1 + ; x;O ,;y;1 

4. The calculus of relat'ions: axiomatilzation 

De Morgan, Peirce, and Sch-roder were certainly interested in deducing com 

plicated formulae from simpler ones, but they were not particularly interested 

in the axiomatic approach to the calculus of relations. After listing several 
laws as "the axiomatic principles of this branch of logic, not deducible from 
others", Peirce says, "But these axioms are inere substitutes for definitions 
of the universal logical relations, and so far as these can be given, all axioms 

may be dispensed with."6' 
Tarski took a different view, for in 1940 he proposed62 an axiomatization 

for the fragment of the calculus of relations consisting of all Boolean com 
binations of equations. All the formtLlae from Peirce's Note B belong to this 
fragment, except for (B16)-(B19). Tarski noted that this fragment may be 

developed within the framework of first order predicate calculus, and out 

lined how this may be done. The beginnings of this method were reviewed 
above and are due to Peirce.63 But Tarski thought that 

this method has certain defects from the point of view of simplicity and ele 

gance. We obtain the calculus of relations in a very roundabout way, and in 

proving theorems of this calculus we are forced to make use of concepts and 

61See the "Conclusion" of [Peircel870], or [Peircel933], 3.148. 
62 See [Tarskil941], the text of an invited address delivered at a meeting in Philadelphia, 

December 28, 1940. 
63Later works following in this tradition are [Whitehead-Russelll910], [Lewisl918], and 

[Lewis-Langfordl959], pp. 104ff. The approach outlined in [Tarski1941] is worked out in 

more detail in [Tarski-Givantl987]v 
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statements which are outside the calculus. It is for this reason that I am going 
outline another method of developing this calculus.64 

Tarski therefore proposed axioms which are specific to the calculus of rela 
tions. This second method led to the theory of relation algebras. Tarski's 
axiomatization consists of an axiomatization of the sentential calculus, to 
gether with the following axioms: 

(I) (=y A Xz z) -- y z 

(II) x=y -- (x+z=y+z A x.zzy.z) 

(III) x?y=yx+ A x.y=y.x 

(IV) (X + y) z =xz X Z + y A Z A (x y) + z= (x + z) (y + z) 

(V) X+O=X A x*1=X 

(VI) x + =1 A x.Y 0 

(ViT) --(1 = ) 

(VIII) X = 

(IX) (X;y) y= X 

(X) X;(y;z) = (X;y);z 
(XI) x;1 X x 

(XII) x;1= 1 V 1;z = 1 

(XIII) (;y) z = O - 
(y z) * O 

(XIV) 0' = 1' 

(XV) Xty =z;Y 

The only two rules of inference to be used with these axioms are the rule of 
substitution and the rule of detachment. 

Axioms (I)-(VII) form an axiomatization of the calculus of classes, due 
essentially to E. V. Huntington.65 The remaining axioms are selected from 
laws already noted by De Morgan, Peirce, and Schr6der. In particular, (VIII) 
is (B2), (IX) is (B25), (X) is (Bll), (XI) is part of (B29), (XII) corresponds 
to (B33), (XIII) corresponds to (A23), (XIV) defines 0', and (XV) defines 

t. Therefore, the collection of all binary relations on an arbitrary nonempty 
set U, together with the appropriate operations and distinguished relations, 
is a model of (I)-(XV). 

Tarski proves sixteen theorems in this system, many of which are among 
the formulae already listed. Tarski then proves the result of Schr6der men 
tioned above, that every sentence (Boolean combination of equations) is 

64[Tarskil941], p. 77. 
65See [Huntingtonl904] and [Tarski1941], p. 78, footnote 3. 
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equivalent to an equation of the form "x = 1". But Tarski's proof is based 
just on axioms (I)-(XV), so he actually proves a generalization of Schroder's 
theorem, namely, that if A is a model of (I)-(XV), then a sentence holds in 

A if and only if its corresponding equation holds in A. 
Tarski's axiomatization also suffices to prove (B1)-(B15), (B20)-(B50), 

Schroder's version of De Morgan's Theorem K, and Peirce's theorem on 
transitive relations containing the identity relation. It is natural to ask 

whether Tarski's axiomatization is complete. Tarski put the problem this 
way: 

Is it the case that every sentence of the calculus of relations which is true in 
every domain of individuals is derivable from the axioms adopted under the 
second method? This problem presents some difficulties and remains open. 
I can only say that I am practically sure that I can prove with the help of 
the second method all of the hundreds of theorems to be found in Schrbder's 

Algebra und Logik der Relative.66 

It would be interesting to know whether there is a theorem in Schroder's 
book which is part of the fragment axiomatized by Tarski, but which is not 
derivable from his axioms. However, Tarski was probably right. It seems 
likely that there is no such sentence. 

Altogether, Tarski considers five questions: 
1. Is the axiomatization complete? 
2. Is every model of the axioms representable? 
3. Is there a decision method for valid equations? 
4. Is every first order sentence expressible as an equation? 
5. Is there a decision method for expressible first order sentences? 
The answer is "no" in every case. Roger Lyndon answered the first two 

questions with a single construction.67 Tarski already had the solution to 
his third question.68 The answer to the fourth question is due to Korselt and 
had been known for many years.69 The fifth question was finally answered 
by M. Kwatinetz, a student of Tarski's.70 

The first three questions and their answers are best explained in a frame 
work which emerged a few years later, that of Tarski's relation algebras. 

5. Relation algebras: definitions 

We will look dosely at four definitions of relation algebras, in chronological 
order.7' 

6G Tarskil941], pp. 87-88. 

67[Lyndonl95O], ?8. 
68See [Tarskil941], p. 88. 
69Korselt's result is reported in [L5wenheimll5], Theorem 1. See [vanHeijenoort], p. 233. 
70 [Kwatinetzl981]. 
71 Relation algebras have been defined in many different ways by various authors; see, for 
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The first definition of relation algebras appears in an abstract, Represen 
tation problems for relation algebras, by Jonsson and Tarski.72 They define 
a relation algebra as a Boolean algebra together with a binary operation 

and a unary operation v, such that (B2), (Bil), (B14), and (B22) hold, 
(B29) holds for some element 1', and 

(Cl) X ; (x ; y) 

This is almost an equational definition: all the postulates are equations 
except for the one which asserts the existence of an element 1' satisfying 
(B29). In the presence of the axioms listed before it, (Cl) is equivalent to 

De Morgan's Theorem K. (Cl) does not occur in Peirce's Note B, but it can 
be replaced by either (B12) or (B13), if the occurrences of t in those formulae 
are eliminated by (XV). 

Now we describe the connection between relation algebras and models 
of Tarski's axioms. The language which Tarski uses for his axiomatization 
of the calculus of relations includes variables denoting arbitrary relations, 
symbols for the distinguished relations 0, 1, 1', and 0', symbols for the six 
operations of Note B, namely +, t, ;, ',', and -, a symbol for equality, and 
propositional connectives. Thus a structure which is appropriate for this 
language must be an algebra of the form 

A=- (A5 +) .-,O1, ;5 t),j J507) 

Suppose A is a model of Tarski's axioms (I)-(XV). Then the reduct 
(A, +, , -, 0, 1) is a nontrivial Boolean algebra by (I)-(VII). Using (I)-(XI) 

and (XIII) it can be shown73 that the reduct (A, +,., - 0,1,,1) ;' ')is are 
lation algebra as defined by Jonsson and Tarski. 

Conversely, if (A, +, ,0,,1, ;,,1') is a relation algebra, and we take 
(XIV) and (XV) as definitions of O' and t, respectively, then A = 

(A,+, .,-,0,1, ;,t,,1',') is a model of (I)-(VI), (VIII)-(XI), and (XIII) 
(XV). A is also a model of (VII) just in case A has at least two elements, 
and A is also a model of (XII) jist in case A is simple, that is, A has no 
nontrivial congruence relations. Thus every nontrivial simple relation alge 
bra yields a model of Tarski's axioms (I)-(XV). Relation algebras could have 
been defined as models of (I)-(XV), but the resulting dass of algebras would 
not be a variety, for it would not be closed umder the formation of homomor 
phic images (due to axiom (VII)) or direct products (due to axiom (XII)). If 

example, [Birkhoffl948], Ch. XIII, ?5, pp. 209-211. Such definitions are not pursued here, 
since the relation algebras of this paper are just the ones due to Tarski. 
72 [Jonsson-Tarskil948], received October 21, 1947, presented November 29, 1947. 
73See [Chin-Tarskil951], p. 352, and [Jonsson-Tarskil952], p. 128, footnote 15. 
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axioms (VII) and (XII) are deleted, then the remaining ones form an alter 
native axiomatization of relation algebras. This alternative axiomatization 
is almost equational. The identity element 1' is treated as a distinguished 
element, but axiom (XIII) is an implication. Axiom (XIII) is an alternative 
form of De Morgan's Theorem K. 

The second definition of relation algebras is by Lyndon,74 who defines a 
relation algebra as a Boolean algebra together with a unary operation, a 
binary operation, and a distinguished element, satisfying (VIII)-(XI) and 
(XIII), with (XII) replaced by 

(C2) X # 0 1; (X; 1) 1, 

a variant of (A29). He does not include (VII), so Lyndon's relation algebras 
are actually simple (possibly trivial) relation algebras. Thus Lyndon's def 
inition is not only not equational, but is not equivalent to any equational 
definition. 

The third definition of relation algebras, due to Chin and Tarski, is the first 
in which the similarity type of relation algebras is explicitly specified.75 Chin 
and Tarski require a relation algebra to be of the form A (A, +, -, ;,v , 
where (A, +, ) is a Boolean algebra (note that ., 0, and 1 can be obtained 
from + and - by composition), satisfying (B2), (Bl1), the first equation 
in (B14), (B22), (B25), and (Cl). They do not have 1' as a distinguished 
element, and hence require an existential axiom, which asserts that there is 
some u E A such that x;u - x for all x E A. 

The fourth definition of relation algebras is by Jonsson and Tarski.76 
Some of their results require that complementation cannot be obtained from 
the fundamental operations by composition, and hence they do not include 
complementation in the similarity type of relation algebras.77 They define 
relation algebras as algebras of the form A = (A,+,O, ,1, ;j,m1'), where 
(A, +, 0, , 1) is a Boolean algebra, satisfying (B11), (B29), and the following 
version of De Morgan's Theorem K: 

(C3) x;yz0 z= O ;z.y=O O-+ z;y x=0 

This definition of relation algebras is equivalent to the others given above 

(except for Lyndon's inclusion of an axiom guaranteeing simplicity), and 
several other variations on the definition are possible.78 

74[Lyndon1950], p. 708. 
75See [Chin-Tarskil951], Definition 1.1. The first two definitions do not specify the simi 

larity type of the underlying Boolean algebra. 

76[[Jonsson-Tarskil952], Definition 4.1. 
77See [Jonsson-Tarskil95l], p. 897, for further comments on this situation. 

78See [Chin-Tarskil951], p. 352, footnote 10, p. 354, footnote 12, and [Jonsson 

Tarskil952], p. 128, footnote 15. 
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Three of the definitions mentioned so far are in papers co-authored by 
Tarski, and perhaps therefore express some evolution in his thoughts on 
the way relation algebras should be presented. But Tarski soon adopted 
the attitude that relation algebras should be defined with purely equational 
postulates.9 Such a definition makes it obvious that relation algebras form 
a variety. Indeed, his final version80 is quite explicitly equational: a relation 
algebra is an algebra of the form A = (A, +, -,; ,-, 1') which satisfies (B2), 
(Bll), the first equation in (B14), (B22), (B25), (XI), (Cl), and the following 
three equations: 

(C4) X+y= y+X 

(C5) X + (Y + z) +(z, 

(C6) x+ y +Y+ y . 

These three equations assert that (A,+,-) is a Boolean algebra, and are 
due essentially to E. V. Huntington.8' 

This axiomatic algebraic approach to the calculus of relations, marked by 
the advent of relation algebras, has two important features which distinguish 
it from the viewpoint of Peirce and Schr6der. First, Peirce and Schroder work 

with all binary relations on the umiverse of discourse. But Tarski's axioms 
hold in certain models formed by taking only some of those relations. Indeed, 
a model of (I)-(XV) can be built from any set of relations which contains 
1' and is dosed under union, complementation, relative multiplication, and 
conversion. In such models, (B16)-(B19) make sense, but may not hold. For 
example, if U has three or more elements, then 0, 1, 1', and O are distinct 
relations forming a 4-element model of (I)-(XV) in which (B16) fails with 
X = 0', y = 1', and z = 1, since (X . y);z = (0' . 1');1 0;1 0 , but 

I,(X;(Z *p) + y; (z Hp)=Ip(W' ;(1 * p) + 1' ;(1 *) 

ll p(0';p+P) 

= (0 + 1) * (1 + 0) * (0' + 0') (O';O' + ';) 

=0' 

However, Peirce made no mistake, for (B16)-(B19) do hold in Re U, which 
is the relation algebra of aUl binary relations on U.82 

79See [Tarskil955], p. 60, and [Tarskil956], ?3. 
80[Tarski-Givantl987], Definition 8.1. 
81 

[Huntington193 3]. 
82For a proof, see [Schr5derl895], ?29, pp. 491-494. 
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The second distinguishing feature of the relation algebraic approach to the 
calculus of relations is that there are relation algebras of binary relations in 

which the universal relation need not relate every element of the imiverse of 
discourse to every other. Such algebras are called proper relation algebras. 
To define them, the definition of complement must be slightly modified from 
(A2) to make it suitable for the case in which 1 # U x U: 

(C7) = {(a,b) : (a,b) E 1 and (a,b) X x}. 

Then a proper relation algebra A = (A,+,-,;, ,1') is a relation algebra 
whose u-niverse A is a family of binary relations (all contained in some largest 
binary relation 1 E A), such that A is closed under union, complementation 
with respect to 1, relative multiplication, and conversion, A contains the 
identity relation on the field of the largest relation, + is union, - is comple 

mentation with respect to 1, ; is relative multiplication, is conversion, and 
1' is the identity relation on the field of l.' 

6. Relation algebras: representability and incompleteness 

Jonsson and Tarski posed representation problems in their abstract, but 
they do not define the notion of a representable relation algebra. Instead, 
they define the notion of proper relation algebra, and ask whether every 
relation algebra is isomorphic to one which is proper. A relation algebra 
is representable if it is isomorphic to a proper relation algebra.84 The 
representation problem for relation algebras then reads, "Is every relation 
algebra representable?" 

Roger Lyndon showed that the answer is "no", by constructing a finite 
nontrivial simple relation algebra which is not representable.85 Because his 
algebra is simple and nontrivial, it is also a model of Tarski's axioms (I) 
(XV), and hence yields a negative answer to Tarski's second question at the 
end of ?4. 

83This last requirement, that a proper relation algebra must contain the identity relation 

on its underlying set, is dropped in [Jonsson-Tarskil952]; see Definition 4.23. Since a 

proper relation algebra is a relation algebra, there must be a relation which acts as an 

identity element for relative multiplication, but this relation need not be an identity 

relation, although it does have to be an equivalence relation. It is shown in Theorem 

4.27 of [Jonsson-Tarskil952] that a relation algebra is isomorphic to a proper relation 

algebra in the sense of [Jonsson-Tarskil952] if and only if it is isomorphic to a proper 

relation algebra in the sense of [Jonsson-Tarskil948], so for the representation problem 

this difference in the definition of proper relation algebra makes no difference. However, in 

[Tarski-Givantl987], ?8.3, the definition of proper relation algebra in [Jonsson-Tarskil952] 

has been dropped in favor of the original one in [Jonsson-Tarskil948]. 

84This meaning is implicit in [Lyndonl950]. 
85See [Lyndonl950], ?8. 
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Lyndon found an infinite set of conditions which are necessary and suffi 
cient for a finite relation algebra to be representable.86 His finite relation 
algebra fails to satisfy one of these conditions, and is therefore not repre 
sentable. Each condition has an integer attached to it. The simplest of these 
conditions, for which that integer is 4 or less, can be shown to hold in all 
relation algebras. For n = 5, there are, on grounds of symmetry, only three 
conditions which are not obviously equivalent to each other. These three 
conditions are equivalent to the following valid sentences of the calculus of 
relations. In these equations, if "xi" occurs after "x j", then "xjii" is an 
abbreviation of "( ij". This notational device is due to Lyndon. 

(D1) x02 ;x21 *x 03 ;x31 *x 04 ;X41 < 

(D2) x02;[X20 ;X03 *x 21;X13 *(X20 ;X04 *x 21;X14);(x40 ;X03 *X41;X13 )]; x31 

X01 * (X02 .03; X32 ); (x21 x24; X41)) 

(D3) x03; [(X30; X01 X32; x21 ); x14 *X32; x24 *x30; (x01; x14 02; X24)]; X41 

X01 < x02 ;x21 x X03 ;x31 A X20 ;x03 x21 ;x13 < x24 ;X43 - 

X01 (X02; x24 * 03; X34 ); (X42; X20 o 
X43; x31 ) 

Lyndon's nonrepresentable relation algebra fails to satisfy (D1). It follows 
that (D1) is not derivable from Tarski's axioms (I)-(XV). Tarski's axioma 
tization is therefore incomplete. 

Lyndon original versions of (D1)-(D3) were first order conditions on the 
"atom structure" of a finite relation algebra. To explain what this is we 
present Lyndon's analysis of the structure of finite relation algebras. 

Since every relation algebra A has a Boolean algebra as a reduct we may 
apply all the standard terminology and theory of Boolean algebras to relation 
algebras. In particular, every finite relation algebra has a finite Boolean part, 
and the structure of every finite Boolean algebra is completely determined 
by one number, namely, the ntmnber of atoms. Every finite relation algebra 
A has cardinality 2T7, where n is the number of atoms of A. The structure 
of A thus depends entirely on the choice of 1' nmd on the way the operations 

and are defined. In fact, since ; and are distributive over +, and every 
element in a finite Boolean algebra is the join of the atoms below it, the 
action of ; and is completely determined by their restrictions to the atoms. 
For example, if x = a+b+ c a-nd y = b+c+ d, where a, b, c, and d are atoms, 
then x;y = (a+b+c);(b+c+d) = a;b+a;c+a;d+b;b+b;c+b;d+c;b+c;c+c;d 

86See ?5 of pLyndonl950] for the conditions, Theorem II for their sufficiency, and Theo 
rem I for their necessity, with "complete" in Theorem I replaced by "finite", in accordance 

with the corrections listed in [Lyndonl956]. 
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and x` (a + b + c)' 'a' + b + C'. In general, for all x, y G A, 

x;y = {a;b:zx > a AtA, y > bc AtA}, 

X = 
E0 : x > a E AtA}, 

where AtA is the set of atoms of A. 
In every relation algebra, if x < 1', then x= x. Furthermore, if x is an 

atom, then so is . 87 Thus 
' 

is an involution on the atoms which leaves the 
atoms below 1' fixed. An atom a of a finite relation algebra A is an identity 
atom if a < 1', and a diversity atom if a < 0'. The atom a is symmetric 
if a = a, and antisymmetric if 'a a 0 O. Every identity atom is symmetric, 
and every antisyimmetric atom is a diversity atom. Since is an involution, 
the antisymmetric atoms occur in pairs. 

The structure of a finite relation algebra is completely determined by the 
following items: a list of atoms below 1', an involution' on the atoms which 
leaves the atoms below 1' fixed, and a table listing the products a; b for 
all pairs of atoms a, b. However, the action of ; and on AtA is in turn 
completely determined by the ternary relation 

C(A) =(a,b,c) :a,b,cEAtA, a;b>c}. 

Indeed, for every a, b E AtA, we have 

a;b Z {c : (a, b, c) E C(A)}. 

The triples in C(A) will be called cycles. Lyndon suggested88 that a triple 
(a, b, c) of atoms be called a cycle if a; b > c. Any such triple also satisfies the 

conditions b;c > a, c;a >b b; ba > c, a;cm > b, and cV;b > a. We have departed 

somewhat from Lyndon's suggestion, using the condition a b > c, instead 
of a;b > c, because C(A) is the relation which occurs in the Jonsson-Tarski 
Representation Theorem89 for Boolean algebras with operators. Note that 
a triple (a, b, c) is a cycle in Lyndon's sense iff (a, b, c) is a cycle in the sense 

followed here. 
In view of these observations, it is clear that a table listing the products of 

all the pairs of atoms of a given finite relation algebra is nothing more than 
a (rather redundant) list of its cycles. Furthermore, as Lyndon observed, the 
identity atoms can be characterized among all atoms as those which satisfy 

87See [Lyndonl950], p. 710, line 5, or [Jonsson-Tarskil952], Theorem 4.3(xii). 

88[Lyndonl950], p. 710. 

89See [Jonsson-Tarskil951], ?3. Theorem 3.10 is the Representation Theorem. For the 
correspondence between operators and relations, see Definition 3.2 and Theorem 3.3. 
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u; =- u. Thus he notes that a finite relation algebra may be characterized 
by specifying the mapping' from atoms to atoms, and giving a list of cycles. 

It turns out, however, that the entire structure is determined by the cycles 
alone. First, it can be shown that for every a e AtA, a < 1' iff b = c whenever 
(a, b, c) E C(A). Thus C(A) determines all the identity atoms. Next, 'a is 
the unique b E A such that (a, b, u) E C(A) for some identity atom u. Thus 
the cycles determine 

v 
as well. However, as we now show, it is more efficient 

to specify independently of the cycles. 
Suppose A is a finite relation algebra. For any a, b, c E AtA, let 

[a b c] {(a, b, c), (a' c b) ( c (b ',a a C) c a b)(:cba) 

Then either [a, b, c] < C(A) or else [a, b, c] C(A) 0. In other words, 
C(A) can be partitioned into sets of the form [a,b,c], each of which may 
contain up to six different cycles. This follows from (C3). We will refer 
to the sets [a, b, c] as cyclesets. Any finite relation algebra may therefore 
be succinctly specified in the following way. First list the identity atoms, 
then the symmetric diversity atoms, then the pairs of antisymmetric atoms, 
amd finally the cyclesets. The action of 

" 
is thus implicitly specified by the 

notation for the atoms. Pairs of antisynimetric atoms are denoted by a, a', b, 
b, etc., while synunetric atoms are denoted by just a, b, etc. (The convention 
is that if a is listed as an atom, but a does not appear in the list of atoms, 
then a = a.) We use ul, U2, etc., for identity atoms. For example, let 

Uo Ui ,1 a, b, b 

be a list of the five atoms in a certain finite relation algebra A with 32 
elements. We can determine 1' and from this list: 1' uo + ul, and 
uo =,uo, Ui u1, a = a, (b)v = b, (b)V b. What remains is to specify the 
cyclesets making uip C(A): 

[uo ,uo ,uo ], [ui ,ul ,u 1] [ uo,aya]5 [uo, b,b], [u,-b5,b], [a,b,b], [a? a,a]. 

Note that [ul,b,b] [b,ul ,b], so we could actually list the cyclesets using 
two fewer symbols. The relation algebra A thus specified happens to be 
isomorphic to the subalgebra of Re {0, 1, 2, 3} which is generated by the 
relation {(0, 3), (1, 3) , (2, 3)}. The atoms of this subalgebra are 

{(0? 0) ,(1y1) , (2, 2)} 

{(3, 3)} 

{(0,1) ,(1,0), (0,2) (2,0), (1,2), (2,1)} 
{(0,3) (1,3), (2,3)} 
{(3, 0) (3, 1) , (3, 2)} 
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which correspond respectively with the atoms uo, ul, a, b, and b of A. 
The atom structure90 of a finite relation algebra A is 

AtA = (At A, C(A),-',{u: 1' > u E AtA}). 

As we have seen, the atom structure determines the algebra completely. In 
fact, an isomorphic copy of A can be obtained by applying the "complex 
algebra" construction of Jonsson and Tarski.` They showed that every 
complete and atomic (hence every finite) relation algebra is isomorphic to 
the complex algebra of its atom structure.92 Lyndon worked out the first 
order conditions which characterize those relational structures whose com 
plex algebras are relation algebras.93 This characterization is part of his 
infinite set of first order conditions which characterize those finite relational 
structures whose complex algebras are representable relation algebras. The 
simplest conditions in this latter characterization which could possibly fail 
in some relation algebra are formulated above as (D1)-(D3). Indeed, as 

Lyndon showed, (D1) can fail in a finite relation algebra. Lyndon presented 
his algebra by listing its atoms, their converses, and the cycles. This will 
not be done here because Lyndon's algebra has fifty-six atoms, and consid 
erably smaller nonrepresentable relation algebras were found later. Lyndon 
knew that all finite relation algebras with three or fewer atoms are repre 
sentable,94 so the smallest nonrepresentable relation algebra must have at 
least four atoms. Ralph McKenzie was the first to find such a small nonrep 
resentable relation algebra.95 The atoms of McKenzie's algebra are 1', a, b, b, 
and its cyclesets are 

[1', 1' 1l], [l', a, a], [1', b, b], [b, 1' b], [b, b, b], [a, b, a], [a, b, b], [b, a, b]. 

McKenzie's argument that his algebra is not representable does not involve 

(D1)-(D3). It turns out that McKenzie's algebra satisfies (D1), unlike Lyn 
don's algebra, but fails to satisfy (D2) and (D3). For example, (D2) fails 

when xol = a, X02 b, 21 b, 03 a, -32 = a, X2 = a, and 41 = a, 
while (D3) fails when x0l = a, x02 = b, x21 = b, x03 = b, x31 = b, X24 = a, 

90This term is not used by Lyndon. It was borrowed from the theory of cylindric algebras 

and applied to relation algebras in [Madduxl982]. 
9 See [oJnsson-Tarskil951], Definition 3.8. 

92 [Jonsson-Tarskil951], Theorem 3.9. 

93See [Lyndonl950], p. 710. A slightly different first order characterization is given in 

[Madduxl978], Theorem 3(5), and in [Madduxl982], Theorem 2.2. For symmetric relation 

algebras, those in which X = x holds, this characterization appears in [Jonssonl959], 

pp. 460-461. 

94[Lyndon1956], p. 307, footnote 13. 

95See [IcKenziel966], pp. 37-39, or [McKenziel970], p. 286. 
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and X43 = a. Thus none of (D1)-(D3) can be proved from Tarski's axioms 

(J)-(XV). 

7. Epilogue 

This paper has examined 

o the origin of the calculus of relations in the work of De Morgan and 
Peirce, 

o Tarski's axiomatization of a portion of this calculus, 
o the emergence of relation algebras from Tarski's axiomatization, 
o the incompleteness of Tarski's axiomatization, as shown by Lyndon's 

work on finite relation algebras. 

In the course of this presentation, we briefly indicated Peirce's role in the 
formation of first order logic. There are many other interesting topics which 
have not been pursued, such as 

(1) Schrbder's development of the calculus of relations, 
(2) the development of model theory out of the Peirce-Schr6der tradition, 

through Lowenheim and Tarski. 
(3) the independent development of concepts closely related to relation 

algebras, and 
(4) the later history of relation algebras. 

Here we make just a few brief comments on these topics. 
(1) Tarski had a high opinion of Schrbder's book, which, he said, "contains 

a wealth of unsolved problems, and seems to indicate the direction for fur 
ther investigations"?' Peirce was not so enthusiastic, as shown by his brief 
historical summary. Schr6der developed Peirce's algebra from Note B, but 
Peirce thought that "Professor Schroder attaches, it seems to me, too high a 
value on this algebra."97 Nevertheless, Schroder's work deserves much more 
attention than it has been given. 

(2) It was noted above that L6wenheim's Theorem, now conceived as 
the first theorem in model theory, was a theorem about the calculus of 
relations. Tarski is generally acknowledged as the principal creator of model 
theory. It is no coincidence that he was influenced by the Peirce-Scbrbder 
tradition. The ideological trappings of the work of Frege, Whitehead, and 

Russell precluded model theory. 
(3) The atom structure of a finite relation algebra has a ternary relation 

(the set of cycles) which can be viewed as a set-valued binary operation. Such 
structures have been invented from the 1930's onward as generalizations 

96[Tarskil941], p. 74. 

97[Peircel933], 3.498. For further explication of Schroder's work by Peirce, see 

[Peircel897], which can be found in [Peirce1933], 3.510-525. 
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of groups and other mathematical objects. As a result, relation algebras 
have many tantalizing connections with various other areas of mathematics. 
Peirce himself worked on some of these connections, and many more have 
appeared over the last hundred years. 

(4) The later history of relation algebras has many fascinating stories, a 
few of which we will now briefly outline. Besides constructing a nonrep 
resentable finite relation algebra, Lyndon proved that the class of repre 
sentable relation algebras is not axiomatizable by any set of equations.Y8 
On the other hand, Tarski proved that the class of representable relation 
algebras ts axiomatizable by a set of equations.99 The apparent contradic 
tion was resolved in Tarski's favor.100 Lyndon responded with an equational 
axiomatization of the class of relation algebras.10' Building on Lyndon's 
work, Jonsson axiomatized a special class of reducts of representable rela 
tion algebras.102 Noting that the associative law for relative multiplication 
is equivalent to a first order condition which resembles one of the axioms of 
projective geometry, Jonsson constructed a nonrepresentable relation alge 
bra from a non-DesArguesian projective plane.103 By extending Jonsson's 

idea, Lyndon found a beautiful connection between projective geometries 
and certain relation algebras.104 Through this connection, the nonexistence 
of a projective plane of order six yields the nonrepresentability of a cer 
tain relation algebra with only eight atoms, a considerable improvement 
over Lyndon's first example. This connection had a profound effect on Lyn 
don's earlier work. Lyndon felt that his infinite set of conditions (the ones 
characterizing finite representable relation algebras) could not be reduced 
to finitely many.'05 He turned out to be right. J. D. Monk used Lyndon's 
connection, together with the Bruck-Ryser Theorem on the nonexistence of 
certain projective planes, to show that there is an infinite class of finite non 

representable relation algebras with a representable ultraproduct.106 This 
shows that the class of representable relation algebras is not finitely axiom 

atizable, and that Lyndon's intuition was correct. It follows from this that 

Tarski's axiomatization is very incomplete: no finite number of additional 

axioms will secure completeness. It is therefore all the more amazing that 

Tarski's short list of axioms seems to suffice for the derivation of all the 

98[Lyndonl95O], Theorem IV. 

99[Tarskil955], Theorem 2.4. 
100 See [Tarskil955], p. 61, footnote 5, and [Lyndonl956], p. 294 and the Appendix, 
pp. 306-307. 
101 

[Lyndonl956]. 
02 [Jonsson1959], Theorem 1. 

o3[Jnssonl959], pp. 460-463. 
104 [Lyndonl96 1]. 

105[Lyndonl950], p. 713. 
106 [Monkl964]. 
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results in Schroder's book. 

We close with one more remark on Lyndon's conditions. He did not say, 
and presumably did not know, whether (D1)-(D3) are independent, but 
it turns out that they are indeed independent. This has been shown by 
computer computations. In fact, every possible subset of (D1)-(D3) can fail 
in a finite relation algebra with no more than five atoms. 
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